
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Selectors, Specificity,
and the Cascade

Eric A. Meyer

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

Selectors, Specificity, and the Cascade
by Eric A. Meyer

Copyright © 2012 O’Reilly Media. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Meghan Blanchette
Production Editor: Kristen Borg
Copyeditor: Rachel Leach
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the First Edition:
2012-09-25 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449342494 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Selectors, Specificity, and the Cascade, the image of a salmon, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-34249-4

[LSI]

1348246251

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449342494
http://www.it-ebooks.info/

Table of Contents

Preface . v

1. Selectors . 1
Basic Style Rules 1

Element Selectors 2
Declarations and Keywords 3

Grouping 4
Grouping Selectors 5
Grouping Declarations 6
Grouping Everything 7

Class and ID Selectors 9
Class Selectors 9
Multiple Classes 11
ID Selectors 13
Deciding Between Class and ID 14

Attribute Selectors 15
Simple Attribute Selectors 15
Selection Based on Exact Attribute Value 16
Selection Based on Partial Attribute Values 18
A Particular Attribute Selection Type 21

Using Document Structure 22
Understanding the Parent-Child Relationship 22
Descendant Selectors 24
Selecting Children 27
Selecting Adjacent Sibling Elements 28
Selecting Following Siblings 30

Pseudo-Class Selectors 31
Combining Pseudo-Classes 31
Structural Pseudo-Classes 31
Dynamic Pseudo-Classes 43
UI State Pseudo-Classes 47
The :target Pseudo-Class 49

iii

www.it-ebooks.info

http://www.it-ebooks.info/

The :lang Pseudo-Class 50
The Negation Pseudo-Class 51

Pseudo-Element Selectors 53
Styling the First Letter 54
Styling the First Line 55
Restrictions on ::first-letter and ::first-line 55
Styling (Or Creating) Content Before and After Elements 56

Summary 56

2. Specificity and the Cascade . 59
Specificity 59

Declarations and Specificity 61
Universal Selector Specificity 62
ID and Attribute Selector Specificity 63
Inline Style Specificity 63
Importance 64

Inheritance 65
The Cascade 68

Sorting by Weight and Origin 68
Sorting by Specificity 69
Sorting by Order 70
Non-CSS Presentational Hints 72

Summary 73

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does

v

www.it-ebooks.info

http://www.it-ebooks.info/

require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: Selectors, Specificity, and the Cascade by
Eric A. Meyer (O’Reilly). Copyright 2012 O’Reilly Media, Inc., 978-1-449-34249-4.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/selector-specificity-cascade.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

vi | Preface

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/selector-specificity-cascade
mailto:bookquestions@oreilly.com
http://www.it-ebooks.info/

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | vii

www.it-ebooks.info

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Selectors

One of the primary advantages of CSS—particularly to designers—is its ability to easily
apply a set of styles to all elements of the same type. Unimpressed? Consider this: by
editing a single line of CSS, you can change the colors of all your headings. Don’t like
the blue you’re using? Change that one line of code, and they can all be purple, yellow,
maroon, or any other color you desire. That lets you, the designer, focus on design,
rather than grunt work. The next time you’re in a meeting and someone wants to see
headings with a different shade of green, just edit your style and hit Reload. Voilà! The
results are accomplished in seconds and there for everyone to see.

Of course, CSS can’t solve all your problems—you can’t use it to change the colorspace
of your PNGs, for example, at least not yet—but it can make some global changes much
easier. So let’s begin with selectors and structure.

Basic Style Rules
As stated, a central feature of CSS is its ability to apply certain rules to an entire set of
element types in a document. For example, let’s say that you want to make the text of
all h2 elements appear gray. Using old-school HTML, you’d have to do this by inserting
... tags in all your h2 elements:

<h2>This is h2 text</h2>

Obviously, this is a tedious process if your document contains a lot of h2 elements.
Worse, if you later decide that you want all those h2s to be green instead of gray, you’d
have to start the manual tagging all over again. (Yes, this is really how it used to be done!)

CSS allows you to create rules that are simple to change, edit, and apply to all the text
elements you define (the next section will explain how these rules work). For example,
simply write this rule once to make all your h2 elements gray:

h2 {color: gray;}

If you want to change all h2 text to another color—say, silver—simply alter the value:

h2 {color: silver;}

1

www.it-ebooks.info

http://www.it-ebooks.info/

Element Selectors
An element selector is most often an HTML element, but not always. For example, if
a CSS file contains styles for an XML document, element selectors might look some-
thing like this:

QUOTE {color: gray;}
BIB {color: red;}
BOOKTITLE {color: purple;}
MYElement {color: red;}

In other words, the elements of the document serve as the most basic selectors. In XML,
a selector could be anything, since XML allows for the creation of new markup lan-
guages that can have just about anything as an element name. If you’re styling an HTML
document, on the other hand, the selector will generally be one of the many HTML
elements such as p, h3, em, a, or even html itself. For example:

html {color: black;}
h1 {color: gray;}
h2 {color: silver;}

The results of this style sheet are shown in Figure 1-1.

Figure 1-1. Simple styling of a simple document

Once you’ve globally applied styles directly to elements, you can shift those styles from
one element to another. Let’s say you decide that the paragraph text, not the h1 ele-
ments, in Figure 1-1 should be gray. No problem. Simply change the h1 selector to p:

html {color: black;}
p {color: gray;}
h2 {color: silver;}

The results are shown in Figure 1-2.

2 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

Declarations and Keywords
The declaration block contains one or more declarations. A declaration is always for-
matted as a property followed by a colon and then a value followed by a semicolon.
The colon and semicolon can be followed by zero or more spaces. In nearly all cases,
a value is either a single keyword or a space-separated list of one or more keywords that
are permitted for that property. If you use an incorrect property or value in a declaration,
the whole rule will be ignored. Thus, the following two declarations would fail:

brain-size: 2cm; /* unknown property 'brain-size' */
color: ultraviolet; /* unknown value 'ultraviolet' */

In an instance where you can use more than one keyword for a property’s value, the
keywords are usually separated by spaces. Not every property can accept multiple key-
words, but many, such as the font property, can. Let’s say you want to define medium-
sized Helvetica for paragraph text, as illustrated in Figure 1-3.

The rule would read as follows:

p {font: medium Helvetica;}

Note the space between medium and Helvetica, each of which is a keyword (the first is
the font’s size and the second is the actual font name). The space allows the user agent
to distinguish between the two keywords and apply them correctly. The semicolon
indicates that the declaration has been concluded.

These space-separated words are referred to as keywords because, taken together, they
form the value of the property in question. For instance, consider the following fictional
rule:

rainbow: red orange yellow green blue indigo violet;

There is no such property as rainbow, of course, but the example is useful for illustrative
purposes. The value of rainbow is red orange yellow green blue indigo violet, and

Figure 1-2. Moving a style from one element to another

Basic Style Rules | 3

www.it-ebooks.info

http://www.it-ebooks.info/

the seven keywords add up to a single, unique value. We can redefine the value for
rainbow as follows:

rainbow: infrared red orange yellow green blue indigo violet ultraviolet;

Now we have a new value for rainbow composed of nine keywords instead of seven.
Although the two values look mostly the same, they are as unique and different as zero
and one. This may seem an abstract point, but it’s critical to understanding some of
the subtler effects of specificity and the cascade (covered in later in this book).

There are a few exceptions to the space-separation rule, most of them
having come aboard in CSS3. Originally, there was but one exception:
the forward slash (/) permitted in the value of font. Now there are sev-
eral instances of symbols like that being used in values, as well as
comma-separated lists of values for certain properties.

Those are the basics of simple declarations, but they can get much more complex. The
next section begins to show you just how powerful CSS can be.

Grouping
So far, we’ve seen fairly simple techniques for applying a single style to a single selector.
But what if you want the same style to apply to multiple elements? If that’s the case,
you’ll want to use more than one selector or apply more than one style to an element
or group of elements.

Figure 1-3. The results of a property value with multiple keywords

4 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

Grouping Selectors
Let’s say you want both h2 elements and paragraphs to have gray text. The easiest way
to accomplish this is to use the following declaration:

h2, p {color: gray;}

By placing the h2 and p selectors on the left side of the rule and separating them with a
comma, you’ve defined a rule where the style on the right (color: gray;) applies to the
elements referenced by both selectors. The comma tells the browser that there are two
different selectors involved in the rule. Leaving out the comma would give the rule a
completely different meaning, which we’ll explore later in “Descendant Selec-
tors” on page 24.

There are really no limits to how many selectors you can group together. For example,
if you want to display a large number of elements in gray, you might use something like
the following rule:

body, table, th, td, h1, h2, h3, h4, p, pre, strong, em, b, i {color: gray;}

Grouping allows an author to drastically compact certain types of style assignments,
which makes for a shorter style sheet. The following alternatives produce exactly the
same result, but it’s pretty obvious which one is easier to type:

h1 {color: purple;}
h2 {color: purple;}
h3 {color: purple;}
h4 {color: purple;}
h5 {color: purple;}
h6 {color: purple;}

h1, h2, h3, h4, h5, h6 {color: purple;}

Grouping allows for some interesting choices. For example, all of the groups of rules
in the following example are equivalent—each merely shows a different way of group-
ing both selectors and declarations:

/* group 1 */
h1 {color: silver; background: white;}
h2 {color: silver; background: gray;}
h3 {color: white; background: gray;}
h4 {color: silver; background: white;}
b {color: gray; background: white;}

/* group 2 */
h1, h2, h4 {color: silver;}
h2, h3 {background: gray;}
h1, h4, b {background: white;}
h3 {color: white;}
b {color: gray;}

/* group 3 */
h1, h4 {color: silver; background: white;}
h2 {color: silver;}

Grouping | 5

www.it-ebooks.info

http://www.it-ebooks.info/

h3 {color: white;}
h2, h3 {background: gray;}
b {color: gray; background: white;}

Any of these will yield the result shown in Figure 1-4. (These styles use grouped dec-
larations, which are explained in an upcoming section, “Grouping Declara-
tions” on page 6.)

Figure 1-4. The result of equivalent style sheets

The universal selector

CSS2 introduced a new simple selector called the universal selector, displayed as an
asterisk (*). This selector matches any element at all, much like a wildcard. For example,
to make every single element in a document red, you would write:

* {color: red;}

This declaration is equivalent to a grouped selector that lists every single element con-
tained within the document. The universal selector lets you assign the color value
red to every element in the document in one efficient stroke. Beware, however: although
the universal selector is convenient, it can have unintended consequences, which are
discussed later in this book.

Grouping Declarations
Since you can group selectors together into a single rule, it follows that you can also
group declarations. Assuming that you want all h1 elements to appear in purple, 18-
pixel-high Helvetica text on an aqua background (and you don’t mind blinding your
readers), you could write your styles like this:

h1 {font: 18px Helvetica;}
h1 {color: purple;}
h1 {background: aqua;}

6 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

But this method is inefficient—imagine creating such a list for an element that will carry
10 or 15 styles! Instead, you can group your declarations together:

h1 {font: 18px Helvetica; color: purple; background: aqua;}

This will have exactly the same effect as the three-line style sheet just shown.

Note that using semicolons at the end of each declaration is crucial when you’re group-
ing them. Browsers ignore whitespace in style sheets, so the user agent must rely on
correct syntax to parse the style sheet. You can fearlessly format styles like the following:

h1 {
 font: 18px Helvetica;
 color: purple;
 background: aqua;
}

If the second semicolon is omitted, however, the user agent will interpret the style sheet
as follows:

h1 {
 font: 18px Helvetica;
 color: purple background: aqua;
}

Because background: is not a valid value for color, and because color can be given only
one keyword, a user agent will ignore the color declaration (including the background:
aqua part) entirely. You might think the browser would at least render h1s as purple
text without an aqua background, but if the browser is programmed at all correctly,
you won’t even get purple h1s. Instead, they will be the default color (which is usually
black) with a transparent background (which is also a default). The declaration font:
18px Helvetica will still take effect since it was correctly terminated with a semicolon.

Although it is not technically necessary to follow the last declaration of
a rule with a semicolon, it is generally good practice to do so. First, it
will keep you in the habit of terminating your declarations with semi-
colons, the lack of which is one of the most common causes of rendering
errors. Second, if you decide to add another declaration to a rule, you
won’t have to worry about forgetting to insert an extra semicolon. Avoid
both problems—always follow a declaration with a semicolon, wher-
ever the rule appears.

As with selector grouping, declaration grouping is a convenient way to keep your style
sheets short, expressive, and easy to maintain.

Grouping Everything
You now know that you can group selectors and you can group declarations. By com-
bining both kinds of grouping in single rules, you can define very complex styles using

Grouping | 7

www.it-ebooks.info

http://www.it-ebooks.info/

only a few statements. Now, what if you want to assign some complex styles to all the
headings in a document, and you want the same styles to be applied to all of them?
Here’s how to do it:

h1, h2, h3, h4, h5, h6 {color: gray; background: white; padding: 0.5em;
 border: 1px solid black; font-family: Charcoal, sans-serif;}

You’ve grouped the selectors, so the styles on the right side of the rule will be applied
to all the headings listed; grouping the declarations means that all of the listed styles
will be applied to the selectors on the left side of the rule. The result of this rule is shown
in Figure 1-5.

Figure 1-5. Grouping both selectors and rules

This approach is preferable to the drawn-out alternative, which would begin with
something like this:

h1 {color: gray;}
h2 {color: gray;}
h3 {color: gray;}
h4 {color: gray;}
h5 {color: gray;}
h6 {color: gray;}
h1 {background: white;}
h2 {background: white;}
h3 {background: white;}

…and continue for many lines. You can write out your styles the long way, but I
wouldn’t recommend it—editing them would be as tedious as using font tags every-
where!

8 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

It’s possible to add even more expression to selectors and to apply styles in a way that
cuts across elements in favor of types of information. Of course, to get something so
powerful, you’ll have to do a little work in return, but it’s well worth it.

Class and ID Selectors
So far, we’ve been grouping selectors and declarations together in a variety of ways,
but the selectors we’ve been using are very simple ones that refer only to document
elements. They’re fine up to a point, but there are times when you need something a
little more specialized.

In addition to raw document elements, there are class selectors and ID selectors, which
let you assign styles in a way that is independent of document elements. These selectors
can be used on their own or in conjunction with element selectors. However, they work
only if you’ve marked up your document appropriately, so using them generally in-
volves a little forethought and planning.

For example, say you’re drafting a document that discusses ways of handling pluto-
nium. The document contains various warnings about safely dealing with such a dan-
gerous substance. You want each warning to appear in boldface text so that it will stand
out. However, you don’t know which elements these warnings will be. Some warnings
could be entire paragraphs, while others could be a single item within a lengthy list or
a small section of text. So, you can’t define a rule using element selectors of any kind.
Suppose you tried this route:

p {font-weight: bold;}

All paragraphs would be bold, not just those that contain warnings. You need a way
to select only the text that contains warnings, or more precisely, a way to select only
those elements that are warnings. How do you do it? You apply styles to parts of the
document that have been marked in a certain way, independent of the elements in-
volved, by using class selectors.

Class Selectors
The most common way to apply styles without worrying about the elements involved
is to use class selectors. Before you can use them, however, you need to modify your
actual document markup so that the class selectors will work. Enter the class attribute:

<p class="warning">When handling plutonium, care must be taken to avoid
the formation of a critical mass.</p>
<p>With plutonium, the possibility of implosion is
very real, and must be avoided at all costs. This can be accomplished
by keeping the various masses separate.</p>

To associate the styles of a class selector with an element, you must assign a class
attribute to the appropriate value. In the previous code, a class value of warning was

Class and ID Selectors | 9

www.it-ebooks.info

http://www.it-ebooks.info/

assigned to two elements: the first paragraph and the span element in the second para-
graph.

All you need now is a way to apply styles to these classed elements. In HTML docu-
ments, you can use a very compact notation where the name of a class is preceded by
a period (.) and can be joined with an element selector:

*.warning {font-weight: bold;}

When combined with the example markup shown earlier, this simple rule has the effect
shown in Figure 1-6. That is, the declaration font-weight: bold will be applied to every
element (thanks to the presence of the universal selector) that carries a class attribute
with a value of warning.

Figure 1-6. Using a class selector

As you can see, the class selector works by directly referencing a value that will be found
in the class attribute of an element. This reference is always preceded by a period (.),
which marks it as a class selector. The period helps keep the class selector separate from
anything with which it might be combined—such as an element selector. For example,
you may want boldface text only when an entire paragraph is a warning:

p.warning {font-weight: bold;}

The selector now matches any p elements that have a class attribute containing the
word warning, but no other elements of any kind, classed or otherwise. Since the span
element is not a paragraph, the rule’s selector doesn’t match it, and it won’t be displayed
using boldfaced text.

If you did want to assign different styles to the span element, you could use the selector
span.warning:

p.warning {font-weight: bold;}
span.warning {font-style: italic;}

10 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

In this case, the warning paragraph is boldfaced, while the warning span is italicized.
Each rule applies only to a specific type of element/class combination, so it does not
leak over to other elements.

Another option is to use a combination of a general class selector and an element-
specific class selector to make the styles even more useful, as in the following markup:

.warning {font-style: italic;}
span.warning {font-weight: bold;}

The results are shown in Figure 1-7.

Figure 1-7. Using generic and specific selectors to combine styles

In this situation, any warning text will be italicized, but only the text within a span
element with a class of warning will be both boldfaced and italicized.

Notice the format of the general class selector in the previous example: it’s simply a
class name preceded by a period without any element name, and no universal selector.
In cases where you only want to select all elements that share a class name, you can
omit the universal selector from a class selector without any ill effects.

Multiple Classes
In the previous section, we dealt with class values that contained a single word. In
HTML, it’s possible to have a space-separated list of words in a single class value. For
example, if you want to mark a particular element as being both urgent and a warning,
you could write:

<p class="urgent warning">When handling plutonium, care must be taken to
avoid the formation of a critical mass.</p>
<p>With plutonium, the possibility of implosion is
very real, and must be avoided at all costs. This can be accomplished
by keeping the various masses separate.</p>

Class and ID Selectors | 11

www.it-ebooks.info

http://www.it-ebooks.info/

The order of the words doesn’t actually matter; warning urgent would also suffice and
would yield precisely the same results no matter what CSS is written.

Now let’s say you want all elements with a class of warning to be boldfaced, those with
a class of urgent to be italic, and those elements with both values to have a silver
background. This would be written as follows:

.warning {font-weight: bold;}

.urgent {font-style: italic;}

.warning.urgent {background: silver;}

By chaining two class selectors together, you can select only those elements that have
both class names, in any order. As you can see, the HTML source contains
class="urgent warning" but the CSS selector is written .warning.urgent. Regardless,
the rule will still cause the “When handling plutonium . . . ” paragraph to have a silver
background, as illustrated in Figure 1-8. This happens because the order the words are
written in doesn’t matter. (This is not to say the order of classes is always irrelevant,
but we’ll get to that later in the book.)

Figure 1-8. Selecting elements with multiple class names

If a multiple class selector contains a name that is not in the space-separated list, then
the match will fail. Consider the following rule:

p.warning.help {background: red;}

As you would expect, the selector will match only those p elements with a class con-
taining the words warning and help. Therefore, it will not match a p element with just
the words warning and urgent in its class attribute. It would, however, match the fol-
lowing:

<p class="urgent warning help">Help me!</p>

12 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

In versions previous to IE7, Internet Explorer for both platforms has
problems with correctly handling multiple class selectors. In these older
versions, although you can select a single class name out of a list, se-
lecting based on multiple names in a list does not work properly. Thus,
p.warning would work as expected, but p.warning.help would match
any p elements that have a class attribute with the word help because
it comes last in the selector. If you wrote p.help.warning, then older
versions of Explorer would match any p elements that have warning in
their class value, whether or not help appears in the same value.

ID Selectors
In some ways, ID selectors are similar to class selectors, but there are a few crucial
differences. First, ID selectors are preceded by an octothorpe (#)—also known as a
pound sign (in the US), hash mark, or tic-tac-toe board—instead of a period. Thus,
you might see a rule like this one:

*#first-para {font-weight: bold;}

This rule produces boldfaced text in any element whose id attribute has a value of
first-para.

The second difference is that instead of referencing values of the class attribute, ID
selectors refer, unsurprisingly, to values found in id attributes. Here’s an example of
an ID selector in action:

*#lead-para {font-weight: bold;}

<p id="lead-para">This paragraph will be boldfaced.</p>
<p>This paragraph will NOT be bold.</p>

Note that the value lead-para could have been assigned to any element within the
document. In this particular case, it is applied to the first paragraph, but you could
have applied it just as easily to the second or third paragraph.

As with class selectors, it is possible to omit the universal selector from an ID selector.
In the previous example, you could also have written:

#lead-para {font-weight: bold;}

The effect of this selector would be the same.

Another similarity between classes and IDs is that IDs can also be selected independ-
ently of an element. There may be circumstances in which you know that a certain ID
value will appear in a document, but you don’t know the element on which it will
appear (as in the plutonium-handling warnings), so you’ll want to declare standalone
ID selectors. For example, you may know that in any given document, there will be an
element with an ID value of mostImportant. You don’t know whether that most im-
portant thing will be a paragraph, a short phrase, a list item, or a section heading. You
know only that it will exist in each document, occur in an arbitrary element, and appear
no more than once. In that case, you would write a rule like this:

Class and ID Selectors | 13

www.it-ebooks.info

http://www.it-ebooks.info/

#mostImportant {color: red; background: yellow;}

This rule would match any of the following elements (which, as noted before, should
not appear together in the same document because they all have the same ID value):

<h1 id="mostImportant">This is important!</h1>
<em id="mostImportant">This is important!
<ul id="mostImportant">This is important!

Deciding Between Class and ID
You may assign classes to any number of elements, as demonstrated earlier; the class
name warning was applied to both a p and a span element, and it could have been applied
to many more elements. IDs, on the other hand, are used once, and only once, within
an HTML document. Therefore, if you have an element with an id value of lead-
para, no other element in that document can have an id value of lead-para.

In the real world, browsers don’t always check for the uniqueness of IDs
in HTML. That means that if you sprinkle an HTML document with
several elements, all of which have the same value for their ID attributes,
you’ll probably get the same styles applied to each. This is incorrect
behavior, but it happens anyway. Having more than one of the same ID
value in a document also makes DOM scripting more difficult, since
functions like getElementById() depend on there being one, and only
one, element with a given ID value.

Unlike class selectors, ID selectors can’t be combined, since ID attributes do not permit
a space-separated list of words.

Another difference between class and id names is that IDs carry more weight when
you’re trying to determine which styles should be applied to a given element. This will
be explained in greater detail later on.

Also note that class and ID selectors may be case-sensitive, depending on the document
language. HTML defines class and ID values to be case-sensitive, so the capitalization
of your class and ID values must match that found in your documents. Thus, in the
following pairing of CSS and HTML, the elements text will not be boldfaced:

p.criticalInfo {font-weight: bold;}

<p class="criticalinfo">Don't look down.</p>

Because of the change in case for the letter i, the selector will not match the element
shown.

Some older browsers did not treat class and ID names as case-sensitive,
but all browsers current as of this writing correctly enforce case sensi-
tivity.

14 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

On a purely syntactical level, the dot-class notation (e.g., .warning) is not guaranteed
to work for XML documents. As of this writing, the dot-class notation works in HTML,
SVG, and MathML, and it may well be permitted in future languages, but it’s up to
each language’s specification to decide that. The hash-ID notation (e.g., #lead) will
work in any document language that has an attribute that enforces uniqueness within
a document. Uniqueness can be enforced with an attribute called id, or indeed anything
else, as long as the attribute’s contents are defined to be unique within the document.

Attribute Selectors
When it comes to both class and ID selectors, what you’re really doing is selecting
values of attributes. The syntax used in the previous two sections is particular to HTML,
XHTML, SVG, and MathML documents (as of this writing). In other markup lan-
guages, these class and ID selectors may not be available (as, indeed, those attributes
may not be present). To address this situation, CSS2 introduced attribute selectors,
which can be used to select elements based on their attributes and the values of those
attributes. There are four general types of attribute selectors: simple attribute selectors,
exact attribute value selectors, partial-match attribute value selectors, and leading-
value attribute selectors.

Simple Attribute Selectors
If you want to select elements that have a certain attribute, regardless of that attribute’s
value, you can use a simple attribute selector. For example, to select all h1 elements
that have a class attribute with any value and make their text silver, write:

h1[class] {color: silver;}

So, given the following markup:

<h1 class="hoopla">Hello</h1>
<h1>Serenity</h1>
<h1 class="fancy">Fooling</h1>

…you get the result shown in Figure 1-9.

Figure 1-9. Selecting elements based on their attributes

Attribute Selectors | 15

www.it-ebooks.info

http://www.it-ebooks.info/

This strategy is very useful in XML documents, as XML languages tend to have element
and attribute names that are very specific to their purpose. Consider an XML language
that is used to describe planets of the solar system (we’ll call it PlanetML). If you want
to select all planet elements with a moons attribute and make them boldface, thus calling
attention to any planet that has moons, you would write:

planet[moons] {font-weight: bold;}

This would cause the text of the second and third elements in the following markup
fragment to be boldfaced, but not the first:

<planet>Venus</planet>
<planet moons="1">Earth</planet>
<planet moons="2">Mars</planet>

In HTML documents, you can use this feature in a number of creative ways. For ex-
ample, you could style all images that have an alt attribute, thus highlighting those
images that are correctly formed:

img[alt] {border: 3px solid red;}

(This particular example is generally useful more for diagnostic purposes—that is, de-
termining whether images are indeed correctly marked up—than for design purposes.)

If you wanted to boldface any element that includes title information, which most
browsers display as a “tool tip” when a cursor hovers over the element, you could write:

*[title] {font-weight: bold;}

Similarly, you could style only those anchors (a elements) that have an href attribute,
thus applying the styles to any hyperlink but not to any named anchors.

It is also possible to select based on the presence of more than one attribute. You do
this simply by chaining the attribute selectors together. For example, to boldface the
text of any HTML hyperlink that has both an href and a title attribute, you would
write:

a[href][title] {font-weight: bold;}

This would boldface the first link in the following markup, but not the second or third:

W3C

Standards Info

dead.letter

Selection Based on Exact Attribute Value
You can further narrow the selection process to encompass only those elements whose
attributes are a certain value. For example, let’s say you want to boldface any hyperlink
that points to a certain document on the web server. This would look something like:

a[href="http://www.css-discuss.org/about.html"] {font-weight: bold;}

16 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

This will boldface the text of any a element that has an href attribute with exactly the
value http://www.css-discuss.org/about.html. Any change at all, even dropping the
www. part, will prevent a match.

Any attribute and value combination can be specified for any element. However, if that
exact combination does not appear in the document, then the selector won’t match
anything. Again, XML languages can benefit from this approach to styling. Let’s return
to our PlanetML example. Suppose you want to select only those planet elements that
have a value of 1 for the attribute moons:

planet[moons="1"] {font-weight: bold;}

This would boldface the text of the second element in the following markup fragment,
but not the first or third:

<planet>Venus</planet>
<planet moons="1">Earth</planet>
<planet moons="2">Mars</planet>

As with attribute selection, you can chain together multiple attribute-value selectors to
select a single document. For example, to double the size of the text of any HTML
hyperlink that has both an href with a value of http://www.w3.org/ and a title attribute
with a value of W3C Home, you would write:

a[href="http://www.w3.org/"][title="W3C Home"] {font-size: 200%;}

This would double the text size of the first link in the following markup, but not the
second or third:

W3C

<a href="http://www.webstandards.org"
 title="Web Standards Organization">Standards Info

dead.link

The results are shown in Figure 1-10.

Figure 1-10. Selecting elements based on attributes and their values

Again, this format requires an exact match for the attribute’s value. Matching becomes
an issue when the selector form encounters values that can in turn contain a space-
separated list of values (e.g., the HTML attribute class). For example, consider the
following markup fragment:

<planet type="barren rocky">Mercury</planet>

The only way to match this element based on its exact attribute value is to write:

planet[type="barren rocky"] {font-weight: bold;}

Attribute Selectors | 17

www.it-ebooks.info

http://www.css-discuss.org/about.html
http://www.w3.org/
http://www.it-ebooks.info/

If you were to write planet[type="barren"], the rule would not match the example
markup and thus would fail. This is true even for the class attribute in HTML. Consider
the following:

<p class="urgent warning">When handling plutonium, care must be taken to
avoid the formation of a critical mass.</p>

To select this element based on its exact attribute value, you would have to write:

p[class="urgent warning"] {font-weight: bold;}

This is not equivalent to the dot-class notation covered earlier, as we will see in the next
section. Instead, it selects any p element whose class attribute has exactly the value
urgent warning, with the words in that order and a single space between them. It’s
effectively an exact string match.

Also, be aware that ID selectors and attribute selectors that target the id attribute are
not precisely the same. In other words, there is a subtle but crucial difference between
h1#page-title and h1[id="page-title"]. This difference is explained in the next chap-
ter in the section on specificity.

Selection Based on Partial Attribute Values
The CSS Selectors Level 3 module, which became a full W3C Recommendation in late
2011, contains a few partial-value attribute selectors—or, as the specification calls
them, “substring matching attribute selectors.” These are summarized in Table 1-1.

Table 1-1. Substring matching with attribute selectors

Type Description

[foo~="bar"] Selects any element with an attribute foo whose value contains the word bar in a space-separated
list of words.

[foo*="bar"] Selects any element with an attribute foo whose value contains the substring bar.

[foo^="bar"] Selects any element with an attribute foo whose value begins with bar.

[foo$="bar"] Selects any element with an attribute foo whose value ends with bar.

Matching one word in a space-separated list

For any attribute that accepts a space-separated list of words, it is possible to select
elements based on the presence of any one of those words. The classic example in
HTML is the class attribute, which can accept one or more words as its value. Consider
our usual example text:

<p class="urgent warning">When handling plutonium, care must be taken to
avoid the formation of a critical mass.</p>

Let’s say you want to select elements whose class attribute contains the word
warning. You can do this with an attribute selector:

p[class~="warning"] {font-weight: bold;}

18 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

Note the presence of the tilde (~) in the selector. It is the key to selection based on the
presence of a space-separated word within the attribute’s value. If you omit the tilde,
you would have an exact value matching attribute selector, as discussed in the previous
section.

This selector construct is equivalent to the dot-class notation discussed earlier in the
chapter. Thus, p.warning and p[class~="warning"] are equivalent when applied to
HTML documents. Here’s an example that is an HTML version of the “PlanetML”
markup seen earlier:

Mercury
Venus
Earth

To italicize all elements with the word barren in their class attribute, you write:

span[class~="barren"] {font-style: italic;}

This rule’s selector will match the first two elements in the example markup and thus
italicize their text, as shown in Figure 1-11. This is the same result we would expect
from writing span.barren {font-style: italic;}.

Figure 1-11. Selecting elements based on portions of attribute values

So why bother with the tilde-equals attribute selector in HTML? Because it can be used
for any attribute, not just class. For example, you might have a document that contains
a number of images, only some of which are figures. You can use a partial-match value
attribute selector aimed at the title text to select only those figures:

img[title~="Figure"] {border: 1px solid gray;}

This rule will select any image whose title text contains the word Figure. Therefore,
as long as all your figures have title text that looks something like “Figure 4. A bald-
headed elder statesman,” this rule will match those images. For that matter, the selector
img[title~="Figure"] will also match a title attribute with the value “How to Figure
Out Who’s in Charge.” Any image that does not have a title attribute, or whose
title value doesn’t contain the word “Figure,” won’t be matched.

Matching a substring within an attribute value

Sometimes you want to select elements based on a portion of their attribute values, but
the values in question aren’t space-separated lists of words. In these cases, you can use
the form [att*="val"] to match substrings that appear anywhere inside the attribute
values. For example, the following CSS matches any span element whose class attribute
contains the substring cloud, so both “cloudy” planets are matched, as shown in Fig-
ure 1-12.

Attribute Selectors | 19

www.it-ebooks.info

http://www.it-ebooks.info/

span[class*="cloud"] {font-style: italic;}

Mercury
Venus
Earth

As you can imagine, there are many useful applications for this particular capability.
For example, suppose you wanted to specially style any links to the O’Reilly Media
website. Instead of classing them all and writing styles based on that class, you could
simply write the following rule:

a[href*="oreilly.com"] {font-weight: bold;}

Of course, you aren’t confined to the class and href attributes. Any attribute is up for
grabs here. title, alt, src, id… you name it, you can style based on a substring within
an attribute’s value. The following rule draws attention to any spacer GIF in an old-
school table layout (plus any other image with the string “space” in its source URL):

img[src*="space"] {border: 5px solid red;}

The matches are exact: if you include whitespace in your selector, then whitespace must
also be present in an attribute’s value. The attribute names and values must be case-
sensitive only if the underlying document language requires case sensitivity.

Matching a substring at the beginning of an attribute value

In cases where you want to select elements based on a substring at the beginning of an
attribute value, then the attribute selector pattern [att^="val"] is what you’re seeking.
This can be particularly useful in a situation where you want to style types of links
differently, as illustrated in Figure 1-13.

a[href^="https:"] {font-weight: bold;}
a[href^="mailto:"] {font-style: italic;}

Figure 1-13. Selecting elements based on substrings that begin attribute values

Another use case is when you want to style all images in an article that are also figures,
as in the figures you see throughout this text. Assuming that the alt text of each figure
begins with text in the pattern “Figure 5”—which is an entirely reasonable assumption
in this case—then you can select only those images as follows:

Figure 1-12. Selecting elements based on substrings within attribute values

20 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

img[alt^="Figure"] {border: 2px solid gray; display: block; margin: 2em auto;}

The potential drawback here is that any img element whose alt starts with “Figure”
will be selected, whether or not it’s meant to be an illustrative figure. The likeliness of
that occurring depends on the document in question, obviously.

One more use case is selecting all of the calendar events that occur on Mondays. In this
case, all of the events have a title attribute containing a date in the format “Monday,
March 5th, 2012.” Selecting them all is a simple matter of [title^="Monday"].

Matching a substring at the end of an attribute value

The mirror image of beginning-substring matching is ending-substring matching,
which is accomplished using the [att$="val"] pattern. A very common use for this
capability is to style links based on the kind of resource they target, such as separate
styles for PDF documents, as illustrated in Figure 1-14.

a[href$=".pdf"] {font-weight: bold;}

Figure 1-14. Selecting elements based on substrings that end attribute values

Similarly, you could (for whatever reason) select images based on their image format:

img[src$=".gif"] {...}
img[src$=".jpg"] {...}
img[src$=".png"] {...}

To continue the calendar example from the previous section, it would be possible to
select all of the events occurring within a given year using a selector like [title
$="2012"].

A Particular Attribute Selection Type
The last type of attribute selector, the particular attribute selector, is easier to show
than it is to describe. Consider the following rule:

*[lang|="en"] {color: white;}

This rule will select any element whose lang attribute is equal to en or begins with
en-. Therefore, the first three elements in the following example markup would be
selected, but the last two would not:

<h1 lang="en">Hello!</h1>
<p lang="en-us">Greetings!</p>
<div lang="en-au">G'day!</div>

Attribute Selectors | 21

www.it-ebooks.info

http://www.it-ebooks.info/

<p lang="fr">Bonjour!</p>
<h4 lang="cy-en">Jrooana!</h4>

In general, the form [att|="val"] can be used for any attribute and its values. Let’s say
you have a series of figures in an HTML document, each of which has a filename like
figure-1.gif and figure-3.jpg. You can match all of these images using the following
selector:

img[src|="figure"] {border: 1px solid gray;}

The most common use for this type of attribute selector is to match language values,
as demonstrated later in this chapter.

Using Document Structure
As mentioned previously, CSS is powerful because it uses the structure of documents
to determine appropriate styles and how to apply them. That’s only part of the story
since it implies that such determinations are the only way CSS uses document structure.
Structure plays a much larger role in the way styles are applied to a document. Let’s
take a moment to discuss structure before moving on to more powerful forms of
selection.

Understanding the Parent-Child Relationship
To understand the relationship between selectors and documents, you need to once
again examine how documents are structured. Consider this very simple HTML
document:

<html>
<head>
 <base href="http://www.meerkat.web/">
 <title>Meerkat Central</title>
</head>
<body>
 <h1>Meerkat Central</h1>
 <p>
 Welcome to Meerkat Central, the best meerkat web site
 on the entire Internet!</p>

 We offer:

 Detailed information on how to adopt a meerkat
 Tips for living with a meerkat
 Fun things to do with a meerkat, including:

 Playing fetch
 Digging for food
 Hide and seek

22 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

 ...and so much more!

 <p>
 Questions? Contact us!
 </p>
</body>
</html>

Much of the power of CSS is based on the parent-child relationship of elements. HTML
documents (actually, most structured documents of any kind) are based on a hierarchy
of elements, which is visible in the “tree” view of the document (see Figure 1-15). In
this hierarchy, each element fits somewhere into the overall structure of the document.
Every element in the document is either the parent or the child of another element, and
it’s often both.

Figure 1-15. A document tree structure

An element is said to be the parent of another element if it appears directly above that
element in the document hierarchy. For example, in Figure 1-15, the first p element is
parent to the em and strong elements, while strong is parent to an anchor (a) element,
which is itself parent to another em element. Conversely, an element is the child of
another element if it is directly beneath the other element. Thus, the anchor element
in Figure 1-15 is a child of the strong element, which is in turn child to the p element,
and so on.

Using Document Structure | 23

www.it-ebooks.info

http://www.it-ebooks.info/

The terms “parent” and “child” are specific applications of the terms ancestor and
descendant. There is a difference between them: in the tree view, if an element is exactly
one level above another, then they have a parent-child relationship. If the path from
one element to another is traced through two or more levels, the elements have an
ancestor-descendant relationship, but not a parent-child relationship. (Of course, a
child is also a descendant, and a parent is an ancestor.) In Figure 1-15, the first ul
element is parent to two li elements, but the first ul is also the ancestor of every element
descended from its li element, all the way down to the most deeply nested li elements.

Also, in Figure 1-15, there is an anchor that is a child of strong, but also a descendant
of paragraph, body, and html elements. The body element is an ancestor of everything
that the browser will display by default, and the html element is ancestor to the entire
document. For this reason, the html element is also called the root element.

Descendant Selectors
The first benefit of understanding this model is the ability to define descendant selec-
tors (also known as contextual selectors). Defining descendant selectors is the act of
creating rules that operate in certain structural circumstances but not others. As an
example, let’s say you want to style only those em elements that are descended from
h1 elements. You could put a class attribute on every em element found within an h1,
but that’s almost as time-consuming as using the font tag. It’s obviously far more effi-
cient to declare rules that match only em elements that are found inside h1 elements.

To do so, write the following:

h1 em {color: gray;}

This rule will make gray any text in an em element that is the descendant of an h1 element.
Other em text, such as that found in a paragraph or a block quote, will not be selected
by this rule. Figure 1-16 makes this clear.

Figure 1-16. Selecting an element based on its context

In a descendant selector, the selector side of a rule is composed of two or more space-
separated selectors. The space between the selectors is an example of a combinator.
Each space combinator can be translated as “found within,” “which is part of,” or “that
is a descendant of,” but only if you read the selector right to left. Thus, h1 em can be
translated as, “Any em element that is a descendant of an h1 element.” (To read the
selector left to right, you might phrase it something like, “Any h1 that contains an em
will have the following styles applied to the em.”)

You aren’t limited to two selectors, of course. For example:

ul ol ul em {color: gray;}

24 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

In this case, as Figure 1-17 shows, any emphasized text that is part of an unordered list
that is part of an ordered list that is itself part of an unordered list (yes, this is correct)
will be gray. This is obviously a very specific selection criterion.

Figure 1-17. A very specific descendant selector

Descendant selectors can be extremely powerful. They make possible what could never
be done in HTML—at least not without oodles of font tags. Let’s consider a common
example. Assume you have a document with a sidebar and a main area. The sidebar
has a blue background, the main area has a white background, and both areas include
lists of links. You can’t set all links to be blue because they’d be impossible to read in
the sidebar.

The solution: descendant selectors. In this case, you give the element (probably a div)
that contains your sidebar a class of sidebar, and assign the main area a class of main.
Then, you write styles like this:

.sidebar {background: blue;}

.main {background: white;}

.sidebar a:link {color: white;}

.main a:link {color: blue;}

Figure 1-18 shows the result.

Figure 1-18. Using descendant selectors to apply different styles to the same type of element

:link refers to links to resources that haven’t been visited. We’ll talk
about it in detail later in this chapter.

Using Document Structure | 25

www.it-ebooks.info

http://www.it-ebooks.info/

Here’s another example: let’s say that you want gray to be the text color of any b (bold-
face) element that is part of a blockquote, and also for any bold text that is found in a
normal paragraph:

blockquote b, p b {color: gray;}

The result is that the text within b elements that are descended from paragraphs or
block quotes will be gray.

One overlooked aspect of descendant selectors is that the degree of separation between
two elements can be practically infinite. For example, if you write ul em, that syntax
will select any em element descended from a ul element, no matter how deeply nested
the em may be. Thus, ul em would select the em element in the following markup:

List item 1

List item 1-1
List item 1-2
List item 1-3

List item 1-3-1
List item 1-3-2
List item 1-3-3

List item 1-4

Another, even subtler aspect of descendant selectors is that they have no notion of
element proximity. In other words, the closeness of two elements within the document
tree has no bearing on whether a rule applies or not. This has bearing when it comes
to specificity (which we’ll cover later on) but also when considering rules that might
appear to cancel each other out.

For example, consider the following (which contains a selector type we’ll discuss later
in this chapter):

div:not(.help) span {color: gray;}
div.help span {color: red;}

<div class="help">
 <div class="aside">
 This text contains a span element within.
 </div>
</div>

What the CSS says, in effect, is “any span inside a div that doesn’t have a class con-
taining the word help should be gray” in the first rule, and “any span inside a div whose
class contains the word help” in the second rule. In the given markup fragment, both
rules apply to the span shown.

26 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

Because the two rules have equal weight and the “red” rule is written last, it wins out
and the span is red. The fact that the div class="aside" is “closer to” the span than the
div class="help" is completely irrelevant. Again: descendant selectors have no notion
of element proximity. Both rules match, only one color can be applied, and due to the
way CSS works, red is the winner here.

Selecting Children
In some cases, you don’t want to select an arbitrarily descended element; rather, you
want to narrow your range to select an element that is a child of another element. You
might, for example, want to select a strong element only if it is a child (as opposed to
any level of descendant) of an h1 element. To do this, you use the child combinator,
which is the greater-than symbol (>):

h1 > strong {color: red;}

This rule will make red the strong element shown in the first h1 below, but not the
second:

<h1>This is very important.</h1>
<h1>This is really very important.</h1>

Read right to left, the selector h1 > strong translates as, “Selects any strong element
that is a child of an h1 element.” The child combinator can be optionally surrounded
by whitespace. Thus, h1 > strong, h1> strong, and h1>strong are all equivalent. You
can use or omit whitespace as you wish.

When viewing the document as a tree structure, it’s easy to see that a child selector
restricts its matches to elements that are directly connected in the tree. Figure 1-19
shows part of a document tree.

Figure 1-19. A document tree fragment

In this tree fragment, you can easily pick out parent-child relationships. For example,
the a element is parent to the strong, but it is child to the p element. You could match

Using Document Structure | 27

www.it-ebooks.info

http://www.it-ebooks.info/

elements in this fragment with the selectors p > a and a > strong, but not p >
strong, since the strong is a descendant of the p but not its child.

You can also combine descendant and child combinations in the same selector. Thus,
table.summary td > p will select any p element that is a child of a td element that is
itself descended from a table element that has a class attribute containing the word
summary.

Selecting Adjacent Sibling Elements
Let’s say you want to style the paragraph immediately after a heading or give a special
margin to a list that immediately follows a paragraph. To select an element that im-
mediately follows another element with the same parent, you use the adjacent-sibling
combinator, represented as a plus symbol (+). As with the child combinator, the symbol
can be surrounded by whitespace, or not, at the author’s discretion.

To remove the top margin from a paragraph immediately following an h1 element,
write:

h1 + p {margin-top: 0;}

The selector is read as, “Selects any p element that immediately follows an h1 element
that shares a parent with the p element.”

To visualize how this selector works, it is easiest to once again consider a fragment of
a document tree, shown in Figure 1-20.

Figure 1-20. Another document tree fragment

In this fragment, a pair of lists descends from a div element, one ordered and the other
not, each containing three list items. Each list is an adjacent sibling, and the list items
themselves are also adjacent siblings. However, the list items from the first list are
not siblings of the second, since the two sets of list items do not share the same parent
element. (At best, they’re cousins, and CSS has no cousin selector.)

28 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

Remember that you can select the second of two adjacent siblings only with a single
combinator. Thus, if you write li + li {font-weight: bold;}, only the second and third
items in each list will be boldfaced. The first list items will be unaffected, as illustrated
in Figure 1-21.

Figure 1-21. Selecting adjacent siblings

To work properly, CSS requires that the two elements appear in “source order.” In our
example, an ol element is followed by a ul element. This allows you to select the second
element with ol + ul, but you cannot select the first using the same syntax. For ul +
ol to match, an ordered list must immediately follow an unordered list.

Keep in mind that text content between two elements does not prevent the adjacent-
sibling combinator from working. Consider this markup fragment, whose tree view
would be the same as that shown in Figure 1-19:

<div>

List item 1
List item 1
List item 1

This is some text that is part of the 'div'.

A list item
Another list item
Yet another list item

</div>

Even though there is text between the two lists, you can still match the second list with
the selector ol + ul. That’s because the intervening text is not contained with a sibling
element, but is instead part of the parent div. If you wrapped that text in a paragraph
element, it would then prevent ol + ul from matching the second list. Instead, you
might have to write something like ol + p + ul.

As the following example illustrates, the adjacent-sibling combinator can be used in
conjunction with other combinators:

html > body table + ul{margin-top: 1.5em;}

Using Document Structure | 29

www.it-ebooks.info

http://www.it-ebooks.info/

The selector translates as, “Selects any ul element that immediately follows a sibling
table element that is descended from a body element that is itself a child of an html
element.”

As with all combinators, you can place the adjacent-sibling combinator in a more com-
plex setting, such as div#content h1 + div ol. That selector is read as, “Selects any
ol element that is descended from a div when the div is the adjacent sibling of an h1
which is itself descended from a div whose id attribute has a value of content.”

Selecting Following Siblings
Selectors Level 3 introduced a new sibling combinator called the general sibling com-
binator. This lets you select any element that follows another element when both ele-
ments share the same parent, represented using the tilde (~) combinator.

As an example, to italicize any ol that follows an h2 and also shares a parent with the
h2, you’d write h2 ~ ol {font-style: italic;}. The two elements do not have to be
adjacent siblings, although they can be adjacent and still match this rule. The result of
applying this rule to the following markup is shown in Figure 1-22.

<div>
<h2>Subheadings</h2>
<p>It is the case that not every heading can be a main heading. Some headings must be
subheadings. Examples include:</p>

Headings that are less important
Headings that are subsidiary to more important headlines
Headings that like to be dominated

<p>Let's restate that for the record:</p>

Headings that are less important
Headings that are subsidiary to more important headlines
Headings that like to be dominated

</div>

Figure 1-22. Selecting following siblings

30 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

As you can see, both ordered lists are italicized. That’s because both of them are ol
elements that follow an h2 with whom they share a parent (the div).

Pseudo-Class Selectors
Things get really interesting with pseudo-class selectors. These selectors let you assign
styles to what are, in effect, phantom classes that are inferred by the state of certain
elements, or markup patterns within the document, or even by the state of the docu-
ment itself.

The phrase “phantom classes” might seem a little odd, but it really is the best way to
think of how pseudo-classes work. For example, suppose you wanted to highlight every
other row of a data table. You could do that by marking up every other row something
like class="even" and then writing CSS to highlight rows with that class—or (as we’ll
soon see) you could use a pseudo-class selector to achieve exactly the same effect, and
through very similar means.

Combining Pseudo-Classes
Before we start, a word about chaining. CSS makes it possible to combine (“chain”)
pseudo-classes together. For example, you can make unvisited links red when they’re
hovered, but visited links maroon when they’re hovered:

a:link:hover {color: red;}
a:visited:hover {color: maroon;}

The order you specify doesn’t actually matter; you could also write a:hover:link to the
same effect as a:link:hover. It’s also possible to assign separate hover styles to unvisited
and visited links that are in another language—for example, German:

a:link:hover:lang(de) {color: gray;}
a:visited:hover:lang(de) {color: silver;}

Be careful not to combine mutually exclusive pseudo-classes. For example, a link can-
not be both visited and unvisited, so a:link:visited doesn’t make any sense. User
agents will most likely ignore such a selector and thus effectively ignore the entire rule,
although this cannot be guaranteed, as different browsers will have different error-
handling behaviors.

Structural Pseudo-Classes
Thanks to Selectors Level 3, the majority of pseudo-classes are structural in nature; that
is, they refer to the markup structure of the document. Most of them depend on patterns
within the markup, such as choosing every third paragraph, but others allow you to
address specific types of elements. All pseudo-classes, without exception, are a word
preceded by a single colon (:), and they can appear anywhere in a selector.

Pseudo-Class Selectors | 31

www.it-ebooks.info

http://www.it-ebooks.info/

Before we get started, there’s an aspect of pseudo-classes that needs to be made explicit
here: pseudo-classes always refer to the element to which they’re attached, and no
other. Seems like a weirdly obvious thing to say, right? The reason to make it explicit
is that for a few of the structural pseudo-classes in particular, it’s a common error to
think they are descriptors that refer to descendant elements.

To illustrate this, I’d like to share a personal anecdote. When my eldest daughter, also
my first child, was born in 2003, I announced it online (like you do). A number of
people responded with congratulations and CSS jokes, chief among them the selector
#ericmeyer:first-child. The problem there is that selector would select me, and then
only if I were the first child of my parents (which, as it happens. I am). To properly
select my first child, that selector would need to be #ericmeyer > :first-child.

The confusion is understandable, which is why we’re addressing it here; reminders will
be found throughout the following sections. Just always keep in mind that the effect
of pseudo-classes is to apply a sort of a “phantom class” to the element to which they’re
attached, and you should be okay.

Selecting the root element

This is the quintessence of structural simplicity: the pseudo-class :root selects the root
element of the document. In HTML, this is always the html element. The real benefit
of this selector is found when writing style sheets for XML languages, where the
root element may be different in every language—for example, in RSS 2.0 it’s the rss
element—or even when you have more than one possible root element within a single
language (though not, of course, a single document!).

Here’s an example of styling the root element in HTML, as illustrated in Figure 1-23:

:root {border: 10px dotted gray;}
body {border: 10px solid black;}

Figure 1-23. Styling the root element

Of course, in HTML documents you can always select the html element directly,
without having to use the :root pseudo-class. There is a difference between the two
selectors in terms of specificity, which we’ll cover later on.

32 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting empty elements

With the pseudo-class :empty, you can select any element that has no children of any
kind, including text nodes, which covers both text and whitespace. This can be useful
in suppressing elements that a CMS has generated without filling in any actual content.
Thus, p:empty {display: none;} would prevent the display of any empty paragraphs.

Note that in order to be matched, an element must be, from a parsing perspective, truly
empty—no whitespace, visible content, or descendant elements. Of the following ele-
ments, only the first and last would be matched by p:empty.

<p></p>
<p> </p>
<p>
</p>
<p><!—-a comment--></p>

The second and third paragraphs are not matched by :empty because they are not
empty: they contain, respectively, a single space and a single newline character. Both
are considered text nodes, and thus prevent a state of emptiness. The last paragraph
matches because comments are not considered content, not even whitespace. But put
even one space or newline to either side of that comment, and p:empty would fail to
match.

You might be tempted to just style all empty elements with something like *:empty
{display: none;}, but there’s a hidden catch: :empty matches HTML’s empty elements,
like img and input. It could even match textarea, unless of course you insert some
default text into the textarea element. Thus, in terms of matching elements, img and
img:empty are effectively the same. (They are different in terms of specificity, which
we’ll cover in just a bit.)

As of early 2012, :empty is unique in that it’s the only CSS selector that
takes text nodes into consideration when determining matches. Every
other selector type in Selectors Level 3 considers only elements and ig-
nores text nodes entirely—recall, for example, the sibling combinators
discussed previously.

Selecting unique children

If you’ve ever wanted to select all the images that are wrapped by a hyperlink element,
the :only-child pseudo-class is for you. It selects elements when they are the only child
element of another element. So let’s say you want to remove the border from any image
that’s the only child of another element. You’d write:

img:only-child {border: 0;}

This would match any image that meets those criteria, of course. Therefore, if you had
a paragraph which contained an image and no other child elements, the image would
be selected regardless of all the text surrounding it. If what you’re really after is images

Pseudo-Class Selectors | 33

www.it-ebooks.info

http://www.it-ebooks.info/

that are sole children and found inside hyperlinks, then you just modify the selector
like so (which is illustrated in Figure 1-24):

a[href] img:only-child {border: 2px solid black;}

 The W3C
 The W3C

Figure 1-24. Selecting images that are only children inside links

There are two things to remember about :only-child. The first is that you always apply
it to the element you want to be an only child, not to the parent element, as explained
earlier. And that brings up the second thing to remember, which is that when you
use :only-child in a descendant selector, you aren’t restricting the elements listed to a
parent-child relationship. To go back to the hyperlinked-image example, a[href]
img:only-child matches any image that is an only child and is descended from an a
element, not is a child of an a element. Therefore all three of the images here would be
matched, as shown in Figure 1-25.

a[href] img:only-child {border: 5px solid black;}

A link to the web
site

Figure 1-25. Selecting images that are only children inside links

In each case, the image is the only child element of its parent, and it is also descended
from an a element. Thus all three images are matched by the rule shown. If you wanted
to restrict the rule so that it matched images that were the only children of a elements,
then you’d simply add the child combinator to yield a[href] > img:only-child. With
that change, only the first of the three images shown in Figure 1-25 would be matched.

34 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

That’s all great, but what if you want to match images that are the only images inside
hyperlinks, but there are other elements in there with them? Consider the following:

•

In this case, we have an a element that has two children: a b and an img. That image,
no longer being the only child of its parent (the hyperlink), can never be matched
using :only-child. However, it can be matched using :only-of-type. This is illustrated
in Figure 1-26.

a[href] img:only-of-type {border: 5px solid black;}

•
•

Figure 1-26. Selecting images that are the only sibling of their type

The difference is that :only-of-type will match any element that is the only of its type
among all its siblings, whereas :only-child will only match if an element has no siblings
at all.

This can be very useful in cases such as selecting images within paragraphs without
having to worry about the presence of hyperlinks or other inline elements:

p > img:only-of-type {float: right; margin: 20px;}

As long as there aren’t multiple images that are children of a paragraph, then the image
will be floated. You could also use this pseudo-class to apply extra styles to an h2 when
it’s the only one in a section of a document.

section > h2 {margin: 1em 0 0.33em; font-size: 180%; border-bottom: 1px solid gray;}
section > h2:only-of-type {font-size: 240%;}

Given those rules, any section that has only one child h2 will have it appear larger than
usual. If there are two or more h2 children to a section, neither of them will be larger
than the other. The presence of other children—whether they are other heading levels,
paragraphs, tables, paragraphs, lists, and so on—will not interfere with matching.

Selecting first and last children

It’s pretty common to want to apply special styling to the first or last children of an
element. The most common example is styling a bunch of navigation links into a tab
bar, and wanting to put some special visual touches on the first or last tabs (or both).
In the past, this was done by applying special classes to those elements. Now we have
pseudo-classes to carry the load for us.

Pseudo-Class Selectors | 35

www.it-ebooks.info

http://www.it-ebooks.info/

The pseudo-class :first-child is used to select elements that are the first children of
other elements. Consider the following markup:

<div>
<p>These are the necessary steps:</p>

Insert key
Turn key clockwise
Push accelerator

<p>
Do not push the brake at the same time as the accelerator.
</p>
</div>

In this example, the elements that are first children are the first p, the first li, and the
strong and em elements. Given the following two rules:

p:first-child {font-weight: bold;}
li:first-child {text-transform: uppercase;}

…you get the result shown in Figure 1-27.

Figure 1-27. Styling first children

The first rule boldfaces any p element that is the first child of another element. The
second rule uppercases any li element that is the first child of another element (which,
in HTML, must be either an ol or ul element).

As has been mentioned, the most common error is assuming that a selector like p:first-
child will select the first child of a p element. However, remember the nature of pseudo-
classes, which is to attach a sort of phantom class to the element associated with the
pseudo-class. If you were to add actual classes to the markup, it would look like this:

<div>
<p class="first-child">These are the necessary steps:</p>

<li class="first-child">Insert key
Turn key <strong class="first-child">clockwise
Push accelerator

<p>
Do <em class="first-child">not push the brake at the same time as the
accelerator.
</p>
</div>

36 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

Therefore, if you want to select those em elements that are the first child of another
element, you write em:first-child.

The mirror image of :first-child is :last-child. If we take the previous example and
just change the pseudo-classes, we get the result shown in Figure 1-28.

p:last-child {font-weight: bold;}
li:last-child {text-transform: uppercase;}

<div>
<p>These are the necessary steps:</p>

Insert key
Turn key clockwise
Push accelerator

<p>
Do not push the brake at the same time as the accelerator.
</p>
</div>

Figure 1-28. Styling last children

The first rule boldfaces any p element that is the last child of another element. The
second rule uppercases any li element that is the last child of another element. If you
wanted to select the em element inside that last paragraph, you could use the selector
p:last-child em, which selects any em element that descends from a p element that is
itself the last child of another element.

Interestingly, you can combine these two pseudo-classes to create a version of :only-
child. The following two rules will select the same elements:

p:only-child {color: red;}
p:first-child:last-child {background: red;}

Either way, you’d get paragraphs with red foreground and background colors (not a
good idea, clearly). The only difference is in terms of specificity, which we’ll cover later
in this book.

Pseudo-Class Selectors | 37

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting first and last of a type

In a manner similar to selecting the first and last children of an element, you can select
the first or last of a type of element within an element. This permits things like selecting
the first table inside a given element, regardless of whatever other elements come
before it.

table:first-of-type {border-top: 2px solid gray;}

Note that this does not apply to the entire document; that is, the rule shown will not
select the first table in the document and skip all the others. It will instead select the
first table element within each element that contains one, and skip any sibling table
elements that come after the first. Thus, given the document structure shown in Fig-
ure 1-29, the circled nodes are the ones that are selected.

Figure 1-29. Selecting first-of-type tables

Within the context of tables, a useful way to select the first data cell within a row
regardless of whether a header cell comes before it in the row is as follows:

td:first-of-type {border-left: 1px solid red;}

That would select the first data cell in each of the following table rows:

<tr><th scope="row">Count</th><td>7</td><td>6</td><td>11</td></tr>
<tr><td>Q</td><td>X</td><td>-</td></tr>

Compare that to the effects of td:first-child, which would select the first td element
second row shown, but not in the first row.

The flip side is :last-of-type, which selects the last instance of a given type from
amongst its sibling elements. In a way, it’s just like :first-of-type except you start
with the last element in a group of siblings and walk backwards toward the first element
until you reach an instance of the type. Given the document structure shown in Fig-
ure 1-30, the circled nodes are the ones selected by table:last-of-type.

As was noted with :only-of-type, remember that you are selecting elements of a type
from among their sibling elements; thus, every set of siblings is considered separately.
In other words, you are not selecting the first (or last) of all the elements of a type within
the entire document as a single group. Each set of elements that share a parent is its
own group, and you can select the first (or last) of a type within each group.

38 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

Similar to what was noted in the previous section, you can combine these two pseudo-
classes to create a version of :only-of-type. The following two rules will select the same
elements:

table:only-of-type{color: red;}
table:first-of-type:last-of-type {background: red;}

Selecting every nth child

If you can select elements that are the first, last, or only children of other elements, how
about second children? Third children? Ninth children? Rather than define a literally
infinite number of named pseudo-classes, CSS has the :nth-child() pseudo-class. By
filling integers or even simple algebraic expressions into the parentheses, you can select
any arbitrarily numbered child element you like.

Let’s start with the :nth-child() equivalent of :first-child, which is :nth-child(1).
In the following example, the selected elements will be the first paragraph and the first
list item.

p:nth-child(1) {font-weight: bold;}
li:nth-child(1) {text-transform: uppercase;}

<div>
<p>These are the necessary steps:</p>

Insert key
Turn key clockwise
Push accelerator

<p>
Do not push the brake at the same time as the accelerator.
</p>
</div>

If we were to change the numbers from 1 to 2, however, then no paragraphs would be
selected, and the middle list item would be selected, as illustrated in Figure 1-31.

p:nth-child(2) {font-weight: bold;}
li:nth-child(2) {text-transform: uppercase;}

You can of course insert any integer your choose; if you have a use case for selecting
any ordered list that is the 93rd child element of its parent, then ol:nth-child(93) is

Figure 1-30. Selecting last-of-type tables

Pseudo-Class Selectors | 39

www.it-ebooks.info

http://www.it-ebooks.info/

ready to serve. (This does not mean the 93rd ordered list among its siblings; see the
next section for that.)

More powerfully, you can use simple algebraic expressions in the form an + b or an −
b to define recurring instances, where a and b are integers and n is present as itself.
Furthermore, the + b or − b part is optional and thus can be dropped if it isn’t needed.

Let’s suppose we want to select every third list item in an unordered list, starting with
the first. The following makes that possible, as shown in Figure 1-32.

ul > li:nth-child(3n + 1) {text-transform: uppercase;}

Figure 1-32. Styling every third list item

The way this works is that n represents the series 0, 1, 2, 3, 4, …and on into infinity.
The browser then solves for 3n + 1, yielding 1, 4, 7, 10, 13, …and so on. Were we to
drop the + 1, thus leaving us with simply 3n, the results would be 0, 3, 6, 9, 12, …and
so on. Since there is no zeroth list item—all element counting starts with one, to the
likely chagrin of array-slingers everywhere—the first list item selected by this expres-
sion would be the third list item in the list.

Given that element counting starts with one, it’s a minor trick to deduce that :nth-
child(2n) will select even-numbered children, and either :nth-child(2n+1) or :nth-
child(2n-1) will select odd-numbered children. You can commit that to memory, or
you can use the two special keywords that :nth-child() accepts: even and odd. Want
to highlight every other row of a table, starting with the first? Here’s how you do it, as
shown in Figure 1-33.

tr:nth-child(odd) {background: silver;}

Figure 1-31. Styling second children

40 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

Anything more complex than every-other-element, obviously, requires an an + b
expression.

Note that when you want to use a negative number for b, you have to remove the + sign
or else the selector will fail entirely. Of the following two rules, only the first will do
anything. The second will be dropped by the parser and ignored.

tr:nth-child(4n - 2) {background: silver;}
tr:nth-child(3n + −2) {background: red;}

As you might expect, there is a corresponding pseudo-class in :nth-last-child(). This
lets you do the same thing as :nth-child(), except with :nth-last-child() you start
from the last element in a list of siblings and count backwards toward the beginning.
If you’re intent on highlighting every other table row and making sure the very last row
is one of the rows in the highlighting pattern, either one of these will work for you:

tr:nth-last-child(odd) {background: silver;}
tr:nth-last-child(2n+1) {background: silver;} /* equivalent */

Of course, any element can be matched using both :nth-child() and :nth-last-
child() if it fits the criteria. Consider these rules, the results of which are shown in
Figure 1-34.

li:nth-child(3n + 3) {border-left: 5px solid black;}
li:nth-last-child(4n - 1) {border-right: 5px solid black;}

It’s also the case that you can string these two pseudo-classes together as :nth-
child(1):nth-last-child(1), thus creating a more verbose restatement of :only-
child. There’s no real reason to do so other than to create a selector with a higher
specificity, but the option is there.

Figure 1-33. Styling every other table row

Pseudo-Class Selectors | 41

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting every nth of a type

In what’s no doubt become a very familiar pattern, the :nth-child() and :nth-last-
child() pseudo-classes have analogues in :nth-of-type() and :nth-last-of-type().
You can, for example, select every other hyperlink that’s a child of any given paragraph,
starting with the second, using p > a:nth-of-type(even). This will ignore all other
elements (spans, strongs, etc.) and consider only the links, as demonstrated in
Figure 1-35:

p > a:nth-of-type(even) {background: blue; color: white;}

Figure 1-35. Selecting the even-numbered links

If you wanted to work from the last hyperlink backwards, then of course you’d use p
> a:nth-last-of-type(even).

As before, these select elements of a type from among their sibling elements, not from
among all the elements of a type within the entire document as a single group. Each
element has its own list of siblings, and selections happen within each group.

Figure 1-34. Combining patterns of :nth-child() and :nth-last-child()

42 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

As you might expect, you can string these two together as :nth-of-type(1):nth-last-
of-type(1) to restate :only-of-type, only with higher specificity. (We will explain
specificity later in this book, I promise.)

Dynamic Pseudo-Classes
Beyond the structural pseudo-classes, there are a set of pseudo-classes that relate to
structure but can change based on changes made to the page after it’s been rendered.
In other words, the styles are applied to pieces of a document based on something in
addition to the structure of the document, and in a way that cannot be precisely deduced
simply by studying the document’s markup.

It may sound like we’re applying styles at random, but not so. Instead, we’re applying
styles based on somewhat ephemeral conditions that can’t be predicted in advance.
Nevertheless, the circumstances under which the styles will appear are, in fact, well-
defined. Think of it this way: during a sporting event, whenever the home team scores,
the crowd will cheer. You don’t know exactly when during a game the team will score,
but when it does, the crowd will cheer, just as predicted. The fact that you can’t predict
the moment of the cause doesn’t make the effect any less expected.

Consider the anchor element (a), which (in HTML and related languages) establishes
a link from one document to another. Anchors are always anchors, of course, but some
anchors refer to pages that have already been visited, while others refer to pages that
have yet to be visited. You can’t tell the difference by simply looking at the HTML
markup, because in the markup, all anchors look the same. The only way to tell which
links have been visited is by comparing the links in a document to the user’s browser
history. So there are actually two basic types of anchors: visited and unvisited.

Hyperlink pseudo-classes

CSS2.1 defines two pseudo-classes that apply only to hyperlinks. In HTML, these are
any a elements with an href attribute; in XML languages, they’re any elements that act
as links to another resource. Table 1-2 describes these two pseudo-classes.

Table 1-2. Link pseudo-classes

Name Description

:link Refers to any anchor that is a hyperlink (i.e., has an href attribute) and points to an address that has
not been visited.

:visited Refers to any anchor that is a hyperlink to an already visited address. The styles that can be applied to
visited links are severely limited; see sidebar “Visited links and privacy” on page 45 for details.

Pseudo-Class Selectors | 43

www.it-ebooks.info

http://www.it-ebooks.info/

The first of the pseudo-classes in Table 1-2 may seem a bit redundant. After all, if an
anchor hasn’t been visited, then it must be unvisited, right? If that’s the case, all we
should need is the following:

a {color: blue;}
a:visited {color: red;}

Although this format seems reasonable, it’s actually not quite enough. The first of the
rules shown here applies not only to unvisited links, but also to target anchors such as
this one:

4. The Lives of Meerkats

The resulting text would be blue because the a element will match the rule a {color:
blue;}, as shown above. Therefore, to avoid applying your link styles to target anchors,
use the :link and :visited pseudo-classes:

a:link {color: blue;} /* unvisited links are blue */
a:visited {color: red;} /* visited links are red */

As you may or may not have already realized, the :link and :visited pseudo-class
selectors are functionally equivalent to the early-1990s body attributes link and vlink.
Assume that an author wants all anchors to unvisited pages to be purple and anchors
to visited pages to be silver. Back in the days of HTML 3.2, this could be specified as
follows:

<body link="purple" vlink="silver">

In CSS, the same effect would be accomplished with:

a:link {color: purple;}
a:visited {color: silver;}

This is a good place to revisit class selectors and show how they can be combined with
pseudo-classes. For example, let’s say you want to change the color of links that point
outside your own site. If you assign a class to each of these anchors, it’s easy:

My home page
Another home page

To apply different styles to the external link, all you need is a rule like this:

a.external:link, a.external:visited {color: maroon;}

This rule will make the second anchor in the preceding markup maroon, while the first
anchor will remain the default color for hyperlinks (usually blue).

The same general syntax is used for ID selectors as well:

a#footer-copyright:link{background: yellow;}
a#footer-copyright:visited {background: gray;}

You can chain the two link-state pseudo-classes together, but there’s no reason why
you ever would: a link cannot be both visited and unvisited at the same time!

44 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

Visited links and privacy
For well over a decade, it was possible to style visited links with any CSS properties
available, just as you could unvisited links. However, in the mid-2000s several people
demonstrated that one could use visual styling and simple DOM scripting to determine
if a user had visited a given page. For example, given the rule :visited {font-weight:
bold;} a script could find all of the boldfaced links and tell the user which of those sites
they’d visited—or, worse still, report those sites back to a server. A similar, non-scripted
tactic uses background images to achieve the same result.

While this might not seem terribly serious to you, it can be utterly devastating for a
web user in a country where one can be jailed for visiting certain sites—opposition
parties, unsanctioned religious organizations, “immoral” or “corrupting” sites, and so
on. Thus, two steps were taken.

The first step is that only color-related properties can be applied to visited links: color,
background-color, column-rule-color, outline-color, border-color, and the individ-
ual-side border color properties (e.g., border-top-color). Attempts to apply any other
property to a visited link will be ignored. Furthermore, any styles defined for :link will
be applied to visited links as well as unvisited links, which effectively makes :link “style
any hyperlink,” instead of “style any unvisited hyperlink.”

The second step is that if a visited link has its styles queried via the DOM, the resulting
value will be as if the link were not visited. Thus, if you’ve defined visited links to be
purple rather than unvisited links’ blue, even though the link will appear purple
onscreen, a DOM query of its color will return the blue value, not the purple.

As of mid-2012, this behavior is present throughout all browsing modes, not just “pri-
vate browsing” modes. It is difficult to know how the handling of visited-link styles will
change, if indeed it changes at all. It may be restricted to private browsing at some point.
It is even possible that :visited will be dropped entirely. You should definitely treat
visited-link styling with caution, and absolutely avoid a reliance on any particular styl-
ing of visited links.

User action pseudo-classes

CSS defines a few pseudo-classes that can change a document’s appearance based on
actions taken by the user. These dynamic pseudo-classes have traditionally been used
to style hyperlinks, but the possibilities are much wider. Table 1-3 describes these
pseudo-classes.

Table 1-3. User action pseudo-classes

Name Description

:focus Refers to any element that currently has the input focus—i.e., can accept keyboard input or be
activated in some way.

:hover Refers to any element over which the mouse pointer is placed—e.g., a hyperlink over which
the mouse pointer is hovering.

Pseudo-Class Selectors | 45

www.it-ebooks.info

http://www.it-ebooks.info/

Name Description

:active Refers to any element that has been activated by user input—e.g., a hyperlink on which a user
clicks during the time the mouse button is held down.

As with :link and :visited, these pseudo-classes are most familiar in the context of
hyperlinks. Many web pages have styles that look like this:

a:link {color: navy;}
a:visited {color: gray;}
a:hover {color: red;}
a:active {color: yellow;}

:active is analogous to the alink attribute in HTML 3.2, although, as before, you can
apply color changes and any style you like to active links.

The order of the pseudo-classes is more important than it might seem
at first. The usual recommendation is “link-visited-hover-active,” al-
though this has been modified to “link-visited-focus-hover-active.” The
next chapter explains why this particular ordering is important and dis-
cusses several reasons you might choose to change or even ignore the
recommended ordering.

Notice that the dynamic pseudo-classes can be applied to any element, which is good
since it’s often useful to apply dynamic styles to elements that aren’t links. For example,
using this markup:

input:focus {background: silver; font-weight: bold;}

…you could highlight a form element that is ready to accept keyboard input, as shown
in Figure 1-36.

Figure 1-36. Highlighting a form element that has focus

You can also perform some rather odd feats by applying dynamic pseudo-classes to
arbitrary elements. You might decide to give users a “highlight” effect by way of the
following:

body *:hover {background: yellow;}

This rule will cause any element that’s descended from the body element to display a
yellow background when it’s in a hover state. Headings, paragraphs, lists, tables, im-
ages, and anything else found inside the body will be changed to have a yellow

46 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

background. You could also change the font, put a border around the element being
hovered, or alter anything else the browser will allow.

Real-world issues with dynamic styling

Dynamic pseudo-classes present some interesting issues and peculiarities. For example,
it’s possible to set visited and unvisited links to one font size and make hovered links
a larger size, as shown in Figure 1-37:

a:link, a:visited {font-size: 13px;}
a:hover {font-size: 20px;}

Figure 1-37. Changing layout with dynamic pseudo-classes

As you can see, the user agent increases the size of the anchor while the mouse pointer
hovers over it. A user agent that supports this behavior must redraw the document
while an anchor is in hover state, which could force a reflow of all the content that
follows the link.

However, the CSS specification states that user agents are not required to redraw a
document once it’s been rendered for initial display, so you can’t absolutely rely on
your intended effect taking place. I strongly recommend that you avoid designs that
use, let alone depend on, such behavior.

UI State Pseudo-Classes
Closely related to the dynamic pseudo-classes are the user interface (UI) state pseudo-
classes, which are summarized in Table 1-4. These pseudo-classes allow for styling
based on the current state of user interface elements like checkboxes.

Table 1-4. UI state pseudo-classes

Name Description

:enabled Refers to user interface elements (such as form elements) that are enabled; that is, available for input.

:disabled Refers to user interface elements (such as form elements) that are disabled; that is, not available for input.

:checked Refers to radio buttons or checkboxes that have been selected, either by the user or by defaults within
the document itself.

:indeterminate Refers to radio buttons or checkboxes that are neither checked nor unchecked; this state can only be set
via DOM scripting, and not due to user input.

Pseudo-Class Selectors | 47

www.it-ebooks.info

http://www.it-ebooks.info/

Although the state of a UI element can certainly be changed by user action—e.g., a user
checking or unchecking a checkbox—UI state pseudo-classes are not classified as
purely dynamic because they can also be affected by the document structure or DOM
scripting.

You might think that :focus belongs in this section, not the previous
section. However, the Selectors Level 3 specification groups :focus in
with :hover and :active. This is most likely because they were grouped
together in CSS2, which had no UI state pseudo-classes. More impor-
tantly, though, focus can be given to non-UI elements, such as headings
or paragraphs—one example is when they are read by a speaking
browser. That alone keeps it from being considered a UI-state pseudo-
class.

Enabled and disabled UI elements

Thanks to both DOM scripting and HTML5, it is possible to mark a user interface
element (or group of user interface elements) as being disabled. A disabled element is
displayed, but cannot be selected, activated, or otherwise interacted with by the user.
Authors can set an element to be disabled either through DOM scripting, or (in
HTML5) by adding a disabled attribute to the element’s markup.

Any element that hasn’t been disabled is by definition enabled, and you can style these
two states using :enabled and :disabled. It’s much more common to simply style dis-
abled elements and leave enabled elements alone, but both have their uses, as illustrated
in Figure 1-38.

:enabled {font-weight: bold;}
:disabled {opacity: 0.5;}

Figure 1-38. Styling enabled and disabled UI elements

Check states

In addition to being enabled or disabled, certain UI elements can be checked or un-
checked—in HTML, the input types “checkbox” and “radio” fit this definition. Selec-
tors level 3 offers a :checked pseudo-class to handle elements in that state, though
curiously it omits an :unchecked. There is also the :indeterminate pseudo-class, which
matches any checkable UI element that is neither checked nor unchecked. These states
are illustrated in Figure 1-39.

48 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

:checked {background: silver;}
:indeterminate {border: red;}

Although checkable elements are unchecked by default, it’s possible for a HTML author
to toggle them on by adding the checked attribute to an element’s markup. An author
can also use DOM scripting to flip an element’s checked state to checked or unchecked,
whichever they prefer.

As we’ve seen, there is a third state, “indeterminate.” As of mid-2012, this state can
only be set through DOM scripting; there is no markup-level method to set elements
to an indeterminate state. The purpose of allowing an indeterminate state is to visually
indicate that the element needs to be checked (or unchecked) by the user. However,
note that this is purely a visual effect: it does not affect the underlying state of the UI
element, which is either checked or unchecked, depending on document markup and
the effects of any DOM scripting.

Although Figure 1-39 does show styled radio buttons, at the time of
production (summer 2012) this was only possible in one browser: Op-
era. All other browsers ignored the styles. This is due to the difficulty of
styling form elements in general and historical uncertainty over the best
way to proceed. This may change in the near future, but treat form styl-
ing with extreme caution.

The :target Pseudo-Class
When a URL includes a fragment identifier, the piece of the document at which it points
is called (in CSS) the target. Thus you can uniquely style any element that is the target
of a URL fragment identifier with the :target pseudo-class.

Even if you’re unfamiliar with the term “fragment identifier,” you’ve almost certainly
seen them in action. Consider this URL:

http://www.w3.org/TR/css3-selectors/#target-pseudo

The target-pseudo portion of the URL is the fragment identifier, which is marked by
the # symbol. If the referenced page (http://www.w3.org/TR/css3-selectors/) has an
element with an ID of target-pseudo, or (in HTML) an a element with a name attribute
whose value is target-pseudo, then that element becomes the target of the fragment
identifier.

Thanks to :target, you can highlight any targeted element within a document, or you
can devise different styles for various types of elements that might be targeted—say,
one style for targeted headings, another for targeted tables, and so on. Figure 1-40
shows an example of :target in action:

Figure 1-39. Styling checked and indeterminate UI elements

Pseudo-Class Selectors | 49

www.it-ebooks.info

http://www.it-ebooks.info/

*:target {border-left: 5px solid gray; background: yellow url(target.png)
 top right no-repeat;}

Figure 1-40. Styling a fragment identifier target

Somewhat obviously, :target styles will not be applied in two circumstances:

1. If the page is accessed via a URL that does not have a fragment identifier.

2. If the page is accessed via a URL that has a fragment identifier, but the identifier
does not match any elements within the document.

More interestingly, though, what happens if multiple elements within a document can
be matched by the fragment identifier—for example, if there are three separate instan-
ces of in the same document?

The short answer is that CSS doesn’t have or need rules to cover this case, because all
CSS is concerned with is styling targets. Whether the browser picks just one of the three
elements to be the target or designates all three as co-equal targets, :target styles should
be applied to anything that is a target.

The :lang Pseudo-Class
For situations where you want to select an element based on its language, you can use
the :lang() pseudo-class. In terms of its matching patterns, the :lang() pseudo-class
is exactly like the |= attribute selector. For example, to italicize elements whose content
is written in French, you could write either of the following:

*:lang(fr) {font-style: italic;}
*[lang|="fr"] {font-style: italic;}

The primary difference between the pseudo-class selector and the attribute selector is
that language information can be derived from a number of sources, some of which are
outside the element itself. As Selectors Level 3 states:

50 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

…in HTML, the language is determined by a combination of the lang attribute, and
possibly information from the meta elements and the protocol (such as HTTP headers).
XML uses an attribute called xml:lang, and there may be other document language-
specific methods for determining the language.

The pseudo-class will operate on all of that information, whereas the attribute selector
can only work if there is a lang attribute present in the element’s markup. Therefore,
the pseudo-class is more robust than the attribute selector and is probably a better
choice in most cases where language-specific styling is needed.

The Negation Pseudo-Class
Every selector we’ve covered thus far has had one thing in common: they’re all positive
selectors. In other words, they are used to identify the things that should be selected,
thus excluding by implication all the things that don’t match and are thus not selected.

For those times when you want to invert this formulation and select elements based on
what they are not, Selectors Level 3 introduced the negation pseudo-class, :not(). It’s
not quite like any other selector, fittingly enough, and it does have some restrictions
on its use, but let’s start with an example.

Let’s suppose you want to apply a style to every list item that doesn’t have a class of
moreinfo, as illustrated in Figure 1-41. That used to be very difficult, and in certain
cases impossible, to make happen. Now:

li:not(.moreinfo) {font-style: italic;}

Figure 1-41. Styling list items that don’t have a certain class

The way :not() works is that you attach it to an element, and then in the parentheses
you fill in a simple selector. A simple selector, according to the W3C, is:

…either a type selector, universal selector, attribute selector, class selector, ID selector,
or pseudo-class.

Note the “either” there: you can only use one of those inside :not(). You can’t group
them and you can’t combine them using combinators, which means you can’t use a
descendant selector, because the space separating elements in a descendant selector is

Pseudo-Class Selectors | 51

www.it-ebooks.info

http://www.it-ebooks.info/

a combinator. Those restrictions may (indeed most likely will) be lifted in a post-Level
3 specification, but we can still do quite a lot even within the given constraints.

For example, let’s flip around the previous example and select all elements with a
class of moreinfo that are not list items. This is illustrated in Figure 1-42.

.moreinfo:not(li) {font-style: italic;}

Figure 1-42. Styling elements with a certain class that aren’t list items

Translated into English, the selector would say, “Select all elements with a class whose
value contains the word moreinfo as long as they are not li elements.” Similarly, the
translation of li:not(.moreinfo) would be “Select all li elements as long as they do
not have a class whose value contains the word moreinfo.”

Technically, you can put a universal selector into the parentheses, but there’s very little
point. After all, p:not(*) would mean “Select any p element as long as it isn’t any
element” and there’s no such thing as an element that is not an element. Very similar
to that would be p:not(p), which would also select nothing. It’s also possible to write
things like p:not(div), which will select any p element that is not a div element—in
other words, all of them. Again, there is very little reason to do so.

You can also use the negation pseudo-class at any point in a more complex selector.
Thus to select all tables that are not children of a section element, you would write
*:not(section) > table. Similarly, to select table header cells that are not part of the
table header, you’d write something like table *:not(thead) > tr > th, with a result
like that shown in Figure 1-43.

What you cannot do is nest negation pseudo-classes; thus, p:not(:not(p)) is invalid
and will be ignored. It’s also, logically, the equivalent of simply writing p, so there’s no
point anyway. Furthermore, you cannot reference pseudo-elements (which we’ll cover
shortly) inside the parentheses, since they are not simple selectors.

On the other hand, it’s possible to chain negations together to create a sort of “and also
not this” effect. For example, you might want to select all elements with a class of link
that are neither list items nor paragraphs.

*.link:not(li):not(p) {font-style: italic;}

That translates to “Select all elements with a class whose value contains the word
link as long as they are neither li nor p elements.”

52 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

One thing to watch out for is that you can have situations where rules combine in
unexpected ways, mostly because we’re not used to thinking of selection in the negative.
Consider this very simple test case:

div:not(.one) p {font-weight: normal;}
div.one p {font-weight: bold;}

<div class="one">
 <div class="two">
 <p>I'm a paragraph!</p>
 </div>
</div>

The paragraph will be boldfaced, not normal-weight. This is because both rules match:
the p element is descended from a div whose class does not contain the word one (<div
class="two">), but it is also descended from a div whose class contains the word one.
Both rules match, and so both apply. Since there is a conflict, the cascade is used to
resolve the conflict, and the second rule wins. The structural arrangement of the
markup, with the div.two being “closer” to the paragraph than div.one, is irrelevant.

An interesting aspect of the negation pseudo-class is that it, like the
universal selector, does not count towards specificity, which we’ll cover
later in the book.

Pseudo-Element Selectors
Much as pseudo-classes assign phantom classes to anchors, pseudo-elements insert
fictional elements into a document in order to achieve certain effects. Four pseudo-
elements are defined in CSS, and they let you style the first letter of an element, style
the first line of an element, and both create and style “before” and “after” content.

Figure 1-43. Styling table cells that aren’t in the table’s header

Pseudo-Element Selectors | 53

www.it-ebooks.info

http://www.it-ebooks.info/

Unlike the single colon of pseudo-classes, pseudo-elements employ a double-colon
syntax, like ::first-line. This is meant to distinguish pseudo-elements from pseudo-
classes. This was not always the case—in CSS2, both selector types used a single
colon—so for backwards compatibility, browsers will accept single-colon pseudo-ele-
ment selectors. Don’t take this as an excuse to be sloppy, though! Use the proper num-
ber of colons at all times in order to future-proof your CSS; after all, there is no way to
predict when browsers will stop accepting single-colon pseudo-element selectors.

Note that all pseudo-elements must be placed at the very end of the selector in which
they appear. Therefore, it would not be legal to write p::first-line em since the
pseudo-element comes before the subject of the selector (the subject is the last element
listed). This also means that only one pseudo-element is permitted in a given selector,
though that restriction may be eased in future versions of CSS.

Styling the First Letter
The first pseudo-element styles the first letter, and only that letter, of any non-inline
element:

p::first-letter {color: red;}

This rule causes the first letter of every paragraph to be colored red. Alternatively, you
could make the first letter of each h2 twice as big as the rest of the heading:

h2::first-letter {font-size: 200%;}

The result of this rule is illustrated in Figure 1-44.

Figure 1-44. The ::first-letter pseudo-element in action

As mentioned, this rule effectively causes the user agent to respond to a fictional element
that encloses the first letter of each h2. It would look something like this:

<h2><h2-first-letter>T</h2-first-letter>his is an h2 element</h2>

The ::first-letter styles are applied only to the contents of the fictional element
shown in the example. This <h2-first-letter> element does not appear in the docu-
ment source, nor even in the DOM tree. Instead, its existence is constructed on the fly
by the user agent and is used to apply the ::first-letter style(s) to the appropriate bit
of text. In other words, <h2-first-letter> is a pseudo-element. Remember, you don’t
have to add any new tags. The user agent will do it for you.

54 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

Styling the First Line
Similarly, ::first-line can be used to affect the first line of text in an element. For
example, you could make the first line of each paragraph in a document purple:

p::first-line {color: purple;}

In Figure 1-45, the style is applied to the first displayed line of text in each paragraph.
This is true no matter how wide or narrow the display region is. If the first line contains
only the first five words of the paragraph, then only those five words will be purple. If
the first line contains the first 30 words of the element, then all 30 will be purple.

Figure 1-45. The ::first-line pseudo-element in action

Because the text from “This” to “only” should be purple, the user agent employs a
fictional markup that looks something like this:

<p><p-first-line>This is a paragraph of text that has only</p-first-line>
one stylesheet applied to it. That style
causes the first line to be purple. No other ...

If the first line of text were edited to include only the first seven words of the paragraph,
then the fictional </p-first-line> would move back and occur just after the word
“that.”

Restrictions on ::first-letter and ::first-line
In CSS, the ::first-letter and ::first-line pseudo-elements can be applied only to
block-level elements such as headings or paragraphs and not to inline-level elements
such as hyperlinks. In CSS2.1 and later, ::first-letter applies to all elements. There
are also limits on the CSS properties that may be applied to ::first-line and ::first-
letter. Table 1-5 displays the limits.

Table 1-5. Properties permitted on pseudo-elements

::first-letter ::first-line

All font properties All font properties

color color

All background properties All background properties

All margin properties word-spacing

All padding properties letter-spacing

Pseudo-Element Selectors | 55

www.it-ebooks.info

http://www.it-ebooks.info/

::first-letter ::first-line

All border properties text-decoration

text-decoration vertical-align

vertical-align (if float is set to none) text-transform

text-transform line-height

line-height clear (CSS2 only; removed in CSS2.1)

float

letter-spacing (added in CSS2.1)

word-spacing (added in CSS2.1)

clear (CSS2 only; removed in CSS2.1)

Styling (Or Creating) Content Before and After Elements
Let’s say you want to preface every h2 element with a pair of silver square brackets as
a typographical effect:

h2::before {content: "]]"; color: silver;}

CSS2.1 lets you insert generated content, and then style it directly using the pseudo-
elements ::before and ::after. Figure 1-46 illustrates an example.

Figure 1-46. Inserting content before an element

The pseudo-element is used to insert the generated content and to style it. To place
content after an element, use the pseudo-element ::after. You could end your docu-
ments with an appropriate finish:

body::after {content: "The End.";}

Generated content is a separate subject, and the entire topic (including more detail
on ::before and ::after) is covered more thoroughly in just a bit.

Summary
By using selectors based on the document’s language, authors can create CSS rules that
apply to a large number of similar elements just as easily as they can construct rules
that apply in very narrow circumstances. The ability to group together both selectors
and rules keeps style sheets compact and flexible, which incidentally leads to smaller
file sizes and faster download times.

Selectors are the one thing that user agents usually must get right because the inability
to correctly interpret selectors pretty much prevents a user agent from using CSS at all.

56 | Chapter 1: Selectors

www.it-ebooks.info

http://www.it-ebooks.info/

On the flip side, it’s crucial for authors to correctly write selectors because errors can
prevent the user agent from applying the styles as intended. An integral part of correctly
understanding selectors and how they can be combined is a strong grasp of how selec-
tors relate to document structure and how mechanisms—such as inheritance and the
cascade itself—come into play when determining how an element will be styled.

Summary | 57

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Specificity and the Cascade

Chapter 1 showed how document structure and CSS selectors allow you to apply a
wide variety of styles to elements. Knowing that every valid document generates a
structural tree, you can create selectors that target elements based on their ancestors,
attributes, sibling elements, and more. The structural tree is what allows selectors to
function and is also central to a similarly crucial aspect of CSS: inheritance.

Inheritance is the mechanism by which some property values are passed on from an
element to its descendants. When determining which values should apply to an ele-
ment, a user agent must consider not only inheritance but also the specificity of the
declarations, as well as the origin of the declarations themselves. This process of con-
sideration is what’s known as the cascade. We will explore the interrelation between
these three mechanisms—specificity, inheritance, and the cascade—in this chapter,
but the difference between the latter two can be summed up this way: choosing the
result of h1 {color: red; color: blue;} is the cascade; making a span inside the h1
blue is inheritance.

Above all, regardless of how abstract things may seem, keep going! Your perseverance
will be rewarded.

Specificity
You know from Chapter 1 that you can select elements using a wide variety of means.
In fact, it’s possible that the same element could be selected by two or more rules, each
with its own selector. Let’s consider the following three pairs of rules. Assume that each
pair will match the same element:

h1 {color: red;}
body h1 {color: green;}

h2.grape {color: purple;}
h2 {color: silver;}

html > body table tr[id="totals"] td ul > li {color: maroon;}
li#answer {color: navy;}

59

www.it-ebooks.info

http://www.it-ebooks.info/

Obviously, only one of the two rules in each pair can win out, since the matched ele-
ments can be only one color or the other. How do you know which one will win?

The answer is found in the specificity of each selector. For every rule, the user agent
evaluates the specificity of the selector and attaches it to each declaration in the rule.
When an element has two or more conflicting property declarations, the one with the
highest specificity will win out.

This isn’t the whole story in terms of conflict resolution. In fact, all style
conflict resolution (including specificity) is handled by the cascade,
which has its own section later in this chapter.

A selector’s specificity is determined by the components of the selector itself. A spe-
cificity value can be expressed in four parts, like this: 0,0,0,0. The actual specificity of
a selector is determined as follows:

• For every ID attribute value given in the selector, add 0,1,0,0.

• For every class attribute value, attribute selection, or pseudo-class given in the
selector, add 0,0,1,0.

• For every element and pseudo-element given in the selector, add 0,0,0,1. CSS2
contradicted itself as to whether pseudo-elements had any specificity at all, but
CSS2.1 makes it clear that they do, and this is where they belong.

• Combinators and the universal selector do not contribute anything to the specif-
icity (more on these values later).

For example, the following rules’ selectors result in the indicated specificities:

h1 {color: red;} /* specificity = 0,0,0,1 */
p em {color: purple;} /* specificity = 0,0,0,2 */
.grape {color: purple;} /* specificity = 0,0,1,0 */
.bright {color: yellow;} / specificity = 0,0,1,0 */
p.bright em.dark {color: maroon;} /* specificity = 0,0,2,2 */
#id216 {color: blue;} /* specificity = 0,1,0,0 */
div#sidebar *[href] {color: silver;} /* specificity = 0,1,1,1 */

Given a case where an em element is matched by both the second and fifth rules in the
example above, that element will be maroon because the fifth rule’s specificity out-
weighs the second’s.

As an exercise, let’s return to the pairs of rules from earlier in the section and fill in the
specificities:

h1 {color: red;} /* 0,0,0,1 */
body h1 {color: green;} /* 0,0,0,2 (winner)*/

h2.grape {color: purple;} /* 0,0,1,1 (winner) */
h2 {color: silver;} /* 0,0,0,1 */

60 | Chapter 2: Specificity and the Cascade

www.it-ebooks.info

http://www.it-ebooks.info/

html > body table tr[id="totals"] td ul > li {color: maroon;} /* 0,0,1,7 */
li#answer {color: navy;} /* 0,1,0,1 (winner) */

I’ve indicated the winning rule in each pair; in each case, it’s because the specificity is
higher. Notice how they’re sorted. In the second pair, the selector h2.grape wins be-
cause it has an extra 1: 0,0,1,1 beats out 0,0,0,1. In the third pair, the second rule wins
because 0,1,0,1 wins out over 0,0,1,7. In fact, the specificity value 0,0,1,0 will win
out over the value 0,0,0,13.

This happens because the values are sorted from left to right. A specificity of 1,0,0,0
will win out over any specificity that begins with a 0, no matter what the rest of the
numbers might be. So 0,1,0,1 wins over 0,0,1,7 because the 1 in the first value’s second
position beats out the 0 in the second value’s second position.

Declarations and Specificity
Once the specificity of a selector has been determined, the value will be conferred on
all of its associated declarations. Consider this rule:

h1 {color: silver; background: black;}

For specificity purposes, the user agent must treat the rule as if it were “ungrouped”
into separate rules. Thus, the previous example would become:

h1 {color: silver;}
h1 {background: black;}

Both have a specificity of 0,0,0,1, and that’s the value conferred on each declaration.
The same splitting-up process happens with a grouped selector as well. Given the rule:

h1, h2.section {color: silver; background: black;}

the user agent treats it as follows:

h1 {color: silver;} /* 0,0,0,1 */
h1 {background: black;} /* 0,0,0,1 */
h2.section {color: silver;} /* 0,0,1,1 */
h2.section {background: black;} /* 0,0,1,1 */

This becomes important in situations where multiple rules match the same element
and where some declarations clash. For example, consider these rules:

h1 + p {color: black; font-style: italic;} /* 0,0,0,2 */
p {color: gray; background: white; font-style: normal;} /* 0,0,0,1 */
.aside {color: black; background: silver;} / 0,0,1,0 */

When applied to the following markup, the content will be rendered as shown in
Figure 2-1:

<h1>Greetings!</h1>
<p class="aside">
It's a fine way to start a day, don't you think?
</p>

Specificity | 61

www.it-ebooks.info

http://www.it-ebooks.info/

<p>
There are many ways to greet a person, but the words are not as important as the act
of greeting itself.
</p>
<h1>Salutations!</h1>
<p>
There is nothing finer than a hearty welcome from one's fellow man.
</p>
<p class="aside">
Although a thick and juicy hamburger with bacon and mushrooms runs a close second.
</p>

Figure 2-1. How different rules affect a document

In every case, the user agent determines which rules match an element, calculates all
of the associated declarations and their specificities, determines which ones win out,
and then applies the winners to the element to get the styled result. These machinations
must be performed on every element, selector, and declaration. Fortunately, the user
agent does it all automatically. This behavior is an important component of the cascade,
which we will discuss later in this chapter.

Universal Selector Specificity
As mentioned earlier, the universal selector does not contribute to the specificity of a
selector. In other words, it has a specificity of 0,0,0,0, which is different than having
no specificity (as we’ll discuss in “Inheritance”). Therefore, given the following two
rules, a paragraph descended from a div will be black, but all other elements will be gray:

div p {color: black;} /* 0,0,0,2 */
* {color: gray;} /* 0,0,0,0 */

As you might expect, this means that the specificity of a selector that contains a uni-
versal selector along with other selectors is not changed by the presence of the universal
selector. The following two selectors have exactly the same specificity:

div p /* 0,0,0,2 */
body * strong /* 0,0,0,2 */

62 | Chapter 2: Specificity and the Cascade

www.it-ebooks.info

http://www.it-ebooks.info/

Combinators, by comparison, have no specificity at all—not even zero specificity.
Thus, they have no impact on a selector’s overall specificity.

ID and Attribute Selector Specificity
It’s important to note the difference in specificity between an ID selector and an at-
tribute selector that targets an id attribute. Returning to the third pair of rules in the
example code, we find:

html > body table tr[id="totals"] td ul > li {color: maroon;} /* 0,0,1,7 */
li#answer {color: navy;} /* 0,1,0,1 (wins) */

The ID selector (#answer) in the second rule contributes 0,1,0,0 to the overall specificity
of the selector. In the first rule, however, the attribute selector ([id="totals"]) con-
tributes 0,0,1,0 to the overall specificity. Thus, given the following rules, the element
with an id of meadow will be green:

#meadow {color: green;} /* 0,1,0,0 */
[id="meadow"] {color: red;} / 0,0,1,0 */

Inline Style Specificity
So far, we’ve only seen specificities that begin with a zero, so you may be wondering
why it’s there at all. As it happens, that first zero is reserved for inline style declarations,
which trump any other declaration’s specificity. Consider the following rule and
markup fragment:

h1 {color: red;}

<h1 style="color: green;">The Meadow Party</h1>

Given that the rule is applied to the h1 element, you would still probably expect the
text of the h1 to be green. This is what happens as of CSS2.1, and it happens because
every inline declaration has a specificity of 1,0,0,0.

This means that even elements with id attributes that match a rule will obey the inline
style declaration. Let’s modify the previous example to include an id:

h1#meadow {color: red;}

<h1 id="meadow" style="color: green;">The Meadow Party</h1>

Thanks to the inline declaration’s specificity, the text of the h1 element will still be green.

The primacy of inline style declarations was introduced in CSS2.1, and
it exists to capture the state of web browser behavior at the time CSS2.1
was written. In CSS2, the specificity of an inline style declaration was
1,0,0 (CSS2 specificities had three values, not four). In other words, it
had the same specificity as an ID selector, which could have easily over-
ridden inline styles.

Specificity | 63

www.it-ebooks.info

http://www.it-ebooks.info/

Importance
Sometimes, a declaration is so important that it outweighs all other considerations. CSS
calls these important declarations (for obvious reasons) and lets you mark them by
inserting !important just before the terminating semicolon in a declaration:

p.dark {color: #333 !important; background: white;}

Here, the color value of #333 is marked !important, whereas the background value of
white is not. If you wish to mark both declarations as important, each declaration will
need its own !important marker:

p.dark {color: #333 !important; background: white !important;}

You must place !important correctly, or the declaration may be invalidated. !impor
tant always goes at the end of the declaration, just before the semicolon. This placement
is especially important—no pun intended—when it comes to properties that allow
values containing multiple keywords, such as font:

p.light {color: yellow; font: smaller Times, serif !important;}

If !important were placed anywhere else in the font declaration, the entire declaration
would likely be invalidated and none of its styles applied.

I realize that to those of you who come from a programming background, the syntax
of this token instinctively translates to “not important.” For whatever reason, the bang
(!) was chosen as the delimiter for important tokens, and it does not mean “not” in
CSS, no matter how many other languages give it that very meaning. This association
is unfortunate, but we’re stuck with it.

Declarations that are marked !important do not have a special specificity value, but are
instead considered separately from non-important declarations. In effect, all !impor
tant declarations are grouped together, and specificity conflicts are resolved relatively
within that group. Similarly, all non-important declarations are considered together,
with property conflicts resolved using specificity. In any case where an important and
a non-important declaration conflict, the important declaration always wins.

Figure 2-2 illustrates the result of the following rules and markup fragment:

h1 {font-style: italic; color: gray !important;}
.title {color: black; background: silver;}
* {background: black !important;}

<h1 class="title">NightWing</h1>

Figure 2-2. Important rules always win

64 | Chapter 2: Specificity and the Cascade

www.it-ebooks.info

http://www.it-ebooks.info/

Important declarations and their handling are discussed in more detail
in “The Cascade” later in this chapter.

Inheritance
As important as specificity may be to understanding how declarations are applied to a
document, another key concept is inheritance. Inheritance is the mechanism by which
styles are applied not only to a specified element, but also to its descendants. If a color
is applied to an h1 element, for example, then that color is applied to all text in the
h1, even the text enclosed within child elements of that h1:

h1 {color: gray;}

<h1>Meerkat Central</h1>

Both the ordinary h1 text and the em text are colored gray because the em element inherits
the value of color. If property values could not be inherited by descendant elements,
the em text would be black, not gray, and you’d have to color the elements separately.

Inheritance also works well with unordered lists. Let’s say you apply a style of color:
gray; for ul elements:

ul {color: gray;}

You expect that a style that is applied to a ul will also be applied to its list items, and
also to any content of those list items. Thanks to inheritance, that’s exactly what hap-
pens, as Figure 2-3 demonstrates.

Figure 2-3. Inheritance of styles

It’s easier to see how inheritance works by turning to a tree diagram of a document.
Figure 2-4 shows the tree diagram for a very simple document containing two lists: one
unordered and the other ordered.

When the declaration color: gray; is applied to the ul element, that element takes on
that declaration. The value is then propagated down the tree to the descendant elements
and continues on until there are no more descendants to inherit the value. Values are
never propagated upward; that is, an element never passes values up to its ancestors.

Inheritance | 65

www.it-ebooks.info

http://www.it-ebooks.info/

There is an exception to the upward propagation rule in HTML: back-
ground styles applied to the body element can be passed to the html
element, which is the document’s root element and therefore defines its
canvas. This only happens if the body element has a defined background
and the html element does not.

Inheritance is one of those things about CSS that is so basic that you almost never think
about it unless you have to. However, you should still keep a couple of things in mind.

First, note that many properties are not inherited—generally as a result of simple com-
mon sense. For example, the property border (which is used to set borders on elements)
does not inherit. A quick glance at Figure 2-5 reveals why this is the case. If borders
were inherited, documents would become much more cluttered—unless the author
took the extra effort to turn off the inherited borders.

Figure 2-5. Why borders aren’t inherited

As it happens, most of the box-model properties—including margins, padding, back-
grounds, and borders—are not inherited for the same reason. After all, you wouldn’t
want all of the links in a paragraph to inherit a 30-pixel left margin from their parent
element!

Second, inherited values have no specificity at all, not even zero specificity. This seems
like an academic distinction until you work through the consequences of the lack of
inherited specificity. Consider the following rules and markup fragment and compare
them to the result shown in Figure 2-6:

* {color: gray;}
h1#page-title {color: black;}

<h1 id="page-title">Meerkat Central</h1>

Figure 2-4. A simple tree diagram

66 | Chapter 2: Specificity and the Cascade

www.it-ebooks.info

http://www.it-ebooks.info/

<p>
Welcome to the best place on the web for meerkat information!
</p>

Figure 2-6. Zero specificity defeats no specificity

Since the universal selector applies to all elements and has zero specificity, its color
declaration’s value of gray wins out over the inherited value of black, which has no
specificity at all. Therefore, the em element is rendered gray instead of black.

This example vividly illustrates one of the potential problems of using the universal
selector indiscriminately. Because it can match any element, the universal selector often
has the effect of short-circuiting inheritance. This can be worked around, but it’s usually
more sensible to avoid the problem in the first place by not using the universal selector
indiscriminately.

The complete lack of specificity for inherited values is not a trivial point. For example,
assume that a style sheet has been written such that all text in a “toolbar” is to be white
on black:

#toolbar {color: white; background: black;}

This will work as long as the element with an id of toolbar contains nothing but plain
text. If, however, the text within this element is all hyperlinks (a elements), then the
user agent’s styles for hyperlinks will take over. In a web browser, this means they’ll
likely be colored blue, since the browser’s internal style sheet probably contains an
entry like this:

a:link {color: blue;}

To overcome this problem, you must declare:

#toolbar {color: white; background: black;}
#toolbar a:link {color: white;}

By targeting a rule directly at the a elements within the toolbar, you’ll get the result
shown in Figure 2-7.

Figure 2-7. Directly assigning styles to the relevant elements

Inheritance | 67

www.it-ebooks.info

http://www.it-ebooks.info/

The Cascade
Throughout this chapter, we’ve skirted one rather important issue: what happens when
two rules of equal specificity apply to the same element? How does the browser resolve
the conflict? For example, say you have the following rules:

h1 {color: red;}
h1 {color: blue;}

Which one wins? Both have a specificity of 0,0,0,1, so they have equal weight and
should both apply. That simply can’t be the case because the element can’t be both red
and blue. But which will it be?

At last, the name “Cascading Style Sheets” makes sense: CSS is based on a method of
causing styles to cascade together, which is made possible by combining inheritance
and specificity with a few rules. The cascade rules for CSS are simple enough:

1. Find all rules that contain a selector that matches a given element.

2. Sort by explicit weight all declarations applying to the element. Those rules
marked !important are given higher weight than those that are not. Sort by origin
all declarations applying to a given element. There are three origins: author, reader,
and user agent. Under normal circumstances, the author’s styles win out over the
reader’s styles. !important reader styles are stronger than any other styles, includ-
ing !important author styles. Both author and reader styles override the user agent’s
default styles.

3. Sort by specificity all declarations applying to a given element. Those elements with
a higher specificity have more weight than those with lower specificity.

4. Sort by order all declarations applying to a given element. The later a declaration
appears in the style sheet or document, the more weight it is given. Declarations
that appear in an imported style sheet are considered to come before all declarations
within the style sheet that imports them.

To be perfectly clear about how this all works, let’s consider some examples that illus-
trate the last three of the four cascade rules. (The first rule is kind of obvious, so we’re
skipping right past it.)

Sorting by Weight and Origin
Under the second rule, if two rules apply to an element, and one is
marked !important, the important rule wins out:

p {color: gray !important;}

<p style="color: black;">Well, hello there!</p>

68 | Chapter 2: Specificity and the Cascade

www.it-ebooks.info

http://www.it-ebooks.info/

Despite the fact that there is a color assigned in the style attribute of the paragraph,
the !important rule wins out, and the paragraph is gray. This gray is inherited by the
em element as well.

Furthermore, the origin of a rule is considered. If an element is matched by normal-
weight styles in both the author’s style sheet and the reader’s style sheet, then the
author’s styles are used. For example, assume that the following styles come from the
indicated origins:

p em {color: black;} /* author's style sheet */

p em {color: yellow;} /* reader's style sheet */

In this case, emphasized text within paragraphs is colored black, not yellow, because
normal-weight author styles win out over normal-weight reader styles. However, if both
rules are marked !important, the situation changes:

p em {color: black !important;} /* author's style sheet */

p em {color: yellow !important;} /* reader's style sheet */

Now the emphasized text in paragraphs will be yellow, not black.

As it happens, the user agent’s default styles—which are often influenced by the user
preferences—are figured into this step. The default style declarations are the least in-
fluential of all. Therefore, if an author-defined rule applies to anchors (e.g., declaring
them to be white), then this rule overrides the user agent’s defaults.

To sum up, there are five levels to consider in terms of declaration weight. In order of
most to least weight, these are:

1. Reader important declarations

2. Author important declarations

3. Author normal declarations

4. Reader normal declarations

5. User agent declarations

Authors typically need to worry about only the first four weight levels, since anything
declared by an author will win out over the user agent’s styles.

Sorting by Specificity
According to the third rule, if conflicting declarations apply to an element and they all
have the same weight, they should be sorted by specificity, with the most specific dec-
laration winning out. For example:

p#bright {color: silver;}
p {color: black;}

<p id="bright">Well, hello there!</p>

The Cascade | 69

www.it-ebooks.info

http://www.it-ebooks.info/

Given the rules shown, the text of the paragraph will be silver, as illustrated in Fig-
ure 2-8. Why? Because the specificity of p#bright (0,1,0,1) overrode the specificity of
p (0,0,0,1), even though the latter rule comes later in the style sheet.

Figure 2-8. Higher specificity wins out over lower specificity

Sorting by Order
Finally, under the fourth rule, if two rules have exactly the same weight, origin, and
specificity, then the one that occurs later in the style sheet wins out. Therefore, let’s
return to our earlier example, where we find the following two rules in the document’s
style sheet:

h1 {color: red;}
h1 {color: blue;}

In this case, the value of color for all h1 elements in the document will be blue, not
red. This is because the two rules were tied in terms of weight and specificity, so the
last one declared is the winner.

So what happens if rules from completely separate style sheets conflict? For example,
suppose the following:

@import url(basic.css);
h1 {color: blue;}

What if h1 {color: red;} appears in basic.css? The entire contents of basic.css are
treated as if they were pasted into the style sheet at the point where the import occurs.
Thus, any rule that is contained in the document’s style sheet occurs later than those
from the import. If they tie, the document’s style sheet contains the winner. Consider
the following:

p em {color: purple;} /* from imported style sheet */

p em {color: gray;} /* rule contained within the document */

In this case, the second rule shown will win out over the imported rule because it was
the last one specified.

For the purposes of this rule, styles specified in the style attribute of an element are
considered to be at the end of the document’s style sheet, which places them after all
other rules. However, this is a largely academic point, since inline style declarations
always have a higher specificity (1,0,0,0) than any style sheet selector could possibly
possess.

70 | Chapter 2: Specificity and the Cascade

www.it-ebooks.info

http://www.it-ebooks.info/

Order sorting is the reason behind the often-recommended ordering of link styles. The
recommendation is that you array your link styles in the order link-visited-hover-active,
or LVHA, like this:

:link {color: blue;}
:visited {color: purple;}
:hover {color: red;}
:active {color: orange;}

Thanks to the information in this chapter, you now know that the specificity of all of
these selectors is the same: 0,0,1,0. Because they all have the same weight, origin, and
specificity, the last one that matches an element will win out. An unvisited link that is
being “clicked” or otherwise activated, such as via the keyboard, is matched by three
of the rules—:link, :hover, and :active—so the last one of those three declared will
win out. Given the LVHA ordering, :active will win, which is likely what the author
intended.

Assume for a moment that you decide to ignore the common ordering and alphabetize
your link styles instead. This would yield:

:active {color: orange;}
:hover {color: red;}
:link {color: blue;}
:visited {color: purple;}

Given this ordering, no link would ever show :hover or :active styles because
the :link and :visited rules come after the other two. Every link must be either visited
or unvisited, so those styles will always override the :hover and :active rules.

Let’s consider a variation on the LVHA order that an author might want to use. In this
ordering, only unvisited links will get a hover style; visited links do not. Both visited
and unvisited links will get an active style:

:link {color: blue;}
:hover {color: red;}
:visited {color: purple;}
:active {color: orange;}

Of course, such conflicts arise only when all the states attempt to set the same property.
If each state’s styles address a different property, then the order does not matter. In the
following case, the link styles could be given in any order and would still function as
intended:

:link {font-weight: bold;}
:visited {font-style: italic;}
:hover {color: red;}
:active {background: yellow;}

You may also have realized that the order of the :link and :visited styles doesn’t
matter. You could order the styles LVHA or VLHA with no ill effect. However, LVHA
tends to be preferred because it was recommended in the CSS2 specification and also
because the mnemonic “LoVe—HA!” gained rather wide currency.

The Cascade | 71

www.it-ebooks.info

http://www.it-ebooks.info/

In subsequent years, the pseudo-class :focus has come into widespread use. Its place
in ordering of link styles is a matter of some debate, because it all depends on what you
want it to override and what should override it. Many accessibility experts recommend
placing it between hovering and activation, like so:

:link {font-weight: bold;}
:visited {font-style: italic;}
:hover {color: red;}
:focus {color: lime;}
:active {background: yellow;}

If you prefer the hover style to overrule the focus style, then you simply shift the focus
styles earlier in the stack.

The ability to chain pseudo-classes together eliminates all these worries. The following
could be listed in any order without any negative effects:

:link {color: blue;}
:visited {color: purple;}
:link:hover {color: red;}
:visited:hover {color: gray;}

Because each rule applies to a unique set of link states, they do not conflict. Therefore,
changing their order will not change the styling of the document. The last two rules do
have the same specificity, but that doesn’t matter. A hovered unvisited link will not be
matched by the rule regarding hovered visited links, and vice versa. If we were to add
active-state styles, then order would start to matter again. Consider:

:link {color: blue;}
:visited {color: purple;}
:link:hover {color: red;}
:visited:hover {color: gray;}
:link:active {color: orange;}
:visited:active {color: silver;}

If the active styles were moved before the hover styles, they would be ignored. Again,
this would happen due to specificity conflicts. The conflicts could be avoided by adding
more pseudo-classes to the chains, like this:

:link:hover:active {color: orange;}
:visited:hover:active {color: silver;}

Chained pseudo-classes, which lessen worries about specificity and ordering, would
likely be used much more often if Internet Explorer had historically supported them.
(See Chapter 1 for more information on this subject.)

Non-CSS Presentational Hints
It is possible that a document will contain presentational hints that are not CSS—e.g.,
the font element. In CSS 2.1, such presentational hints are treated as if they have a
specificity of 0 and appear at the beginning of the author’s style sheet. Such presentation
hints will be overridden by any author or reader styles, but not by the user agent’s styles.

72 | Chapter 2: Specificity and the Cascade

www.it-ebooks.info

http://www.it-ebooks.info/

In CSS3, presentational hints from outside CSS are treated as if they belong to the user
agent’s style sheet, presumably at the end (although as of this writing, the specification
doesn’t say).

Summary
Perhaps the most fundamental aspect of Cascading Style Sheets is the cascade itself—
the process by which conflicting declarations are sorted out and from which the final
document presentation is determined. Integral to this process is the specificity of se-
lectors and their associated declarations, and the mechanism of inheritance.

Summary | 73

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author
Eric A. Meyer has been working with the Web since late 1993 and is an internationally
recognized expert on the subjects of HTML, CSS, and web standards. A widely read
author, he is a past member of the CSS&FP Working Group and was the primary creator
of the W3C's CSS1 Test Suite. In 2006, Eric was inducted into the International Acad-
emy of Digital Arts and Sciences for “international recognition on the topics of HTML
and CSS” and helping to “inform excellence and efficiency on the Web.”

Eric is currently the principal founder at Complex Spiral Consulting, which counts
among its clients a wide variety of corporations, educational institutions, and govern-
ment agencies. He is also, along with Jeffrey Zeldman, co-founder of An Event Apart
(“The design conference for people who make websites”), and he speaks regularly at
that conference as well as many others. Eric lives with his family in Cleveland, Ohio,
which is a much nicer city than you've been led to believe. A historian by training and
inclination, he enjoys a good meal whenever he can and considers almost every form
of music to be worthwhile.

www.it-ebooks.info

http://www.it-ebooks.info/

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Selectors
	Basic Style Rules
	Element Selectors
	Declarations and Keywords

	Grouping
	Grouping Selectors
	The universal selector

	Grouping Declarations
	Grouping Everything

	Class and ID Selectors
	Class Selectors
	Multiple Classes
	ID Selectors
	Deciding Between Class and ID

	Attribute Selectors
	Simple Attribute Selectors
	Selection Based on Exact Attribute Value
	Selection Based on Partial Attribute Values
	Matching one word in a space-separated list
	Matching a substring within an attribute value
	Matching a substring at the beginning of an attribute value
	Matching a substring at the end of an attribute value

	A Particular Attribute Selection Type

	Using Document Structure
	Understanding the Parent-Child Relationship
	Descendant Selectors
	Selecting Children
	Selecting Adjacent Sibling Elements
	Selecting Following Siblings

	Pseudo-Class Selectors
	Combining Pseudo-Classes
	Structural Pseudo-Classes
	Selecting the root element
	Selecting empty elements
	Selecting unique children
	Selecting first and last children
	Selecting first and last of a type
	Selecting every nth child
	Selecting every nth of a type

	Dynamic Pseudo-Classes
	Hyperlink pseudo-classes
	User action pseudo-classes
	Real-world issues with dynamic styling

	UI State Pseudo-Classes
	Enabled and disabled UI elements
	Check states

	The :target Pseudo-Class
	The :lang Pseudo-Class
	The Negation Pseudo-Class

	Pseudo-Element Selectors
	Styling the First Letter
	Styling the First Line
	Restrictions on ::first-letter and ::first-line
	Styling (Or Creating) Content Before and After Elements

	Summary

	Chapter 2. Specificity and the Cascade
	Specificity
	Declarations and Specificity
	Universal Selector Specificity
	ID and Attribute Selector Specificity
	Inline Style Specificity
	Importance

	Inheritance
	The Cascade
	Sorting by Weight and Origin
	Sorting by Specificity
	Sorting by Order
	Non-CSS Presentational Hints

	Summary

