
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Eric A. Meyer

CSS Text

www.it-ebooks.info

http://www.it-ebooks.info/

CSS Text
by Eric A. Meyer

Copyright © 2013 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Meghan Blanchette
Production Editor: Kara Ebrahim
Proofreader: Nicole Shelby

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

August 2013: First Edition

Revision History for the First Edition:

2013-08-21: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449373740 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. CSS Text, the image of salmon, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-37374-0

[LSI]

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449373740
http://www.it-ebooks.info/

Table of Contents

Preface. v

Text Properties. 1
Indentation and Horizontal Alignment 1

Indenting Text 1
Horizontal Alignment 4
Aligning the Last Line 9

Vertical Alignment 10
The Height of Lines 10
Vertically Aligning Text 14

Word Spacing and Letter Spacing 20
Word Spacing 20
Letter Spacing 22
Spacing and Alignment 23

Text Transformation 24
Text Decoration 26

Weird Decorations 28
Text Rendering 31
Text Shadows 32
Handling White Space 34

Setting Tab Sizes 37
Wrapping and Hyphenation 38

Wrapping Text 43
Text Direction 44
Summary 46

iii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

v

www.it-ebooks.info

http://www.it-ebooks.info/

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-
demand digital library that delivers expert content in both book and
video form from the world’s leading authors in technology and busi‐
ness.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/csstext-meyer.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

vi | Preface

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/csstext-meyer
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

Text Properties

Sure, a lot of web design involves picking the right colors and getting the coolest look
for your pages, but when it comes right down to it, you probably spend more of your
time worrying about where text will go and how it will look. Such concerns gave rise to
HTML tags such as and <CENTER>, which allow you some measure of control
over the appearance and placement of text.

Because text is so important, there are many CSS properties that affect it in one way or
another. What is the difference between text and fonts? Simply, text is the content, and
fonts are used to display that content. Using text properties, you can affect the position
of text in relation to the rest of the line, superscript it, underline it, and change the
capitalization. You can even simulate, to a limited degree, the use of a typewriter’s
Tab key.

Indentation and Horizontal Alignment
Let’s start with a discussion of how you can affect the horizontal positioning of text
within a line. Think of these basic actions as the same types of steps you might take to
create a newsletter or write a report.

Indenting Text
Indenting the first line of a paragraph on a web page is one of the most sought-after
text-formatting effects. (Eliminating the blank line between paragraphs is a close sec‐
ond.) Some sites used to create the illusion of indented text by placing a small transparent
image before the first letter in a paragraph, which shoves the text over. Thanks to CSS,
there’s a much better way to indent text, called text-indent.

1

www.it-ebooks.info

http://www.it-ebooks.info/

text-indent
Values:

<length> | <percentage> | inherit

Initial value:
0

Applies to:
Block-level elements

Inherited:
Yes

Percentages:
Refer to the width of the containing block

Computed value:
For percentage values, as specified; for length values, the absolute length

Using text-indent, the first line of any element can be indented by a given length—
even if that length is negative. The most common use for this property is, of course, to
indent the first line of a paragraph:

p {text-indent: 3em;}

This rule will cause the first line of any paragraph to be indented three ems, as shown
in Figure 1.

Figure 1. Text indenting

In general, you can apply text-indent to any block-level element. You can’t apply it to
inline elements or on replaced elements such as images. However, if you have an image
within the first line of a block-level element, like a paragraph, it will be shifted over with
the rest of the text in the line.

2 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

If you want to “indent” the first line of an inline element, you can create
the effect with left padding or margin.

You can also set negative values for text-indent, a technique that leads to a number of
interesting effects. The most common use is a “hanging indent,” where the first line
hangs out to the left of the rest of the element:

p {text-indent: −4em;}

Be careful when setting a negative value for text-indent; the first three words (“This
is a”) may be chopped off by the left edge of the browser window. To avoid display
problems, I recommend you use a margin or some padding to accommodate the neg‐
ative indentation:

p {text-indent: −4em; padding-left: 4em;}

Negative indents can, however, be used to your advantage. Consider the following ex‐
ample, demonstrated in Figure 2, which adds a floated image to the mix:

p.hang {text-indent: −25px;}

<img src="star.gif" style="width: 60px; height: 60px;
float: left;" alt="An image of a five-pointed star."/>
<p class="hang"> This paragraph has a negatively indented first
line, which overlaps the floated image that precedes the text. Subsequent
lines do not overlap the image, since they are not indented in any way.</p>

Figure 2. A floated image and negative text indenting

A variety of interesting designs can be achieved using this simple technique.

Any unit of length, including percentage values, may be used with text-indent. In the
following case, the percentage refers to the width of the parent element of the element
being indented. In other words, if you set the indent value to 10%, the first line of an
affected element will be indented by 10 percent of its parent element’s width, as shown
in Figure 3:

div {width: 400px;}
p {text-indent: 10%;}

<div>
<p>This paragraph is contained inside a DIV, which is 400px wide, so the
first line of the paragraph is indented 40px (400 * 10% = 40). This is

Indentation and Horizontal Alignment | 3

www.it-ebooks.info

http://www.it-ebooks.info/

because percentages are computed with respect to the width of the element.</p>
</div>

Figure 3. Text indenting with percentages

Note that this indentation only applies to the first line of an element, even if you insert
line breaks. The interesting part about text-indent is that because it’s inherited, it can
have unexpected effects. For example, consider the following markup, which is illus‐
trated in Figure 4:

div#outer {width: 500px;}
div#inner {text-indent: 10%;}
p {width: 200px;}

<div id="outer">
<div id="inner">
This first line of the DIV is indented by 50 pixels.
<p>
This paragraph is 200px wide, and the first line of the paragraph
is indented 50px. This is because computed values for 'text-indent'
are inherited, instead of the declared values.
</p>
</div>
</div>

Figure 4. Inherited text indenting

Horizontal Alignment
Even more basic than text-indent is the property text-align, which affects how the
lines of text in an element are aligned with respect to one another.

4 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

text-align
CSS 2.1 values:

left | center | right | justify | inherit

CSS3 values:
[[start | end | left | right | center] || <string>] | justify | match-parent |
start end | inherit

Initial value:
In CSS3, start; in CSS 2.1, user agent-specific, likely depending on writing
direction

Applies to:
Block-level elements

Inherited:
Yes

Computed value:
As specified, except in the case of match-parent

Note:
CSS2 included a <string> value that was dropped from CSS 2.1 due to a lack of
implementation

The quickest way to understand how these values work is to examine Figure 5, which
sticks with three of the CSS 2.1 values for the moment.

Figure 5. Selected behaviors of the text-align property

Obviously, the values left, right, and center cause the text within elements to be
aligned exactly as described. Because text-align applies only to block-level elements,

Indentation and Horizontal Alignment | 5

www.it-ebooks.info

http://www.it-ebooks.info/

such as paragraphs, there’s no way to center an anchor within its line without aligning
the rest of the line (nor would you want to, since that would likely cause text overlap).

Historically, which is to say under CSS 2.1 rules, the default value of text-align is left
in left-to-right languages, and right in right-to-left languages. (CSS 2.1 had no notion
of vertical writing modes.) In CSS3, left and right are mapped to the start or end edge,
respectively, of a vertical language. This is illustrated in Figure 6.

As you no doubt expect, center causes each line of text to be centered within the ele‐
ment. Although you may be tempted to believe that text-align: center is the same as
the <CENTER> element, it’s actually quite different. <CENTER> affected not only text, but
also centered whole elements, such as tables. text-align does not control the alignment
of elements, only their inline content. Figures 5 and 6 illustrate this clearly in various
writing directions.

Figure 6. Left, right, and center in vertical writing modes

Start and end alignment

CSS3 (which is to say, the “CSS Text Module Level 3” specification) added a number of
new values to text-align, and even changed the default property value as compared
to CSS 2.1.

The new default value of start means that the text is aligned to the start edge of its line
box. In left-to-right languages like English, that’s the left edge; in right-to-left languages
such as Hebrew, it’s the right edge. In vertical languages, for that matter, it will be the
top or bottom, depending on the writing direction. The upshot is that the default value
is much more aware of the document’s language direction while leaving the default
behavior the same in the vast majority of existing cases.

In a like manner, end aligns text with the end edge of each line box—the right edge in
LTR languages, the left edge in RTL languages, and so forth. The effects of these values
are shown in Figure 7.

6 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7. Start and end alignment

And then there’s the value start end, which is declared like so:
p {text-align: start end;}

This is a fascinating, and so far unsupported, value of text-align. The effect is that the
first line of the element, as well as any line that immediately follows a line break, uses
start alignment. The rest of the lines in the element use end alignment. (It may be
dropped from the CSS3 module if nobody starts supporting it.)
Justified text

An often-overlooked alignment property is justify, which raises some issues of its
own. In justified text, both ends of a line of text are placed at the inner edge of the parent
element, as Figure 8 shows. Then, the spacing between words and letters is adjusted so
that each line is precisely the same length. Justified text is common in the print world
(for example, in this book), but under CSS, a few extra considerations come into play.

Figure 8. Justified text

The user agent—and not CSS, at least as of mid-2013—determines how justified text
should be stretched to fill the space between the left and right edges of the parent. Some
browsers, for example, might add extra space only between words, while others might
distribute the extra space between letters (although the CSS specification states that
“user agents may not further increase or decrease the inter-character space” if the prop‐
erty letter-spacing has been assigned a length value). Other user agents may reduce
space on some lines, thus mashing the text together a bit more than usual. All of these
possibilities will affect the appearance of an element, and may even change its height,
depending on how many lines of text result from the user agent’s justification choices.

Indentation and Horizontal Alignment | 7

www.it-ebooks.info

http://www.it-ebooks.info/

String alignment

String alignment is an interesting case, one that has been lurking throughout the history
of CSS without actually gaining traction. The easiest way to explain it is to show some
code and the results (Figure 9):

table[summary="Daily Sales"] th {text-align: "/";}
table[summary="Daily Sales"] td {text-align: ".";}

<table summary="Daily Sales">
<tr><th>Mon 4/8</th><td>$12,122.13</td></tr>
<tr><th>Tue 4/9</th><td>$13,729.10</td></tr>
<tr><th>Wed 4/10</th><td>$9,447</td></tr>
<tr><th>Thu 4/11</th><td>$10,308.76</td></tr>
<tr><th>Fri 4/12</th><td>$999.99</td></tr>
</table>

Figure 9. String alignment

As Figure 9 shows, all the cells’ contents are aligned such that the “.” characters line up
along a vertical line (since this is a horizontal language). Had the CSS actually been
text-align: "," then the cells would all have lined up on the commas.

The problem, as always, is that string alignment still isn’t supported by
browsers, and may be once again dropped from the specification.
(Figure 9 was faked, I’m sorry to say.)

Parent matching

There’s one more value to be covered, which is match-parent. This isn’t supported by
browsers, but its intent is mostly covered by inherit anyway. The idea is, if you declare
text-align: match-parent, the alignment of the element will match the alignment of
its parent. So far, that sounds exactly like inherit, but there’s a difference: if the parent’s
alignment value is start or end, the result of match-parent is to assign a computed
value of left or right to the element. That wouldn’t happen with inherit, which would
simply apply start or end to the element with no changes.

8 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

Aligning the Last Line
There may be times when you want to align the text in the very last line of an element
differently than you did the rest of the content. For example, you might left-align the
last line of an otherwise fully justified block of text, or choose to swap from left to center
alignment. For those situations, there is text-align-last.

text-align-last
Values:

auto | start | end | left | right | center | justify

Initial value:
auto

Applies to:
Block-level elements

Inherited:
Yes

Computed value:
As specified

As with text-align, the quickest way to understand how these values work is to ex‐
amine Figure 10.

Figure 10. Differently aligned last lines

As you can see, the last lines of the elements are aligned independently of the rest of the
elements, according to the elements’ text-align-last values.

A close study of Figure 10 will reveal that there’s more at play than just the last lines of
block-level elements. In fact, text-align-last applies to any line of text that immedi‐
ately precedes a forced line break, whether or not said line break is triggered by the end
of an element. Thus, a line break occasioned by a
 tag will make the line of text
immediately before that break use the value of text-align-last. So too will the last

Indentation and Horizontal Alignment | 9

www.it-ebooks.info

http://www.it-ebooks.info/

line of text in a block-level element, since a line break is generated by the element’s
closure.

There are two more interesting wrinkles in text-align-last. The first is that if the first
line of text in an element is also the last line of text in the element, then the value of
text-align-last takes precedence over the value of text-align. Thus, the following
styles will result in a centered paragraph, not a start-aligned paragraph:

p {text-align: start; text-align-last: center;}

<p>A paragraph.</p>

The second, closely related, wrinkle is that text-align-last is ignored if the element’s
text-align value is start end. In other words, in the following case, the text will not
be centered:

p {text-align: START end; text-align-last: center;}

<p>A paragraph.</p>

As of mid-2013, support for text-align-last was limited to a pre‐
fixed Gecko property, -moz-text-align-last.

Vertical Alignment
Now that we’ve covered horizontal alignment, let’s move on to vertical alignment. Since
the construction of lines is a very complex topic that merits its own small book, I’ll just
stick to a quick overview here.

The Height of Lines
The line-height property refers to the distance between the baselines of lines of text
rather than the size of the font, and it determines the amount by which the height of
each element’s box is increased or decreased. In the most basic cases, specifying line-
height is a way to increase (or decrease) the vertical space between lines of text, but this
is a misleadingly simple way of looking at how line-height works. line-height con‐
trols the leading, which is the extra space between lines of text above and beyond the
font’s size. In other words, the difference between the value of line-height and the size
of the font is the leading.

10 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

line-height
Values:

<length> | <percentage> | <number> | normal | inherit

Initial value:
normal

Applies to:
All elements (but see text regarding replaced and block-level elements)

Inherited:
Yes

Percentages:
Relative to the font size of the element

Computed value:
For length and percentage values, the absolute value; otherwise, as specified

When applied to a block-level element, line-height defines the minimum distance
between text baselines within that element. Note that it defines a minimum, not an
absolute value, and baselines of text can wind up being pushed further apart than the
value of line-height. line-height does not affect layout for replaced elements, but it
still applies to them.
Constructing a line

Every element in a line of text generates a content area, which is determined by the size
of the font. This content area in turn generates an inline box that is, in the absence of
any other factors, exactly equal to the content area. The leading generated by line-
height is one of the factors that increases or decreases the height of each inline box.

To determine the leading for a given element, simply subtract the computed value of
font-size from the computed value of line-height. That value is the total amount of
leading. And remember, it can be a negative number. The leading is then divided in half,
and each half-leading is applied to the top and bottom of the content area. The result is
the inline box for that element.

As an example, let’s say the font-size (and therefore the content area) is 14 pixels tall,
and the line-height is computed to 18 pixels. The difference (4 pixels) is divided in
half, and each half is applied to the top and bottom of the content area. This creates an
inline box that is 18 pixels tall, with 2 extra pixels above and below the content area.
This sounds like a roundabout way to describe how line-height works, but there are
excellent reasons for the description.

Vertical Alignment | 11

www.it-ebooks.info

http://www.it-ebooks.info/

Once all of the inline boxes have been generated for a given line of content, they are
then considered in the construction of the line box. A line box is exactly as tall as needed
to enclose the top of the tallest inline box and the bottom of the lowest inline box.
Figure 11 shows a diagram of this process.

Figure 11. Line box diagram

Assigning values to line-height

Let’s now consider the possible values of line-height. If you use the default value of
normal, the user agent must calculate the vertical space between lines. Values can vary
by user agent, but they’re generally 1.2 times the size of the font, which makes line boxes
taller than the value of font-size for a given element.

Most values are simple length measures (e.g., 18px or 2em). Be aware that even if you
use a valid length measurement, such as 4cm, the browser (or the operating system) may
be using an incorrect metric for real-world measurements, so the line height may not
show up as exactly four centimeters on your monitor.

em, ex, and percentage values are calculated with respect to the font-size of the element.
The markup is relatively straightforward, and the results are shown in Figure 12:

body {line-height: 18px; font-size: 16px;}
p.cl1 {line-height: 1.5em;}
p.cl2 {font-size: 10px; line-height: 150%;}
p.cl3 {line-height: 0.33in;}

<p>This paragraph inherits a 'line-height' of 14px from the body, as well as
a 'font-size' of 13px.</p>
<p class="cl1">This paragraph has a 'line-height' of 27px(18 * 1.5), so
it will have slightly more line-height than usual.</p>
<p class="cl2">This paragraph has a 'line-height' of 15px (10 * 150%), so
it will have slightly more line-height than usual.</p>
<p class="cl3">This paragraph has a 'line-height' of 0.33in, so it will have
slightly more line-height than usual.</p>

12 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12. Simple calculations with the line-height property

Line-height and inheritance

When the line-height is inherited by one block-level element from another, things get
a bit trickier. line-height values inherit from the parent element as computed from
the parent, not the child. The results of the following markup are shown in Figure 13.
It probably wasn’t what the author had in mind:

body {font-size: 10px;}
div {line-height: 1em;} /* computes to '10px' */
p {font-size: 18px;}

<div>
<p>This paragraph's 'font-size' is 18px, but the inherited 'line-height'
value is only 10px. This may cause the lines of text to overlap each
other by a small amount.</p>
</div>

Figure 13. Small line-height, large font-size, slight problem

Why are the lines so close together? Because the computed line-height value of 10px
was inherited by the paragraph from its parent div. One solution to the small line-
height problem depicted in Figure 13 is to set an explicit line-height for every ele‐
ment, but that’s not very practical. A better alternative is to specify a number, which
actually sets a scaling factor:

body {font-size: 10px;}
div {line-height: 1;}
p {font-size: 18px;}

When you specify a number, you cause the scaling factor to be an inherited value instead
of a computed value. The number will be applied to the element and all of its child
elements, so that each element has a line-height calculated with respect to its own
font-size (see Figure 14):

Vertical Alignment | 13

www.it-ebooks.info

http://www.it-ebooks.info/

div {line-height: 1.5;}
p {font-size: 18px;}

<div>
<p>This paragraph's 'font-size' is 18px, and since the 'line-height'
set for the parent div is 1.5, the 'line-height' for this paragraph
is 27px (18 * 1.5).</p>
</div>

Figure 14. Using line-height factors to overcome inheritance problems

Though it seems like line-height distributes extra space both above and below each
line of text, it actually adds (or subtracts) a certain amount from the top and bottom of
an inline element’s content area to create an inline box. Assume that the default font-
size of a paragraph is 12pt and consider the following:

p {line-height: 16pt;}

Since the “inherent” line height of 12-point text is 12 points, the preceding rule will place
an extra 4 points of space around each line of text in the paragraph. This extra amount
is divided in two, with half going above each line and the other half below. You now
have 16 points between the baselines, which is an indirect result of how the extra space
is apportioned.

If you specify the value inherit, then the element will use the computed value for its
parent element. This isn’t really any different than allowing the value to inherit naturally,
except in terms of specificity and cascade resolution.

Now that you have a basic grasp of how lines are constructed, let’s talk about vertically
aligning elements relative to the line box.

Vertically Aligning Text
If you’ve ever used the elements sup and sub (the superscript and subscript elements),
or used an image with markup such as , then
you’ve done some rudimentary vertical alignment. In CSS, the vertical-align
property applies only to inline elements and replaced elements such as images and form
inputs. vertical-align is not an inherited property.

14 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

vertical-align
Values:

baseline | sub | super | top | text-top | middle | bottom | text-bottom |
<percentage> | <length> | inherit

Initial value:
baseline

Applies to:
Inline elements and table cells

Inherited:
No

Percentages:
Refer to the value of line-height for the element

Computed value:
For percentage and length values, the absolute length; otherwise, as specified

Note:
When applied to table cells, only the values baseline, top, middle, and bottom are
recognized

vertical-align accepts any one of eight keywords, a percentage value, or a length
value. The keywords are a mix of the familiar and unfamiliar: baseline (the default
value), sub, super, bottom, text-bottom, middle, top, and text-top. We’ll examine
how each keyword works in relation to inline elements.

Remember: vertical-align does not affect the alignment of content
within a block-level element. You can, however, use it to affect the
vertical alignment of elements within table cells.

Baseline alignment

vertical-align: baseline forces the baseline of an element to align with the baseline
of its parent. Browsers, for the most part, do this anyway, since you’d obviously expect
the bottoms of all text elements in a line to be aligned.

If a vertically aligned element doesn’t have a baseline—that is, if it’s an image, a form
input, or another replaced element—then the bottom of the element is aligned with the
baseline of its parent, as Figure 15 shows:

Vertical Alignment | 15

www.it-ebooks.info

http://www.it-ebooks.info/

img {vertical-align: baseline;}

<p>The image found in this paragraph has its
bottom edge aligned with the baseline of the text in the paragraph.</p>

Figure 15. Baseline alignment of an image

This alignment rule is important because it causes some web browsers to always put a
replaced element’s bottom edge on the baseline, even if there is no other text in the line.
For example, let’s say you have an image in a table cell all by itself. The image may actually
be on a baseline, but in some browsers, the space below the baseline causes a gap to
appear beneath the image. Other browsers will “shrink-wrap” the image with the table
cell, and no gap will appear. The gap behavior is correct, according to the CSS Working
Group, despite its lack of appeal to most authors.

See the aged and yet still relevant article “Images, Tables, and Myste‐
rious Gaps” for a more detailed explanation of gap behavior and ways
to work around it.

Superscripting and subscripting

The declaration vertical-align: sub causes an element to be subscripted, meaning
that its baseline (or bottom, if it’s a replaced element) is lowered with respect to its
parent’s baseline. The specification doesn’t define the distance the element is lowered,
so it may vary depending on the user agent.

super is the opposite of sub; it raises the element’s baseline (or bottom of a replaced
element) with respect to the parent’s baseline. Again, the distance the text is raised
depends on the user agent.

Note that the values sub and super do not change the element’s font size, so subscripted
or superscripted text will not become smaller (or larger). Instead, any text in the sub-
or superscripted element should be, by default, the same size as text in the parent ele‐
ment, as illustrated by Figure 16:

span.raise {vertical-align: super;}
span.lower {vertical-align: sub;}

<p>This paragraph contains superscripted
and subscripted text.</P>

16 | Text Properties

www.it-ebooks.info

http://mzl.la/19E2dJ7
http://mzl.la/19E2dJ7
http://www.it-ebooks.info/

Figure 16. Superscript and subscript alignment

If you wish to make super- or subscripted text smaller than the text of
its parent element, you can do so using the property font-size.

Bottom feeding

vertical-align: bottom aligns the bottom of the element’s inline box with the bottom
of the line box. For example, the following markup results in Figure 17:

.feeder {vertical-align: bottom;}

<p>This paragraph, as you can see quite clearly, contains
a image and
a image,
and then some text that is not tall.</p>

Figure 17. Bottom alignment

The second line of the paragraph in Figure 17 contains two inline elements, whose
bottom edges are aligned with each other. They’re also below the baseline of the text.

vertical-align: text-bottom refers to the bottom of the text in the line. For the pur‐
poses of this value, replaced elements, or any other kinds of non-text elements, are
ignored. Instead, a “default” text box is considered. This default box is derived from the
font-size of the parent element. The bottom of the aligned element’s inline box is then
aligned with the bottom of the default text box. Thus, given the following markup, you
get a result like the one shown in Figure 18:

img.tbot {vertical-align: text-bottom;}

<p>Here: a
image, and then a image.</p>

Vertical Alignment | 17

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 18. Text-bottom alignment

Getting on top

Employing vertical-align: top has the opposite effect of bottom. Likewise, vertical-
align: text-top is the reverse of text-bottom. Figure 19 shows how the following
markup would be rendered:

.up {vertical-align: top;}

.textup {vertical-align: text-top;}

<p>Here: a tall image, and then
some text that's been vertically aligned.</p>
<p>Here: a image that's been
vertically aligned, and then a <img src="short.gif" class="textup"
alt="short" />
image that's similarly aligned.</p>

Figure 19. Aligning with the top and text-top of a line

Of course, the exact position of this alignment will depend on which elements are in
the line, how tall they are, and the size of the parent element’s font.
In the middle

There’s the value middle, which is usually (but not always) applied to images. It does
not have the exact effect you might assume given its name. middle aligns the middle of
an inline element’s box with a point that is 0.5ex above the baseline of the parent ele‐
ment, where 1ex is defined relative to the font-size for the parent element. Fig‐
ure 20 shows this in more detail.

18 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 20. Precise detail of middle alignment

Since most user agents treat 1ex as one-half em, middle usually aligns the vertical mid‐
point of an element with a point one-quarter em above the parent’s baseline, though
this is not a defined distance and so can vary from one user agent to another.
Percentages

Percentages don’t let you simulate align="middle" for images. Instead, setting a per‐
centage value for vertical-align raises or lowers the baseline of the element (or the
bottom edge of a replaced element) by the amount declared, with respect to the parent’s
baseline. (The percentage you specify is calculated as a percentage of line-height for
the element, not its parent.) Positive percentage values raise the element, and negative
values lower it. Depending on how the text is raised or lowered, it can appear to be
placed in adjacent lines, as shown in Figure 21, so take care when using percentage
values:

sub {vertical-align: −100%;}
sup {vertical-align: 100%;}

<p>We can either ^{soar to new heights} or, instead,
_{sink into despair...}</p>

Figure 21. Percentages and fun effects

Let’s consider percentage values in more detail. Assume the following:
<div style="font-size: 14px; line-height: 18px;">
I felt that, if nothing else, I deserved a
raise for my efforts.
</div>

Vertical Alignment | 19

www.it-ebooks.info

http://www.it-ebooks.info/

The 50%-aligned span element has its baseline raised nine pixels, which is half of the
element’s inherited line-height value of 18px, not seven pixels.
Length alignment

Finally, let’s consider vertical alignment with a specific length. vertical-align is very
straightforward: it shifts an element up or down by the declared distance. Thus,
vertical-align: 5px; will shift an element upward five pixels from its unaligned
placement. Negative length values shift the element downward. This simple form of
alignment did not exist in CSS1, but it was added in CSS2.

It’s important to realize that vertically aligned text does not become part of another line,
nor does it overlap text in other lines. Consider Figure 22, in which some vertically
aligned text appears in the middle of a paragraph.

Figure 22. Vertical alignments can cause lines to get taller

As you can see, any vertically aligned element can affect the height of the line. Recall
the description of a line box, which is exactly as tall as necessary to enclose the top of
the tallest inline box and the bottom of the lowest inline box. This includes inline boxes
that have been shifted up or down by vertical alignment.

Word Spacing and Letter Spacing
Now that we’ve dealt with alignment, let’s look at manipulating word and letter spacing.
As usual, these properties have some nonintuitive issues.

Word Spacing
The word-spacing property accepts a positive or negative length. This length is add‐
ed to the standard space between words. In effect, word-spacing is used to modify
inter-word spacing. Therefore, the default value of normal is the same as setting a value
of zero (0).

20 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

word-spacing
Values:

<length> | normal | inherit

Initial value:
normal

Applies to:
All elements

Inherited:
Yes

Computed value:
For normal, the absolute length 0; otherwise, the absolute length

If you supply a positive length value, then the space between words will increase. Setting
a negative value for word-spacing brings words closer together:

p.spread {word-spacing: 0.5em;}
p.tight {word-spacing: −0.5em;}
p.base {word-spacing: normal;}
p.norm {word-spacing: 0;}

<p class="spread">The spaces between words in this paragraph will be increased
 by 0.5em.</p>
<p class="tight">The spaces between words in this paragraph will be decreased
 by 0.5em.</p>
<p class="base">The spaces between words in this paragraph will be normal.</p>
<p class="norm">The spaces between words in this paragraph will be normal.</p>

Manipulating these settings has the effect shown in Figure 23.

Figure 23. Changing the space between words

So far, I haven’t actually given you a precise definition of “word.” In the simplest CSS
terms, a “word” is any string of nonwhitespace characters that is surrounded by white‐
space of some kind. This definition has no real semantic meaning; it simply assumes

Word Spacing and Letter Spacing | 21

www.it-ebooks.info

http://www.it-ebooks.info/

that a document contains words surrounded by one or more whitespace characters. A
CSS-aware user agent cannot be expected to decide what is a valid word in a given
language and what isn’t. This definition, such as it is, means word-spacing is unlikely
to work in any languages that employ pictographs, or non-Roman writing styles. The
property allows you to create very unreadable documents, as Figure 24 makes clear. Use
word-spacing with care.

Figure 24. Really wide word spacing

Letter Spacing
Many of the issues you encounter with word-spacing also occur with letter-
spacing. The only real difference between the two is that letter-spacing modifies the
space between characters, or letters.

letter-spacing
Values:

<length> | normal | inherit

Initial value:
normal

Applies to:
All elements

Inherited:
Yes

Computed value:
For length values, the absolute length; otherwise, normal

As with the word-spacing property, the permitted values of letter-spacing include
any length. The default keyword is normal (making it the same as letter-spacing:
0). Any length value you enter will increase or decrease the space between letters by
that amount. Figure 25 shows the results of the following markup:

p {letter-spacing: 0;} /* identical to 'normal' */
p.spacious {letter-spacing: 0.25em;}
p.tight {letter-spacing: −0.25em;}

22 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

<p>The letters in this paragraph are spaced as normal.</p>
<p class="spacious">The letters in this paragraph are spread out a bit.</p>
<p class="tight">The letters in this paragraph are a bit smashed together.</p>

Figure 25. Various kinds of letter spacing

Using letter-spacing to increase emphasis is a time-honored technique. You might
write the following declaration and get an effect like the one shown in Figure 26:

strong {letter-spacing: 0.2em;}

<p>This paragraph contains strongly emphasized text
that is spread out for extra emphasis.</p>

Figure 26. Using letter-spacing to increase emphasis

If a page uses fonts with features like ligatures, and those features are
enabled, then altering letter- or word-spacing can effectively disable
them. Browsers will not re-calculate ligatures or other joins when let‐
ter spacing is altered, for example.

Spacing and Alignment
The value of word-spacing may be influenced by the value of the property text-
align. If an element is justified, the spaces between letters and words may be altered to
fit the text along the full width of the line. This may in turn alter the spacing declared
by the author with word-spacing. If a length value is assigned to letter-spacing, then
it cannot be changed by text-align, but if the value of letter-spacing is normal, then
inter-character spacing may be changed in order to justify the text. CSS does not specify
how the spacing should be calculated, so user agents simply fill it in.

As usual, the child of an element inherits the computed value of that element. You cannot
define a scaling factor for word-spacing or letter-spacing to be inherited in place of

Word Spacing and Letter Spacing | 23

www.it-ebooks.info

http://www.it-ebooks.info/

the computed value (as is the case with line-height). As a result, you may run into
problems such as those shown in Figure 27:

p {letter-spacing: 0.25em; font-size: 20px;}
small {font-size: 50%;}

<p>This spacious paragraph features <small>tiny text that is just
as spacious</small>, even though the author probably wanted the
spacing to be in proportion to the size of the text.</p>

Figure 27. Inherited letter spacing

The only way to achieve letter spacing that’s in proportion to the size of the text is to set
it explicitly, as follows:

p {letter-spacing: 0.25em;}
small {font-size: 50%; letter-spacing: 0.25em;}

Text Transformation
Now let’s look at ways to manipulate the capitalization of text using the property text-
transform.

text-transform
Values:

uppercase | lowercase | capitalize | none | inherit

Initial value:
none

Applies to:
All elements

Inherited:
Yes

Computed value:
As specified

24 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

The default value none leaves the text alone and uses whatever capitalization exists in
the source document. As their names imply, uppercase and lowercase convert text into
all upper- or lowercase characters. Finally, capitalize capitalizes only the first letter of
each word. Figure 28 illustrates each of these settings in a variety of ways:

h1 {text-transform: capitalize;}
strong {text-transform: uppercase;}
p.cummings {text-transform: lowercase;}
p.raw {text-transform: none;}

<h1>The heading-one at the beginninG</h1>
<p> By default, text is displayed in the capitalization it has in the source
document, but it is possible to change this using
the property 'text-transform'.
</p>
<p class="cummings">
For example, one could Create TEXT such as might have been Written by
the late Poet e.e.cummings.
</p>
<p class="raw">
If you feel the need to Explicitly Declare the transformation of text
to be 'none', that can be done as well.
</p>

Figure 28. Various kinds of text transformation

Different user agents may have different ways of deciding where words begin and, as a
result, which letters are capitalized. For example, the text “heading-one” in the h1
element, shown in Figure 28, could be rendered in one of two ways: “Heading-one” or
“Heading-One.” CSS does not say which is correct, so either is possible.

You probably also noticed that the last letter in the h1 element in Figure 28 is still up‐
percase. This is correct: when applying a text-transform of capitalize, CSS only
requires user agents to make sure the first letter of each word is capitalized. They can
ignore the rest of the word.

Text Transformation | 25

www.it-ebooks.info

http://www.it-ebooks.info/

As a property, text-transform may seem minor, but it’s very useful if you suddenly
decide to capitalize all your h1 elements. Instead of individually changing the content
of all your h1 elements, you can just use text-transform to make the change for you:

h1 {text-transform: uppercase;}

<h1>This is an H1 element</h1>

The advantages of using text-transform are twofold. First, you only need to write a
single rule to make this change, rather than changing the h1 itself. Second, if you decide
later to switch from all capitals back to initial capitals, the change is even easier, as
Figure 29 shows:

h1 {text-transform: capitalize;}

<h1>This is an H1 element</h1>

Figure 29. Transforming an h1 element

Text Decoration
Next we come to text-decoration, which is a fascinating property that offers a whole
truckload of interesting behaviors.

text-decoration
Values:

none | [underline || overline || line-through || blink] | inherit

Initial value:
none

Applies to:
All elements

Inherited:
No

Computed value:
As specified

26 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

As you might expect, underline causes an element to be underlined, just like the U
element in HTML. overline causes the opposite effect—drawing a line across the top
of the text. The value line-through draws a line straight through the middle of the text,
which is also known as strikethrough text and is equivalent to the S and strike elements
in HTML. blink causes the text to blink on and off, just like the much-maligned blink
tag supported by Netscape. Figure 30 shows examples of each of these values:

p.emph {text-decoration: underline;}
p.topper {text-decoration: overline;}
p.old {text-decoration: line-through;}
p.annoy {text-decoration: blink;}
p.plain {text-decoration: none;}

Figure 30. Various kinds of text decoration

It’s impossible to show the effect of blink in print, of course, but it’s
easy enough to imagine (perhaps all too easy). Incidentally, user agents
are not required to actually blink blink text, and as of this writing, all
known user agents were dropping or had dropped support for the
blinking effect. (Internet Explorer never had it.)

The value none turns off any decoration that might otherwise have been applied to an
element. Usually, undecorated text is the default appearance, but not always. For ex‐
ample, links are usually underlined by default. If you want to suppress the underlining
of hyperlinks, you can use the following CSS rule to do so:

a {text-decoration: none;}

If you explicitly turn off link underlining with this sort of rule, the only visual difference
between the anchors and normal text will be their color (at least by default, though
there’s no ironclad guarantee that there will be a difference in their colors).

Text Decoration | 27

www.it-ebooks.info

http://www.it-ebooks.info/

Although I personally don’t have a problem with it, many users are
annoyed when they realize you’ve turned off link underlining. It’s a
matter of opinion, so let your own tastes be your guide, but remem‐
ber: if your link colors aren’t sufficiently different from normal text,
users may have a hard time finding hyperlinks in your documents,
particularly users with one form or another of color blindness.

You can also combine decorations in a single rule. If you want all hyperlinks to be both
underlined and overlined, the rule is:

a:link, a:visited {text-decoration: underline overline;}

Be careful, though: if you have two different decorations matched to the same element,
the value of the rule that wins out will completely replace the value of the loser. Consider:

h2.stricken {text-decoration: line-through;}
h2 {text-decoration: underline overline;}

Given these rules, any h2 element with a class of stricken will have only a line-through
decoration. The underline and overline decorations are lost, since shorthand values
replace one another instead of accumulating.

Weird Decorations
Now, let’s look into the unusual side of text-decoration. The first oddity is that text-
decoration is not inherited. No inheritance implies that any decoration lines drawn
with the text—under, over, or through it—will be the same color as the parent element.
This is true even if the descendant elements are a different color, as depicted in Figure 31:

p {text-decoration: underline; color: black;}
strong {color: gray;}

<p>This paragraph, which is black and has a black underline, also contains
strongly emphasized text which has the black underline
beneath it as well.</p>

Figure 31. Color consistency in underlines

Why is this so? Because the value of text-decoration is not inherited, the strong
element assumes a default value of none. Therefore, the strong element has no under‐
line. Now, there is very clearly a line under the strong element, so it seems silly to say
that it has none. Nevertheless, it doesn’t. What you see under the strong element is the

28 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

paragraph’s underline, which is effectively “spanning” the strong element. You can see
it more clearly if you alter the styles for the boldface element, like this:

p {text-decoration: underline; color: black;}
strong {color: gray; text-decoration: none;}

<p>This paragraph, which is black and has a black underline, also contains
strongly emphasized text which has the black underline beneath
it as well.</p>

The result is identical to the one shown in Figure 31, since all you’ve done is to explicitly
declare what was already the case. In other words, there is no way to turn off underlining
(or overlining or a line-through) generated by a parent element.

When text-decoration is combined with vertical-align, even stranger things can
happen. Figure 32 shows one of these oddities. Since the sup element has no decoration
of its own, but it is elevated within an overlined element, the overline cuts through the
middle of the sup element:

p {text-decoration: overline; font-size: 12pt;}
sup {vertical-align: 50%; font-size: 12pt;}

Figure 32. Correct, although strange, decorative behavior

By now you may be vowing never to use text decorations because of all the problems
they could create. In fact, I’ve given you the simplest possible outcomes since we’ve
explored only the way things should work according to the specification. In reality, some
web browsers do turn off underlining in child elements, even though they aren’t sup‐
posed to. The reason browsers violate the specification is simple enough: author ex‐
pectations. Consider this markup:

p {text-decoration: underline; color: black;}
strong {color: silver; text-decoration: none;}

<p>This paragraph, which is black and has a black underline, also contains
boldfaced text which does not have black underline
beneath it.</p>

Figure 33 shows the display in a web browser that has switched off the underlining for
the strong element.

Text Decoration | 29

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 33. How some browsers really behave

The caveat here is that many browsers do follow the specification, and future versions
of existing browsers (or any other user agents) might one day follow the specification
precisely. If you depend on using none to suppress decorations, it’s important to realize
that it may come back to haunt you in the future, or even cause you problems in the
present. Then again, future versions of CSS may include the means to turn off decora‐
tions without using none incorrectly, so maybe there’s hope.

There is a way to change the color of a decoration without violating the specification.
As you’ll recall, setting a text decoration on an element means that the entire element
has the same color decoration, even if there are child elements of different colors. To
match the decoration color with an element, you must explicitly declare its decoration,
as follows:

p {text-decoration: underline; color: black;}
strong {color: silver; text-decoration: underline;}

<p>This paragraph, which is black and has a black underline, also contains
strongly emphasized text which has the black underline
beneath it as well, but whose gray underline overlays the black underline
of its parent.</p>

In Figure 34, the strong element is set to be gray and to have an underline. The gray
underline visually “overwrites” the parent’s black underline, so the decoration’s color
matches the color of the strong element.

Figure 34. Overcoming the default behavior of underlines

30 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

Text Rendering
A recent addition to CSS is text-rendering, which is actually an SVG property that is
nevertheless treated as CSS by supporting user agents. It lets authors indicate what the
user agent should prioritize when displaying text.

text-rendering
Values:

auto | optimizeSpeed | optimizeLegibility | geometricPrecision | inherit

Initial value:
auto

Applies to:
All elements

Inherited:
Yes

The values optimizeSpeed and optimizeLegibility are relatively self-explanatory,
indicating that drawing speed should be favored over legibility features like kerning and
ligatures (for optimizeSpeed) or vice versa (for optimizeLegibility).

The precise legibility features that are used with optimizeLegibility are not explicitly
defined, and the text rendering often depends on the operating system on which the
user agent is running, so the exact results may vary. Figure 35 shows the results of
optimizeLegibility in various browsers.

Figure 35. Optimized legibility

As you can see in Figure 35, the differences between optimized and non-optimized text
are objectively rather small, but they can have a noticeable impact on readability.

The value geometricPrecision, on the other hand, directs the user agent to draw the
text as precisely as possible, such that it could be scaled up or down with no loss of
fidelity. You might think that this is always the case, but not so. Some fonts change
kerning or ligature effects at different text sizes, for example, providing more kerning
space at smaller sizes and tightening up the kerning space as the size is increased. With

Text Rendering | 31

www.it-ebooks.info

http://www.it-ebooks.info/

geometricPrecision, those hints are ignored. If it helps, think of it as the user agent
drawing the text as though all the text is a series of SVG paths, not font glyphs.

Even by the usual standards of standards, the value auto is pretty vaguely defined in
SVG:

...the user agent shall make appropriate tradeoffs to balance speed, legibility and geo‐
metric precision, but with legibility given more importance than speed and geometric
precision.

That’s it: user agents get to do what they think is appropriate, leaning towards legibility.
In practice, things are more complicated. As an example, WebKit (as of mid-2013) seems
to treat optimizeLegibility and geometricPecision as the same, while auto is equiv‐
alent to optimizeSpeed. In the former case, WebKit enables a series of font features in
order to increase the legibility; these are disabled for optimizeSpeed and auto. Gecko,
on the other hand, is reported to treat auto as optimizeSpeed for text sizes at or below
20px, and as optimizeLegibility for sizes above 20px.

Text Shadows
CSS2 introduced a property for adding drop shadows to text. It was dropped from CSS
2.1 due to lack of implementation, but the web has moved on and text-shadow is now
very widely supported.

text-shadow
Values:

none | [<color> || <length> <length> <length>? ,]* [<color> || <length>
<length> <length>?] | inherit

Initial value:
none

Applies to:
All elements

Inherited:
No

The obvious default is to not have a drop shadow for text. Otherwise, it’s possible to
define one or more shadows. Each shadow is defined by an optional color and three
length values, the last of which is also optional.

The color sets the shadow’s color, of course, so it’s possible to define green, purple, or
even white shadows. If the color is omitted, the shadow will be the same color as the
text.

32 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

The first two length values determine the offset distance of the shadow from the text;
the first is the horizontal offset and the second is the vertical offset. To define a solid,
un-blurred green shadow offset five pixels to the right and half an em down from the
text, as shown in Figure 36, you would write:

text-shadow: green 5px 0.5em;

Negative lengths cause the shadow to be offset to the left and upward from the original
text. The following, also shown in Figure 36, places a light blue shadow five pixels to
the left and half an em above the text:

text-shadow: rgb(128,128,255) −5px −0.5em;

Figure 36. Simple shadows

The optional third length value defines a “blur radius” for the shadow. The blur radius
is defined as the distance from the shadow’s outline to the edge of the blurring effect. A
radius of two pixels would result in blurring that fills the space between the shadow’s
outline and the edge of the blurring. The exact blurring method is not defined, so dif‐
ferent user agents might employ different effects. As an example, the following styles
are rendered as shown in Figure 37:

p.cl1 {color: black; text-shadow: gray 2px 2px 4px;}
p.cl2 {color: white; text-shadow: 0 0 4px black;}
p.cl3 {color: black; text-shadow: 1em 0.5em 5px red, −0.5em −1em hsla(100,75%,
25%,0.33);}

Figure 37. Dropping shadows all over

Text Shadows | 33

www.it-ebooks.info

http://www.it-ebooks.info/

Note that large numbers of text shadows, or text shadows with very
large blur values, can create performance slowdowns, particularly in
low-power and CPU-constrained situations such as mobile devices.
Authors are advised to test thoroughly before deploying public de‐
signs that use text shadows.

Handling White Space
Now that we’ve covered a variety of ways to style the text, let’s talk about the property
white-space, which affects the user agent’s handling of space, newline, and tab char‐
acters within the document source.

white-space
Values:

normal | nowrap | pre | pre-wrap | pre-line | inherit

Initial value:
normal

Applies to:
All elements (CSS 2.1); block-level elements (CSS1 and CSS2)

Inherited:
No

Computed value:
As specified

Using this property, you can affect how a browser treats the white space between words
and lines of text. To a certain extent, default XHTML handling already does this: it
collapses any white space down to a single space. So given the following markup, the
rendering in a web browser would show only one space between each word and ignore
the linefeed in the elements:

<p>This paragraph has many
 spaces in it.</p>

You can explicitly set this default behavior with the following declaration:
p {white-space: normal;}

This rule tells the browser to do as browsers have always done: discard extra white space.
Given this value, linefeed characters (carriage returns) are converted into spaces, and
any sequence of more than one space in a row is converted to a single space.

34 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

Should you set white-space to pre, however, the white space in an affected element is
treated as though the elements were XHTML pre elements; white space is not ignored,
as shown in Figure 38:

p {white-space: pre;}

<p>This paragraph has many
 spaces in it.</p>

Figure 38. Honoring the spaces in markup

With a white-space value of pre, the browser will pay attention to extra spaces and
even carriage returns. In this respect, and in this respect alone, any element can be made
to act like a pre element.

The opposite value is nowrap, which prevents text from wrapping within an element,
except wherever you use a br element. Using nowrap in CSS is much like setting a table
cell not to wrap in HTML 4 with <td nowrap>, except the white-space value can be
applied to any element. The effects of the following markup are shown in Figure 39:

<p style="white-space: nowrap;">This paragraph is not allowed to wrap,
which means that the only way to end a line is to insert a line-break
element. If no such element is inserted, then the line will go forever,
forcing the user to scroll horizontally to read whatever can't be
initially displayed
in the browser window.</p>

Figure 39. Suppressing line wrapping with the white-space property

You can actually use white-space to replace the nowrap attribute on table cells:
td {white-space: nowrap;}

<table><tr>
<td>The contents of this cell are not wrapped.</td>
<td>Neither are the contents of this cell.</td>
<td>Nor this one, or any after it, or any other cell in this table.</td>
<td>CSS prevents any wrapping from happening.</td>
</tr></table>

Handling White Space | 35

www.it-ebooks.info

http://www.it-ebooks.info/

CSS 2.1 introduced the values pre-wrap and pre-line, which were absent in earlier
versions of CSS. The effect of these values is to allow authors to better control white
space handling.

If an element is set to pre-wrap, then text within that element has white space sequences
preserved, but text lines are wrapped normally. With this value, line-breaks in the source
and those that are generated are also honored. pre-line is the opposite of pre-wrap
and causes white space sequences to collapse as in normal text but honors new lines.
For example, consider the following markup, which is illustrated in Figure 40:

<p style="white-space: pre-wrap;">
This paragraph has a great many s p a c e s within its textual
 content, but their preservation will not prevent line
 wrapping or line breaking.
</p>
<p style="white-space: pre-line;">
This paragraph has a great many s p a c e s within its textual
 content, but their collapse will not prevent line
 wrapping or line breaking.
</p>

Figure 40. Two different ways to handle white space

Table 1 summarizes the behaviors of white-space properties.

Table 1. White-space properties
Value White space Linefeeds Auto line wrapping

pre-line Collapsed Honored Allowed

normal Collapsed Ignored Allowed

nowrap Collapsed Ignored Prevented

pre Preserved Honored Prevented

pre-wrap Preserved Honored Allowed

36 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Tab Sizes
Since white space is preserved in some values of white-space, it stands to reason that
tabs (i.e., Unicode code point 0009) will be displayed as, well, tabs. But how many spaces
should each tab equal? That’s where tab-size comes in.

tab-size
Values:

<integer> | <length> | inherit

Initial value:
8

Applies to:
Block elements

Inherited:
Yes

Computed value:
The absolute-length equivalent of the specified value

By default, any tab character will be treated the same as eight spaces in a row, but you
can alter that by using a different integer value. Thus, tab-size: 4 will cause each tab
to be rendered the same as if it were four spaces in a row.

If a length value is supplied, then each tab is rendered using that length. For example,
tab-size: 10px will cause a sequence of three tabs to be rendered as 30 pixels of white
space. The effects of the following rules is illustrated in Figure 41.

Figure 41. Differing tab lengths

Note that tab-size is effectively ignored when the value of white-space causes white
space to be collapsed (see Table 1). The value will still be computed in such cases, of
course, but there will be no visible effect no matter how many tabs appear in the source.

Handling White Space | 37

www.it-ebooks.info

http://www.it-ebooks.info/

Currently, tab-size is supported in WebKit and Gecko (as –moz-tab-
size). In both cases, only integer values are supported, not length
values.

Wrapping and Hyphenation
Hyphens can be very useful in situations where there are long words and short line
lengths, such as blog posts on mobile devices and portions of The Economist. Authors
can always insert their own hyphenation hints using the Unicode character U+00AD
SOFT HYPHEN (or, in HTML, ­), but CSS also offers a way to enable hyphenation
without littering up the document with hints.

hyphens
Values:

manual | auto | none | inherit

Initial value:
manual

Applies to:
All elements

Inherited:
Yes

Computed value:
As specified

With the default value of manual, hyphens are only inserted where there are manually-
inserted hyphenation markers in the document, such as U+00AD or ­. Otherwise,
no hyphenation occurs. The value none, on the other hand, suppresses any hyphenation,
even if manual break markers are present; thus, U+00AD and ­ are ignored.

The far more interesting (and potentially inconsistent) value is auto, which permits the
browser to insert hyphens and break words at “appropriate” places inside words, even
where no manually inserted hyphenation breaks exist. This leads to interesting ques‐
tions like what constitutes a “word” and under what circumstances it is appropriate to
hyphenate a word, both of which are highly language-dependent. User agents are sup‐
posed to prefer manually inserted hyphen breaks to automatically determined breaks,
but there are no guarantees. An illustration of hyphenation, or the suppression thereof,
in the following example is shown in Figure 42:

38 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

.cl01 {hyphens: auto;}

.cl02 {hyphens: manual;}

.cl03 {hyphens: none;}

<p class="cl01">Supercalifragilisticexpialidocious antidisestablishmentarian-
ism.</p>
<p class="cl02">Supercalifragilisticexpialidocious antidisestablishmentarian-
ism.</p>
<p class="cl02">Super­cali­fragi­listic­expi­ali­docious
anti­dis­establish­ment­arian­ism.</p>
<p class="cl03">Super­cali­fragi­listic­expi­ali­docious
anti­dis­establish­ment­arian­ism.</p>

Figure 42. Hyphenation results

Because hyphenation is so language-dependent, and because the CSS specification does
not define precise (or even vague) rules regarding how user agents should carry out
hyphenation, there is every chance that hyphenation will be different from one browser
to the next.

Furthermore, if you do choose to hyphenate, be careful about the elements to which
you apply the hyphenation. hyphens is an inherited property, so simply declaring body
{hyphens: auto;} will apply hyphenation to everything in your document—including
textareas, code samples, blockquotes, and so on. Blocking automatic hyphenation at the
level of those elements is probably a good idea, using rules something like this:

body {hyphens: auto;}
code, var, kbd, samp, tt, dir, listing, plaintext, xmp,
 abbr, acronym, blockquote, q, textarea, input, option {hyphens: manual;}

It’s probably obvious why suppressing hyphenation in code samples and code blocks is
desirable, especially in languages that use hyphens in things like property and value
names. (Ahem.) Similar logic holds for keyboard input text—you definitely don’t want
a stray dash getting into your Unix command line examples! And so on down the line.

Wrapping and Hyphenation | 39

www.it-ebooks.info

http://www.it-ebooks.info/

Of course, if you decide that you want to hyphenate some of these elements, just remove
them from the selector. (It can be kind of fun to watch the text you’re typing into a
textarea get auto-hyphenated as you type it.)

As of mid-2013, hyphens was supported by all major desktop brows‐
ers, albeit using vendor prefixes, as well as on many mobile brows‐
ers. As noted, such support is always language-dependent.

Hyphens can be suppressed by the effects of other properties, such as word-break, which
affects how soft wrapping of text is calculated in various languages.

word-break
Values:

normal | break-all | keep-all | inherit

Initial value:
normal

Applies to:
All elements

Inherited:
Yes

Computed value:
As specified

When a run of text is too long to fit into a single line, it is “soft wrapped.” This is in
contrast to “hard wraps,” which are things like linefeed characters and
 elements.
Where the text is soft-wrapped is determined by the user agent (or the OS it uses), but
word-break lets authors influence its decision-making.

The default value of normal means that text should be wrapped like it always has been.
In practical terms, this means that text is broken between words, though the definition
of a word varies by language. In Latin-derived languages like English, this is almost
always a space between letter sequences (e.g., words). In ideographic languages like
Japanese, each symbol is a word, so breaks can occur between any two symbols. In other
CJK languages, though, the soft-wrap points may be limited to appear between sequen‐
ces of symbols that are not space-separated.

Again, that’s all by default, and is the way browsers have handled text for years. If you
apply the value break-all, then soft wrapping can (and will) occur between any two
characters, even if they are in the middle of a word. With this value, no hyphens are

40 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

shown, even if the soft wrapping occurs at a hyphenation point (see hyphens, earlier).
Note that values of the line-break property (described next) can affect the behavior of
break-all in CJK text.

keep-all, on the other hand, suppresses soft wrapping between characters, even in CJK
languages where each symbol is a word. Thus, in Japanese, a sequence of symbols with
no white space will not be soft wrapped, even if this means the text line will exceed the
length of its element. (This behavior is similar to white-space: pre.)

Figure 43 shows a few examples of word-break values, and Table 2 summarizes the
effects of each value.

Figure 43. Altering word breaking behavior

Table 2. Word-breaking behavior
Value Non-CJK CJK Hyphenation permitted

normal As usual As usual Yes

break-all After any character After any character No

keep-all As usual Around sequences Yes

If your interests run to CJK text, then in addition to word-break you will also want to
get to know line-break.

line-break
Values:

auto | loose | normal | strict | inherit

Initial value:
auto

Applies to:
All elements

Wrapping and Hyphenation | 41

www.it-ebooks.info

http://www.it-ebooks.info/

Inherited:
Yes

Computed value:
As specified

As we just saw, word-break can affect how lines of text are soft-wrapped in CJK text.
The line-break property also affects such soft wrapping: specifically how wrapping is
handled around CJK-specific symbols as well as around non-CJK punctuation (such as
exclamation points, hyphens, and ellipses) that appears in text declared to be CJK.

In other words, line-break applies to certain CJK characters all the time, regardless of
the content’s declared language. If you throw some CJK characters into a paragraph of
English text, line-break will still apply to them, but not to anything else in the text.
Conversely, if you declare content to be in a CJK language, line-break will continue to
apply to those CJK characters plus a number of non-CJK characters within the CJK text.
These include punctuation marks, currency symbols, and a few other symbols.

There is no authoritative list of which characters are affected and which are not, but the
specification provides a list of recommended symbols and behaviors around those
symbols.

The default value auto allows user agents to soft wrap text as they like, and more im‐
portantly lets UAs vary the line-breaking they do based on the situation. Thus, for ex‐
ample, the UA can use looser line-breaking rules for short lines of text and stricter rules
for long lines. In effect, auto allows the user agent to switch between the loose,
normal, and strict values as needed, possibly even on a line-by-line basis within a
single element.

Doubtless you can infer that those other values have the following general meanings:
loose

This value imposes the “least restrictive” rules for wrapping text, and is meant for
use when line lengths are short, such as in newspapers.

normal

This value imposes the “most common” rules for wrapping text. What exactly “most
common” means is not precisely defined, though there is the aforementioned list
of recommended behaviors.

strict

This value imposes the “most stringent” rules for wrapping text. Again, this is not
precisely defined.

42 | Text Properties

www.it-ebooks.info

http://w3.org/TR/css3-text/#line-break
http://w3.org/TR/css3-text/#line-break
http://www.it-ebooks.info/

Wrapping Text
After all that information about hyphenation and soft wrapping, what happens when
text overflows its container anyway? That’s what overflow-wrap addresses.

overflow-wrap (neé word-wrap)
Values:

normal | break-word | inherit

Initial value:
-

Applies to:
All elements

Inherited:
Yes

Computed value:
-

For once, this property couldn’t be more straightforward. If the default value of normal
is in effect, then wrapping happens as normal (obviously!); which is to say, between
words or as directed by the language. If break-word is in effect, then wrapping can
happen in the middle of words. Figure 44 illustrates the difference.

Figure 44. Overflow wrapping

Note that overflow-wrap can only operate if the value of white-
space allows line wrapping. If it does not (e.g., with the value pre),
then overflow-wrap has no effect.

Where overflow-wrap gets complicated is in its history and implementation. Once
upon a time there was a property called word-wrap that did exactly what overflow-
wrap does. The two are so identical that the specification specifically states that user

Wrapping and Hyphenation | 43

www.it-ebooks.info

http://www.it-ebooks.info/

agents “...must treat word-wrap as an alternate name for the overflow-wrap property,
as if it were a shorthand of overflow-wrap.”

Of course, browsers don’t always do this. As of mid-2013, IE, Firefox, and Safari honored
word-wrap but not overflow-wrap; Blackberry, Opera, and Chrome (and, presumably,
Blink) honored both. For this reason, it’s actually better to use word-wrap, despite it
being the vaguely deprecated version. If you want to future-proof, use both:

pre {word-wrap: break-word; overflow-wrap: break-word;}

While overflow-wrap: break-word may appear very similar to word-break: break-
all, they are not the same thing. To see why, compare the second box in Figure 44 to
the top middle box in Figure 43. As you can see, overflow-wrap only kicks in if content
actually overflows; thus, when there is an opportunity to use white space in the source
to wrap lines, overflow-wrap will take it. By contrast, word-break: break-all will
cause wrapping when content reaches the wrapping edge, regardless of any whitespace
that comes earlier in the line.

Text Direction
If you’re reading this book in English or any number of other languages, then you’re
reading the text left to right and top to bottom, which is the flow direction of English.
Not every language runs this way, of course. There are many right-to-left and top-to-
bottom languages such as Hebrew and Arabic, and CSS2 introduced a property to de‐
scribe their directionality.

direction
Values:

ltr | rtl | inherit

Initial value:
ltr

Applies to:
All elements

Inherited:
Yes

Computed value:
As specified

The direction property affects the writing direction of text in a block-level element,
the direction of table column layout, the direction in which content horizontally over‐
flows its element box, and the position of the last line of a fully justified element. For

44 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

inline elements, direction applies only if the property unicode-bidi is set to either embed
or bidi-override. (See below for a description of unicode-bidi.)

Before CSS3, CSS included no provisions in the specification for top-
to-bottom languages. As of this writing, the CSS3 Text Module is a
Candidate Recommendation, and it addresses this point with a new
property called writing-mode, which was poorly supported as of
mid-2013.

Although ltr is the default, it is expected that if a browser is displaying right-to-left
text, the value will be changed to rtl. Thus, a browser might carry an internal rule
stating something like the following:

*:lang(ar), *:lang(he) {direction: rtl;}

The real rule would be longer and encompass all right-to-left languages, not just Arabic
and Hebrew, but it illustrates the point.

While CSS attempts to address writing direction, Unicode has a much more robust
method for handling directionality. With the property unicode-bidi, CSS authors can
take advantage of some of Unicode’s capabilities.

unicode-bidi
Values:

normal | embed | bidi-override | inherit

Initial value:
normal

Applies to:
All elements

Inherited:
No

Computed value:
As specified

Here we’ll simply quote the value descriptions from the CSS 2.1 specification, which do
a good job of capturing the essence of each value:

Text Direction | 45

www.it-ebooks.info

http://www.it-ebooks.info/

normal

The element does not open an additional level of embedding with respect to the
bidirectional algorithm. For inline-level elements, implicit reordering works across
element boundaries.

embed

If the element is inline-level, this value opens an additional level of embedding with
respect to the bidirectional algorithm. The direction of this embedding level is given
by the direction property. Inside the element, reordering is done implicitly. This
corresponds to adding an LRE (U+202A; for direction: ltr) or an RLE (U+202B;
for direction: rtl) at the start of the element and a PDF (U+202C) at the end of
the element.

bidi-override

This creates an override for inline-level elements. For block-level elements, this
creates an override for inline-level descendants not within another block. This
means that, inside the element, reordering is strictly in sequence according to the
direction property; the implicit part of the bidirectional algorithm is ignored. This
corresponds to adding an LRO (U+202D; for direction: ltr) or RLO (U+202E;
for direction: rtl) at the start of the element and a PDF (U+202C) at the end of
the element.

Summary
Even without altering the font face, there are many ways to change the appearance of
text. There are classic effects such as underlining, of course, but CSS also enables you
to draw lines over text or through it, change the amount of space between words and
letters, indent the first line of a paragraph (or other block-level element), align text in
various ways, exert influence over the hyphenation and line-breaking of text, and much
more. You can even alter the amount of space between lines of text. There is also support
in CSS for languages other than those that are written left-to-right, top-to-bottom. Giv‐
en that so much of the Web is text, the strength of these properties makes a great deal
of sense. Recent developments in improving text legibility and placement are likely only
the beginnings of what we will eventually be able to do with regards to text styling.

46 | Text Properties

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author
Eric A. Meyer has been working with the Web since late 1993 and is an internationally
recognized expert on the subjects of HTML, CSS, and web standards. A widely read
author, he is a past member of the CSS&FP Working Group and was the primary creator
of the W3C’s CSS1 Test Suite. In 2006, Eric was inducted into the International Academy
of Digital Arts and Sciences for “international recognition on the topics of HTML and
CSS” and helping to “inform excellence and efficiency on the Web.”

Eric is currently the principal founder at Complex Spiral Consulting, which counts
among its clients a wide variety of corporations, educational institutions, and govern‐
ment agencies. He is also, along with Jeffrey Zeldman, co-founder of An Event Apart
(“The design conference for people who make websites”), and he speaks regularly at
that conference as well as many others. Eric lives with his family in Cleveland, Ohio,
which is a much nicer city than you’ve been led to believe. A historian by training and
inclination, he enjoys a good meal whenever he can and considers almost every form
of music to be worthwhile.

Colophon
The animal on the cover of CSS Text is a salmon (Salmonidae family).

The cover image is from Dover Pictorial Archive. The cover font is Adobe ITC Gara‐
mond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us

	Chapter 1. Text Properties
	Indentation and Horizontal Alignment
	Indenting Text
	Horizontal Alignment
	Aligning the Last Line

	Vertical Alignment
	The Height of Lines
	Vertically Aligning Text

	Word Spacing and Letter Spacing
	Word Spacing
	Letter Spacing
	Spacing and Alignment

	Text Transformation
	Text Decoration
	Weird Decorations

	Text Rendering
	Text Shadows
	Handling White Space
	Setting Tab Sizes

	Wrapping and Hyphenation
	Wrapping Text

	Text Direction
	Summary

	About the Author

