

HTML5 Canvas
by Steve Fulton and Jeff Fulton

Copyright © 2011 8bitrocket Studios. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Simon St.Laurent
Production Editor: Kristen Borg
Copyeditor: Marlowe Shaeffer
Proofreader: Sada Preisch

Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
May 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. HTML5 Canvas, the image of a kaka parrot, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-39390-8

[LSI]

1303735727

Table of Contents

Preface . xv

1. Introduction to HTML5 Canvas . 1
The Basic HTML Page 2

<!doctype html> 3
<html lang="en"> 3
<meta charset="UTF-8"> 3
<title>…</title> 3
A Simple HTML5 Page 3

Basic HTML We Will Use in This Book 4
<div> 4
<canvas> 5

The Document Object Model (DOM) and Canvas 5
JavaScript and Canvas 6

JavaScript Frameworks and Libraries 6
Where Does JavaScript Go and Why? 6

HTML5 Canvas “Hello World!” 7
Encapsulating Your JavaScript Code for Canvas 8
Adding Canvas to the HTML Page 9
Testing to See Whether the Browser Supports Canvas 10
Retrieving the 2D Context 11
The drawScreen() Function 11

Debugging with Console.log 14
The 2D Context and the Current State 15
The HTML5 Canvas Object 16
Another Example: Guess The Letter 17

How the Game Works 17
The “Guess The Letter” Game Variables 17
The initGame() Function 19
The eventKeyPressed() Function 19
The drawScreen() Function 21
Exporting Canvas to an Image 22

vii

The Final Game Code 23
What’s Next 26

2. Drawing on the Canvas . 27
The Basic File Setup for This Chapter 27
The Basic Rectangle Shape 28
The Canvas State 29

What’s Not Part of the State? 30
How Do We Save and Restore the Canvas State? 30

Using Paths to Create Lines 30
Starting and Ending a Path 31
The Actual Drawing 31
Examples of More Advanced Line Drawing 32

Advanced Path Methods 34
Arcs 34
Bezier Curves 36
The Canvas Clipping Region 37

Compositing on the Canvas 39
Simple Canvas Transformations 41

Rotation and Translation Transformations 42
Scale Transformations 47
Combining Scale and Rotation Transformations 49

Filling Objects with Colors and Gradients 51
Setting Basic Fill Colors 51
Filling Shapes with Gradients 52

Filling Shapes with Patterns 61
Creating Shadows on Canvas Shapes 64
What’s Next 67

3. The HTML5 Canvas Text API . 69
Displaying Basic Text 69

Basic Text Display 69
Handling Basic Text in Text Arranger 70
Communicating Between HTML Forms and the Canvas 71
Using measureText 71
fillText and strokeText 73

Setting the Text Font 78
Font Size, Face Weight, and Style Basics 78
Handling Font Size and Face in Text Arranger 79
Font Color 83
Font Baseline and Alignment 86
Text Arranger Version 2.0 90

Text and the Canvas Context 94

viii | Table of Contents

Global Alpha and Text 94
Global Shadows and Text 96

Text with Gradients and Patterns 100
Linear Gradients and Text 100
Radial Gradients and Text 102
Image Patterns and Text 102
Handling Gradients and Patterns in Text Arranger 103

Width, Height, Scale, and toDataURL() Revisited 106
Dynamically Resizing the Canvas 106
Dynamically Scaling the Canvas 109
The toDataURL() Method of the Canvas Object 110

Final Version of Text Arranger 112
What’s Next 121

4. Images on the Canvas . 123
The Basic File Setup for This Chapter 123
Image Basics 124

Preloading Images 125
Displaying an Image on the Canvas with drawImage() 125
Resizing an Image Painted to the Canvas 127
Copying Part of an Image to the Canvas 128

Simple Cell-Based Sprite Animation 130
Creating an Animation Frame Counter 130
Creating a Timer Loop 131
Changing the Tile to Display 131

Advanced Cell-Based Animation 132
Examining the Tile Sheet 133
Creating an Animation Array 133
Choosing the Tile to Display 133
Looping Through the Tiles 134
Drawing the Tile 134
Moving the Image Across the Canvas 135

Applying Rotation Transformations to an Image 137
Canvas Transformation Basics 137
Animating a Transformed Image 140

Creating a Grid of Tiles 142
Defining a Tile Map 143
Creating a Tile Map with Tiled 143
Displaying the Map on the Canvas 145

Zooming and Panning an Image 149
Creating a Window for the Image 149
Drawing the Image Window 150
Panning the Image 152

Table of Contents | ix

Zoom and Pan the Image 153
Application: Controlled Pan and Zoom 154

Pixel Manipulation 158
The Canvas Pixel Manipulation API 158
Application Tile Stamper 159

Copying from One Canvas to Another 166
What’s Next 169

5. Math, Physics, and Animation . 171
Moving in a Straight Line 171

Moving Between Two Points: The Distance of a Line 174
Moving on a Vector 179

Bouncing Off Walls 183
Bouncing a Single Ball 184
Multiple Balls Bouncing Off Walls 188
Multiple Balls Bouncing with a Dynamically Resized Canvas 193
Multiple Balls Bouncing and Colliding 198
Multiple Balls Bouncing with Friction 210

Curve and Circular Movement 216
Uniform Circular Motion 217
Moving in a Simple Spiral 220
Cubic Bezier Curve Movement 223
Moving an Image 228
Creating a Cubic Bezier Curve Loop 232

Simple Gravity, Elasticity, and Friction 236
Simple Gravity 236
Simple Gravity with a Bounce 240
Gravity with Bounce and Applied Simple Elasticity 243
Simple Gravity, Simple Elasticity, and Simple Friction 246

Easing 249
Easing Out (Landing the Ship) 249
Easing In (Taking Off) 253

What’s Next? 257

6. Mixing HTML5 Video and Canvas . 259
HTML5 Video Support 259

Theora + Vorbis = .ogg 260
H.264 + $$$ = .mp4 260
VP8 + Vorbis = .webm 260
Combining All Three 261

Converting Video Formats 261
Basic HTML5 Video Implementation 262

Plain-Vanilla Video Embed 263

x | Table of Contents

Video with Controls, Loop, and Autoplay 265
Altering the Width and Height of the Video 266

Preloading Video in JavaScript 271
A Problem with Events and Embedded Video in HTML5 274

Video and the Canvas 275
Displaying a Video on HTML5 Canvas 275
HTML5 Video Properties 281

Video on the Canvas Examples 285
Using the currentTime Property to Create Video Events 285
Canvas Video Transformations: Rotation 289
Canvas Video Puzzle 294
Creating Video Controls on the Canvas 307

Animation Revisited: Moving Videos 316
What’s Next? 320

7. Working with Audio . 321
The Basic <audio> Tag 321
Audio Formats 322

Supported Formats 322
Audacity 322
Example: Using All Three Formats 323

Audio Tag Properties, Functions, and Events 324
Audio Functions 325
Important Audio Properties 325
Important Audio Events 326
Loading and Playing the Audio 326
Displaying Attributes on the Canvas 327

Playing a Sound with No Audio Tag 331
Dynamically Creating an Audio Element in JavaScript 331
Finding the Supported Audio Format 332
Playing the Sound 333
Look Ma, No Tag! 334

Creating a Canvas Audio Player 336
Creating Custom User Controls on the Canvas 337
Loading the Button Assets 337
Setting Up the Audio Player Values 339
Mouse Events 340
Sliding Play Indicator 340
Play/Pause Push Button: Hit Test Point Revisited 342
Loop/No Loop Toggle Button 343
Click-and-Drag Volume Slider 344

Case Study in Audio: Space Raiders Game 352
Why Sounds in Apps Are Different: Event Sounds 353

Table of Contents | xi

Iterations 353
Space Raiders Game Structure 353
Iteration #1: Playing Sounds Using a Single Object 362
Iteration #2: Creating Unlimited Dynamic Sound Objects 362
Iteration #3: Creating a Sound Pool 365
Iteration #4: Reusing Preloaded Sounds 368

What’s Next 378

8. Canvas Game Essentials . 379
Why Games in HTML5? 379

Canvas Compared to Flash 379
What Does Canvas Offer? 380

Our Basic Game HTML5 File 380
Our Game’s Design 382
Game Graphics: Drawing with Paths 382

Needed Assets 382
Using Paths to Draw the Game’s Main Character 383

Animating on the Canvas 385
Game Timer Loop 385
The Player Ship State Changes 386

Applying Transformations to Game Graphics 388
The Canvas Stack 388

Game Graphic Transformations 390
Rotating the Player Ship from the Center 390
Alpha Fading the Player Ship 392

Game Object Physics and Animation 393
How Our Player Ship Will Move 393
Controlling the Player Ship with the Keyboard 395
Giving the Player Ship a Maximum Velocity 399

A Basic Game Framework 400
The Game State Machine 400
The Update/Render (Repeat) Cycle 404
The FrameRateCounter Object Prototype 406

Putting It All Together 407
Geo Blaster Game Structure 407
Geo Blaster Global Game Variables 410

The player Object 412
Geo Blaster Game Algorithms 412

Arrays of Logical Display Objects 412
Level Knobs 415
Level and Game End 415
Awarding the Player Extra Ships 416
Applying Collision Detection 417

xii | Table of Contents

The Geo Blaster Basic Full Source 419
Rock Object Prototype 443
What’s Next 445

9. Combining Bitmaps and Sound . 447
Geo Blaster Extended 447

Geo Blaster Tile Sheet 448
Rendering the Other Game Objects 454
Adding Sound 459
Pooling Object Instances 463
Adding in a Step Timer 466
Geo Blaster Extended Full Source 468

Creating a Dynamic Tile Sheet at Runtime 497
A Simple Tile-Based Game 501

Micro Tank Maze Description 501
The Tile Sheet for Our Game 503
The Playfield 504
The Player 505
The Enemy 506
The Goal 507
The Explosions 507
Turn-Based Game Flow and the State Machine 508
Simple Tile Movement Logic Overview 512
Rendering Logic Overview 514
Simple Homegrown AI Overview 515
Micro Tank Maze Complete Game Code 516

What’s Next 534

10. Mobilizing Games with PhoneGap . 535
Going Mobile! 535

Introducing PhoneGap 536
The Application 536
The Code 537
Examining the Code for BSBingo.html 542
The Application Code 545

Creating the iOS Application with PhoneGap 546
Installing Xcode 546
Installing PhoneGap 547
Creating the BS Bingo PhoneGap Project in Xcode 549
Testing the New Blank Application in the Simulator 551
Integrating BS Bingo into the Project 553
Setting the Orientation 555
Changing the Banner and Icon 556

Table of Contents | xiii

Testing on the Simulator 558
Adding in an iPhone “Gesture” 561
Adding the Gesture Functions to index.html 561
Testing on a Device 563
Using Xcode to Target a Test Device 564

Beyond the Canvas 565
What’s Next 566

11. Further Explorations . 567
3D with WebGL 567

What Is WebGL? 568
How Do I Test WebGL? 568
How Do I Learn More About WebGL? 569
What Does a WebGL Application Look Like? 569
Full Code Listing 575
Further Explorations with WebGL 581
WebGL JavaScript Libraries 581

Multiplayer Applications with ElectroServer 5 583
Installing ElectroServer 583
The Basic Architecture of a Socket-Server Application 585
The Basic Architecture of an ElectroServer Application 587
Creating a Chat Application with ElectroServer 588
Testing the Application in Google Chrome 593
Further Explorations with ElectroServer 598
This Is Just the Tip of the Iceberg 606

Conclusion 607

Index . 609

xiv | Table of Contents

Preface

HTML5 Canvas offers developers the chance to create animated graphics in ordinary
web browsers using common tools: HTML and JavaScript. Canvas is one of the most
visible parts of HTML5, fueling demo after demo, game after game. It offers interactivity
with great visuals, and provides tremendous freedom to do whatever you want in the
browser window. However, it differs enough from typical JavaScript development (as
well as Flash and Silverlight development) that it needs careful exploration!

Running the Examples in the Book
The best part about programming HTML5 Canvas is that the entry barrier is very low—
all you need is a modern web browser and a text editor.

As far as compatibility, we suggest you download and/or use the latest version of the
web browsers as ordered below.

1. Chrome

2. Safari

3. Opera

4. Firefox

5. Internet Explorer (version 9 or higher)

Every example in this book was tested with Google Chrome, Safari, and Opera. Late
in the development of the example code, Firefox started causing issues. While we made
every attempt to ensure these examples worked across as many browsers as possible,
we recommend you use Google Chrome or Safari for the best results until Canvas
support improves.

Please note that if you are using the .pdf version of this book to cut and paste the code,
there may be instances where minus (“-”) signs are represented by another character,
such as a hyphen. You may need to replace the other character with a minus sign (“-”)
to get the code to work properly.

xv

We suggest that if you have purchased the electronic version of this book, you should
use the printed code samples as a guide only, and instead download the code from the
book distribution. With that code, you will also get all the images, libraries, and assets
necessary to make all the examples work in a web browser.

What You Need to Know
Ideally, you know your way around programming in some kind of modern language,
such as C, C++, C#, ActionScript 2, ActionScript 3, Java, or JavaScript. However, if
you’re new to this space, we will introduce Canvas in a way that should familiarize you
with web programming at the same time.

Web developers with a foundation in HTML and JavaScript should easily be able to
pick up this book and run with it.

If you are a Flash developer, JavaScript and ActionScript 1 are essentially the same
language. While Adobe took some liberties with ActionScript 2, you should be very
comfortable with JavaScript. If you only have experience with ActionScript 3, Java-
Script might feel like a step backward.

If you are a Silverlight or C# developer, take a deep breath and think about a time
before ASP.NET/C# when you might have had to develop web apps in VBScript. You
are about to enter a similar space.

How This Book Is Organized
This book is organized into 11 chapters. The first four chapters walk you through the
HTML Canvas API by example. The topics covered include text, images, and drawing.
These chapters contain a few finished apps, but mainly consist of demos designed to
show you the facets of the Canvas API. The following six chapters build upon the
Canvas API by expanding the scope of the examples to application length. In these
chapters, we discuss math and physics applications, video, audio, games, and mobile.
The final chapter introduces a couple experimental areas: 3D and multiplayer.

What you won’t get in this book is a simple rundown and retelling of the published
W3C Canvas API. While we cover portions of the API in detail, some of it is not ap-
plicable to games. Furthermore, you can just read the documentation here:

http://dev.w3.org/html5/2dcontext

Our goal is to feature the ways Canvas can be used to create animation, games, and
entertainment applications for the Web.

xvi | Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values, ob-
jects, events, event handlers, XML tags, HTML tags, macros, the contents of files,
or the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “HTML5 Canvas by Steve Fulton and Jeff
Fulton (O’Reilly). Copyright 2011 8bitrocket Studios, 978-1-4493-9390-8.”

Preface | xvii

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449393908

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

xviii | Preface

Acknowledgments
First, Steve would like to thank his beautiful wife, Dawn, for the amazing patience,
guidance, and support she lovingly provided before, during, and after this book was
written. Steve would also like to thank his girls—Rachel, Daphnie, and Katie—for all
their enthusiastic support and for not getting too frustrated every time they asked him
to play and Daddy said, “Sure, yeah, in just a couple minutes” because his head was
buried in these pages. He’d also like to thank his mom and dad, plus his sisters, Mari
and Carol for everything they taught us; and his uncle Richard and cousin John for all
their love and support. Also thanks to Sue, Morgan, and Lauren Miller; Jen, Eric, Sarah,
and Paige Garnica; Dietrich; Chantal Martin; and Ryan and Justin Fulton.

Jeff would like to thank his amazing wife, Jeanne, and his two wonderful boys, Ryan
and Justin, for putting up with him writing this second book in two years. The writing
process is a time- and energy-consuming endeavor that demands patience and under-
standing from those in close proximity to the temperamental author. Jeff would also
like to thank his mom and dad, as well as sisters Mari and Carol, for the morale and
babysitting support that was needed during the crucial writing times. Also, special
thanks to the Perry and Backlar clans for all of their love and support.

The authors would also like to acknowledge all the fine people at O’Reilly, especially
Mike Loukides, who took the chance on us for this book; and Simon St.Laurent, who
led us out of the wilderness; our copyeditor, Marlowe Shaeffer, who made the text
sparkle in her own special way; and our production editor, Kristen Borg, for finishing
the job.

We’d also like to thank our technical reviewers, Raffaele Cecco, Shelley Powers, and
Andres Pagella.

Thanks to everyone at Electrotank, especially Jobe Makar, Matthew Weisner, and
Teresa Carrigan; as well as our friends at Jett Morgan, Creative Bottle, Producto Stu-
dios, Mattel, Mochi, Adobe, Microsoft, Zynga, The SPIL Group, Giles Thomas from
Learningwebgl.com, Ari Feldman, and Terry Paton, plus Ace The Super Villain, Bas
Alicante, egdcltd, Tony Fernando, SeuJogo, Hayes, Jose Garay, Richard Davey
(@PhotonStorm), Squize and nGfx (@GamingYourWay), and all our other friends at
8bitrocket.com. We would also like to give a huge shout out to the simply outstanding
team at 444 Deharo, especially the entire FV team and the Foo Fighters pod!

Finally, we'd like to thank all of our friends who helped along the way, including Ian
Legler, Brandon Crist, Eric Barth, Wesley Crews, Kenny Brown, Mike Foti, Evan
Pershing, Scott Johnson, Scott Lunceford, Kurt Legler, Ryan Legler, John Little, Matt
Hyatt, Varun Tandon, Mark Hall, Jason Neifeld, Mike Peters and The Alarm.

…and, last but not least, thanks to the W3C for coming up with such a kickass spec for
HTML5 Canvas.

Preface | xix

CHAPTER 1

Introduction to HTML5 Canvas

HTML5 is the current iteration of HTML, the HyperText Markup Language. HTML
was first standardized in 1993, and it was the fuel that ignited the World Wide Web.
HTML is a way to define the contents of a web page using tags that appear within pointy
brackets, < >.

HTML5 Canvas is an immediate mode bitmapped area of the screen that can be ma-
nipulated with JavaScript. Immediate mode refers to the way the canvas renders pixels
on the screen. HTML5 Canvas completely redraws the bitmapped screen on every
frame using Canvas API calls from JavaScript. As a programmer, your job is to set up
the screen display before each frame is rendered so that the correct pixels will be shown.

This makes HTML5 Canvas very different from Flash, Silverlight, or SVG, which op-
erate in retained mode. In this mode, a display list of objects is kept by the graphics
renderer, and objects are displayed on the screen according to attributes set in code
(i.e., the x position, y position, and alpha transparency of an object). This keeps the
programmer away from low-level operations, but gives her less control over the final
rendering of the bitmapped screen.

The basic HTML5 Canvas API includes a 2D context that allows a programmer to draw
various shapes, render text, and display images directly onto a defined area of the
browser window. You can apply colors; rotations; alpha transparencies; pixel manip-
ulations; and various types of lines, curves, boxes, and fills to augment the shapes, text,
and images you place onto the canvas.

In itself, the HTML5 Canvas 2D context is a display API used to render graphics on a
bitmapped area, but there is very little in that context to create applications using the
technology. By adding cross-browser-compatible JavaScript functionality for keyboard
and mouse inputs, timer intervals, events, objects, classes, sound, math functions, etc.,
you can learn to take HTML5 Canvas and create stunning animations, applications,
and games.

Here’s where this book comes in. We are going to break down the Canvas API into
digestible parts and then put it back together, demonstrating how to use it to create

1

applications. Many of the techniques you will learn in this book have been tried and
used successfully on other platforms, and now we are applying them to this exciting
new technology.

Browser Support for HTML5 Canvas
With the exception of Internet Explorer 8, HTML5 Canvas is supported in some way
by most modern web browsers, with specific feature support growing on an almost
daily basis. The best support seems to be from Google Chrome, followed closely by
Safari, Firefox, and Opera. We will utilize a JavaScript library named modernizr.js that
will help us figure out which browsers support which Canvas features. At the same
time, if you are worried about Internet Explorer, version 9 promises to have support
for Canvas. In the meantime, you can check out Google Chrome Frame (http://code
.google.com/chrome/chromeframe/), which delivers Canvas support for IE.

The Basic HTML Page
Before we get to Canvas, we need to talk a bit about the HTML5 standards we will be
using to create our web pages.

HTML is the standard language used to construct pages on the World Wide Web. We
will not spend much time on HTML, but it does form the basis of <canvas>, so we
cannot skip it entirely.

A basic HTML page is divided into sections, commonly <head> and <body>. The new
HTML5 specification adds a few new sections, such as <nav>, <article>, <header>, and
<footer>.

The <head> tag usually contains information that will be used by the HTML <body> tags
to create the HTML page. It is a standard convention to put JavaScript functions in the
<head>, as you will see later when we discuss the <canvas> tag. There may be reasons
to put some JavaScript in the <body>, but we will make every attempt to keep things
simple by having all JavaScript in the <head>.

Basic HTML for a page might look like Example 1-1.

Example 1-1. A basic HTML page

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH1EX1: Basic Hello World HTML Page</title>
</head>
<body>
Hello World!
</body>
</html>

2 | Chapter 1: Introduction to HTML5 Canvas

<!doctype html>
This tag informs the web browser to render the page in standards mode. According to
the HTML5 spec from W3C, this is required for HTML5 documents. This tag simplifies
a long history of oddities when it came to rendering HTML in different browsers. This
should always be the first line of HTML in a document.

<html lang="en">
This is the <html> tag with the language referenced: for example, “en” = English. Some
of the more common language values are:

Chinese – lang = “zh”
French – lang = “fr”
German – lang = “de”
Italian – lang = “it”
Japanese – lang = “ja”
Korean – lang = “ko”
Polish – lang = “pl”
Russian – lang = “ru”
Spanish (Castilian) – lang = “es”

<meta charset="UTF-8">
This tag tells the web browser which character-encoding method to use for the page.
Unless you know what you’re doing, there is no need to change it. This is a required
element for HTML5 pages.

<title>…</title>
This is the title that will be displayed in the browser window for the HTML page. This
is a very important tag, as it is one of the main pieces of information a search engine
uses to catalog the content on the HTML page.

A Simple HTML5 Page
Now let’s look at this page in a web browser (this would be a great time to get your
tools together to start developing code). Open your chosen text editor, and get ready
to use your preferred web browser: Safari, Firefox, Opera, Chrome, or IE.

1. In your text editor, type in the code from Example 1-1.

2. Save the code as CH1EX1.html in a directory of your choosing.

The Basic HTML Page | 3

3. Under the File menu in Chrome, Safari, or Firefox, you should find the option
Open File. Click that selection. You should then see a box to open a file. (On
Windows using Chrome, you might need to press Ctrl+O to open a file.)

4. Locate the CH1EX1.html that you just created.

5. Click Open.

You should see something similar to Figure 1-1.

Figure 1-1. HTML Hello World!

This is one of only two examples in this entire book that will work with
Internet Explorer 8 or earlier.

Basic HTML We Will Use in This Book
Many HTML tags can be used to create an HTML page. In past versions of HTML,
tags that specifically instructed the web browser on how to render the HTML page
(e.g., and <center>) were very popular. However, as browser standards have
become more restrictive in the past decade, those types of tags have been pushed aside,
and the use of CSS (Cascading Style Sheets) has been adopted as the primary way to
style HTML content. Because this book is not about creating HTML pages (i.e., pages
that don’t have Canvas in them), we are not going to discuss the inner workings of CSS.

We will focus on only two of the most basic HTML tags: <div> and <canvas>.

<div>
This is the main HTML tag that we will use in this book. We will use it to position
<canvas> on the HTML page.

Example 1-2 uses a <div> tag to position the words “Hello World!” on the screen, as
shown in Figure 1-2.

Figure 1-2. HTML5 Hello World! with a <div>

4 | Chapter 1: Introduction to HTML5 Canvas

Example 1-2. HTML5 Hello World!

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH1EX2: Hello World HTML Page With A DIV </title>
</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">
Hello World!
</div>
</body>
</html>

The style="position: absolute; top: 50px; left: 50px;" code is an example of inline
CSS in an HTML page. It tells the browser to render the content at the absolute position
of 50 pixels from the top of the page, and 50 pixels from the left of the page.

<canvas>
Our work with <canvas> will benefit from using the absolute positioning method with
<div>. We will place our <canvas> inside the <div> tag, and it will help us retrieve in-
formation, such as the relative position of the mouse pointer when it appears over a
canvas.

The Document Object Model (DOM) and Canvas
The Document Object Model represents all the objects on an HTML page. It is
language- and platform-neutral, allowing the content and style of the page to be up-
dated after it is rendered in the web browser. The DOM is accessible through JavaScript,
and has been a staple of JavaScript, DHTML, and CSS development since the late 1990s.

The canvas element itself is accessible through the DOM in a web browser via the
Canvas 2D context, but the individual graphical elements created on Canvas are not
accessible to the DOM. As we stated earlier, this is because Canvas works in immediate
mode and does not have its own objects, only instructions on what to draw on any
single frame.

Our first example will use the DOM to locate the <canvas> tag on the HTML5 page so
that we can manipulate it with JavaScript. There are two specific DOM objects we will
need to understand when we start using <canvas>: window and document.

The window object is the top level of the DOM. We will need to test this object to make
sure all the assets and code have loaded before we can start our Canvas applications.

The document object contains all the HTML tags that are on the HTML page. We will
need to look at this object to find the instance of <canvas> that manipulates with
JavaScript.

The Document Object Model (DOM) and Canvas | 5

JavaScript and Canvas
JavaScript, the programming language we will use to create Canvas applications, can
be run inside nearly any web browser in existence. If you need a refresher on the topic,
read Douglas Crockford’s JavaScript: The Good Parts (O’Reilly), which is a very popular
and well-written reference on the subject.

JavaScript Frameworks and Libraries
There are many popular JavaScript frameworks that developers use to help get their
JavaScript off the ground, including libraries such as jQuery, Processing.js, and others.
We expect these frameworks to add robust support for Canvas in the next 6–12 months.
In the meantime, we will focus on straight JavaScript to control the canvas. However,
where appropriate, we will introduce you to frameworks and JavaScript libraries that
will help augment Canvas development (e.g., Modernizr, JSColor, and WebGL).

Where Does JavaScript Go and Why?
Because we will create the programming logic for the Canvas in JavaScript, a question
arises: where does that JavaScript go in the pages we have already created?

It’s a good idea to place your JavaScript in the <head> of your HTML page because it
makes it easy to find. However, placing JavaScript there means that the entire HTML
page needs to load before your JavaScript can work with the HTML. This also means
that the JavaScript code will start to execute before the entire page loads. As a result,
you will need to test to see whether the HTML page has loaded before you run your
JavaScript program.

There has been a recent move to put JavaScript right before the </body> at the end of
an HTML document to make sure the whole page loads before the JavaScript runs.
However, because we are going to test to see whether the page has loaded in JavaScript
before we run our <canvas> program, we will put our JavaScript in the traditional
<head> location. If you are not comfortable with this, you can adapt the style of the code
to your liking.

No matter where you put the code, you can place it inline in the HTML page or load
an external .js file. The code for loading an external JavaScript file might look like this:

<script type="text/javascript" src="canvasapp.js"></script>

To make things simple, we will code our JavaScript inline in the HTML page. However,
if you know what you are doing, saving an external file and loading it will work just as
well.

6 | Chapter 1: Introduction to HTML5 Canvas

In HTML5 you no longer have to specify the script type.

HTML5 Canvas “Hello World!”
As we just mentioned, one of the first things we need to do when putting Canvas on
an HTML5 page is test to see whether the entire page has loaded and all HTML elements
are present before we start performing any operations. This will become essential when
we start working with images and sounds in Canvas.

To do this, you need to work with events in JavaScript. Events are dispatched by objects
when a defined event occurs. Other objects listen for events so they can do something
based on the event. Some common events that an object in JavaScript might listen for
are key presses, mouse movements, and when something has finished loading.

The first event we need to listen for is a window object’s load event, which occurs when
the HTML page has finished loading.

To add a listener for an event, use the addEventListener() method that belongs to
objects that are part of the DOM. Because window represents the HTML page, it is the
top level of the DOM.

The addEventListener() function accepts three arguments:

Event: load
This is the named event for which we are adding a listener. Events for existing
objects like window are already defined.

Event handler function: eventWindowLoaded()
Call this function when the event occurs. In our code, we will then call the
canvasApp() function, which will start our main application execution.

useCapture: true or false
This sets the function to capture this type of event before it propagates lower in
the DOM tree of objects. We will always set this to false.

Below is the final code we will use to test to see whether the window has loaded:

window.addEventListener("load", eventWindowLoaded, false);
function eventWindowLoaded () {
 canvasApp();
}

Alternatively, you can set up an event listener for the load event in a number of other
ways:

window.onload = function()
 {
 canvasApp();
 }

HTML5 Canvas “Hello World!” | 7

or:

window.onload = canvasApp();

We will use the first method throughout this book.

Encapsulating Your JavaScript Code for Canvas
Now that we have created a way to test to see whether the HTML page has loaded, we
can start creating our JavaScript application. Because JavaScript runs in an HTML page,
it could be running with other JavaScript applications and code simultaneously. Usu-
ally, this does not cause any problems. However, there is a chance that your code might
have variables or functions that conflict with other JavaScript code on the HTML page.

Canvas applications are a bit different from other apps that run in the web browser.
Because Canvas executes its display in a defined region of the screen, its functionality
is most likely self-contained, so it should not interfere with the rest of the page, and
vice versa. You might also want to put multiple Canvas apps on the same page, so there
must be some kind of separation of JavaScript when defining the code.

To avoid this issue, you can encapsulate your variables and functions by placing them
inside another function. Functions in JavaScript are objects themselves, and objects in
JavaScript can have both properties and methods. By placing a function inside another
function, you are making the second function local in scope to the first function.

In our example, we are going to have the canvasApp() function that is called from the
window load event contain our entire Canvas application. This “Hello World!” example
will have one function named drawScreen(). As soon as canvasApp() is called, we will
call drawScreen() immediately to draw our “Hello World!” text.

The drawScreen() function is now local to canvasApp(). Any variables or functions we
create in canvasApp() will be local to drawScreen(), but not to the rest of the HTML
page or other JavaScript applications that might be running.

Here is the sample code for how we will encapsulate functions and code for our Canvas
applications:

function canvasApp() {
 drawScreen();

 ...

 function drawScreen() {

 ...

 }

}

8 | Chapter 1: Introduction to HTML5 Canvas

Adding Canvas to the HTML Page
In the <body> section of the HTML page, add a <canvas> tag using code such as the
following:

<canvas id="canvasOne" width="500" height="300">
 Your browser does not support HTML5 Canvas.
</canvas>

Now, let’s break this down to understand what we are doing. The <canvas> tag has
three main attributes. In HTML, attributes are set within pointy brackets of an HTML
tag. The three attributes we need to set are:

id
The id is the name we will use to reference this <canvas> tag in our JavaScript code.
canvasOne is the name we will use.

width
The width, in pixels, of the canvas. The width will be 500 pixels.

height
The height, in pixels, of the canvas. The height will be 300 pixels.

HTML5 elements, including canvas, have many more attributes:
tabindex, title, class, accesskey, dir, draggable, hidden, etc.

Between the opening <canvas> and closing </canvas> tags, you can put text that will be
displayed if the browser executing the HTML page does not support Canvas. For our
Canvas applications, we will use the text “Your browser does not support HTML5
Canvas.” However, you can adjust this text to say anything.

Using document to reference the canvas element in JavaScript

We will now make use of the DOM to reference the <canvas> we defined in HTML.
Recall that the document object represents every element of an HTML page after it has
loaded.

We need a reference to the Canvas object so that we will know where to display the
Canvas API calls we will make from JavaScript.

First, we will define a new variable named theCanvas that will hold the reference to the
Canvas object.

Next, we retrieve a reference to canvasOne by calling the getElementById() function
of document, and passing the name canvasOne, which we defined as the id of the
<canvas> tag we created in the HTML page:

var theCanvas = document.getElementById("canvasOne");

HTML5 Canvas “Hello World!” | 9

Testing to See Whether the Browser Supports Canvas
Now that we have a reference to the canvas element on the HTML page, we need to
test to see whether it contains a context. The Canvas context refers to the drawing
surface defined by a web browser to support Canvas. Simply put, if the context does
not exist, neither does the canvas. There are several ways to test this. This first test
looks to see whether the getContext method exists before we call it using Canvas, as
we have already defined it in the HTML page:

if (!theCanvas || !theCanvas.getContext) {
 return;
}

Actually, this tests two things. First, it tests to see whether theCanvas does not contain
false (the value returned by document.getElementById() if the named id does not exist).
Then, it tests whether the getContext() function exists.

The return statement breaks out and stops execution if the test fails.

Another method—popularized by Mark Pilgrim on his HTML5 website, http://divein
tohtml5.org—uses a function with a test of a dummy canvas created for the sole purpose
of seeing whether browser support exists:

function canvasSupport () {
 return !!document.createElement('testcanvas').getContext;
}
function canvasApp() {
 if (!canvasSupport) {
 return;
 }

}

Our favorite method is to use the modernizr.js library, which you can find here: http://
www.modernizr.com/. Modernizr—an easy-to-use, lightweight library for testing sup-
port for various web-based technologies—creates a set of static Booleans that you can
test against to see whether Canvas is supported.

To include modernizr.js in your HTML page, download the code from http://www.mod
ernizr.com/ and then include the external .js file in your HTML page:

<script src="modernizr-1.6.min.js"></script>

To test for Canvas, change the canvasSupport() function to look like this:

function canvasSupport () {
 return Modernizr.canvas;
}

We are going to use the modernizr.js method because we think it offers the best ap-
proach for testing whether Canvas is supported in web browsers.

10 | Chapter 1: Introduction to HTML5 Canvas

Retrieving the 2D Context
Finally, we need to get a reference to the 2D context so we can manipulate it. HTML5
Canvas is designed to work with multiple contexts, including a proposed 3D context.
However, for the purposes of this book, we only need to get the 2D context:

var context = theCanvas.getContext("2d");

The drawScreen() Function
It’s time to create actual Canvas API code. Every operation we perform on Canvas will
be through the context object, as it references the object on the HTML page.

We will delve into writing text, graphics, and images to HTML5 Canvas in later chap-
ters, so for now, we will only spend a very short time on the code of the drawScreen()
function.

The “screen” here is really the defined drawing area of the canvas, not the whole
browser window. We refer to it as such because within the context of the games and
applications you will write, it is effectively the “window” or “screen” into the canvas
display that you will be manipulating.

The first thing we want to do is clear the drawing area. The following two lines of code
draw a yellow box on the screen that is the same size as the canvas. fillStyle() sets
the color, and fillRect() creates a rectangle and puts it on the screen:

context.fillStyle = "#ffffaa";
context.fillRect(0, 0, 500, 300);

Notice that we are calling functions of the context. There are no screen
objects, color objects, or anything else. This is an example of the im-
mediate mode we described earlier.

Again, we will discuss the text functions of Canvas in the next chapter, but here is a
short preview of the code we will use to put the text “Hello World!” on the screen.

First, we set the color of the text in the same way we set the color of the rectangle:

context.fillStyle = "#000000";

Then we set the font size and weight:

context.font = "20px _sans";

Next, we set the vertical alignment of the font:

context.textBaseline = "top";

HTML5 Canvas “Hello World!” | 11

Finally, we print our test on the screen by calling the fillText() method of the
context object. The three parameters of this method are text string, x position, and y
position:

context.fillText ("Hello World!", 195, 80);

Let’s add some graphics to our “Hello World!” text. First, let’s load in an image and
display it. We will dive into images and image manipulation in Chapter 4, but for now,
let’s just get an image on the screen. To display an image on the canvas, you need to
create an instance of the Image() object, and set the Image.src property to the name of
the image to load.

You can also use another canvas or a video as the image to display. We
will discuss these topics in Chapters 4 and 6.

Before you display it, you need to wait for the image to load. Create a callback()
function for the Image load event by setting the onload function of the Image object.
callback() will be executed when the onload event occurs. When the image has loaded,
you then call context.drawImage(), passing three parameters to put it on the canvas:
Image object, x position, and y position:

var helloWorldImage = new Image();
helloWorldImage.src = "helloworld.gif";
helloWorldImage.onload = function () {
 context.drawImage(helloWorldImage, 160, 130);
}

Finally, let’s draw a box around the text and the image. To draw a box with no fill, use
the context.StrokeStyle() method to set a color for the stroke (the border of the box),
and then call the context.strokeRect() method to draw the rectangle border. The four
parameters for the strokeRect() method are the upper left x and y coordinates, and the
lower right x and y coordinates:

context.strokeStyle = "#000000";
context.strokeRect(5, 5, 490, 290);

The full code for the HTML5 Hello World! application is shown in Example 1-3, and
its results are illustrated in Figure 1-3.

Example 1-3. HTML5 Canvas Hello World!

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH1EX3: Your First Canvas Application </title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener("load", eventWindowLoaded, false);

12 | Chapter 1: Introduction to HTML5 Canvas

var Debugger = function () { };
Debugger.log = function (message) {
 try {
 console.log(message);
 } catch (exception) {
 return;
 }
}

function eventWindowLoaded () {
 canvasApp();
}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp () {

 if (!canvasSupport()) {
 return;
 }

 var theCanvas = document.getElementById("canvasOne");
 var context = theCanvas.getContext("2d");

 Debugger.log("Drawing Canvas");

 function drawScreen() {
 //background
 context.fillStyle = "#ffffaa";
 context.fillRect(0, 0, 500, 300);

 //text
 context.fillStyle = "#000000";
 context.font = "20px _sans";
 context.textBaseline = "top";
 context.fillText ("Hello World!", 195, 80);

 //image
 var helloWorldImage = new Image();
 helloWorldImage.src = "helloworld.gif";
 helloWorldImage.onload = function () {
 context.drawImage(helloWorldImage, 160, 130);
 }

 //box
 context.strokeStyle = "#000000";
 context.strokeRect(5, 5, 490, 290);

 }

 drawScreen();

HTML5 Canvas “Hello World!” | 13

}

</script>
</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">
<canvas id="canvasOne" width="500" height="300">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Figure 1-3. HTML5 Canvas Hello World!

Debugging with Console.log
There is one more thing to discuss before we explore bigger and better things beyond
“Hello World!” In this book, we have implemented a very simple debugging method-
ology using the console.log functionality of modern web browsers. This function lets
you log text messages to the JavaScript console to help find problems (or opportunities!)
with your code. Any browser that has a JavaScript console (Chrome, Opera, Safari,
Firefox with Firebug installed) can make use of console.log. However, browsers with-
out console.log support throw a nasty error.

To handle this error, we use a wrapper around console.log that only makes the call if
the function is supported. The wrapper creates a class named Debugger, and then creates
a static function named Debugger.log that can be called from anywhere in your code,
like this:

Debugger.log("Drawing Canvas");

14 | Chapter 1: Introduction to HTML5 Canvas

Here is the code for the console.log() functionality:

var Debugger = function () { };
Debugger.log = function (message) {
 try {
 console.log(message);
 } catch (exception) {
 return;
 }
}

The 2D Context and the Current State
The HTML5 2D context (the CanvasRenderingContext2D object), retrieved by a call to
the getContext() method of the Canvas object, is where all the action takes place. The
CanvasRenderingContext2D contains all the methods and properties we need to draw
onto the canvas. The CanvasRenderingContext2D (or context, as we will call it hereafter)
uses a Cartesian coordinate system with 0,0 at the upper left and corner of the canvas,
and coordinates increasing in value to the left and down.

However, all of these properties and methods are used in conjunction with current
state, a concept that must be grasped before you can really understand how to work
with HTML5 Canvas. The current state is actually a stack of drawing states that apply
globally to the entire canvas. You will manipulate these states when drawing on the
canvas. These states include:

Transformation matrix
Methods for scale, rotate, transform, and translate

Clipping region
Created with the clip() method

Properties of the context
Properties include strokeStyle, fillStyle, globalAlpha, lineWidth, lineCap, line
Join, miterLimit, shadowOffsetX, shadowOffsetY, shadowBlur, shadowColor, global
CompositeOperation, font, textAlign, and textBaseline.

Don’t worry; these should not look familiar to you just yet. We will discuss these prop-
erties in depth in the next three chapters.

Remember earlier in this chapter when we discussed immediate mode versus retained
mode? The canvas is an immediate mode drawing surface, which means everything
needs to be redrawn every time something changes. There are some advantages to this;
for example, global properties make it very easy to apply effects to the entire screen.
Once you get your head around it, the act of redrawing the screen every time there is
an update makes the process of drawing to the canvas straightforward and simple.

On the other hand, retained mode is when a set of objects is stored by a drawing surface
and manipulated with a display list. Flash and Silverlight work in this mode. Retained
mode can be very useful for creating applications that rely on multiple objects with

The 2D Context and the Current State | 15

their own independent states. Many of the same applications that could make full use
of the canvas (games, activities, animations) are often easier to code with a retained
mode drawing surface, especially for beginners.

Our challenge is to take advantage of the immediate mode drawing surface, while add-
ing functionality to our code to help it act more like it works in retained mode.
Throughout this book we will discuss strategies that will help take this immediate mode
operation and make it easier to manipulate through code.

The HTML5 Canvas Object
Recall that the Canvas object is created by placing the <canvas> tag in the <body> portion
of an HTML page. You can also create an instance of a canvas in code like this:

var theCanvas = document.createElement("canvas");

The Canvas object has two associated properties and methods that can be accessed
through JavaScript: width and height. These tell you the current width and height of
the canvas rendered on the HTML page. It is important to note that they are not read-
only; i.e., they can be updated in code and changed on an HTML page. What does this
mean? It means you can dynamically resize the canvas on the HTML page without
reloading.

You can also use CSS styles to change the scale of the canvas. Unlike
resizing, scaling takes the current canvas bitmapped area and resamples
it to fit into the size specified by the width and height attributes of the
CSS style. For example, to scale the canvas to a 400×400 area, you might
use this CSS style:

style="width: 400px; height:400px"

We include an example of scaling the Canvas with a transformation
matrix in Chapter 3.

There are also two public methods for the Canvas object. The first is getContext(), which
we used earlier in this chapter. We will continue to use it throughout this book to
retrieve a reference to the Canvas 2D context so we can draw onto the canvas. The
second property is toDataURL(). This method will return a string of data that represents
the bitmapped image of the Canvas object as it is currently rendered. It’s like a snapshot
of the screen. By supplying different MIME types as a parameter, you can retrieve the
data in different formats. The basic format is an image/png, but image/jpeg and other
formats can be retrieved. We will use the toDataURL() in the next application to export
an image of the canvas into another browser window.

16 | Chapter 1: Introduction to HTML5 Canvas

Another Example: Guess The Letter
Now we will take a quick look at a more involved example of a “Hello World!”-type
application, the game “Guess The Letter.” We’ve included this example to illustrate
how much more Canvas programming is done in JavaScript than in the Canvas API.

In this game, shown in Figure 1-4, the player’s job is to guess the letter of the alphabet
the computer has chosen randomly. The game keeps track of how many guesses the
player has made, lists the letters he has already guessed, and tells the player whether
he needs to guess higher (toward Z) or lower (toward A).

Figure 1-4. HTML5 Canvas “Guess The Letter” game

How the Game Works
This game is set up with the same basic structure as “Hello World!” canvasApp() is the
main function, and all other functions are defined as local to canvasApp(). We use a
drawScreen() function to render text on the canvas. However, there are some other
functions included as well, which are described next.

The “Guess The Letter” Game Variables
Here is a rundown of the variables we will use in the game. They are all defined and
initialized in canvasApp(), so they have scope to the encapsulated functions that we
define locally.

Another Example: Guess The Letter | 17

guesses
This variable holds the number of times the player has pressed a letter. The lower
the number, the better he has done in the game.

message
The content of this variable is displayed to give the user instructions on how to play.

letters
This array holds one of each letter of the alphabet. We will use this array to both
randomly choose a secret letter for the game, and to figure out the relative position
of the letter in the alphabet.

today
This variable holds the current date. It is displayed on the screen but has no other
purpose.

letterToGuess
This variable holds the current game’s secret letter that needs to be guessed.

higherOrLower
This variable holds the text “Higher” or “Lower” depending on where the last
guessed letter is in relation to the secret letter. If the secret letter is closer to “a,”
we give the “Lower” instruction. If the letter is closer to “z,” we give the “Higher”
instruction.

lettersGuessed
This array holds the current set of letters the player has guessed already. We will
print this list on the screen to help the player remember what letters he has already
chosen.

gameOver
This variable is set to false until the player wins. We will use this to know when
to put the “You Win” message on the screen, and to keep the player from guessing
after he has won.

Here is the code:

 var guesses = 0;
 var message = "Guess The Letter From a (lower) to z (higher)";
 var letters = [
 "a","b","c","d","e","f","g","h","i","j","k","l","m","n","o",
 "p","q","r","s","t","u","v","w","x","y","z"
];
 var today = new Date();
 var letterToGuess = "";
 var higherOrLower = "";
 var lettersGuessed;
 var gameOver = false;

18 | Chapter 1: Introduction to HTML5 Canvas

The initGame() Function
The initGame() function sets up the game for the player. The two most important blocks
of code are as follows. This code finds a random letter from the letters array and stores
it in the letterToGuess variable:

var letterIndex = Math.floor(Math.random() * letters.length);
letterToGuess = letters[letterIndex];

This code adds an event listener to the window object of the DOM to listen for the
keyboard keyup event. When a key is pressed, the eventKeyPressed event handler is
called to test the letter pressed:

window.addEventListener("keyup",eventKeyPressed,true);

Here is the full code for the function:

function initGame() {
 var letterIndex = Math.floor(Math.random() * letters.length);
 letterToGuess = letters[letterIndex];
 guesses = 0;
 lettersGuessed = [];
 gameOver = false;
 window.addEventListener("keyup",eventKeyPressed,true);
 drawScreen();
}

The eventKeyPressed() Function
This function, called when the player presses a key, contains most of the action in this
game. Every event handler function in JavaScript is passed an event object that has
information about the event that has taken place. We use the e argument to hold that
object.

The first test we make is to see whether the gameOver variable is false. If so, we continue
to test the key that was pressed by the player; the next two lines of code are used for
that purpose. The first line of code gets the key-press value from the event, and converts
it to an alphabetic letter that we can test with the letter stored in letterToGuess:

var letterPressed = String.fromCharCode(e.keyCode);

The next line of code converts the letter to lowercase so that we can test uppercase
letters if the player unintentionally has Caps Lock on:

letterPressed = letterPressed.toLowerCase();

Next, we increase the guesses count to display, and use the Array.push() method to
add the letter to the lettersGuessed array:

guesses++;
lettersGuessed.push(letterPressed);

Another Example: Guess The Letter | 19

Now it is time to test the current game state to give feedback to the player. First, we
test to see whether letterPressed is equal to letterToGuess. If so, the player has won
the game:

if (letterPressed == letterToGuess) {
 gameOver = true;

If the player has not won, we need to get the index of letterToGuess and the index of
letterPressed in the letters array. We are going to use these values to figure out
whether we should display “Higher,” “Lower,” or “That is not a letter.” To do this, we
use the indexOf() array method to get the relative index of each letter. Because we
alphabetized the letters in the array, it is very easy to test which message to display:

} else {
 letterIndex = letters.indexOf(letterToGuess);
 guessIndex = letters.indexOf(letterPressed);

Now we make the test. First, if guessIndex is less than zero, it means that the call to
indexOf() returned -1, and the key press was not a letter. We then display an error
message:

if (guessIndex < 0) {
 higherOrLower = "That is not a letter";

The rest of the tests are simple. If guessIndex is greater than letterIndex, we set the
higherOrLower text to “Lower.” Conversely, if guessIndex is less than letterIndex, we
set the higherOrLower test to “Higher”:

 } else if (guessIndex > letterIndex) {
 higherOrLower = "Lower";
 } else {
 higherOrLower = "Higher";
 }

}

Finally, we call drawScreen() to paint the screen:

drawScreen();

Here is the full code for the function:

function eventKeyPressed(e) {
 if (!gameOver) {
 var letterPressed = String.fromCharCode(e.keyCode);
 letterPressed = letterPressed.toLowerCase();
 guesses++;
 lettersGuessed.push(letterPressed);

 if (letterPressed == letterToGuess) {
 gameOver = true;
 } else {

 letterIndex = letters.indexOf(letterToGuess);
 guessIndex = letters.indexOf(letterPressed);
 Debugger.log(guessIndex);

20 | Chapter 1: Introduction to HTML5 Canvas

 if (guessIndex < 0) {
 higherOrLower = "That is not a letter";
 } else if (guessIndex > letterIndex) {
 higherOrLower = "Lower";
 } else {
 higherOrLower = "Higher";
 }

 }
 drawScreen();
 }
 }

The drawScreen() Function
Now we get to drawScreen(). The good news is that we have seen almost all of this
before—there are only a few differences from “Hello World!” For example, we paint
multiple variables on the screen using the Canvas Text API. We only set context.text
Baseline = 'top'; once for all the text we are going to display. Also, we change the
color using context.fillStyle, and the font with context.font.

The most interesting thing we display here is the content of the lettersGuessed array.
On the canvas, the array is printed as a set of comma-separated values, like this:

Letters Guessed: p,h,a,d

To print this value, all we do is use the toString() method of the lettersGuessed array,
which prints out the values of an array as—you guessed it—comma-separated values:

context.fillText ("Letters Guessed: " + lettersGuessed.toString(), 10, 260);

We also test the gameOver variable. If it is true, we put You Got It! on the screen in giant
40px text so the user knows he has won.

Here is the full code for the function:

function drawScreen() {
 //Background
 context.fillStyle = "#ffffaa";
 context.fillRect(0, 0, 500, 300);
 //Box
 context.strokeStyle = "#000000";
 context.strokeRect(5, 5, 490, 290);

 context.textBaseline = "top";
 //Date
 context.fillStyle = "#000000";
 context.font = "10px _sans";
 context.fillText (today, 150 ,10);
 //Message
 context.fillStyle = "#FF0000";
 context.font = "14px _sans";
 context.fillText (message, 125, 30);

Another Example: Guess The Letter | 21

 //Guesses
 context.fillStyle = "#109910";
 context.font = "16px _sans";
 context.fillText ('Guesses: ' + guesses, 215, 50);
 //Higher Or Lower
 context.fillStyle = "#000000";
 context.font = "16px _sans";
 context.fillText ("Higher Or Lower: " + higherOrLower, 150,125);
 //Letters Guessed
 context.fillStyle = "#FF0000";
 context.font = "16px _sans";
 context.fillText ("Letters Guessed: " + lettersGuessed.toString(), 10, 260);
 if (gameOver) {
 context.fillStyle = "#FF0000";
 context.font = "40px _sans";
 context.fillText ("You Got It!", 150, 180);
 }
 }

Exporting Canvas to an Image
Earlier, we briefly discussed the toDataUrL() property of the Canvas object. We are going
to use that property to let the user create an image of the game screen at any time. This
acts almost like a screen-capture utility for games made on Canvas.

We need to create a button in the HTML page that the user can press to get the screen
capture. We will add this button to <form> and give it the id createImageData:

<form>
<input type="button" id="createImageData" value="Export Canvas Image">
</form>

In the init() function, we retrieve a reference to that form element by using the
getElementById() method of the document object. We then set an event handler for the
button “click” event as the function createImageDataPressed():

var formElement = document.getElementById("createImageData");
formElement.addEventListener('click', createImageDataPressed, false);

In canvasApp(), we define the createImageDataPressed() function as an event handler.
This function calls window.open(), passing the return value of the Canvas.toDataUrl()
method as the source for the window. Since this data forms a valid PNG, the image is
displayed in the new window:

function createImageDataPressed(e) {

 window.open(theCanvas.toDataURL(),"canvasImage","left=0,top=0,width=" +
 theCanvas.width + ",height=" + theCanvas.height +",toolbar=0,resizable=0");
 }

22 | Chapter 1: Introduction to HTML5 Canvas

We will discuss this process in depth in Chapter 3.

The Final Game Code
Example 1-4 shows the full code for the Guess The Letter game.

Example 1-4. Guess The Letter game

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH1EX4: Guesss The Letter Game</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">

window.addEventListener('load', eventWindowLoaded, false);

var Debugger = function () { };
Debugger.log = function (message) {
 try {
 console.log(message);
 } catch (exception) {
 return;
 }
}

function eventWindowLoaded() {

 canvasApp();
}

function canvasSupport () {
 return Modernizr.canvas;
}

function eventWindowLoaded() {

 canvasApp();
}

function canvasApp() {
 var guesses = 0;
 var message = "Guess The Letter From a (lower) to z (higher)";
 var letters = [
 "a","b","c","d","e","f","g","h","i","j","k","l","m","n","o",
 "p","q","r","s","t","u","v","w","x","y","z"
];
 var today = new Date();
 var letterToGuess = "";
 var higherOrLower = "";

Another Example: Guess The Letter | 23

 var lettersGuessed;
 var gameOver = false;

 if (!canvasSupport()) {
 return;
 }

 var theCanvas = document.getElementById("canvasOne");
 var context = theCanvas.getContext("2d");

 initGame();

 function initGame() {
 var letterIndex = Math.floor(Math.random() * letters.length);
 letterToGuess = letters[letterIndex];
 guesses = 0;
 lettersGuessed = [];
 gameOver = false;
 window.addEventListener("keyup",eventKeyPressed,true);
 var formElement = document.getElementById("createImageData");
 formElement.addEventListener('click', createImageDataPressed, false);
 drawScreen();
 }

 function eventKeyPressed(e) {
 if (!gameOver) {
 var letterPressed = String.fromCharCode(e.keyCode);
 letterPressed = letterPressed.toLowerCase();
 guesses++;
 lettersGuessed.push(letterPressed);

 if (letterPressed == letterToGuess) {
 gameOver = true;
 } else {

 letterIndex = letters.indexOf(letterToGuess);
 guessIndex = letters.indexOf(letterPressed);
 Debugger.log(guessIndex);
 if (guessIndex < 0) {
 higherOrLower = "That is not a letter";
 } else if (guessIndex > letterIndex) {
 higherOrLower = "Lower";
 } else {
 higherOrLower = "Higher";
 }

 }
 drawScreen();
 }
 }

 function drawScreen() {
 //Background
 context.fillStyle = "#ffffaa";
 context.fillRect(0, 0, 500, 300);

24 | Chapter 1: Introduction to HTML5 Canvas

 //Box
 context.strokeStyle = "#000000";
 context.strokeRect(5, 5, 490, 290);
 context.textBaseline = "top";
 //Date
 context.fillStyle = "#000000";
 context.font = "10px _sans";
 context.fillText (today, 150 ,10);
 //Message
 context.fillStyle = "#FF0000";
 context.font = "14px _sans";
 context.fillText (message, 125, 30);
 //Guesses
 context.fillStyle = "#109910";
 context.font = "16px _sans";
 context.fillText ('Guesses: ' + guesses, 215, 50);
 //Higher Or Lower
 context.fillStyle = "#000000";
 context.font = "16px _sans";
 context.fillText ("Higher Or Lower: " + higherOrLower, 150,125);
 //Letters Guessed
 context.fillStyle = "#FF0000";
 context.font = "16px _sans";
 context.fillText ("Letters Guessed: " + lettersGuessed.toString(), 10, 260);
 if (gameOver) {
 context.fillStyle = "#FF0000";
 context.font = "40px _sans";
 context.fillText ("You Got It!", 150, 180);
 }
 }

 function createImageDataPressed(e) {

 window.open(theCanvas.toDataURL(),"canvasImage","left=0,top=0,width=" +
 theCanvas.width + ",height=" + theCanvas.height +",toolbar=0,resizable=0");
 }

}

</script>
</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">
<canvas id="canvasOne" width="500" height="300">
 Your browser does not support HTML5 Canvas.
</canvas>
<form>
<input type="button" id="createImageData" value="Export Canvas Image">
</form>
</div>
</body>
</html>

Another Example: Guess The Letter | 25

What’s Next
So now you should have a basic understanding of the HTML and JavaScript we will
use to render and control HTML5 Canvas on an HTML page. In the next chapter, we
will take this information and expand on it to create an interactive application that uses
the canvas to render information on the screen.

26 | Chapter 1: Introduction to HTML5 Canvas

CHAPTER 2

Drawing on the Canvas

Using HTML5 Canvas effectively requires a strong foundation in drawing, coloring,
and transforming basic two-dimensional shapes. While the selection of built-in shapes
is relatively limited, we can draw any shape we desire using a series of line segments
called paths, which we will discuss in the upcoming section “Using Paths to Create
Lines” on page 30.

The HTML5 Canvas API is well covered in many online forms. The
W3C site has an exhaustive and constantly updated reference that de-
tails the features of the Canvas 2D Drawing API. It can be viewed at
http://dev.w3.org/html5/canvas-api/canvas-2d-api.html.

However, this online reference lacks concrete examples on using the
API. Rather than simply reprinting this entire specification, we will
spend our time creating examples to explain and explore as many fea-
tures as we have space to cover.

The Basic File Setup for This Chapter
As we proceed through the Drawing API, all the examples in this chapter will use the
same basic file setup, shown below. Use this code as the basis for all of the examples
we create. You will only have to change the contents of the drawScreen() function:

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Ch2BaseFile - Template For Chapter 2 Examples</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {

 canvasApp();

27

}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp(){

if (!canvasSupport()) {
 return;
 }else{
 var theCanvas = document.getElementById("canvas");
 var context = theCanvas.getContext("2d");
 }

 drawScreen();

 function drawScreen() {
 //make changes here.
 context.fillStyle = '#aaaaaa';
 context.fillRect(0, 0, 200, 200);
 context.fillStyle = '#000000';
 context.font = '20px _sans';
 context.textBaseline = 'top';
 context.fillText ("Canvas!", 0, 0);

 }
}

</script>
</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">
<canvas id="canvas" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

The Basic Rectangle Shape
Let’s get our feet wet by looking at the single primitive, built-in geometric shape on
Canvas—the rectangle. On Canvas, basic rectangle shapes can be drawn in three dif-
ferent ways: filling, stroking, or clearing. We can also build rectangles (or any other
shape) by using paths, which we will cover in the next section.

First, let’s look at the API functions used for these three operations:

fillRect(x,y,width,height)
Draws a filled rectangle at position x,y for width and height.

28 | Chapter 2: Drawing on the Canvas

strokeRect(x,y,width,height)
Draws a rectangular outline at position x,y for width and height. This makes use
of the current strokeStyle, lineWidth, lineJoin, and miterLimit settings.

clearRect(x,y,width,height)
Clears the specified area and makes it fully transparent (using transparent black as
the color) starting at position x,y for width and height.

Before we can use any of these functions, we will need to set up the fill or stroke style
that will be used when drawing to the canvas.

The very basic way to set these styles is to use a color value represented by a 24-bit hex
string. Here is an example from our first demonstration:

context.fillStyle = '#000000';
context.strokeStyle = '#ff00ff';

In Example 2-1, the fill style is simply set to be the RGB color black, while the stroke
style is a classic purple color. The results are shown in Figure 2-1:

Example 2-1. Basic rectangles

function drawScreen() {
 context.fillStyle = '#000000';
 context.strokeStyle = '#ff00ff';
 context.lineWidth = 2;
 context.fillRect(10,10,40,40);
 context.strokeRect(0, 0,60,60);
 context.clearRect(20,20,20,20);

}

Figure 2-1. Basic rectangles

The Canvas State
When we draw on the Canvas context, we can make use of a stack of so-called drawing
states. Each of these states stores data about the Canvas context at any one time. Here
is a list of the data stored in the stack for each state:

• Transformation matrix information such as rotations or translations using the
context.rotate() and context.setTransform() methods

• The current clipping region

The Canvas State | 29

• The current values for canvas attributes, such as (but not limited to):

— globalAlpha

— globalCompositeOperation

— strokeStyle

— textAlign, textBaseline

— lineCap, lineJoin, lineWidth, miterLimit

— fillStyle

— font

— shadowBlur, shadowColor, shadowOffsetX, and shadowOffsetY

We will cover these states later in this chapter.

What’s Not Part of the State?
The current path (which we will explore later in this chapter) and current bitmap (see
Chapter 4) being manipulated on the Canvas context are not part of the saved state.
This very important feature will allow us to draw and animate individual objects on
the canvas. The section “Simple Canvas Transformations” on page 41 utilizes the
Canvas state to apply transformations to only the current shape being constructed and
drawn, leaving the rest of the canvas not transformed.

How Do We Save and Restore the Canvas State?
To save (push) the current state to the stack, call:

context.save()

To restore the canvas by “popping” the last state saved to the stack, use:

context.restore()

Using Paths to Create Lines
Paths are a method we can use to draw any shape on the canvas. A path is simply a list
of points, and lines to be drawn between those points. A Canvas context can only have
a single “current” path, which is not stored as part of the current drawing state when
the context.save() method is called.

Context for paths is a critical concept to understand, because it will enable you to
transform only the current path on the canvas.

30 | Chapter 2: Drawing on the Canvas

Starting and Ending a Path
The beginPath() function call starts a path, and the closePath() function call ends the
path. When you connect two points inside a path, it is referred to as a subpath. A
subpath is considered “closed” if the final point connects to the first point.

The current transformation matrix will affect everything drawn in this
path. As we will see when we explore the upcoming section on trans-
formations, we will always want to set the transformation matrix to the
identity (or reset) if we do not want any transformation applied to a path.

The Actual Drawing
The most basic path is controlled by a series of moveTo() and lineTo() commands, as
shown in Example 2-2.

Example 2-2. A simple line path

function drawScreen() {
 context.strokeStyle = "black"; //need list of available colors
 context.lineWidth = 10;
 context.lineCap = 'square';
 context.beginPath();
 context.moveTo(20, 0);
 context.lineTo(100, 0);
 context.stroke();
 context.closePath();

}

Figure 2-2 shows an example of this output.

Figure 2-2. A simple line path

Example 2-2 simply draws a 10-pixel-wide horizontal line (or stroke) from position
20,0 to position 100,0.

We have also added the lineCap and strokeStyle attributes. Let’s take a brief look at
the various attributes we can apply to a line before we move on to some more advanced
drawing.

Using Paths to Create Lines | 31

lineCap attributes

The lineCap is the end of a line drawn on the context. It can be one of
three values:

butt
The default; a flat edge that is perpendicular to the edge of the line.

round
A semicircle that will have a diameter that is the length of the line.

square
A rectangle with the length of the line width and the width of half the line width
placed flat perpendicular to the edge of the line.

lineJoin attributes

The lineJoin is the “corner” that is created when two lines meet. This
is called a join. A filled triangle is created at the join, and we can set its basic properties
with the lineJoin Canvas attribute.

miter
The default; an edge is drawn at the join. The miterLimit is the maximum allowed
ratio of miter length to line width (the default is 10).

bevel
A diagonal edge is drawn at the join.

round
A round edge is drawn at the join.

lineWidth

The lineWidth (default = 1.0) depicts the thickness of the line.

strokeStyle

The strokeStyle defines the color or style that will be used for lines and around shapes
(as we saw with the simple rectangles in Example 2-2).

Examples of More Advanced Line Drawing
Example 2-3 shows these attributes in action; the results are depicted in Figure 2-3.
There are a few oddities when drawing lines on the canvas, which we will point out
along the way.

context.lineCap.

context.lineJoin.

32 | Chapter 2: Drawing on the Canvas

Example 2-3. Line cap and join

function drawScreen() {

 // Sample 1: round end, bevel join, at top left of canvas
 context.strokeStyle = "black"; //need list of available colors
 context.lineWidth = 10;
 context.lineJoin = 'bevel';
 context.lineCap = 'round';
 context.beginPath();
 context.moveTo(0, 0);
 context.lineTo(25, 0);
 context.lineTo(25,25);
 context.stroke();
 context.closePath();

 // Sample 2: round end, bevel join, not at top or left of canvas
 context.beginPath();
 context.moveTo(10, 50);
 context.lineTo(35, 50);
 context.lineTo(35,75);
 context.stroke();
 context.closePath();

 // Sample 3: flat end, round join, not at top or left of canvas
 context.lineJoin = 'round';
 context.lineCap = 'butt';
 context.beginPath();
 context.moveTo(10, 100);
 context.lineTo(35, 100);
 context.lineTo(35,125);
 context.stroke();
 context.closePath();

 }

Figure 2-3. Line cap and join

These three line and join samples should help illustrate some of the combinations of
attributes we can use to draw paths on the canvas.

The first sample attempts to draw starting at the top left of the canvas, resulting in a
strange image. Canvas paths are drawn outward in both the x and y directions from
the center of the pixel it begins on. For this reason, the top line in Sample 1 seems to
be thinner than the 10 pixels we specified. In addition, the “round” end of the top-left
horizontal line segment cannot be seen because both of these were drawn off the screen

Using Paths to Create Lines | 33

in the “negative” value areas of the screen coordinates. Furthermore, the diagonal
“bevel” at the lineJoin is not drawn.

Sample 2 rectifies the problems in Sample 1 by offsetting the beginning of the drawing
away from the top left. This allows the entire horizontal line to be drawn, as well as the
“round” lineCap and the “bevel” lineJoin.

Sample 3 shows us eliminating the extra lineCap in favor of the default “butt,” and
changing the lineJoin to “round.”

Advanced Path Methods
Let’s take a deeper look at some of the other methods we can use to draw paths on the
canvas, including arcs and curves that can be combined to create complex images.

Arcs
There are four functions we can use to draw arcs and curves onto the canvas. An arc
can be a complete circle or any part of a circle

context.arc()
context.arc(x, y, radius, startAngle, endAngle, anticlockwise)

The x and y values define the center of our circle, and the radius will be the radius of
the circle upon which our arc will be drawn. startAngle and endAngle are in radians,
not degrees. anticlockwise is a true or false value that defines the direction of the arc.

For example, if we want to draw a circle with a center point at position 100,100 and
with a radius of 20, as shown in Figure 2-4, we could use the code below for the contents
of drawScreen():

context.arc(100, 100, 20, (Math.PI/180)*0, (Math.PI/180)*360, false);

Example 2-4 illustrates the code necessary to create a simple circle.

Example 2-4. A circle arc

function drawScreen() {

 context.beginPath();
 context.strokeStyle = "black";
 context.lineWidth = 5;
 context.arc(100, 100, 20, (Math.PI/180)*0, (Math.PI/180)*360, false);

 //full circle
 context.stroke();
 context.closePath();

}

34 | Chapter 2: Drawing on the Canvas

Figure 2-4. A basic circle arc

Notice that we have to convert our start angle (0) and our end angle (360) into radians
by multiplying them by (Math.PI/180). By using 0 as the start angle and 360 as the end,
we create a full circle.

We can also draw a segment of a circle by not specifying the entire 0 to 360 start and
stop angles. This code for drawScreen() will create one-quarter of a circle drawn clock-
wise, as shown in Figure 2-5:

context.arc(100, 200, 20, (Math.PI/180)*0, (Math.PI/180)*90, false);

Figure 2-5. A one-quarter circle arc

If we want to draw everything but the 0–90 angle, as shown in Figure 2-6, we can employ
the anticlockwise argument and set it to true:

context.arc(100, 200, 20, (Math.PI/180)*0, (Math.PI/180)*90, true);

Figure 2-6. A three-fourths circle arc

context.arcTo()
context.arcTo(x1, y1, x2, y2, radius)

The arcTo method has only been implemented in the latest browsers—perhaps because
its capabilities can be replicated by the arc() function. It takes in a point (x1,y1) and
draws a straight line from the current path position to this new position. Then it draws
an arc from that point to the y1,y2 point using the given radius.

The context.arcTo method will work only if the current path has at least one subpath.
So, let’s start with a line from position 0,0 to position 100,200. Then we will build our
small arc. It will look a little like a bent wire coat hanger (for lack of a better description),
as shown in Figure 2-7:

context.moveTo(0,0);
context.lineTo(100, 200);
context.arcTo(350,350,100,100,20);

Advanced Path Methods | 35

Figure 2-7. An arcTo() example

Bezier Curves
Bezier curves, which are far more flexible than arcs, come in both the cubic and quad-
ratic types:

• context.bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y)

• context.quadraticCurveTo(cpx, cpy, x, y)

The Bezier curve is defined in 2D space by a “start point,” an “end point,” and one or
two “control” points, which determine how the curve will be constructed on the canvas.
A normal cubic Bezier curve uses two points, while a quadric version uses a single point.

The quadratic version, shown in Figure 2-8, is the simplest, only needing the end point
(last) and a single point in space to use as a control point (first):

context.moveTo(0,0);
context.quadraticCurveTo(100,25,0,50);

Figure 2-8. A simple quadratic Bezier curve

This curve starts at 0,0 and ends at 0,50. The point in space we use to create our arc is
100,25. This point is roughly the center of the arc vertically. The 100 value for the single
control point pulls the arc out to make an elongated curve.

36 | Chapter 2: Drawing on the Canvas

The cubic Bezier curve offers more options because we have two control points to work
with. The result is that curves—such as the classic “S” curve shown in Figure 2-9—are
easier to make:

context.moveTo(150,0);
context.bezierCurveTo(0,125,300,175,150,300);

Figure 2-9. A Bezier curve with two control points

The Canvas Clipping Region
Combining the save() and restore() functions with the Canvas clip region limits the
drawing area for a path and its subpaths. We do this by first setting rect() to a rectangle
that encompasses the region we would like to draw in, and then calling the clip()
function. This will set the clip region to be the rectangle we defined with the rect()
method call. Now, no matter what we draw onto the current context, it will only display
the portion that is in this region. Think of this as a sort of mask that you can use for
your drawing operations. Example 2-5 shows how this works, producing the clipped
result shown in Figure 2-10.

Example 2-5. The Canvas clipping region

function drawScreen() {

 //draw a big box on the screen
 context.fillStyle = "black";
 context.fillRect(10, 10, 200, 200);
 context.save();
 context.beginPath();

Advanced Path Methods | 37

 //clip the canvas to a 50×50 square starting at 0,0
 context.rect(0, 0, 50, 50);
 context.clip();

 //red circle
 context.beginPath();
 context.strokeStyle = "red"; //need list of available colors
 context.lineWidth = 5;
 context.arc(100, 100, 100, (Math.PI/180)*0, (Math.PI/180)*360, false);
 //full circle
 context.stroke();
 context.closePath();

 context.restore();

 //reclip to the entire canvas
 context.beginPath();
 context.rect(0, 0, 500, 500);
 context.clip();

 //draw a blue line that is not clipped
 context.beginPath();
 context.strokeStyle = "blue"; //need list of available colors
 context.lineWidth = 5;
 context.arc(100, 100, 50, (Math.PI/180)*0, (Math.PI/180)*360, false);
 //full circle
 context.stroke();
 context.closePath();

}

Figure 2-10. The Canvas clipping region

Example 2-5 first draws a large 200×200 black rectangle onto the canvas. Next, we set
our Canvas clipping region to rect(0,0,50,50). The clip() call then clips the canvas
to those specifications. When we draw our full red circle arc, we only see the portion
inside this rectangle. Finally, we set the clipping region back to rect(0,0,500,500) and
draw a new blue circle. This time, we can see the entire circle on the canvas.

38 | Chapter 2: Drawing on the Canvas

Other Canvas methods can be used with the clipping region. The most
obvious is the arc() function:

arc(float x, float y, float radius, float startAngle,
float endAngle, boolean anticlockwise)

This can be used to create a circular clipping region instead of a rectan-
gular one.

Compositing on the Canvas
Compositing refers to how finely we can control the transparency and layering effects
of objects as we draw them to the canvas. There are two attributes we can use to control
Canvas compositing operations: globalAlpha and globalCompositeOperation.

globalAlpha
The globalAlpha Canvas property defaults to 1.0 (completely opaque) and can be
set from 0.0 (completely transparent) through 1.0. This Canvas property must be
set before a shape is drawn to the canvas.

globalCompositeOperation
The globalCompositeOperation value controls how shapes are drawn into the cur-
rent Canvas bitmap after both globalAlpha and any transformations have been
applied (see the next section, “Simple Canvas Transformations” on page 41, for
more information).

In the following list, the “source” is the shape we are about to draw to the canvas,
and the “destination” refers to the current bitmap displayed on the canvas.

copy
Where they overlap, displays the source and not the destination.

destination-atop
Destination atop the source. Where the source and destination overlap and
both are opaque, displays the destination image. Displays the source image
wherever the source image is opaque but the destination image is transparent.
Displays transparency elsewhere.

destination-in
Destination in the source. Displays the destination image wherever both the
destination image and source image are opaque. Displays transparency else-
where.

destination-out
Destination out source. Displays the destination image wherever the destina-
tion image is opaque and the source image is transparent. Displays transpar-
ency elsewhere.

Compositing on the Canvas | 39

destination-over
Destination over the source. Displays the destination image wherever the des-
tination image is opaque. Displays the source image elsewhere.

lighter
Source plus destination. Displays the sum of the source image and destination
image, with color values approaching 1.0 as a limit.

source-atop
Source atop the destination. Displays the source image wherever both images
are opaque. Displays the destination image wherever the destination image is
opaque but the source image is transparent. Displays transparency elsewhere.

source-in
Source in the destination. Displays the source image wherever both the source
image and destination image are opaque. Displays transparency elsewhere.

source-out
Source out destination. Displays the source image wherever the source image
is opaque and the destination image is transparent. Displays transparency
elsewhere.

source-over
(Default.) Source over destination. Displays the source image wherever the
source image is opaque. Displays the destination image elsewhere.

xor
Source xor destination. Exclusive OR of the source image and destination
image.

Example 2-6 shows how some of these values can affect how shapes are drawn to the
canvas, producing Figure 2-11.

Example 2-6. Canvas compositing example

function drawScreen() {

 //draw a big box on the screen
 context.fillStyle = "black"; //
 context.fillRect(10, 10, 200, 200);

 //leave globalCompositeOperation as is
 //now draw a red square
 context.fillStyle = "red";
 context.fillRect(1, 1, 50, 50);

 //now set it to source-over
 context.globalCompositeOperation = "source-over";
 //draw a red square next to the other one
 context.fillRect(60, 1, 50, 50);

40 | Chapter 2: Drawing on the Canvas

 //now set to destination-atop
 context.globalCompositeOperation = "destination-atop";
 context.fillRect(1, 60, 50, 50);

 //now set globalAlpha
 context.globalAlpha = .5;

 //now set to source-atop
 context.globalCompositeOperation = "source-atop";
 context.fillRect(60, 60, 50, 50);

 }

Figure 2-11. Canvas compositing example

As you can see in this example, we have toyed a little with both the globalComposite
Operation and the globalAlpha Canvas properties. When we assign the string source-
over, we are essentially resetting the globalCompositeOperation back to the default. We
then create some red squares to demonstrate a few of the various compositing options
and combinations. Notice that destination-atop switches the newly drawn shapes un-
der the current Canvas bitmap, and that the globalAlpha property only affects shapes
that are drawn after it is set. This means we don’t have to save() and restore() the
Canvas state to set the next drawn shape to a new transparency value.

In the next section, we will look at some transformations that affect the entire canvas.
As a result, if we want to transform only the newly drawn shape, we will have to use
the save() and restore() functions.

Simple Canvas Transformations
Transformations on the canvas refer to the mathematical adjustment of physical prop-
erties of drawn shapes. The two most commonly used shape transformations are scale
and rotate, which we will focus on in this section.

Simple Canvas Transformations | 41

Under the hood, a mathematical matrix operation applies to all transformations. Luck-
ily, you do not need to understand this to use simple Canvas transformations. We will
discuss how to apply rotation, translation, and scale transformations by changing sim-
ple Canvas properties.

Rotation and Translation Transformations
An object on the canvas is said to be at the 0 angle rotation when it is facing to the left
(this is important if an object has a facing; otherwise, we will use this as a guide).
Consequently, if we draw an equilateral box (all four sides are the same length), it
doesn’t have an initial facing other than one of the flat sides facing to the left. Let’s
draw that box for reference:

//now draw a red square
context.fillStyle = "red";
context.fillRect(100,100,50,50);

Now, if we want to rotate the entire canvas 45 degrees, we need to do a couple simple
steps. First, we always set the current Canvas transformation to the “identity” (or “re-
set”) matrix:

context.setTransform(1,0,0,1,0,0);

Because Canvas uses radians, not degrees, to specify its transformations, we need to
convert our 45-degree angle into radians:

var angleInRadians = 45 * Math.PI / 180;
context.rotate(angleInRadians);

Lesson 1: Transformations are applied to shapes and paths drawn after the setTransform() or other
transformation function is called

If you use this code verbatim, you will see a funny result…nothing! This is because the
setTransform() function call only affects shapes drawn to the canvas after it is applied.
We drew our square first, then set the transformation properties. This resulted in no
change (or transform) to the drawn square. Example 2-7 gives the code in the correct
order to produce the expected result, as illustrated in Figure 2-12.

Example 2-7. Simple rotation transformation

function drawScreen() {

 //now draw a red square
 context.setTransform(1,0,0,1,0,0);
 var angleInRadians = 45 * Math.PI / 180;
 context.rotate(angleInRadians);
 context.fillStyle = "red";
 context.fillRect(100,100,50,50);

 }

42 | Chapter 2: Drawing on the Canvas

Figure 2-12. Simple rotation transformation

We get a result this time, but it will probably differ from what you expect. The red box
is rotated, but it looks like the canvas was rotated with it. The entire canvas did not
rotate, only the portion drawn after the context.rotate() function was called. So, why
did our square both rotate and move off to the left of the screen? The origin of the
rotation was set at the “nontranslated” 0,0 position, resulting in the square rotating
from the top left of the entire canvas.

Example 2-8 offers a slightly different scenario: draw a black box first, then set the
rotation transform, and finally draw the red box again. See the results in Figure 2-13.

Example 2-8. Rotation and the Canvas state

function drawScreen() {

 //draw black square
 context.fillStyle = "black";
 context.fillRect(20,20,25,25);

 //now draw a red square
 context.setTransform(1,0,0,1,0,0);
 var angleInRadians = 45 * Math.PI / 180;
 context.rotate(angleInRadians);
 context.fillStyle = "red";
 context.fillRect(100,100,50,50);

 }

Figure 2-13. Rotation and the Canvas state

The small black square was unaffected by the rotation, so you can see that only the
shapes drawn after the context.rotate() function was called were affected.

Simple Canvas Transformations | 43

Again, the red box was moved far off to the left. To reiterate, this occurred because the
canvas did not know what origin to use for the rotation. In the absence of an actual
translated origin, the 0,0 position setting is applied, resulting in the context.rotate()
function rotating “around” the 0,0 point, which brings us to our next lesson.

Lesson 2: We must “translate” the point of origin to the center of our shape to rotate it around its own
center

Let’s change Example 2-8 to rotate the red square 45 degrees while keeping it in its
current location.

First, we take the numbers we applied to the fillRect() function call to create a few
variables to hold the red square’s attributes. This is not necessary, but it will make the
code much easier to read and change later:

var x = 100;
var y = 100;
var width = 50;
var height = 50;

Next, using the context.translate() function call, we must change the origin of the
canvas to be the center of the red square we want to rotate and draw. This function
moves the origin of the canvas to the accepted x and y locations. The center of our red
square will now be the desired top-left corner x location for our object (100), plus half
the width of our object. Using the variables we created to hold attributes of the red
square, this would look like:

x+0.5*width

Next, we must find the y location for the origin translation. This time, we use the y
value of the top-left corner of our shape and the height of the shape:

y+.05*height

The translate() function call looks like this:

context.translate(x+.05*width, y+.05*height)

Now that we have translated the canvas to the correct point, we can do our rotation.
The code has not changed:

context.rotate(angleInRadians);

Finally, we need to draw our shape. We cannot simply reuse the same values from
Example 2-8 because the canvas origin point has moved to the center of the location
where we want to draw our object. You can now consider 125,125 as the starting point
for all draw operations. We get 125 for x by taking the upper-left corner of the square
(100) and adding half its width (25). We do the same for the y origin position. The
translate() method call accomplishes this.

44 | Chapter 2: Drawing on the Canvas

We will need to draw the object starting with the correct upper-left coordinates for x
and y. We do this by subtracting half the width of our object from the origin x, and half
the height of our object from the origin y:

context.fillRect(-0.5*width,-0.5*height, width, height);

Why do we do this? Figure 2-14 illustrates the situation.

Consider that we want to draw our square starting at the top-left corner. If our origin
point is at 125,125, the top left is actually 100,100. However, we have translated our
origin so the canvas now considers 125,125 to be 0,0. To start our box drawing at the
nontranslated canvas, we have to start at –25,–25 on the “translated” canvas.

This forces us to draw our box as though the origin is at 0,0, not 125,125. Therefore,
when we do the actual drawing of the box, we must use these coordinates, as shown
in Figure 2-15.

Figure 2-14. The newly translated point

Figure 2-15. Drawing with a translated point

In summary, we needed to change the point of origin to the center of our square so it
would rotate around that point. But when we draw the square, we need our code to
act as though the (125,125) point is actually (0,0). If we had not translated the origin,
we could have used the (125,125) point as the center of our square (as in Fig-
ure 2-14). Example 2-9 demonstrates how this works, creating the result shown in
Figure 2-16.

Simple Canvas Transformations | 45

Example 2-9. Rotation around the center point

function drawScreen() {

 //draw black square
 context.fillStyle = "black";
 context.fillRect(20,20 ,25,25);

 //now draw a red square
 context.setTransform(1,0,0,1,0,0);
 var angleInRadians = 45 * Math.PI / 180;
 var x = 100;
 var y = 100;
 var width = 50;
 var height = 50;
 context.translate(x+.5*width, y+.5*height);
 context.rotate(angleInRadians);
 context.fillStyle = "red";
 context.fillRect(-.5*width,-.5*height , width, height);

 }

Figure 2-16. Rotation around the center point

Let’s look at one final rotation example. Example 2-10 takes Example 2-9 and simply
adds four separate 40×40 squares to the canvas, rotating each one slightly. The result
is shown in Figure 2-17.

Example 2-10. Multiple rotated squares

function drawScreen() {

 //now draw a red square
 context.setTransform(1,0,0,1,0,0);
 var angleInRadians = 45 * Math.PI / 180;
 var x = 50;
 var y = 100;
 var width = 40;
 var height = 40;
 context.translate(x+.5*width, y+.5*height);
 context.rotate(angleInRadians);
 context.fillStyle = "red";
 context.fillRect(-.5*width,-.5*height , width, height);

46 | Chapter 2: Drawing on the Canvas

 context.setTransform(1,0,0,1,0,0);
 var angleInRadians = 75 * Math.PI / 180;
 var x = 100;
 var y = 100;
 var width = 40;
 var height = 40;
 context.translate(x+.5*width, y+.5*height);
 context.rotate(angleInRadians);
 context.fillStyle = "red";
 context.fillRect(-.5*width,-.5*height , width, height);

 context.setTransform(1,0,0,1,0,0);
 var angleInRadians = 90 * Math.PI / 180;
 var x = 150;
 var y = 100;
 var width = 40;
 var height = 40;
 context.translate(x+.5*width, y+.5*height);
 context.rotate(angleInRadians);
 context.fillStyle = "red";
 context.fillRect(-.5*width,-.5*height , width, height);
 context.setTransform(1,0,0,1,0,0);
 var angleInRadians = 120 * Math.PI / 180;
 var x = 200;
 var y = 100;
 var width = 40;
 var height = 40;
 context.translate(x+.5*width, y+.5*height);
 context.rotate(angleInRadians);
 context.fillStyle = "red";
 context.fillRect(-.5*width,-.5*height , width, height);

}

Figure 2-17. Multiple rotated squares

Next, we will examine scale transformations.

Scale Transformations
The context.scale() function takes in two parameters: the first is the scale attribute
for the x-axis, and the second is the scale attribute for the y-axis. The value 1 is the
normal scale for an object. Therefore, if we want to double an object’s size, we can set
both values to 2. Using the code below in drawScreen() produces the red square shown
in Figure 2-18:

Simple Canvas Transformations | 47

context.setTransform(1,0,0,1,0,0);
context.scale(2,2);
context.fillStyle = "red";
context.fillRect(100,100 ,50,50);

Figure 2-18. A simple scaled square

If you test this code, you will find that scale works in a similar manner as rotation. We
did not translate the origin of the scale point to double the size of the square; rather,
we used the top-left corner of the canvas as the origin point. The result is that the red
square appears to move farther down and to the left. What we would like is for the red
square to remain in place and to scale from its center. We do this by translating to the
center of the square before we scale, and by drawing the square around this center point
(just as we did in Example 2-9). Example 2-11 produces the result shown in Figure 2-19.

Example 2-11. Scale from the center point

function drawScreen() {

 //now draw a red square
 context.setTransform(1,0,0,1,0,0);
 var x = 100;
 var y = 100;
 var width = 50;
 var height = 50;
 context.translate(x+.5*width, y+.5*height);
 context.scale(2,2);
 context.fillStyle = "red";
 context.fillRect(-.5*width,-.5*height , width, height);

 }

Figure 2-19. Scale from the center point

48 | Chapter 2: Drawing on the Canvas

Combining Scale and Rotation Transformations
If we want to both scale and rotate an object, Canvas transformations can easily be
combined to achieve the desired results (as shown in Figure 2-20). Let’s look in Ex-
ample 2-12 at how we might combine them by using scale(2,2) and rotate(angleIn
Radians) from our previous examples.

Example 2-12. Scale and rotation combined

function drawScreen() {
 context.setTransform(1,0,0,1,0,0);
 var angleInRadians = 45 * Math.PI / 180;
 var x = 100;
 var y = 100;
 var width = 50;
 var height = 50;
 context.translate(x+.5*width, y+.5*height);
 context.scale(2,2);
 context.rotate(angleInRadians);
 context.fillStyle = "red";
 context.fillRect(-.5*width,-.5*height , width, height);

 }

Figure 2-20. Scale and rotation combined

Example 2-13 also combines rotation and scale, this time using a rectangle. Fig-
ure 2-21 reveals what it creates.

Example 2-13. Scale and rotate a nonsquare object

function drawScreen() {

 //now draw a red rectangle
 context.setTransform(1,0,0,1,0,0);
 var angleInRadians = 90 * Math.PI / 180;
 var x = 100;
 var y = 100;
 var width = 100;
 var height = 50;
 context.translate(x+.5*width, y+.5*height);
 context.rotate(angleInRadians);
 context.scale(2,2);

Simple Canvas Transformations | 49

 context.fillStyle = "red";
 context.fillRect(-.5*width,-.5*height , width, height);

 }

Figure 2-21. Scale and rotate a nonsquare object

Finding the Center of Any Shape
The rotation and scale of a rectangle or any other shape we draw on the canvas acts
much like that of a square. In fact, as long as we are sure to translate to the center of
our shape before we scale, rotate, or scale and rotate, we will see the results we expect
from our simple transformations. Keep in mind that the “center” of any shape will be
the x value that is half its width, and the y value that is half its height. We need to use
the bounding box theory when we attempt to find this center point.

Figure 2-22 demonstrates this theory. Even though the shape is not a simple square,
we have been able to find a bounding box that encompasses each point of the object.
Figure 2-22 is roughly square, but the same theory holds for rectangle-shaped bounding
boxes.

Figure 2-22. The bounding box of a complex shape

50 | Chapter 2: Drawing on the Canvas

Filling Objects with Colors and Gradients
In this chapter, we have quickly looked at color and fill styles as we proceeded through
the discussions of basic and complex shape construction. In this section, we will take
a deeper look at coloring and filling shapes we draw on the canvas. In addition to these
simple colors and fills, there are a number of different gradient styles that we can em-
ploy. Furthermore, Canvas also has a method to fill shapes with bitmap images (see
Chapter 4).

Setting Basic Fill Colors
The Canvas fillStyle property is used to set a basic color for filling shapes on the
canvas. We saw this earlier in the chapter when we used simple color names for our
fillStyle. An example is:

context.fillStyle = "red";

Below is a list of the usable color string values from the HTML4 specification. As of
this writing, the HTML5 color specification has not been set. In the absence of any
additional HTML5-specific colors, the HTML4 colors will work properly in HTML5:

Black = #000000
Green = #008000
Silver = #C0C0C0
Lime = #00FF00
Gray = #808080
Olive = #808000
White = #FFFFFF
Yellow = #FFFF00
Maroon = #800000
Navy = #000080
Red = #FF0000
Blue = #0000FF
Purple = #800080
Teal = #008080
Fuchsia = #FF00FF
Aqua = #00FFFF

All these color values will work with the strokeStyle as well as the
fillStyle.

Of course, using a string for the color name is not the only available method of speci-
fying a solid color fill. The list below includes a few other methods:

Filling Objects with Colors and Gradients | 51

Setting the fill color with the rgb() method
The rgb() method lets us use the 24-bit RGB value when specifying our fill colors:

context.fillStyle = rgb(255,0,0);

This will result in the same red color as the string value above.

Setting the fill color with a hex number string
We can also set the fillStyle color with a hex number in a string:

context.fillStyle = "#ff0000";

Setting the fill color with the rgba() method
The rgba() method allows us to specify a 32-bit color value with the final 8 bits
representing the alpha value of the fill color:

context.fillStyle = rgba(255,0,0,1);

The alpha value can be from 1 (opaque) to 0 (transparent).

Filling Shapes with Gradients
There are two basic options for creating gradient fills on the canvas: linear and radial.
A linear gradient creates a horizontal, vertical, or diagonal fill pattern; the radial variety
creates a fill that “radiates” from a central point in a circular fashion. Let’s look at some
examples of each.

Linear gradients

Linear gradients come in three basic styles: horizontal, vertical, and diagonal. We con-
trol where colors change in our gradient by setting color stops at points along the length
of the object we wish to fill.

Example 2-14 creates a simple horizontal gradient, as shown
in Figure 2-23.

Example 2-14. A linear horizontal gradient

function drawScreen() {

 // horizontal gradient values must remain 0
 var gr = context.createLinearGradient(0, 0, 100, 0);

 // Add the color stops.
 gr.addColorStop(0,'rgb(255,0,0)');
 gr.addColorStop(.5,'rgb(0,255,0)');
 gr.addColorStop(1,'rgb(255,0,0)');

 // Use the gradient for the fillStyle.
 context.fillStyle = gr;
 context.fillRect(0, 0,100,100);

 }

Linear horizontal gradients.

52 | Chapter 2: Drawing on the Canvas

Figure 2-23. A linear horizontal gradient

To create the horizontal gradient, we must first create a variable (gr) to reference the
new gradient. Here’s how we set it:

var gr = context.createLinearGradient(0,0,100,0);

The four parameter values in the createLinearGradient method call are the top-left x
and y coordinates to start the gradient, as well as the two bottom-right points to end
the gradient. Our example starts at 0,0 and goes to 100,0. Notice that the y values are
both 0 when we create a horizontal gradient; the opposite will be true when we create
a vertical gradient.

Once we have defined the size of our gradient, we then add in color stops that take two
parameter values. The first is a relative position origin point along the gradient to start
with color, and the second is the color to use. The relative position must be a value
from 0.0 to 1.0:

gr.addColorStop(0,'rgb(255,0,0)');
gr.addColorStop(.5,'rgb(0,255,0)');
gr.addColorStop(1,'rgb(255,0,0)');

Therefore, in Example 2-14, we have set a red color at 0, a green color at .5 (the center),
and another red color at 1. This will fill our shape with a relatively even red to green to
red gradient.

Next, we need to get the context.fillStyle to be the gradient we just created:

context.fillStyle = gr;

Finally, we create a rectangle on the canvas:

context.fillRect(0, 0, 100, 100);

Notice that we created a rectangle that was the exact size of our gradient. We can change
the size of the output rectangle like this:

context.fillRect(0, 100, 50, 100);
context.fillRect(0, 200, 200, 100);

Example 2-15 adds these two new filled rectangles to Example 2-14 to create Fig-
ure 2-24. Notice that the gradient fills up the available space, with the final color filling
out the area larger than the defined gradient size.

Filling Objects with Colors and Gradients | 53

Example 2-15. Multiple gradient-filled objects

function drawScreen() {

 var gr = context.createLinearGradient(0, 0, 100, 0);

 // Add the color stops.
 gr.addColorStop(0,'rgb(255,0,0)');
 gr.addColorStop(.5,'rgb(0,255,0)');
 gr.addColorStop(1,'rgb(255,0,0)');

 // Use the gradient for the fillStyle.
 context.fillStyle = gr;
 context.fillRect(0, 0, 100, 100);
 context.fillRect(0, 100, 50, 100);
 context.fillRect(0, 200, 200, 100);

 }

Gradients can be applied to any shape—even the
stroke around a shape. Example 2-16 takes the filled rectangles from Example 2-15 and
creates a strokeRect shape instead of a filled rectangle. Figure 2-25 shows the very
different result.

Example 2-16. A horizontal stroke gradient

function drawScreen() {

 var gr = context.createLinearGradient(0, 0, 100, 0);

 // Add the color stops.
 gr.addColorStop(0,'rgb(255,0,0)');
 gr.addColorStop(.5,'rgb(0,255,0)');
 gr.addColorStop(1,'rgb(255,0,0)');

Applying a horizontal gradient to a stroke.

Figure 2-24. Linear horizontal gradient on multiple objects

54 | Chapter 2: Drawing on the Canvas

 // Use the gradient for the fillStyle.
 context.strokeStyle = gr;
 context.strokeRect(0, 0, 100, 100);
 context.strokeRect(0, 100, 50, 100);
 context.strokeRect(0, 200, 200, 100);

 }

Figure 2-25. Horizontal stroke gradients

We can also apply a linear gradient to a
“closed” shape made up of points, as shown in Example 2-17. A shape is considered
closed when the final point is the same as the starting point.

Example 2-17. Horizontal gradient on a complex shape

function drawScreen() {

 var gr = context.createLinearGradient(0, 0, 100, 0);

 // Add the color stops.
 gr.addColorStop(0,'rgb(255,0,0)');
 gr.addColorStop(.5,'rgb(0,255,0)');
 gr.addColorStop(1,'rgb(255,0,0)');

 // Use the gradient for the fillStyle.
 context.fillStyle = gr;
 context.beginPath();
 context.moveTo(0,0);
 context.lineTo(50,0);
 context.lineTo(100,50);
 context.lineTo(50,100);
 context.lineTo(0,100);

Applying a horizontal gradient to a complex shape.

Filling Objects with Colors and Gradients | 55

 context.lineTo(0,0);
 context.stroke();
 context.fill();
 context.closePath();

 }

In this example, we use the context.fill() command to fill in our shape with the
current fillStyle, creating the output shown in Figure 2-26.

Figure 2-26. A horizontal gradient on a complex shape

Figure 2-26 shows the new shape we have created with points. As long as the points
are closed, the fill will work as we expect.

Vertical gradients are created in a very similar manner as the horizontal
variety. The difference is that we must specify a y value that is not 0, and the x values
must both be 0. Example 2-18 shows the shape from Example 2-17 created with a
vertical rather than a horizontal gradient to produce the output in Figure 2-27.

Example 2-18. Vertical gradients

function drawScreen() {

 var gr = context.createLinearGradient(0, 0, 0, 100);

 // Add the color stops.
 gr.addColorStop(0,'rgb(255,0,0)');
 gr.addColorStop(.5,'rgb(0,255,0)');
 gr.addColorStop(1,'rgb(255,0,0)');

 // Use the gradient for the fillStyle.
 context.fillStyle = gr;
 context.beginPath();
 context.moveTo(0,0);
 context.lineTo(50,0);
 context.lineTo(100,50);
 context.lineTo(50,100);
 context.lineTo(0,100);
 context.lineTo(0,0);
 //context.stroke();
 context.fill();
 context.closePath();

 }

Vertical gradients.

56 | Chapter 2: Drawing on the Canvas

Figure 2-27. A vertical gradient example

The only difference between Example 2-18 and Example 2-17 is the line creating the
linear gradient.

The horizontal version (Example 2-17):

var gr = context.createLinearGradient(0, 0, 100, 0);

The new vertical version (Example 2-18):

var gr = context.createLinearGradient(0, 0, 0, 100);

All of the same rules for strokes on horizontal gradients apply to vertical ones. Exam-
ple 2-19 takes the shape from Example 2-18, stroking it with the gradient instead of
filling it, producing the outline shown in Figure 2-28.

Example 2-19. A vertical gradient stroke

function drawScreen() {

 var gr = context.createLinearGradient(0, 0, 0, 100);

 // Add the color stops.
 gr.addColorStop(0,'rgb(255,0,0)');
 gr.addColorStop(.5,'rgb(0,255,0)');
 gr.addColorStop(1,'rgb(255,0,0)');

 // Use the gradient for the fillStyle.
 context.strokeStyle = gr;
 context.beginPath();
 context.moveTo(0,0);
 context.lineTo(50,0);
 context.lineTo(100,50);
 context.lineTo(50,100);
 context.lineTo(0,100);
 context.lineTo(0,0);
 context.stroke();
 context.closePath();

 }

You can easily create a diagonal gradient by varying both the second
x and second y parameters of the createLinearGradient() function:

var gr= context.createLinearGradient(0, 0, 100, 100);

Diagonal gradients.

Filling Objects with Colors and Gradients | 57

To create a perfect diagonal gradient, as shown in Figure 2-29, fill a square that is the
same size as the diagonal gradient. The code is provided in Example 2-20.

Example 2-20. A diagonal gradient

function drawScreen() {

 var gr = context.createLinearGradient(0, 0, 100, 100);

 // Add the color stops.
 gr.addColorStop(0,'rgb(255,0,0)');
 gr.addColorStop(.5,'rgb(0,255,0)');
 gr.addColorStop(1,'rgb(255,0,0)');

 // Use the gradient for the fillStyle.
 context.fillStyle = gr;
 context.beginPath();
 context.moveTo(0,0);
 context.fillRect(0,0,100,100)
 context.closePath();

 }

Figure 2-29. A diagonal gradient example

Radial gradients

The definition process for radial and linear gradients is very similar. Although a radial
gradient takes six parameters to initialize rather than the four needed for a linear gra-
dient, it uses the same color stop idea to create the color changes.

The six parameters are used to define the center point and the radii of two circles. The
first circle is the “start” circle, and the second circle is the “end” circle. Let’s look at an
example:

var gr = context.createRadialGradient(50,50,25,50,50,100);

Figure 2-28. A vertical gradient stroke

58 | Chapter 2: Drawing on the Canvas

The first circle has a center point of 50,50 and a radius of 25; the second has a center
point of 50,50 and a radius of 100. This will effectively create two concentric circles.

We set color stops the same way we did with the linear gradients:

gr.addColorStop(0,'rgb(255,0,0)');
gr.addColorStop(.5,'rgb(0,255,0)');
gr.addColorStop(1,'rgb(255,0,0)');

Example 2-21 puts this together to create the result shown in Figure 2-30.

Example 2-21. A simple radial gradient

function drawScreen() {

 var gr = context.createRadialGradient(50,50,25,50,50,100);

 // Add the color stops.
 gr.addColorStop(0,'rgb(255,0,0)');
 gr.addColorStop(.5,'rgb(0,255,0)');
 gr.addColorStop(1,'rgb(255,0,0)');

 // Use the gradient for the fillStyle.
 context.fillStyle = gr;
 context.fillRect(0, 0, 200, 200);

 }

Figure 2-30. A simple radial gradient

Example 2-22 offsets the second circle from the first to create the effects shown in
Figure 2-31.

Example 2-22. A complex radial gradient

function drawScreen() {

 var gr = context.createRadialGradient(50,50,25,100,100,100);

 // Add the color stops.
 gr.addColorStop(0,'rgb(255,0,0)');

Filling Objects with Colors and Gradients | 59

 gr.addColorStop(.5,'rgb(0,255,0)');
 gr.addColorStop(1,'rgb(255,0,0)');

 // Use the gradient for the fillStyle.
 context.fillStyle = gr;
 context.fillRect(0, 0, 200, 200);

}

Figure 2-31. A complex radial gradient

As with the linear gradients, we can also apply the radial gradients to complex shapes.
Example 2-23 takes an arc example from earlier in this chapter, but applies a radial
gradient to create Figure 2-32.

Example 2-23. A radial gradient applied to a circle

function drawScreen() {

 var gr = context.createRadialGradient(50,50,25,100,100,100);

 // Add the color stops.
 gr.addColorStop(0,'rgb(255,0,0)');
 gr.addColorStop(.5,'rgb(0,255,0)');
 gr.addColorStop(1,'rgb(255,0,0)');

 // Use the gradient for the fillStyle.
 context.fillStyle = gr;
 context.arc(100, 100, 100, (Math.PI/180)*0, (Math.PI/180)*360, false);
 context.fill();

 }

Example 2-23 takes the radial gradient from Example 2-22 and applies it to a circle
shape rather than a rectangle shape. This removes the red square from the background
of the shape.

We can also apply our radial gradient to the stroke of our arc rather than the fill, as
shown in Example 2-24 and Figure 2-33.

60 | Chapter 2: Drawing on the Canvas

Example 2-24. An arc stroke gradient

function drawScreen() {

 var gr = context.createRadialGradient(50,50,25,100,100,100);

 // Add the color stops.
 gr.addColorStop(0,'rgb(255,0,0)');
 gr.addColorStop(.5,'rgb(0,255,0)');
 gr.addColorStop(1,'rgb(255,0,0)');

 // Use the gradient for the fillStyle.
 context.strokeStyle = gr;
 context.arc(100, 100, 50, (Math.PI/180)*0, (Math.PI/180)*360, false)
 context.stroke();

 }

Figure 2-33. An arc stroke gradient

Example 2-24 created a circle that is smaller than the version in Example 2-23, so the
radial gradient would show up on the stroke of the arc. If we left it the same size as
Example 2-23, we would have a solid red fill because the radial gradient is solid red at
the diameter edge of the circle.

Filling Shapes with Patterns
We will cover using bitmap images on the canvas in Chapter 4, but for now, let’s take
a quick look at how images can be used as fill patterns for shapes we draw.

Figure 2-32. A radial gradient applied to a circle

Filling Shapes with Patterns | 61

Fill patterns are initialized with the createPattern() function, which takes two param-
eters. The first is an Image object instance, and the second is a String representing how
to display the repeat pattern inside the shape. We can use a loaded image file or an
entire other canvas as a fill pattern for a drawn shape.

There are currently four types of image fills:

• repeat

• repeat-x

• repeat-y

• no-repeat

Modern browsers have implemented these four types to various degrees, but standard
repeat seems to be the most common. Let’s look at it now and then we will take a brief
look at the other three.

Figure 2-34 shows a simple bitmap fill pattern that we can use to test this functionality.
It is a 20×20 green circle on a transparent background, saved as a .gif file named
fill_20x20.gif.

Figure 2-34. The fill_20x20.gif image for our fill

Example 2-25 tests this first with the repeat string to create a box full of little green
circles, as shown in Figure 2-35.

Example 2-25. Filling with an image file using repeat

function drawScreen() {

 var fillImg = new Image();
 fillImg.src = 'fill_20x20.gif';
 fillImg.onload = function(){

 var fillPattern = context.createPattern(fillImg,'repeat');
 context.fillStyle = fillPattern;
 context.fillRect(0,0,200,200);

 }

 }

It is best not to use Image instances until they have loaded completely. We will cover
this in detail in Chapter 4, but for now, we simply create an inline onload event handler
function that will be called when Image is ready to be used. The repeat pattern string
does a good job of completely filling the 200×200 square. Let’s see the code for how
the other repeat strings perform (in Example 2-26), and view the results in Figures
2-36 through 2-38.

62 | Chapter 2: Drawing on the Canvas

Example 2-26. Using the no-repeat, repeat-x, and repeat-y strings

function drawScreen() {

 var fillImg = new Image();
 fillImg.src = 'fill_20x20.gif';

 fillImg.onload = function(){

 var fillPattern1 = context.createPattern(fillImg,'no-repeat');
 var fillPattern2 = context.createPattern(fillImg,'repeat-x');
 var fillPattern3 = context.createPattern(fillImg,'repeat-y');

 context.fillStyle = fillPattern1;
 context.fillRect(0,0,100,100);

 context.fillStyle = fillPattern2;
 context.fillRect(0,110,100,100);

 context.fillStyle = fillPattern3;
 context.fillRect(0,220,100,100);

 }

 }

Each browser will show these patterns in a different manner.

Only Firefox seems to show anything of significance when the repeat-x and repeat-y
strings are used in the repeat parameter. We will cover more examples of filling, as well
as many other uses for bitmap images, in Chapter 4.

Figure 2-35. repeat fill example

Filling Shapes with Patterns | 63

Figure 2-36. no-repeat, repeat-x, and repeat-y in Safari

Figure 2-37. no-repeat, repeat-x, and repeat-y in Firefox

64 | Chapter 2: Drawing on the Canvas

Creating Shadows on Canvas Shapes
We can add shadows to shapes we draw on the canvas using four parameters. As with
the tiled fill patterns in the previous section, this feature has not been fully implemented
on all HTML5-compliant browsers.

We add a shadow by setting four Canvas properties:

• shadowOffsetX

• shadowOffsetY

• shadowBlur

• shadowColor

The shadowOffsetX and shadowOffsetY values can be positive or negative. Negative val-
ues will create shadows to the left and top rather than to the bottom and right. The
shadowBlur property sets the size of the blurring effect on the shadow. None of these
three parameters is affected by the current Canvas transformation matrix. The shadow
Color can be any color set via HTML4 color constant string—rgb() or rgba()—or with
a string containing a hex value.

Example 2-27 and Figure 2-39 show a few different boxes drawn with various shadow
settings.

Figure 2-38. no-repeat, repeat-x, and repeat-y in Chrome

Creating Shadows on Canvas Shapes | 65

Figure 2-39. Adding shadows to drawn objects

Example 2-27. Adding shadows to drawn objects

function drawScreen() {

 context.fillStyle = 'red';

 context.shadowOffsetX = 4;
 context.shadowOffsetY = 4;
 context.shadowColor = 'black';
 context.shadowBlur = 4;
 context.fillRect(10,10,100,100);

 context.shadowOffsetX = -4;
 context.shadowOffsetY = -4;
 context.shadowColor = 'black';
 context.shadowBlur = 4;
 context.fillRect(150,10,100,100);

 context.shadowOffsetX = 10;
 context.shadowOffsetY = 10;
 context.shadowColor = 'rgb(100,100,100)';
 context.shadowBlur = 8;
 context.arc(200, 300, 100, (Math.PI/180)*0, (Math.PI/180)*360, false)
 context.fill();
}

66 | Chapter 2: Drawing on the Canvas

As you can see, if we adjust the shadowOffset values along with the shadowBlur value,
we create various shadows. We can also create shadows for complex shapes drawn
with paths and arcs.

What’s Next
We covered a lot of ground in this chapter, introducing the ways to construct primitive
and complex shapes, and how we can draw and transform them on the canvas. We
also discussed how to composite, rotate, scale, translate, fill, and create shadows on
these shapes. But we’ve only just begun exploring HTML5 Canvas. In the next chapter,
we will look at how to create and manipulate text objects on the canvas.

What’s Next | 67

CHAPTER 3

The HTML5 Canvas Text API

The HTML5 Canvas Text API allows developers to render text on an HTML page in
ways that were either tricky or next to impossible before its invention.

We are providing an in-depth analysis of the HTML5 Canvas Text API because it is
one of the most basic ways to interact with the canvas. However, that does not mean
it was the first Canvas API feature developed. In fact, for many browsers, it was one of
the last parts implemented.

There was a time in the recent past when HTML5 Canvas Text API support in browsers
was spotty at best. Back then, using modernizr.js to test for text support would have
been a good idea. However, at this historic moment, all modern browser versions (be-
sides IE) support the HTML5 Canvas Text API in some way.

This chapter will create an application named “Text Arranger” to demonstrate the
features and interdependencies of the HTML5 Canvas Text API. This application will
display a single line of text in an almost infinite number of ways. This is also a useful
tool to see whether support for text is common among web browsers. Later in this
chapter you will see that some text features are incompatible when drawn on the canvas
at the same time.

Displaying Basic Text
Displaying text on HTML5 Canvas is simple. In fact, we covered the very basics in
Chapter 1. First, we will review these basics, and then we will show you how to make
them work with the Text Arranger application.

Basic Text Display
The simplest way to define text to be displayed on the canvas is to set the
context.font style using standard values for CSS font style attributes: font-style,
font-weight, font-size, and font-face.

69

We will discuss each of these attributes in detail in the upcoming section “Setting the
Text Font” on page 78. All you need to know now is that a font designation of some
type is required. Here is a simple example of setting a 50-point serif font:

context.font = "50px serif";

You also need to set the color of the text. For filled text, you would use the
context.fillStyle attribute and set it using a standard CSS color, or with a Canvas
Gradient or CanvasPattern object. We will discuss the latter two options later in the
chapter.

Finally, you call the context.fillText() method, passing the text to be displayed and
the x and y positions of the text on the canvas.

Below is an example of all three basic lines of code required to display filled text on
HTML5 Canvas:

context.font = "50px serif"
context.fillStyle = "#FF0000";
context.fillText ("Hello World", 100, 80);

If you do not specify a font, the default 10px sans-serif will be used automatically.

Handling Basic Text in Text Arranger
For Text Arranger, we are going to allow the user to set the text displayed by the call
to context.fillText(). To do this, we will create a variable named message where we
will store the user-supplied text. We will later use that variable in our call to
context.fillText(), inside the standard drawScreen() method that we introduced in
Chapter 1 and will continue to use throughout this book:

var message = "your text";
...

function drawScreen() {
 ...
 context.fillStyle = "#FF0000";
 context.fillText (message, 100, 80);
}

To change the text displayed on the canvas to the text entered by the user, we need to
create an event handler for the text box keyup event. This means that whenever someone
changes text in the box, the event handler function will be called.

To make this work, we are going to name our text box in our HTML <form> using an
<input> form element. Notice that the id is set to the value textBox. Also notice that we
have set the placeholder="" attribute. This attribute is new to HTML5, so it might not
work in every browser. You can also substitute it with the value="" attribute, which
will not affect the execution of this application:

70 | Chapter 3: The HTML5 Canvas Text API

<form>
 Text: <input id="textBox" placeholder="your text"/>

</form>

Communicating Between HTML Forms and the Canvas
Back in our JavaScript code, we need to create an event handler for the keyup event of
textBox. We do this by finding the form element using the document.getElement
ById() function of the DOM document object, and storing it in the formElement variable.
Then we call the addEventListener() method of formElement, setting the event to
keyup and the event handler to the function textBoxChanged, which we have yet to
define:

var formElement = document.getElementById("textBox");
formElement.addEventListener('keyup', textBoxChanged, false);

The final piece of the puzzle is to define the textBoxChanged() event handler. This
function works like the event handlers we created in Chapter 1. It is passed one pa-
rameter when it is called, an event object that we universally name e because it’s easy
to remember.

The event object contains a property named target that holds a reference to the HTML
form element that created the change event. In turn, the target contains a property
named value that holds the newly changed value of the form element that caused the
event to occur (i.e., textBox). We retrieve this value, and store it in the message variable
we created in JavaScript. It is the very same message variable we use inside the
drawScreen() method to paint the canvas. Now, all we have to do is call draw
Screen(), and the new value of message will appear “automagically” on the canvas:

function textBoxChanged(e) {
 var target = e.target;
 message = target.value;
 drawScreen();
 }

We just spent a lot of time describing how we will handle changes in HTML form
controls with event handlers in JavaScript, and then display the results on an HTML5
Canvas. We will repeat this type of code several more times while creating Text Ar-
ranger. However, we will refrain from explaining it in depth again, instead focusing on
different ways to render and capture form data and use it with Canvas.

Using measureText
The HTML5 Canvas context object includes a useful method, measureText(). When
supplied with a text string, it will return some properties about that text based on the
current context settings (font face, size, etc.) in the form of a TextMetrics object. Right
now the TextMetrics object has only a single property: width. The width property of a

Displaying Basic Text | 71

TextMetrics object gives you the exact width in pixels of the text when rendered on the
canvas. This can be very useful when attempting to center text.

Centering text using width

For the Text Arranger application, we will use the TextMetrics object to center the text
the user has entered in the textBox form control on the canvas. First, we retrieve an
instance of TextMetrics by passing the message variable (which holds the text we are
going to display) to the measureText() method of the 2D context, and storing it in a
variable named metrics:

var metrics = context.measureText(message);

Then, from the width property of metrics, we get the width of the text in pixels and
store it in a variable named textWidth:

var textWidth = metrics.width;

Next, we calculate the center of the screen by taking the width of the canvas and dividing
it in half (theCanvas.width/2). From that, we subtract half the width of the text
(textWidth/2). We do this because text on the canvas is vertically aligned to the left
when it is displayed without any alignment designation (more on this a bit later). So,
to center the text, we need to move it half its own width to the left, and place the center
of the text in the absolute center of the canvas. We will update this in the next section
when we allow the user to select the text’s vertical alignment:

var xPosition = (theCanvas.width/2) - (textWidth/2);

What about the height of the text?

So, what about finding the height of the text so you can break text that is longer than
the width of the canvas into multiple lines, or center it on the screen? Well, this poses
a problem. The TextMetrics object does not contain a height property. The text font
size does not give the full picture either, as it does not take into account font glyphs
that drop below the baseline of the font. While the font size will help you estimate how
to center a font vertically on the screen, it does not offer much if you need to break text
onto two or more lines. This is because the spacing would also need to be taken into
account, which could be very tricky.

For our demonstration, instead of trying to use the font size to vertically center the text
on the canvas, we will create the yPosition variable for the text by simply placing it at
one-half the height of the canvas. The default baseline for a font is middle, so this works
great for centering on the screen. We will talk more about baseline in the next section:

var yPosition = (theCanvas.height/2);

In the chat example in Chapter 11, we will show you an example of
breaking up text onto multiple lines.

72 | Chapter 3: The HTML5 Canvas Text API

fillText and strokeText
The context.fillText() function (as shown in Figure 3-1) will render solid colored text
to the canvas. The color used is set in the context.fillColor property. The font used
is set in the context.font property. The function call looks like this:

fillText([text],[x],[y],[maxWidth]);

where:

text
The text to render on the canvas.

x
The x position of the text on the canvas.

y
The y position of the text on the canvas.

maxWidth
The maximum width of the text as rendered on the canvas. At the time of this
writing, support for this property was just being added to browsers.

Figure 3-1. fillText in action

The context.strokeText() function (as shown in Figure 3-2) is similar, but it specifies
the outline of text strokes to the canvas. The color used to render the stroke is set in
the context.strokeColor property; the font used is set in the context.font property.
The function call looks like:

strokeText([text],[x],[y],[maxWidth])

Displaying Basic Text | 73

where:

text
The text to render on the canvas.

x
The x position of the text on the canvas.

y
The y position of the text on the canvas.

maxWidth
The maximum width of the text as rendered on the canvas. At the time of this
writing, this property does not appear to be implemented in any browsers.

The next iteration of Text Arranger adds the ability for the user to select fillText,
strokeText, or both. Selecting both will give the fillText text a black border (the
strokeText). In the HTML <form>, we will add a <select> box with the id fillOr
Stroke, which will allow the user to make the selections:

Fill Or Stroke:
<select id = "fillOrStroke">
 <option value = "fill">fill</option>
 <option value = "stroke">stroke</option>
 <option value = "both">both</option>
</select>

Figure 3-2. strokeText setting outline properties

74 | Chapter 3: The HTML5 Canvas Text API

In the canvasApp() function, we will define a variable named fillOrStroke that we will
use to hold the value selected by the user on the HTML <form>. The default value will
be fill, which means Text Arranger will always show fillText first:

var fillOrStroke = "fill";

We will also create the event listener for a change in the fillOrStroke form element…

formElement = document.getElementById("fillOrStroke");
formElement.addEventListener('change', fillOrStrokeChanged, false);

…and create the function fillOrStrokeChanged() to handle the event:

function fillOrStrokeChanged(e) {
 var target = e.target;
 fillOrStroke = target.value;
 drawScreen();
 }

eval()
While we created a separate function for each event handler for the applications in this
chapter, in reality many of them work in an identical way. However, some developers
might be inclined to use an eval() function, such as the following, as their event handler
for changes made to the HTML element that controls Text Arranger:

var formElement = document.getElementById("textBox");
 formElement.addEventListener('keyup', function(e) {
 applyChange('message', e) }, false);
formElement = document.getElementById("fillOrStroke");
formElement.addEventListener('change', function(e) {
 applyChange('fillOrStroke', e) }, false);
function applyChange (variable, e) {
 eval(variable + ' = e.target.value');
 drawScreen();
}

The code above uses eval() to create and execute JavaScript code on the fly. It dynam-
ically creates the name of the HTML element so that the multiple event handler func-
tions do not need to be created individually. However, many developers are wary of
using eval() because it opens up security holes, and makes debugging code more
difficult. Use at your own risk.

In the drawScreen() function, we test the fillOrStroke variable to see whether it con-
tains the value fill. Since we have three states (fill, stroke, or both), we use a
switch statement to handle the choices. If the choice is both, we set the strokeStyle to
black (#000000) as the highlight for the colored fillText.

If we use the xPosition and yPosition calculated using the width and height of the
canvas, the message variable that contains the default or user-input text, and the fill
OrStroke variable to determine how to render the text, we can display the text as con-
figured by the user in drawScreen():

Displaying Basic Text | 75

var metrics = context.measureText(message);
var textWidth = metrics.width;
var xPosition = (theCanvas.width/2) - (textWidth/2);
var yPosition = (theCanvas.height/2);

switch(fillOrStroke) {
 case "fill":
 context.fillStyle = "#FF0000";
 context.fillText (message, xPosition,yPosition);
 break;
 case "stroke":
 context.strokeStyle = "#FF0000";
 context.strokeText (message, xPosition,yPosition);
 break;
 case "both":
 context.fillStyle = "#FF0000";
 context.fillText (message, xPosition,yPosition);
 context.strokeStyle = "#000000";
 context.strokeText (message, xPosition,yPosition);
 break;
 }

Example 3-1 shows the full code for Text Arranger. Test it out to see how the user
controls in HTML affect the canvas. There are not many ways to change the text here,
but you can see the difference between fillText and strokeText. In the next section,
we will update this application to configure and render the text in multiple ways.

Example 3-1. Text Arranger 1.0

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH3EX1: Text Arranger Version 1.0</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">

window.addEventListener("load", eventWindowLoaded, false);
function eventWindowLoaded() {

 canvasApp();
}

function canvasSupport () {
 return Modernizr.canvas;
}

function eventWindowLoaded() {

 canvasApp();
}

function canvasApp() {

76 | Chapter 3: The HTML5 Canvas Text API

 var message = "your text";
 var fillOrStroke ="fill";

 if (!canvasSupport()) {
 return;
 }

 var theCanvas = document.getElementById("canvasOne");
 var context = theCanvas.getContext("2d");

 var formElement = document.getElementById("textBox");
 formElement.addEventListener("keyup", textBoxChanged, false);

 formElement = document.getElementById("fillOrStroke");
 formElement.addEventListener("change", fillOrStrokeChanged, false);

 drawScreen();

 function drawScreen() {

 //Background
 context.fillStyle = "#ffffaa";
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);

 //Box
 context.strokeStyle = "#000000";
 context.strokeRect(5, 5, theCanvas.width−10, theCanvas.height−10);

 //Text
 context.font = "50px serif"

 var metrics = context.measureText(message);
 var textWidth = metrics.width;
 var xPosition = (theCanvas.width/2) - (textWidth/2);
 var yPosition = (theCanvas.height/2);

 switch(fillOrStroke) {
 case "fill":
 context.fillStyle = "#FF0000";
 context.fillText (message, xPosition,yPosition);
 break;
 case "stroke":
 context.strokeStyle = "#FF0000";
 context.strokeText (message, xPosition,yPosition);
 break;
 case "both":
 context.fillStyle = "#FF0000";
 context.fillText (message, xPosition ,yPosition);
 context.strokeStyle = "#000000";
 context.strokeText (message, xPosition,yPosition);
 break;
 }

 }

Displaying Basic Text | 77

 function textBoxChanged(e) {
 var target = e.target;
 message = target.value;
 drawScreen();
 }

 function fillOrStrokeChanged(e) {
 var target = e.target;
 fillOrStroke = target.value;
 drawScreen();
 }

}

</script>
</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">
<canvas id="canvasOne" width="500" height="300">
 Your browser does not support HTML5 Canvas.
</canvas>

<form>

 Text: <input id="textBox" placeholder="your text" />

 Fill Or Stroke :
 <select id="fillOrStroke">
 <option value="fill">fill</option>
 <option value="stroke">stroke</option>
 <option value="both">both</option>
 </select>

</form>

</div>
</body>
</html>

Setting the Text Font
Now that we have placed text on the canvas, it’s time to explore some of the basics of
setting the context.font property. As you will see, specifying the font for displaying
basic text on Canvas is really no different from doing the same thing in HTML and CSS.

Font Size, Face Weight, and Style Basics
It is very easy to style text that will be rendered on the canvas. It requires you to set the
size, weight, style, and font face in a CSS-compliant text string that is applied to the
context.font property. The basic format looks like this:

78 | Chapter 3: The HTML5 Canvas Text API

[font style] [font weight] [font size] [font face]

An example might be:

context.font = "italic bold 24px serif";

or:

context.font = "normal lighter 50px cursive";

Once the context.font property is set, it will apply to all text that is rendered
afterward—until the context.font is set to another CSS-compliant string.

Handling Font Size and Face in Text Arranger
In Text Arranger, we have implemented only a subset of the available font options for
displaying text. We have chosen these to make the application work in as many brows-
ers as possible. Here is a short rundown of the options we will implement.

Available font styles

CSS defines the valid font styles as:

normal | italic | oblique | inherit

In Text Arranger, we have implemented all but inherit.

Here is the markup we used to create the font style <select> box in HTML. We made
the id of the form control equal to fontStyle. We will use this id when we listen for a
change event, which is dispatched when the user updates the value of this control. We
will do this for all the controls in this version of Text Arranger:

<select id="fontStyle">
 <option value="normal">normal</option>
 <option value="italic">italic</option>
 <option value="oblique">oblique</option>
</select>

Available font weights

CSS defines the valid font weights as:

normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 |
inherit | auto

We have used only normal, bold, bolder, and lighter in Text Arranger. You can add
the other values as you see fit.

Here is the markup we used to create the font weight <select> box in HTML:

<select id="fontWeight">
 <option value="normal">normal</option>
 <option value="bold">bold</option>
 <option value="bolder">bolder</option>

Setting the Text Font | 79

 <option value="lighter">lighter</option>
</select>

Generic font faces

Because we cannot be sure which font will be available in the browser at any time, we
have limited the font face choices in Text Arranger to those that are defined as “generic”
in the CSS specification: serif, sans-serif, cursive, fantasy, and monospace.

Here is the markup we used to create the font face <select> box in HTML:

<select id="textFont">
 <option value="serif">serif</option>
 <option value="sans-serif">sans-serif</option>
 <option value="cursive">cursive</option>
 <option value="fantasy">fantasy</option>
 <option value="monospace">monospace</option>
</select>

Font size and HTML5 range control

To specify the size of the font, we have implemented the new HTML5 range form
control. range is an <input> type that creates a slider on the HTML page to limit the
numerical input to that specified in the range. A range is created by specifying range as
the type of a form input control. range has four properties that can be set:

min
The minimum value in the range

max
The maximum value in the range

step
The number of units to step when the range slider is moved

value
The default value of the range

Here is the markup we used to specify the range in the Text Arranger HTML:

<input type="range" id="textSize"
 min="0"
 max="200"
 step="1"
 value="50"/>

If the browser does not support this range control, it will be rendered as a text box.

At the time of this writing, range did not render in Firefox.

80 | Chapter 3: The HTML5 Canvas Text API

Creating the necessary variables in the canvasApp() function

In the canvasApp() container function, we need to create four variables—fontSize,
fontFace, fontWeight, and fontStyle—that will hold the values set by the HTML form
controls for Text Arranger. We create a default value for each so that the canvas can
render text the first time the drawScreen() function is called. After that, drawScreen()
will be called only when a change event is handled by one of the event handler functions
we will create for each form control:

var fontSize = "50";
var fontFace = "serif";
var fontWeight = "normal";
var fontStyle = "normal";

Setting event handlers in canvasApp()

Just like we did in version 1.0 of Text Arranger, we need to create event listeners and
the associated event handler functions so changes on the HTML page form controls
can interact with HTML5 Canvas. All of the event listeners below listen for a change
event on the form control:

formElement = document.getElementById("textSize");
formElement.addEventListener('change', textSizeChanged, false);

formElement = document.getElementById("textFont");
formElement.addEventListener('change', textFontChanged, false);

formElement = document.getElementById("fontWeight");
formElement.addEventListener('change', fontWeightChanged, false);

formElement = document.getElementById("fontStyle");
formElement.addEventListener('change', fontStyleChanged, false);

Defining event handler functions in canvasApp()

Below are the event handlers we need to create for each form control. Notice that each
handler updates the variable associated with part of the valid CSS font string, and then
calls drawScreen() so the new text can be painted onto the canvas:

function textSizeChanged(e) {
 var target = e.target;
 fontSize = target.value;
 drawScreen();
}

function textFontChanged(e) {
 var target = e.target;
 fontFace = target.value;
 drawScreen();
}

function fontWeightChanged(e) {
 var target = e.target;

Setting the Text Font | 81

 fontWeight = target.value;
 drawScreen();
}

function fontStyleChanged(e) {
 var target = e.target;
 fontStyle = target.value;
 drawScreen();
}

Setting the font in the drawScreen() function

Finally, in the drawScreen() function, we put all of this together to create a valid CSS
font string that we apply to the context.font property:

context.font = fontWeight + " " + fontStyle + " " + fontSize + "px " + fontFace;

Figures 3-3 and 3-4 show the results.

Figure 3-3. Setting the font size and face

82 | Chapter 3: The HTML5 Canvas Text API

Figure 3-4. Setting the font as bold and italic

Font Color
Setting the font color for text rendered on HTML5 Canvas is as simple as setting the
context.fillStyle or context.strokeStyle property to a valid CSS RGB color. Use
the format “#RRGGBB”, where RR is the red component hexadecimal value, GG is
the green component hexadecimal value, and BB is the blue component hexadecimal
value. Here are some examples:

context.fillStyle = "#FF0000";
Sets the text fill to red.

context.strokeStyle = "#FF00FF";
Sets the text stroke to purple.

context.fillStyle = "#FFFF00";
Sets the text fill to yellow.

Setting the Text Font | 83

Handling font color with JSColor

For Text Arranger, we will allow the user to select the text color. We could have made
this a drop-down or a text box, but instead, we want to use the new HTML5 <input>
type of color. This handy new form control works directly in the web browser, allowing
users to visually choose a color from a beautifully designed color picker. At the time of
this writing, only Opera has implemented the color <input> object of the HTML5
specification.

However, since we could really use a nice color picker for Text Arranger, we will im-
plement a third-party color picker, JSColor (http://jscolor.com/). The jsColor control
creates a nice color picker in JavaScript (see Figure 3-5), similar to the one that will
someday grace browsers supporting HTML5.

To implement jsColor and the color picker for Text Arranger, first download the
jscolor.js library and put it in the same folder as Text Arranger. Then, add this line of
code in the <head> to include jsColor in the HTML page:

<script type="text/javascript" src="jscolor/jscolor.js"></script>

Then add a new <input> element to the ever-growing HTML <form> on the Text Ar-
ranger HTML page, and give it the CSS class designation color:

<input class="color" id="textFillColor" value="FF0000"/>

When you pick a color with jsColor, it creates a text value that looks like “FF0000”,
representing the color value chosen. However, we already know that we need to append
the pound (#) sign to the front of that value to work with HTML5 Canvas. The
textFillColorChanged event handler does this by appending “#” to the value of the
textFillColor form control:

function textFillColorChanged(e) {
 var target = e.target;
 textFillColor = "#" + target.value;
 drawScreen();
 }

Oh yes, and let’s not forget the event listener we must create so that we can direct and
“change” events from the textFillColor <input> element to the textFillColor
Changed() event handler:

formElement = document.getElementById("textFillColor");
formElement.addEventListener('change', textFillColorChanged, false);

Finally, in the canvasApp() function, we need to create the textFillColor variable:

var textFillColor = "#ff0000";

We do this so that the variable can be updated by the aforementioned event handler,
and then implemented when that event handler calls the drawScreen() function:

switch(fillOrStroke) {
 case "fill":
 context.fillStyle = textFillColor;

84 | Chapter 3: The HTML5 Canvas Text API

 context.fillText (message, xPosition,yPosition);
 break;
 case "stroke":
 context.strokeStyle = textFillColor;
 context.strokeText (message, xPosition,yPosition);
 break;
 case "both":
 context.fillStyle = textFillColor;
 context.fillText (message, xPosition ,yPosition);
 context.strokeStyle = "#000000";
 context.strokeText (message, xPosition,yPosition);
 break;
 }

Notice that we needed to update the switch() statement created for Text Arranger
version 1.0 so that it used textFillColor instead of hardcoded values. However, when
both a stroke and a fill are chosen, we still render the stroke as black (“#000000”). We
could have added an additional color picker for the strokeColor, but that is something
you can do if you want to start expanding the application. Figure 3-5 illustrates what
it looks like now.

Figure 3-5. Setting the font color

Setting the Text Font | 85

Font Baseline and Alignment
You have options to align text on HTML5 Canvas both vertically and horizontally.
These alignments affect the text in relation to Canvas itself, but only to the invisible
bounding box that would surround the text’s topmost, bottommost, rightmost, and
leftmost sides. This is an important distinction because it means these alignments affect
the text in ways that might be unfamiliar to you.

Vertical alignment

The font baseline is the vertical alignment of the font glyphs based on predefined hor-
izontal locations in a font’s em square (the grid used to design font outlines) in relation
to font descenders. Basically, font glyphs, like lowercase p and y that traditionally ex-
tend “below the line,” have descenders. The baseline tells the canvas where to render
the font based on how those descenders relate to other glyphs in the font face.

The HTML5 Canvas API online has a neat graphic that attempts to explain baseline.
We could copy it here, but in reality, we think it’s easier to understand by doing, which
is one of the main reasons we wrote the Text Arranger application.

The options for the context.textBaseline property are:

top
The top of the text em square and the top of the highest glyph in the font face.
Selecting this baseline will push the text the farthest down (highest y position) the
canvas of all the baselines.

hanging
This is a bit lower than the top baseline. It is the horizontal line from which many
glyphs appear to “hang” from near the top of their face.

middle
The dead vertical center baseline. We will use middle to help us vertically center
the text in Text Arranger.

alphabetic
The bottom of vertical writing script glyphs such as Arabic, Latin, and Hebrew.

ideographic
The bottom of horizontal writing script glyphs such as Han Ideographs, Katakana,
Hiragana, and Hangul.

bottom
The bottom of the em square of the font glyphs. Choosing this baseline will push
the font the farthest up (lowest y position) the canvas.

So, for example, if you want to place your text with a top baseline, you would use the
following code:

context.textBaseline = "top";

86 | Chapter 3: The HTML5 Canvas Text API

All text displayed on the canvas afterward would have this baseline. To change the
baseline, you would change the property:

context.textBaseline = "middle";

In reality, you will probably choose a single baseline for your app and stick with it,
unless you are creating a word-processing or design application that requires more
precise text handling.

Horizontal alignment

The context.textAlign property represents the horizontal alignment of the text based
on its x position. These are the available textAlign values:

center
The dead horizontal center of the text. We can use this alignment to help center
our text in Text Arranger.

start
Text is displayed directly after the text y position.

end
All text is displayed before the text y position.

left
Text is displayed starting with the y position of the text in the leftmost position
(just like start).

right
Text is displayed with the y position in the rightmost position of the text (just like
end).

For example, to set the text alignment to center, you would use the code:

context.textAlign = "center";

After this property is set, all text would be displayed with the y value of the text as the
center point. However, this does not mean the text will be “centered” on the canvas.
To do that, you need to find the center of the canvas, and use that location as the y
value for the text position. We will do this in Text Arranger.

These values can also be modified by the dir attribute of the Canvas object (inherited
from the DOM document object). dir changes the direction of how text is displayed; the
valid values for dir are rtl (“right to left”) and ltr (“left to right”).

Handling text baseline and alignment

We are going to handle the text baseline and alignment much like we handled the other
text properties in Text Arranger. First, we will add some variables to the canvasApp()
function in which Text Arranger operates that will hold the alignment values. Notice
that we have set the textAlign variable to center, helping us simplify centering the text
on the canvas:

Setting the Text Font | 87

var textBaseline = "middle";
var textAlign = "center";

Next, we add the <select> form elements for each new attribute to the HTML portion
of the page:

Text Baseline <select id="textBaseline">
 <option value="middle">middle</option>
 <option value="top">top</option>
 <option value="hanging">hanging</option>
 <option value="alphabetic">alphabetic</option>
 <option value="ideographic">ideographic</option>
 <option value="bottom">bottom</option>
 </select>

 Text Align <select id="textAlign">
 <option value="center">center</option>
 <option value="start">start</option>
 <option value="end">end</option>
 <option value="left">left</option>
 <option value="right">right</option>

 </select>

We then add event listeners and event handler functions so we can connect the user
interaction with the HTML form elements to the canvas display. We register the event
listeners in the canvasApp() function:

formElement = document.getElementById("textBaseline");
formElement.addEventListener('change', textBaselineChanged, false);

formElement = document.getElementById("textAlign");
formElement.addEventListener('change', textAlignChanged, false);

Next, we need to create the event handler functions inside canvasApp():

function textBaselineChanged(e) {
 var target = e.target;
 textBaseline = target.value;
 drawScreen();
}

function textAlignChanged(e) {
 var target = e.target;
 textAlign = target.value;
 drawScreen();
}

We then apply the new values in the drawScreen() function:

context.textBaseline = textBaseline;
context.textAlign = textAlign;

Finally, we change the code that centers the text horizontally on the screen. Because
we used the center alignment for context.textAlign, we no longer need to subtract

88 | Chapter 3: The HTML5 Canvas Text API

half the width of the text that we retrieved through context.measureText() like we did
previously in Text Arranger 1.0:

var metrics = context.measureText(message);
var textWidth = metrics.width;
var xPosition = (theCanvas.width/2) - (textWidth/2);

Instead, we can simply use the center point of the canvas:

var xPosition = (theCanvas.width/2);

Remember, center is only the default alignment for the text. Because you can change
this with Text Arranger, the text can still be aligned in different ways while you are
using the application.

Figure 3-6 shows how a font set to start alignment with a middle baseline might appear
on the canvas.

Figure 3-6. Font with start alignment and middle baseline

Setting the Text Font | 89

Text Arranger Version 2.0
Now, try the new version of Text Arranger, shown in Example 3-2. You can see that
we have added a ton of new options that did not exist in version 1.0. One of the most
striking things is how fluidly the text grows and shrinks as the font size is updated.
Now, imagine scripting the font size to create animations. How would you do that?
Could you create an application to record the manipulations the user makes with Text
Arranger, and then play them back in real time?

Also, notice how all the alignment options affect one another. Experiment with how
changing the text direction affects the vertical alignment. Choose different font faces
and see how they affect the baseline. Do you see how an application like Text Arranger
can help you understand the complex relationships of all the text properties on HTML5
Canvas in an interactive and—dare we say—fun way?

Example 3-2. Text Arranger 2.0

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH3EX2: Text Arranger Version 2.0</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript" src="jscolor/jscolor.js"></script>
<script type="text/javascript">

window.addEventListener("load", eventWindowLoaded, false);
function eventWindowLoaded() {

 canvasApp();
}

function canvasSupport () {
 return Modernizr.canvas;
}

function eventWindowLoaded() {

 canvasApp();
}

function canvasApp() {

 var message = "your text";
 var fillOrStroke = "fill";

 var fontSize = "50";
 var fontFace = "serif";
 var textFillColor = "#ff0000";
 var textBaseline = "middle";
 var textAlign = "center";
 var fontWeight = "normal";
 var fontStyle = "normal";

90 | Chapter 3: The HTML5 Canvas Text API

 if (!canvasSupport()) {
 return;
 }

 var theCanvas = document.getElementById("canvasOne");
 var context = theCanvas.getContext("2d");

 var formElement = document.getElementById("textBox");
 formElement.addEventListener('keyup', textBoxChanged, false);

 formElement = document.getElementById("fillOrStroke");
 formElement.addEventListener('change', fillOrStrokeChanged, false);

 formElement = document.getElementById("textSize");
 formElement.addEventListener('change', textSizeChanged, false);

 formElement = document.getElementById("textFillColor");
 formElement.addEventListener('change', textFillColorChanged, false);

 formElement = document.getElementById("textFont");
 formElement.addEventListener('change', textFontChanged, false);

 formElement = document.getElementById("textBaseline");
 formElement.addEventListener('change', textBaselineChanged, false);

 formElement = document.getElementById("textAlign");
 formElement.addEventListener('change', textAlignChanged, false);

 formElement = document.getElementById("fontWeight");
 formElement.addEventListener('change', fontWeightChanged, false);

 formElement = document.getElementById("fontStyle");
 formElement.addEventListener('change', fontStyleChanged, false);

 drawScreen();

 function drawScreen() {

 //Background
 context.fillStyle = "#ffffaa";
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);

 //Box
 context.strokeStyle = "#000000";
 context.strokeRect(5, 5, theCanvas.width−10, theCanvas.height−10);

 //Text
 context.textBaseline = textBaseline;
 context.textAlign = textAlign;
 context.font = fontWeight + " " + fontStyle + " " + fontSize + "px " + fontFace;

 var xPosition = (theCanvas.width/2);
 var yPosition = (theCanvas.height/2);

Setting the Text Font | 91

 switch(fillOrStroke) {
 case "fill":
 context.fillStyle = textFillColor;
 context.fillText (message, xPosition,yPosition);
 break;
 case "stroke":
 context.strokeStyle = textFillColor;
 context.strokeText (message, xPosition,yPosition);
 break;
 case "both":
 context.fillStyle = textFillColor;
 context.fillText (message, xPosition ,yPosition);
 context.strokeStyle = "#000000";
 context.strokeText (message, xPosition,yPosition);
 break;
 }

 }

 function textBoxChanged(e) {
 var target = e.target;
 message = target.value;
 drawScreen();
 }

 function fillOrStrokeChanged(e) {
 var target = e.target;
 fillOrStroke = target.value;
 drawScreen();
 }

 function textSizeChanged(e) {
 var target = e.target;
 fontSize = target.value;
 drawScreen();
 }

 function textFillColorChanged(e) {
 var target = e.target;
 textFillColor = "#" + target.value;
 drawScreen();
 }

 function textFontChanged(e) {
 var target = e.target;
 fontFace = target.value;
 drawScreen();
 }

 function textBaselineChanged(e) {
 var target = e.target;
 textBaseline = target.value;
 drawScreen();
 }

92 | Chapter 3: The HTML5 Canvas Text API

 function textAlignChanged(e) {
 var target = e.target;
 textAlign = target.value;
 drawScreen();
 }

 function fontWeightChanged(e) {
 var target = e.target;
 fontWeight = target.value;
 drawScreen();
 }

 function fontStyleChanged(e) {
 var target = e.target;
 fontStyle = target.value;
 drawScreen();
 }

}

</script>
</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">
<canvas id="canvasOne" width="500" height="300">
 Your browser does not support HTML5 Canvas.
</canvas>

<form>
 Text: <input id="textBox" placeholder="your text" />

 Fill Or Stroke :
 <select id="fillOrStroke">
 <option value="fill">fill</option>
 <option value="stroke">stroke</option>
 <option value="both">both</option>
 </select>

 Text Font: <select id="textFont">
 <option value="serif">serif</option>
 <option value="sans-serif">sans-serif</option>
 <option value="cursive">cursive</option>
 <option value="fantasy">fantasy</option>
 <option value="monospace">monospace</option>
 </select>

 Text Size: <input type="range" id="textSize"
 min="0"
 max="200"
 step="1"
 value="50"/>

 Text Color: <input class="color" id="textFillColor" value="FF0000"/>

Setting the Text Font | 93

 Font Weight:
 <select id="fontWeight">
 <option value="normal">normal</option>
 <option value="bold">bold</option>
 <option value="bolder">bolder</option>
 <option value="lighter">lighter</option>
 </select>

 Font Style:
 <select id="fontStyle">
 <option value="normal">normal</option>
 <option value="italic">italic</option>
 <option value="oblique">oblique</option>
 </select>

 Text Baseline <select id="textBaseline">
 <option value="middle">middle</option>
 <option value="top">top</option>
 <option value="hanging">hanging</option>
 <option value="alphabetic">alphabetic</option>
 <option value="ideographic">ideographic</option>
 <option value="bottom">bottom</option>
 </select>

 Text Align <select id="textAlign">
 <option value="center">center</option>
 <option value="start">start</option>
 <option value="end">end</option>
 <option value="left">left</option>
 <option value="right">right</option>

 </select>

</div>
</body>
</html>

Text and the Canvas Context
We’ve already discussed a couple Canvas context properties that affect the canvas in a
global fashion: fillStyle and strokeStyle. However, there are two areas that visually
demonstrate how changes to the properties of the context can affect the entire HTML5
Canvas: alpha transparencies and shadows.

Global Alpha and Text
Using alpha is a cool way to make objects seem to be partially or fully transparent on
HTML5 Canvas. The globalAlpha property of the Canvas context is used for this pur-
pose. After globalAlpha is applied, it affects all drawing on the canvas, so you need to
be careful when setting it.

94 | Chapter 3: The HTML5 Canvas Text API

The valid values for context.globalAlpha are numbers between 0.0 (transparent) and
1.0 (opaque), and they act as a percentage for the alpha value. For example, a 50%
alpha value would be coded like this:

context.globalAlpha = 0.5;

A 100% alpha (no transparency) would be coded like this:

context.globalAlpha = 1.0;

Handling globalAlpha transparencies

Besides the now-familiar elements that we included for most of the other configurable
options in Text Arranger, the globalAlpha property requires us to think a bit more about
when we use it and how it will affect the rest of the canvas.

First, we create a variable named textAlpha in the canvasApp() function and initialize
it with 1, which means the text will have no transparency when it is first displayed:

var textAlpha = 1;

Next, in the drawImage() function, we need to set the globalAlpha property twice: once
before we draw the background and the bounding box frame…

function drawScreen() {
 //Background

 context.globalAlpha = 1;

…and then again to the value stored in textAlpha, just before rendering the text to the
canvas:

 context.globalAlpha = textAlpha;

This will reset globalAlpha so we can draw the background, but it will still allow us to
use a configurable alpha value for the displayed text.

We will use another HTML5 range control in our form, but this time we set the value
range with a min of 0.0 and a max of 1.0, stepping 0.01 every time the range is moved:

Alpha: <input type="range" id="textAlpha"
 min="0.0"
 max="1.0"
 step="0.01"
 value="1.0"/>

The textAlphaChanged() function works just like the other event handler functions we
created in this chapter:

function textAlphaChanged(e) {
 var target = e.target;
 textAlpha = (target.value);
 drawScreen();
 }

Text and the Canvas Context | 95

Also, don’t forget the event listener for the textAlpha range control:

formElement = document.getElementById("textAlpha");
formElement.addEventListener('change', textAlphaChanged, false);

The results will look like Figure 3-7.

Figure 3-7. Text with globalAlpha applied

Global Shadows and Text
HTML5 Canvas includes a unique set of properties for creating a shadow for drawings.
The context.shadow functions are not unique to text, but they can make some very good
text effects with very little effort.

96 | Chapter 3: The HTML5 Canvas Text API

To create a shadowEffect, there are four properties of the Canvas context that need to
be manipulated:

context.shadowColor
The color of the shadow. This uses the same “#RRGGBB” format of the fill
Style and strokeStyle properties.

context.shadowOffsetX
The x offset of shadow. This can be a positive or negative number.

context.shadowOffsetY
The y offset of shadow. This can be a positive or negative number.

context.shadowBlur
The blur filter diffusion of the shadow. The higher the number, the more diffusion.

For example, if you want to create a red shadow that is 5 pixels to the right and 5 pixels
down from your text, with a blur of 2 pixels, you would set the properties like this:

context.shadowColor = "#FF0000";
context.shadowOffsetX = 5;
context.shadowOffsetY = 5;
context.shadowBlur = 2;

Handling global shadows

Just like we saw with globalAlpha, we must reset the shadow properties before we draw
the background for textArranger; otherwise, the shadow will apply to the entire image.
First, in the canvasApp() function, we create a set of variables to hold the shadow values:

var textAlpha = 1;
var shadowX = 1;
var shadowY = 1;
var shadowBlur = 1;
var shadowColor = "#707070";

We then make sure to turn off the shadow before we render the background for
textArranger in the drawScreen(). We don’t have to reset the shadowColor, but we think
it is good practice to update all the relative properties relating to any global change to
the Canvas context:

context.shadowColor = "#707070";
context.shadowOffsetX = 0;
context.shadowOffsetY = 0;
context.shadowBlur = 0;

Later in drawScreen(), we render the shadow based on the settings in the four variables
we created:

context.shadowColor = shadowColor;
context.shadowOffsetX = shadowX;
context.shadowOffsetY = shadowY;
context.shadowBlur = shadowBlur;

Text and the Canvas Context | 97

We also need to create the HTML to allow the user to update the shadow settings. We
do this with three range controls, as well as another color picker using jsColor:

Shadow X:<input type="range" id="shadowX"
 min="−100"
 max="100"
 step="1"
 value="1"/>

Shadow Y:<input type="range" id="shadowY"
 min="−100"
 max="100"
 step="1"
 value="1"/>

Shadow Blur: <input type="range" id="shadowBlur"
 min="1"
 max="100"
 step="1"
 value="1" />

Shadow Color: <input class="color" id="shadowColor" value="707070"/>

Finally, we need to add the event listeners and event handler functions so the HTML
form elements can communicate with the canvas. See the results in Figure 3-8:

formElement = document.getElementById("shadowX");
formElement.addEventListener('change', shadowXChanged, false);

formElement = document.getElementById("shadowY");
formElement.addEventListener('change', shadowYChanged, false);

formElement = document.getElementById("shadowBlur");
formElement.addEventListener('change', shadowBlurChanged, false);

formElement = document.getElementById("shadowColor");
formElement.addEventListener('change', shadowColorChanged, false);
function shadowXChanged(e) {
 var target = e.target;
 shadowX = target.value;
 drawScreen();
 }

 function shadowYChanged(e) {
 var target = e.target;
 shadowY = target.value;
 drawScreen();
 }

 function shadowBlurChanged(e) {
 var target = e.target;
 shadowBlur = target.value;
 drawScreen();
 }

98 | Chapter 3: The HTML5 Canvas Text API

 function shadowColorChanged(e) {
 var target = e.target;
 shadowColor = target.value;
 drawScreen();
 }

Figure 3-8. Text with global shadow applied

Text and the Canvas Context | 99

Text with Gradients and Patterns
We’ve already explored the fillColor and strokeColor properties of the Canvas context
by setting those value to CSS-compliant colors. However, those very same properties
can be set to refer to a few other objects defined in the Canvas API to create some
stunning text effects. The objects are:

Linear gradient
A linear color gradient with two or more colors

Radial gradient
A circular color gradient with two or more colors

Image pattern
An Image object used as a fill pattern

Linear Gradients and Text
To create a linear gradient, make a call to the context’s createLinearGradient() method
to create a Gradient object. The createLinearGradient() method accepts four param-
eters that all define the line of the linear gradient. The x0 and y0 parameters are the
starting point of the line, and x1 and y1 represent the ending point of the line:

var gradient = context.createLinearGradient([x0],[y0],[x1],[y1]);

For example, if you want to create a linear gradient that starts at the beginning of the
text (located at 100,100), and has an endpoint that is the width of your text as displayed
on the canvas, you might write the following code:

var metrics = context.measureText(message);
var textWidth = metrics.width;
var gradient = context.createLinearGradient(100, 100, textWidth, 100);

After you have created the line that represents the gradient, you need to add colors that
will form the gradations of the gradient fill. This is done with the addColorStop()
method, which requires two arguments: offset and color:

gradient.addColorStop([offset],[color]);

offset
This is the offset on the gradient line to start the color gradation. The entire gradient
is represented by the numbers between 0.0 and 1.0. The offset will be a decimal
that represents a percentage.

color
A valid CSS color in the format “#RRGGBB”.

So, if you want black to be the first color in the gradient, and then red to be the second
color that starts halfway down the gradient line, you would create two calls to add
ColorStop():

100 | Chapter 3: The HTML5 Canvas Text API

gradient.addColorStop(0, "#000000");
gradient.addColorStop(.5, "#FF0000");

If you fail to add colors with addColorStop(), the text will be rendered
invisible.

The results are shown in Figure 3-9.

Figure 3-9. Text with linear gradient applied

Text with Gradients and Patterns | 101

Radial Gradients and Text
A radial gradient is created much like a linear gradient, except that it represents a cone—
not a line. The cone is created by defining the center points and the radii of two different
circles when calling the createRadialGradient() function of the Canvas context:

var gradient = context.createRadialGradient([x0],[y0],[radius0],[x1],[y1],[radius1]);

Let’s say you want to create a radial gradient based on a cone. It starts with a circle that
has its center point at 100,100 and a radius of 20, and ends at a circle with its center
point at 200,100 and a radius of 5. The code would look like this:

var gradient = context.createRadialGradient(100,100,20,200,100,5);

Adding color stops to a radial gradient works the same as with a linear gradient, except
the color moves along the cone instead of the line:

gradient.addColorStop(0, "#000000 ");
gradient.addColorStop(.5, "#FF0000");

Image Patterns and Text
Another option for filling text on HTML5 Canvas is to use an Image object. We will
devote all of Chapter 4 to using the Image API, so here we will only discuss the basics
of how to use one as a pattern for a text fill.

To create an image pattern, call the createPattern() method of the Canvas context,
passing a reference to an Image object, and an option for repetition:

var pattern = context.createPattern([image], [repetition]);

image
A valid Image object that has been loaded with an image by setting the pattern
.src property and waiting for the image to load by setting an event listener for the
Image onload event. The Canvas specification also allows for a video element or
another <canvas> to be used here as well.

repetition
The “tiling” of the image. This can have one of four values:

repeat
The image is tiled on both the x and y axes.

repeat-x
The image is tiled only on the x-axis (horizontally).

repeat-y
The image is tiled only on the y-axis (vertically).

no-repeat
The image is not tiled.

102 | Chapter 3: The HTML5 Canvas Text API

To use the image pattern, apply it to the fillColor and strokeColor properties of the
context, just as you would apply a color:

context.fillStyle = pattern;

or:

context.strokeStyle = pattern;

For example, to load an image named texture.jpg and apply it to the fillStyle so that
it tiles on both the x and y axes, you would write code like this:

var pattern = new Image();
pattern.src = "texture.jpg"
pattern.onload = function() {
 var pattern = context.createPattern("texture.jpg", "repeat");
 context.fillStyle = pattern;
...
}

Patterns with Video: The Bad News
The HTML5 Canvas API specifies that an HTML5 video element can be used as the
source for createPattern() instead of an image. However, all of our attempts to do so
emitted the following JavaScript error:

Uncaught Error: TYPE_MISMATCH_ERR: DOM Exception 17

According to the DOM reference at www.gnu.org, DOM Exception 17, TYPE
_MISMATCH_ERR occurs “if the type of an object is incompatible with the expected
type of the parameter associated to the object.”

So it appears that most browsers have not included support for using video as the
pattern for createPattern(). However, you can still load and play video on Canvas,
which we will discuss in depth in Chapter 6.

Handling Gradients and Patterns in Text Arranger
Text Arranger 3.0 includes many changes that were implemented to support using
gradients and image patterns with text on HTML5 Canvas. To see these changes in
action, we first need to make sure that we have preloaded the texture.jpg image, which
we will use for the context.createPattern() functionality. To do this, we will create a
new function named eventAssetsLoaded() that we will set as the event handler for the
onload event of the Image object that will hold the pattern. When that image has loaded,
we will call canvasApp() in the same way we called it from eventWindowLoaded():

function eventWindowLoaded() {
 var pattern = new Image();
 pattern.src = "texture.jpg";
 pattern.onload = eventAssetsLoaded;
}

Text with Gradients and Patterns | 103

function eventAssetsLoaded() {

 canvasApp();
}

We are not going to use the pattern variable we created in this function,
as it does not have scope in the canvasApp() function. We are merely
using it to make sure that the image is available before we use it.

In the canvasApp() function, we will create three variables to support this new func-
tionality. fillType describes how the text will be filled (a regular color fill, a linear
gradient, a radial gradient, or a pattern). The textColorFill2 variable is the second
color we will use for the gradient color stop. Finally, the pattern variable holds the
Image object we preloaded, which we now need to create an instance of in canvasApp():

var fillType = "colorFill";
var textFillColor2 = "#000000";
var pattern = new Image();
...
pattern.src = "texture.jpg";

Now, let’s jump to the HTML of our <form>. Since we have created different ways to
fill the text we are displaying, we need to build a selection that allows for this choice.
We will create a <select> box with the id of fillType for this purpose:

Fill Type: <select id="fillType">
 <option value="colorFill">Color Fill</option>
 <option value="linearGradient">Linear Gradient</option>
 <option value="radialGradient">Radial Gradient</option>
 <option value="pattern">pattern</option>
 </select>

We need to add a second color selection that we can use for the gradient fills. We will
use the jsColor picker and the id textColorFill2:

Text Color 2: <input class="color" id="textFillColor2" value ="000000"/>

Back in canvasApp(), we need to create the event listeners for our two new form
elements:

 formElement = document.getElementById("textFillColor2");
 formElement.addEventListener('change', textFillColor2Changed, false);

 formElement = document.getElementById("fillType");
 formElement.addEventListener('change', fillTypeChanged, false);

We also need to create the associated event handler functions for the new form
elements:

function textFillColor2Changed(e) {
 var target = e.target;
 textFillColor2 = "#" + target.value;

104 | Chapter 3: The HTML5 Canvas Text API

 drawScreen();
 }

 function fillTypeChanged(e) {
 var target = e.target;
 fillType = target.value;
 drawScreen();
 }

We need to add support to drawScreen() for this new functionality. First, we use the
measureText() method of the context to get the width of the text, which we will use to
create the gradients:

var metrics = context.measureText(message);
var textWidth = metrics.width;

Then, we need to decide how to format our “color” for the fillStyle or strokeStyle
of the context. In this instance, it can be a CSS color, a gradient, or an image pattern;
the list below provides more information.

Color fill
If we are doing a simple color fill, we operate just like in previous versions of Text
Arranger. All we need to do is make tempColor equal to the value of y.

Linear gradient
For the linear gradient, we need to decide what line we are going to create for the
gradient. Our line will start at the beginning of the text (xPosition-textWidth/2
because the text uses the center alignment), and runs horizontally to the end of
the text (textWidth). We also add two color stops (at 0 and 60%)—the colors are
textFillColor1 and textFillColor2.

Radial gradient
For the radial gradient, we are going to create a cone that starts at the center of the
text (xPosition,yPosition) with a radius the size of the font (fontSize). The cone
will extend horizontally the width of the text (textWidth) with a radius of 1.

Pattern
For this option, we create a pattern using the pattern image variable we previously
created. We designate it to repeat so it will tile horizontally and vertically.

Here’s the code:

var tempColor;
if (fillType == "colorFill") {
 tempColor = textFillColor;
} else if (fillType == "linearGradient") {
 var gradient = context.createLinearGradient(xPosition-
 textWidth/2, yPosition, textWidth, yPosition);
 gradient.addColorStop(0,textFillColor);
 gradient.addColorStop(.6,textFillColor2);
 tempColor = gradient;
} else if (fillType == "radialGradient") {
 var gradient = context.createRadialGradient(xPosition, yPosition,
 fontSize, xPosition+textWidth, yPosition, 1);

Text with Gradients and Patterns | 105

 gradient.addColorStop(0,textFillColor);
 gradient.addColorStop(.6,textFillColor2);
 tempColor = gradient;
} else if (fillType == "pattern") {
 var tempColor = context.createPattern(pattern,"repeat");
} else {
 tempColor = textFillColor;
}

Now, when we set our fillStyle or strokeStyle, we use tempColor instead of textFill
Color. This will set the proper text fill choice that will be displayed on the canvas, as
shown in Figure 3-10:

context.fillStyle = tempColor;

Width, Height, Scale, and toDataURL() Revisited
In Chapter 1, we briefly discussed that you can set the width and height of the canvas,
as well as the scale (style width and height) of the canvas display area, dynamically in
code. We also showed you an example of using the Canvas object’s toDataURL() method
to export a “screenshot” of the Canvas application. In this section, we will revisit those
functions as they relate to Text Arranger 3.0.

Dynamically Resizing the Canvas
In the code we developed in this chapter, we created a reference to the Canvas object
on the HTML page—with the id canvasOne—and used it to retrieve the 2D context of
the Canvas object:

var theCanvas = document.getElementById("canvasOne");
var context = theCanvas.getContext("2d");

While the 2D context is very important because we used it to draw directly onto the
canvas, we did not spend any time discussing the Canvas object itself. In this chapter,
we use the width property of the Canvas object to center text on the canvas. However,
the Canvas object also includes another property named height, and both of these
properties can be used to dynamically resize the Canvas object on demand. Why would
you want to do this? There could be many uses, such as:

• Updating the canvas to the exact size of a loaded video object

• Dynamically animating the canvas after the page is loaded

• Other, more creative uses like the one we will experiment with next

Resizing the canvas on the fly is quite easy. To do it, simply set the width and height
properties of the Canvas object, and then redraw the canvas contents:

Canvas.width = 600;
Canvas.height = 500;
drawScreen();

106 | Chapter 3: The HTML5 Canvas Text API

The Canvas 2D API describes this function as a way to “scale” the canvas, but in prac-
tice, this does not appear to be true. Instead, the contents of the canvas are simply
redrawn at the same size and same location on a larger canvas. Furthermore, if you
don’t redraw the canvas content, it appears to be invalidated, blanking the canvas back
to white. To properly scale the canvas, you need to use the CSS width and height at-
tributes, as described in the next section. We discuss using a matrix transformation to
scale the Canvas in both Chapters 2 and 4.

Figure 3-10. Text with image pattern applied

Width, Height, Scale, and toDataURL() Revisited | 107

Dynamically resizing in Text Arranger

We will add the ability for the canvas to be resized at will, giving you a good example
of how resizing works and what it does to your drawn content.

First, we will add a couple new range controls to the HTML <form>. As you might have
already guessed, we really like this new HTML5 range control, so we’ve tried to find
as many uses as possible for it—even though it’s only tangentially related to HTML5
Canvas.

We will give the controls the ids canvasWidth and canvasHeight:

Canvas Width: <input type="range" id="canvasWidth"
 min="0"
 max="1000"
 step="1"
 value="500"/>

 Canvas Height:
 <input type="range" id="canvasHeight"
 min="0"
 max="1000"
 step="1"
 value="300"/>

Next, we add event listeners for the new form elements in the canvasApp() function:

formElement = document.getElementById("canvasWidth");
formElement.addEventListener('change', canvasWidthChanged, false);

formElement = document.getElementById("canvasHeight");
formElement.addEventListener('change', canvasHeightChanged, false);

Finally, we add the event handlers. Notice that we set the width and height of the
Canvas (the variable we created that represents the Canvas object on screen) right inside
these functions. We also need to make sure that we call drawScreen() in each function
so that the canvas is redrawn on the newly resized area. If we did not do this, the canvas
on the page would blank back to white:

function canvasWidthChanged(e) {
 var target = e.target;
 theCanvas.width = target.value;
 drawScreen();
 }

function canvasHeightChanged(e) {
 var target = e.target;
 theCanvas.height = target.value;
 drawScreen();
 }

108 | Chapter 3: The HTML5 Canvas Text API

We also need to change the way we draw the background for the application in the
drawScreen() function so it supports a resized canvas. We do this by using the width
and height attributes of theCanvas to create our background and bounding box:

context.fillStyle = '#ffffaa';
context.fillRect(0, 0, theCanvas.width, theCanvas.height);
//Box
context.strokeStyle = '#000000';
context.strokeRect(5, 5, theCanvas.width−10, theCanvas.height−10);

Dynamically Scaling the Canvas
Besides resizing the canvas using theCanvas.width and theCanvas.height attributes, you
can also use CSS styles to change its scale. Unlike resizing, scaling takes the current
canvas bitmapped area and resamples it to fit into the size specified by the width and
height attributes of the CSS style. For example, to scale the canvas to a 400×400 area,
you might use this CSS style:

style = "width: 400px; height:400px"

To update the style.width and style.height properties of the canvas in Text Arranger,
we first create two more range controls in the HTML page:

Canvas Style Width: <input type="range" id="canvasStyleWidth"
 min="0"
 max="1000"
 step="1"
 value="500"/>

 Canvas Style Height:
 <input type="range" id="canvasStyleHeight"
 min="0"
 max="1000"
 step="1"
 value="300"/>

Next, we set the event handler for each range control. However, this time we are using
the same handler —canvasStyleSizeChanged()—for both:

formElement = document.getElementById("canvasStyleWidth");
formElement.addEventListener("change", canvasStyleSizeChanged, false);
formElement = document.getElementById("canvasStyleHeight");
formElement.addEventListener("change", canvasStyleSizeChanged, false);

In the event handler, we use the document.getElementById() method to get the values
from both range controls. We then create a string that represents the style we want to
set for the canvas:

"width:" + styleWidth.value + "px; height:" + styleHeight.value +"px;";

Width, Height, Scale, and toDataURL() Revisited | 109

Finally, we use the setAttribute() method to set the “style”:

function canvasStyleSizeChanged(e) {

 var styleWidth = document.getElementById("canvasStyleWidth");
 var styleHeight = document.getElementById("canvasStyleHeight");
 var styleValue = "width:" + styleWidth.value + "px; height:" +
 styleHeight.value +"px;";
 theCanvas.setAttribute("style", styleValue);
 drawScreen();
 }

While trying to change theCanvas.width and theCanvas.height attrib-
utes, you might notice some oddities if you try to change the scale with
CSS at the same time. It appears that once you change the scale with
CSS, the width and height attributes update the canvas in relation to
that scale, which might not be the effect you are expecting. Experiment
with Text Arranger 3.0 to see how these different styles and attributes
interact.

The toDataURL() Method of the Canvas Object
As we briefly explained in Chapter 1, the Canvas object also contains a method named
toDataURL(), which returns a string representing the canvas’ image data. A call with no
arguments will return a string of image data of MIME type image/png. If you supply
the image/jpg as an argument, you can also supply a second argument between the
numbers 0.0 and 1.0 that represents the quality/compression level of the image.

We are going to use toDataURL() to output the image data of the canvas into a
<textarea> on our form, and then open a window to display the actual image. This is
just a simple way to show that the function is working.

The first thing we do is create our last two form controls in HTML for Text Arranger.
We start by creating a button with the id of createImageData that, when pressed, will
create the image data with a call to an event handler named createImageDataPressed().

We also create a <textarea> named imageDataDisplay that will hold the text data of the
image after the createImageData button is pressed:

<input type="button" id="createImageData" value="Create Image Data">

<textarea id="imageDataDisplay" rows=10 cols=30></textarea>

Next, we set up the event listener for the createImageData button:

formElement = document.getElementById("createImageData");
formElement.addEventListener('click', createImageDataPressed, false);

Then, in the createImageDataPressed() event handler, we call the toDataURL() method
of the Canvas object (theCanvas), and set the value of the imageDataDisplay <textarea>

110 | Chapter 3: The HTML5 Canvas Text API

to the data returned from toDataURL(). Finally, using the image data as the URL for the
window, we call window.open(). When we do this, a window will pop open, displaying
the actual image created from the canvas (see Figure 3-11). You can right-click and save
this image, just like any other image displayed in an HTML page. Pretty cool, eh?

function createImageDataPressed(e) {

 var imageDataDisplay = document.getElementById('imageDataDisplay');
 imageDataDisplay.value = theCanvas.toDataURL();
 window.open(imageDataDisplay.value,"canvasImage","left=0,top=0,width=" +
 theCanvas.width + ",height=" + theCanvas.height +
 ",toolbar=0,resizable=0");
 }

Figure 3-11. Canvas exported image with toDataURL()

Width, Height, Scale, and toDataURL() Revisited | 111

SECURITY_ERR: DOM Exception 18
In some web browsers, such as Google Chrome, you might experience an error
(SECURITY_ERR: DOM Exception 18) when trying to export the canvas while an
image is displayed (like the pattern fill type in Example 3-3). This usually occurs because
the web browser is executing a web page locally (loaded from the filesystem). These
errors can usually be removed by loading the HTML page from a web server—either
remotely or on your local machine.

Final Version of Text Arranger
The final version of Text Arranger (3.0) brings together all the HTML5 Text API fea-
tures we have discussed in this chapter (see Example 3-3). Play with the final app, and
see how the different options interact with one another. Here are a couple things you
might find interesting:

• Shadows don’t work with patterns or gradients.

• Increasing the text size with a pattern that is the size of the canvas changes the
pattern on the text (it acts like a mask or window into the pattern itself).

• Canvas width and height are affected by the style width and height (scaling).

Example 3-3. Text Arranger 3.0

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH3EX3: Text Arranger 3.0</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript" src="jscolor/jscolor.js"></script>
<script type="text/javascript">

window.addEventListener("load", eventWindowLoaded, false);
function eventWindowLoaded() {

 canvasApp();
}

function canvasSupport () {
 return Modernizr.canvas;
}

function eventWindowLoaded() {
 var pattern = new Image();
 pattern.src = "texture.jpg";
 pattern.onload = eventAssetsLoaded;
}

function eventAssetsLoaded() {

112 | Chapter 3: The HTML5 Canvas Text API

 canvasApp();
}

function canvasApp() {

 var message = "your text";
 var fontSize = "50";
 var fontFace = "serif";
 var textFillColor = "#ff0000";
 var textAlpha = 1;
 var shadowX = 1;
 var shadowY = 1;
 var shadowBlur = 1;
 var shadowColor = "#707070";
 var textBaseline = "middle";
 var textAlign = "center";
 var fillOrStroke ="fill";
 var fontWeight = "normal";
 var fontStyle = "normal";
 var fillType = "colorFill";
 var textFillColor2 = "#000000";
 var pattern = new Image();

 if (!canvasSupport()) {
 return;
 }

 var theCanvas = document.getElementById("canvasOne");
 var context = theCanvas.getContext("2d");

 var formElement = document.getElementById("textBox");
 formElement.addEventListener("keyup", textBoxChanged, false);

 formElement = document.getElementById("fillOrStroke");
 formElement.addEventListener("change", fillOrStrokeChanged, false);

 formElement = document.getElementById("textSize");
 formElement.addEventListener("change", textSizeChanged, false);

 formElement = document.getElementById("textFillColor");
 formElement.addEventListener("change", textFillColorChanged, false);

 formElement = document.getElementById("textFont");
 formElement.addEventListener("change", textFontChanged, false);

 formElement = document.getElementById("textBaseline");
 formElement.addEventListener("change", textBaselineChanged, false);

 formElement = document.getElementById("textAlign");
 formElement.addEventListener("change", textAlignChanged, false);

 formElement = document.getElementById("fontWeight");
 formElement.addEventListener("change", fontWeightChanged, false);

Final Version of Text Arranger | 113

 formElement = document.getElementById("fontStyle");
 formElement.addEventListener("change", fontStyleChanged, false);

 formElement = document.getElementById("shadowX");
 formElement.addEventListener("change", shadowXChanged, false);

 formElement = document.getElementById("shadowY");
 formElement.addEventListener("change", shadowYChanged, false);

 formElement = document.getElementById("shadowBlur");
 formElement.addEventListener("change", shadowBlurChanged, false);

 formElement = document.getElementById("shadowColor");
 formElement.addEventListener("change", shadowColorChanged, false);

 formElement = document.getElementById("textAlpha");
 formElement.addEventListener("change", textAlphaChanged, false);

 formElement = document.getElementById("textFillColor2");
 formElement.addEventListener("change", textFillColor2Changed, false);

 formElement = document.getElementById("fillType");
 formElement.addEventListener("change", fillTypeChanged, false);

 formElement = document.getElementById("canvasWidth");
 formElement.addEventListener("change", canvasWidthChanged, false);

 formElement = document.getElementById("canvasHeight");
 formElement.addEventListener("change", canvasHeightChanged, false);

 formElement = document.getElementById("canvasStyleWidth");
 formElement.addEventListener("change", canvasStyleSizeChanged, false);

 formElement = document.getElementById("canvasStyleHeight");
 formElement.addEventListener("change", canvasStyleSizeChanged, false);

 formElement = document.getElementById("createImageData");
 formElement.addEventListener("click", createImageDataPressed, false);

 pattern.src = "texture.jpg";

 drawScreen();

 function drawScreen() {

 //Background
 context.globalAlpha = 1;
 context.shadowColor = "#707070";
 context.shadowOffsetX = 0;
 context.shadowOffsetY = 0;
 context.shadowBlur = 0;
 context.fillStyle = "#ffffaa";
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);

114 | Chapter 3: The HTML5 Canvas Text API

 //Box
 context.strokeStyle = "#000000";
 context.strokeRect(5, 5, theCanvas.width-10, theCanvas.height-10);

 //Text
 context.textBaseline = textBaseline;
 context.textAlign = textAlign;
 context.font = fontWeight + " " + fontStyle + " " + fontSize + "px " + fontFace;
 context.shadowColor = shadowColor;
 context.shadowOffsetX = shadowX;
 context.shadowOffsetY = shadowY;
 context.shadowBlur = shadowBlur;
 context.globalAlpha = textAlpha;

 var xPosition = (theCanvas.width/2);
 var yPosition = (theCanvas.height/2);

 var metrics = context.measureText(message);
 var textWidth = metrics.width;

 var tempColor;
 if (fillType == "colorFill") {
 tempColor = textFillColor;
 } else if (fillType == "linearGradient") {

 var gradient = context.createLinearGradient(xPosition-
 textWidth/2, yPosition, textWidth, yPosition);
 gradient.addColorStop(0,textFillColor);
 gradient.addColorStop(.6,textFillColor2);
 tempColor = gradient;
 } else if (fillType == "radialGradient") {
 var gradient = context.createRadialGradient(xPosition, yPosition,
 fontSize, xPosition+textWidth, yPosition, 1);
 gradient.addColorStop(0,textFillColor);
 gradient.addColorStop(.6,textFillColor2);
 tempColor = gradient;
 } else if (fillType == "pattern") {
 var tempColor = context.createPattern(pattern,"repeat")
 } else {
 tempColor = textFillColor;
 }

 switch(fillOrStroke) {
 case "fill":
 context.fillStyle = tempColor;
 context.fillText (message, xPosition,yPosition);
 break;
 case "stroke":
 context.strokeStyle = tempColor;
 context.strokeText (message, xPosition,yPosition);
 break;
 case "both":
 context.fillStyle = tempColor;
 context.fillText (message, xPosition,yPosition);
 context.strokeStyle = "#000000";

Final Version of Text Arranger | 115

 context.strokeText (message, xPosition,yPosition);
 break;
 }

 }

 function textBoxChanged(e) {
 var target = e.target;
 message = target.value;
 drawScreen();
 }

 function textBaselineChanged(e) {
 var target = e.target;
 textBaseline = target.value;
 drawScreen();
 }

 function textAlignChanged(e) {
 var target = e.target;
 textAlign = target.value;
 drawScreen();
 }

 function fillOrStrokeChanged(e) {
 var target = e.target;
 fillOrStroke = target.value;
 drawScreen();
 }

 function textSizeChanged(e) {
 var target = e.target;
 fontSize = target.value;
 drawScreen();
 }

 function textFillColorChanged(e) {
 var target = e.target;
 textFillColor = "#" + target.value;
 drawScreen();
 }

 function textFontChanged(e) {
 var target = e.target;
 fontFace = target.value;
 drawScreen();
 }

 function fontWeightChanged(e) {
 var target = e.target;
 fontWeight = target.value;
 drawScreen();
 }

116 | Chapter 3: The HTML5 Canvas Text API

 function fontStyleChanged(e) {
 var target = e.target;
 fontStyle = target.value;
 drawScreen();
 }

 function shadowXChanged(e) {
 var target = e.target;
 shadowX = target.value;
 drawScreen();
 }

 function shadowYChanged(e) {
 var target = e.target;
 shadowY = target.value;
 drawScreen();
 }

 function shadowBlurChanged(e) {
 var target = e.target;
 shadowBlur = target.value;
 drawScreen();
 }

 function shadowColorChanged(e) {
 var target = e.target;
 shadowColor = target.value;
 drawScreen();
 }

 function textAlphaChanged(e) {
 var target = e.target;
 textAlpha = (target.value);
 drawScreen();
 }

 function textFillColor2Changed(e) {
 var target = e.target;
 textFillColor2 = "#" + target.value;
 drawScreen();
 }

 function fillTypeChanged(e) {
 var target = e.target;
 fillType = target.value;
 drawScreen();
 }

 function canvasWidthChanged(e) {
 var target = e.target;
 theCanvas.width = target.value;
 drawScreen();
 }

Final Version of Text Arranger | 117

 function canvasHeightChanged(e) {
 var target = e.target;
 theCanvas.height = target.value;
 drawScreen();
 }

 function canvasStyleSizeChanged(e) {

 var styleWidth = document.getElementById("canvasStyleWidth");
 var styleHeight = document.getElementById("canvasStyleHeight");
 var styleValue = "width:" + styleWidth.value + "px; height:" +
 styleHeight.value +"px;";
 theCanvas.setAttribute("style", styleValue);
 drawScreen();
 }

 function createImageDataPressed(e) {

 var imageDataDisplay = document.getElementById("imageDataDisplay");
 imageDataDisplay.value = theCanvas.toDataURL();
 window.open(imageDataDisplay.value,"canvasImage","left=0,top=0,width=" +
 theCanvas.width + ",height=" + theCanvas.height +
 ",toolbar=0,resizable=0");

 }

}

</script>
</head>
<body>
<div style="display:none">
 <video id="theVideo" autoplay="true" loop="true">
 <source src="spaceeggs.ogg" type="video/ogg"/>
 </video>

</div>

<div style="position: absolute; top: 50px; left: 50px;">
<canvas id="canvasOne" width="500" height="300">
 Your browser does not support HTML5 Canvas.
</canvas>
<form>
 Text: <input id="textBox" placeholder="your text" />

 Text Font: <select id="textFont">
 <option value="serif">serif</option>
 <option value="sans-serif">sans-serif</option>
 <option value="cursive">cursive</option>
 <option value="fantasy">fantasy</option>
 <option value="monospace">monospace</option>
 </select>

118 | Chapter 3: The HTML5 Canvas Text API

 Font Weight:
 <select id="fontWeight">
 <option value="normal">normal</option>
 <option value="bold">bold</option>
 <option value="bolder">bolder</option>
 <option value="lighter">lighter</option>
 </select>

 Font Style:
 <select id="fontStyle">
 <option value="normal">normal</option>
 <option value="italic">italic</option>
 <option value="oblique">oblique</option>
 </select>

 Text Size: <input type="range" id="textSize"
 min="0"
 max="200"
 step="1"
 value="50"/>

 Fill Type: <select id="fillType">
 <option value="colorFill">Color Fill</option>
 <option value="linearGradient">Linear Gradient</option>
 <option value="radialGradient">Radial Gradient</option>
 <option value="pattern">pattern</option>
 </select>

 Text Color: <input class="color" id="textFillColor" value="FF0000"/>

 Text Color 2: <input class="color" id="textFillColor2" value ="000000"/>

 Fill Or Stroke: <select id="fillOrStroke">
 <option value="fill">fill</option>
 <option value="stroke">stroke</option>
 <option value="both">both</option>
 </select>

 Text Baseline <select id="textBaseline">
 <option value="middle">middle</option>
 <option value="top">top</option>
 <option value="hanging">hanging</option>
 <option value="alphabetic">alphabetic</option>
 <option value="ideographic">ideographic</option>
 <option value="bottom">bottom</option>
 </select>

 Text Align <select id="textAlign">
 <option value="center">center</option>
 <option value="start">start</option>
 <option value="end">end</option>
 <option value="left">left</option>
 <option value="right">right</option>
 </select>

Final Version of Text Arranger | 119

 Alpha: <input type="range" id="textAlpha"
 min="0.0"
 max="1.0"
 step="0.01"
 value="1.0"/>

 Shadow X:<input type="range" id="shadowX"
 min="−100"
 max="100"
 step="1"
 value="1"/>

 Shadow Y:<input type="range" id="shadowY"
 min="−100"
 max="100"
 step="1"
 value="1"/>

 Shadow Blur: <input type="range" id="shadowBlur"
 min="1"
 max="100"
 step="1"
 value="1" />

 Shadow Color: <input class="color" id="shadowColor" value="707070"/>

 Canvas Width: <input type="range" id="canvasWidth"
 min="0"
 max="1000"
 step="1"
 value="500"/>

 Canvas Height:
 <input type="range" id="canvasHeight"
 min="0"
 max="1000"
 step="1"
 value="300"/>

 Canvas Style Width: <input type="range" id="canvasStyleWidth"
 min="0"
 max="1000"
 step="1"
 value="500"/>

 Canvas Style Height:
 <input type="range" id="canvasStyleHeight"
 min="0"
 max="1000"
 step="1"
 value="300"/>

 <input type="button" id="createImageData" value="Create Image Data">

120 | Chapter 3: The HTML5 Canvas Text API

 <textarea id="imageDataDisplay" rows=10 cols=30></textarea>
 </form>

</div>
</body>
</html>

What’s Next
In this chapter, we introduced you to the fundamentals of the HTML5 Canvas Text
API, offered some general concepts relating to drawing on the canvas, and explained
how to communicate with HTML form controls. As you can now see, the basic concept
of writing text to HTML5 Canvas can be taken to very complex (and some might argue
ludicrous) levels. The final application, Text Arranger 3.0, allows you to modify a single
line of text in an almost infinite number of ways. In the next chapter, we move on to
displaying and manipulating images on the canvas.

What’s Next | 121

CHAPTER 4

Images on the Canvas

Like the Canvas Drawing API, the Canvas Image API is very robust. With it, we can
load in image data and apply it directly to the canvas. This image data can also be cut
and spliced to display any desired portion. Furthermore, Canvas gives us the ability to
store arrays of pixel data that we can manipulate and then draw back to the canvas.

There are two primary Canvas functions we can perform with images. We can display
images, and we can modify them pixel by pixel and paint them back to the canvas.
There are only a few Image API functions, but they open up a world of pixel-level
manipulation that gives the developer the power to create optimized applications di-
rectly in the web browser without needing any plug-ins.

The Basic File Setup for This Chapter
All the examples in this chapter will use the same basic file setup for displaying our
demonstrations as we proceed through the Drawing API. Use the following as the basis
for all the examples we create—you will only need to change the contents of the
drawScreen() function:

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Ch4BaseFile - Template For Chapter 4 Examples</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {

 canvasApp();

}

function canvasSupport () {
 return Modernizr.canvas;
}

123

function canvasApp(){

 if (!canvasSupport()) {
 return;
 }else{
 var theCanvas = document.getElementById("canvas");
 var context = theCanvas.getContext("2d");
 }

drawScreen();

 function drawScreen() {
 //make changes here
 context.fillStyle = '#aaaaaa';
 context.fillRect(0, 0, 200, 200);
 context.fillStyle = '#000000';
 context.font = '20px _sans';
 context.textBaseline = 'top';
 context.fillText ("Canvas!", 0, 0);
 }
}
</script>
</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">
<canvas id="canvas" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Image Basics
The Canvas API allows access to the DOM-defined Image object type through the use
of the drawImage() method. The image can be defined in HTML, such as:

Or it can be defined in JavaScript. We create a new JavaScript Image instance like this:

var spaceShip = new Image();

We can then set the file source of the image by assigning a URL to the src attribute of
our newly created Image object:

spaceShip.src = "ship1.png";

124 | Chapter 4: Images on the Canvas

Preloading Images
Before an image can be called in code, we must ensure that it has properly loaded and
is ready to be used. We do this by creating an event listener to fire off when the load
event on the image occurs:

spaceShip.addEventListener('load', eventShipLoaded , false);

When the image is fully loaded, the eventShipLoaded() function will fire off. Inside this
function we will then call drawScreen(), as we have in the previous chapters:

function eventShipLoaded() {
 drawScreen();
}

In practice, we would not create a separate event listener function for
each loaded image. This code example works fine if your application
contains only a single image. In Chapter 9, we will build a game with
multiple image files (and sounds) and use a single listener function for
all loaded resources.

Displaying an Image on the Canvas with drawImage()
Once we have an image loaded in, we can display it on the screen in a number of ways.
The drawImage() Canvas method is used for displaying image data directly onto the
canvas. drawImage() is overloaded and takes three separate sets of parameters, each
allowing varied manipulation of both the image’s source pixels and the destination
location for those pixels on the canvas. Let’s first look at the most basic:

drawImage(Image, dx, dy)

This function takes in three parameters: an Image object, and x and y values representing
the top-left corner location to start painting the image on the canvas.

Here is the code we would use to place our spaceship image at the 0,0 location (the
top-left corner) of the canvas:

context.drawImage(spaceShip, 0, 0);

If we want to place another copy at 50,50, we would simply make the same call but
change the location:

context.drawImage(spaceShip, 50, 50);

Example 4-1 shows the full code for what we have done so far.

Example 4-1. Load and display an image file

var spaceShip = new Image();
spaceShip.addEventListener('load', eventShipLoaded , false);
spaceShip.src = "ship1.png";

Image Basics | 125

function eventShipLoaded() {
 drawScreen();
}

function drawScreen() {

 context.drawImage(spaceShip, 0, 0);
 context.drawImage(spaceShip, 50, 50);

}

Figure 4-1 shows the 32×32 ship1.png file.

Figure 4-1. Load and display an image file

In practice, we would probably not put all of our drawing code directly into a function
such as drawScreen(). It almost always makes more sense to create a separate function,
such as placeShip(), shown here:

function drawScreen() {
 placeShip(context, spaceShip, 0, 0);
 placeShip(context, spaceShip, 50, 50);
}

function placeShip(ctx, obj, posX, posY, width, height) {
 if (width && height) {
 context.drawImage(obj, posX, posY, width, height);
 } else {
 context.drawImage(obj, posX, posY);
 }
}

The placeShip() function accepts the context, the image object, the x and y positions,
and a height and width. If a height and width are passed in, the first version of the
drawScreen() function is called. If not, the second version is called. We will look at
resizing images as they are drawn in the next section.

The ship1.png file we are using is a 32×32 pixel .png bitmap, which we have modified
from Ari Feldman’s excellent SpriteLib. SpriteLib is a free library of pixel-based game
sprites that Ari has made available for use in games and books. You can find the entire
SpriteLib here: http://www.flyingyogi.com/fun/spritelib.html.

126 | Chapter 4: Images on the Canvas

The website for this book contains only the files necessary to complete
the examples. We have modified Ari’s files to fit the needs of this book.

Figure 4-2 shows two copies of the image painted to the canvas. One of the copies has
the top-left starting location of 0,0, and the other starts at 50,50.

Figure 4-2. Draw multiple objects with a single source

Resizing an Image Painted to the Canvas
To paint and scale drawn images, we can also pass parameters into the drawImage()
function. For example, this second version of drawImage() takes in an extra two
parameters:

drawImage(Image, dx, dy, dw, dh)

dw and dh represent the width and height of the rectangle portion of the canvas where
our source image will be painted. If we only want to scale the image to 64×64 or 16×16,
we would use the following code:

context.drawImage(spaceShip, 0, 0,64,64);
context.drawImage(spaceShip, 0, 0,16,16);

Example 4-2 draws various sizes to the canvas.

Example 4-2. Resizing an image as it is drawn

function eventShipLoaded() {
 drawScreen();
}

function drawScreen() {

 context.drawImage(spaceShip, 0, 0);
 context.drawImage(spaceShip, 0, 34,32,32);
 context.drawImage(spaceShip, 0, 68,64,64);
 context.drawImage(spaceShip, 0, 140,16,16);
}

See Figure 4-3 for the output to this example.

Image Basics | 127

Figure 4-3. Resizing an image as it is drawn

In Example 4-2, we have added a gray box so we can better see the placement of the
images on the canvas. The image we placed on the screen can scale in size as it is painted,
saving us the calculation and steps necessary to use a matrix transformation on the
object. The only caveat is that the scale origin point of reference is the top-left corner
of the object. If we used a matrix operation, we could translate the origin point to the
center of the object before applying the scale.

We have placed two 32×32 objects on the canvas to show that these two function calls
are identical:

context.drawImage(spaceShip, 0, 0);
context.drawImage(spaceShip, 0, 34,32,32);

Aside from the fact that the second is placed 34 pixels below the first, the extra 32,32
at the end of the second call is unnecessary because it is the original size of the object.
This demonstrates that the scale operation does not translate (or move) the object on
any axis. The top-left corner of each is 0,0.

Copying Part of an Image to the Canvas
The third set of parameters that can be passed into drawImage() allows us to copy an
arbitrary rectangle of data from a source image and place it onto the canvas. This image
data can be resized as it is placed.

We are going to use a second source image for this set of operations: spaceships that
have been laid out on what is called a tile sheet (also known as a sprite sheet, a texture
sheet, or by many other names). This type of file layout refers to an image file that is
broken up physically into rectangles of data. Usually these rectangles have an equal
width and height. The “tiles” or “sprites” we will be using are 32 pixels wide by 32
pixels high, commonly referred to as 32×32 tiles.

128 | Chapter 4: Images on the Canvas

Figure 4-4 shows a tile sheet with the grid lines turned on in the drawing application.
These grid lines separate each of the tiles on the sheet.

Figure 4-4. The tile sheet inside a drawing program

Figure 4-5 is the actual tile sheet—without grid lines—that we will use for our further
examples.

Figure 4-5. The tile sheet exported for use in an application

The structure of the parameters for this third version of the drawImage() function looks
like this:

drawImage(Image, sx, sy, sw, sh, dx, dy, dw, dh)

sx and sy represent the “source positions” to start copying the source image to the
canvas. sw and sh represent the width and height of the rectangle starting at sx and
sy. That rectangle will be copied to the canvas at “destination” positions dx and dy. As
with the previous drawImage() function, dw and dh represent the newly scaled width and
height for the image.

Example 4-3 copies the second version of our spaceship (tile number 2) to the canvas
and positions it at 50,50. It also scales the image to 64×64, producing the result shown
in Figure 4-6.

Example 4-3. Using all of the drawImage() parameters

var tileSheet = new Image();
tileSheet.addEventListener('load', eventShipLoaded , false);

tileSheet.src = "ships.png";

function eventShipLoaded() {
 drawScreen();
}

function drawScreen() {

 //draw a background so we can see the Canvas edges
 context.fillStyle = "#aaaaaa";

Image Basics | 129

 context.fillRect(0,0,500,500);
 context.drawImage(tileSheet, 32, 0,32,32,50,50,64,64);
}

As you can see, we have changed the name of our Image instance to tileSheet because
it represents more than just the source for the single ship image.

Figure 4-6. Using all of the drawImage() parameters

Now, let’s use this same concept to simulate animation using the tiles on our tile sheet.

Simple Cell-Based Sprite Animation
With a tile sheet of images, it is relatively simple to create what seems like cell-based
or flip-book animation. This technique involves rapidly swapping images over time to
simulate animation. The term flip-book comes from the age-old technique of drawing
individual cells of animation in the top-left corner pages of a book. When the pages are
rapidly flipped through, the changes are viewed over time, appearing to create a car-
toon. Cell-based animation refers to a similar professional technique. Individual same-
sized cells (or pages) of images are drawn to simulate animation. When played back
rapidly with special devices in front of a camera, animated cartoons are recorded.

We can use the drawImage() function and the first two tiles on our tile sheet to do the
same thing.

Creating an Animation Frame Counter
We can simulate the ship’s exhaust firing by rapidly flipping between the first two tiles
(or cells) on our tile sheet. To do this, we set up a counter variable, which is how we
track the tile we want to paint to the canvas. We will use 0 for the first cell and 1 for
the second cell.

130 | Chapter 4: Images on the Canvas

We will create a simple integer to count which frame we are displaying on our tile sheet:

var counter = 0;

Inside drawScreen(), we will increment this value by 1 on each frame. Since we only
have two frames, we will need to set it back to 0 when it is greater than 1:

counter++;
if (counter >1) {
 counter = 0;
}

Or use the nice shortcut:

counter ^= 1;

Creating a Timer Loop
As it currently stands, our code will only be called a single time. Let’s create a simple
timer loop that will call the drawScreen() function 10 times a second, or once every 100
milliseconds. A timer loop that is set to run at a certain frame rate is sometimes referred
to as a frame tick or timer tick. Each tick is simply a single iteration of the timer running
all the code we put into our drawScreen() function. We will also need a function that
starts the timer loop and initiates the tick once the image has preloaded properly. We’ll
name this function startUp():

function eventShipLoaded() {
 startUp();
}

function startUp(){
 setInterval(drawScreen, 100);
}

Changing the Tile to Display
To change the tile to display, we can multiply the counter variable by 32 (the tile width).
Since we only have a single row of tiles, we don’t have to change the y value:

context.drawImage(tileSheet, 32*counter, 0,32,32,50,50,64,64);

We will examine how to use a tile sheet consisting of multiple
rows and columns in the next section, “Advanced Cell-Based Anima-
tion” on page 132.

Example 4-3 used this same line of code to draw our image. In Example 4-4, it will be
placed on the canvas at 50,50 and scaled to 64×64 pixels. Let’s look at the entire set of
code.

Simple Cell-Based Sprite Animation | 131

Example 4-4. A simple sprite animation

 var counter = 0;
 var tileSheet = new Image();
 tileSheet.addEventListener('load', eventShipLoaded , false);
 tileSheet.src = "ships.png";

 function eventShipLoaded() {
 startUp();
 }

 function drawScreen() {

 //draw a background so we can see the Canvas edges
 context.fillStyle = "#aaaaaa";
 context.fillRect(0,0,500,500);
 context.drawImage(tileSheet, 32*counter, 0,32,32,50,50,64,64);
 counter++;
 if (counter >1) {
 counter = 0;
 }
 }

 function startUp(){

 setInterval(drawScreen, 100);
 }

When you run this code, you will see the exhaust on the ship turn off and on every 100
milliseconds, creating a simple cell-based animation.

Advanced Cell-Based Animation
In the previous example, we simply flipped back and forth between two tiles on our
tile sheet. Next, we are going to create a method that uses a tile sheet to play through
a series of images. First, let’s look at the new tile sheet, created by using tiles from
SpriteLib. Figure 4-7 shows the example sprite sheet, tanks_sheet.png; we will refer
back to this figure throughout the chapter.

Figure 4-7. Example tile sheet

132 | Chapter 4: Images on the Canvas

As you can see, it contains a number of 32×32 tiles that can be used in a game. We will
not create an entire game in this chapter, but we will examine how to use these tiles to
create a game screen. In Chapter 9, we will create a simple maze-chase game using some
of these tiles.

Examining the Tile Sheet
The tile sheet is formatted into a series of tiles starting at the top left. As with a two-
dimensional array, the numbering starts at 0—we call this 0 relative. Moving from left
to right and down, each tile will be referenced by a single number index (as opposed
to a multidimensional index). The gray square in the top left is tile 0, while the tank at
the end of the first row (the rightmost tank) is tile 7. Moving down to the next row, the
first tank on the far left of the second row is tile 8, and so on until the final tile on row
3 (the fourth row down when we start numbering at 0) is tile 31. We have four rows
with eight columns each, making 32 tiles with indexes numbered 0 to 31.

Creating an Animation Array
Next, we are going to create an array to hold the tiles for the animation. There are two
tanks on the tile sheet: one is green and one is blue. Tiles 1‒8 are a series that—when
played in succession—will make it appear as though the green tank’s tracks are moving.

Remember, the tile sheet starts at tile 0, but we want start with the first
tank image at tile number 1.

We will store the tile ids we want to play for the tank in an array:

var animationFrames = [1,2,3,4,5,6,7,8];

We will use a counter to keep track of the current index of this array:

var frameIndex = 0;

Choosing the Tile to Display
We will use the frameIndex of the animationFrames array to calculate the 32×32 source
rectangle from our tile sheet that we will copy to the canvas. First, we need to find the
x and y locations of the top-left corner for the tile we want to copy. To do this, we will
create local variables in our drawScreen() function on each iteration (frame) to calculate
the position on the tile sheet. The sourceX variable will contain the top-left corner x
position, and the sourceY variable will contain the top-left corner y position.

Advanced Cell-Based Animation | 133

Here is pseudocode for the sourceX calculation:

sourceX = integer(current_frame_index modulo
the_number_columns_in_the_tilesheet) * tile_width

The modulo (%) operator gives us the remainder of the division calculation. The actual
code we will use for this calculation looks like this:

var sourceX = Math.floor(animationFrames[frameIndex] % 8) *32;

The calculation for the sourceY value is similar, except we divide rather than use the
modulo operation:

sourceY = integer(current_frame_index divided by
the_number_columns_in_the_tilesheet) *tile_height

Here is the actual code we will use for this calculation:

var sourceY = Math.floor(animationFrames[frameIndex] / 8) *32;

Looping Through the Tiles
We will update the frameIndex value on each frame tick. When frameIndex becomes
greater than 7, we will set it back to 0:

frameIndex++;
 if (frameIndex == animationFrames.length) {
 frameIndex = 0;
 }

The animationFrames.length value is 8. When the frameIndex is equal to 8, we must set
it back to 0 to start reading the array values over again, which creates an infinite ani-
mation loop.

Drawing the Tile
We will use drawImage() to place the new tile on the screen on each iteration:

context.drawImage(tileSheet, sourceX, sourceY,32,32,50,50,32,32);

Here, we are passing the calculated sourceX and sourceY values into the drawImage()
function. We then pass in the width (32), the height (32), and the location (50,50) to
draw the image on the canvas. Example 4-5 shows the full code.

Example 4-5. Advanced sprite animation

var tileSheet = new Image();
tileSheet.addEventListener('load', eventShipLoaded , false);

tileSheet.src = "tanks_sheet.png";

var animationFrames = [1,2,3,4,5,6,7,8];
var frameIndex = 0;

134 | Chapter 4: Images on the Canvas

function eventShipLoaded() {
 startUp();
}

function drawScreen() {

 //draw a background so we can see the Canvas edges
 context.fillStyle = "#aaaaaa";
 context.fillRect(0,0,500,500);

 var sourceX = Math.floor(animationFrames[frameIndex] % 8) *32;
 var sourceY = Math.floor(animationFrames[frameIndex] / 8) *32;

 context.drawImage(tileSheet, sourceX, sourceY,32,32,50,50,32,32);

 frameIndex++;
 if (frameIndex ==animationFrames.length) {
 frameIndex=0;
 }

}

function startUp(){

 setInterval(drawScreen, 100);
}

When we run the example, we will see the eight tile cell frames for the tank run in order
and then repeat—the only problem is that the tank isn’t going anywhere. Let’s solve
that little dilemma next and drive the tank up the screen.

Moving the Image Across the Canvas
Now that we have the tank tracks animating, let’s “move” the tank. By animating the
tank tracks and applying a simple movement vector to the tank’s position, we can
achieve the simulation of animated movement.

To do this, we first need to create variables to hold the current x and y positions of the
tank. These represent the top-left corner where the tile from our sheet will be drawn
to the canvas. In the previous examples, this number was set at 50 for each, so let’s use
that value here as well:

var x = 50;
var y = 50;

We also need a movement vector value for each axis. These are commonly known as
deltaX (dx) and deltaY (dy). They represent the “delta” or “change” in the x or y axis
position on each iteration. Our tank is currently facing in the “up” position, so we will
use -1 for the dy and 0 for the dx:

var dx = 0;
var dy = -1;

Advanced Cell-Based Animation | 135

The result is that on each frame tick, our tank will move one pixel up on the y-axis and
zero pixels on the x-axis.

Inside drawScreen() (which is called on each frame tick), we will add the dx and dy
values to the x and y values, and then apply them to the drawImage() function:

y = y+dy;
x = x+dx;
context.drawImage(tileSheet, sourceX, sourceY,32,32,x,y,32,32);

Rather than use the hardcoded 50,50 for the location of the drawImage() call on the
canvas, we have replaced it with the current x,y position. Let’s examine the entire code
in Example 4-6.

Example 4-6. Sprite animation and movement

var tileSheet = new Image();
tileSheet.addEventListener('load', eventShipLoaded , false);
tileSheet.src = "tanks_sheet.png";

var animationFrames = [1,2,3,4,5,6,7,8];
var frameIndex = 0;
var dx = 0;
var dy = -1;
var x = 50;
var y = 50;

function eventShipLoaded() {
 startUp();
}

function drawScreen() {

 y = y+dy;
 x = x+dx;

 //draw a background so we can see the Canvas edges
 context.fillStyle = "#aaaaaa";
 context.fillRect(0,0,500,500);

 var sourceX = Math.floor(animationFrames[frameIndex] % 8) *32;
 var sourceY = Math.floor(animationFrames[frameIndex] / 8) *32;

 context.drawImage(tileSheet, sourceX, sourceY,32,32,x,y,32,32);

 frameIndex++;
 if (frameIndex==animationFrames.length) {
 frameIndex=0;
 }

}

function startUp(){

136 | Chapter 4: Images on the Canvas

 setInterval(drawScreen, 100);
}

By running this example, we see the tank move slowly up the canvas while its tracks
play through the eight separate tiles of animation.

Our tile sheet only has images of the tank facing in the up position. If we want to have
the tank move in other directions, we can do one of two things. The first option is to
create more tiles on the tile sheet to represent the left, right, and down positions. How-
ever, this method requires much more work and creates a larger source image for the
tile sheet. We are going to solve this problem in another way, which we will examine
next.

Applying Rotation Transformations to an Image
In the previous section, we created an animation using tiles from a tile sheet. In this
section, we will take it one step further and use the Canvas transformation matrix to
rotate our image before drawing it to the canvas. This will allow us to use only a single
set of animated tiles for all four (or more) rotated directions in which we would like to
display our images. Before we write the code, let’s examine what it will take to rotate
our tank animation from the previous section.

In Chapter 2, we dove into applying basic transformations when draw-
ing with paths. The same concepts apply to transforming images on the
canvas. If you have not read the section “Simple Canvas Transforma-
tions” on page 41 in Chapter 2, you might want to review it before
reading on.

Canvas Transformation Basics
Although we covered basic Canvas transformations in detail in Chapter 2, let’s review
what’s necessary to transform an individual object on the canvas. Remember, the can-
vas is a single immediate-mode drawing surface, so any transformations we make are
applied to the entire canvas. In our example, we are drawing two objects. First, we draw
a gray background rectangle, and then we copy the current tile from our tile sheet to
the desired location. These are two discrete objects, but once they are on the canvas,
they are both simply collections of pixels painted on the surface. Unlike Flash or other
platforms that allow many separate sprites or “movie clips” to occupy the physical
space, there is only one such object on Canvas: the context.

To compensate for this, we create logical display objects. Both the background and the
tank are considered separate logical display objects. If we want to draw the tank but
rotate it with a transformation matrix, we must separate the logical drawing operations
by using the save() and restore() Canvas context functions.

Applying Rotation Transformations to an Image | 137

Let’s look at an example where we rotate the tank 90 degrees so it is facing to the right
rather than up.

Step 1: Save the current context to the stack

The save() context function will take the current contents of the canvas (in our case
the gray background rectangle) and store it away for “safekeeping”:

 context.save();

Once we have transformed the tank, we will replace it with the restore() function call.

Step 2: Reset the transformation matrix to identity

The next step in transforming an object is to clear the transformation matrix by passing
it values that reset it to the identity values:

context.setTransform(1,0,0,1,0,0)

Step 3: Code the transform algorithm

Each transformation will be slightly different, but usually if you are rotating an object,
you will want to translate the matrix to the center point of that object. Our tank will
be positioned at 50,50 on the canvas, so we will translate it to 66,66. Since our tank is
a 32×32 square tile, we simply add half of 32, or 16, to both the x and y location points:

context.translate(x+16, y+16);

Next, we need to find the angle in radians for the direction we want the tank to be
rotated. For this example, we will choose 90 degrees:

var rotation = 90;
var angleInRadians = rotation * Math.PI / 180;
context.rotate(angleInRadians);

Step 4: Draw the image

When we draw the image, we must remember that the drawing’s point of origin is no
longer the 50,50 point from previous examples. Once the transformation matrix has
been applied to translate to a new point, that point is now considered the 0,0 origin
point for drawing.

This can be confusing at first, but it becomes clear with practice. To draw our image
with 50,50 as the top-left coordinate, we must subtract 16 from the current position in
both the x and y directions:

context.drawImage(tileSheet, sourceX, sourceY,32,32,-16,-16,32,32);

Example 4-7 adds in this rotation code to Example 4-4. When you run the example
now, you will see the tank facing to the right.

138 | Chapter 4: Images on the Canvas

Notice in Example 4-7 that we remove the original call to draw
Screen() from the previous examples, and replace it with a new event
listener function that is called after the tileSheet has been loaded. The
new function is called eventShipLoaded().

Example 4-7. Rotation transformation

var tileSheet = new Image();
tileSheet.addEventListener('load', eventShipLoaded , false);

tileSheet.src = "tanks_sheet.png";

var animationFrames = [1,2,3,4,5,6,7,8];
var frameIndex = 0;
var rotation = 90;

var x = 50;
var y = 50;

function eventShipLoaded() {
 drawScreen();
}

function drawScreen() {

 //draw a background so we can see the Canvas edges
 context.fillStyle = "#aaaaaa";
 context.fillRect(0,0,500,500);

 context.save();
 context.setTransform(1,0,0,1,0,0)

 context.translate(x+16, y+16);
 var angleInRadians = rotation * Math.PI / 180;
 context.rotate(angleInRadians);

 var sourceX = Math.floor(animationFrames[frameIndex] % 8) *32;
 var sourceY = Math.floor(animationFrames[frameIndex] / 8) *32;

 context.drawImage(tileSheet, sourceX, sourceY,32,32,-16,-16,32,32);

 context.restore();

}

function eventShipLoaded() {
 drawScreen();
}

Figure 4-8 shows the output for this example.

Applying Rotation Transformations to an Image | 139

Figure 4-8. Applying a rotation transformation

Let’s take this one step further by applying the animation technique from Exam-
ple 4-5 and looping through the eight tiles while facing the tank at the 90-degree angle.

Animating a Transformed Image
To apply a series of image tiles to the rotated context, we simply have to add back in
the frame tick loop code and increment the frameIndex variable on each frame tick.
Example 4-8 has added this into the code for Example 4-7.

Example 4-8. Animation and rotation

var tileSheet = new Image();
tileSheet.addEventListener('load', eventShipLoaded , false);

tileSheet.src = "tanks_sheet.png";

var animationFrames = [1,2,3,4,5,6,7,8];
var frameIndex = 0;
var rotation = 90;

140 | Chapter 4: Images on the Canvas

var x = 50;
var y = 50;

function eventShipLoaded() {
 startUp();
}

function drawScreen() {

 //draw a background so we can see the Canvas edges
 context.fillStyle = "#aaaaaa";
 context.fillRect(0,0,500,500);

 context.save();
 context.setTransform(1,0,0,1,0,0)
 var angleInRadians = rotation * Math.PI / 180;
 context.translate(x+16, y+16)
 context.rotate(angleInRadians);
 var sourceX = Math.floor(animationFrames[frameIndex] % 8) *32;
 var sourceY = Math.floor(animationFrames[frameIndex] / 8) *32;

 context.drawImage(tileSheet, sourceX, sourceY,32,32,-16,-16,32,32);
 context.restore();
 frameIndex++;
 if (frameIndex==animationFrames.length) {
 frameIndex=0;
 }

}

function startUp(){

 setInterval(drawScreen, 100);
}

When you test Example 4-8, you should see that the tank has rotated 90 degrees, and
the tank tracks loop through their animation frames.

As we did in Example 4-6, let’s move the tank in the direction it is facing. This time, it
will move to the right until it goes off the screen. Example 4-9 has added back in the
dx and dy movement vectors; notice that dx is now 1, and dy is now 0.

Example 4-9. Rotation, animation, and movement

var tileSheet = new Image();
tileSheet.addEventListener('load', eventShipLoaded , false);

tileSheet.src = "tanks_sheet.png";

var animationFrames = [1,2,3,4,5,6,7,8];
var frameIndex = 0;
var rotation = 90;
var x = 50;
var y = 50;
var dx = 1;

Applying Rotation Transformations to an Image | 141

var dy = 0;

function eventShipLoaded() {
 startUp();
}

function drawScreen() {
 x = x+dx;
 y = y+dy;

 //draw a background so we can see the Canvas edges
 context.fillStyle = "#aaaaaa";
 context.fillRect(0,0,500,500);

 context.save();
 context.setTransform(1,0,0,1,0,0)
 var angleInRadians = rotation * Math.PI / 180;
 context.translate(x+16, y+16)
 context.rotate(angleInRadians);
 var sourceX=Math.floor(animationFrames[frameIndex] % 8) *32;
 var sourceY=Math.floor(animationFrames[frameIndex] / 8) *32;

 context.drawImage(tileSheet, sourceX, sourceY,32,32,−16,−16,32,32);
 context.restore();

 frameIndex++;
 if (frameIndex ==animationFrames.length) {
 frameIndex=0;
 }

}

function startUp(){

 setInterval(drawScreen, 100);
}

When Example 4-9 is running, you will see the tank move slowly across the screen to
the right. Its tracks animate through the series of tiles from the tile sheet on a plain gray
background.

So far, we have only used tiles to simulate sprite-based animated movement. In the next
section, we will examine how to use an image tile sheet to create a much more elaborate
background using a series of tiles.

Creating a Grid of Tiles
Many games use what is called a tile-based environment for backgrounds and level
graphics. We are now going to apply the knowledge we have learned from animating
an image on the canvas to create the background maze for our hypothetical game: No
Tanks! We will use the same tile sheet from the previous tank examples, but instead of
showing the tank sprite tiles, we will create a maze for the tank to move through. We

142 | Chapter 4: Images on the Canvas

will not actually cover the game-play portion of the code in this chapter because we
want to focus on using images to render the screen. In Chapter 9 we will create a simple
game using the type of examples shown here.

Defining a Tile Map
We will use the term tile map to refer to a game level or background built from a tile
sheet. Take a look back at Figure 4-7—the four row by eight column tile sheet from
earlier in this chapter. If we were to create a maze-chase game similar to Pac-Man, we
could define the maze using tiles from a tile sheet. The sequence of tiles for our game
maze would be considered a tile map.

The first tile is a gray square, which we can use for the “road” tiles between the wall
tiles. Any tile that a game sprite can move on is referred to as walkable. Even though
our tanks are not literally walking but driving, the concept is the same. In Chapter 9
we will create a small game using these concepts, but for now, let’s concentrate on
defining a tile map and displaying it on the canvas.

Our tile map will be a two-dimensional array of tile id numbers. If you recall, the tile
id numbers for our tile sheet are in a single dimension, numbering from 0 to 31. Let’s
say we are going to create a very small game screen consisting of 10 tiles in length
and 10 tiles in height. This means we need to define a tile map of 100 individual tiles
(10×10). If our tiles are 32 pixels by 32 pixels, we will define a 320×320 game screen.

There are many ways to define a tile map. One simple way is to use a tile map editor
program to lay out a grid of tiles, and then export the data to re-create the tile map in
JavaScript. This is precisely how we are going to create our tile map.

Creating a Tile Map with Tiled
The program we are going to use, Tiled, is a great tile map editor that is available for
Mac OS, Windows, and Linux. Of course, tile maps can be designed by hand, but map
creation is much easier if we utilize a program such as Tiled to do some of the legwork
for us. Tiled is available for free under the GNU free software license from http://www
.mapeditor.org/.

As stated before, you do not need to use this software. Tile maps can be
created with other good (and free) software such as Mappy (http://tile
map.co.uk/mappy.php) and Tile Studio (http://tilestudio.sourceforge
.net/), and even by hand using MS Paint.

The goal of creating a tile map is to visually lay out a grid of tiles that represents the
game screen, and then export the tile ids that represent those tiles. We will use the
exported data as a two-dimensional array in our code to build the tile map on the
canvas.

Creating a Grid of Tiles | 143

Here are the basic steps for creating a simple tile map in Tiled for use in the following
section:

1. Create a new tile map from the File menu. When it asks for Orientation, select
Orthogonal with a Map Size of 10×10 and a Tile Size of 32×32.

2. From the Map menu, import the tanks_sheet.png to be used as the tile set. Select
“New tileset” from this menu, and give it any name you want. Browse to find the
tanks_sheet.png that you downloaded from this book’s website. Make sure that
Tile Width and Tile Height are both 32; keep the Margin and Spacing both at 0.

3. Select a tile from the tile set on the bottom-right side of the screen. Once selected,
you can click and “paint” the tile by selecting a location on the tile map on the top-
left side of the screen. Figure 4-9 shows the tile map created for this example.

4. Save the tile map. Tiled uses a plain text file format called .tmx. Normally, tile data
in Tiled is saved out in a base-64-binary file format; however, we can change this
by editing the preferences for Tiled. On a Mac, under the Tiled menu, there should
be a Preferences section. (If you are using the software on Windows or Linux, you
will find this in the File menu.) When setting the preferences, select CSV in the
“Store tile layer data as” drop-down menu. Once you have done this, you can save
the file from the File menu.

Here is a look at what the saved .tmx file will look like in a text editor:

<?xml version="1.0" encoding="UTF-8"?>
<map version="1.0" orientation="orthogonal" width="10" height="10"
 tilewidth="32" tileheight="32">
 <tileset firstgid="1" name="tanks" tilewidth="32" tileheight="32">
 <image source="tanks_sheet.png"/>
 </tileset>
 <layer name="Tile Layer 1" width="10" height="10">
 <data encoding="csv">
32,31,31,31,1,31,31,31,31,32,
1,1,1,1,1,1,1,1,1,1,
32,1,26,1,26,1,26,1,1,32,
32,26,1,1,26,1,1,26,1,32,
32,1,1,1,26,26,1,26,1,32,
32,1,1,26,1,1,1,26,1,32,
32,1,1,1,1,1,1,26,1,32,
1,1,26,1,26,1,26,1,1,1,
32,1,1,1,1,1,1,1,1,32,
32,31,31,31,1,31,31,31,31,32
</data>
</layer>
</map>

144 | Chapter 4: Images on the Canvas

Figure 4-9. The tile map example in Tiled

The data is an XML data set used to load and save tile maps. Because of the open nature
of this format and the simple sets of row data for the tile map, we can use this data
easily in JavaScript. For now, we are only concerned with the 10 rows of comma-
delimited numbers inside the <data> node of the XML—we can take those rows of data
and create a very simple two-dimensional array to use in our code.

Displaying the Map on the Canvas
The first thing to note about the data from Tiled is that it is 1 relative, not 0 relative.
This means that the tiles are numbered from 1–32 instead of 0–31. We can compensate
for this by subtracting one from each value as we transcribe it to our array, or
programmatically during our tile sheet drawing operation. We will do it programmat-
ically by creating an offset variable to be used during the draw operation:

var mapIndexOffset = -1;

Creating a Grid of Tiles | 145

Rather than using the mapIndexOffset variable, we could loop through
the array of data and subtract 1 from each value. This would be done
before the game begins, saving the extra processor overload from per-
forming this math operation on each tile when it is displayed.

Map height and width

We also are going to create two variables to give flexibility to our tile map display code.
These might seem simple and unnecessary now, but if you get in the habit of using
variables for the height and width of the tile map, it will be much easier to change its
size in the future.

We will keep track of the width and height based on the number of rows in the map
and the number of columns in each row:

var mapRows = 10;
var mapCols = 10;

Storing the map data

The data that was output from Tiled was a series of rows of numbers starting in the top
left and moving left to right, then down when the rightmost column in a row was
completed. We can use this data almost exactly as output by placing it in a two-
dimensional array:

var tileMap = [
 [32,31,31,31,1,31,31,31,31,32]
 , [1,1,1,1,1,1,1,1,1,1]
 , [32,1,26,1,26,1,26,1,1,32]
 , [32,26,1,1,26,1,1,26,1,32]
 , [32,1,1,1,26,26,1,26,1,32]
 , [32,1,1,26,1,1,1,26,1,32]
 , [32,1,1,1,1,1,1,26,1,32]
 , [1,1,26,1,26,1,26,1,1,1]
 , [32,1,1,1,1,1,1,1,1,32]
 , [32,31,31,31,1,31,31,31,31,32]

];

Displaying the map on the canvas

When we display the tile map, we simply loop through the rows in the tileMap array,
and then loop through the columns in each row. The tileID number at [row]
[column] will be the tile to copy from the tile sheet to the canvas. row *32 will be the
y location to place the tile on the canvas; col*32 will be the x location to place the tile:

146 | Chapter 4: Images on the Canvas

The row, column referencing might seem slightly confusing because row
is the y direction and column is the x direction. We do this because our
tiles are organized into a two-dimensional array. The row is always the
first subscript when accessing a 2D array.

for (var rowCtr=0;rowCtr<mapRows;rowCtr++) {
 for (var colCtr=0;colCtr<mapCols;colCtr++){

 var tileId = tileMap[rowCtr][colCtr]+mapIndexOffset;
 var sourceX = Math.floor(tileId % 8) *32;
 var sourceY = Math.floor(tileId / 8) *32;

 context.drawImage(tileSheet, sourceX,
 sourceY,32,32,colCtr*32,rowCtr*32,32,32);
 }

}

We use the mapRows and the mapCols variables to loop through the data and to paint it
to the canvas. This makes it relatively simple to modify the height and width of the tile
map without having to find the hardcoded values in the code. We could have also done
this with other values such as the tile width and height, as well as the number of tiles
per row in the tile sheet (8).

The sourceX and sourceY values for the tile to copy are found in the same way as in the
previous examples. This time, though, we find the tileId using the [rowCtr][colCtr]
two-dimensional lookup, and then adding the mapIndexOffset. The offset is a negative
number (-1), so this effectively subtracts 1 from each tile map value, resulting in
0-relative map values that are easier to work with. Example 4-10 shows this concept in
action, and Figure 4-10 illustrates the results.

Example 4-10. Rotation, animation, and movement

var tileSheet = new Image();
tileSheet.addEventListener('load', eventSheetLoaded , false);

tileSheet.src = "tanks_sheet.png";

var mapIndexOffset = -1;
var mapRows = 10;
var mapCols = 10;

var tileMap = [
 [32,31,31,31,1,31,31,31,31,32]
 , [1,1,1,1,1,1,1,1,1,1]
 , [32,1,26,1,26,1,26,1,1,32]
 , [32,26,1,1,26,1,1,26,1,32]
 , [32,1,1,1,26,26,1,26,1,32]
 , [32,1,1,26,1,1,1,26,1,32]
 , [32,1,1,1,1,1,1,26,1,32]
 , [1,1,26,1,26,1,26,1,1,1]
 , [32,1,1,1,1,1,1,1,1,32]

Creating a Grid of Tiles | 147

 , [32,31,31,31,1,31,31,31,31,32]

];

function eventSheetLoaded() {
 drawScreen()
}

function drawScreen() {
 for (var rowCtr=0;rowCtr<mapRows;rowCtr++) {
 for (var colCtr=0;colCtr<mapCols;colCtr++){

 var tileId = tileMap[rowCtr][colCtr]+mapIndexOffset;
 var sourceX = Math.floor(tileId % 8) *32;
 var sourceY = Math.floor(tileId / 8) *32;

 context.drawImage(tileSheet, sourceX,
 sourceY,32,32,colCtr*32,rowCtr*32,32,32);
 }

 }
 }

Figure 4-10. The tile map painted on the canvas

Next, we are going to leave the world of tile-based Canvas development (see Chap-
ter 9 for an example of a small game developed with these principles). The final section
of this chapter discusses building our own simple tile map editor. But before we get
there, let’s look at panning around and zooming in and out of an image.

148 | Chapter 4: Images on the Canvas

Zooming and Panning an Image
In this section, we will examine some methods to zoom and pan an image on the canvas.
The image we are going to use is from a recent vacation to Central California. It is a
large .jpg file, measuring 3648×2736. Obviously, this is far too large to view in a single
canvas, so we will build a simple application allowing us to zoom and pan the image
on our 500×500 canvas.

Figure 4-11 is a scaled-down version of this image.

Figure 4-11. A scaled-down version of the image we will zoom and pan

Creating a Window for the Image
The first thing we are going to do is create a logical window, the size of the canvas,
where our image will reside. We will use the following two variables to control the
dimensions of this window:

var windowWidth = 500;
var windowHeight = 500;

Zooming and Panning an Image | 149

We will also create two variables to define the current top-left corner for the window.
When we move on to the panning examples, we will modify these values to redraw the
image based on this location:

var windowX = 0;
var windowY = 0;

Drawing the Image Window
To draw the image window, we will simply modify the standard context.drawImage()
function call using the values in the four variables we just defined:

context.drawImage(photo, windowX, windowY, windowWidth, windowHeight, 0, 0,
 windowWidth,windowHeight);

Let’s take a closer look at this for a refresher on how the drawImage() function operates.
The values are passed in order:

photo
The image instance we are going to use as our source for painting onto the canvas

windowX
The top-left x location to start copying from the source image

windowY
The top-left y location to start copying from the source image

windowWidth
The width of the rectangle to start copying from the source image

windowHeight
The height of the rectangle to start copying from the source image

0
The top-left x destination location for the image on the canvas

0
The top-left y destination location for the image on the canvas

windowWidth
The width in pixels for the destination copy (this can be modified to scale the
image)

windowHeight
The height in pixels for the destination copy (this can be modified to scale the
image)

When we draw from the image to the canvas, we will be modifying the windowX and
windowY values to create a panning effect. Example 4-11 demonstrates how to get the
image onto the canvas with the window location set to 0,0. Figure 4-12 shows an ex-
ample of the output for Example 4-11.

150 | Chapter 4: Images on the Canvas

Example 4-11. Placing an image on the canvas in a logical window

var photo = new Image();
photo.addEventListener('load', eventPhotoLoaded , false);

photo.src = "butterfly.jpg";

var windowWidth = 500;
var windowHeight = 500;

var windowX = 0;
var windowY = 0;

function eventPhotoLoaded() {
 drawScreen()
}

function drawScreen(){
 context.drawImage(photo, windowX, windowY, windowWidth, windowHeight,
 0, 0, windowWidth,windowHeight);
}

Figure 4-12. An image in a small logical window

Zooming and Panning an Image | 151

Panning the Image
To pan the window across the image, we simply need to modify the windowX and
windowY coordinates. In Example 4-12, we will modify the windowX coordinate inside a
frame tick interval. During each loop iteration, we will increase the value of windowX by
10. We need to be careful not to go off the far right side of the image, so we will subtract
the windowWidth from the image.width, and use the result as the maximum windowX
position:

windowX+ = 10;
if (windowX>photo.width - windowWidth){
 windowX = photo.width - windowWidth;
}

Example 4-12 contains the changes necessary to perform this panning operation.

Example 4-12. Simple image panning

var photo = new Image();
photo.addEventListener('load', eventPhotoLoaded , false);

photo.src = "butterfly.jpg";

var windowWidth = 500;
var windowHeight = 500;

var windowX = 0;
var windowY = 0;

function eventPhotoLoaded() {
 startUp();
}

function drawScreen(){

 context.drawImage(photo, windowX, windowY, windowWidth, windowHeight,
 0,0,windowWidth,windowHeight);

 windowX += 10;
 if (windowX>photo.width - windowWidth){
 windowX = photo.width - windowWidth;
 }

}

function startUp(){

 setInterval(drawScreen, 100);
}

When you test Example 4-12, you will see the window pan across the image and stop
at the rightmost edge. Next, we will start to implement zooming into this simple
example.

152 | Chapter 4: Images on the Canvas

Zoom and Pan the Image
To zoom in or out of an image, we need to change the final width and height values of
the drawImage() function. Let’s examine how we would zoom out to 50% of the original
size of the image while panning at the same time. The drawImage() function will look
like this:

context.drawImage(photo, windowX, windowY, windowWidth, windowHeight,
 0, 0, windowWidth*.5,windowHeight*.5);

Example 4-13 modifies Example 4-12 and adds in the 50% zoom.

Example 4-13. Pan an image with a preset zoom out

var photo = new Image();
photo.addEventListener('load', eventPhotoLoaded , false);

photo.src = "butterfly.jpg";
var windowWidth = 500;
var windowHeight = 500;

var windowX = 0;
var windowY = 0;

function eventPhotoLoaded() {
 startUp();
}

function drawScreen(){

 context.drawImage(photo, windowX, windowY, windowWidth, windowHeight,
 0,0,windowWidth*.5,windowHeight*.5);

 windowX += 10;
 if (windowX>photo.width - windowWidth){
 windowX = photo.width - windowWidth;
 }

}

function startUp(){

 setInterval(drawScreen, 100);
}

When we test this example, we will see that when zoomed out, the image on the canvas
is 50% of its original size. To zoom in, we simply change the scale factor from .5 to a
number greater than 1:

context.drawImage(photo, windowX, windowY, windowWidth,windowHeight,
 0,0,windowWidth*2,windowHeight*2);

Example 4-14 changes this single line from Example 4-13 to zoom in rather than zoom
out.

Zooming and Panning an Image | 153

Example 4-14. Pan an image with a preset zoom amount

var photo = new Image();
photo.addEventListener('load', eventPhotoLoaded , false);

photo.src = "butterfly.jpg";

var windowWidth = 500;
var windowHeight = 500;

var windowX = 0;
var windowY = 0;

function eventPhotoLoaded() {
 startUp();
}

function drawScreen(){

 context.drawImage(photo, windowX, windowY, windowWidth, windowHeight,
 0,0,windowWidth*2,windowHeight*2);

 windowX += 10;
 if (windowX>photo.width - windowWidth){
 windowX = photo.width - windowWidth;
 }
}

function startUp(){

 setInterval(drawScreen, 100);
}

Application: Controlled Pan and Zoom
Our final example for this section will be a simple application allowing the user to zoom
and pan a photo.

The zoom scale

We are going to create a set of variables to handle the current zoom scale, the factor by
which the zoom scale is increased or decreased, as well as the maximum and minimum
zoom values:

var currentScale = .5;
var minScale = .2
var maxScale = 3;
var scaleIncrement = .1;

We will apply these values to the drawImage() function:

context.drawImage(photo, windowX, windowY, windowWidth, windowHeight,
 0,0,windowWidth*currentScale,windowHeight*currentScale);

154 | Chapter 4: Images on the Canvas

Keyboard input

Now we need to create a keyboard listener function. The following function seems to
work best in all browsers tested—it’s certainly not the only keyboard event listener,
but it is tried and true throughout this book:

document.onkeydown = function(e){
 e = e?e:window.event;
}

This function utilizes the ternary operator. If the statement before
the ? is true, the statement following the ? is executed. If it is false, the
statement after the : is executed. This is a shorthand version of the clas-
sic if/else construct.

We will add a switch/case statement, combining all the functions we have put into the
previous zoom and pan examples, along with a new set of code for the y direction
panning that we have not implemented before. It is very similar to the x direction
panning: the left arrow key will pan the image to the left; the right arrow key will pan
the image to the right:

case 38:
 //up
 windowY-=10;
 if (windowY<0){
 windowY = 0;
 }
 break;
case 40:
 //down
 windowY+=10;
 if (windowY>photo.height - windowHeight){
 windowY = photo.height - windowHeight;
 }
 break;
case 37:
 //left
 windowX-=10;
 if (windowX<0){
 windowX = 0;
 }
 break;
case 39:
 //right
 windowX+=10;
 if (windowX>photo.width - windowWidth){
 windowX = photo.width - windowWidth;
 }
 break;

Zooming and Panning an Image | 155

We also need to add in two cases for the + and - keys to perform zoom in and zoom
out actions:

case 109:
 //-
 currentScale-=scaleIncrement;
 if (currentScale<minScale){
 currentScale = minScale;
 }
 break;
case 107:
 //+
 currentScale+=scaleIncrement;
 if (currentScale>maxScale){
 currentScale = maxScale;
 }

When the user presses the + or - key, the currentScale variable is either incremented
or decremented by the scaleIncrement value. If the new value of currentScale is greater
than maxScale or lower than minScale, we set it to maxScale or minScale, respectively.

Example 4-15 puts this entire application together. It doesn’t take many lines of code
to create the simple interactions.

Example 4-15. Image pan and zoom application

var photo = new Image();
photo.addEventListener('load', eventPhotoLoaded , false);

photo.src = "butterfly.jpg";

var windowWidth = 500;
var windowHeight = 500;

var windowX = 0;
var windowY = 0;
var currentScale = .5;
var minScale = .2
var maxScale = 3;
var scaleIncrement = .1;

function eventPhotoLoaded() {
 startUp();
}

function drawScreen(){

 //draw a background so we can see the Canvas edges
 context.fillStyle = "#ffffff";
 context.fillRect(0,0,500,500);

156 | Chapter 4: Images on the Canvas

 context.drawImage(photo, windowX, windowY, windowWidth, windowHeight,
 0,0,windowWidth*currentScale,windowHeight*currentScale);

}

function startUp(){

 setInterval(drawScreen, 100);
}

document.onkeydown = function(e){

 e = e?e:window.event;
 console.log(e.keyCode + "down");

 switch (e.keyCode){
 case 38:
 //up
 windowY-=10;
 if (windowY<0){
 windowY = 0;
 }
 break;
 case 40:
 //down
 windowY+=10;
 if (windowY>photo.height - windowHeight){
 windowY = photo.height - windowHeight;
 }
 break;
 case 37:
 //left
 windowX-=10;
 if (windowX<0){
 windowX = 0;
 }
 break;
 case 39:
 //right
 windowX+=10;
 if (windowX>photo.width - windowWidth){
 windowX = photo.width - windowWidth;
 }
 break;
 case 109:
 //-
 currentScale-=scaleIncrement;
 if (currentScale<minScale){
 currentScale = minScale;
 }
 break;

Zooming and Panning an Image | 157

 case 107:
 //+
 currentScale+=scaleIncrement;
 if (currentScale>maxScale){
 currentScale = maxScale;
 }
 }

}

When testing Example 4-15, use the arrow keys to pan across the photo, and the +
and - keys to zoom in and out.

Pixel Manipulation
In this section, we will first examine the Canvas Pixel Manipulation API, and then build
a simple application demonstrating how to manipulate pixels on the canvas in real time.

The Canvas Pixel Manipulation API
The Canvas Pixel Manipulation API gives us the ability to “get,” “put,” and “change”
individual pixels utilizing what is known as the CanvasPixelArray interface. ImageData
is the base object type for this manipulation, and an instance of this object is created
with the createImageData() function call. Let’s start there.

The createImageData() function sets aside a portion of memory to store individual
pixels’ worth of data based on the following three constructors:

imagedata = context.createImageData(sw, sh)
The sw and sh parameters represent the width and height values for the Image
Data object. For example, imagedata=createImageData(100,100) would create a
100×100 area of memory in which to store pixel data.

imagedata = context.createImageData(imagedata)
The imagedata parameter represents a separate instance of ImageData. This con-
structor creates a new ImageData object with the same width and height as the
parameter ImageData.

imagedata = context.createImageData()
This constructor returns a blank ImageData instance.

ImageData attributes

An ImageData object contains three attributes:

ImageData.height
This returns the height in pixels of the ImageData instance.

ImageData.width
This returns the width in pixels of the ImageData instance.

158 | Chapter 4: Images on the Canvas

ImageData.data
This returns a single dimensional array of pixels representing the image data. Image
data is stored with 32-bit color information for each pixel, meaning that every
fourth number in this data array starts a new pixel. The four elements in the array
represent the red, green, blue, and alpha transparency values of a single pixel.

Getting image data

To retrieve a set of pixel data from the canvas and put it into an ImageData instance, we
use the getImageData() function call:

imagedata = context.getImageData(sx, sy, sw, sh)

sx, sy, sw, and sh define the location and size of the source rectangle to copy from the
canvas to the ImageData instance.

A security error will be thrown if the origin domain of an image file is
not the same as the origin domain of the web page. This affects local
files (when running on your hard drive rather than on a web server run-
ning locally or on a remote server), as most browsers will treat local
image files as though they are from a different domain than the web
page. When running on a web server, this error will not be thrown with
local files. The current version of Safari (5.02) does not throw this error
for local files.

Putting image data

To copy the pixels from an ImageData instance to the canvas, we use the putImage
Data() function call. There are two different constructors for this call:

context.putImageData (imagedata, dx, dy)
context.putImageData (imagedata, dx, dy [, dirtyX, dirtyY,
 dirtyWidth, dirtyHeight])

The first constructor simply paints the entire ImageData instance to the destinationX
(dx) and destinationY (dy) locations. The second constructor does the same, but allows
the passage of a “dirty rectangle,” which represents the area of the ImageData to paint
to the canvas.

Application Tile Stamper
We are going to create a simple application that will allow the user to highlight a box
around some pixels on an image, copy them, and then use them as a stamp to paint
back to the canvas. It will not be a full-blown editing application by any means—it’s
just a demonstration of one use of the ImageData object.

Pixel Manipulation | 159

This application will need to be run from a local or remote web server,
as most browsers will throw an exception if an application attempts to
call getImageData() on a file—even in the same folder on a local ma-
chine. The current version of Safari (5.02) does not throw this error.

To create this simple application, we will use the tile sheet from earlier in this chapter.
The user will click on a spot on the tile sheet, highlighting a 32×32 square tile. That tile
can then be painted onto the bottom section of the canvas. To demonstrate pixel ma-
nipulation, we will set the color of the pixels to a new alpha value before they are painted
to the screen. This will be the humble beginning to making our own tile map editor.

Once again, we will use the tanks_sheet.png file from Figure 4-7.

How ImageData.data is organized

The ImageData.data attribute is a single-dimensional array containing four bytes for
every pixel in the ImageData object. We will be using 32×32 tiles in our example appli-
cation. A 32×32 tile contains 1,024 pixels (or 1K of data). The ImageData.data attribute
for an ImageData instance that holds a 32×32 image would be 4,096 bytes (or 4K). This
is because a separate byte is used to store each of the red, green, blue, and alpha values
for each pixel. In our application, we will loop through each pixel and set its alpha
value to 128. Here is the code we will use:

for (j=3; j< imageData.data.length; j+=4){
 imageData.data[j] = 128;
}

We start our loop at 3, which is the fourth attribute in the array. The single-dimensional
array contains a continuous set of values for each pixel, so index 3 represents the alpha
value for the first pixel (because the array is 0 relative). Our loop then skips to every
fourth value in the array and sets it to 128. Once the loop is complete, all pixels will
have an alpha value of 128.

As opposed to other Canvas alpha manipulations where the alpha value
is between 0 and 1, the alpha value is between 0 and 255 when manip-
ulating it via the pixel color values.

A visual look at our basic application

Figure 4-13 is a screenshot of the simple Tile Stamper application we will create.

Figure 4-13 is running in Safari 5.1 locally. As of this writing, this is the
only browser that does not throw an exception when trying to manip-
ulate the pixel data of a locally loaded file when not run on a web server.

160 | Chapter 4: Images on the Canvas

Figure 4-13. The Tile Stamper application

The screen is broken up into two sections vertically. The top section is the 256×128 tile
sheet; the bottom is a tile map of the same size. The user will select a tile in the top
section, and it will be highlighted by a red square. The user can then stamp the selected
tile to the tile map drawing area in the lower portion. When a tile is drawn in this lower
portion, we will set its alpha value to 128.

Adding mouse events to the canvas

We need to code our application to respond to mouse clicks and to keep track of the
current x and y positions of the mouse pointer. We will set up two global application
scope variables to store the mouse pointer’s current position:

var mouseX;
var mouseY;

We will also set up two event listener functions and attach them to the theCanvas object:

theCanvas.addEventListener("mousemove", onMouseMove, false);
theCanvas.addEventListener("click", onMouseClick, false);

In the HTML, we will set up a single Canvas object:

<canvas id="canvas" width="256" height="256" style="position: absolute;
 top: 50px; left: 50px;">
 Your browser does not support HTML5 Canvas.
</canvas>

In the JavaScript portion of our code, we will define the canvas:

theCanvas = document.getElementById("canvas");

Notice that we set the <canvas> position to top: 50px and left: 50px. This will keep
the application from being shoved up into the top-left corner of the browser, but it also
gives us a chance to demonstrate how to find correct mouse x and y values when the
<canvas> tag is not in the top-left corner of the page. The onMouseMove function will

Pixel Manipulation | 161

make use of this information to offset the mouseX and mouseY values based on the position
of the <canvas> tag:

function onMouseMove(e) {
 mouseX = e.clientX-theCanvas.offsetLeft;
 mouseY = e.clientY-theCanvas.offsetTop;
}

The onMouseClick function will actually do quite a lot in our application. When the
mouse button is clicked, this function will determine whether the user clicked on the
tile sheet or on the tile map drawing area below it. If the user clicked on the tile sheet,
the function will determine which exact tile was clicked. It will then call the highlight
Tile() function and pass in the id (0–31) of the tile clicked, along with the x and y
locations for the top-left corner of the tile.

If the user clicked in the lower portion of the tile map drawing area, this function will
again determine which tile the user clicked on, and stamp the current selected tile in
that location on the tile map. Here is the function:

function onMouseClick(e) {

 if (mouseY < 128){
 //find tile to highlight
 var col = Math.floor(mouseX / 32);
 var row = Math.floor(mouseY / 32);
 var tileId = (row*7)+(col+row);
 highlightTile(tileId,col*32,row*32)
 }else{
 var col = Math.floor(mouseX / 32);
 var row = Math.floor(mouseY / 32);
 context.putImageData(imageData,col*32,row*32);
 }
 }

Let’s take a closer look at the tile sheet click (mouseY < 128).

To determine the tileId of the tile clicked on the tile sheet, we first need to convert the
x location of the mouse click to a number from 0‒7, and the y location to a number
from 0‒3. We do this by calling the Math.floor function on the result of the current
mouseX or mouseY location, divided by the tile width or height (they are both 32). This
will find the row and col of the clicked tile:

var col = Math.floor(mouseX / 32);
var row = Math.floor(mouseY / 32)

To find the tileId (the 0‒31 tile number of the tile sheet) of this row and column
combination, we need to use the following calculation:

TileId = (row*totalRows-1) + (col+row);

The actual calculation, with values for our application, looks like this:

var tileId = (row*7)+(col+row);

162 | Chapter 4: Images on the Canvas

For example, if the user clicks on the point where mouseX = 50 and mouseY = 15, the
calculation would work like this:

col = Math.floor(50/32); // col = 1
row = Math.floor(15/32); // row = 0
tileId = (0*7)+(1+0); // tileId = 1

This position is the second tile on the tile sheet. The onMouseClick() function then
passes the tileId and col value multiplied by 32, and the row value multiplied by 32,
into the highlightTile() function. This tells the highlightTile() function the exact
tileId, row, and col the user clicked.

If the user clicked the tile map drawing area in the lower portion of the screen, the code
does the same row and column calculation. However, it then calls the putImage
Data() function and passes in the ImageData instance that holds the tile to stamp and
the top-left location to place the tile:

var col = Math.floor(mouseX / 32);
var row = Math.floor(mouseY / 32);
context.putImageData(imageData,col*32,row*32);

The highlightTile() function

The highlightTile() function accepts three parameters:

• The 0–31 tileId of the tile on the tile sheet

• The top-left x coordinate of the tile represented by the tileId

• The top-left y coordinate of the tile represented by the tileId

The x and y coordinates can be found by passing in the tileId value,
but they are needed in the onMouseDown function, so we pass them in
from there when calling highlightTile(). This way, we do not need to
perform the calculation twice.

The first task highlightTile() tackles is redrawing the tile sheet at the top of the screen:

context.fillStyle = "#aaaaaa";
context.fillRect(0,0,256,128);
drawTileSheet();

It does this to delete the red box around the current tile, while preparing to draw a new
red box around the tile represented by the tileId passed in.

The drawTileSheet() function then paints the tanks_sheet.png file to the canvas starting
at 0,0:

function drawTileSheet(){
 context.drawImage(tileSheet, 0, 0);
}

Pixel Manipulation | 163

Next, the highlightTile() function copies the new pixel data (with no red line around
it yet) from the canvas and places it in the ImageData instance:

ImageData = context.getImageData(x,y,32,32);

The ImageData variable now contains a copy of the pixel data for the tile from the canvas.
We then loop through the pixels in ImageData.data (as described previously in “How
ImageData.data is organized” on page 160), and set the alpha value of each to 128.

Finally, now that the ImageData variable contains the correct pixels with the altered
alpha values, we can draw the red line around the tile that’s been selected to stamp on
the tile map:

var startX = Math.floor(tileId % 8) *32;
var startY = Math.floor(tileId / 8) *32;
context.strokeStyle = "red";
context.strokeRect(startX,startY,32,32)

Example 4-16 is the entire set of code for this application.

Example 4-16. The Tile Stamper application

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH4EX16: Tile Stamper Application</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {

 canvasApp();

}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp(){

 if (!canvasSupport()) {
 return;
 }else{
 var theCanvas = document.getElementById("canvas");
 var context = theCanvas.getContext("2d");
 }

 var mouseX;
 var mouseY;

 var tileSheet = new Image();
 tileSheet.addEventListener('load', eventSheetLoaded , false);
 tileSheet.src = "tanks_sheet.png";

164 | Chapter 4: Images on the Canvas

 var imageData = context.createImageData(32,32);

 function eventSheetLoaded() {
 startUp();
 }

 function startUp(){
 context.fillStyle = "#aaaaaa";
 context.fillRect(0,0,256,256);
 drawTileSheet();
 }

 function drawTileSheet(){
 context.drawImage(tileSheet, 0, 0);

 }

 function highlightTile(tileId,x,y){
 context.fillStyle = "#aaaaaa";
 context.fillRect(0,0,256,128);
 drawTileSheet();

 imageData = context.getImageData(x,y,32,32);
 //loop through imageData.data. Set every 4th value to a new value
 for (j=3; j< imageData.data.length; j+=4){
 imageData.data[j]=128;
 }

 var startX = Math.floor(tileId % 8) *32;
 var startY = Math.floor(tileId / 8) *32;
 context.strokeStyle = "red";
 context.strokeRect(startX,startY,32,32)
 }

 function onMouseMove(e) {
 mouseX = e.clientX-theCanvas.offsetLeft;
 mouseY = e.clientY-theCanvas.offsetTop;

 }

 function onMouseClick(e) {
 console.log("click: " + mouseX + "," + mouseY);
 if (mouseY < 128){
 //find tile to highlight
 var col = Math.floor(mouseX / 32);
 var row = Math.floor(mouseY / 32)
 var tileId = (row*7)+(col+row);
 highlightTile(tileId,col*32,row*32)
 }else{
 var col = Math.floor(mouseX / 32);
 var row = Math.floor(mouseY / 32);

 context.putImageData(imageData,col*32,row*32);

Pixel Manipulation | 165

 }
 }

 theCanvas.addEventListener("mousemove", onMouseMove, false);
 theCanvas.addEventListener("click", onMouseClick, false);

}

</script>
</head>
<body>
<div>
<canvas id="canvas" width="256" height="256" style="position: absolute;
 top: 50px; left: 50px;">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

As of this writing, you must run this application from a web server in
order to manipulate the local tanks_sheet.png file on the canvas. If you
are using the Safari browser (version 5.1 as of this writing), you can test
the application on a local drive and it will function properly.

Copying from One Canvas to Another
The canvas allows us to use another canvas as the source of a bitmap drawing operation.
Let’s take a quick look at how we might utilize this functionality.

We will need to modify the base file for this chapter and create an extra <canvas> tag
in our HTML. We will name this extra <canvas> element canvas2 (it can be given any
id as long as it is not the same id as the first <canvas>). Here is what our HTML
<body> will look like now:

<body>
<div>
<canvas id="canvas" width="256" height="256" style="position: absolute;
 top: 50px; left: 50px;">Your browser does not support HTML5 Canvas.</canvas>
<canvas id="canvas2" width="32" height="32" style="position: absolute;
 top: 256px; left: 50px;">Your browser does not support HTML5 Canvas.</canvas>
</div>
</body>

We will place the second <canvas> below the original, and give it a width and height of
32. We will also need to create a new context and internal reference variable for can
vas2. Here is the code that will be used to provide a reference to both <canvas> elements:

if (!canvasSupport()) {
 return;

166 | Chapter 4: Images on the Canvas

 }else{

 var theCanvas = document.getElementById("canvas");
 var context = theCanvas.getContext("2d");
 var theCanvas2 = document.getElementById("canvas2");
 var context2 = theCanvas2.getContext("2d");

}

Example 4-17 will use the tile sheet image from earlier examples and draw it to the first
canvas. It will then copy a 32×32 square from this canvas and place it on the second
canvas.

Example 4-17. Copying from one canvas to another

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH4EX17: Canvas Copy</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {

 canvasApp();

}

function canvasSupport () {

 return Modernizr.canvas;

}

function canvasApp(){
 if (!canvasSupport()) {
 return;
 }else{
 var theCanvas = document.getElementById("canvas");
 var context = theCanvas.getContext("2d");
 var theCanvas2 = document.getElementById("canvas2");
 var context2 = theCanvas2.getContext("2d");
 }

 var tileSheet = new Image();
 tileSheet.addEventListener('load', eventSheetLoaded , false);
 tileSheet.src="tanks_sheet.png";

 function eventSheetLoaded() {

 startUp();
 }

Copying from One Canvas to Another | 167

 function startUp(){
 context.drawImage(tileSheet, 0, 0);
 context2.drawImage(theCanvas, 32, 0,32,32,0,0,32,32);
 }
}
</script>
</head>
<body>
<div>
<canvas id="canvas" width="256" height="256" style="position: absolute;
 top: 50px; left: 50px;"> Your browser does not support HTML5 Canvas.</canvas>

<canvas id="canvas2" width="32" height="32" style="position: absolute;
 top: 256px; left: 50px;">Your browser does not support HTML5 Canvas.</canvas>

</div>
</body>
</html>

Figure 4-14 shows the canvas copy functions in operation.

Figure 4-14. An example canvas copy operation

Canvas copy operations can be very useful when creating applications that need to
share and copy image data across multiple <div> instances on (and the Canvas object
within) a web page. For example, multiple Canvas elements can be spread across a web
page, and as the user makes changes to one, the others can be updated. This can be
used for fun applications, such as a “minimap” in a game, or even in serious applica-
tions, such as stock portfolio charting and personalization features.

168 | Chapter 4: Images on the Canvas

What’s Next
We covered quite a lot in this chapter, evolving from simply loading images to animat-
ing and rotating them. We looked at using tile sheets and tile maps, and then we built
some useful applications with Canvas image functions and capabilities. In the first four
chapters, we covered most of what Canvas offers as a drawing surface. In the next six
chapters, we will cover some more advanced topics, such as applying 2D physics to
Canvas objects, integrating the HTML5 <video> and <audio> tags with the <canvas> tag,
creating games, and looking at some libraries and features that we can use to extend
the functionality of HTML5 Canvas, even creating applications for mobile devices.

What’s Next | 169

CHAPTER 5

Math, Physics, and Animation

Impressing users with animation involves more than knowing how to move objects—
you also need to know how to move them in ways that users expect. That requires
understanding some common algorithms for math-based movement and physics in-
teractions. Simple movement based on points and vectors provides a foundation, and
then it’s time to create objects that bounce off walls and one another with a bit of friction
added to the mix. After that, we will step back and talk about movement that goes
beyond straight lines: circles, spirals, and complex Bezier curves. We will then cover
how adding gravity can affect movement. Finally, we will finish this chapter by dis-
cussing easing and how it can have a positive effect on math-based animations.

Moving in a Straight Line
For the simplest kinds of animations—moving objects in a straight line up and down
the canvas—this can take the form of adding a constant value to the x or y position of
an object every time it is drawn.

So, to animate graphics, we will need to create an interval and then call a function
that will display our updated graphics on every frame. Each example in this chapter
will be built in a similar way. The first step is to set up the necessary variables in our
canvasApp() function. For this first, basic example of movement, we will create a vari-
able named speed. We will apply this value to the y position of our object on every call
to drawScreen(). The x and y variables set up the initial position of the object (a filled
circle) we will move down the canvas:

var speed = 5;
var y = 10;
var x = 250;

After we create the variables, we set up an interval to call the drawScreen() function
every 33 milliseconds. This is the loop we need to update our objects and move them
around the canvas:

setInterval(drawScreen, 33);

171

In the drawScreen() function, we update the value of y by adding to it the value of the
speed variable:

y += speed;

Finally, we draw our circle on the canvas. We position it using the current value of x
and y. Since y is updated every time the function is called, the circle effectively moves
down the canvas:

context.fillStyle = "#000000";
context.beginPath();
context.arc(x,y,15,0,Math.PI*2,true);
context.closePath();
context.fill();

To move the circle up the screen, we would make speed a negative number. To move
it left or right, we would update the x instead of the y variable. To move the circle
diagonally, we would update both x and y at the same time.

Example 5-1 shows the complete code needed to create basic movement in a straight
line.

Example 5-1. Moving in a straight line

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH5EX1: Moving In A Straight Line</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 canvasApp();

}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 function drawScreen () {

 context.fillStyle = '#EEEEEE';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);

172 | Chapter 5: Math, Physics, and Animation

 // Create ball

 y += speed;

 context.fillStyle = "#000000";
 context.beginPath();
 context.arc(x,y,15,0,Math.PI*2,true);
 context.closePath();
 context.fill();

 }

 theCanvas = document.getElementById("canvasOne");
 context = theCanvas.getContext("2d");

 var speed = 5;
 var y = 10;
 var x = 250;

 setInterval(drawScreen, 33);

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>

</body>
</html>

The basic structure of the HTML for all of the examples in this chapter
will follow these rules. In the interest of saving space, we will refrain
from discussing this code further, but it will appear in the examples
provided.

Moving in a Straight Line | 173

Moving Between Two Points: The Distance of a Line
Movement based on constant changes to the x or y position of an object works well for
some applications, but other times you will need to be more precise. One such instance
is when you need to move an object from point A to point B at a constant rate of speed.

In mathematics, a common way to find the length of an unknown line is to use the
Pythagorean theorem:

A2 + B2 = C2

In this equation, C is the unknown side of a triangle when A and B are already known.
However, we need to translate this equation into something we can use with the points
and pixels we have available on the canvas.

This is a good example of using a mathematical equation in your application. In this
case, we want to find the distance of a line, given two points. In English, this equation
reads like this:

The distance equals the square root of the square of the difference between the x value
of the second point minus the x value of the first point, plus the square of the difference
between the y value of the second point minus the y value of the first point.

You can see this in Equation 5-1. It’s much easier to understand in this format.

Equation 5-1. Distance equation

In the second example, we need to create some new variables in the canvasApp() func-
tion. We will still use a speed variable, just like in the first example, but this time we
set it to 5, which means it will move 5 pixels on every call to drawScreen():

var speed = 5;

We then create a couple dynamic objects—each with an x and a y property—that will
represent the two points we want to move between. For this example, we will move
our circle from 20,250 to 480,250:

var p1 = {x:20,y:250};
var p2 = {x:480,y:250};

Now it is time to re-create the distance equation in Equation 5-1. The first step is to
calculate the differences between the second and first x and y points:

var dx = p2.x - p1.x;
var dy = p2.y - p1.y;

174 | Chapter 5: Math, Physics, and Animation

To determine the distance, we square both the values we just created, add them, and
then use the Math.sqrt() function to get the square root of the number:

var distance = Math.sqrt(dx*dx + dy*dy);

Next, we need to use that calculated distance in a way that will allow us to move an
object a uniform number of pixels from p1 to p2. The first thing we do is calculate how
many moves (calls to drawScreen()) it will take the object to move at the given value of
speed. We get this by dividing the distance by the speed:

var moves = distance/speed;

Then we find the distance to move both x and y on each call to drawScreen(). We name
these variables xunits and yunits:

var xunits = (p2.x - p1.x)/moves;
var yunits = (p2.y - p1.y)/moves;

Finally, we create a dynamic object named ball that holds the x and y value of p1…

var ball = {x:p1.x, y:p1.y};

…and create the interval to call drawScreen() every 33 milliseconds:

setInterval(drawScreen, 33);

Drawing the ball

Let’s draw the ball on the screen. In the drawScreen() function, we first check to see
whether the moves variable is greater than zero. If so, we are still supposed to move the
ball across the screen because we have not yet reached p2. We decrement moves
(moves--) and then update the x and y properties of the ball object by adding the
xunits to x and yunits to y:

if (moves > 0) {
 moves--;
 ball.x += xunits;
 ball.y += yunits;
}

Now that our values have been updated, we simply draw the ball at the x and y coor-
dinates specified by the x and y properties, and we are done…that is, until
drawScreen() is called 33 milliseconds later:

context.fillStyle = "#000000";
context.beginPath();
context.arc(ball.x,ball.y,15,0,Math.PI*2,true);
context.closePath();
context.fill();

Moving in a Straight Line | 175

Let’s try the example by executing it in a web browser. You can find it in the code
distribution as CH5EX2.html, or you can type in Example 5-2. Watch the ball move
from one point to another. If you update the x and y values of each point, or change
the speed, watch the results. You can do a lot with this very simple example.

Tracing movement: A path of points

For many of the examples in this chapter, we will create a way to trace an object’s
movement on the canvas by drawing points to show its path. We have done this to help
illustrate how objects move. However, in the real world, you would need to remove
this functionality so that your application would perform to its potential. This is the
only place we will discuss this code, so if you see it listed in any of the later examples
in this chapter, refer back to this section to refresh your memory on its functionality.

First, we create an array in canvasApp() to hold the set of points we will draw on the
canvas:

var points = new Array();

Next, we load a black 4×4 pixel image, point.png, that we will use to display the points
on the canvas:

var pointImage = new Image();
pointImage.src = "point.png";

Whenever we calculate a point for an object we will move, we push that point into the
points array:

points.push({x:ball.x,y:ball.y});

On each call to drawScreen(), we draw the set of points we have put into the points
array. Remember, we have to redraw every point each time because the canvas is an
immediate-mode display surface that does not retain any information about the images
drawn onto it:

for (var i = 0; i< points.length; i++) {
 context.drawImage(pointImage, points[i].x, points[i].y,1,1);
}

In Figure 5-1, you can see what the ball looks like when moving on a line from one
point to another, and also what the points path looks like when it is drawn.

This is the only time in this chapter where we will discuss the points
path in depth. If you see the points being drawn, you will know how
and why we have added that functionality. You should also have enough
information to remove the code when necessary.

176 | Chapter 5: Math, Physics, and Animation

Figure 5-1. A ball moving from one point to another along the line, with the points drawn for
illustration

Example 5-2 is the full code listing for CH5EX2.html.

Example 5-2. Moving on a simple line

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH5EX2: Moving On A Simple Line</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 canvasApp();

}

function canvasSupport () {
 return Modernizr.canvas;

Moving in a Straight Line | 177

}

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 var pointImage = new Image();
 pointImage.src = "point.png";

 function drawScreen () {

 context.fillStyle = '#EEEEEE';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);

 // Create ball

 if (moves > 0) {
 moves--;
 ball.x += xunits;
 ball.y += yunits;
 }

 //Draw points to illustrate path

 points.push({x:ball.x,y:ball.y});

 for (var i = 0; i< points.length; i++) {
 context.drawImage(pointImage, points[i].x, points[i].y,1,1);

 }

 context.fillStyle = "#000000";
 context.beginPath();
 context.arc(ball.x,ball.y,15,0,Math.PI*2,true);
 context.closePath();
 context.fill();

 }
 var speed = 5;
 var p1 = {x:20,y:250};
 var p2 = {x:480,y:250};
 var dx = p2.x - p1.x;
 var dy = p2.y - p1.y;
 var distance = Math.sqrt(dx*dx + dy*dy);
 var moves = distance/speed;
 var xunits = (p2.x - p1.x)/moves;
 var yunits = (p2.y - p1.y)/moves;
 var ball = {x:p1.x, y:p1.y};
 var points = new Array();

178 | Chapter 5: Math, Physics, and Animation

 theCanvas = document.getElementById("canvasOne");
 context = theCanvas.getContext("2d");

 setInterval(drawScreen, 33);

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Moving on a Vector
Moving between two points is handy, but sometimes you don’t have a point to move
to, only a point to start from. In cases like this, it can be very useful to create a vector
as a means to move your object.

A vector is a quantity in physics that has both magnitude and direction. For our pur-
poses, the magnitude will be the speed of the moving object, and the direction will be
an angle that the object will move upon.

The good news is that moving on a vector is very similar to moving between two points.
In canvasApp(), we first set our speed (magnitude). This is the number of pixels the
object will move on every call to drawScreen(). We will set this to 5. We will also set
the starting point (p1) for the object to 20,20:

var speed = 5;
var p1 = {x:20,y:20};

Now, we will set the angle (direction) of movement for our object to 45 degrees. In
mathematics, a flat, straight line usually represents the 0 angle, which means a vector
with an angle of 45 degrees would be down and to the right on the canvas.

With our angle set, we now need to convert it to radians. Radians are a standard unit
of angle measurement, and most mathematical calculations require you to convert an
angle into radians before you can use it.

So why not just use radians and forget degrees altogether? Because it is much easier to
understand movement in degrees when working with vectors and moving objects on a
2D surface. While a circle has 360 degrees, it has just about 6 radians, which are cal-
culated counterclockwise. This might make perfect sense to mathematicians, but to
move objects on a computer screen, angles are much easier. So, we will work with

Moving in a Straight Line | 179

angles, but we still need to convert our 45-degree angle into radians. We do that with
a standard formula: radians = angle * Math.PI/ 180. And in the code:

var angle = 45;
var radians = angle * Math.PI/ 180;

Before we can discuss how we calculate the movement of our object along our vector,
we need to review a couple trigonometric concepts. These are cosine and sine, and
both relate to the arc created by our angle (now converted to radians), if it was drawn
outward from the center of the circle.

cosine
The angle measured counterclockwise from the x-axis (x)

sine
The vertical coordinate of the arc endpoint (y)

You can see how these values relate to a 45-degree angle in Figure 5-2.

Figure 5-2. Angles on the canvas

This might seem complicated, but there is a very simple way to think about it: cosine
usually deals with the x value, and sine usually deals with the y value. We can use sine
and cosine to help us calculate movement along our vector.

To calculate the number of pixels to move our object on each call to drawScreen()
(xunits and yunits), we use the radians (direction) we calculated and speed (magni-
tude), along with the Math.cos() (cosine) and Math.sin() (sine) functions of the Java-
Script Math object:

var xunits = Math.cos(radians) * speed;
var yunits = Math.sin(radians) * speed;

180 | Chapter 5: Math, Physics, and Animation

In drawScreen(), we simply add xunits and yunits to ball.x and ball.y. We don’t check
to see whether moves has been exhausted because we are not moving to a particular
point—we are simply moving along the vector, seemingly forever. In the next section,
we will explore what we can do if we want the moving object to change direction when
it hits something such as a wall:

ball.x += xunits;
ball.y += yunits;

Figure 5-3 shows what Example 5-3 looks like when it is executed in a web browser.
Recall that the points are drawn for illustration only.

Figure 5-3. Moving an object on a vector

Example 5-3 gives the full code listing.

Moving in a Straight Line | 181

Example 5-3. Moving on a vector

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH5EX3: Moving On A Vector</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 canvasApp();
}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 var pointImage = new Image();
 pointImage.src = "point.png";

 function drawScreen () {

 context.fillStyle = '#EEEEEE';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);

 ball.x += xunits;
 ball.y += yunits;

 //Draw points to illustrate path

 points.push({x:ball.x,y:ball.y});

 for (var i = 0; i< points.length; i++) {
 context.drawImage(pointImage, points[i].x, points[i].y,1,1);
 }

 context.fillStyle = "#000000";
 context.beginPath();
 context.arc(ball.x,ball.y,15,0,Math.PI*2,true);
 context.closePath();
 context.fill();

 }

182 | Chapter 5: Math, Physics, and Animation

 var speed = 5;
 var p1 = {x:20,y:20};
 var angle = 45;
 var radians = angle * Math.PI/ 180;
 var xunits = Math.cos(radians) * speed;
 var yunits = Math.sin(radians) * speed;
 var ball = {x:p1.x, y:p1.y};
 var points = new Array();

 theCanvas = document.getElementById("canvasOne");
 context = theCanvas.getContext("2d");

 setInterval(drawScreen, 33);

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Bouncing Off Walls
While it’s neat that we can create a vector with magnitude and direction and then move
an object along it infinitely, it’s probably not something you will need to do all that
often. Most of the time, you will want to see that object react to the world around it by
bouncing off horizontal and vertical walls, for example.

To help you understand how to do this, there is a simple rule in physics. Although this
rule is usually applied to rays of light, it can be very useful when animating 2D objects—
especially when they are bouncing off horizontal and vertical walls. This rule is known
as the angle of reflection:

The angle of incidence is equal to the angle of reflection.

The angle of incidence is the angle an object is traveling when it hits the walls, and the
angle of reflection is the angle it travels after it bounces off the wall.

Figure 5-4 illustrates that when an object hits a wall on a line that forms a 45-degree
angle with a perpendicular line drawn to the point of impact, it will bounce off (reflect)
at a similar 45-degree angle.

Bouncing Off Walls | 183

Figure 5-4. Angle of incidence is equal to the angle of reflection

In the next section, we will create a series of examples using this rule to animate objects.
The first, Example 5-4, will simply allow a single ball to bounce off the edges of the
canvas.

Bouncing a Single Ball
In this first example, we will create a ball traveling on a vector. We will set the speed
(magnitude) to 5 and the angle (direction) to 35 degrees. The rest of the variables are
identical to those in Example 5-3. We are still moving on a vector, but now we will test
to see whether the ball hits a “wall” (the edges of the canvas), in which case it will
bounce off, using the rule of the angle of reflection. One big change from the previous
vector example is the location in which we initialize the values for radians, xunits, and
yunits. Instead of setting them up when we initialize the application in canvasApp(),
we save that for a call to a new function named updateBall():

var speed = 5;
var p1 = {x:20,y:20};
var angle = 35;
var radians = 0;
var xunits = 0;
var yunits = 0;
var ball = {x:p1.x, y:p1.y};
updateBall();

The updateBall() function is called every time we set a new angle for the ball, because
we need to recalculate the radians and find new values for xunits and yunits. A new
angle is generated when the app starts, as well as every time the ball bounces off a wall:

184 | Chapter 5: Math, Physics, and Animation

function updateBall() {
 radians = angle * Math.PI/ 180;
 xunits = Math.cos(radians) * speed;
 yunits = Math.sin(radians) * speed;
}

In drawScreen(), we update the position of the ball, and then draw it on the canvas:

ball.x += xunits;
ball.y += yunits;
context.fillStyle = "#000000";
context.beginPath();
context.arc(ball.x,ball.y,15,0,Math.PI*2,true);
context.closePath();
context.fill();

Next, we test to see whether the ball has hit a wall before we draw it to the canvas. If
the ball hits the right side (ball.x > the Canvas.width) or the left side of the canvas
(ball.x < 0), we set the angle to 180 degrees minus the angle of the vector on which
the ball is traveling. This gives us the angle of reflection. Alternatively, if the ball hits
the top (ball.y < 0) or bottom (ball.y > theCanvas.height) of the canvas, we calculate
the angle of reflection with 360 degrees minus the angle of the vector on which the ball
is traveling:

if (ball.x > theCanvas.width || ball.x < 0) {
 angle = 180 - angle;
 updateBall();
 } else if (ball.y > theCanvas.height || ball.y < 0) {
 angle = 360 - angle;
 updateBall();
 }

That’s it. Example 5-4 demonstrates a ball that bounces off walls using the rules of
physics. Figure 5-5 illustrates the code.

Example 5-4. Ball bounce

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH5EX4: Ball Bounce</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 canvasApp();
}

function canvasSupport () {
 return Modernizr.canvas;
}

Bouncing Off Walls | 185

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 function drawScreen () {
 context.fillStyle = '#EEEEEE';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);
 ball.x += xunits;
 ball.y += yunits;
 context.fillStyle = "#000000";
 context.beginPath();
 context.arc(ball.x,ball.y,15,0,Math.PI*2,true);
 context.closePath();
 context.fill();

 if (ball.x > theCanvas.width || ball.x < 0) {
 angle = 180 - angle;
 updateBall();
 } else if (ball.y > theCanvas.height || ball.y < 0) {
 angle = 360 - angle;
 updateBall();
 }

 }

 function updateBall() {
 radians = angle * Math.PI/ 180;
 xunits = Math.cos(radians) * speed;
 yunits = Math.sin(radians) * speed;
 }

 var speed = 5;
 var p1 = {x:20,y:20};
 var angle = 35;
 var radians = 0;
 var xunits = 0;
 var yunits = 0;
 var ball = {x:p1.x, y:p1.y};
 updateBall();

 theCanvas = document.getElementById("canvasOne");
 context = theCanvas.getContext("2d");

 setInterval(drawScreen, 33);

}

186 | Chapter 5: Math, Physics, and Animation

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Figure 5-5. A single ball bouncing off a wall

Bouncing Off Walls | 187

The points on the line are not drawn when executed in the web browser
because they slowed down the ball far too much. We left them in Fig-
ure 5-5 to illustrate the angles of incidence and reflection.

Multiple Balls Bouncing Off Walls
One ball is cool, but what about 100? Is the code 100 times more complicated? No, not
at all. In fact, the code is only slightly more complicated, but it is also more refined.
Most programming tasks that require only a single object of a type tend to allow you
to be a bit lazy. However, when you need to build an application that must support n
number of objects, you need to make sure the code will work in many different cases.

In the case of 100 balls bouncing on the canvas, we will need to create a ball object with
a few more properties. Recall that the ball object we created previously had only x and
y properties, and looked like this:

var ball = {x:p1.x, y:p1.y};

All the other variables that represented the ball (speed, angle, xunits, yunits) were
global in scope to the canvasApp(). We used global variables because we could get away
with it. However, because we need to make sure everything works the same way in this
app, we make all those values properties of each ball object.

For the multiple-ball-bounce application, we will create an object that holds all the
pertinent information about each bouncing ball: x, y, speed, angle, xunits, and
yunits. Because we are going to create 100 balls of various sizes, we also add a property
named radius, which represents the size of the ball (well, half the size since it is a radius):

tempBall = {x:tempX,y:tempY,radius:tempRadius, speed:tempSpeed,
 angle:tempAngle, xunits:tempXunits, yunits:tempYunits}

Inside canvasApp(), we define some new variables to help manage the multiple balls
that will bounce around the canvas:

numBalls
The number of balls to randomly create

maxSize
The maximum radius length for any given ball

minSize
The minimum radius length for any given ball

maxSpeed
The maximum speed any ball can travel

balls
An array to hold all of the ball objects we will create

188 | Chapter 5: Math, Physics, and Animation

The following code shows the newly defined variables:

var numBalls = 100 ;
var maxSize = 8;
var minSize = 5;
var maxSpeed = maxSize+5;
var balls = new Array();

We also create a set of temporary variables to hold the values for each ball before we
push it into the balls array:

var tempBall;
var tempX;
var tempY;
var tempSpeed;
var tempAngle;
var tempRadius;
var tempRadians;
var tempXunits;
var tempYunits;

Next, in canvasApp(), we iterate through a loop to create all the ball objects. Notice
how tempX and tempY are created below. These values represent the ball’s starting lo-
cation on the canvas. We create a random value for each, but we offset it by the size of
the ball (tempRadius*2). If we did not do that, some of the balls would get “stuck” in a
wall when the app starts because their x or y location would be “through” the wall, but
their speed would not be enough so that a “bounce” would get them back on the play-
field. They would be stuck in bouncing limbo forever (which is kind of sad when you
think about it).

When you try this app, you will see that occasionally a ball still gets
stuck in a wall. There is a further optimization we need to make to
prevent this, but it is a bigger subject than this little iteration. We will
talk about it in the section “Multiple Balls Bouncing and Collid-
ing” on page 198.

The tempSpeed variable is created by subtracting the value of tempRadius from the value
of maxSpeed, which we created earlier. The speed is not random, but it is inversely pro-
portional to the size (radius) of the ball. A larger ball has larger radius, so the value you
subtract from tempSpeed will be larger, thus making the ball move slower:

When you run CH5EX4.html in your web browser, you will notice that
this little trick makes the ball appear more “real” because your brain
expects larger objects to move slower.

Bouncing Off Walls | 189

for (var i = 0; i < numBalls; i++) {
 tempRadius = Math.floor(Math.random()*maxSize)+minSize;
 tempX = tempRadius*2 + (Math.floor(Math.random()*theCanvas.width)-tempRadius*2);
 tempY = tempRadius*2 + (Math.floor(Math.random()*theCanvas.height)-tempRadius*2);
 tempSpeed = maxSpeed-tempRadius;
 tempAngle = Math.floor(Math.random()*360);
 tempRadians = tempAngle * Math.PI/ 180;
 tempXunits = Math.cos(tempRadians) * tempSpeed;
 tempYunits = Math.sin(tempRadians) * tempSpeed;

 tempBall = {x:tempX,y:tempY,radius:tempRadius, speed:tempSpeed, angle:tempAngle,
 xunits:tempXunits, yunits:tempYunits}
 balls.push(tempBall);
}

Now we need to draw the balls onto the canvas. Inside drawScreen(), the code to draw
the balls should look very familiar because it is essentially the same code we used for
one ball in Example 5-4. We just need to loop through the balls array to render each
ball object:

for (var i = 0; i <balls.length; i++) {
 ball = balls[i];
 ball.x += ball.xunits;
 ball.y += ball.yunits;

 context.beginPath();
 context.arc(ball.x,ball.y,ball.radius,0,Math.PI*2,true);
 context.closePath();
 context.fill();

 if (ball.x > theCanvas.width || ball.x < 0) {
 ball.angle = 180 - ball.angle;
 updateBall(ball);
 } else if (ball.y > theCanvas.height || ball.y < 0) {
 ball.angle = 360 - ball.angle;
 updateBall(ball);
 }
 }

When you load Example 5-5 in your web browser, you will see a bunch of balls all
moving around the screen independently, as shown in Figure 5-6. For the fun of it, why
not change the numBalls variable to 500 or 1,000? What does the canvas look like then?

190 | Chapter 5: Math, Physics, and Animation

Figure 5-6. Multiple balls of different sizes bouncing off walls

Example 5-5. Multiple ball bounce

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH5EX5: Multiple Ball Bounce</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 canvasApp();
}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp() {

Bouncing Off Walls | 191

 if (!canvasSupport()) {
 return;
 }

 function drawScreen () {

 context.fillStyle = '#EEEEEE';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);

 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);

 //Place balls
 context.fillStyle = "#000000";
 var ball;

 for (var i = 0; i <balls.length; i++) {
 ball = balls[i];
 ball.x += ball.xunits;
 ball.y += ball.yunits;

 context.beginPath();
 context.arc(ball.x,ball.y,ball.radius,0,Math.PI*2,true);
 context.closePath();
 context.fill();

 if (ball.x > theCanvas.width || ball.x < 0) {
 ball.angle = 180 - ball.angle;
 updateBall(ball);
 } else if (ball.y > theCanvas.height || ball.y < 0) {
 ball.angle = 360 - ball.angle;
 updateBall(ball);
 }
 }

 }

 function updateBall(ball) {

 ball.radians = ball.angle * Math.PI/ 180;
 ball.xunits = Math.cos(ball.radians) * ball.speed;
 ball.yunits = Math.sin(ball.radians) * ball.speed;

 }

 var numBalls = 100 ;
 var maxSize = 8;
 var minSize = 5;
 var maxSpeed = maxSize+5;
 var balls = new Array();
 var tempBall;
 var tempX;
 var tempY;
 var tempSpeed;

192 | Chapter 5: Math, Physics, and Animation

 var tempAngle;
 var tempRadius;
 var tempRadians;
 var tempXunits;
 var tempYunits;

 theCanvas = document.getElementById("canvasOne");
 context = theCanvas.getContext("2d");

 for (var i = 0; i < numBalls; i++) {
 tempRadius = Math.floor(Math.random()*maxSize)+minSize;
 tempX = tempRadius*2 + (Math.floor(Math.random()*theCanvas.width)-tempRadius*2);
 tempY = tempRadius*2 + (Math.floor(Math.random()*theCanvas.height)-tempRadius*2);
 tempSpeed = maxSpeed-tempRadius;
 tempAngle = Math.floor(Math.random()*360);
 tempRadians = tempAngle * Math.PI/ 180;
 tempXunits = Math.cos(tempRadians) * tempSpeed;
 tempYunits = Math.sin(tempRadians) * tempSpeed;

 tempBall = {x:tempX,y:tempY,radius:tempRadius, speed:tempSpeed, angle:tempAngle,
 xunits:tempXunits, yunits:tempYunits}
 balls.push(tempBall);
 }

 setInterval(drawScreen, 33);

 }

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Multiple Balls Bouncing with a Dynamically Resized Canvas
Before we move on to some more complex interaction among balls, let’s try one more
thing. Back in Chapter 3, we resized the canvas with some HTML5 form controls to
display text in the center of the canvas. Well, let’s do the same thing now with the ball
example. This will give you a better idea of how we can make objects interact with a
dynamically resizing canvas.

First, in the HTML, we create two HTML5 range controls, one for width and one for
height, and set their maximum values to 1000. We will use these controls to set the
width and height of the canvas at runtime:

Bouncing Off Walls | 193

<form>

 Canvas Width: <input type="range" id="canvasWidth"
 min="0"
 max="1000"
 step="1"
 value="500"/>

 Canvas Height: <input type="range" id="canvasHeight"
 min="0"
 max="1000"
 step="1"
 value="500"/>

</form>

In canvasApp(), we create the event listeners for the HTML5 form controls. We listen
for the change event, which means any time the range control is moved, the event han-
dlers will be called:

formElement = document.getElementById("canvasWidth")
formElement.addEventListener('change', canvasWidthChanged, false);

formElement = document.getElementById("canvasHeight")
formElement.addEventListener('change', canvasHeightChanged, false);

The event handler functions capture the changes to the range, set theCanvas.width or
theCanvas.height, and then call drawScreen() to render the new size. Without a call to
drawScreen() here, the canvas will blink when the new size is applied in drawScreen()
on the next interval:

function canvasWidthChanged(e) {
 var target = e.target;
 theCanvas.width = target.value;
 drawScreen();
 }

function canvasHeightChanged(e) {
 var target = e.target;
 theCanvas.height = target.value;
 drawScreen();
}

All of this is explained in gory detail in Chapter 3.

One last thing—let’s increase the number of balls set in canvasApp() to 500:

var numBalls = 500 ;

194 | Chapter 5: Math, Physics, and Animation

Now, check out Example 5-6 (CH5EX6.html from the code distribution). When you
run the code in a web browser, you should see 500 balls bounce around the canvas, as
shown in Figure 5-7. When you increase the width or height using the range controls,
they continue moving until they hit the new edge of the canvas. If you make the canvas
smaller, the balls will be contained within the smaller space. If you adjust the size too
rapidly, some balls will be lost off the canvas, but they will reappear when the canvas
is resized. Neat, huh?

Figure 5-7. Multiple balls bouncing while the canvas is resized on the fly

Example 5-6. Multiple ball bounce with dynamically resized canvas

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH5EX6: Multiple Ball Bounce With Resize</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 canvasApp();
}

Bouncing Off Walls | 195

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 formElement = document.getElementById("canvasWidth")
 formElement.addEventListener('change', canvasWidthChanged, false);

 formElement = document.getElementById("canvasHeight")
 formElement.addEventListener('change', canvasHeightChanged, false);

 function drawScreen () {

 context.fillStyle = '#EEEEEE';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);

 //Place balls
 context.fillStyle = "#000000";
 var ball;

 for (var i = 0; i <balls.length; i++) {
 ball = balls[i];
 ball.x += ball.xunits;
 ball.y += ball.yunits;

 context.beginPath();
 context.arc(ball.x,ball.y,ball.radius,0,Math.PI*2,true);
 context.closePath();
 context.fill();

 if (ball.x > theCanvas.width || ball.x < 0) {
 ball.angle = 180 - ball.angle;
 updateBall(ball);
 } else if (ball.y > theCanvas.height || ball.y < 0) {
 ball.angle = 360 - ball.angle;
 updateBall(ball);
 }
 }

 }

 function updateBall(ball) {

 ball.radians = ball.angle * Math.PI/ 180;
 ball.xunits = Math.cos(ball.radians) * ball.speed;
 ball.yunits = Math.sin(ball.radians) * ball.speed;

196 | Chapter 5: Math, Physics, and Animation

 }

 var numBalls = 500 ;
 var maxSize = 8;
 var minSize = 5;
 var maxSpeed = maxSize+5;
 var balls = new Array();
 var tempBall;
 var tempX;
 var tempY;
 var tempSpeed;
 var tempAngle;
 var tempRadius;
 var tempRadians;
 var tempXunits;
 var tempYunits;

 theCanvas = document.getElementById("canvasOne");
 context = theCanvas.getContext("2d");

 for (var i = 0; i < numBalls; i++) {
 tempRadius = Math.floor(Math.random()*maxSize)+minSize;
 tempX = tempRadius*2 + (Math.floor(Math.random()*theCanvas.width)-tempRadius*2);
 tempY = tempRadius*2 + (Math.floor(Math.random()*theCanvas.height)-tempRadius*2);
 tempSpeed = maxSpeed-tempRadius;
 tempAngle = Math.floor(Math.random()*360);
 tempRadians = tempAngle * Math.PI/ 180;
 tempXunits = Math.cos(tempRadians) * tempSpeed;
 tempYunits = Math.sin(tempRadians) * tempSpeed;

 tempBall = {x:tempX,y:tempY,radius:tempRadius, speed:tempSpeed, angle:tempAngle,
 xunits:tempXunits, yunits:tempYunits}
 balls.push(tempBall);
 }

 setInterval(drawScreen, 33);

 function canvasWidthChanged(e) {
 var target = e.target;
 theCanvas.width = target.value;
 drawScreen();
 }

 function canvasHeightChanged(e) {
 var target = e.target;
 theCanvas.height = target.value;
 drawScreen();
 }

}

</script>

</head>
<body>

Bouncing Off Walls | 197

<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
<form>

 Canvas Width: <input type="range" id="canvasWidth"
 min="0"
 max="1000"
 step="1"
 value="500"/>

 Canvas Height: <input type="range" id="canvasHeight"
 min="0"
 max="1000"
 step="1"
 value="500"/>

</form>
</div>
</body>
</html>

Multiple Balls Bouncing and Colliding
Now it’s time to step it up again. Testing balls bouncing off walls is one thing, but what
about balls bouncing off one another? We will need to add some pretty intricate code
to handle this type of interaction.

Ball interactions in physics

For this example, we are going to create an elastic collision, which means that the total
kinetic energy of the objects is the same before and after the collision. This is known
as the law of conservation of momentum (Newton’s third law). To do this, we will take
the x and y velocities of two colliding balls, and draw a “line of action” between their
centers. This is illustrated in Figure 5-8, which has been adapted from Jobe Makar and
Ben Winiarczyk’s Macromedia’s Flash MX 2004 Game Design Demystified (Macrome-
dia Press). Then we will create new x and y velocities for each ball based on this angle
and the law of conservation of momentum.

To properly calculate conservation of momentum when balls collide on the canvas, we
need to add a new property: mass. Mass is the measurement of how much a ball (or any
object) resists any change in its velocity. Because collisions tend to change the velocity
of objects, this is an important addition to the ball objects we will use on the canvas.

198 | Chapter 5: Math, Physics, and Animation

Figure 5-8. Two balls colliding at different angles with a line of action drawn between them

Making sure the balls don’t start on top of each other

We will work from the code we created for Example 5-6 (CH5EX6.html). The first big
change to that code is to make sure the balls don’t randomly start on top of one another.
If we let them start in the same location, they would be forever intertwined and would
spin off into oblivion. To be honest, it looks pretty cool when that happens, but that’s
not the result we are looking to achieve.

In canvasApp(), we set a variable named tempRadius to 5. We will use this value as the
radius for each ball we create. Next, we create another new variable named placeOK
and set it to false. When this is equal to true, we know we have found a place to put
a ball that is not on top of another ball.

Next, we enter a while() loop that will continue to iterate as long as placeOK is false.
Then, we set all the values for our new ball object:

tempRadius = 5;
var placeOK = false;
while (!placeOK) {
tempX = tempRadius*3 + (Math.floor(Math.random()*theCanvas.width)-tempRadius*3);
tempY = tempRadius*3 + (Math.floor(Math.random()*theCanvas.height)-tempRadius*3);
tempSpeed = 4;
tempAngle = Math.floor(Math.random()*360);
tempRadians = tempAngle * Math.PI/ 180;
tempvelocityx = Math.cos(tempRadians) * tempSpeed;
tempvelocityy = Math.sin(tempRadians) * tempSpeed;

Bouncing Off Walls | 199

Now, we need to make a dynamic object out of the values we just created and place
that object into the tempBall variable. This is where we create a mass property for each
ball. Again, we do this so that we can calculate the effect when the balls hit one another.
For all the balls in this example, the mass will be the same—the value of tempRadius.
We do this because, in our 2D environment, the relative size of each ball is a very simple
way to create a value for mass. Since the mass and speed of each ball will be the same,
they will affect each other in a similar way. Later, we will show you what happens when
we create ball objects with different mass values.

Finally, we create nextX and nextY properties that are equal to x and y. We will use these
values as “look ahead” properties to help alleviate collisions that occur “between” our
iterations, which lead to overlapping balls and other oddities:

tempBall = {x:tempX,y:tempY, nextX: tempX, nextY: tempY, radius:tempRadius,
 speed:tempSpeed, angle:tempAngle, velocityx:tempvelocityx,
 velocityy:tempvelocityy, mass:tempRadius};

Now that we have our new dynamic ball object represented by the tempBall variable,
we will test to see whether it can be placed at the tempX and tempY we randomly created
for it. We will do this with a call to a new function named canStartHere(). If can
StartHere() returns true, we drop out of the while() loop; if not, we start all over again:

 placeOK = canStartHere(tempBall);
 }

The canStartHere() function is very simple. It looks through the ball array, testing the
new tempBall against all existing balls to see whether they overlap. If they do, the func-
tion returns false; if not, it returns true. To test the overlap, we have created another
new function: hitTestCircle():

function canStartHere(ball) {
 var retval = true;
 for (var i = 0; i <balls.length; i++) {
 if (hitTestCircle(ball, balls[i])) {
 retval = false;
 }
 }
 return retval;
 }

Circle collision detection

The hitTestCircle() function performs a circle/circle collision-detection test to see
whether the two circles (each representing a ball) passed as parameters to the function
are touching. Because we have been tracking the balls by the center x and y of their
location, this is quite easy to calculate. First, the function finds the distance of the line
that connects the center of each circle. We do this using our old friend the Pythagorean
theorem (A2+B2 = C2). We use the nextx and nexty properties of the ball because we
want to test the collision before it occurs. (Again, if we test after by using the current
x and y locations, there is a good chance the balls will get stuck together and spin out

200 | Chapter 5: Math, Physics, and Animation

of control.) We then compare that distance value to the sum of the radius of each ball.
If the distance is less than or equal to the sum of the radii, we have a collision. This is
a very simple and efficient way to test collisions, and it works especially well with
collisions among balls in 2D:

function hitTestCircle(ball1,ball2) {
 var retval = false;
 var dx = ball1.nextx - ball2.nextx;
 var dy = ball1.nexty - ball2.nexty;
 var distance = (dx * dx + dy * dy);
 if (distance <= (ball1.radius + ball2.radius) * (ball1.radius + ball2.radius)) {
 retval = true;
 }
 return retval;
}

Figure 5-9 illustrates this code.

Figure 5-9. Balls colliding

Separating the code in drawScreen()

The next thing we want to do is simplify drawScreen() by separating the code into
controllable functions. The idea here is that to test collisions correctly, we need to make
sure some of our calculations are done in a particular order. We like to call this an
update-collide-render cycle.

update()
Sets the nextx and nexty properties of all the balls in the balls array.

testWalls()
Tests to see whether the balls have hit one of the walls.

collide()
Tests collisions among balls. If the balls collide, updates nextx and nexty.

Bouncing Off Walls | 201

render()
Makes the x and y properties for each ball equal to nextx and nexty respectively,
and then draws them to the canvas.

And here is the code:

function drawScreen () {

 update();
 testWalls();
 collide();
 render();

 }

Updating positions of objects

The update() function loops through all the balls in the balls array, and updates the
nextx and nexty properties with the x and y velocity for each ball. We don’t directly
update x and y here, because we want to test collisions against walls and other balls
before they occur. We will use the nextx and nexty properties for this purpose:

function update() {
 for (var i = 0; i <balls.length; i++) {
 ball = balls[i];
 ball.nextx = (ball.x += ball.velocityx);
 ball.nexty = (ball.y += ball.velocityy);
 }
}

Better interaction with the walls

We discussed the interactions between balls and walls in the last example, but there is
still one issue. Since we move the balls by the x and y location of their center, the balls
would move halfway off the canvas before a bounce occurred. To fix this, we add or
subtract the radius of the ball object, depending on which walls we are testing. For
the right side and bottom of the canvas, we add the radius of the ball when we test the
walls. In this way, the ball will appear to bounce exactly when its edge hits a wall.
Similarly, we subtract the radius when we test the left side and the top of the canvas,
so that the ball does not move off the side before we make it bounce off a wall:

function testWalls() {
 var ball;
 var testBall;

 for (var i = 0; i <balls.length; i++) {
 ball = balls[i];

 if (ball.nextx+ball.radius > theCanvas.width) {
 ball.velocityx = ball.velocityx*−1;
 ball.nextx = theCanvas.width - ball.radius;

202 | Chapter 5: Math, Physics, and Animation

 } else if (ball.nextx-ball.radius < 0) {
 ball.velocityx = ball.velocityx*−1;
 ball.nextx = ball.radius;

 } else if (ball.nexty+ball.radius > theCanvas.height) {
 ball.velocityy = ball.velocityy*−1;
 ball.nexty = theCanvas.height - ball.radius;

 } else if(ball.nexty-ball.radius < 0) {
 ball.velocityy = ball.velocityy*−1;
 ball.nexty = ball.radius;
 }

 }

 }

Collisions with balls

The collide() function tests to see whether any balls have hit one another. This func-
tion uses two nested loops, both iterating through the balls array to ensure we test
each ball against every other ball. We take the ball from the first loop of the balls array,
and place it into the ball variable. Then we loop through balls again, placing each ball
in the testBall variable, one at a time. When we have both ball and testBall, we make
sure they are not equal to one another. We do this because a ball will always have a
false positive collision if we test it against itself. When we are sure they are not the same
ball, we call hitTestCircle() to test for a collision. If we find one, we call collide
Balls(), and then all hell breaks loose. (OK, not really, but the balls do collide, and
some really interesting code gets executed.) See that code here:

function collide() {
 var ball;
 var testBall;
 for (var i = 0; i <balls.length; i++) {
 ball = balls[i];
 for (var j = i+1; j < balls.length; j++) {
 testBall = balls[j];
 if (hitTestCircle(ball,testBall)) {
 collideBalls(ball,testBall);
 }
 }
 }
 }

Ball collisions in depth

So now we get to the most interesting code of this example. We are going to update
the properties of each ball so they appear to bounce off one another. Recall that we
use the nextx and nexty properties because we want to make sure to test where the balls
will be after they are drawn—not where they are right now. This helps keep the
balls from overlapping in a way that will make them stick together.

Bouncing Off Walls | 203

Sometimes the balls will still stick together. This is a common problem
when creating collisions among balls. This happens when balls overlap
one another before the collision test, and the reaction bounce is not
enough to split them apart completely. We have made every attempt to
optimize this function for the canvas, but we are sure further optimiza-
tions are possible.

The collideBalls() function takes two parameters: ball1 and ball2. Both parameters
are the ball objects that we want to make collide:

function collideBalls(ball1,ball2) {

First, we need to calculate the difference between the center points of each ball. We
store this as dx and dy (difference x and difference y). This should look familiar because
we did something similar when we tested for a collision between the balls. The differ-
ence is that now we know they have collided, and we want to know how that collision
occurred:

var dx = ball1.nextx - ball2.nextx;
var dy = ball1.nexty - ball2.nexty;

To do this, we need to find the angle of the collision using the Math.atan2() function.
This function gives us the angle in radians of the collisions between the two balls. This
is the line of action or angle of collision. We need this value so that we can determine
how the balls will react when they collide:

var collisionAngle = Math.atan2(dy, dx);

Next, we calculate the velocity vector for each ball given the x and y velocities that
existed before the collision occurred:

var speed1 = Math.sqrt(ball1.velocityx * ball1.velocityx +
 ball1.velocityy * ball1.velocityy);
var speed2 = Math.sqrt(ball2.velocityx * ball2.velocityx +
 ball2.velocityy * ball2.velocityy);

Then, we calculate angles (in radians) for each ball given its current velocities:

var direction1 = Math.atan2(ball1.velocityy, ball1.velocityx);
var direction2 = Math.atan2(ball2.velocityy, ball2.velocityx);

Next, we need to rotate the vectors counterclockwise so that we can plug those values
into the equation for conservation of momentum. Basically, we are taking the angle of
collision and making it flat so we can bounce the balls, similar to how we bounced balls
off the sides of the canvas:

var velocityx_1 = speed1 * Math.cos(direction1 - collisionAngle);
var velocityy_1 = speed1 * Math.sin(direction1 - collisionAngle);
var velocityx_2 = speed2 * Math.cos(direction2 - collisionAngle);
var velocityy_2 = speed2 * Math.sin(direction2 - collisionAngle);

204 | Chapter 5: Math, Physics, and Animation

We take the mass values of each ball and update their x and y velocities based on the
law of conservation of momentum. To find the final velocity for both balls, we use the
following formulas:

velocity1 = ((mass1 - mass2) * velocity1 + 2*mass2 * velocity2) / mass1 + mass2
velocity2 = ((mass2 - mass1) * velocity2 + 2*mass1 * velocity1)/ mass1+ mass2

Actually, only the x velocity needs to be updated; the y velocity remains constant:

var final_velocityx_1 = ((ball1.mass - ball2.mass) * velocityx_1 +
 (ball2.mass + ball2.mass) * velocityx_2)/(ball1.mass + ball2.mass);
var final_velocityx_2 = ((ball1.mass + ball1.mass) * velocityx_1 +
 (ball2.mass - ball1.mass) * velocityx_2)/(ball1.mass + ball2.mass);

var final_velocityy_1 = velocityy_1;
var final_velocityy_2 = velocityy_2

After we have our final velocities, we rotate our angles back again so that the collision
angle is preserved:

ball1.velocityx = Math.cos(collisionAngle) * final_velocityx_1 +
 Math.cos(collisionAngle + Math.PI/2) * final_velocityy_1;
ball1.velocityy = Math.sin(collisionAngle) * final_velocityx_1 +
 Math.sin(collisionAngle + Math.PI/2) * final_velocityy_1;
ball2.velocityx = Math.cos(collisionAngle) * final_velocityx_2 +
 Math.cos(collisionAngle + Math.PI/2) * final_velocityy_2;
ball2.velocityy = Math.sin(collisionAngle) * final_velocityx_2 +
 Math.sin(collisionAngle + Math.PI/2) * final_velocityy_2;

Now, we update nextx and nexty for both balls so can use those values in the ren
der() function—or, for another collision:

 ball1.nextx = (ball1.nextx += ball1.velocityx);
 ball1.nexty = (ball1.nexty += ball1.velocityy);
 ball2.nextx = (ball2.nextx += ball2.velocityx);
 ball2.nexty = (ball2.nexty += ball2.velocityy);
}

If this is confusing to you, you are not alone. It took some serious effort
for us to translate this code from other sources into a working example
on HTML5 Canvas. The code here is based on “Flash Lite Effort -
Embedded Systems and Pervasive Computing Lab” by Felipe Sampaio,
available here: http://wiki.forum.nokia.com/index.php/Collision_for
_Balls. It is also partly based on Jobe Makar and Ben Winiarczyk’s work
in Macromedia Flash MX 2004 Game Design Demystified, and Keith
Peters’ books on ActionScript animation.

Here is the full code listing for Example 5-7.

Example 5-7. Balls with simple interactions

<!doctype html>
<html lang="en">
<head>

Bouncing Off Walls | 205

<meta charset="UTF-8">
<title>CH5EX7: Balls With Simple Interactions</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 canvasApp();

}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 function drawScreen () {

 context.fillStyle = '#EEEEEE';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);

 update();
 testWalls();
 collide();
 render();

 }

 function update() {
 for (var i = 0; i <balls.length; i++) {
 ball = balls[i];
 ball.nextx = (ball.x += ball.velocityx);
 ball.nexty = (ball.y += ball.velocityy);
 }

 }

 function testWalls() {
 var ball;
 var testBall;

 for (var i = 0; i <balls.length; i++) {
 ball = balls[i];

 if (ball.nextx+ball.radius > theCanvas.width) {
 ball.velocityx = ball.velocityx*−1;
 ball.nextx = theCanvas.width - ball.radius;

206 | Chapter 5: Math, Physics, and Animation

 } else if (ball.nextx-ball.radius < 0) {
 ball.velocityx = ball.velocityx*−1;
 ball.nextx =ball.radius;

 } else if (ball.nexty+ball.radius > theCanvas.height) {
 ball.velocityy = ball.velocityy*−1;
 ball.nexty = theCanvas.height − ball.radius;

 } else if(ball.nexty-ball.radius < 0) {
 ball.velocityy = ball.velocityy*−1;
 ball.nexty = ball.radius;
 }

 }

 }

 function render() {
 var ball;
 context.fillStyle = "#000000";
 for (var i = 0; i <balls.length; i++) {
 ball = balls[i];
 ball.x = ball.nextx;
 ball.y = ball.nexty;

 context.beginPath();
 context.arc(ball.x,ball.y,ball.radius,0,Math.PI*2,true);
 context.closePath();
 context.fill();
 }

 }

 function collide() {
 var ball;
 var testBall;
 for (var i = 0; i <balls.length; i++) {
 ball = balls[i];
 for (var j = i+1; j < balls.length; j++) {
 testBall = balls[j];
 if (hitTestCircle(ball,testBall)) {
 collideBalls(ball,testBall);
 }
 }
 }
 }

 function hitTestCircle(ball1,ball2) {
 var retval = false;
 var dx = ball1.nextx - ball2.nextx;
 var dy = ball1.nexty - ball2.nexty;
 var distance = (dx * dx + dy * dy);
 if (distance <= (ball1.radius + ball2.radius) * (ball1.radius + ball2.radius)) {
 retval = true;

Bouncing Off Walls | 207

 }
 return retval;
 }

 function collideBalls(ball1,ball2) {

 var dx = ball1.nextx - ball2.nextx;
 var dy = ball1.nexty - ball2.nexty;

 var collisionAngle = Math.atan2(dy, dx);

 var speed1 = Math.sqrt(ball1.velocityx * ball1.velocityx +
 ball1.velocityy * ball1.velocityy);
 var speed2 = Math.sqrt(ball2.velocityx * ball2.velocityx +
 ball2.velocityy * ball2.velocityy);

 var direction1 = Math.atan2(ball1.velocityy, ball1.velocityx);
 var direction2 = Math.atan2(ball2.velocityy, ball2.velocityx);

 var velocityx_1 = speed1 * Math.cos(direction1 - collisionAngle);
 var velocityy_1 = speed1 * Math.sin(direction1 - collisionAngle);
 var velocityx_2 = speed2 * Math.cos(direction2 - collisionAngle);
 var velocityy_2 = speed2 * Math.sin(direction2 - collisionAngle);

 var final_velocityx_1 = ((ball1.mass - ball2.mass) * velocityx_1 +
 (ball2.mass + ball2.mass) * velocityx_2)/(ball1.mass + ball2.mass);
 var final_velocityx_2 = ((ball1.mass + ball1.mass) * velocityx_1 +
 (ball2.mass - ball1.mass) * velocityx_2)/(ball1.mass + ball2.mass);

 var final_velocityy_1 = velocityy_1;
 var final_velocityy_2 = velocityy_2;

 ball1.velocityx = Math.cos(collisionAngle) * final_velocityx_1 +
 Math.cos(collisionAngle + Math.PI/2) * final_velocityy_1;
 ball1.velocityy = Math.sin(collisionAngle) * final_velocityx_1 +
 Math.sin(collisionAngle + Math.PI/2) * final_velocityy_1;
 ball2.velocityx = Math.cos(collisionAngle) * final_velocityx_2 +
 Math.cos(collisionAngle + Math.PI/2) * final_velocityy_2;
 ball2.velocityy = Math.sin(collisionAngle) * final_velocityx_2 +
 Math.sin(collisionAngle + Math.PI/2) * final_velocityy_2;

 ball1.nextx = (ball1.nextx += ball1.velocityx);
 ball1.nexty = (ball1.nexty += ball1.velocityy);
 ball2.nextx = (ball2.nextx += ball2.velocityx);
 ball2.nexty = (ball2.nexty += ball2.velocityy);
 }

 var numBalls = 200 ;
 var maxSize = 15;
 var minSize = 5;
 var maxSpeed = maxSize+5;
 var balls = new Array();
 var tempBall;
 var tempX;
 var tempY;

208 | Chapter 5: Math, Physics, and Animation

 var tempSpeed;
 var tempAngle;
 var tempRadius;
 var tempRadians;
 var tempvelocityx;
 var tempvelocityy;

 theCanvas = document.getElementById("canvasOne");
 context = theCanvas.getContext("2d");

 for (var i = 0; i < numBalls; i++) {
 tempRadius = 5;
 var placeOK = false;
 while (!placeOK) {
 tempX = tempRadius*3 + (Math.floor(Math.random()*theCanvas.width)-tempRadius*3);
 tempY = tempRadius*3 + (Math.floor(Math.random()*theCanvas.height)-tempRadius*3);
 tempSpeed = 4;
 tempAngle = Math.floor(Math.random()*360);
 tempRadians = tempAngle * Math.PI/ 180;
 tempvelocityx = Math.cos(tempRadians) * tempSpeed;
 tempvelocityy = Math.sin(tempRadians) * tempSpeed;

 tempBall = {x:tempX,y:tempY, nextX: tempX, nextY: tempY, radius:tempRadius,
 speed:tempSpeed, angle:tempAngle, velocityx:tempvelocityx,
 velocityy:tempvelocityy, mass:tempRadius};
 placeOK = canStartHere(tempBall);
 }
 balls.push(tempBall);
 }

 function canStartHere(ball) {
 var retval = true;
 for (var i = 0; i <balls.length; i++) {
 if (hitTestCircle(ball, balls[i])) {
 retval = false;
 }
 }
 return retval;
 }
 setInterval(drawScreen, 33);

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>

Bouncing Off Walls | 209

</body>
</html>

Now, when you execute Example 5-7 (CH5EX7.html), you will see a bunch of balls of
the same size and mass bumping off of each other and the walls of the canvas, as shown
in Figure 5-10. When you look at this demo, imagine all the ways you could modify it
to do different things. You could create balls with different masses and different speeds,
or even create balls that don’t move but simply alter the direction of other balls that
hit them. In Example 5-8, we will take a slightly different look at this same code and
add some new properties to make it more interesting.

Figure 5-10. Balls of the same size bouncing off one another

Multiple Balls Bouncing with Friction
If we want the balls to slow down and eventually stop, we need to add friction to
Example 5-7. For our purposes, simple friction is a value we use to modify the velocity
of our objects every time they are drawn to the canvas.

210 | Chapter 5: Math, Physics, and Animation

In canvasApp(), we now want to create balls of various sizes. In the previous example,
the balls were all the same size. It worked, but having balls of different sizes with dif-
ferent masses will create more interesting effects. To do this, we set minSize to 3 and
maxSize to 12, meaning the radii for our balls will range from 3 to 12 pixels. We also
add a new property named friction. This is a global property, so it will not be applied
to each individual ball. We set it to .01, which means our balls will degrade their x and
y velocities by .01 pixels per frame (every time drawScreen() is called):

var numBalls = 50 ;
var maxSize = 12;
var minSize = 3;
var maxSpeed = maxSize+5;
var friction = .01;

We will now allow for various ball sizes. The mass of each ball will be different, and
balls will have different effects on one another depending on their sizes. Recall that in
Example 5-7 we needed a mass property so we could calculate conservation of mo-
mentum when the balls collided. We are doing the same thing here, but now the masses
are different depending on the size:

for (var i = 0; i < numBalls; i++) {
 tempRadius = Math.floor(Math.random()*maxSize)+minSize;

In update(), we apply the friction value by calculating the product of the current
velocity multiplied by friction, and then subtracting that value from the current velocity.
We do this for both the x and y velocities. Why must we do this instead of simply
subtracting the friction value from the x and y velocities? Because the x and y velocities
are not always proportional to each other. If we simply subtract the friction, we may
alter the velocity unintentionally. Instead, we need to subtract a value for the friction
that is proportional to the velocity itself, and that value is the product of the velocity
multiplied by the friction value. This method will give you a smooth degradation of
the velocity when the friction value is applied:

function update() {
 for (var i = 0; i <balls.length; i++) {
 ball = balls[i];
 //Friction
 ball.velocityx = ball.velocityx - (ball.velocityx*friction);
 ball.velocityy = ball.velocityy - (ball.velocityy*friction);

 ball.nextx = (ball.x += ball.velocityx);
 ball.nexty = (ball.y += ball.velocityy);
 }

 }

You can see the full version of this code by executing CH5EX8.html from the code
distribution, or by typing in Example 5-8. You should notice that the smaller balls have
less of an effect on the larger balls when they collide, and vice versa. Also, the balls slow
down as they move due to the applied friction.

Bouncing Off Walls | 211

Example 5-8. Balls with friction

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH5EX8: Balls With Friction</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 canvasApp();

}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 function drawScreen () {

 context.fillStyle = '#EEEEEE';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);

 update();
 testWalls();
 collide();
 render();

 }

 function update() {
 for (var i = 0; i <balls.length; i++) {
 ball = balls[i];
 //Friction
 ball.velocityx = ball.velocityx - (ball.velocityx*friction);
 ball.velocityy = ball.velocityy - (ball.velocityy*friction);

 ball.nextx = (ball.x += ball.velocityx);
 ball.nexty = (ball.y += ball.velocityy);
 }

 }

 function testWalls() {
 var ball;
 var testBall;

212 | Chapter 5: Math, Physics, and Animation

 for (var i = 0; i <balls.length; i++) {
 ball = balls[i];

 if (ball.nextx+ball.radius > theCanvas.width) {
 ball.velocityx = ball.velocityx*−1;
 ball.nextx = theCanvas.width - ball.radius;

 } else if (ball.nextx-ball.radius < 0) {
 ball.velocityx = ball.velocityx*−1;
 ball.nextx = ball.radius;

 } else if (ball.nexty+ball.radius > theCanvas.height) {
 ball.velocityy = ball.velocityy*−1;
 ball.nexty = theCanvas.height − ball.radius;

 } else if(ball.nexty-ball.radius < 0) {
 ball.velocityy = ball.velocityy*−1;
 ball.nexty = ball.radius;
 }

 }

 }

 function render() {
 var ball;

 context.fillStyle = "#000000";
 for (var i = 0; i <balls.length; i++) {
 ball = balls[i];
 ball.x = ball.nextx;
 ball.y = ball.nexty;

 context.beginPath();
 context.arc(ball.x,ball.y,ball.radius,0,Math.PI*2,true);
 context.closePath();
 context.fill();
 }

 }

 function collide() {
 var ball;
 var testBall;
 for (var i = 0; i <balls.length; i++) {
 ball = balls[i];
 for (var j = i+1; j < balls.length; j++) {
 testBall = balls[j];
 if (hitTestCircle(ball,testBall)) {
 collideBalls(ball,testBall);
 }
 }
 }
 }

Bouncing Off Walls | 213

 function hitTestCircle(ball1,ball2) {
 var retval = false;
 var dx = ball1.nextx - ball2.nextx;
 var dy = ball1.nexty - ball2.nexty;
 var distance = (dx * dx + dy * dy);
 if (distance <= (ball1.radius + ball2.radius) * (ball1.radius + ball2.radius)) {
 retval = true;
 }
 return retval;
 }

 function collideBalls(ball1,ball2) {

 var dx = ball1.nextx - ball2.nextx;
 var dy = ball1.nexty - ball2.nexty;

 var collisionAngle = Math.atan2(dy, dx);

 var speed1 = Math.sqrt(ball1.velocityx * ball1.velocityx +
 ball1.velocityy * ball1.velocityy);
 var speed2 = Math.sqrt(ball2.velocityx * ball2.velocityx +
 ball2.velocityy * ball2.velocityy);

 var direction1 = Math.atan2(ball1.velocityy, ball1.velocityx);
 var direction2 = Math.atan2(ball2.velocityy, ball2.velocityx);

 var velocityx_1 = speed1 * Math.cos(direction1 - collisionAngle);
 var velocityy_1 = speed1 * Math.sin(direction1 - collisionAngle);
 var velocityx_2 = speed2 * Math.cos(direction2 - collisionAngle);
 var velocityy_2 = speed2 * Math.sin(direction2 - collisionAngle);

 var final_velocityx_1 = ((ball1.mass - ball2.mass) * velocityx_1 +
 (ball2.mass + ball2.mass) * velocityx_2)/(ball1.mass + ball2.mass);
 var final_velocityx_2 = ((ball1.mass + ball1.mass) * velocityx_1 +
 (ball2.mass - ball1.mass) * velocityx_2)/(ball1.mass + ball2.mass);

 var final_velocityy_1 = velocityy_1;
 var final_velocityy_2 = velocityy_2;

 ball1.velocityx = Math.cos(collisionAngle) * final_velocityx_1 +
 Math.cos(collisionAngle + Math.PI/2) * final_velocityy_1;
 ball1.velocityy = Math.sin(collisionAngle) * final_velocityx_1 +
 Math.sin(collisionAngle + Math.PI/2) * final_velocityy_1;
 ball2.velocityx = Math.cos(collisionAngle) * final_velocityx_2 +
 Math.cos(collisionAngle + Math.PI/2) * final_velocityy_2;
 ball2.velocityy = Math.sin(collisionAngle) * final_velocityx_2 +
 Math.sin(collisionAngle + Math.PI/2) * final_velocityy_2;

 ball1.nextx = (ball1.nextx += ball1.velocityx);
 ball1.nexty = (ball1.nexty += ball1.velocityy);
 ball2.nextx = (ball2.nextx += ball2.velocityx);
 ball2.nexty = (ball2.nexty += ball2.velocityy);
 }
 var numBalls = 50 ;

214 | Chapter 5: Math, Physics, and Animation

 var maxSize = 12;
 var minSize = 3;
 var maxSpeed = maxSize+5;
 var balls = new Array();
 var tempBall;
 var tempX;
 var tempY;
 var tempSpeed;
 var tempAngle;
 var tempRadius;
 var tempRadians;
 var tempvelocityx;
 var tempvelocityy;
 var friction = .01;

 theCanvas = document.getElementById("canvasOne");
 context = theCanvas.getContext("2d");

 for (var i = 0; i < numBalls; i++) {
 tempRadius = Math.floor(Math.random()*maxSize)+minSize;
 var placeOK = false;
 while (!placeOK) {
 tempX = tempRadius*3 + (Math.floor(Math.random()*theCanvas.width)-tempRadius*3);
 tempY = tempRadius*3 + (Math.floor(Math.random()*theCanvas.height)-tempRadius*3);
 tempSpeed = maxSpeed-tempRadius;
 tempAngle = Math.floor(Math.random()*360);
 tempRadians = tempAngle * Math.PI/ 180;
 tempvelocityx = Math.cos(tempRadians) * tempSpeed;
 tempvelocityy = Math.sin(tempRadians) * tempSpeed;

 tempBall = {x:tempX,y:tempY,radius:tempRadius, speed:tempSpeed, angle:tempAngle,
 velocityx:tempvelocityx, velocityy:tempvelocityy, mass:tempRadius*8,
 nextx: tempX, nexty:tempY};
 placeOK = canStartHere(tempBall);
 }
 balls.push(tempBall);
 }

 function canStartHere(ball) {
 var retval = true;
 for (var i = 0; i <balls.length; i++) {
 if (hitTestCircle(ball, balls[i])) {
 retval = false;
 }
 }
 return retval;
 }
 setInterval(drawScreen, 33);

}

</script>

</head>
<body>

Bouncing Off Walls | 215

<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Figure 5-11 illustrates how this code will look in the browser.

Figure 5-11. Multiple balls of different sizes bouncing off one another with friction applied

Curve and Circular Movement
Whew! Moving and colliding balls on vectors can create some cool effects. However,
moving in straight lines is not the only way you might want to move objects. In this
section, we will show you some ways to animate objects using circles, spirals, and
curves.

216 | Chapter 5: Math, Physics, and Animation

Uniform Circular Motion
Uniform circular motion occurs when we move an object along the distinct radius of a
defined circle. Once we know the radius, we can use our old friends cosine and sine
to find the x and y locations of the moving object. The equations to find the locations
of an object moving uniformly on a defined circle are:

x = radius * cosine(angle)
y = radius * sine(angle)

We will create an example of uniform circular movement with a circle that has a radius
of 125, with its center position at 250,250 on the canvas. We will move a ball along that
circle, starting at an angle of 0.

In canvasApp(), we will define this circle path as a dynamic object stored in the
circle variable. While this object defines the properties of a circle, we will not actually
draw this circle on the canvas; rather, it defines only the path on which we will move
our ball object:

var circle = {centerX:250, centerY:250, radius:125, angle:0}
var ball = {x:0, y:0,speed:.1};

In drawScreen(), we will incorporate the equations for uniform circular movement. To
do this, we will set the x and y properties of the ball object to the products of
the equations, added to the center location of the circle path on the canvas (circle
.centerX, circle.centerY):

ball.x = circle.centerX + Math.cos(circle.angle) * circle.radius;
ball.y = circle.centerY + Math.sin(circle.angle) * circle.radius;

We then add the speed of the ball to the angle of the circle path. This effectively sets
the ball to move to a new location the next time drawScreen() is called:

circle.angle += ball.speed;

Finally, we draw the ball onto the canvas:

context.fillStyle = "#000000";
context.beginPath();
context.arc(ball.x,ball.y,15,0,Math.PI*2,true);
context.closePath();
context.fill();

You can see what the circle path looks like in Figure 5-12. We have drawn the points
on the canvas to illustrate the circle path.

Curve and Circular Movement | 217

Figure 5-12. Moving an object in a circle

You can easily alter the location and size of the circle path by altering the radius,
centerX, and centerY properties of the circle path object.

Example 5-9 shows the code for CH5EX9.html.

Example 5-9. Moving in a circle

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH5EX9: Moving In A Circle</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">

218 | Chapter 5: Math, Physics, and Animation

window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 canvasApp();

}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 function drawScreen () {

 context.fillStyle = '#EEEEEE';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);

 ball.x = circle.centerX + Math.cos(circle.angle) * circle.radius;
 ball.y = circle.centerY + Math.sin(circle.angle) * circle.radius;

 circle.angle += ball.speed;

 context.fillStyle = "#000000";
 context.beginPath();
 context.arc(ball.x,ball.y,15,0,Math.PI*2,true);
 context.closePath();
 context.fill();

 }

 var radius = 100;
 var circle = {centerX:250, centerY:250, radius:125, angle:0}
 var ball = {x:0, y:0,speed:.1};

 theCanvas = document.getElementById("canvasOne");
 context = theCanvas.getContext("2d");

 setInterval(drawScreen, 33);

}

</script>

Curve and Circular Movement | 219

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Moving in a Simple Spiral
There are many complicated ways to move an object on a spiral path. One such way
would be to use the Fibonacci sequence, which describes a pattern seen in nature that
appears to create perfect spirals. The Fibonacci sequence starts with the number 0, and
continues with each subsequent number calculated as the sum of the two previous
numbers in the sequence. Each subsequent rotation of the spiral is the sum of the two
previous numbers (1, 2, 3, 5, 8, 13, 21, 34, 55, 89...). However, as you might imagine,
the math used to create this sequence is quite involved, and it is also difficult to translate
to object movement.

For our purposes, we can create a simple spiral by increasing the radius of the circle
path on each call to drawScreen(). If we take the code from Example 5-9, we would add
a radiusInc variable, which we will use as the value to add the radius movement path
of the circle. We create this new variable in canvasApp():

var radiusInc = 2;

Then, in drawScreen(), we add the following code to increase the radius of the circle
every time we move the object:

circle.radius += radiusInc;

In Figure 5-13, you can see what the resulting spiral looks like (to illustrate the path,
this example includes the points).

If you want a tighter spiral, decrease the value of radiusInc. Conversely, if you want a
wider spiral, increase the value of radiusInc.

Example 5-10 shows the code for CH5EX10.html from the code distribution.

220 | Chapter 5: Math, Physics, and Animation

Figure 5-13. Moving an object in a simple spiral pattern

Example 5-10. Moving in a simple geometric spiral

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH5EX10: Moving In A Simple Geometric Spiral </title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 canvasApp();

}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp() {

Curve and Circular Movement | 221

 if (!canvasSupport()) {
 return;
 }

 var pointImage = new Image();
 pointImage.src = "point.png";
 function drawScreen () {

 context.fillStyle = '#EEEEEE';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);

 ball.x = circle.centerX + Math.cos(circle.angle) * circle.radius;
 ball.y = circle.centerY + Math.sin(circle.angle) * circle.radius;
 circle.angle += ball.speed;
 circle.radius += radiusInc;

 //Draw points to illustrate path

 points.push({x:ball.x,y:ball.y});

 for (var i = 0; i< points.length; i++) {
 context.drawImage(pointImage, points[i].x, points[i].y,1,1);
 }

 context.fillStyle = "#000000";
 context.beginPath();
 context.arc(ball.x,ball.y,15,0,Math.PI*2,true);
 context.closePath();
 context.fill();

 }

 var radiusInc = 2;
 var circle = {centerX:250, centerY:250, radius:2, angle:0, radiusInc:2}
 var ball = {x:0, y:0,speed:.1};
 var points = new Array();

 theCanvas = document.getElementById("canvasOne");
 context = theCanvas.getContext("2d");

 setInterval(drawScreen, 33);

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

222 | Chapter 5: Math, Physics, and Animation

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Cubic Bezier Curve Movement
Cubic Bezier curves can be used to define a movement path for an object. Pierre Bezier
first popularized these curves in the 1960s. They are widely used in 2D vector graphics
to define smooth curves for drawing, but they can also be used in animation to define
a path for motion.

A cubic Bezier curve is created using four distinct points—p0, p1, p2, and p3:

p0
The starting point of the curve. We will refer to these x and y values as x0 and y0.

p3
The ending point of the curve. We will refer to these x and y values as x3 and y3.

p1 and p2
The control points for the curve. The curve does not pass through these points;
instead, the equation uses these points to determine the arc of the curve. We will
refer to these x and y values as x0, x1, x2, x3, y0, y1, y2, and y3.

The usage of the p1 and p2 points is the biggest stumbling block for
understanding Bezier curves. The easiest way to understand the rela-
tionship between these points and the curve is to draw them on a
bitmapped canvas, which we will do several times in this chapter.

After you have the four points, you need to calculate six coefficient values that you will
use to find the x and y locations as you move an object on the curve. These coefficients
are known as ax, bx, cx, ay, by, and cy. They are calculated as follows:

cx = 3 (x1 - x0)
bx = 3 (x2 - x1) - cx
ax = x3 - x0 - cx - bx
cy = 3 (y1 - y0)
by = 3 (y2 - y1) - cy
ay = y3 - y0 - cy - by

After you’ve calculated the six coefficients, you can find the x and y locations based on
the changing t value using the following equations. The t value represents movement
over time:

x(t) = axt3 + bxt2 + cxt + x0
y(t) = ayt3 + byt2 + cyt + y0

Curve and Circular Movement | 223

For our purposes, the t value will be increased by the speed at which we want the object
to move. You will notice, though, that this value does not easily equate to the speed
values we used elsewhere in this chapter. The reason is that the t value was not created
with movement over time for animation in mind. The speed we specify must be smaller
than 1 so the movement on the curve will be incremental enough for us to see it as part
of the animation. For our example, we will increase t by a speed of .01, so that we will
see 100 points on the movement curve (1/100 = .01). This is advantageous because we
will know our object has finished moving when the t value is equal to 1.

For Example 5-11 (CH5EX11.html), we will start by creating the four points of the
Bezier curve in the canvasApp() function:

var p0 = {x:60, y:10};
var p1 = {x:70, y:200};
var p2 = {x:125, y:295};
var p3 = {x:350, y:350};

We then create a new ball object with a couple differing properties from those in the
other examples in this chapter. The speed is .01, which means the object will move 100
points along the curve before it is finished. We start the t value at 0, which means the
ball will begin at p0:

var ball = {x:0, y:0, speed:.01, t:0};

Next, in the drawScreen() function, we calculate the Bezier curve coefficient values
(ax, bx, cx, ay, by, cy) based on the four points (p0, p1, p2, p3):

var cx = 3 * (p1.x - p0.x)
var bx = 3 * (p2.x - p1.x) - cx;
var ax = p3.x - p0.x - cx - bx;

var cy = 3 * (p1.y - p0.y);
var by = 3 * (p2.y - p1.y) - cy;
var ay = p3.y - p0.y - cy - by;

Then, we take our t value and use it with the coefficients to calculate the x and y values
for the moving object. First, we get the t value from the ball object, and store it locally
so we can use it in our calculations:

var t = ball.t;

Next, we add the speed to the t value so that we can calculate the next point on the
Bezier path:

ball.t += ball.speed;

Then, we use the t value to calculate the x and y values (xt, yt) using the Bezier curve
equations:

var xt = ax*(t*t*t) + bx*(t*t) + cx*t + p0.x;
var yt = ay*(t*t*t) + by*(t*t) + cy*t + p0.y;

We add the speed to the t value of ball, then check to see whether t is greater than 1.
If so, we don’t increase it any further because we have finished moving on the curve:

224 | Chapter 5: Math, Physics, and Animation

ball.t += ball.speed;

if (ball.t > 1) {
 ball.t = 1;
}

Finally, when we draw the ball object on the canvas, we use the xt and yt values:

context.arc(xt,yt,5,0,Math.PI*2,true);

Figure 5-14 shows what Example 5-11 (CH5EX11.html) looks like when it is executed
in a web browser. In addition to drawing the points of the path using the points array,
we also draw the four points of the Bezier curve. These illustrate the relationship of the
points to the curve itself. Notice that the curve does not pass through p1 or p2.

Figure 5-14. Moving a circle on a Bezier curve

Example 5-11 gives the full code listing for CH5EX11.html, including the code to draw
the Bezier curve points on the canvas. You can find that code in the drawScreen() func-
tion following the //draw the points comment.

Curve and Circular Movement | 225

Example 5-11. Moving on a cubic Bezier curve

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH5EX11: Moving On A Cubic Bezier Curve </title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 canvasApp();

}
function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 var pointImage = new Image();
 pointImage.src = "point.png";

 function drawScreen () {

 context.fillStyle = '#EEEEEE';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);

 var t = ball.t;

 var cx = 3 * (p1.x - p0.x)
 var bx = 3 * (p2.x - p1.x) - cx;
 var ax = p3.x - p0.x - cx - bx;

 var cy = 3 * (p1.y - p0.y);
 var by = 3 * (p2.y - p1.y) - cy;
 var ay = p3.y - p0.y - cy - by;

 var xt = ax*(t*t*t) + bx*(t*t) + cx*t + p0.x;
 var yt = ay*(t*t*t) + by*(t*t) + cy*t + p0.y;

 ball.t += ball.speed;

 if (ball.t > 1) {
 ball.t = 1;
 }

226 | Chapter 5: Math, Physics, and Animation

 //draw the points

 context.font ="10px sans";
 context.fillStyle = "#FF0000";
 context.beginPath();
 context.arc(p0.x,p0.y,8,0,Math.PI*2,true);
 context.closePath();
 context.fill();
 context.fillStyle = "#FFFFFF";
 context.fillText("0",p0.x-2,p0.y+2);

 context.fillStyle = "#FF0000";
 context.beginPath();
 context.arc(p1.x,p1.y,8,0,Math.PI*2,true);
 context.closePath();
 context.fill();
 context.fillStyle = "#FFFFFF";
 context.fillText("1",p1.x-2,p1.y+2);

 context.fillStyle = "#FF0000";
 context.beginPath();
 context.arc(p2.x,p2.y,8,0,Math.PI*2,true);
 context.closePath();
 context.fill();
 context.fillStyle = "#FFFFFF";
 context.fillText("2",p2.x-2, p2.y+2);

 context.fillStyle = "#FF0000";
 context.beginPath();
 context.arc(p3.x,p3.y,8,0,Math.PI*2,true);
 context.closePath();
 context.fill();
 context.fillStyle = "#FFFFFF";
 context.fillText("3",p3.x-2, p3.y+2);

 //Draw points to illustrate path

 points.push({x:xt,y:yt});

 for (var i = 0; i< points.length; i++) {
 context.drawImage(pointImage, points[i].x, points[i].y,1,1);
 }

 context.closePath();

 //Draw circle moving

 context.fillStyle = "#000000";
 context.beginPath();
 context.arc(xt,yt,5,0,Math.PI*2,true);
 context.closePath();
 context.fill();

 }

Curve and Circular Movement | 227

 var p0 = {x:60, y:10};
 var p1 = {x:70, y:200};
 var p2 = {x:125, y:295};
 var p3 = {x:350, y:350};
 var ball = {x:0, y:0, speed:.01, t:0};
 var points = new Array();

 theCanvas = document.getElementById("canvasOne");
 context = theCanvas.getContext("2d");

 setInterval(drawScreen, 33);

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Moving an Image
Moving an image on a cubic Bezier curve path is just as easy as moving a circular drawing
object, as we’ll demonstrate in the next two examples. Suppose you are making a game
where bullseyes move across the canvas and the player must shoot at them. You could
use cubic Bezier curve paths to create new and interesting patterns for the bullseyes to
move along.

For this example, we first create a global variable named bullseye, which we will use
to hold the bullseye.png image that we will load to display on the canvas:

var bullseye;
function eventWindowLoaded() {
 bullseye = new Image();
 bullseye.src = "bullseye.png"
 bullseye.onload = eventAssetsLoaded;
}

In canvasApp(), we will create a different path for the curve from the one in the first
example by setting new values for p0, p1, p2, and p3. Using these values, the bullseye
will move on a parabola-like path (Figure 5-15 shows the path of the curve):

var p0 = {x:60, y:10};
var p1 = {x:150, y:350};
var p2 = {x:300, y:375};
var p3 = {x:400, y:20};

228 | Chapter 5: Math, Physics, and Animation

We also need to create a player object that represents the bullseye on the canvas:

var player = {x:0, y:0, speed:.01, t:0};

In drawImage(), after we calculate t, xt, and yt, we draw the image on the canvas:

player.x = xt-bullseye.width/2;
 player.y = yt-bullseye.height/2;

 context.drawImage(bullseye,player.x,player.y);

Figure 5-15. Moving an image on a cubic Bezier curve path

The rest of Example 5-12 works just like Example 5-11.

Example 5-12. Moving an image

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH5EX12: Moving An Image </title>
<script src="modernizr-1.6.min.js"></script>

Curve and Circular Movement | 229

<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);

var bullseye;
function eventWindowLoaded() {
 bullseye = new Image();
 bullseye.src = "bullseye.png"
 bullseye.onload = eventAssetsLoaded;
}

function eventAssetsLoaded() {

 canvasApp();
}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 var pointImage = new Image();
 pointImage.src = "point.png";
 function drawScreen () {

 context.fillStyle = '#EEEEEE';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);

 var t = player.t;

 var cx = 3 * (p1.x - p0.x)
 var bx = 3 * (p2.x - p1.x) - cx;
 var ax = p3.x - p0.x - cx - bx;

 var cy = 3 * (p1.y - p0.y);
 var by = 3 * (p2.y - p1.y) - cy;
 var ay = p3.y - p0.y - cy - by;

 var xt = ax*(t*t*t) + bx*(t*t) + cx*t + p0.x;

 var yt = ay*(t*t*t) + by*(t*t) + cy*t + p0.y;

 player.t += player.speed;

 if (player.t > 1) {
 player.t = 1;
 }

230 | Chapter 5: Math, Physics, and Animation

 //draw the points

 context.font = "10px sans";

 context.fillStyle = "#FF0000";
 context.beginPath();
 context.arc(p0.x,p0.y,8,0,Math.PI*2,true);
 context.closePath();
 context.fill();
 context.fillStyle = "#FFFFFF";
 context.fillText("0",p0.x-2,p0.y+2);

 context.fillStyle = "#FF0000";
 context.beginPath();
 context.arc(p1.x,p1.y,8,0,Math.PI*2,true);
 context.closePath();
 context.fill();
 context.fillStyle = "#FFFFFF";
 context.fillText("1",p1.x-2,p1.y+2);

 context.fillStyle = "#FF0000";
 context.beginPath();
 context.arc(p2.x,p2.y,8,0,Math.PI*2,true);
 context.closePath();
 context.fill();
 context.fillStyle = "#FFFFFF";
 context.fillText("2",p2.x-2, p2.y+2);

 context.fillStyle = "#FF0000";
 context.beginPath();
 context.arc(p3.x,p3.y,8,0,Math.PI*2,true);
 context.closePath();
 context.fill();
 context.fillStyle = "#FFFFFF";
 context.fillText("3",p3.x-2, p3.y+2);

 //Draw points to illustrate path

 points.push({x:xt,y:yt});

 for (var i = 0; i< points.length; i++) {
 context.drawImage(pointImage, points[i].x, points[i].y,1,1);
 }

 context.closePath();

 player.x = xt-bullseye.width/2;
 player.y = yt-bullseye.height/2;

 context.drawImage(bullseye,player.x,player.y);

 }

 var p0 = {x:60, y:10};
 var p1 = {x:150, y:350};

Curve and Circular Movement | 231

 var p2 = {x:300, y:375};
 var p3 = {x:400, y:20};
 var player = {x:0, y:0, speed:.01, t:0};
 var points = new Array();

 theCanvas = document.getElementById("canvasOne");
 context = theCanvas.getContext("2d");

 setInterval(drawScreen, 33);

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Creating a Cubic Bezier Curve Loop
You can create some very interesting paths using the four points in a cubic Bezier curve.
One such effect is a loop. To create a loop, you need to make sure the points form an
X, with p0 diagonal from p1, and p2 and p3 on an opposite diagonal from the other two
points. p0 and p3 must be closer to the center of the canvas than p1 or p2. Below are the
points we will use to create this effect in Example 5-13:

var p0 = {x:150, y:440;
var p1 = {x:450, y:10};
var p2 = {x:50, y:10};
var p3 = {x:325, y:450};

Since it is much easier to show than tell when it comes to cubic Bezier curves, look at
Figure 5-16. It shows what the looping curve looks like when Example 5-13 is executed
in a web browser.

This effect can only be created with the four points of a cubic Bezier
curve. There is also a three-point Bezier curve known as a quadratic
Bezier curve. You cannot create loops or S curves with quadratic Bezier
curves because the three points are not as precise as the four points of
a cubic Bezier curve.

232 | Chapter 5: Math, Physics, and Animation

Figure 5-16. Moving an object in a loop using a cubic Bezier curve

Since the code for this example is essentially the same as in Example 5-12 (besides the
four points), we have highlighted in bold the changed code in Example 5-13. We have
done this to show you that—with relatively simple changes—you can create dramatic
animation effects using cubic Bezier curves.

Example 5-13. Bezier curve loop

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH5EX13: Bezier Curve Loop </title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);

var bullseye;
function eventWindowLoaded() {
 bullseye = new Image();
 bullseye.src = "bullseye.png"
 bullseye.onload = eventAssetsLoaded;

Curve and Circular Movement | 233

}

function eventAssetsLoaded() {

 canvasApp();
}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 var pointImage = new Image();
 pointImage.src = "point.png";
 function drawScreen () {

 context.fillStyle = '#EEEEEE';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);

 var t = player.t;

 var cx = 3 * (p1.x - p0.x)
 var bx = 3 * (p2.x - p1.x) - cx;
 var ax = p3.x - p0.x - cx - bx;

 var cy = 3 * (p1.y - p0.y);
 var by = 3 * (p2.y - p1.y) - cy;
 var ay = p3.y - p0.y - cy - by;

 var xt = ax*(t*t*t) + bx*(t*t) + cx*t + p0.x;

 var yt = ay*(t*t*t) + by*(t*t) + cy*t + p0.y;

 player.t += player.speed;

 if (player.t > 1) {
 player.t = 1;
 }
 //draw the points

 context.font = "10px sans";

 context.fillStyle = "#FF0000";
 context.beginPath();
 context.arc(p0.x,p0.y,8,0,Math.PI*2,true);
 context.closePath();
 context.fill();

234 | Chapter 5: Math, Physics, and Animation

 context.fillStyle = "#FFFFFF";
 context.fillText("0",p0.x-2,p0.y+2);

 context.fillStyle = "#FF0000";
 context.beginPath();
 context.arc(p1.x,p1.y,8,0,Math.PI*2,true);
 context.closePath();
 context.fill();
 context.fillStyle = "#FFFFFF";
 context.fillText("1",p1.x-2,p1.y+2);

 context.fillStyle = "#FF0000";
 context.beginPath();
 context.arc(p2.x,p2.y,8,0,Math.PI*2,true);
 context.closePath();
 context.fill();
 context.fillStyle = "#FFFFFF";
 context.fillText("2",p2.x-2, p2.y+2);

 context.fillStyle = "#FF0000";
 context.beginPath();
 context.arc(p3.x,p3.y,8,0,Math.PI*2,true);
 context.closePath();
 context.fill();
 context.fillStyle = "#FFFFFF";
 context.fillText("3",p3.x-2, p3.y+2);

 points.push({x:xt,y:yt});

 for (var i = 0; i< points.length; i++) {
 context.drawImage(pointImage, points[i].x, points[i].y,1,1);
 }

 context.closePath();

 player.x = xt-bullseye.width/2;
 player.y = yt-bullseye.height/2;

 context.drawImage(bullseye,player.x,player.y);

 }

 var p0 = {x:150, y:440};
 var p1 = {x:450, y:10};
 var p2 = {x:50, y:10};
 var p3 = {x:325, y:450};
 var player = {x:0, y:0, speed:.01, t:0};

 var points = new Array();

 theCanvas = document.getElementById("canvasOne");
 context = theCanvas.getContext("2d");

 setInterval(drawScreen, 33);

Curve and Circular Movement | 235

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Simple Gravity, Elasticity, and Friction
Adding simulated gravity, elasticity, and friction to your objects adds a sense of realism
that otherwise would not exist in 2D. These properties are major forces in nature that
people feel and understand at nearly every moment of their lives. This means that people
who play games expect objects to act in a particular way when these properties are
applied. Our job is to simulate those effects as closely as possible, while minimizing
the processing power necessary to create them. While there are some very complicated
physics equations we could use to create these effects, we will use simplified versions
that work well with the limited resources available to HTML5 Canvas in a web browser.

Simple Gravity
A very simple, yet seemingly realistic gravitational effect can be achieved by applying
a constant gravity value to the y velocity of an object moving on a vector. To do this,
select a value for gravity, such as .1, and then add that value to the y velocity of your
object on every call to drawScreen().

For this example, let’s simulate a ball with a radius of 15 pixels being shot from a cannon
that rests near the bottom of the canvas. The ball will move at a speed of 4 pixels per
frame, with an angle of 305 degrees. This means it will move up and to the right on the
canvas. If we did not apply any gravity, the ball would simply keep moving on that
vector until it left the canvas (actually, it would keep moving, we just would not see it
any longer).

236 | Chapter 5: Math, Physics, and Animation

You have seen the code to create an effect like this already. In the canvasApp() function,
we would create the starting variables like this:

var speed = 4;
var angle = 305;
var radians = angle * Math.PI/ 180;
var radius = 15;
var vx = Math.cos(radians) * speed;
var vy = Math.sin(radians) * speed;

Next, we create the starting point for the ball as p1, and then create a dynamic object
that holds all the values we created for the ball object:

var p1 = {x:20,y:theCanvas.width-radius};
var ball = {x:p1.x, y:p1.y, velocityx: vx, velocityy:vy, radius:radius};

If we want to add gravity to the application, we would first create a new variable named
gravity and set it to a constant value of .1:

var gravity = .1;

Next, in the drawScreen() function, we apply this gravity value to the ball object when
it is drawn to the canvas (ball.velocityy += gravity). We want the ball to stop moving
when it hits the “ground” (the bottom of the canvas), so we test to see whether the y
position of the ball plus the radius of the ball (the outer edge) has passed the bottom
of the canvas (ball.y + ball.radius <= theCanvas.height). If so, we stop the ball’s
movement:

if (ball.y + ball.radius <= theCanvas.height) {
 ball.velocityy += gravity;
} else {
 ball.velocityx = 0;
 ball.velocityy = 0;
 ball.y = theCanvas.height - ball.radius;

}

Next, we apply the constant x velocity and the new y velocity to ball, and draw it to
the canvas:

ball.y += ball.velocityy;
ball.x += ball.velocityx;

context.fillStyle = "#000000";
context.beginPath();
context.arc(ball.x,ball.y,ball.radius,0,Math.PI*2,true);
context.closePath();
context.fill();

Figure 5-17 shows what the path looks like when simple gravity is applied to a ball
moving on a vector. We have added the points to illustrate the path.

Simple Gravity, Elasticity, and Friction | 237

Figure 5-17. Simple gravity with an object moving on a vector

You can test out Example 5-14 with the file CH5EX14.html in the code distribution,
or type in the full code listing below.

Example 5-14. Simple gravity

a<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH5EX14: Simple Gravity</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 canvasApp();
}

function canvasSupport () {
 return Modernizr.canvas;
}

238 | Chapter 5: Math, Physics, and Animation

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 function drawScreen () {

 context.fillStyle = '#EEEEEE';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);

 if (ball.y + ball.radius <= theCanvas.height) {
 ball.velocityy += gravity;
 } else {
 ball.velocityx = 0;
 ball.velocityy = 0;
 ball.y = theCanvas.height - ball.radius;

 }

 ball.y += ball.velocityy;
 ball.x += ball.velocityx;

 context.fillStyle = "#000000";
 context.beginPath();
 context.arc(ball.x,ball.y,ball.radius,0,Math.PI*2,true);
 context.closePath();
 context.fill();

 }
 var speed = 4;

 var gravity = .1;
 var angle = 305;
 var radians = angle * Math.PI/ 180;
 var radius = 15;
 var vx = Math.cos(radians) * speed;
 var vy = Math.sin(radians) * speed;

 theCanvas = document.getElementById("canvasOne");
 context = theCanvas.getContext("2d");

 var p1 = {x:20,y:theCanvas.width-radius};
 var ball = {x:p1.x, y:p1.y, velocityx: vx, velocityy:vy, radius:radius};

 setInterval(drawScreen, 33);

}

</script>

Simple Gravity, Elasticity, and Friction | 239

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Simple Gravity with a Bounce
The last example showed what a cannonball might look like if it was shot out, landed
on a surface, and stuck there with no reaction. However, even a heavy cannonball will
bounce when it hits the ground.

To create a bouncing effect we do not have to change the code very much at all. In
drawScreen(), we first apply gravity on every frame; then, instead of stopping the ball
if it hits the bottom of the canvas, we simply need to reverse the y velocity of ball when
it hits the ground.

In CH5EX14.html you would replace this code…

if (ball.y + ball.radius <= theCanvas.height) {
 ball.velocityy += gravity;
} else {
 ball.velocityx = 0;
 ball.velocityy = 0;
 ball.y = theCanvas.height - ball.radius;
}

…with this:

ball.velocityy += gravity;
if ((ball.y + ball.radius) > theCanvas.height) {
 ball.velocityy = -(ball.velocityy)
}

This code will send the ball bouncing back “up” the canvas. Since it is still traveling on
the vector, and gravity is applied every time drawScreen() is called, the ball will even-
tually come down again as the applied gravity overtakes the reversed y velocity.

Figure 5-18 shows what the cannonball looks like when the bounce is applied.

240 | Chapter 5: Math, Physics, and Animation

Figure 5-18. A ball moving on a vector with gravity and a bounce applied

To achieve a nice-looking bounce for this example, we also changed the
angle of the vector in canvasApp() to 295:

var angle = 295;

Example 5-15 offers the full code.

Example 5-15. Simple gravity with a bounce

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH5EX15: Gravity With A Bounce</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 canvasApp();

Simple Gravity, Elasticity, and Friction | 241

}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 function drawScreen () {

 context.fillStyle = '#EEEEEE';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);

 ball.velocityy += gravity;

 if ((ball.y + ball.radius) > theCanvas.height) {
 ball.velocityy = -(ball.velocityy)
 }
 ball.y += ball.velocityy;
 ball.x += ball.velocityx;

 context.fillStyle = "#000000";
 context.beginPath();
 context.arc(ball.x,ball.y,ball.radius,0,Math.PI*2,true);
 context.closePath();
 context.fill();

 }
 var speed = 5;

 var gravity = .1;
 var angle = 295;
 var radians = angle * Math.PI/ 180;
 var radius = 15;

 var vx = Math.cos(radians) * speed;
 var vy = Math.sin(radians) * speed;

 theCanvas = document.getElementById("canvasOne");
 context = theCanvas.getContext("2d");

 var p1 = {x:20,y:theCanvas.width-radius};
 var ball = {x:p1.x, y:p1.y, velocityx: vx, velocityy:vy, radius:radius};

 setInterval(drawScreen, 33);

}

242 | Chapter 5: Math, Physics, and Animation

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Gravity with Bounce and Applied Simple Elasticity
In physics, the elasticity of a bouncing ball refers to how much energy is conserved
when a ball bounces off a surface. We already covered a bit about conservation of energy
when we discussed balls colliding, but when we are simulating objects falling, we need
to take a slightly different path with our code. In Example 5-15, we applied 100%
elasticity and the ball bounced forever (actually, this was only implied since we did not
consider elasticity at all). However, in real life, balls usually lose some of their energy
every time they bounce off a surface. The amount of energy conserved depends on the
material the ball is made from, as well as the surface it is bouncing on. For example, a
rubber Super Ball is much more elastic than a cannonball and will bounce higher on
the first bounce off a surface. Both will bounce higher off a concrete surface than a
surface made of thick mud. Eventually, both will come to rest on the surface as all the
energy is transferred away from the ball.

We can simulate simple elasticity by applying a constant value to the ball when it
bounces off the ground. For this example, we will set the speed of the ball to 6 pixels
per frame, and the angle to 285. We will keep our gravity at .1, but set a new variable
named elasticity to .5. To make this more straightforward, we will also assume that
the surface the ball is bouncing on does not add or subtract from the elasticity of the ball.

In canvasApp() we would set the new properties like this:

var speed = 6;
var gravity = .1;
var elasticity = .5;
var angle = 285;

We then add the new elasticity property to the ball object because, unlike gravity,
elasticity describes a property of an object, not the entire world it resides within. This
means that having multiple balls with different values for elasticity would be very easy
to implement:

var ball = {x:p1.x, y:p1.y, velocityx: vx, velocityy:vy, radius:radius,
 elasticity: elasticity};

Simple Gravity, Elasticity, and Friction | 243

In the drawScreen() function, we still add the gravity value to the y velocity
(velocityy). However, instead of simply reversing the y velocity when the ball hits the
bottom of the canvas, we also multiply the y velocity by the elasticity value stored in
the ball.elasticity property. This applies the elasticity to the bounce, preserving the
y velocity by the percentage value of elasticity for the object:

ball.velocityy += gravity;
if ((ball.y + ball.radius) > theCanvas.height) {
 ball.velocityy = -(ball.velocityy)*ball.elasticity;
}
ball.y += ball.velocityy;
ball.x += ball.velocityx;

In Figure 5-19 you can see what this application looks like when executed in a web
browser.

Figure 5-19. Ball bouncing with elasticity and gravity applied

244 | Chapter 5: Math, Physics, and Animation

With gravity applied, the bounce is not exactly as you might expect.
Gravity is always pulling down on our object, so the effect of a loss of
y velocity due to an elastic bounce is pronounced.

The full code is shown in Example 5-16.

Example 5-16. Simple gravity with bounce and elasticity

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH5EX16: Gravity With A Vector With Bounce And Elasticity</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 canvasApp();

}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 function drawScreen () {

 context.fillStyle = '#EEEEEE';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);

 ball.velocityy += gravity;

 if ((ball.y + ball.radius) > theCanvas.height) {
 ball.velocityy = -(ball.velocityy)*ball.elasticity;
 }
 ball.y += ball.velocityy;
 ball.x += ball.velocityx;

 context.fillStyle = "#000000";
 context.beginPath();
 context.arc(ball.x,ball.y,ball.radius,0,Math.PI*2,true);
 context.closePath();
 context.fill();

Simple Gravity, Elasticity, and Friction | 245

 }
 var speed = 6;
 var gravity = .1;
 var elasticity = .5;
 var angle = 285;
 var radians = angle * Math.PI/ 180;
 var radius = 15;

 var vx = Math.cos(radians) * speed;
 var vy = Math.sin(radians) * speed;

 theCanvas = document.getElementById("canvasOne");
 context = theCanvas.getContext("2d");

 var p1 = {x:20,y:theCanvas.width-radius};
 var ball = {x:p1.x, y:p1.y, velocityx: vx, velocityy:vy, radius:radius,
 elasticity: elasticity};

 setInterval(drawScreen, 33);

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Simple Gravity, Simple Elasticity, and Simple Friction
Now that we have a ball traveling on a vector that is affected by both gravity and
elasticity, we have one more element to add to make the animation more realistic. In
the previous example, the y velocity was affected by gravity and elasticity, but the ball
still traveled on the x-axis without any degradation in velocity. We will fix this issue
now by adding friction into the equation.

In physics, friction is a force that resists the motion of an object. We have already
discussed friction as it applies to colliding balls, and this implementation is similar
except that it affects only the x velocity. For our purposes, we will achieve simple friction
by degrading the x velocity as gravity degrades the y velocity.

Taking the code from Example 5-16, in canvasApp() we create a new variable named
friction. This is the amount of pixels to degrade the x velocity on every frame:

var friction = .008;

246 | Chapter 5: Math, Physics, and Animation

Notice that the amount is quite small. Friction does not have to be a large value to look
realistic—it just needs to be applied uniformly each time drawScreen() is called. In
drawScreen(), we apply friction to the x velocity like this:

ball.velocityx = ball.velocityx - (ball.velocityx*friction);

This is the same type of proportional application of friction we used with the colliding
balls, but again, this time we applied it only to the x velocity.

Figure 5-20 shows what this final version of our application looks like when executed
in a web browser.

Figure 5-20. Ball bouncing with gravity, elasticity, and friction applied

Example 5-17 gives the full code for CH5EX17.html, the final code of our simple gravity,
simple elasticity, and simple friction example.

Simple Gravity, Elasticity, and Friction | 247

Example 5-17. Gravity with a vector with bounce friction

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH5EX17: Gravity With A Vector With Bounce Friction</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 canvasApp();
}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 function drawScreen () {

 context.fillStyle = '#EEEEEE';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);

 ball.velocityx = ball.velocityx - (ball.velocityx*friction);

 ball.velocityy += gravity;

 if ((ball.y + ball.radius) > theCanvas.height) {
 ball.velocityy = -(ball.velocityy)*ball.elasticity;
 }
 ball.y += ball.velocityy;
 ball.x += ball.velocityx;

 context.fillStyle = "#000000";
 context.beginPath();
 context.arc(ball.x,ball.y,ball.radius,0,Math.PI*2,true);
 context.closePath();
 context.fill();

 }
 var speed = 6;
 var gravity = .1;
 var friction = .008;
 var elasticity = .5;
 var angle = 285;
 var radians = angle * Math.PI/ 180;
 var radius = 15;

248 | Chapter 5: Math, Physics, and Animation

 var vx = Math.cos(radians) * speed;
 var vy = Math.sin(radians) * speed;

 theCanvas = document.getElementById("canvasOne");
 context = theCanvas.getContext("2d");

 var p1 = {x:20,y:theCanvas.width-radius};
 var ball = {x:p1.x, y:p1.y, velocityx: vx, velocityy:vy, radius:radius,
 elasticity: elasticity};

 setInterval(drawScreen, 33);

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Easing
Easing is a technique used in animation to make an object smoothly enter or leave a
location. The idea of easing is that instead of uniformly applying movement to every
frame of animation, you instead increase (easing in) or decrease (easing out) the number
of pixels you move on each frame. The result is that movement appears to be more
realistic and smooth. There are many different ways to create easing animations. We
will concentrate on two simple examples that will help pave the way for you to further
explore the subject on your own.

Easing Out (Landing the Ship)
The process of easing out refers to easing at the end of an animation: an object moving
from one point to another, starting out fast, and slowing down as it reaches the second
point. To illustrate the concept, we will use the example of a spaceship landing. A
spaceship starts out very fast, applies negative thrust to slow down, and, by the time it
reaches the ground, is moving slowly enough to land without incident. If you’ve ever
played the video game Lunar Lander, you will understand exactly the type of movement
we are trying to accomplish.

Easing | 249

To create this easing-out effect, we need to find two distinct points and then move an
object between them, slowing down the object in linear fashion as it nears the second
point. To achieve this effect, we first calculate the distance between the points. Next,
we select a percentage value (easeValue) that we will use to move the object across that
distance on each frame. As the distance gets shorter, the amount we move gets shorter
as well. This gives the object the appearance of traveling slower and slower as it moves
from the starting point to the ending point, as illustrated in Figure 5-21. We have drawn
the points to show the easing values as the ship nears the bottom of the screen. Notice
that the points get closer and closer until there is almost no distance between them.

Figure 5-21. Spaceship landing (easing out)

Figure 5-21 displays the results of CH5EX18.html. Now, let’s look at how this example
works in detail. First, we will load in the ship.png image the same way we have loaded
images previously in this chapter:

var shipImage;
function eventWindowLoaded() {
 shipImage = new Image();
 shipImage.src = "ship.png"
 shipImage.onload = eventAssetsLoaded;

250 | Chapter 5: Math, Physics, and Animation

}

function eventAssetsLoaded() {

 canvasApp();
}

Then in canvasApp(), we create a variable named easeValue, which represents the per-
centage to move the ship across the remaining distance between the two points. In our
example, it is 5% (.05):

var easeValue = .05;

Next, we create our two points. The first point, p1, is close to the middle of the canvas
on the y-axis, and just above the top (-20) on the x-axis. The final point, p2, is in the
same place on the x-axis, but near the bottom of the canvas (470) on the y-axis:

var p1 = {x:240,y:-20};
var p2 = {x:240,y:470};

Finally, we create a dynamic object for the ship that holds these values:

var ship = {x:p1.x, y:p1.y, endx: p2.x, endy:p2.y, velocityx:0, velocityy:0};

In drawScreen(), on every frame, we first find out the distance between the ship and
the endpoint by subtracting the current x and y values for the ship from the endpoint
x and y values. The distance will get shorter on each call to drawScreen() as the ship
moves farther away from p1 and gets closer to p2. We do this for both x and y even
though, in our example, only the y value will change as the spaceship gets closer to p2:

var dx = ship.endx - ship.x;
var dy = ship.endy - ship.y;

Once we have the distances, we multiply those values by easeValue to get the x and y
velocities for the ship on this call to drawScreen():

ship.velocityx = dx * easeValue;
ship.velocityy = dy * easeValue;

Finally, we apply those values and draw the spaceship to the canvas:

ship.x += ship.velocityx;
ship.y += ship.velocityy;
context.drawImage(shipImage,ship.x,ship.y);

You can test this example by executing CH5EX18.html from the code distribution in
your web browser, or by typing in the full code listing shown in Example 5-18.

Example 5-18. Easing out (landing the ship)

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH5EX18: Easing Out (Landing The Ship)</title>
<script src="modernizr-1.6.min.js"></script>

Easing | 251

<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
var shipImage;
function eventWindowLoaded() {
 shipImage = new Image();
 shipImage.src = "ship.png"
 shipImage.onload = eventAssetsLoaded;
}

function eventAssetsLoaded() {

 canvasApp();
}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp() {

 if (!canvasSupport()) {
 return;
}

 var pointImage = new Image();
 pointImage.src = "pointwhite.png";
 function drawScreen () {

 context.fillStyle = '#000000';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#ffffff';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);
 var dx = ship.endx - ship.x;
 var dy = ship.endy - ship.y;

 ship.velocityx = dx * easeValue;
 ship.velocityy = dy * easeValue;

 ship.x += ship.velocityx;
 ship.y += ship.velocityy;

 //Draw points to illustrate path

 points.push({x:ship.x,y:ship.y});

 for (var i = 0; i< points.length; i++) {
 context.drawImage(pointImage, points[i].x+shipImage.width/2, points[i].y,1,1);
 }

 context.drawImage(shipImage,ship.x,ship.y);

 }

252 | Chapter 5: Math, Physics, and Animation

 var easeValue = .05;
 var p1 = {x:240,y:-20};
 var p2 = {x:240,y:470};

 var ship = {x:p1.x, y:p1.y, endx: p2.x, endy:p2.y, velocityx:0, velocityy:0};
 var points = new Array();

 theCanvas = document.getElementById("canvasOne");
 context = theCanvas.getContext("2d");

 setInterval(drawScreen, 33);

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

We are showing the points in this example but because the background
is black, we load in a white bitmap point image named pointwhite.png
instead of the all-black image, point.png.

Easing In (Taking Off)
Easing in is the opposite of easing out. When an animation eases in, it starts slowly and
then gets faster and faster. If you have ever seen a video of a space shuttle taking off,
you will understand this much better. The thrust builds up as the craft moves slowly,
and then gets faster and faster as it moves through the sky. We are going to use this
“taking off” example as a way to develop code for an easing-in animation on HTML5
Canvas.

In canvasApp(), we start our code much the same way as in the last example—by cre-
ating a variable named easeValue:

var easeValue = .05;

However, for easing in, instead of this being a percentage of the remaining distance
between two points, it is simply a constant value added to the velocity of the ship on
each frame. Figure 5-22 shows what this would look like. We have added the points
again to illustrate how the animation speeds up as the ship takes off.

Easing | 253

Figure 5-22. Ship taking off (easing in)

First, we set the beginning position of the ship (p1) to the bottom center of the canvas.
Then, we set the beginning speed of the ship very low (.5 pixels per frame), and set the
angle to 270 (straight up the canvas). We then calculate the x and y velocity values for
the ship:

var p1 = {x:240,y:470};
var tempSpeed = .5;
var tempAngle = 270 ;
var tempRadians = tempAngle * Math.PI/ 180;
var tempvelocityx = Math.cos(tempRadians) * tempSpeed;
var tempvelocityy = Math.sin(tempRadians) * tempSpeed;

var ship = {x:p1.x, y:p1.y, velocityx:tempvelocityx, velocityy:tempvelocityy};

In drawScreen(), instead of finding the distance between two points, we add the ease
Value to the x and y velocities on each frame, and then apply it to the ship x and y values
before drawing it to the canvas. This creates a linear increase in speed, resulting in the
easing-in effect we want to see:

254 | Chapter 5: Math, Physics, and Animation

ship.velocityx = ship.velocityx + (ship.velocityx*easeValue);
ship.velocityy = ship.velocityy + (ship.velocityy*easeValue);

ship.x += ship.velocityx;
ship.y += ship.velocityy;

context.drawImage(shipImage,ship.x,ship.y);

You can see this example by executing CH5EX19.html from the code distribution, or
by typing in the code listing shown in Example 5-19.

Example 5-19. Easing in (taking off)

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH5EX19: Taking Off (Fake Ease In)</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
var shipImage;
function eventWindowLoaded() {
 shipImage = new Image();
 shipImage.src = "ship.png"
 shipImage.onload = eventAssetsLoaded;
}

function eventAssetsLoaded() {

 canvasApp();
}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 var pointImage = new Image();
 pointImage.src = "pointwhite.png";
 function drawScreen () {

 context.fillStyle = '#000000';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#ffffff';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);

 ship.velocityx = ship.velocityx + (ship.velocityx*easeValue);
 ship.velocityy = ship.velocityy + (ship.velocityy*easeValue);

Easing | 255

 ship.x += ship.velocityx;
 ship.y += ship.velocityy;

 //Draw points to illustrate path

 points.push({x:ship.x,y:ship.y});

 for (var i = 0; i< points.length; i++) {
 context.drawImage(pointImage, points[i].x+shipImage.width/2, points[i].y,1,1);
 }

 context.drawImage(shipImage,ship.x,ship.y);

 }

 var easeValue = .05;
 var p1 = {x:240,y:470};
 var tempX;
 var tempY;
 var tempSpeed = .5;
 var tempAngle = 270 ;
 var tempRadians = tempAngle * Math.PI/ 180;
 var tempvelocityx = Math.cos(tempRadians) * tempSpeed;
 var tempvelocityy = Math.sin(tempRadians) * tempSpeed;

 var ship = {x:p1.x, y:p1.y, velocityx:tempvelocityx, velocityy:tempvelocityy};
 var points = new Array();

 theCanvas = document.getElementById("canvasOne");
 context = theCanvas.getContext("2d");

 setInterval(drawScreen, 33);

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

For more information on easing, check out Robert Penner’s easing
equations: http://www.robertpenner.com/easing/. These equations have
been implemented in jQuery for JavaScript at http://plugins.jquery.com/
files/jquery.animation.easing.js.txt.

256 | Chapter 5: Math, Physics, and Animation

What’s Next?
We have shown you a plethora of examples for how you can use HTML5 Canvas to
animate objects using some basic principles of math and physics. However, we have
really only begun to scratch the surface of the multitude of ways you can use math and
physics in your applications. In the next couple chapters we will switch gears, discus-
sing audio and video, before we start applying many of the concepts we have learned
in this book to a couple of in-depth game projects.

What’s Next? | 257

CHAPTER 6

Mixing HTML5 Video and Canvas

Using the new <video> tag, HTML5 lets sites show video directly in HTML without
needing any plug-in technologies. However, the simple <video> tag opens up a whole
slew of complexities and opportunities for developers. While we can’t cover everything
related to video in this chapter, we will introduce you to the HTML5 <video> tag, and
then show you ways in which video can be incorporated and manipulated by HTML5
Canvas.

HTML5 Video Support
HTML5 specifies a new tag, <video>, that allows developers to place video directly in
an HTML page. With a few simple options, you can autoplay, loop, and add playback
controls to the embedded video.

First, let’s talk about video format support, which is a very complicated issue. Some
video formats are free, and others are licensed. Some formats look better than others,
some make smaller file sizes, and some are supported in one browser while others are
supported in a different browser. In this chapter we will concentrate on three formats
that either have broad support now or promise to have broad support in the fu-
ture: .ogg, .mp4, and .webm.

We will discuss these video formats in terms of video codecs. Each format uses one or
more codecs to compress and decompress video. Codecs are usually the secret sauce of
a video format because compression is the key to making video that, in the wild, can
convert very large files into file sizes that can be easily transported on the Internet.

259

Theora + Vorbis = .ogg
Theora (http://www.theora.org/) is an open source, free video codec developed by
Xiph.org. Vorbis (http://www.vorbis.com) is a free, open source audio codec that is used
in conjunction with Theora. Both Theora and Vorbis are stored in an .ogg file. .ogg files
have the broadest support among traditional web browsers, but, unfortunately, not on
handheld devices. Many commercial companies (e.g., Apple) have balked at using
Theora/Vorbis because they are unsure whether somewhere, someplace, someone
might own a patent that covers part of the technology, and thus they might get sued
for using it.

Sometimes technology companies get hit with what is known as a sub-
marine patent. This was a patent tactic—available up until 1995 in the
U.S.—that allowed a filer to delay the publication of a patent. Because
patents were only enforceable for 17 years, if someone filed one but
delayed the publications, he could wait years (even decades) until some-
one else came up with the same idea, then hit that person with a lawsuit.

H.264 + $$$ = .mp4
H.264 is a high-quality video standard that has received the backing of some very big
players, such as Apple, Adobe, and Microsoft. However, despite offering high-quality
video, it only defines a standard—not a video codec. An organization named MPEG
LA owns the intellectual property, and they license it out to software and hardware
vendors. Many companies that have implemented H.264 have done so with their own
proprietary codecs. As a result, the varying codecs are incompatible with one another,
making this a tricky format to use across multiple platforms. H.264 videos have
the .mp4 extension. Most for-profit corporations have implemented support for this
format on their platforms, but the developers of open source browsers like Firefox and
Opera have not. In late 2010, Google dropped H.264 support in Chrome in favor of
WebM.

VP8 + Vorbis = .webm
WebM is a new open source video standard supported by Google, Adobe, Mozilla, and
Opera. It is based on the VP8 codec and includes Vorbis (just like Theora) as an audio
codec. When YouTube.com announced they had converted many of their videos to be
HTML5-compatible, one of the formats they used was WebM. Currently, only Google
Chrome and Opera support WebM, but broader support should be coming in the
future.

260 | Chapter 6: Mixing HTML5 Video and Canvas

To summarize, here is a chart of the video formats supported by various browsers.

Platform .ogg .mp4 .webm

Android X

Firefox X

Chrome X X

iPhone X

Internet Explorer 9 X

Opera X X

Safari X

As you can see, no one format is supported by all browsers or platforms. Because
HTML5 Canvas only supports video in the format supported by the browser it is im-
plemented within, we must apply a strategy that uses multiple formats to play video.

Combining All Three
The examples in this chapter will introduce a strategy that may seem crazy at first—
using all three formats at once. While this might seem to be more work than necessary,
right now it is the only way to ensure broad support across as many platforms as pos-
sible. The HTML5 <video> tag allows us to specify multiple formats for a single video,
and this will help us achieve our goal of broad video support when working with
HTML5 Canvas.

Converting Video Formats
Before we get into some video demonstrations, we should discuss video conversions.
Since we are going to use .ogg, .mp4, and .webm videos in all our projects, we need to
have a way to convert video to these formats. Converting video can be a daunting task
for someone unfamiliar with all the existing and competing formats; luckily, there are
some great free tools to help us do just that:

Miro Video Converter (http://www.mirovideoconverter.com/)
This application will quickly convert most video types to .ogg, .mp4, and .webm.
It is available for both Windows and Mac.

SUPER © (http://www.erightsoft.com/SUPER.html)
This is a free video-conversion tool for Windows only that creates .mp4 and .ogg
formats. If you can navigate through the maze of screens trying to sell you other
products, it can be very useful for video conversions.

Converting Video Formats | 261

HandBrake (http://handbrake.fr/)
This video-converter application for the Macintosh platform creates .mp4
and .ogg file types.

FFmpeg (http://ffmpeg.org/)
This is the ultimate cross-platform, command-line tool for doing video conver-
sions. It works in Windows/Mac/Linux and can do nearly any conversion you
desire. However, there is no GUI interface, so it can be daunting for beginners.
Some of the tools above use FFmpeg as their engine to do video conversions.

Basic HTML5 Video Implementation
In the <video> tag’s most minimal implementation, it only requires a valid src atrribute.
For example, if we took a nifty little video of the waves crashing at Muir Beach, Cali-
fornia (just north of San Francisco), and we encoded it as an H.264 .mp4 file, the code
might look like this:

<video src="muirbeach.mp4" />

To see an example of this basic code, look at the CH6EX1.html file in
the code distribution.

There are many properties that can be set in an HTML5 video embed. These properties
are actually part of the HTMLMediaElement interface, implemented by the HTMLVideo
Element object. Some of the more important properties include:

src
The URL to the video that you want to play.

autoplay
true or false. Forces the video to play automatically when loaded.

loop
true or false. Loops the video back to the beginning when it has finished playing
(at the time of this writing, this did not work in Firefox).

volume
A number between 0 and 1. Sets the volume level of the playing video.

poster
A URL to an image that will be shown while the video is loading.

262 | Chapter 6: Mixing HTML5 Video and Canvas

There are also some methods of HTMLVideoElement that are necessary when playing video
in conjunction with JavaScript and Canvas:

play()
A method used to start playing a video.

pause()
A method used to pause a video that is playing.

Additionally, there are some properties you can use to check the status of a video,
including:

duration
The length of the video in seconds.

currentTime
The current playing time of the video in seconds. This can be used in conjunction
with duration for some interesting effects, which we will explore later.

ended
true or false, depending on whether the video has finished playing.

muted
true or false. Used to inquire whether the sound of the playing video has been
muted.

paused
true or false. Used to inquire whether the video is currently paused.

There are even more properties that exist for HTMLVideoElement. Check
them out at http://www.w3.org/2010/05/video/mediaevents.html.

Plain-Vanilla Video Embed
To demonstrate a plain-vanilla embed, we are going to work under our previously
established rules for video formats. We will use three formats because no one format
will work in every browser. We have created a version of the Muir Beach video as
a .webm, an .ogg, and a .mp4. For the rest of this chapter, we will use all three formats
in all of our video embeds.

Basic HTML5 Video Implementation | 263

To support all three formats at once, we must use an alternative method for setting the
src attribute of the <video> tag. Why? Because we need to specify three different video
formats instead of one in our HTML page. To do this, we add <source> tags within the
<video> tag:

<video id="thevideo" width="320" height="240">
 <source src="muirbeach.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"' >
 <source src="muirbeach.webm"type='video/webm; codecs="vp8, vorbis"' >
 <source src="muirbeach.ogg" type='video/ogg; codecs="theora, vorbis"'>
</video>

We put the .mp4 file first in the src list because on certain iOS (iPhone,
iPad) devices, the browser will not attempt to load any other src type
than the first one listed. Since those devices support .mp4 files, we list
them first to get the broadest support for HTML5 video.

When a web browser reads this HTML, it will attempt to load each video in succession.
If it does not support one format, it will try the next one. Using this style of embed
allows the code in Example 6-1 to execute on all HTML5-compliant browsers.

Also notice that we have set the width and height properties of the video. While these
are not necessarily needed (as we saw earlier), it is proper HTML form to include them,
and we will need them a bit later when we start to manipulate the video size in code.

Example 6-1. Basic HTML video

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH6EX1: Basic HTML5 Video</title>
</head>
<body>
<div>
<video id="thevideo" width="320" height="240">
 <source src="muirbeach.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"' >
 <source src="muirbeach.webm"type='video/webm; codecs="vp8, vorbis"' >
 <source src="muirbeach.ogg" type='video/ogg; codecs="theora, vorbis"'>
</video>
</div>
<div>
(Right-click To Control)
</div>
</body>
</html>

Figure 6-1 is an example of the plain-vanilla video embed in an HTML5 page. There
are no controls displayed in the default settings, but if you right-click on the video,
controls will appear that can be used in conjunction with the embedded video.

264 | Chapter 6: Mixing HTML5 Video and Canvas

Figure 6-1. HTML5 video embed

Video with Controls, Loop, and Autoplay
While a video displayed without controls might suit your needs, most users expect to
see some way to control a video. Also, as the developer, you might want a video to play
automatically or loop back to the beginning when it finishes. All of these things (if
supported in the browser) are very easy to accomplish in HTML5.

Adding controls, looping, and autoplay to an HTML5 video embed is simple. All you
need to do is specify the options controls, loop, and/or autoplay in the <video> tag,
like this:

<video autoplay loop controls id="thevideo" width="320" height="240">
 <source src="muirbeach.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"' >
 <source src="muirbeach.webm"type='video/webm; codecs="vp8, vorbis"' >
 <source src="muirbeach.ogg" type='video/ogg; codecs="theora, vorbis"'>
</video>

As of this writing, loop does not work in Firefox; however, support is
expected in version 4.0.

The code to embed our Muir Beach video with controls, loop, and autoplay is in
CH6EX2.html in the code distribution. Figure 6-2 shows what a video with controls
looks like in Google Chrome.

Basic HTML5 Video Implementation | 265

Figure 6-2. HTML5 video embed with controls

You can see the full code in Example 6-2.

Example 6-2. HTML video with controls, loop, and autoplay

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH6EX2: Basic HTML5 Video With Controls</title>
</head>
<body>
<div>
<video autoplay loop controls id="thevideo" width="320" height="240">
 <source src="muirbeach.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"' >
 <source src="muirbeach.webm"type='video/webm; codecs="vp8, vorbis"' >
 <source src="muirbeach.ogg" type='video/ogg; codecs="theora, vorbis"'>
</video>
</div>
<div>
(Autoplay, Loop, Controls)
</div>
</body>
</html>

Altering the Width and Height of the Video
In our first example, we showed how you could embed a video without changing the
default width or height. However, there are many good reasons why you might want
to change the default width and height of a video in the HTML page, such as fitting it
into a particular part of the page, or enlarging it so it is easier to see. Similar to embed-
ding an image into HTML with the tag, a video will scale to whatever width and
height you provide in the <video> tag. Also, like with the tag, this scale does not

266 | Chapter 6: Mixing HTML5 Video and Canvas

affect the size of the object downloaded. If the video is 5 megabytes at 640×480, it will
still be 5 megabytes when displayed at 180×120—just scaled to fit that size.

In Example 6-3 (CH6EX3.html) we have scaled the same video to three different sizes
and displayed them on the same page. Figure 6-3 shows what this looks like in HTML
(again, rendered in the Google Chrome browser).

Example 6-3. Basic HTML5 video in three sizes

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH6EX3: Basic HTML5 Video: 3 Sizes</title>
</head>
<body>
<div>
<video autoplay loop controls width="640" height="480" id="thevideo">
 <source src="muirbeach.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"' >
 <source src="muirbeach.webm"type='video/webm; codecs="vp8, vorbis"' >
 <source src="muirbeach.ogg" type='video/ogg; codecs="theora, vorbis"'>
 <source src="muirbeach.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"' >
</video>
</div>
<div>
(640×480)
<div>
<video autoplay loop controls width="320" height="240"id="thevideo">
 <source src="muirbeach.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"' >
 <source src="muirbeach.webm"type='video/webm; codecs="vp8, vorbis"' >
 <source src="muirbeach.ogg" type='video/ogg; codecs="theora, vorbis"'>
</video>
</div>
<div>
(320×240)
</div>
<div>
<video autoplay loop controls width="180" height="120"id="thevideo">
 <source src="muirbeach.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"' >
 <source src="muirbeach.webm"type='video/webm; codecs="vp8, vorbis"' >
 <source src="muirbeach.ogg" type='video/ogg; codecs="theora, vorbis"'>
</video>
</div>
<div>
(180×120)
</body>
</html>

Basic HTML5 Video Implementation | 267

Figure 6-3. Controlling video width and height in the embed

Dynamically scaling a video

Now it is time for a more elaborate (and we think more effective) example of scaling a
video. By changing the width and height attributes of the <video> tag, we can scale the
video on the fly. While there may be a few practical reasons you would do this in a real-
world situation, it is also an effective way to demonstrate some of the power of the
HTML5 <video> tag.

First, we need to add an HTML5 range control to the page:

<form>
 Video Size: <input type="range" id="videoSize"
 min="80"
 max="1280"
 step="1"
 value="320"/>
</form>

268 | Chapter 6: Mixing HTML5 Video and Canvas

We discussed the details of the range control in Chapter 3, but just to refresh your
memory, range is a new form control added to HTML5 that creates a slider of values.
We are going to use this slider to set the video size.

If the browser does not support the range element, a text box will appear
that will allow the user to enter text directly.

To capture the change to the video size, we need to add some JavaScript. We create an
event listener for the load event that calls the eventWindowLoaded() function when the
page loads (this should look very familiar to you by now):

window.addEventListener('load', eventWindowLoaded, false);

We need to set up a couple things in the eventWindowLoaded() function. First, we need
to add an event listener for a change to the videoSize form control we created in the
HTML page. A “change” to the control (e.g., someone slides it right or left) will create
an event handled by the videoSizeChanged() event handler:

var sizeElement = document.getElementById("videoSize")
sizeElement.addEventListener('change', videoSizeChanged, false);

Next, we need to create a value that can be used to set both the width and the height
of the video at once. This is because we want to keep the proper aspect ratio of the video
(the ratio of width to height) when the video is resized. To do this, we create the variable
widthtoHeightRatio, which is simply the width of the video divided by the height:

var widthtoHeightRatio = videoElement.width/videoElement.height;

Finally, when the user changes the videoSize range control, the videoSizeChanged()
event handler is called. This function sets the width property of the video to the value
of the range control (target.value), then sets the height of the video to the same value,
and divides by the widthtoHeightRatio value we just created. The effect is that the video
resizes while playing. Figure 6-4 captures one moment of that:

function videoSizeChanged(e) {

 var target = e.target;
 var videoElement = document.getElementById("theVideo");
 videoElement.width = target.value;
 videoElement.height = target.value/widthtoHeightRatio;

 }

Basic HTML5 Video Implementation | 269

Figure 6-4. Controlling video width and height in JavaScript

Example 6-4 offers the full code listing for this application.

Example 6-4. Basic HTML5 video with resize range control

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH6EX4: Basic HTML5 Video With Resize Range Control </title>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 var sizeElement = document.getElementById("videoSize")
 sizeElement.addEventListener('change', videoSizeChanged, false);
 var videoElement = document.getElementById("theVideo");
 var widthtoHeightRatio = videoElement.width/videoElement.height;

function videoSizeChanged(e) {
 var target = e.target;
 var videoElement = document.getElementById("theVideo");
 videoElement.width = target.value;
 videoElement.height = target.value/widthtoHeightRatio;

270 | Chapter 6: Mixing HTML5 Video and Canvas

 }

}

</script>
</head>
<body>
<div>
<form>
 Video Size: <input type="range" id="videoSize"
 min="80"
 max="1280"
 step="1"
 value="320"/>
</form>

</div>
<div>
<video autoplay loop controls id="theVideo" width="320" height="240">
 <source src="muirbeach.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"' >
 <source src="muirbeach.webm"type='video/webm; codecs="vp8, vorbis"' >
 <source src="muirbeach.ogg" type='video/ogg; codecs="theora, vorbis"'>
</video>
</div>
</body>
</html>

Preloading Video in JavaScript
It is often necessary to preload a video before you do anything with it. This is especially
true when using video with HTML5 Canvas because many times what you want to do
goes beyond the simple act of playing the video.

We are going to leverage the DOM and JavaScript to create a preload architecture that
can be reused and expanded upon. We are still not using Canvas, but this process will
lead directly to it.

To do this, we must first embed the video in the HTML page in the same way we have
done previously in this chapter. However, this time, we are going to add <div> with the
id of loadingStatus.

In practice, you probably would not display the loading status on the
HTML page.

This <div> will report the percentage of the video that has loaded when we retrieve it
through JavaScript:

Preloading Video in JavaScript | 271

<div>
<video loop controls id="thevideo" width="320" height="240" preload="auto">
 <source src="muirbeach.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"' >
 <source src="muirbeach.webm"type='video/webm; codecs="vp8, vorbis"' >
 <source src="muirbeach.ogg" type='video/ogg; codecs="theora, vorbis"'>
</video>

<div>

<div id="loadingStatus">
0%
</div>

In JavaScript, we need to create the same type of eventWindowLoaded() function that we
have created many times previously in this book. This function is called when the
HTML page has finished loading. In eventWindowLoaded() we need to create two lis-
teners for two more events that are dispatched from the HTMLVideoElement object:

progress
Dispatched when the video object has updated information about the loading pro-
gress of a video. We will use this event to update the percentage text in the
loadingStatus <div>.

canplaythrough
Dispatched when the video has loaded enough that it can play in its entirety. This
event will let us know when to start playing the video.

Below is the code that creates the listeners for those events:

function eventWindowLoaded() {
 var videoElement = document.getElementById("thevideo");

 videoElement.addEventListener('progress',updateLoadingStatus,false);
 videoElement.addEventListener('canplaythrough',playVideo,false);

}

The updateLoadingStatus() function is called when the progress event is dispatched
from the video element. This function calculates the percent loaded by calculating the
ratio of the already-loaded bytes (videoElement.buffered.end(0)) by the total bytes
(videoElement.duration), and dividing that value by 100. That value is then displayed
by setting the innerHTML property of the loadingStatus <div>, as shown in Figure 6-5.
Remember, this is only for displaying the progress. We still need to do something once
the video has loaded.

At the time of this writing, Firefox did not support the videobuffered
property, but this was planned for Firefox version 4.0.

272 | Chapter 6: Mixing HTML5 Video and Canvas

function updateLoadingStatus() {

 var loadingStatus = document.getElementById("loadingStatus");
 var videoElement = document.getElementById("thevideo");
 var percentLoaded = parseInt(((videoElement.buffered.end(0) /
 videoElement.duration) * 100));
 document.getElementById("loadingStatus").innerHTML = percentLoaded + '%';

}

Figure 6-5. Preloading a video in JavaScript

The playVideo() function is called when the video object dispatches a canplay
through event. playVideo() calls the play() function of the video object, and the video
starts to play:

function playVideo() {
 var videoElement = document.getElementById("thevideo");
 videoElement.play();

}

Example 6-5 gives the full code for preloading video.

Example 6-5. Basic HTML5 preloading video

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH6EX5: Basic HTML5 Preloading Video</title>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 var videoElement = document.getElementById("thevideo");

Preloading Video in JavaScript | 273

 videoElement.addEventListener('progress',updateLoadingStatus,false);
 videoElement.addEventListener('canplaythrough',playVideo,false);

}

function updateLoadingStatus() {

 var loadingStatus = document.getElementById("loadingStatus");
 var videoElement = document.getElementById("thevideo");
 var percentLoaded = parseInt(((videoElement.buffered.end(0) /
 videoElement.duration) * 100));
 document.getElementById("loadingStatus").innerHTML = percentLoaded + '%';

}

function playVideo() {
 var videoElement = document.getElementById("thevideo");
 videoElement.play();

}
</script>

</head>
<body>
<div>
<video loop controls id="thevideo" width="320" height="240" preload="auto">
 <source src="muirbeach.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"' >
 <source src="muirbeach.webm"type='video/webm; codecs="vp8, vorbis"' >
 <source src="muirbeach.ogg" type='video/ogg; codecs="theora, vorbis"'>

</video>

<div>

<div id="loadingStatus">
0%
</div>

</div>
</body>
</html>

A Problem with Events and Embedded Video in HTML5
Now that we have gone through this exercise, we have to give you some bad news.
While the code we presented for CH6EX5.html works in most HTML5-compliant web
browsers, the code stopped working in Google Chrome as we finished up the first draft
of this book. This was upsetting because we used Chrome as our primary platform
when developing and testing all the book’s examples.

With a bit of investigation, we discovered that Chrome was not firing the canplay
through or progress events. At the same time, Firefox removed the load event. While
these were anecdotal occurrences, they lead to one common truth: the HTML5

274 | Chapter 6: Mixing HTML5 Video and Canvas

specification is not finished. This is an obvious but important fact to note. If you are
developing for HTML5 or Canvas, you are developing with a moving target.

Specifically in CH6EX5.html, we found that the process of embedding the <video> tag
in the HTML page was the reason why the events weren’t firing in Chrome. In order
to make this example work in Chrome, you need to add a call to playVideo() in the
eventWindowLoaded() function, like this:

function eventWindowLoaded() {
 var videoElement = document.getElementById("thevideo");

 videoElement.addEventListener('progress',updateLoadingStatus,false);
 videoElement.addEventListener('canplaythrough',playVideo,false);
 playVideo()
}

However, this code will not solve the core problem: we need a reliable way to know
when a video has finished loading so we can use it on the canvas. In Example 6-6, we
will show you a way to make that happen.

Video and the Canvas
The HTML video object already has a poster property for displaying an image before
the video starts to play, as well as functions to autoplay and loop. So why is it necessary
to preload the video? Well, as we alluded to in the previous section, simply playing a
video is one thing—manipulating it with HTML5 Canvas is quite another. If you want
to start manipulating video while it is displayed on the canvas, you first need to make
sure it is loaded.

In this section, we will load video and then manipulate it in various ways so you can
see how powerful Canvas can be when it is mixed with other HTML5 elements.

Displaying a Video on HTML5 Canvas
First, we must learn the basics of displaying video on HTML5 Canvas. There are a few
important things to note that are not immediately obvious when you start working with
video and the canvas. We worked through them so you don’t have to do it yourself
(you’re welcome).

Video must still be embedded in HTML

Even though the video is only displayed on HTML5 Canvas, you still need a <video>
tag in HTML. The key is to put the video in a <div> (or a similar construct), and set the
display CSS style property of that <div> to none in HTML. This will ensure that while
the video is loaded in the page, it is not displayed. If we wrote the code in HTML, it
might look like this:

Video and the Canvas | 275

<div style="position: absolute; top: 50px; left: 600px; display:none">
<video loop controls id="thevideo" width="320" height="240" preload="auto">
 <source src="muirbeach.mp4" type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"' >
 <source src="muirbeach.webm"type='video/webm; codecs="vp8, vorbis"' >
 <source src="muirbeach.ogg" type='video/ogg; codecs="theora, vorbis"'>
</video>

However, we already know that we don’t want to use an HTML embed. As we stated
at the end of the last section, video events do not appear to fire reliably when video
elements are embedded in the HTML page. For this reason, we need a new strategy to
load video dynamically—we’ll create the <div> and <video> elements in JavaScript.

The first thing we do in our JavaScript is add a couple variables to hold references to
the dynamic HTML elements we will create. The videoElement variable will hold the
dynamically created <video> tag, while videoDiv will hold the dynamically created
<div>:

var videoElement;
var videoDiv;

We use this method to create global variables throughout this chapter.
There are many reasons not to use global variables, but for these simple
applications, it’s the quickest way to get something on the canvas. If you
want to learn a better way to handle loading assets, the last section of
Chapter 7 employs a strategy to preload assets without the use of global
variables.

Next, we create our dynamic form elements in the eventWindowLoaded() function. First,
we use the createElement() method of the document DOM object to create a <video>
element and a <div> element, placing references to them in the variables we just created:

function eventWindowLoaded() {

 videoElement = document.createElement("video");
 videoDiv = document.createElement('div');
 document.body.appendChild(videoDiv);

Next, we add videoElement as a child of videoDiv, essentially putting it inside of that
<div> on the HTML page. We then set the style attribute of <div> to display:none;,
which will make it invisible on the HTML page. We do this because although we want
the video to display on the canvas, we don’t want to show it on the HTML page:

 videoDiv.appendChild(videoElement);
 videoDiv.setAttribute("style", "display:none;");

We then create another new variable named videoType that holds the results of a new
function we will create, supportedVideoFormat(). This function returns the file exten-
sion of the supported video format for the browser; otherwise, it returns “” (an empty
string), which means we alert the user that there is no video support in the app for his
browser:

276 | Chapter 6: Mixing HTML5 Video and Canvas

 var videoType = supportedVideoFormat(videoElement);
 if (videoType == "") {
 alert("no video support");
 return;
 }

Finally, we set the src property of the video element using the file extension we just
received from supportedVideoFormat(), and create the event handler for the canplay
through event:

 videoElement.setAttribute("src", "muirbeach." + videoType);
 videoElement.addEventListener("canplaythrough",videoLoaded,false);

}

When the video has finished loading, the videoLoaded event handler is called, which in
turn calls the canvasApp() function:

function videoLoaded(event) {

 canvasApp();

}

Before the code in the last section will work, we need to define the supportedVideo
Format() function. The reason for this function is simple: since we are adding video
objects dynamically to the HTML page, we do not have a way to define multiple
<source> tags. Instead, we are going to use the canPlayType() method of the video object
to tell us which type of audio file to load.

The canPlayType() method takes a single parameter, a MIME type. It returns a text
string of maybe, probably, or nothing (an empty string).

“” (nothing)
This is returned if the browser knows the type cannot be rendered.

maybe
This is returned if the browser does not confidently know that the type can be
displayed.

probably
This is returned if the browser knows the type can be displayed using an audio or
video element.

We are going to use these values to determine which media type to load and play. For
the sake of this exercise, we will assume that both maybe and probably equate to yes. If
we encounter either result with any of our three MIME types (video/webm, video/
mp4, video/ogg), we will return the extension associated with that MIME type so the
sound file can be loaded.

In the function below, video represents the instance of HTMLVideoElement that we are
going to test. The returnExtension variable represents that valid extension for the first

Video and the Canvas | 277

MIME type found that has the value of maybe or probably returned from the call to
canPlayType():

function supportedVideoFormat(video) {
 var returnExtension = "";
 if (video.canPlayType("video/webm") =="probably" ||
 video.canPlayType("video/webm") == "maybe") {
 returnExtension = "webm";
 } else if(video.canPlayType("video/mp4") == "probably" ||
 video.canPlayType("video/mp4") == "maybe") {
 returnExtension = "mp4";
 } else if(video.canPlayType("video/ogg") =="probably" ||
 video.canPlayType("video/ogg") == "maybe") {
 returnExtension = "ogg";
 }

 return returnExtension;

}

We do not check for a condition when no valid video format is found and the return
value is “”. If that is the case, the code that has called this function might need to be
written in a way to catch that condition and alter the program execution. We did that
with the test of the return value and alert(), which we described previously.

Video is displayed like an image

When you write code to display a video on the canvas, you use the context.draw
Image() function, as though you are displaying a static image. Don’t go looking for a
drawVideo() function in the HTML5 Canvas spec because you won’t find it. The fol-
lowing code will display a video stored in a variable named videoElement, displayed at
the x,y position of 85,30:

context.drawImage(videoElement , 85, 30);

However, when you draw a video for the first time, you will notice that it will not
move—it stays on the first frame. At first you might think you have done something
wrong, but you have not. You just need to add one more thing to make it work.

Set an interval to update the display

Just like when we discussed animation in the previous chapters, a video placed on
HTML5 Canvas using drawImage() will not update itself. You need to call draw
Image() in some sort of loop to continually update the image with new data from the
playing video in the HTML page (hidden or not). To do this, we call the video’s
play() method, and then use setInterval() to call the drawScreen() function every 33
milliseconds. This will give you about 30 frames per second (FPS). We put this code in
our canvasApp() function, which is called after we know the video has loaded:

videoElement.play();
setInterval(drawScreen, 33);

278 | Chapter 6: Mixing HTML5 Video and Canvas

In drawScreen(), we will call drawImage() to display the video, but since it will be called
every 33 milliseconds, the video will be updated and play on the canvas:

function drawScreen () {

 context.drawImage(videoElement , 85, 30);

 }

Example 6-6 gives the full code for displaying a video on the canvas and updating it
using setInterval(). Figure 6-6 shows this code in the browser.

Example 6-6. Basic HTML5 loading video onto the canvas

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH6EX6: Basic HTML5 Load Video Onto The Canvas</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
var videoElement;
var videoDiv;
function eventWindowLoaded() {

 videoElement = document.createElement("video");
 videoDiv = document.createElement('div');
 document.body.appendChild(videoDiv);
 videoDiv.appendChild(videoElement);
 videoDiv.setAttribute("style", "display:none;");
 var videoType = supportedVideoFormat(videoElement);
 if (videoType == "") {
 alert("no video support");
 return;
 }
 videoElement.setAttribute("src", "muirbeach." + videoType);
 videoElement.addEventListener("canplaythrough",videoLoaded,false);

}

function supportedVideoFormat(video) {
 var returnExtension = "";
 if (video.canPlayType("video/webm") =="probably" ||
 video.canPlayType("video/webm") == "maybe") {
 returnExtension = "webm";
 } else if(video.canPlayType("video/mp4") == "probably" ||
 video.canPlayType("video/mp4") == "maybe") {
 returnExtension = "mp4";
 } else if(video.canPlayType("video/ogg") =="probably" ||
 video.canPlayType("video/ogg") == "maybe") {
 returnExtension = "ogg";
 }

 return returnExtension;

Video and the Canvas | 279

}

function canvasSupport () {
 return Modernizr.canvas;
}

function videoLoaded(event) {

 canvasApp();

}

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

function drawScreen () {

 //Background
 context.fillStyle = '#ffffaa';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(5, 5, theCanvas.width−10, theCanvas.height−10);
 //video
 context.drawImage(videoElement , 85, 30);

 }

 var theCanvas = document.getElementById("canvasOne");
 var context = theCanvas.getContext("2d");
 videoElement.play();

 setInterval(drawScreen, 33);

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="300">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

280 | Chapter 6: Mixing HTML5 Video and Canvas

Figure 6-6. Displaying a video on HTML5 Canvas

HTML5 Video Properties
We have already talked about some properties of HTMLVideoElement (inherited from
HTMLMediaElement), but now that we have a video loaded onto the canvas, it would be
interesting to see them in action.

In this example, we are going to display seven properties of a playing video, taken from
the HTMLVideoElement object: duration, currentTime, loop, autoplay, muted, controls,
and volume. Of these, duration, loop, and autoplay will not update because they are set
when the video is embedded. Also, since we call the play() function of the video after
it is preloaded in JavaScript, autoplay may be set to false, but the video will play
anyway. The other properties will update as the video is played.

To display these values on the canvas, we will draw them as text in the drawScreen()
function called by setInterval(). Below is the drawScreen() that we have created to
display these values:

function drawScreen () {

 //Background
 context.fillStyle = '#ffffaa';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(5, 5, theCanvas.width−10, theCanvas.height−10);
 //video
 context.drawImage(videoElement , 85, 30);

Video and the Canvas | 281

 // Text
 context.fillStyle = "#000000";
 context.fillText ("Duration:" + videoElement.duration, 10 ,280);
 context.fillText ("Current time:" + videoElement.currentTime, 260 ,280);
 context.fillText ("Loop: " + videoElement.loop, 10 ,290);
 context.fillText ("Autoplay: " + videoElement.autoplay, 100 ,290);
 context.fillText ("Muted: " + videoElement.muted, 180 ,290);
 context.fillText ("Controls: " + videoElement.controls, 260 ,290);
 context.fillText ("Volume: " + videoElement.volume, 340 ,290);

 }

Figure 6-7 shows what the attributes look like when displayed on the canvas. Notice
that we have placed the <video> embed next to the canvas, and we have not set the CSS
display style to none. We did this to demonstrate the relationship between the video
embedded in the HTML page and the one playing on the canvas. If you roll over the
video in the HTML page, you can see the control panel. If you set the volume, you will
notice that the volume attribute displayed on the canvas will change. If you pause the
embedded video, the video on the canvas will stop playing, and the currentTime value
will stop.

This demo should give you a very good idea of the relationship between the video on
the canvas and the one embedded with the <video> tag. Even though they are displayed
using completely different methods, they are in fact one and the same.

Figure 6-7. Video on the canvas with properties displayed and <video> embed

You can see Example 6-7 in action by executing CH6EX7.html from the code
distribution.

Example 6-7. Video properties

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH6EX7: Video Properties</title>

282 | Chapter 6: Mixing HTML5 Video and Canvas

<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
var videoElement;
var videoDiv;
function eventWindowLoaded() {

 videoElement = document.createElement("video");
 var videoDiv = document.createElement('div');
 document.body.appendChild(videoDiv);
 videoDiv.appendChild(videoElement);
 videoDiv.setAttribute("style", "position: absolute; top: 50px; left: 600px; ");
 var videoType = supportedVideoFormat(videoElement);
 if (videoType == "") {
 alert("no video support");
 return;
 }
 videoElement.setAttribute("src", "muirbeach." + videoType);
 videoElement.addEventListener("canplaythrough",videoLoaded,false);

}

function supportedVideoFormat(video) {
 var returnExtension = "";
 if (video.canPlayType("video/webm") =="probably" ||
 video.canPlayType("video/webm") == "maybe") {
 returnExtension = "webm";
 } else if(video.canPlayType("video/mp4") == "probably" ||
 video.canPlayType("video/mp4") == "maybe") {
 returnExtension = "mp4";
 } else if(video.canPlayType("video/ogg") =="probably" ||
 video.canPlayType("video/ogg") == "maybe") {
 returnExtension = "ogg";
 }

 return returnExtension;

}

function canvasSupport () {
 return Modernizr.canvas;
}

function videoLoaded() {
 canvasApp();

}

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

Video and the Canvas | 283

 function drawScreen () {

 //Background
 context.fillStyle = '#ffffaa';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(5, 5, theCanvas.width−10, theCanvas.height−10);
 //video
 context.drawImage(videoElement , 85, 30);
 // Text
 context.fillStyle = "#000000";
 context.fillText ("Duration:" + videoElement.duration, 10 ,280);
 context.fillText ("Current time:" + videoElement.currentTime, 260 ,280);
 context.fillText ("Loop: " + videoElement.loop, 10 ,290);
 context.fillText ("Autoplay: " + videoElement.autoplay, 100 ,290);
 context.fillText ("Muted: " + videoElement.muted, 180 ,290);
 context.fillText ("Controls: " + videoElement.controls, 260 ,290);
 context.fillText ("Volume: " + videoElement.volume, 340 ,290);

 }

 var theCanvas = document.getElementById("canvasOne");
 var context = theCanvas.getContext("2d");
 videoElement.play();

 setInterval(drawScreen, 33);

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="300">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

You can see all the events and properties for the HTMLVideoElement at
http://www.w3.org/2010/05/video/mediaevents.html.

284 | Chapter 6: Mixing HTML5 Video and Canvas

Video on the Canvas Examples
In the last section, we learned that the video playing on the canvas and the video em-
bedded with the <video> tag are, in fact, the same video. It took a lot more code to play
the video on the canvas than it did to embed and play the video in JavaScript. So, this
begs the question: why load video onto the canvas at all?

Well, sometimes simply displaying a video and playing it is not enough. You might
want events to occur as the video is playing, or perhaps you want to use transformations
on it, use it in a game, create custom video controls, or animate it and move it on the
canvas.

The following five examples will show you in very specific detail why the canvas can
be an exciting way to display video.

Using the currentTime Property to Create Video Events
The first way we will use video in conjunction with Canvas is to use the currentTime
property of a playing video to trigger events. Recall that the currentTime property is
updated as the video plays, and it shows the video’s elapsed running time.

For our example, we are going to create a dynamic object in JavaScript containing the
following properties:

time
The elapsed time to trigger the event

message
A text message to display on the canvas

x
The x position of the text message

y
The y position of the text message

First, we will create an array of these objects and place them into a variable named
messages. We will then create four events (messages that will appear) that will take
place at the elapsed currentTime of 0, 1, 4, and 8 seconds:

var messages = new Array();
 messages[0] = {time:0,message:"", x:0 ,y:0};
 messages[1] = {time:1,message:"This Is Muir Beach!", x:90 ,y:200};
 messages[2] = {time:4,message:"Look At Those Waves!", x:240 ,y:240};
 messages[3] = {time:8,message:"Look At Those Rocks!", x:100 ,y:100};

To display the messages, we will call a for:next loop inside our drawScreen() function.
Inside the loop, we test each message in the messages array to see whether the current
Time property of the video is greater than the time property of the message. If so, we
know that it is OK to display the message. We then display the message on the canvas

Video on the Canvas Examples | 285

using the fillStyle property and fillText() function of the Canvas context, producing
the results shown in Figure 6-8:

for (var i = 0; i < messages.length ; i++) {
 var tempMessage = messages[i];
 if (videoElement.currentTime > tempMessage.time) {
 context.font = "bold 14px sans";
 context.fillStyle = "#FFFF00";
 context.fillText (tempMessage.message, tempMessage.x ,tempMessage.y);
 }
 }

Figure 6-8. Canvas video displaying text overlay events

Of course, this is a very simple way to create events. The various text messages will not
disappear after others are created, but that is just a small detail. The point of this ex-
ercise is that, with code like this, you could do almost anything with a running video.
You could pause the video, show an animation, and then continue once the animation
is done. Or you could pause to ask the user for input and then load a different video.
Essentially, you can make the video completely interactive in any way you choose. The
model for these events could be very similar to the one we just created.

Example 6-8 provides the full code listing for this application.

Example 6-8. Creating simple video events

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH6EX8: Creating Simple Video Events</title>

286 | Chapter 6: Mixing HTML5 Video and Canvas

<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
var videoElement;
var videoDiv;
function eventWindowLoaded() {

 videoElement = document.createElement("video");
 videoDiv = document.createElement('div');
 document.body.appendChild(videoDiv);
 videoDiv.appendChild(videoElement);
 videoDiv.setAttribute("style", "display:none;");
 var videoType = supportedVideoFormat(videoElement);
 if (videoType == "") {
 alert("no video support");
 return;
 }
 videoElement.setAttribute("src", "muirbeach." + videoType);
 videoElement.addEventListener("canplaythrough",videoLoaded,false);

}
function supportedVideoFormat(video) {
 var returnExtension = "";
 if (video.canPlayType("video/webm") =="probably" ||
 video.canPlayType("video/webm") == "maybe") {
 returnExtension = "webm";
 } else if(video.canPlayType("video/mp4") == "probably" ||
 video.canPlayType("video/mp4") == "maybe") {
 returnExtension = "mp4";
 } else if(video.canPlayType("video/ogg") =="probably" ||
 video.canPlayType("video/ogg") == "maybe") {
 returnExtension = "ogg";
 }

 return returnExtension;

}

function canvasSupport () {
 return Modernizr.canvas;
}

function videoLoaded() {
 canvasApp();

}

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 function drawScreen () {

Video on the Canvas Examples | 287

 //Background
 context.fillStyle = '#ffffaa';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(5, 5, theCanvas.width−10, theCanvas.height−10);
 //video
 context.drawImage(videoElement , 85, 30);
 // Text
 context.fillStyle = "#000000";
 context.font = "10px sans";
 context.fillText ("Duration:" + videoElement.duration, 10 ,280);
 context.fillText ("Current time:" + videoElement.currentTime, 260 ,280);
 context.fillText ("Loop: " + videoElement.loop, 10 ,290);
 context.fillText ("Autoplay: " + videoElement.autoplay, 80 ,290);
 context.fillText ("Muted: " + videoElement.muted, 160 ,290);
 context.fillText ("Controls: " + videoElement.controls, 240 ,290);
 context.fillText ("Volume: " + videoElement.volume, 320 ,290);

 //Display Message
 for (var i =0; i < messages.length ; i++) {
 var tempMessage = messages[i];
 if (videoElement.currentTime > tempMessage.time) {
 context.font = "bold 14px sans";
 context.fillStyle = "#FFFF00";
 context.fillText (tempMessage.message, tempMessage.x ,tempMessage.y);
 }
 }

 }

 var messages = new Array();
 messages[0] = {time:0,message:"", x:0 ,y:0};
 messages[1] = {time:1,message:"This Is Muir Beach!", x:90 ,y:200};
 messages[2] = {time:4,message:"Look At Those Waves!", x:240 ,y:240};
 messages[3] = {time:8,message:"Look At Those Rocks!", x:100 ,y:100};

 var theCanvas = document.getElementById("canvasOne");
 var context = theCanvas.getContext("2d");
 videoElement.play();

 setInterval(drawScreen, 33);

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="300">
 Your browser does not support HTML5 Canvas.
</canvas>

288 | Chapter 6: Mixing HTML5 Video and Canvas

</div>
</body>
</html>

Canvas Video Transformations: Rotation
Showing a static video on the screen is one thing, but transforming it on the screen
using alpha transparency and rotations is quite another. These types of transformations
can be easily applied to video on the canvas in much the same way as you would apply
them to an image or a drawing object.

In this example, we will create a video that rotates clockwise. To achieve this effect, we
first create a variable, rotation, which we will use to hold the current values of the
rotation property that we will apply to the video. We create this variable outside of the
drawScreen() function, inside canvasApp():

var rotation = 0;

The drawScreen() function is where all the real action takes place for this example. First,
we need to save the current canvas context so we can restore it after we perform the
transformation. We covered this in depth in Chapter 2, but here’s a quick refresher.
Transformations on the canvas are global in nature, which means they affect every-
thing. Since the canvas works in immediate mode, there is no stack of objects to ma-
nipulate. Instead, we need to save the canvas context before the transformation, apply
the transformation, and then restore the saved context afterward.

First, we save it:

context.save();

Next, we reset the context transformation to the identity, which clears anything that
was set previously:

context.setTransform(1,0,0,1,0,0);

Then we need to set up some variables that will be used for the rotation calculation.
The x and y variables set the upper-left location of the video on the canvas. The video
Width and videoHeight variables will be used to help rotate the video from the center:

var x = 100;
var y = 100;
var videoWidth=320;
var videoHeight=240;

Now it is time to use the rotation variable, which represents the angle that we rotated
the video on the canvas. It starts at 0, and we will increase it every time drawScreen()
is called. However, the context.rotate() method requires an angle to be converted to
radians when passed as its lone parameter. The following line of code converts the value
in the rotation variable to radians, and stores it in a variable named angleInRadians:

var angleInRadians = rotation * Math.PI / 180;

Video on the Canvas Examples | 289

We need to find the video’s center on the canvas so we can start our rotation from that
point. We find the x value by taking our videoX variable and adding half the width of
the video. We find the y value by taking our videoY variable and adding half the height
of the video. We supply both of those values as parameters to the context.trans
late() function so the rotation will begin at that point. We need to do this because we
are not rotating the video object—we are rotating the entire canvas in relation to the
displayed video:

context.translate(x+.5*videoWidth, y+.5*videoHeight);

The rest of the code is really straightforward. First, we call the rotate() function of the
context, passing our angle (converted to radians) to perform the rotation:

context.rotate(angleInRadians);

Then we call drawImage(), passing the video object, and the x,y positions of where we
want the video to be displayed. This is a bit tricky but should make sense. Since we
used the context.translate() function to move to the center of the video, we now need
to place it in the upper-left corner. To find that corner, we need to subtract half the
width to find the x position, and half the height to find the y position:

context.drawImage(videoElement ,-.5*videoWidth, -.5*videoHeight);

Finally, we restore the canvas we saved before the transformation started, and we up-
date the rotation variable so that we will have a new angle on the next call to
drawScreen():

context.restore();
rotation++;

Now the video should rotate at 1 degree clockwise per call to drawScreen() while fading
onto the canvas. You can easily increase the speed of the rotation by changing the value
that you input for the rotation variable in the last line in the drawScreen() function.

Here is the code for the final drawScreen() function for this example:

function drawScreen () {

 //Background
 context.fillStyle = '#ffffaa';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(5, 5, theCanvas.width−10, theCanvas.height−10);
 //video
 //*** Start rotation calculation
 context.save();
 context.setTransform(1,0,0,1,0,0);

 var angleInRadians = rotation * Math.PI / 180;
 var x = 100;
 var y = 100;
 var videoWidth=320;
 var videoHeight=240;

290 | Chapter 6: Mixing HTML5 Video and Canvas

 context.translate(x+.5*videoWidth, y+.5*videoHeight);
 context.rotate(angleInRadians);
 //****
 context.drawImage(videoElement ,-.5*videoWidth, -.5*videoHeight);
 //*** restore screen
 context.restore();
 rotation++;
 //***
}

Figure 6-9 shows what the video will look like when rotating on the canvas. You can
see the full code for this in Example 6-9.

Figure 6-9. Canvas video rotation

Video on the Canvas Examples | 291

Example 6-9. Rotating a video

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH6EX9: Video Rotation Transform</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
var videoElement;
var videoDiv;
function eventWindowLoaded() {

 videoElement = document.createElement("video");
 videoDiv = document.createElement('div');
 document.body.appendChild(videoDiv);
 videoDiv.appendChild(videoElement);
 videoDiv.setAttribute("style", "display:none;");
 var videoType = supportedVideoFormat(videoElement);
 if (videoType == "") {
 alert("no video support");
 return;
 }
 videoElement.setAttribute("src", "muirbeach." + videoType);
 videoElement.addEventListener("canplaythrough",videoLoaded,false);

}

function supportedVideoFormat(video) {
 var returnExtension = "";
 if (video.canPlayType("video/webm") =="probably" ||
 video.canPlayType("video/webm") == "maybe") {
 returnExtension = "webm";
 } else if(video.canPlayType("video/mp4") == "probably" ||
 video.canPlayType("video/mp4") == "maybe") {
 returnExtension = "mp4";
 } else if(video.canPlayType("video/ogg") =="probably" ||
 video.canPlayType("video/ogg") == "maybe") {
 returnExtension = "ogg";
 }

 return returnExtension;

}

function canvasSupport () {
 return Modernizr.canvas;
}

function videoLoaded() {
 canvasApp();

}

292 | Chapter 6: Mixing HTML5 Video and Canvas

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 //*** set rotation value
 var rotation = 0;
 //***

 function drawScreen () {

 //Background
 context.fillStyle = '#ffffaa';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(5, 5, theCanvas.width-10, theCanvas.height-10);
 //video
 //*** Start rotation calculation
 context.save();
 context.setTransform(1,0,0,1,0,0);

 var angleInRadians = rotation * Math.PI / 180;
 var x = 100;
 var y = 100;
 var videoWidth=320;
 var videoHeight=240;
 context.translate(x+.5*videoWidth, y+.5*videoHeight);
 context.rotate(angleInRadians);
 //****
 context.drawImage(videoElement ,-.5*videoWidth, -.5*videoHeight);
 //*** restore screen
 context.restore();
 rotation++;
 //***

 }

 var theCanvas = document.getElementById("canvasOne");
 var context = theCanvas.getContext("2d");
 videoElement.setAttribute("loop", "true"); videoElement.play();
 setInterval(drawScreen, 33);

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>

Video on the Canvas Examples | 293

</div>
</body>
</html>

Canvas Video Puzzle
Now we arrive at the most involved example of this section. We are going to create a
puzzle game based on the video we have displayed on the canvas, illustrated in Fig-
ure 6-10. Here are the steps showing how the game will operate:

1. We will load the video onto the canvas but not display it.

2. We will decide how many parts we want to be in our puzzle.

3. We will create a board array that holds all the puzzle pieces.

4. The pieces will be displayed in a 4×4 grid.

5. We will randomize the pieces on the board to mix up the puzzle.

6. We will add an event listener for the mouse button.

7. We will set an interval to call drawScreen().

8. We will wait for the user to click a puzzle piece.

9. While we are waiting, the various parts of the video will play just as though they
were one video.

10. When a user clicks a puzzle piece, it will highlight in yellow.

11. If the user has selected two pieces, we will swap their positions.

12. The user will attempt to put the puzzle back together so she can see the video as it
was created.

Setting up the game

To start, we are going to set up some variables that will define the game’s playfield.
Here is a rundown of the variables and how they will be used:

rows
The numbers of rows in the grid of puzzle pieces

cols
The number of columns in the grid of puzzle pieces

xPad
The space, in pixels, between each column

yPad
The space, in pixels, between each row

startXOffset
The number of pixels from the left of the canvas to the location where we will start
drawing the grid of puzzle pieces

294 | Chapter 6: Mixing HTML5 Video and Canvas

startYOffset
The number of pieces from the top of the canvas to the location where we will start
drawing the grid of puzzle pieces

partWidth
The width of each puzzle piece

partHeight
The height of each puzzle piece

board
A two-dimensional array that holds the puzzle pieces

The following code includes values for each variable:

var rows = 4;
var cols = 4;
var xPad = 10;
var yPad = 10;
var startXOffset = 10;
var startYOffset = 10;
var partWidth = videoElement.width/cols;
var partHeight = videoElement.height/rows;
var board = new Array();

Next we need to initialize the board array and fill it with some dynamic objects that
represent each piece of the puzzle. We loop through the number of cols in the board
and create rows amount of dynamic objects in each one. The dynamic objects we are
creating have these properties:

Figure 6-10. Video puzzle

Video on the Canvas Examples | 295

finalCol
The final column-resting place of the piece when the puzzle is complete. We use
this value to figure out what part of the video cut out to make this piece.

finalRow
The final row-resting place of the piece when the puzzle is complete. We use this
value to figure out what part of the video cut out to make this piece.

selected
A Boolean that is initially set to false. We will use this to see whether we should
highlight a piece or switch two pieces when the user clicks a piece.

Notice that we use two nested for:next loops to fill the board array with these objects.
Familiarize yourself with this construct because we use it many times in this game. Two
nested loops used like this are particularly useful for games and apps that require a 2D
grid in order to be displayed and manipulated:

for (var i = 0; i < cols; i++) {
 board[i] = new Array();
 for (var j =0; j < rows; j++) {
 board[i][j] = { finalCol:i,finalRow:j,selected:false };
 }
}

Now that we have the board array initialized, we call randomizeBoard() (we will discuss
this function shortly), which mixes up the puzzle by randomly placing the pieces on
the screen. We finish the setup section of the game by adding an event listener for the
mouseup event (when the user releases the mouse button), and by setting an interval to
call drawScreen() every 33 milliseconds:

board = randomizeBoard(board);

theCanvas.addEventListener("mouseup",eventMouseUp, false);

setInterval(drawScreen, 33);

Randomizing the puzzle pieces

The randomizeBoard() function requires you to pass in the board variable so we can
operate on it. We’ve set up the function this way so it will be portable to other
applications.

To randomize the puzzle pieces, we first need to set up an array named newBoard that
will hold the randomized puzzle pieces. newBoard will be what we call a parallel array.
Its purpose is to become the original array—but randomized. We then create a local
cols variable and initialize it to the length of the board array that was passed in to the
function, and a local rows variable, initialized to the length of the first column—
board[0]—in the array. This works because all of our rows and columns are the same
length, so the number of rows in the first column is the same as all the others. We now
have the building blocks required to randomize the pieces:

296 | Chapter 6: Mixing HTML5 Video and Canvas

function randomizeBoard(board) {
 var newBoard = new Array();
 var cols = board.length;
 var rows = board[0].length

Next, we loop through every column and row, randomly choosing a piece from the
board array and moving it into newBoard:

 for (var i = 0; i < cols; i++) {

We use two nested for:next loops here once again.

Every time we come to an iteration of the outer nested loop, we create a new array that
we will fill up in the second nested loop. Then we drop into that nested loop. The
found variable will be set to true when we have found a random location to place the
piece in the newBoard array. The rndRow and rndCol variables hold the random values
we will create to try and find a random location for the puzzle pieces:

newBoard[i] = new Array();
 for (var j =0; j < rows; j++) {
 var found = false;
 var rndCol = 0;
 var rndRow = 0;

Now we need to find a location in newBoard in which to put the puzzle piece from the
board array. We use a while() loop that continues to iterate as long as the found variable
is false. To find a piece to move, we randomly choose a row and column, and then use
them to see whether that space (board[rndCol][rndRow]) is set to false. If it is not
false, we have found a piece to move to the newBoard array. We then set found equal
to true so we can get out of the while() loop and move to the next space in newBoard
that we need to fill:

 while (!found) {
 var rndCol = Math.floor(Math.random() * cols);
 var rndRow = Math.floor(Math.random() * rows);
 if (board[rndCol][rndRow] != false) {
 found = true;
 }
 }

Finally, we move the piece we found in board to the current location we are filling in
newBoard. Then, we set the piece in the board array to false so that when we test for the
next piece, we won’t try to use the same piece we just found. When we are done filling
up newBoard, we return it as the newly randomized array of puzzle pieces:

 newBoard[i][j] = board[rndCol][rndRow];
 board[rndCol][rndRow] = false;
 }

Video on the Canvas Examples | 297

 }

 return newBoard;

 }

Drawing the screen

The drawScreen() function is the heart of this application. It is called on an interval,
and then used to update the video frames and to draw the puzzle pieces on the screen.
A good portion of drawScreen() looks like applications we have built many times al-
ready in this book. When it begins, we draw the background and a bounding box on
the screen:

function drawScreen () {

 //Background
 context.fillStyle = '#303030';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#FFFFFF';
 context.strokeRect(5, 5, theCanvas.width−10, theCanvas.height−10);

However, the primary work of this function is—you guessed it—another set of two
nested for:next loops that draw the puzzle pieces onto the canvas. This set needs to
do three things:

1. Draw a grid of puzzle pieces on the canvas based on their placement in the board
two-dimensional array.

2. Find the correct part of the video to render for each piece based on the finalCol
and finalRow properties we set in the dynamic object for each piece.

3. Draw a yellow box around the piece that has its selected property set to true.

We start our loop by finding the x and y (imageX, imageY) locations to “cut” the puzzle
piece from the video object. We do this by taking the finalRow and finalCol properties
of the dynamic piece objects we created, and multiplying them by the partWidth and
partHeight, respectively. We then have the origin point (top-left x and y locations) for
the piece of the video to display:

for (var c = 0; c < cols; c++) {
 for (var r = 0; r < rows; r++) {

 var tempPiece = board[c][r];
 var imageX = tempPiece.finalCol*partWidth;
 var imageY = tempPiece.finalRow*partHeight;

Now that we know the origin point of the video we will display for a particular piece
of the puzzle, we need to know where it will be placed on the canvas. While the code
below might look confusing, it’s really just simple arithmetic. To find the x location
(placeX) of a piece, multiply the partWidth times the current iterated column (c), then
add the current iterated column multiplied by the xPad (the number of pixels between

298 | Chapter 6: Mixing HTML5 Video and Canvas

each piece), and add the startXOffset, which is the x location of the upper-left corner
of the entire board of pieces. Finding placeY is very similar, but you use the current row
(r), yPad, and partHeight in the calculation:

var placeX = c*partWidth+c*xPad+startXOffset;
var placeY = r*partHeight+r*yPad+startYOffset;

Now it’s time to draw the piece on the canvas. We need to “cut” out the part of the
video that we will display for each piece of the puzzle (we won’t actually cut anything
though). We will again use the drawImage() function, as we have many other times
already. However, now we use the version of drawImage() that accepts nine parameters:

videoElement
The image that we are going to display; in this case, it is the video.

imageX
The x location of the upper-right order of the part of the image to display.

imageY
The y location of the upper-right order of the part of the image to display.

partWidth
The width from the x location of the rectangle to display.

partHeight
The height from the y location of the rectangle to display.

placeX
The x location to place the image on the canvas.

placeY
The y location to place the image on the canvas.

partWidth
The width of the image as displayed on the canvas.

partHeight
The height of the image as displayed on the canvas.

We’ve already discussed how we calculated most of these values, so it is just a matter
of knowing the drawImage() API function and plugging in the variables:

context.drawImage(videoElement, imageX, imageY, partWidth, partHeight,
 placeX, placeY, partWidth, partHeight);

There is one last thing we are going to do in this function. If a puzzle piece is marked
as “selected” (the selected Boolean property is true), we will draw a yellow box around
the piece:

 if (tempPiece.selected) {

 context.strokeStyle = '#FFFF00';
 context.strokeRect(placeX, placeY, partWidth, partHeight);

 }
 }

Video on the Canvas Examples | 299

 }

}

Detecting mouse interactions and the canvas

Recall that back in the canvasApp() function, we set an event listener for the mouseup
action with the event handler function set to eventMouseUp. We now need to create that
function:

theCanvas.addEventListener("mouseup",eventMouseUp, false);

The first thing we do in the eventMouseUp() function is test to find the x and y locations
of the mouse pointer when the button was pressed. We will use those coordinates to
figure out whether the user clicked on any of the puzzle pieces.

Since some browsers support the layerX/layerY properties of the event object, and
others support the offsetX/offsetY properties, we need to support both. No matter
which one is set, we will use those properties to set our mouseX and mouseY variables to
the x and y locations of the mouse pointer:

function eventMouseUp(event) {

 var mouseX;
 var mouseY;
 var pieceX;
 var pieceY;
 if (event.layerX || event.layerX == 0) { //Firefox
 mouseX = event.layerX ;
 mouseY = event.layerY;
 } else if (event.offsetX || event.offsetX == 0) { // Opera
 mouseX = event.offsetX;
 mouseY = event.offsetY;
 }

Creating hit test point-style collision detection

Now that we know where the user clicked, we need to test whether that location “hits”
any of the puzzle pieces. If so, we set the selected property of that piece to true. What
we are going to perform is a simple hit test point-style hit detection. It will tell us whether
the x,y position (point) of the mouse is inside (hits) any one of the puzzle pieces when
the mouse button is clicked.

First, we create a local variable named selectedList that we will use when we need to
swap the pieces in the board array. Next, we will use a set of two nested for:next loops
to traverse through all the pieces in the board array. Inside the for:next loops, the first
thing we do is find the top-left corner x and y points of the current piece pointed to
by board[c][r]. We calculate those values and put them into the placeX and placeY
variables:

300 | Chapter 6: Mixing HTML5 Video and Canvas

 var selectedList= new Array();
 for (var c = 0; c < cols; c++) {

 for (var r =0; r < rows; r++) {
 pieceX = c*partWidth+c*xPad+startXOffset;
 pieceY = r*partHeight+r*yPad+startYOffset;

Next, we use those calculated values to test for a hit test point collision. We do this
with a semicomplicated if:then statement that tests the following four conditions
simultaneously:

mouseY >= pieceY
The mouse pointer lies lower than or equal to the top of the piece.

mouseY <= pieceY+partHeight
The mouse pointer lies above or equal to the bottom of the piece.

mouseX >= pieceX
The mouse pointer lies to the right or equal to the left side of the piece.

mouseX <= pieceX+partWidth
The mouse pointer lies to the left or equal to the right side of the piece.

All of the above conditions must evaluate to true for a hit to be registered on any one
piece on the board:

if ((mouseY >= pieceY) && (mouseY <= pieceY+partHeight) && (mouseX >= pieceX) &&
 (mouseX <= pieceX+partWidth)) {

If all these conditions are true, we set the selected property of the piece object to true
if it was already false, or we set it to false if it was already true. This allows the user
to “deselect” the selected piece if he has decided not to move it:

 if (board[c][r].selected) {
 board[c][r].selected = false;

 } else {
 board[c][r].selected = true;

 }
}

At the end of the nested for:next loop, we make sure to test each piece to see whether
its selected property is true. If so, we push it into the selectedList local array so we
can perform the swap operation on the pieces:

 if (board[c][r].selected) {
 selectedList.push({col:c,row:r})
 }

 }

}

Video on the Canvas Examples | 301

Swapping two elements in a two-dimensional array

Now we need to test to see whether two pieces have been marked as selected. If so,
we swap the positions of those pieces. In this way, it appears that the player is clicking
on puzzle pieces and changing their locations to try to solve the puzzle.

To achieve the swap, we use a classic three-way swap programming construct utilizing
a temporary variable, tempPiece1, as a placeholder for the values we are going to swap.
First, we need to create a couple variables to hold the selected pieces. We will use
selected1 and selected2 for that purpose. Next, we move the reference to the piece
represented by selected1 into the tempPiece1 variable:

if (selectedList.length == 2) {
 var selected1 = selectedList[0];
 var selected2 = selectedList[1];
 var tempPiece1 = board[selected1.col][selected1.row];
 board[selected1.col][selected1.row] =

Next, we move the piece referenced by selected2 to the location in the board array of
the piece represented by selected1 (the first swap). Then we apply the piece referenced
in selected1 to the position represented by selected2 (the second swap). Finally, now
that they are swapped, we make sure to set the selected properties of both pieces to
false:

 board[selected2.col][selected2.row];
 board[selected2.col][selected2.row] = tempPiece1;
 board[selected1.col][selected1.row].selected = false;
 board[selected2.col][selected2.row].selected = false;
 }

 }

This part of the function works because we have limited the number of
pieces that can be selected to 2. For a game such as poker, which requires
the player to select five cards, you would use a slightly different algo-
rithm that tests for 5 cards instead of 2, and then calculate the value of
the hand.

Testing the game

Believe it or not, that is all the code we need to talk about—the rest you have seen many
times before. Try running the game (CH6EX10.html). When it loads, you should see
the video organized in a 16-piece grid. Each part of the video will be playing, just like
one of those magic tricks where a woman appears to be separated into multiple boxes
but her legs, arms, and head are still moving. In fact, this game is sort of like one of
those magic tricks because, in reality, the video was never “cut” in any way. We simply
display the parts of the video to make it appear to be cut into 16 independent, moving
pieces that can be swapped to re-form the original video.

Example 6-10 shows the full code listing for the Video Puzzle application.

302 | Chapter 6: Mixing HTML5 Video and Canvas

Example 6-10. Video puzzle

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH6EX10: Video Puzzle</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
var videoElement;
var videoDiv;
function eventWindowLoaded() {

 videoElement = document.createElement("video");
 videoDiv = document.createElement('div');
 document.body.appendChild(videoDiv);
 videoDiv.appendChild(videoElement);
 videoDiv.setAttribute("style", "display:none;");
 var videoType = supportedVideoFormat(videoElement);
 if (videoType == "") {
 alert("no video support");
 return;
 }
 videoElement.setAttribute("src", "muirbeach." + videoType);
 videoElement.addEventListener("canplaythrough",videoLoaded,false);

}

function supportedVideoFormat(video) {
 var returnExtension = "";
 if (video.canPlayType("video/webm") =="probably" ||
 video.canPlayType("video/webm") == "maybe") {
 returnExtension = "webm";
 } else if(video.canPlayType("video/mp4") == "probably" ||
 video.canPlayType("video/mp4") == "maybe") {
 returnExtension = "mp4";
 } else if(video.canPlayType("video/ogg") =="probably" ||
 video.canPlayType("video/ogg") == "maybe") {
 returnExtension = "ogg";
 }

 return returnExtension;

}

function canvasSupport () {
 return Modernizr.canvas;
}

function videoLoaded() {
 canvasApp();

}

Video on the Canvas Examples | 303

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 function drawScreen () {

 //Background
 context.fillStyle = '#303030';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#FFFFFF';
 context.strokeRect(5, 5, theCanvas.width−10, theCanvas.height−10);

 for (var c = 0; c < cols; c++) {
 for (var r = 0; r < rows; r++) {

 var tempPiece = board[c][r];
 var imageX = tempPiece.finalCol*partWidth;
 var imageY = tempPiece.finalRow*partHeight;
 var placeX = c*partWidth+c*xPad+startXOffset;
 var placeY = r*partHeight+r*yPad+startYOffset;
 //context.drawImage(videoElement , imageX, imageY, partWidth, partHeight);
 context.drawImage(videoElement, imageX, imageY, partWidth, partHeight,
 placeX, placeY, partWidth, partHeight);
 if (tempPiece.selected) {

 context.strokeStyle = '#FFFF00';
 context.strokeRect(placeX, placeY, partWidth, partHeight);

 }
 }
 }

 }

 function randomizeBoard(board) {
 var newBoard = new Array();
 var cols = board.length;
 var rows = board[0].length
 for (var i = 0; i < cols; i++) {
 newBoard[i] = new Array();
 for (var j =0; j < rows; j++) {
 var found = false;
 var rndCol = 0;
 var rndRow = 0;
 while (!found) {
 var rndCol = Math.floor(Math.random() * cols);
 var rndRow = Math.floor(Math.random() * rows);
 if (board[rndCol][rndRow] != false) {
 found = true;
 }
 }

304 | Chapter 6: Mixing HTML5 Video and Canvas

 newBoard[i][j] = board[rndCol][rndRow];
 board[rndCol][rndRow] = false;
 }

 }

 return newBoard;

 }

 function eventMouseUp(event) {

 var mouseX;
 var mouseY;
 var pieceX;
 var pieceY;
 if (event.layerX || event.layerX == 0) { // Firefox
 mouseX = event.layerX ;
 mouseY = event.layerY;
 } else if (event.offsetX || event.offsetX == 0) { // Opera
 mouseX = event.offsetX;
 mouseY = event.offsetY;
 }
 var selectedList= new Array();
 for (var c = 0; c < cols; c++) {

 for (var r =0; r < rows; r++) {
 pieceX = c*partWidth+c*xPad+startXOffset;
 pieceY = r*partHeight+r*yPad+startYOffset;
 if ((mouseY >= pieceY) && (mouseY <= pieceY+partHeight) &&
 (mouseX >= pieceX) && (mouseX <= pieceX+partWidth)) {

 if (board[c][r].selected) {
 board[c][r].selected = false;

 } else {
 board[c][r].selected = true;

 }
 }
 if (board[c][r].selected) {
 selectedList.push({col:c,row:r})
 }

 }

 }
 if (selectedList.length == 2) {
 var selected1 = selectedList[0];
 var selected2 = selectedList[1];
 var tempPiece1 = board[selected1.col][selected1.row];
 board[selected1.col][selected1.row] = board[selected2.col][selected2.row];
 board[selected2.col][selected2.row] = tempPiece1;
 board[selected1.col][selected1.row].selected = false;
 board[selected2.col][selected2.row].selected = false;

Video on the Canvas Examples | 305

 }

 }

 var theCanvas = document.getElementById("canvasOne");
 var context = theCanvas.getContext("2d");
 videoElement.play();

 //Puzzle Settings

 var rows = 4;
 var cols = 4;
 var xPad = 10;
 var yPad = 10;
 var startXOffset = 10;
 var startYOffset = 10;
 var partWidth = videoElement.width/cols;
 var partHeight = videoElement.height/rows;
 //320×240
 partWidth = 80;
 partHeight = 60;
 var board = new Array();

 //Initialize Board

 for (var i = 0; i < cols; i++) {
 board[i] = new Array();
 for (var j =0; j < rows; j++) {
 board[i][j] = { finalCol:i,finalRow:j,selected:false };
 }
 }

 board = randomizeBoard(board);

 theCanvas.addEventListener("mouseup",eventMouseUp, false);

 setInterval(drawScreen, 33);

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="370" height="300">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

306 | Chapter 6: Mixing HTML5 Video and Canvas

Creating Video Controls on the Canvas
One obvious use of the HTML5 Canvas video display functionality is to create custom
video controls to play, pause, stop, etc. You may have already noticed that when a video
is rendered on the canvas, it does not retain any of the HTML5 video controls. If you
want to create controls on the canvas, you need to make them yourself. Thankfully, we
have already learned most everything we need to do this—now we just have to put it
all together.

Creating video buttons

We are going to use some video control buttons that were created specifically for this
example. Figure 6-11 shows a tile sheet that consists of off and on states for play, pause,
and stop. The top row images are the on state; the bottom row images are the off state.

Figure 6-11. Video control button tile sheet

We don’t use the off state of the stop button in this application, but we
included it in case you—the amazing reader and programmer that you
are—want to use it later.

We will load this image dynamically onto the canvas, and then place each 32×32 button
onto the canvas individually. We use the width and height to calculate which part of
the image to display as a control.

Preloading the buttons

The first thing we need to do is preload the button tile sheet. Since we are already testing
for the video to preload before we display the canvas, we need a slightly new strategy
to preload multiple objects. For this example, we will use a counter variable named
loadCount that we will increment each time we detect that an item has loaded. In con-
junction with that variable, we will create another named itemsToLoad, which will hold
the number of things we are preloading. For this app that number is two: the video and
the tile sheet. These two variables are created outside of all functions at the top of our
JavaScript:

var loadCount = 0;
var itemsToLoad = 2;

Video on the Canvas Examples | 307

Along with videoElement and videoDiv, we also create another new variable, button
Sheet. This is a reference to the image we load that holds the graphical buttons we will
use for the video player interface:

var videoElement;
var videoDiv;
var buttonSheet

We now must make some updates to our standard eventWindowLoaded() function that
we have used for most of this chapter. First, we are going to change the canplay event
handler for the video to a new function, itemLoaded:

videoElement.addEventListener("canplay",itemLoaded,false);

We used the canplay event instead of canplaythrough because, most of the time, a user
wants to start watching a video as soon as enough data has been buffered to play, and
not after the entire video has loaded.

Next, we need to load our tile sheet. We create a new Image object and set the src
property to videobuttons.png, which is the file shown in Figure 6-11. We also set its
onload event handler to itemLoaded, just like the video:

 buttonSheet = new Image();
 buttonSheet.src = "videobuttons.png";
 buttonSheet.onload = itemLoaded;
}

Finally, we create the itemLoaded() event handler function. When this function is called,
we increment the loadCount variable and test it against the itemsToLoad variable.

loadCount should never be greater than itemsToLoad if your application
is running correctly. However, we find it safer to limit the use of the
strict == test if possible. Why? Because if somehow, somewhere, some-
thing gets counted twice, the app will never load properly.

If it is equal to or greater than itemsToLoad, we call canvasApp() to start the application:

function itemLoaded() {
 loadCount++;
 if (loadCount >= itemsToLoad) {
 canvasApp();
 }
}

Placing the buttons

We need to set some variables in canvasApp() that will represent the locations of the
three buttons we will display: play, pause, and stop. We start by specifying the standard
button width and height as the variables bW and bH. All the images in the videobut-
tons.png tile sheet are 32×32 pixels, so we will set bW and bH accordingly. Then, we
proceed to create variables that represent the x and y locations of each button: playX,

308 | Chapter 6: Mixing HTML5 Video and Canvas

playY, pauseX, pauseY, stopX, and stopY. We could use literal values; however, these
variables will make a couple of the more complicated calculations easier to swallow:

var bW = 32;
var bH = 32;
var playX = 190;
var playY = 300;
var pauseX = 230;
var pauseY = 300;
var stopX = 270
var stopY = 300;

In the drawImage() function, we need to test for the current state of the playing video
and render the buttons accordingly. For this application, we will use the paused state
of the video object’s attribute to render the buttons properly in their “up” or “down”
states.

When a video first loads on the page and is not yet playing, its paused attribute is set
to true. When a video is playing, its paused attribute is set to false. Knowing this, we
can create the actions for these simple buttons.

First, if we know that the video is not in a paused state, it must be playing, so we display
the “down” version of the play button. The “down” position is in the second row on
the tile sheet in Figure 6-11. The third parameter of the call to the drawImage() function
is 32 because that is where the y position of the image we want to display starts on the
tile sheet. If paused is true, it means the video is not playing, so we display the “up”
version of the play button. It starts at y position 0:

if (!videoElement.paused) {
 context.drawImage(buttonSheet, 0,32,bW,bH,playX,playY,bW,bH); //Play Down

} else {
 context.drawImage(buttonSheet, 0,0,bW,bH,playX,playY,bW,bH); //Play up
}

Displaying the pause button is simply the opposite of play. If the video paused property
is true, we display the “down” version of the pause button. If the video is playing, it
means the pause property is false, so we display the “up” version. Notice that the
second parameter is 32 because to display the pause buttons in the tile sheet, we need
to skip over the play button and start at the x position of the pause button:

if (videoElement.paused) {
 context.drawImage(buttonSheet, 32,32,bW,bH,pauseX,pauseY,bW,bH); //down
} else {
 context.drawImage(buttonSheet, 32,0,bW,bH,pauseX,pauseY,bW,bH); // up
}

context.drawImage(buttonSheet, 64,0,bW,bH,stopX,stopY,bW,bH); // Stop up

Video on the Canvas Examples | 309

Listening for the button presses

We also need to listen for the mouse button click. This process is very similar to how
we accomplished much the same thing in the Video Puzzle application. First, back in
the canvasApp() function, we set an event handler, eventMouseUp(), for the mouseup
event:

theCanvas.addEventListener("mouseup",eventMouseUp, false);

The eventMouseUp() function works very similar to the same function we created earlier
for Video Puzzle. First, we find the mouse pointer’s x and y positions based on the way
the browser tracks those values, and we put those values into local mouseX and mouseY
variables:

function eventMouseUp(event) {

 var mouseX;
 var mouseY;
 if (event.layerX || event.layerX == 0) { // Firefox
 mouseX = event.layerX ;
 mouseY = event.layerY;
 } else if (event.offsetX || event.offsetX == 0) { // Opera
 mouseX = event.offsetX;
 mouseY = event.offsetY;
 }
 //Hit Play

Next, we test for a hit test point inside each button by checking the bounds (right, left,
top, bottom) on the canvas to see whether the mouse pointer was over any of our
buttons when it was clicked. If so, we detect a hit.

First, we test the play button. Notice that those variables we created to represent the
upper-left x and y locations of the button (playX and playY) help us make this calcula-
tion. They also help us because the names of the buttons self-document what we are
trying to accomplish in each test of this function.

If the play button has been clicked, and the video paused property is true, we call the
play() function of the video to start playing:

//Hit Play
 if ((mouseY >= playY) && (mouseY <= playY+bH) && (mouseX >= playX) &&
 (mouseX <= playX+bW)) {
 if (videoElement.paused) {
 videoElement.play();

 }

310 | Chapter 6: Mixing HTML5 Video and Canvas

If the stop button was clicked, we set the paused property of the video to true, and set
the currentTime property to 0 so that the video will return to the first frame:

//Hit Stop

 if ((mouseY >= stopY) && (mouseY <= stopY+bH) && (mouseX >= stopX) &&
 (mouseX <= stopX+bW)) {

 videoElement.pause();
 videoElement.currentTime = 0;
 }

If the pause button is clicked and the paused property of the video is false, we call the
pause() function of the video to—you guessed it—pause the video on the current frame.
If the paused property is true, we call the play() function of the video so it will resume
playing:

//Hit Pause
 if ((mouseY >= pauseY) && (mouseY <= pauseY+bH) && (mouseX >= pauseX) &&
 (mouseX <= pauseX+bW)) {

 if (videoElement.paused == false) {
 videoElement.pause();
 } else {
 videoElement.play();
 }

 }

Figure 6-12 shows what the canvas looks like when the video is displayed with controls.

You will notice an odd relationship between the play and pause buttons.
When one is “on,” the other is “off.” This is because we have only one
property to look at: paused. There is a property named playing that exists
in the HTML5 specification, but it did not work in all browsers, so we
only used paused. In reality, you could have only one button and swap
out the play or paused graphic depending on the paused state. That
would make these controls work more like the default HTML video
controls.

Video on the Canvas Examples | 311

Figure 6-12. Canvas video player buttons

Example 6-11 shows the full source code for this application.

Example 6-11. Canvas video with controls

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH6EX11: Canvas Video With Controls</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
var loadCount= 0;
var itemsToLoad = 2;
var videoElement;
var videoDiv;
var buttonSheet

function eventWindowLoaded() {
 videoElement = document.createElement("video");
 videoDiv = document.createElement('div');
 document.body.appendChild(videoDiv);
 videoDiv.appendChild(videoElement);
 videoDiv.setAttribute("style", "display:none;");
 var videoType = supportedVideoFormat(videoElement);
 if (videoType == "") {
 alert("no video support");
 return;

312 | Chapter 6: Mixing HTML5 Video and Canvas

 }
 videoElement.setAttribute("src", "muirbeach." + videoType);
 videoElement.addEventListener("canplay",itemLoaded,false);
 buttonSheet = new Image();
 buttonSheet.onload = itemLoaded;
 buttonSheet.src = "videobuttons.png";
}

function supportedVideoFormat(video) {
 var returnExtension = "";
 if (video.canPlayType("video/webm") =="probably" ||
 video.canPlayType("video/webm") == "maybe") {
 returnExtension = "webm";
 } else if(video.canPlayType("video/mp4") == "probably" ||
 video.canPlayType("video/mp4") == "maybe") {
 returnExtension = "mp4";
 } else if(video.canPlayType("video/ogg") =="probably" ||
 video.canPlayType("video/ogg") == "maybe") {
 returnExtension = "ogg";
 }

 return returnExtension;

}

function canvasSupport () {
 return Modernizr.canvas;
}
function itemLoaded() {
 loadCount++;
 if (loadCount >= itemsToLoad) {
 canvasApp();
 }

}
function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 function drawScreen () {

 //Background
 context.fillStyle = '#ffffaa';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(5, 5, theCanvas.width−10, theCanvas.height−10);
 //video
 context.drawImage(videoElement , 85, 30);
 //Draw Buttons
 //Play

Video on the Canvas Examples | 313

 if (!videoElement.paused) {
 context.drawImage(buttonSheet, 0,32,bW,bH,playX,playY,bW,bH); //Play Down

 } else {
 context.drawImage(buttonSheet, 0,0,bW,bH,playX,playY,bW,bH); //Play up

 }

 if (videoElement.paused) {
 context.drawImage(buttonSheet, 32,32,bW,bH,pauseX,pauseY,bW,bH); // Pause down
 } else {
 context.drawImage(buttonSheet, 32,0,bW,bH,pauseX,pauseY,bW,bH); // Pause up
 }

 context.drawImage(buttonSheet, 64,0,bW,bH,stopX,stopY,bW,bH); // Stop up

 }

 function eventMouseUp(event) {

 var mouseX;
 var mouseY;

 if (event.layerX || event.layerX == 0) { // Firefox
 mouseX = event.layerX ;
 mouseY = event.layerY;
 } else if (event.offsetX || event.offsetX == 0) { // Opera
 mouseX = event.offsetX;
 mouseY = event.offsetY;
 }

 //Hit Play
 if ((mouseY >= playY) && (mouseY <= playY+bH) && (mouseX >= playX) &&
 (mouseX <= playX+bW)) {
 if (videoElement.paused) {
 videoElement.play();

 }

 }

 //Hit Stop

 if ((mouseY >= stopY) && (mouseY <= stopY+bH) && (mouseX >= stopX) &&
 (mouseX <= stopX+bW)) {

 videoElement.pause();
 videoElement.currentTime = 0;
 }

314 | Chapter 6: Mixing HTML5 Video and Canvas

 //Hit Pause
 if ((mouseY >= pauseY) && (mouseY <= pauseY+bH) && (mouseX >= pauseX) &&
 (mouseX <= pauseX+bW)) {

 if (videoElement.paused == false) {
 videoElement.pause();
 } else {
 videoElement.play();
 }

 }

 }

 var theCanvas = document.getElementById("canvasOne");
 var context = theCanvas.getContext("2d");

 var bW = 32;
 var bH = 32;
 var playX = 190;
 var playY = 300;
 var pauseX = 230;
 var pauseY = 300;
 var stopX = 270
 var stopY = 300;

 theCanvas.addEventListener("mouseup",eventMouseUp, false);

 setInterval(drawScreen, 33);
}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="350">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Video on the Canvas Examples | 315

Animation Revisited: Moving Videos
Now we are going to revisit the bouncing balls demo from Chapter 5 to show you how
you can achieve the same effect with images and videos. Since we covered this in detail
in Example 5-5 (CH5EX5.html), we don’t need to examine all the code—just the
changes that make the videos move.

Remember that videos are drawn in much the same way as images, so
with very few changes this application would work just as well with a
static image.

While there are a few other changes, the most important is in the drawScreen() function
when we draw the videos onto the canvas. Recall that in Chapter 5 we created an array
named balls and a dynamic object to hold the properties of each ball that looked like
this:

tempBall = {x:tempX,y:tempY,radius:tempRadius, speed:tempSpeed, angle:tempAngle,
 xunits:tempXunits, yunits:tempYunits}

For videos, we will create a similar array, named videos, but we will alter the dynamic
object:

tempvideo = {x:tempX,y:tempY,width:180, height:120, speed:tempSpeed, angle:tempAngle,
 xunits:tempXunits, yunits:tempYunits}

The big difference here is that we no longer need a radius that represents the size of
the ball; instead, we need the width and height so we can render the video to our desired
size in the drawScreen() function.

Back in Chapter 5 we used the canvas drawing command to draw balls on the screen
like this:

context.beginPath();
context.arc(ball.x,ball.y,ball.radius,0,Math.PI*2,true);
context.closePath();
context.fill();

To draw videos, we need to change the code:

context.drawImage(videoElement, video.x, video.y, video.width, video.height);

That is pretty much all you need to do! There are some others changes here (e.g., we
start all the videos in the center of the screen before they start moving), but the items
mentioned above are the main things you need to concentrate on to move video, not
yellow balls, around the screen. Figure 6-13 shows what the example looks like with
bouncing videos instead of balls. You can see the full code in Example 6-12.

316 | Chapter 6: Mixing HTML5 Video and Canvas

Figure 6-13. Canvas video animation demo

Example 6-12. Multiple video bounce

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH6EX12: Multiple Video Bounce</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);

var videoElement;
var videoDiv;
function eventWindowLoaded() {

 videoElement = document.createElement("video");
 var videoDiv = document.createElement('div');
 document.body.appendChild(videoDiv);

Animation Revisited: Moving Videos | 317

 videoDiv.appendChild(videoElement);
 videoDiv.setAttribute("style", "display:none;");
 var videoType = supportedVideoFormat(videoElement);
 if (videoType == "") {
 alert("no video support");
 return;
 }
 videoElement.setAttribute("src", "muirbeach." + videoType);
 videoElement.addEventListener("canplaythrough",videoLoaded,false);

}

function supportedVideoFormat(video) {
 var returnExtension = "";
 if (video.canPlayType("video/webm") =="probably" ||
 video.canPlayType("video/webm") == "maybe") {
 returnExtension = "webm";
 } else if(video.canPlayType("video/mp4") == "probably" ||
 video.canPlayType("video/mp4") == "maybe") {
 returnExtension = "mp4";
 } else if(video.canPlayType("video/ogg") =="probably" ||
 video.canPlayType("video/ogg") == "maybe") {
 returnExtension = "ogg";
 }

 return returnExtension;

}

function canvasSupport () {
 return Modernizr.canvas;
}

function videoLoaded() {
 canvasApp();

}

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 function drawScreen () {

 context.fillStyle = '#000000';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = '#ffffff';
 context.strokeRect(1, 1, theCanvas.width-2, theCanvas.height-2);

 //Place videos
 context.fillStyle = "#FFFF00";
 var video;

318 | Chapter 6: Mixing HTML5 Video and Canvas

 for (var i =0; i <videos.length; i++) {
 video = videos[i];
 video.x += video.xunits;
 video.y += video.yunits;

 context.drawImage(videoElement ,video.x, video.y, video.width, video.height);

 if (video.x > theCanvas.width-video.width || video.x < 0) {
 video.angle = 180 - video.angle;
 updatevideo(video);
 } else if (video.y > theCanvas.height-video.height || video.y < 0) {
 video.angle = 360 - video.angle;
 updatevideo(video);
 }
 }

 }

 function updatevideo(video) {

 video.radians = video.angle * Math.PI/ 180;
 video.xunits = Math.cos(video.radians) * video.speed;
 video.yunits = Math.sin(video.radians) * video.speed;

 }

 var numVideos = 12 ;
 var maxSpeed = 10;
 var videos = new Array();
 var tempvideo;
 var tempX;
 var tempY;
 var tempSpeed;
 var tempAngle;
 var tempRadians;
 var tempXunits;
 var tempYunits;

 var theCanvas = document.getElementById("canvasOne");
 var context = theCanvas.getContext("2d");
 videoElement.play();

 for (var i = 0; i < numVideos; i++) {

 tempX = 160 ;
 tempY = 190 ;
 tempSpeed = 5;
 tempAngle = Math.floor(Math.random()*360);
 tempRadians = tempAngle * Math.PI/ 180;
 tempXunits = Math.cos(tempRadians) * tempSpeed;
 tempYunits = Math.sin(tempRadians) * tempSpeed;

Animation Revisited: Moving Videos | 319

 tempvideo = {x:tempX,y:tempY,width:180, height:120, speed:tempSpeed, angle:tempAngle,
 xunits:tempXunits, yunits:tempYunits}
 videos.push(tempvideo);
 }

 setInterval(drawScreen, 33);

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

The HTML5 video element combined with the canvas is an exciting,
emerging area that is being explored on the Web as you read this. One
great example of this is the exploding 3D video at CraftyMind.com:
http://www.craftymind.com/2010/04/20/blowing-up-html5-video-and
-mapping-it-into-3d-space/.

What’s Next?
In this chapter we introduced the HTML <video> tag and showed some basic ways that
it could be used on an HTML page, including how to manipulate loaded video in
numerous ways. While we showed you how to do some pretty cool stuff with the video
and HTML5 Canvas, this is really just the tip of the iceberg. We believe that these two
very powerful and flexible new features of HTML5 (video and the canvas) will prove
to be a very potent combination for web applications of the future. In the next chapter,
we will dive into HTML5 audio and how it can be used with applications created on
the canvas.

320 | Chapter 6: Mixing HTML5 Video and Canvas

CHAPTER 7

Working with Audio

You can’t physically manipulate audio with HTML5 Canvas as directly as you can
video, but many canvas applications can use that extra dimension of sound. Audio is
represented by the HTMLAudioElement object manipulated through JavaScript, and by
the <audio> tag in HTML5. There is no Canvas API for audio nor, really, is one neces-
sary. However, there are many ways that you might want to use audio with HTML5
Canvas.

The Basic <audio> Tag
The basic usage of the <audio> tag in HTML5 is very similar to that of the <video> tag.
The only required property is src, which needs to point to an existing audio file to play
in the browser. Of course, it’s always nice to show some audio controls on the page,
and this can be accomplished using the controls Boolean, just as we did with <video>.

The code in Example 7-1 will load and play song1.ogg in a web browser that sup-
ports .ogg file playback, as shown in Figure 7-1. (Reminder: not all browsers support
all formats.)

Example 7-1. Basic HTML5 audio

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH7EX1: Basic HTML5 Audio</title>
</head>
<body>
<div>
<audio src="song1.ogg" controls>
Your browser does not support the audio element.
</audio>
</div>
</body>
</html>

321

Figure 7-1. The very basic HTML5 <audio> tag

Audio Formats
Similar to video formats, which we learned about in Chapter 6, not every web browser
supports every audio format. In fact, audio support appears to be in worse shape than
video. As you will soon discover in this chapter, audio is one place where HTML5 needs
some serious work. However, we will show you some strategies and workarounds for
making audio easier to use in your applications.

Supported Formats
Here is a quick chart to show you which audio formats are supported by which brows-
ers. We are not going to use version numbers here because we assume the latest version
of each product:

Platform .ogg .mp3 .wav

Chrome X X

Firefox X X

Safari X X

Opera X X

Internet Explorer 9 X X

The situation is much like that of the <video> tag. To support <audio> we will need to
use multiple separate formats for each piece of audio we want to play. To be on the
safe side, we will use three formats: .mp3, .ogg, and .wav.

Audacity
Fortunately, there is a great free audio tool available that will help you convert audio
into any format. In our case, we need to convert to .mp3, .ogg, and .wav.

Audacity (http://audacity.sourceforge.net/) is an open source, cross-platform project
designed to bring sophisticated audio editing to the desktop. The current version works
on Mac, Windows, and Linux.

Figure 7-2 shows a sample screen from Audacity. When you load a sound into Audacity,
it displays the waveform of the sound. You can manipulate the sound in many ways,
including trimming, splitting, and duplicating, and then add effects such as fade, echo,

322 | Chapter 7: Working with Audio

reverse, etc. After editing a sound, you export it to the sound format you would like to
create. In our case, that would be .ogg, .wav, and .mp3.

We don’t have the space here to fully describe how to use an audio tool
like Audacity, but we do need to give you one caveat: the distributed
version of Audacity does not support the export of audio in the .mp3
format. To export .mp3 audio, you will need to download the
LAME .mp3 encoder from http://lame.sourceforge.net/. LAME is also an
open source project.

Figure 7-2. Editing an audio file in Audacity

Example: Using All Three Formats
In Example 7-2, we are going to embed a 40-second song, song1, in an HTML5 page
and play it. To make sure song1 can play in as many browsers as possible, we are going
to embed it with three different sources. For this example, we are also going to set the
autoplay, loop, and controls properties so the song will start automatically, replay
when it reaches the end, and display the default browser audio controls. Here is the
code to embed song1:

Audio Formats | 323

<audio controls autoplay loop>
<source src="song1.mp3" type="audio/mp3">
<source src="song1.wav" type="audio/wav">
<source src="song1.ogg" type="audio/ogg">
</audio>

Just as we did with video, we have placed the audio type with the broad-
est support for iOS devices first in the list. This is because handheld
devices do not do well with multiple embedded sources.

We created .ogg, .wav, and .mp3 versions of the song using Audacity. Example 7-2 gives
the full code.

Example 7-2. Basic HTML5 audio revisited

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH7EX2: Basic HTML5 Audio Revisited</title>
</head>
<body>
<div>
<audio controls autoplay loop>
<source src="song1.mp3" type="audio/mp3">
<source src="song1.ogg" type="audio/ogg">
<source src="song1.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
</div>
</body>
</html>

song1 was created 10 years ago using Sonic Foundry’s Acid music-
looping software. Acid is an amazing tool for creating soundtracks be-
cause it can help even the musically inept (read: us) create songs that
sound perfect for games and applications. Acid is now sold by Sony for
Windows only. Songs can be created on the Mac in a similar way using
GarageBand.

Audio Tag Properties, Functions, and Events
Similar to the <video> tag, the <audio> tag in HTML5 is based on the HTMLAudio
Element DOM object, which is derived from HTMLMediaElement.

324 | Chapter 7: Working with Audio

Audio Functions
load()

Starts loading the sound file specified by the src property of the <audio> tag.

play()
Starts playing the sound file specified by the src property of the <audio> tag. If the
file is not ready, it will be loaded.

pause()
Pauses the playing audio file.

canPlayType()
Accepts a MIME type as a parameter, and returns the value maybe or probably if
the browser can play that type of audio file. It returns “” (an empty string) if it
cannot.

Important Audio Properties
There are many properties defined for the audio element in HTML5. We are going to
focus on the following because they are the most useful for the applications we will
build:

duration
The total length, in seconds, of the sound represented by the audio object.

currentTime
The current playing position, in seconds, of the playing audio file.

loop
true or false: whether the audio clip should start playing at the beginning when
currentTime reaches the duration.

autoplay
true or false: whether the audio should start playing automatically when it has
loaded.

muted
true or false. Setting this to true silences the audio object regardless of volume
settings

controls
true or false. Displays controls for an audio object in an HTML page. Controls
will not display on the canvas unless they are created in HTML (for example, with
a <div> overlay).

volume
The volume level of the audio object; the value must be between 0 and 1.

paused
true or false: whether the audio object is paused. Set with a call to the pause()
function.

Audio Tag Properties, Functions, and Events | 325

ended
true or false. Set when an audio object has played through its entire duration.

currentSrc
URL to the source file for the audio object.

preload
Specifies whether the media file should be loaded before the page is displayed. At
the time of this writing, this property has not been implemented across all browsers.

To see which properties and events of the HTMLMediaObject are suppor-
ted in which browsers, visit http://www.w3.org/2010/05/video/mediae
vents.html.

Important Audio Events
Many events are defined for the HTML5 audio element. We are going to focus on the
following events because they have proven to work when building audio applications:

progress
Raised when the browser is retrieving data while loading the file. (This still has
spotty support in browsers, so be careful with it.)

canplaythrough
Raised when the browser calculates that the media element could be played from
beginning to end if started immediately.

playing
Set to true when the audio is being played.

volumechange
Set when either the volume property or the muted property changes.

ended
Set when playback reaches the duration of the audio file and the file stops being
played.

Loading and Playing the Audio
We are going to use the canplaythrough and progress events to load <audio> before we
try to play it. Here is how we embed the audio for song1:

<audio id="theAudio" controls>
<source src="song1.mp3" type="audio/mp3">
<source src="song1.wav" type="audio/wav">
<source src="song1.ogg" type="audio/ogg">
Your browser does not support the audio element.
</audio>

326 | Chapter 7: Working with Audio

Similar to most of the applications we have built thus far in this book, we will create
event handlers for progress and canplaythrough once the window DOM object has fin-
ished loading, and then call the load() method of audioElement to force the audio file
to start loading:

window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 var audioElement = document.getElementById("theAudio");
 audioElement.addEventListener('progress',updateLoadingStatus,false);
 audioElement.addEventListener('canplaythrough',audioLoaded,false);
 audioElement.load();

}

When the canplaythrough event is dispatched, canvasApp() is called. Then, we start
playing the audio by retrieving a reference to the audio element in the HTML page
through the DOM, with a call to getElementById(). (We will create a variable named
audioElement that we will use throughout the canvas application to reference the
audio element in the HTML page.) We then call the play() function of audioElement:

var audioElement = document.getElementById("theAudio");
audioElement.play();

You may be wondering why we didn’t use the preload attribute of HTMLAudioElement
instead of forcing it to load by listening for the canplaythrough event. There are two
reasons for this, and both apply to the video element as well. First, you want to preload
so that you are sure the assets you need are available to your program at runtime.
Second, preloading ensures that the user will see something useful or interesting while
everything is loading. By using the standard preload attribute, you (in theory) force
your audio assets to load before the page loads. Because canvas apps are interactive
and may require many more assets than those loaded when the page loads, we avoid
the preload attribute and load the assets within the application.

Displaying Attributes on the Canvas
Now we are going to display the attribute values of an audio element playing on an
HTML page. In this example (CH7EX3.html), we are also going to display the audio
element in the HTML page so you can see the relationship between what is shown on
the canvas and the state of the <audio> tag in the page.

In the drawScreen() function we will add the following code to display the attributes
of the audioElement variable:

context.fillStyle = "#000000";
context.fillText ("Duration:" + audioElement.duration, 20 ,20);
context.fillText ("Current time:" + audioElement.currentTime, 20 ,40);
context.fillText ("Loop: " + audioElement.loop, 20 ,60);
context.fillText ("Autoplay: " +audioElement.autoplay, 20 ,80);
context.fillText ("Muted: " + audioElement.muted, 20 ,100);
context.fillText ("Controls: " + audioElement.controls, 20 ,120);
context.fillText ("Volume: " + audioElement.volume, 20 ,140);

Audio Tag Properties, Functions, and Events | 327

context.fillText ("Paused: " + audioElement.paused, 20 ,160);
context.fillText ("Ended: " + audioElement.ended, 20 ,180);
context.fillText ("Source: " + audioElement.currentSrc, 20 ,200);
context.fillText ("Can Play OGG: " + audioElement.canPlayType("audio/ogg"),
 20 ,220);
context.fillText ("Can Play WAV: " + audioElement.canPlayType("audio/wav"),
 20 ,240);
context.fillText ("Can Play MP3: " + audioElement.canPlayType("audio/mp3"),
 20 ,260);

You should already be familiar with most of these attributes. When you launch Exam-
ple 7-3 (CH7EX3.html), play with the audio controls in the browser. You will notice
that the changes are reflected by the attribute values displayed on the canvas. This is
just our first step toward integrating audio with the canvas, but it should give you a
good idea of how we will start to use audio elements and manipulate them through
JavaScript.

Figure 7-3 shows what this application looks like when it is executed in a web browser.

Figure 7-3. Showing audio properties on the canvas

There are also a few attributes displayed at the bottom of this list that we have not
discussed. They all come from calls to the canPlayType() function of HTMLAudio
Element. We are only displaying these right now, but in Example 7-3 we will make use
of this function to help us decide which sound to dynamically load in JavaScript.

Example 7-3. Audio properties and the canvas

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH7EX3: Audio Properties And The Canvas</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {

328 | Chapter 7: Working with Audio

 var audioElement = document.getElementById("theAudio");
 audioElement.addEventListener("progress",updateLoadingStatus,false);
 audioElement.addEventListener("canplaythrough",audioLoaded,false);
 audioElement.load();

}

function canvasSupport () {
 return Modernizr.canvas;
}

function updateLoadingStatus() {
 var loadingStatus = document.getElementById("loadingStatus");
 var audioElement = document.getElementById("theAudio");
 var percentLoaded = parseInt(((audioElement.buffered.end(0) /
 audioElement.duration) * 100));
 document.getElementById("loadingStatus").innerHTML = 'loaded '
 + percentLoaded + '%';

}

function audioLoaded() {

 canvasApp();

}

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 function drawScreen () {

 //Background
 context.fillStyle = "#ffffaa";
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);

 //Box
 context.strokeStyle = "#000000";
 context.strokeRect(5, 5, theCanvas.width−10, theCanvas.height−10);

 // Text
 context.fillStyle = "#000000";
 context.fillText ("Duration:" + audioElement.duration, 20 ,20);
 context.fillText ("Current time:" + audioElement.currentTime, 20 ,40);
 context.fillText ("Loop: " + audioElement.loop, 20 ,60);
 context.fillText ("Autoplay: " +audioElement.autoplay, 20 ,80);
 context.fillText ("Muted: " + audioElement.muted, 20 ,100);
 context.fillText ("Controls: " + audioElement.controls, 20 ,120);
 context.fillText ("Volume: " + audioElement.volume, 20 ,140);
 context.fillText ("Paused: " + audioElement.paused, 20 ,160);
 context.fillText ("Ended: " + audioElement.ended, 20 ,180);

Audio Tag Properties, Functions, and Events | 329

 context.fillText ("Source: " + audioElement.currentSrc, 20 ,200);
 context.fillText ("Can Play OGG: " + audioElement.canPlayType("audio/ogg"),
 20 ,220);
 context.fillText ("Can Play WAV: " + audioElement.canPlayType("audio/wav"),
 20 ,240);
 context.fillText ("Can Play MP3: " + audioElement.canPlayType("audio/mp3"),
 20 ,260);

 }

 var theCanvas = document.getElementById("canvasOne");
 var context = theCanvas.getContext("2d");
 var audioElement = document.getElementById("theAudio");
 audioElement.play();

 setInterval(drawScreen, 33);

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="300">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>

<div id="loadingStatus">
0%
</div>

<div style="position: absolute; top: 50px; left: 600px; ">
<audio id="theAudio" controls >
<source src="song1.mp3" type="audio/mp3">
<source src="song1.ogg" type="audio/ogg">
<source src="song1.wav" type="audio/wav">

Your browser does not support the audio element.
</audio>

</div>
</body>
</html>

This process is explained in detail in Chapter 6, where we warned that
some browsers do not fire events for embedded <video> tags. That does
not appear to be the case for <audio>, but it could happen in the future.
We still believe the best bet for loading audio and video is the technique
developed in the next section.

330 | Chapter 7: Working with Audio

Playing a Sound with No Audio Tag
Now that we have a sound playing in an HTML5 page and we are tracking the properties
of the audio element on the canvas, it is time to step up their integration. The next step
is to do away with the <audio> tag embedded in the HTML page.

If you recall from Chapter 6, we created a video element dynamically in the HTML
page and then used the canPlayType() method of the HTMLVideoElement object to figure
out what video file type to load for a particular browser. We will do something very
similar for audio.

Dynamically Creating an Audio Element in JavaScript
The first step to dynamically creating audio elements is to create a global variable named
audioElement. This variable will hold an instance of HTMLAudioElement that we will use
in our canvas application. Recall that audio elements in an HTML page are instances
of the HTMLAudioElement DOM object. We refer to them as audio objects when embed-
ded in an HTML page, and as instances of HTMLAudioElement when created dynamically
in JavaScript. However, they are essentially the same.

Don’t fret if you don’t like using global variables. By the end of this
chapter, we will show you a way to make these variables local to your
canvas application.

Next, we create our event handler for the window load event named eventWindow
Loaded(). Inside that function, we call the createElement() function of the DOM
document object, passing the value audio as the type of element to create. This will
dynamically create an audio object and put it into the DOM. By placing that object in
the audioElement variable, we can then dynamically place it onto the HTML page with
a call to the appendChild() method of the document.body DOM object:

window.addEventListener('load', eventWindowLoaded, false);
var audioElement;
function eventWindowLoaded() {
 audioElement = document.createElement("audio");
 document.body.appendChild(audioElement);

However, just having a dynamically created audio element is not enough. We also need
to set the src attribute of the HTMLAudioElement object represented by audioElement to
a valid audio file to load and play. But the problem is that we don’t yet know what type
of audio file the current browser supports. We will get that information from a function
we will create named supportedAudioFormat(). We will define this function so that it
returns a string value representing the extension of the file type we want to load. When
we have that extension, we concatenate it with the name of the sound we want to load,
and set the src with a call to the setAttribute() method of the HTMLAudioElement object:

Playing a Sound with No Audio Tag | 331

var audioType = supportedAudioFormat(audioElement);

If a valid extension from supportedAudioFormat() is not returned, something has gone
wrong and we need to halt execution. To handle this condition in a simple way we
create an alert() message and then return from the function, effectively halting exe-
cution. While this is not a very robust form of error handling, it will work for the sake
of this example:

if (audioType == "") {
 alert("no audio support");
 return;
}
audioElement.setAttribute("src", "song1." + audioType);

Finally, like we did with video, we will listen for the canplaythrough event of audio
Element so that we know when the sound is ready to play:

audioElement.addEventListener("canplaythrough",audioLoaded,false);

Finding the Supported Audio Format
Before the code in the previous section will work, we need to define the supported
AudioFormat() function. Since we are adding audio objects dynamically to the HTML
page, we do not have a way to define multiple <source> tags like we can in HTML.
Instead, we are going to use the canPlayType() method of the audio object to tell us
which type of audio file to load. We already introduced you to the canPlayType()
method in Chapter 6, but to refresh your memory, canPlayType() takes a single
parameter—a MIME type. It returns a text string of maybe, probably, or “” (nothing).
We are going to use these values to figure out which media type to load and play. Just
like in Chapter 6, and for the sake of this exercise, we are going to assume that both
maybe and probably equate to yes. If we encounter either result with any of our three
MIME types (audio/ogg, audio/wav, audio/mp3), we will return the extension associated
with that MIME type so the sound file can be loaded.

The next function is essentially the same as the one we created in Chap-
ter 6 to handle video formats. The obvious changes here are with the
MIME types for audio.

In the function below, audio represents the instance of HTMLAudioElement that we will
test. The returnExtension variable represents that valid extension for the first MIME
type found that has the value of maybe or probably returned:

function supportedAudioFormat(audio) {
 var returnExtension = "";
 if (audio.canPlayType("audio/ogg") =="probably" ||
 audio.canPlayType("audio/ogg") == "maybe") {
 returnExtension = "ogg";

332 | Chapter 7: Working with Audio

 } else if(audio.canPlayType("audio/wav") =="probably" ||
 audio.canPlayType("audio/wav") == "maybe") {
 returnExtension = "wav";
 } else if(audio.canPlayType("audio/mp3") == "probably" ||
 audio.canPlayType("audio/mp3") == "maybe") {
 returnExtension = "mp3";
 }

 return returnExtension;

}

Notice that we do not check for a condition when no valid audio format is found and
the return value is “”. If that is the case, the code that has called this function might
need to be written in a way to catch that condition and alter the program execution.
We did that with the test of the return value and the alert() message, which we de-
scribed in the previous section.

If you want to test the error condition with no valid return value from
this function, simply add an extra character to the MIME type (e.g.,
audio/oggx) to make sure an empty string is always returned.

Alternatively, you can use Modernizr to test for audio support. If you have included
the Modernizr JavaScript library in your HTML page (as we have done in every appli-
cation we have written thus far), you can access the static values of Modernizr.au-
dio.ogg, Modernizr.audio.wav, and Modernizr.audio.mp3 to test to see whether those
types are valid. These are not Booleans—they evaluate to the same probably, maybe,
and “” values that we get from a call to canPlayType(). If you are comfortable using
Modernizr for all your tests, you can replace the test in the code with tests of these
Modernizr static values.

Playing the Sound
Finally, we get to the point where we can play a sound inside our canvasApp() function.
Since we preloaded the sound originally outside the context of this function into a
variable with a global scope, we just need to call the play() function audioElement to
start playing the sound:

audioElement.play();

Figure 7-4 shows what this canvas application will look like when executed in an
HTML5-compliant web browser (notice that we have left the display of the audio
properties in this application).

Playing a Sound with No Audio Tag | 333

Figure 7-4. Sound loaded and played “on” the canvas

Look Ma, No Tag!
Now, check out the full application in Example 7-4. Notice that there is no <audio> tag
defined in the HTML, but the sound still plays. This is our first step toward integrating
HTMLAudioElement objects with HTML5 Canvas.

Example 7-4. Playing a sound with no tag

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH7EX4: Playing A Sound With No Tag</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
var audioElement;
function eventWindowLoaded() {

 audioElement = document.createElement("audio");
 document.body.appendChild(audioElement);
 var audioType = supportedAudioFormat(audioElement);
 if (audioType == "") {
 alert("no audio support");
 return;
 }
 audioElement.setAttribute("src", "song1." + audioType);
 audioElement.addEventListener("canplaythrough",audioLoaded,false);

}

334 | Chapter 7: Working with Audio

function supportedAudioFormat(audio) {
 var returnExtension = "";
 if (audio.canPlayType("audio/ogg") =="probably" ||
 audio.canPlayType("audio/ogg") == "maybe") {
 returnExtension = "ogg";
 } else if(audio.canPlayType("audio/wav") =="probably" ||
 audio.canPlayType("audio/wav") == "maybe") {
 returnExtension = "wav";
 } else if(audio.canPlayType("audio/mp3") == "probably" ||
 audio.canPlayType("audio/mp3") == "maybe") {
 returnExtension = "mp3";
 }

 return returnExtension;

}

function canvasSupport () {
 return Modernizr.canvas;
}

function audioLoaded(event) {

 canvasApp();

}

function canvasApp() {

 if (!canvasSupport()) {
 return;
 }

 function drawScreen () {

 //Background
 context.fillStyle = '#ffffaa';
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);

 //Box
 context.strokeStyle = '#000000';
 context.strokeRect(5, 5, theCanvas.width−10, theCanvas.height−10);

 // Text
 context.fillStyle = "#000000";
 context.fillText ("Duration:" + audioElement.duration, 20 ,20);
 context.fillText ("Current time:" + audioElement.currentTime, 20 ,40);
 context.fillText ("Loop: " + audioElement.loop, 20 ,60);
 context.fillText ("Autoplay: " +audioElement.autoplay, 20 ,80);
 context.fillText ("Muted: " + audioElement.muted, 20 ,100);
 context.fillText ("Controls: " + audioElement.controls, 20 ,120);
 context.fillText ("Volume: " + audioElement.volume, 20 ,140);
 context.fillText ("Paused: " + audioElement.paused, 20 ,160);
 context.fillText ("Ended: " + audioElement.ended, 20 ,180);

Playing a Sound with No Audio Tag | 335

 context.fillText ("Source: " + audioElement.currentSrc, 20 ,200);
 context.fillText ("Can Play OGG: " + audioElement.canPlayType("audio/ogg"),
 20 ,220);
 context.fillText ("Can Play WAV: " + audioElement.canPlayType("audio/wav"),
 20 ,240);
 context.fillText ("Can Play MP3: " + audioElement.canPlayType("audio/mp3"),
 20 ,260);

 }

 var theCanvas = document.getElementById("canvasOne");
 var context = theCanvas.getContext("2d");
 audioElement.play()

 setInterval(drawScreen, 33);

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="300">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Creating a Canvas Audio Player
Now that we can play an audio file directly in an HTML page using the <audio> tag, or
through JavaScript by creating a dynamic HTMLAudioElement object, it’s time to step up
our game. We are going to create an audio player on the canvas that we can use to
control dynamically loaded audio files. Why do we want to do this? Well, while the
audio controls baked into HTML5-compliant browsers might look decent, it is often
necessary for developers to implement a design that more closely matches a particular
website. HTML5 Canvas provides a way to create a dynamic set of audio controls with
nearly any look-and-feel you desire.

However, this flexibility comes at a cost. HTML5 Canvas does not natively support
common GUI controls such as push buttons, toggle buttons, and sliders. So to create
a decent audio player, we need to make these types of GUI user controls from scratch.
We could create these controls in HTML and JavaScript, but we have already covered
communication between HTML and Canvas via form controls several times in this
book. You wanted to know how to make HTML5 Canvas apps when you started read-
ing, so we won’t pull any punches in this chapter.

336 | Chapter 7: Working with Audio

Creating Custom User Controls on the Canvas
For this application we are going to create four elements:

Play/pause push button
The audio file is either playing or is paused. Whichever state it is currently in, we
show the other button (i.e., show pause when playing).

A sliding progress bar
This is a noninteractive slider. It displays how much of the audio track has played
and how much is left to play. The movement of this bar needs to be dynamic and
based on the duration and currentTime properties of the HTMLAudioElement object.

An interactive volume slider
We want to create a sliding volume control that the user can manipulate with a
click-and-drag operation. This is the trickiest control we will build because Canvas
has no native support for click-and-drag.

A loop toggle button
This is a bonus. Most of the default embedded HTML5 audio players do not have
a loop/no-loop toggle button, but we are going to add one. Already, we are out-
stripping the functionality of standard HTML5!

Figure 7-5 shows the audiocontrols.png image that we created. It holds all the images
we will use for the audio player. The top row consists of:

• The play state of the play/pause button

• The background of the play slider

• The moving slider we will use for the play and volume sliders

The second row consists of:

• The pause state of the play/pause button

• The background of the volume slider

• The “off” state of the loop button

• The “on” state of the loop button

Figure 7-5. audiocontrols.png

Loading the Button Assets
Since we are going to load in both an audio file and an image file for this application,
we need to employ a strategy that will allow us to preload two assets instead of just

Creating a Canvas Audio Player | 337

one. This process is much like the one we employed in Chapter 6 when we created
controls for a video. Previously in this chapter, we used a function named audio
Loaded() to make sure the audio was loaded before we started use it. However, that
strategy will not work when we have two assets to load. We could create two separate
event listeners, but then what if we need to load 3, 4, or 10 assets? What we need is a
simple way to ensure that we can preload any number of assets before our application
executes.

We will start this process by creating some variables that are global in scope to all the
functions in the applications. First, outside of all the JavaScript functions, we will create
three new variables—loadCount, itemsToLoad, and buttonSheet:

loadCount
This variable will be used as a counter. When an asset has preloaded we will in-
crement this value.

itemsToLoad
This is a numeric value that represents the number of assets we need to load before
we can execute the application in the HTML page.

buttonSheet
This variable will hold a reference to the audiocontrols.png image shown in Fig-
ure 7-5. We will use it to create our audio controls.

Here is the code with values included:

var loadCount = 0;
var itemsToLoad = 2;
var buttonSheet;
var audioElement;

To make these variables scope only to the Canvas app and not globally
to all of JavaScript, you can encapsulate this code in a function(). The
final version of the code in Example 7-6 shows that process.

Inside the eventWindowLoaded() function we now need to set the event handlers for the
assets to load. For the audioElement, we will change the handler from audioLoaded to
itemLoaded:

audioElement.addEventListener("canplaythrough",itemLoaded,false);

To load and use the audiocontrols.png image, we first create a new Image() object and
place a reference to it into the buttonSheet variable. Next, we set the src attribute of
the new Image object to the image file we want to load—in this case, audiocon-
trols.png. We then set the onload event handler of the Image object to itemLoaded, which
is the same event handler we used for the audio file:

338 | Chapter 7: Working with Audio

buttonSheet = new Image();
buttonSheet.onload = itemLoaded;
buttonSheet.src = "audiocontrols.png";

Now we need to create the itemLoaded() event handler. This function is quite simple.
Every time it is called, we increment the loadCount variable. We then test loadCount to
see whether it is equal to or has surpassed the number of items we want to preload,
which is represented by the itemsToLoad variable. If so, we call the canvasApp() function
to start our application:

function itemLoaded(event) {

 loadCount++;
 if (loadCount >= itemsToLoad) {
 canvasApp();

 }

}

Setting Up the Audio Player Values
Inside the canvasApp() function we need to create some values to help us place all the
various buttons and sliders on the canvas.

First, bH represents the height of all the controls; bW represents the width of a standard
button (play/pause, loop/not loop):

var bW = 32;
var bH = 32;

Next, we set the width of the playback area, playBackW, and the width of the volume
background, volBackW. We also set the slider’s width (sliderW) and height (sliderH):

var playBackW = 206;
var volBackW = 50;
var sliderW = 10;
var sliderH = 32;

We also need a couple variables to represent the x and y locations on the canvas where
we will start to build our audio controls. We will define those as controlStartX and
controlStartY:

var controlStartX = 25;
var controlStartY = 200;

Finally, we need to specify the x and y locations for the play/pause button (playX,
playY), the playing slider background (playBackX, playBackY), the volume slider back-
ground (volBackX, volBackY), and the location of the loop/no loop toggle button
(loopX, loopY):

var playX = controlStartX;
var playY = controlStartY;
var playBackX = controlStartX+bW

Creating a Canvas Audio Player | 339

var playBackY = controlStartY;
var volBackX = controlStartX+bW+playBackW;
var volBackY = controlStartY;
var loopX = controlStartX+bW+playBackW+volBackW
var loopY = controlStartY;

We are going to use all of these values to help design and add functionality to our audio
controls. It may seem like overkill to create so many variables, but when trying to “roll
your own” collision detection and drag-and-drop functionality into the canvas, having
variable names to manipulate instead of literals makes the job much easier.

Mouse Events
Since we are going to create our own functions for interactivity between the mouse and
our custom canvas audio controls, we need to add some event handlers for certain
common mouse events.

First, we need to create a couple variables—mouseX and mouseY—that will hold the
current x and y locations of the mouse pointer:

var mouseX;
var mouseY;

Next, we need to create the event handlers. First, we listen for the mouseup event. This
event fires when a user stops pressing the mouse button. We will listen for this event
when we are trying to determine whether we should stop dragging the volume slider:

theCanvas.addEventListener("mouseup",eventMouseUp, false);

We also need to listen for the mousedown event to determine whether the play/pause
button was pressed, the loop on/off toggle button was pressed, and/or the volume slider
was clicked so we can start dragging it:

theCanvas.addEventListener("mousedown",eventMouseDown, false);

Finally, we listen for mousemove so we can figure out the current x and y locations of the
mouse pointer. We use this value to determine whether buttons have been pressed, as
well as whether the volume slider has been clicked and/or dragged:

theCanvas.addEventListener("mousemove",eventMouseMove, false);

Sliding Play Indicator
The sliding play indicator is the simplest control we are going to draw onto the canvas.
It is not interactive—it just gives the user a visual indication of how much of the audio
clip is left to play.

First of all, in canvasApp() we need to make sure that we call the drawScreen() function
on an interval, so our updated controls will be displayed:

setInterval(drawScreen, 33);

340 | Chapter 7: Working with Audio

Unlike when displaying video on the canvas, we do not have to call
drawScreen() to update the playing audio. In JavaScript, audio plays
completely separate from the canvas. Our need to call drawScreen() on
an interval is necessary because the audio controls we are creating need
to be updated as the audio plays.

In the drawScreen() function we need to draw the slider and background on the canvas.
We are going to “cut” all the images we display from the single buttonSheet image we
loaded from audiocontrols.png. To draw the background, we use the values we set up
earlier. We use literals (i.e., 32,0) to locate the starting point of the image because those
values do not change on the buttonSheet image. However, we use the variables we
created to find the width and height, and to locate the final position of the background
on the canvas:

context.drawImage(buttonSheet, 32,0,playBackW,bH,playBackX,playBackY,playBackW,bH);

Drawing the play slider is only a bit more complicated. Before we draw it, we need to
create a variable that represents the relationship between the length of playing audio
and the width of slider area. This is so we will know how far on the x-axis to move the
slider based on how much of the song has played. This may sound complicated, but
it’s just a simple fraction. Divide the width of the play background (playBackW) by the
duration of the playing audio (audioElement.duration). We will store that ratio in
sliderIncrement and use it to place the play slider on the canvas:

var slideIncrement = playBackW/audioElement.duration;

Now we need to calculate the x position of the slider. The x position is the sum of the
slider’s starting position (the place on the canvas where the controls start plus the width
of the play/pause button: controlStartX+bW) plus the audio’s current play position. We
calculate the play position by taking the ratio we just created, sliderIncrement, and
multiplying it by the current play time of the audio clip (audioElement.currentTime).
That’s it!

var sliderX = (playBackW,bH,controlStartX+bW) +
 (slideIncrement*audioElement.currentTime);

Now all we need to do is draw the image onto the canvas, and then test to see whether
the audio clip has ended. If it has ended, we put the play position back to the beginning
of the playback area and call audioElement.pause() to pause the audio clip. That is,
unless the loop property is sent, in which case we start playing the audio clip from the
beginning by setting the currentTime property to 0:

context.drawImage(buttonSheet, 238,0,sliderW,bH,sliderX,controlStartY,sliderW,bH);

if (audioElement.ended && !audioElement.loop) {
 audioElement.currentTime = 0;
 audioElement.pause();
}

This leads us right into our next topic, handling the play/pause button.

Creating a Canvas Audio Player | 341

Play/Pause Push Button: Hit Test Point Revisited
The first thing we need to do when implementing the play/pause button is create the
event handler for the mousemove event. The function really is just the standard cross-
browser code we introduced earlier in the book for tracking the mouse position, de-
pending on which properties the DOM in browsers supports: layerX/layerY or offsetX/
offsetY. This function is called every time the mouse is moved on the canvas to update
the mouseX and mouseY variables. Those variables are scoped to canvasApp() so all func-
tions defined inside of it can access them:

function eventMouseMove(event) {
 if (event.layerX || event.layerX == 0) { // Firefox
 mouseX = event.layerX ;
 mouseY = event.layerY;
 } else if (event.offsetX || event.offsetX == 0) { // Opera
 mouseX = event.offsetX;
 mouseY = event.offsetY;
 }

 }

Now we need to create the eventMouseUp() handler function. This function is called
when the user releases the mouse button after clicking. Why after and not when the
mouse is clicked? Well, one reason is because we generally use the mousedown event for
the start of a “dragging” operation, which we will show you shortly.

The heart of this function is a hit test point-style collision detection check for the but-
tons. We discussed this in depth in Chapter 6 when we created the buttons for the
video puzzle game (CH6EX10.html). Notice that here we are using the variables we
create to represent the x and y locations of the button (playX, playY) and the width and
height of a button (bW, bH) to form the bounds of the area we will test. If the mouse
pointer is within those bounds, we know the button has been clicked:

function eventMouseUp(event) {

if ((mouseY >= playY) && (mouseY <= playY+bH) && (mouseX >= playX) &&
 (mouseX <= playX+bW)) {

If you had images stacked on top of one another, you would need to
store some kind of stacking value or z-index to know which item was
on top and was clicked at any one time. Because the canvas works in
immediate mode, you would have to “roll your own” just like the other
functionality we have discussed.

After a hit is detected, we need to determine whether we are going to call the play() or
pause() method of the HTMLAudioElement object represented by the audioElement vari-
able. To figure out which method to call, we simply test to see whether the audio is
paused by checking the audioElement.paused property. If so, we call the play() method;
if not, we call pause(). Recall that the HTMLAudioElement.paused property is set to

342 | Chapter 7: Working with Audio

true if the audio is not playing, regardless of whether the paused() function was called.
This means that when the application starts but we have not set autoplay, we can easily
display the proper button (play or pause) just by testing this property:

 if (audioElement.paused) {
 audioElement.play();

 } else {
 audioElement.pause();

 }

 }
}

Now, in drawScreen() we need to choose which button to display: the one representing
play (green triangle) or pause (two horizontal boxes). The play button is displayed when
the audio is paused, and the pause button is displayed when the audio is playing. This
button is a “call to action,” so it displays what will happen when you click on it, not
the status of the audio element that is playing. This inverse relationship exists because
it is the standard way audio players work.

If the audioElement is paused, we display the graphic from the top row of the audio-
controls.png image represented by buttonSheet (see Figure 7-5). If it is not paused, we
display the button on the second row right below it. Since that button starts at the y
position of 32, we use that literal value in the call to drawImage():

if (audioElement.paused) {
 context.drawImage(buttonSheet, 0,0,bW,bH,playX,playY,bW,bH);//show play

} else {
 context.drawImage(buttonSheet, 0,32,bW,bH,playX,playY,bW,bH); //show pause

}

Again, we could have represented the literal values of locations in the
buttonSheet with variables, but we decided to use literals to show you
the difference between how we specify buttonSheet pixel locations, and
how we calculate widths and distances for placing those elements.

Loop/No Loop Toggle Button
Implementing the loop/no loop toggle button is nearly identical to implementing the
play/pause button. In Figure 7-5, you can see that the last two buttons on the bottom
row represent the “on” and “off” states of the loop/no loop button. Unlike the play/
pause button, this button shows the “state” of looping: the lighter, 3D-looking “out”
button is displayed when the audio is not set to loop. The inverse, darker button is
displayed when the audio is set to loop (because it looks like the button has been
pressed).

Creating a Canvas Audio Player | 343

In the eventMouseUp() function, we need to add support for loop/no loop. First, we test
for a hit test point on the button with the current location of the mouse pointer. This
is identical to the test we did for the play/pause button, except that we use loopX and
loopY to find the current location of the loop/no loop button.

Next, we check the value of audioElement.loop. We need to update the value to the
opposite of the current setting. If loop is true, we set it to false; if it is false, we set it
to true:

if ((mouseY >=loopY) && (mouseY <= loopY+bH) && (mouseX >= loopX) &&
 (mouseX <= loopX+bW)) {
 if (audioElement.loop) {
 audioElement.loop = false;

 } else {
 audioElement.loop = true;

 }

Finally, in drawScreen() we will display the proper part of the buttonSheet image for
whichever state of loop/no loop is currently set. Unlike play/pause, we display the “off”
state when loop is false and the “on” state when it is set to true because, again, there
is not an inverse relationship to the states of the button:

if (audioElement.loop) {
 context.drawImage(buttonSheet, 114,32,bW,bH,loopX,loopY,bW,bH);//loop

 } else {
 context.drawImage(buttonSheet, 82,32,bW,bH,loopX,loopY,bW,bH); // no loop
 }

Click-and-Drag Volume Slider
So now we make it to the last, but certainly not least, piece of functionality for the audio
player: the volume slider. The volume slider is an interactive control allowing the user
to manipulate it by sliding it right or left to control the volume of the playing audio
element. Before we create the volume slider, we need to define some boundaries for its
usage:

• The slider never moves on the y-axis; it will always keep a constant y value.

• The farther the volume slider is to the right (the greater the x value), the higher the
volume.

• The slider moves on the x-axis but is bounded by the starting x value of the volume
slider image—volumeSliderStart on the left and volumeSliderEnd on the right.

• When the user clicks on the volume slider, we will assume that the user wants to
set the volume, so we will start “dragging” the slider. This means that if the user
moves the mouse on the x-axis, we will move the slider accordingly.

344 | Chapter 7: Working with Audio

• When the user takes his finger off the mouse button, we will assume that he no
longer wishes to set the volume, and we still stop “dragging” the slider.

• The volume will be set based on the slider’s position on the x-axis in relation to
the volumeSliderStart plus a ratio (volumeIncrement) that we create describing how
much volume to increase or decrease based on where the slider rests.

Volume slider variables

OK, now that we have thoroughly confused you, let’s talk about the process in depth.
First, we start with the canvasApp() function. In canvasApp() we need to set up some
variables to set the rules we defined in the list above.

The starting x position for the volume slider is volumeSliderStart. When the application
starts, it is equal to the x position of the volume background, or volBackX. This means
it will start at the leftmost edge of the volume slider where the volume will be set to 0.
We will update this to the correct position based on the volume as soon as we calculate
that value:

var volumeSliderStart = volBackX;

The final x position for the volume slider is volumeSliderEnd, which is the rightmost
position. It is the position where the volume will be set to 100% (or 1). This position
lies at the x position of volumeSliderStart plus the width of the volume slider back-
ground (volBackW), less the width of the volume slider itself (sliderW):

var volumeSliderEnd = volumeSliderStart + volBackW - sliderW;

volumeSliderX and volumeSliderY are the slider’s x and y positions on the canvas. The
y position is the same as the other elements in the audio player, controlStartY. How-
ever, the x position is calculated in quite a different way. First, we take the value of
volumeSliderStart and add the difference between slider volume background width
and the slider width (volBackW – sliderW), multiplied by the volume property of the
audioElement, which is a number between 0 and 1. This will give us the position relative
to the starting point from which we want to draw the volume slider for any given volume
setting:

var volumeSliderX = volumeSliderStart + (audioElement.volume*
 (volBackW - sliderW));
var volumeSliderY = controlStartY;

Next, we create the volumeSliderDrag variable, which we will use as a switch to tell us
whether the volume slider is being dragged by the user at any given moment:

var volumeSliderDrag = false;

Finally, we create the volumeIncrement variable. This variable tells us how much volume
to increase or decrease on the audioElement.volume property based on where the slider
is positioned on the volume background. Since the maximum value of the volume is
1, we simply find the total width that the volume slider can move on the x-axis (volBackW
- sliderW) and divide 1 by that value. This will give us a product that we can multiply

Creating a Canvas Audio Player | 345

by the x position of the slider, relative to volumeSliderStart, to give us the volume we
should set for the audioElement:

var volumeIncrement = 1/(volBackW - sliderW);

Volume slider functionality

Now that we have discussed the variables we need for the volume slider, we will talk
about how we use them in the various functions of the audio player. The good news is
that the implementation is simple now that you know how the variables work.

In the eventMouseDown() handler, we perform a hit test point-style test, just like we did
with the play/pause and loop/no loop buttons to see whether the volume slider was
clicked. If so, we set the volumeSliderDrag variable to true. This means that the volume
slider will now to move to the x position of the mouse when we call drawScreen():

function eventMouseDown(event) {

if ((mouseY >= volumeSliderY) && (mouseY <=volumeSliderY+sliderH) &&
 (mouseX >= volumeSliderX) && (mouseX <= volumeSliderX+sliderW)) {
 volumeSliderDrag = true;

 }

 }

In the eventMouseUp() handler, we test to see whether the volumeSliderDrag is set to
true. If so, it means that the user has released the mouse button and no longer wants
to drag the volume slider. We set volumeSliderDrag to false so the slider will not move
with the mouse:

if (volumeSliderDrag) {
 volumeSliderDrag = false;
 }

In drawScreen() we actually put the pixels to the canvas, so to speak, with the volume
slider. First, we draw the background image from buttonSheet:

//vol Background
 context.drawImage(buttonSheet, 32,32,volBackW,bH,volBackX,volBackY,volBackW,bH);

Next, we check to see whether volumeSliderDrag is true. If so, we make the volume
SliderX variable equal to the mouse’s x position. Then, we drop in a couple more tests
to determine whether the x position of the volume slider falls outside the bounds of the
volume background. These two tests make sure that the volume slider does not move
past the rightmost or leftmost sides of the volume slider background, and in turn, the
volume property of audioElement is not calculated to be more than 1 or less than 0:

if (volumeSliderDrag) {
 volumeSliderX = mouseX;
 if (volumeSliderX > volumeSliderEnd) {
 volumeSliderX = volumeSliderEnd;
 }

346 | Chapter 7: Working with Audio

 if (volumeSliderX < volumeSliderStart) {
 volumeSliderX = volumeSliderStart;
 }

If the volumeSliderDrag is false, we still need an x position at which to draw the slider
graphic. We get this the same way we calculated the volumeSliderX when we initialized
the variable in the canvasApp() function:

} else {
 volumeSliderX = volumeSliderStart + (audioElement.volume*
 (volBackW -sliderW));
}

Finally, we draw the slider onto the canvas:

context.drawImage(buttonSheet, 238,0,sliderW,bH,volumeSliderX,
 volumeSliderY, sliderW,bH);
audioElement.volume = (volumeSliderX-volumeSliderStart) * volumeIncrement;

Figure 7-6 displays the custom controls in the browser.

Figure 7-6. Canvas sound player with custom controls

So there you have it. You can test the audio player as CH7EX5.html in the source code.
The full code listing for the HTML5 Canvas audio player is shown in Example 7-5.

Example 7-5. A custom audio player on the canvas

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH7EX5: A Custom Sound Player On The Canvas</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">

Creating a Canvas Audio Player | 347

window.addEventListener('load', eventWindowLoaded, false);
var loadCount = 0;
var itemsToLoad = 2;
var buttonSheet;
var audioElement;
function eventWindowLoaded() {

 audioElement = document.createElement("audio");
 document.body.appendChild(audioElement);
 var audioType = supportedAudioFormat(audioElement);
 if (audioType == "") {
 alert("no audio support");
 return;
 }
 audioElement.setAttribute("src", "song1." + audioType);
 audioElement.addEventListener("canplaythrough",itemLoaded,false);

 buttonSheet = new Image();
 buttonSheet.onload = itemLoaded;
 buttonSheet.src = "audiocontrols.png";

}

function supportedAudioFormat(audio) {
 var returnExtension = "";
 if (audio.canPlayType("audio/ogg") =="probably" ||
 audio.canPlayType("audio/ogg") == "maybe") {
 returnExtension = "ogg";
 } else if(audio.canPlayType("audio/wav") =="probably" ||
 audio.canPlayType("audio/wav") == "maybe") {
 returnExtension = "wav";
 } else if(audio.canPlayType("audio/mp3") == "probably" ||
 audio.canPlayType("audio/mp3") == "maybe") {
 returnExtension = "mp3";
 }

 return returnExtension;

}

function canvasSupport () {
 return Modernizr.canvas;
}

function itemLoaded(event) {

 loadCount++;
 if (loadCount >= itemsToLoad) {
 canvasApp();

 }

}

function canvasApp() {

348 | Chapter 7: Working with Audio

 if (!canvasSupport()) {
 return;
 }

 function drawScreen () {

 //Background

 context.fillStyle = "#ffffaa";
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);

 //Box
 context.strokeStyle = "#000000";
 context.strokeRect(5, 5, theCanvas.width−10, theCanvas.height−10);

 // Text
 context.fillStyle = "#000000";
 context.fillText ("Duration:" + audioElement.duration, 20 ,20);
 context.fillText ("Current time:" + audioElement.currentTime, 250 ,20);
 context.fillText ("Loop: " + audioElement.loop, 20 ,40);
 context.fillText ("Autoplay: " +audioElement.autoplay, 250 ,40);
 context.fillText ("Muted: " + audioElement.muted, 20 ,60);
 context.fillText ("Controls: " + audioElement.controls, 250 ,60);
 context.fillText ("Volume: " + audioElement.volume, 20 ,80);
 context.fillText ("Paused: " + audioElement.paused, 250 ,80);
 context.fillText ("Ended: " + audioElement.ended, 20 ,100);
 context.fillText ("Can Play OGG: " + audioElement.canPlayType("audio/ogg"),
 250 ,100);
 context.fillText ("Can Play WAV: " + audioElement.canPlayType("audio/wav"),
 20 ,120);
 context.fillText ("Can Play MP3: " + audioElement.canPlayType("audio/mp3"),
 250 ,120);
 context.fillText ("Source: " + audioElement.currentSrc, 20 ,140);
 context.fillText ("volumeSliderDrag: " + volumeSliderDrag, 20 ,160);

 //Draw Controls

 //play or pause

 if (audioElement.paused) {
 context.drawImage(buttonSheet, 0,0,bW,bH,playX,playY,bW,bH);//show play

 } else {
 context.drawImage(buttonSheet, 0,32,bW,bH,playX,playY,bW,bH); //show pause

 }

 //loop

 if (audioElement.loop) {
 context.drawImage(buttonSheet, 114,32,bW,bH,loopX,loopY,bW,bH);//show loop
 } else {
 context.drawImage(buttonSheet, 82,32,bW,bH,loopX,loopY,bW,bH); //show no loop
 }

Creating a Canvas Audio Player | 349

 //play background
 context.drawImage(buttonSheet, 32,0,playBackW,bH,playBackX,playBackY,playBackW,bH);

 //vol Background
 context.drawImage(buttonSheet, 32,32,volBackW,bH,volBackX,volBackY,volBackW,bH);

 //play slider
 var slideIncrement = playBackW/audioElement.duration;
 var sliderX = (playBackW,bH,controlStartX+bW) +
 (slideIncrement*audioElement.currentTime);
 context.drawImage(buttonSheet, 238,0,sliderW,bH,sliderX,controlStartY,sliderW,bH);

 //Go back to start
 if (audioElement.ended && !audioElement.loop) {
 audioElement.currentTime = 0;
 audioElement.pause();
 }

 //Volume slider
 //Test Volume Drag

 if (volumeSliderDrag) {
 volumeSliderX = mouseX;
 if (volumeSliderX > volumeSliderEnd) {
 volumeSliderX = volumeSliderEnd;
 }
 if (volumeSliderX < volumeSliderStart) {
 volumeSliderX = volumeSliderStart;
 }
 } else {
 volumeSliderX = volumeSliderStart + (audioElement.volume*(volBackW -sliderW));
 }

 context.drawImage(buttonSheet, 238,0,sliderW,bH,volumeSliderX,volumeSliderY,
 sliderW,bH);
 audioElement.volume = (volumeSliderX-volumeSliderStart) * volumeIncrement;

 }

 function eventMouseDown(event) {

 //Hit Volume Slider
 if ((mouseY >= volumeSliderY) && (mouseY <=volumeSliderY+sliderH) &&
 (mouseX >= volumeSliderX) && (mouseX <= volumeSliderX+sliderW)) {
 volumeSliderDrag = true;

 }

 }

 function eventMouseMove(event) {
 if (event.layerX || event.layerX == 0) {
 mouseX = event.layerX ;
 mouseY = event.layerY;

350 | Chapter 7: Working with Audio

 } else if (event.offsetX || event.offsetX == 0) {
 mouseX = event.offsetX;
 mouseY = event.offsetY;
 }

 }

 function eventMouseUp(event) {

 //Hit Play
 if ((mouseY >= playY) && (mouseY <= playY+bH) && (mouseX >= playX) &&
 (mouseX <= playX+bW)) {
 if (audioElement.paused) {
 audioElement.play();

 } else {
 audioElement.pause();

 }

 }

 //Hit loop
 if ((mouseY >=loopY) && (mouseY <= loopY+bH) && (mouseX >= loopX) &&
 (mouseX <= loopX+bW)) {
 if (audioElement.loop) {
 audioElement.loop=false;

 } else {
 audioElement.loop = true;

 }

 }

 if (volumeSliderDrag) {
 volumeSliderDrag = false;
 }

 }

 var theCanvas = document.getElementById("canvasOne");
 var context = theCanvas.getContext("2d");

 var bW = 32;
 var bH = 32;
 var playBackW = 206;
 var volBackW = 50;
 var sliderW = 10;
 var sliderH = 32;
 var controlStartX = 25;
 var controlStartY =200;
 var playX = controlStartX;
 var playY = controlStartY;
 var playBackX = controlStartX+bW;

Creating a Canvas Audio Player | 351

 var playBackY = controlStartY;
 var volBackX = controlStartX+bW+playBackW;
 var volBackY = controlStartY;
 var loopX = controlStartX+bW+playBackW+volBackW;
 var loopY = controlStartY;
 var mouseX;
 var mouseY;

 theCanvas.addEventListener("mouseup",eventMouseUp, false);
 theCanvas.addEventListener("mousedown",eventMouseDown, false);
 theCanvas.addEventListener("mousemove",eventMouseMove, false);

 audioElement.play();
 audioElement.loop = false;
 audioElement.volume = .5;
 var volumeSliderStart = volBackX;
 var volumeSliderEnd = volumeSliderStart + volBackW -sliderW;
 var volumeSliderX = volumeSliderStart + (audioElement.volume*(volBackW -sliderW));
 var volumeSliderY = controlStartY;
 var volumeSliderDrag = false;
 var volumeIncrement = 1/(volBackW -sliderW);

 setInterval(drawScreen, 33);

}

</script>

</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="300">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Case Study in Audio: Space Raiders Game
If we were writing a book about standard HTML5, we might be able to stop here and
continue on with another topic. However, there is a lot more to playing audio in an
application than simply getting a song to play and tracking its progress. In the last part
of this chapter, we will look at a case study: Space Raiders. We will iterate through
several ideas and attempts to get audio working in an efficient way in conjunction with
action on HTML5 Canvas.

352 | Chapter 7: Working with Audio

Why Sounds in Apps Are Different: Event Sounds
Why make a game as an example for playing sounds in HTML5? Well, a game is a
perfect example because it is difficult to predict how many sounds might be playing at
any one time.

If you can imagine, games are some of the most demanding applications when it comes
to sound. In most games, sounds are played based on user interactions, and those
interactions are usually both asynchronous and unpredictable. Because of those factors,
we need to create a strategy for playing sounds that is flexible and resource-efficient.

To demonstrate how tricky sounds can be when using JavaScript and HTML5 with a
canvas game, we will iterate this game several times until we have a working model.

Here are some assumptions we will make regarding sound in Space Raiders based on
what we know about the HTML5 audio object.

1. After loading a sound, you can make another object with the same source and
“load” it without having to wait for it to load. (Flash sort of works this way.)

2. Playing sounds locally is the same as playing them on a remotely hosted web page.

It turns out that both of these assumptions are wrong. As we continue through this case
study, we will show you why, as well as how to accommodate them.

Since this is not a chapter about making games, Space Raiders is only going to be a
façade. In Hollywood, a façade is a structure built for filming, containing only the parts
the camera will see. For example, a building façade might have only the front wall and
windows—with nothing behind them. Space Raiders is like this because we are only
going to create the parts necessary to include the dynamic sounds we will be using. It
will be most of a game, leading you into Chapters 8 and 9, which take a deep dive into
making complete games with HTML5 Canvas.

Iterations
In this case study, we will create four iterations of Space Raiders. Each one will attempt
to solve a dynamic audio problem in a different way. First, we will show you the basics
of the Space Raiders game structure, and then we will discuss how to solve the audio
problem.

Space Raiders Game Structure
Space Raiders is an iconic action game where a swarm of alien invaders attack from the
top of the screen, and the player’s job is to defend the world. The raiders move in
horizontal lines near the top of the screen. When each raider reaches the side of the
playfield, it moves down the screen and then switches direction.

Case Study in Audio: Space Raiders Game | 353

The player controls a spaceship by moving the mouse, and fires missiles using the left
mouse button. We need to play a “shoot” sound every time the player fires a missile.
When the missiles hit the enemy space raiders, we need to remove them from the screen,
and then play an “explosion” sound. We are not limiting the number of shots the player
can fire, which means that there could be any number of shoot and explode sounds
playing simultaneously. Our goal is to manage all these dynamic sounds.

State machine

This game runs using a very simple state machine. A state machine is a construct that
allows an application to exist in only one state at a time, which means it is only doing
one thing. This kind of construct is great for single-player games because it removes
the need to hold a bunch of Booleans describing what is going on at any one moment.

Space Raiders has four states plus a variable named appState that holds the value of the
current state. Those states include:

STATE_INIT
A state to set up the loading of assets:

const STATE_INIT = 10;

STATE_LOADING
A wait state that has the application sleep until all assets have been loaded:

const STATE_LOADING = 20;

STATE_RESET
A state to set up the initial game values:

const STATE_RESET = 30;

STATE_PLAYING
A state that handles all game-play logic:

const STATE_PLAYING = 40;

A final game of this type might have a few more states, such as
STATE_END_GAME and STATE_NEXT_LEVEL, but our case study does not re-
quire them.

The heart of our state machine is the run() function, which is called on an interval every
33 milliseconds. The appState variable determines what function to call at any given
time using a switch() statement. appState is updated to a different state any time the
program is ready to move on and do something else. The process of calling a function
such as run() on an interval and switching states is commonly known as a game loop:

function run() {
 switch(appState) {

354 | Chapter 7: Working with Audio

 case STATE_INIT:
 initApp();
 break;
 case STATE_LOADING:
 //wait for call backs
 break;
 case STATE_RESET:
 resetApp();
 break;
 case STATE_PLAYING:
 drawScreen();
 break;

 }
}

Initializing the game: no global variables

Now that we know a bit about the state machine construct we will use for this game,
it’s time to set up the preload for our assets. As we mentioned previously, this game
has two sounds, shoot and explode, but it also has three images: a player, an alien, and
a missile.

Remember how we kept saying we’d do away with global variables in these applica-
tions? Well, here’s where it happens. With the state machine, we now have a mecha-
nism to allow our application to wait for loading assets instead of leveraging only the
DOM’s window load event.

In the canvasApp() function, we set up the following variables to use in the game.

The appState variable holds the current state constant:

var appState = STATE_INIT;

We use the loadCount and itemsToLoad variables in exactly the same way we used them
in the audio player application—except here we will be loading more items:

var loadCount= 0;
var itemsToLoad = 0;

The variables alienImage, missileImage, and playerImage will hold the loaded images
we use in the game:

var alienImage = new Image();
var missileImage = new Image();
var playerImage = new Image();

explodeSound and shootSound will hold the references to the HTMLAudioElement objects
we will load:

var explodeSound ;
var shootSound;

The audioType variable will hold the extension of the valid audio file type for the browser
displaying the application:

Case Study in Audio: Space Raiders Game | 355

var audioType;

The mouseX and mouseY variables will hold the current x and y location of the mouse:

var mouseX;
var mouseY;

The player variable will hold a dynamic object with the x and y location of the player
ship (controlled with the mouse):

var player = {x:250,y:475};

Both the aliens and missiles arrays will hold lists of dynamic objects for displaying
aliens and missiles on the canvas:

var aliens = new Array();
var missiles = new Array();

The next five constants set the number of aliens (ALIEN_ROWS, ALIEN_COLS), their starting
location (ALIEN_START_X, ALIEN_START_Y), and their spacing on screen (ALIEN_SPACING):

const ALIEN_START_X = 25;
const ALIEN_START_Y = 25;
const ALIEN_ROWS = 5;
const ALIEN_COLS = 8;
const ALIEN_SPACING = 40;

Also in the canvasApp() function, we need to set up event handlers for mouseup and
mousemove. To create the game loop, we need to set up our interval to call the run()
function:

theCanvas.addEventListener("mouseup",eventMouseUp, false);
theCanvas.addEventListener("mousemove",eventMouseMove, false);

setInterval(run, 33);

At this point, run() will be called and our game loop will start by calling the function
associated with the value of appState.

Preloading all assets without global variables

We just showed that the appState variable was initialized to STATE_INIT, which means
that when the run() function is called for the first time, the initApp() function will be
called. The good news (at least for this discussion) is that initApp() does very little that
we have not already seen—it just does it in the context of the Canvas application. The
result? Now we don’t need any global variables.

In the code below, notice that we are using the same strategy. We have a single event
handler for all loaded assets (itemLoaded()),we set itemsToLoad to 5 (three graphics and
two sounds), and we set the appState to STATE_LOADING at the end of the function. The
rest of the code is all simple review:

function initApp() {
 loadCount=0;
 itemsToLoad = 5;

356 | Chapter 7: Working with Audio

 explodeSound = document.createElement("audio");
 document.body.appendChild(explodeSound);
 audioType = supportedAudioFormat(explodeSound);
 explodeSound.setAttribute("src", "explode1." + audioType);
 explodeSound.addEventListener("canplaythrough",itemLoaded,false);

 shootSound = document.createElement("audio");
 document.body.appendChild(shootSound);
 shootSound.setAttribute("src", "shoot1." + audioType);
 shootSound.addEventListener("canplaythrough",itemLoaded,false);

 alienImage = new Image();
 alienImage.onload = itemLoaded;
 alienImage.src = "alien.png";
 playerImage = new Image();
 playerImage.onload = itemLoaded;
 playerImage.src = "player.png";
 missileImage = new Image();
 missileImage.onload = itemLoaded;
 missileImage.src = "missile.png"; appState = STATE_LOADING;
 }

If you recall, STATE_LOADING does nothing in our run() function; it just waits for all events
to occur. The action here is handled by the itemLoaded() event handler, which works
exactly like the itemLoaded() function we wrote for the audio player, except that it has
two additional functions:

1. It must remove the event listeners from the two sound objects we created. This is
because, in some browsers, calling the play() method of an HTMLAudioElement ob-
ject—or changing the src attribute of an HTMLAudioElement object—initiates a
load operation, which will then call the itemLoaded event handler a second time.
This will cause unexpected results in your application. Furthermore, it is always a
good idea to remove unneeded event handlers from your objects.

2. We set the appState to STATE_RESET, which will initialize the game the next time
the run() function is called on the interval.

Here is the code with the two additional functions:

function itemLoaded(event) {

 loadCount++;
 if (loadCount >= itemsToLoad) {

 shootSound.removeEventListener("canplaythrough",itemLoaded, false);
 explodeSound.removeEventListener("canplaythrough",itemLoaded,false);

 appState = STATE_RESET;

 }

 }

Case Study in Audio: Space Raiders Game | 357

Resetting the game

In the run() function, the STATE_RESET state calls the resetApp() function, which in turn
calls startLevel(). It also sets the volume of our two sounds to 50% (.5) before setting
the appState to STATE_PLAYING:

function resetApp() {

 startLevel();
 shootSound.volume = .5;
 explodeSound.valume = .5;
 appState = STATE_PLAYING;

 }

The startLevel() function traverses through two nested for:next loops, creating the
rows of aliens by column. Each time we create an alien, we push a dynamic object into
the aliens array with the following properties:

speed
The number of pixels the aliens will move left or right on each call to drawScreen().

x
The starting x position of the alien on the screen. This value is set by the column
(c) multiplied by ALIEN_SPACING, added to ALIEN_START_X.

y
The starting y position of the alien on the screen. This is set by the row (r) multiplied
by ALIEN_SPACING, added to ALIEN_START_X.

width
The width of the alien image.

height
The height of the alien image.

Here is the code for the startLevel() function:

function startLevel() {

 for (var r = 0; r < ALIEN_ROWS; r++) {
 for(var c= 0; c < ALIEN_COLS; c++) {
 aliens.push({speed:2,x:ALIEN_START_X+c*ALIEN_SPACING, y:ALIEN_START_Y+r*
 ALIEN_SPACING,width:alienImage.width, height:alienImage.height});
 }
 }
 }

Mouse control

Before we talk about the game play itself, let’s quickly discuss mouse event handlers,
which will collect all user input for the game. When the player moves the mouse, the
eventMouseMove() handler is called. This function operates just like the same function
we created for the audio player, except for the last two lines. Those two lines set the

358 | Chapter 7: Working with Audio

x and y properties of the player object we created back in the variable definition section
of canvasApp(). We will use these two properties to position the playerImage on the
canvas in the drawScreen() function:

function eventMouseMove(event) {
 if (event.layerX || event.layerX == 0) { // Firefox
 mouseX = event.layerX ;
 mouseY = event.layerY;
 } else if (event.offsetX || event.offsetX == 0) { // Opera
 mouseX = event.offsetX;
 mouseY = event.offsetY;
 }
 player.x = mouseX;
 player.y = mouseY;

 }

The eventMouseUp() handler is called when the player presses and releases the left mouse
button. When this event occurs, a missile will fire. The missile object is almost identical
to the alien object, as it includes speed, x, y, width, and height properties. Since the
player is firing the missile, we set the missile’s x and y positions to the center of the
player’s ship on the x-axis (player.x+.5*playerImage.width), and to the y position of
the player’s ship, minus the height of the missile (player.y - missileImage.height):

function eventMouseUp(event) {

 missiles.push({speed:5, x: player.x+.5*playerImage.width,
 y:player.y-missileImage.height,width:missileImage.width,
 height:missileImage.height});

Next is the first really critical line of code for the subject at hand: audio. For this first
iteration of Space Raiders, we simply call the play() function of shootSound. This will
play the shoot sound as often as the player presses the left mouse button (in theory):

 shootSound.play();
}

Bounding box collision detection

Before we get to the main part of the game logic, we should discuss bounding box
collision detection. We need to detect collisions between the missiles the player fires
and the aliens the player is firing upon. To do this, we will create a function that tests
to see whether two objects are overlapping. For lack of a better name, we call this
function hitTest().

The type of hit test we are going to perform is called a bounding box collision test. This
means that we are going to ignore the intricate details of the bitmapped graphics and
simply test to see whether an invisible “box” drawn around the bounds of each object
overlaps with a similar box drawn around the other objects.

Recall that both the alien and missile dynamic objects were created with similar prop-
erties: x, y, width, height. This was so the hitTest() function could test them as generic

Case Study in Audio: Space Raiders Game | 359

objects, unspecific to the type of on-screen object that they represent. This means that
we can add any other type of object to this game (boss alien, power-ups, enemy missiles,
etc.), and if it is created with similar properties, we can use the same function to test
collisions against it.

The function works by finding the top, left, bottom, and right values for each object,
and then testing to see whether any of those values overlap. Bounding box collision
detection will be discussed in detail in Chapter 8, but we just wanted to give you a
preview of what it looks like for Space Raiders:

function hitTest(image1,image2) {
 r1left = image1.x;
 r1top = image1.y;
 r1right = image1.x + image1.width;
 r1bottom = image1.y + image1.height;
 r2left = image2.x;
 r2top = image2.y;
 r2right = image2.x + image2.width;
 r2bottom = image2.y + image2.height;
 retval = false;

 if ((r1left > r2right) || (r1right < r2left) || (r1bottom < r2top) ||
 (r1top > r2bottom)) {
 retval = false;
 } else {
 retval = true;
 }

 return retval;
 }

Playing the game

Now the game is ready to play. STATE_PLAYING calls the drawScreen() function, which
is the heart of Space Raiders. The first part of this function simply moves the missiles
and aliens on the screen. Moving the missiles is quite easy. We loop through the array
(backward), updating the y property of each with the speed property. If they move off
the top of the screen, we remove them from the array. We move through the array
backward so that we can splice() array elements out of the array and not affect loop
length. If we did not do this, elements would be skipped after we splice() the array:

for (var i=missiles.length-1; i>= 0;i−−) {
 missiles[i].y −= missiles[i].speed;
 if (missiles[i].y < (0-missiles[i].height)) {
 missiles.splice(i,1);
 }

}

Drawing the aliens is similar to drawing missiles—with a few exceptions. Aliens move
left and right, and when they reach the side of the canvas, they move down 20 pixels

360 | Chapter 7: Working with Audio

and then reverse direction. To achieve the reversal in direction, multiply the speed
property by -1. If the aliens are moving to the right (speed = 2), this will make the speed
= -2, which will subtract from the x position and move the aliens to the left. If the aliens
hit the left side of the canvas, the speed property will again be multiplied by -1 (-2 *
-1), which will equal 2. The alien will then move to the right because 2 will be added
to the x value for the alien each time drawScreen() is called:

//Move Aliens
 for (var i=aliens.length−1; i>= 0;i−−) {
 aliens[i].x += aliens[i].speed;
 if (aliens[i].x > (theCanvas.width-aliens[i].width) || aliens[i].x < 0) {
 aliens[i].speed *= -1;
 aliens[i].y += 20;
 }
 if (aliens[i].y > theCanvas.height) {
 aliens.splice(i,1);
 }

 }

The next step in drawScreen() is to detect collisions between the aliens and the missiles.
This part of the code loops through the missiles array backward while nesting a loop
through the aliens array. It will test every missile against every alien to determine
whether there is a collision. Since we have already covered the hitTest() function, we
only need to discuss what happens if a collision is detected. First, we call the play()
function of the explodeSound. This is the second critical line of code in this iteration of
Space Raiders, as it plays (or attempts to play) the explosion sound every time a collision
is detected. After that, it splices the alien and missile objects out of their respective
arrays, and then breaks out of the nested for:next loop. If there are no aliens left to
shoot, we set the appState to STATE_RESET, which will add more aliens to the canvas so
the player can continue shooting:

missile: for (var i=missiles.length−1; i>= 0;i−−) {
 var tempMissile = missiles[i]
 for (var j=aliens.length-1; j>= 0;j−−) {
 var tempAlien =aliens[j];
 if (hitTest(tempMissile,tempAlien)) {
 explodeSound.play();
 missiles.splice(i,1);
 aliens.splice(j,1);
 break missile;
 }
 }

 if (aliens.length <=0) {
 appState = STATE_RESET;
 }
 }

The last few lines of code in drawScreen() loop through the missiles and aliens arrays,
and draw them onto the canvas. This is done using the drawImage() method of the

Case Study in Audio: Space Raiders Game | 361

context object, and the x and y properties we calculated earlier. Finally, it draws the
playerImage on the canvas, and the function is finished:

//Draw Missiles
 for (var i=missiles.length−1; i>= 0;i−−) {
 context.drawImage(missileImage,missiles[i].x,missiles[i].y);

 }
//draw aliens
 for (var i=aliens.length−1; i>= 0;i−−) {
 context.drawImage(alienImage,aliens[i].x,aliens[i].y);

 }

//Draw Player
 context.drawImage(playerImage,player.x,player.y);

Like we stated previously, Space Raiders is not a full game. We have only implemented
enough to get the player to shoot missiles so we can play the shoot sound, and to detect
collisions so we can play the explode sound.

Iteration #1: Playing Sounds Using a Single Object
We just described the first iteration of the dynamic audio code. It works by attempting
to call the play() function of both shootSound and explodeSound as often as necessary.
This appears to work at first, but if you listen carefully (and this is apparent on some
browsers more than others), the sounds start to play “off,” or not play at all. This is
because we are using a single object and attempting to play and replay the same sound
over and over. A single HTMLAudioElement was not designed to operate this way. You
can test this example in the code distribution by running CH7EX6.html in your
HTML5-compliant web browser. Press the fire button as quickly as possible and listen
to when and how the sounds play. After a bit, they start to play at the wrong time, don’t
finish, or don’t play at all. Figure 7-7 shows what the first iteration of Space Raiders
looks like in a web browser.

Iteration #2: Creating Unlimited Dynamic Sound Objects
So, we almost got what we wanted with the first iteration, but we ran into some oddities
when calling the play() function on a single HTMLAudioElement multiple times before
the sound had finished playing.

For our second iteration, we are going to try something different. Let’s see what happens
when you simply create a new HTMLAudioElement object every time you want to play a
sound. If this doesn’t sound like an efficient use of memory or resources in the web
browser, you are a keen observer. It’s actually a horrible idea. However, let’s proceed
just to see what happens.

362 | Chapter 7: Working with Audio

Figure 7-7. Space Raiders playing sounds from two objects

In canvasApp(), we will create a couple constants that represent the filenames of the
sounds we want to play, but without the associated extension. We will still retrieve the
extension with a call to supportedAudioFormat(), just as we did in the first iteration,
and store that value in the audioType variable.

We will also create an array named sounds that we will use to hold all the HTMLAudio
Element objects we create. This array will tell us how many objects we have created so
we can visually see when all hell breaks loose:

const SOUND_EXPLODE = "explode1";
const SOUND_SHOOT = "shoot1";
var sounds = new Array();

Case Study in Audio: Space Raiders Game | 363

Instead of calling the play() function of each sound directly, we are going to create a
function named playSound(). This function accepts two parameters:

sound
One of the constants we created above that contains the name of the sound file

volume
A number between 0 and 1 that represents the volume of the sound to play

The function here creates a new sound object every time it is called by calling the
createElement() function of the document DOM object. It then sets the properties
(src, loop, volume) and attempts to play the sound. Just for fun, let’s push the object
into the sounds array:

function playSound(sound,volume) {
 var tempSound = document.createElement("audio");
 tempSound.setAttribute("src", sound + "." + audioType);
 tempSound.loop = false;
 tempSound.volume = volume;
 tempSound.play();
 sounds.push(tempSound);
}

To play the sounds, we call playSound(), passing the proper parameters.

The call in eventMouseUp() looks like this:

playSound(SOUND_SHOOT,.5);

And in drawScreen() it looks like this:

playSound(SOUND_EXPLODE,.5);

To display on the canvas how many sounds we have created, we add this code to the
drawScreen() function:

context.fillStyle = "#FFFFFF";
context.fillText ("Active Sounds: " + sounds.length, 200 ,480);

Now, go ahead and try this example (CH7EX7.html in the code distribution). Fig-
ure 7-8 shows what Space Raiders iteration #2 looks like. Notice we have added some
display text at the bottom of the screen to show how many sounds are in the sounds
array. You will discover two issues with this iteration:

1. The sounds play with almost no pauses when loaded from a local drive. But when
the page is loaded from a remote website, there is a defined pause before each sound
is loaded and played.

2. The number of sound objects created is a huge problem. For some browsers, such
as Chrome, the number of active sounds caps out at about 50. After that, no sounds
play at all.

364 | Chapter 7: Working with Audio

Figure 7-8. Space Raiders creating sounds on the fly

Iteration #3: Creating a Sound Pool
So, now we know we don’t want to play an HTMLAudioElement repeatedly, or create
unlimited sound objects on the fly. However, what if we cap the number of audio objects
we create, and put those objects in a pool so we can use them over and over? This will
save us memory, and after the sounds are loaded, we shouldn’t see any loading pause
before they are played, right?

We will implement a solution that uses HTMLAudioElement objects as general-purpose
sound objects. We will keep a pool of them, and change the src attribute to whatever
sound we want to play. This appears to be an elegant solution that reuses as much as
possible, in addition to giving us a lot of flexibility as to which sounds we want to play.

In canvasApp(), we will create a new constant named MAX_SOUNDS. This will represent
the maximum number of sound objects we can create at any one time. We will also
rename our sounds array to soundPool to better describe its purpose:

Case Study in Audio: Space Raiders Game | 365

const MAX_SOUNDS = 8;
var soundPool = new Array();

The big change here is the playSound() function. It uses the same parameters as the one
from iteration #2, but the functionality is very different:

function playSound(sound,volume) {

The first half of the function loops through the soundPool array to see whether any of
the HTMLAudioElement objects in the pool are available to play a sound. We determine
this by checking the ended property. Since only HTMLAudioElement objects that have
previously been used to play a sound are put into the pool, the ended property will be
set to true once the sound has finished playing. By replaying sounds that have finished,
we remove the issue of trying to reuse an HTMLAudioElement object to play a sound while
it is already in use:

var soundFound = false;
var soundIndex = 0;
var tempSound;

if (soundPool.length> 0) {
 while (!soundFound && soundIndex < soundPool.length) {

 var tSound = soundPool[soundIndex];

 if (tSound.ended) {
 soundFound = true;
 } else {
 soundIndex++;
 }

 }
}
if (soundFound) {
 tempSound = soundPool[soundIndex];
 tempSound.setAttribute("src", sound + "." + audioType);
 tempSound.loop = false;
 tempSound.volume = volume;
 tempSound.play();

If we don’t find a sound, and the size of the pool is less than MAX_SOUNDS, we go ahead
and create a new HTMLAudioElement, call its play() function, and push it into the sound
pool. This keeps the pool from getting too large, while making sure there are not too
many HTMLAudioElement objects in the browser at any one time:

 } else if (soundPool.length < MAX_SOUNDS){
 tempSound = document.createElement("audio");
 tempSound.setAttribute("src", sound + "." + audioType);
 tempSound.volume = volume;
 tempSound.play();
 soundPool.push(tempSound);
 }

}

366 | Chapter 7: Working with Audio

You can go ahead and try this iteration by loading CH7EX8.html in your HTML5-
compliant web browser. In this case, it works! You hear every sound, and the browser
doesn’t die like it would with iteration #2.

Unfortunately, there are some issues. On some browsers, there is still a pause before a
sound plays, just like with iteration #2. Again, this happens more often when the page
is loaded from an external website than when it is loaded locally in a web browser.

The worst manifestation of this comes in Google Chrome, where the sounds pause
every time they are played. Also, in Firefox, the src doesn’t change for all the objects,
making the shoot sound play when the explode sound should play, and vice versa.

Uh-oh, it looks like we need another iteration. Figure 7-9 shows Space Raiders playing
with a pool size governed by MAX_SOUNDS.

Figure 7-9. Space Raiders with a sound pool

Case Study in Audio: Space Raiders Game | 367

Iteration #4: Reusing Preloaded Sounds
Even though the code in iteration #3 was pretty clean, it simply did not work for us.
Instead, we need to compromise and implement a solution that is less elegant, but that
works to play sounds nearly every time they are needed. This solution must also work
both locally and when loaded from a website.

For this final iteration, we are going to use a sound pool just like in iteration #3, but it
will operate in a different way. We will not reuse sound objects for different sound files.
Instead, we will load all our sounds up front, and simply play a sound object that is
currently not being used. In effect, we will “prime the pump,” creating three sound
objects for each of our two sounds for a total of six sound objects when we start the
application. While this may not seem like the perfect solution, it appears to work fairly
well in all browsers and plays sounds in the most effective way.

In canvasApp(), we set our MAX_SOUNDS constant to 6. We could make it higher, but for
this example we will limit it to the number of sounds we will create and preload:

const MAX_SOUNDS = 6;

We then create six variables to hold our HTMLAudioElement objects: three for the explode
sound…

var explodeSound ;
var explodeSound2 ;
var explodeSound3 ;

…and three for the shoot sound:

var shootSound;
var shootSound2;
var shootSound3;

In the initApp() function, we preload all of these sound objects. Yes, we load the same
object multiple times:

explodeSound = document.createElement("audio");
document.body.appendChild(explodeSound);
audioType = supportedAudioFormat(explodeSound);
explodeSound.setAttribute("src", "explode1." + audioType);
explodeSound.addEventListener("canplaythrough",itemLoaded,false);

explodeSound2 = document.createElement("audio");
document.body.appendChild(explodeSound2);
explodeSound2.setAttribute("src", "explode1." + audioType);
explodeSound2.addEventListener("canplaythrough",itemLoaded,false);

explodeSound3 = document.createElement("audio");
document.body.appendChild(explodeSound3);
explodeSound3.setAttribute("src", "explode1." + audioType);
explodeSound3.addEventListener("canplaythrough",itemLoaded,false);

shootSound = document.createElement("audio");
document.body.appendChild(shootSound);

368 | Chapter 7: Working with Audio

shootSound.setAttribute("src", "shoot1." + audioType);
shootSound.addEventListener("canplaythrough",itemLoaded,false);

shootSound2 = document.createElement("audio");
document.body.appendChild(shootSound2);
shootSound2.setAttribute("src", "shoot1." + audioType);
shootSound2.addEventListener("canplaythrough",itemLoaded,false);

shootSound3 = document.createElement("audio");
document.body.appendChild(shootSound3);
shootSound3.setAttribute("src", "shoot1." + audioType);
shootSound3.addEventListener("canplaythrough",itemLoaded,false);

In the itemLoaded() function, we remove the event listeners for all six loaded sounds:

shootSound.removeEventListener("canplaythrough",itemLoaded, false);
shootSound2.removeEventListener("canplaythrough",itemLoaded, false);
shootSound3.removeEventListener("canplaythrough",itemLoaded, false);
explodeSound.removeEventListener("canplaythrough",itemLoaded,false);
explodeSound2.removeEventListener("canplaythrough",itemLoaded,false);
explodeSound3.removeEventListener("canplaythrough",itemLoaded,false);

Then, we push each sound into our soundPool array. However, this time, we push them
as dynamic objects so we can set the following properties, which don’t exist in the
HTMLAudioElement object:

name
The name of the sound file to play (again, without the extension).

element
The reference to the HTMLAudioElement object.

played
A Boolean that tells us whether this sound has played once or not. We need this
property because we are putting all of these sound objects into our array, but they
have not been played yet. That means their ended property has not yet been set to
true. The played property tells us whether the sound is ready to play—that is, it
has not been played yet. We will set this to true after we play the sound once:

soundPool.push({name:"explode1", element:explodeSound, played:false});
soundPool.push({name:"explode1", element:explodeSound2, played:false});
soundPool.push({name:"explode1", element:explodeSound3, played:false});
soundPool.push({name:"shoot1", element:shootSound, played:false});
soundPool.push({name:"shoot1", element:shootSound2, played:false});
soundPool.push({name:"shoot1", element:shootSound3, played:false});

Now we need to make a change in our resetApp() function. This change is to support
sounds playing in Chrome, which appears to be the only browser that has a slight issue
with loading sounds in this manner. The first time you play a sound in Chrome, there
is a pause before it starts. To alleviate this, we play each sound type once but set the
volume to 0. This will make sure a sound is loaded and ready to play the first time we
call playSound() in Chrome:

Case Study in Audio: Space Raiders Game | 369

function resetApp() {

 playSound(SOUND_EXPLODE,0);
 playSound(SOUND_SHOOT,0);
 startLevel();
 appState = STATE_PLAYING;

 }

The playSound() function operates in a similar way to iteration #3. It loops through
the soundPool array looking for a sound that it can play. However, in this version, we
check to see whether the HTMLAudioElement has ended (tSound.element.ended) or if it
has not been played (!tSound.played) yet. We also check whether the value in the
sound parameter matches the name property of the sound object in soundPool
(tSound.name == sound):

function playSound(sound,volume) {

 var soundFound = false;
 var soundIndex = 0;
 var tempSound;

 if (soundPool.length > 0) {
 while (!soundFound && soundIndex < soundPool.length) {

 var tSound = soundPool[soundIndex];
 if ((tSound.element.ended || !tSound.played) && tSound.name == sound) {
 soundFound = true;
 tSound.played = true;
 } else {
 soundIndex++;
 }

 }
 }

Using this method, we play a sound only if it has not been played, it has ended, and it
already has the sound file loaded that we need to play. There is no pause to load (most
of the time), and sounds play at pretty much the time we need them to play. If we need
more sounds, we can load more up front, or set MAX_SOUNDS to a number greater than
the number of preloaded sounds. If we do that, we will create new sound objects on the
fly (although this might still give you a pause when loading from a web server):

if (soundFound) {
 tempSound = soundPool[soundIndex].element;
 tempSound.volume = volume;
 tempSound.play();

 } else if (soundPool.length < MAX_SOUNDS){
 tempSound = document.createElement("audio");
 tempSound.setAttribute("src", sound + "." + audioType);

370 | Chapter 7: Working with Audio

 tempSound.volume = volume;
 tempSound.play();
 soundPool.push({name:sound, element:tempSound, type:audioType, played:true});
 }

Go ahead and try this code. It is CH7EX9.html in the code distribution, or you can type
in the program listing.

Other stuff you could do to improve the game

Since the next couple chapters introduce game concepts, we really shouldn’t go much
further with Space Raiders. Still, if you were going to finish this game, these are the
things you might consider doing:

1. Add a score.

2. Increase the aliens’ speed on each new level.

3. Collision-detect the aliens and the player.

4. Make an object pool for missiles and aliens.

5. Slow down firing with a wait() state or frame counter.

6. Add explosions.

7. Include a title sequence, level sequence, and end game sequence.

8. Add a looping soundtrack.

The final code for Space Raiders

Example 7-6 shows the final code for the Space Raiders game (CH7EX9.html).

Example 7-6. Space Raiders with optimized dynamic network sound and state loader

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH7EX9: Space Raiders With Optimized Dynamic Network Sound And State Loader</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);

function eventWindowLoaded() {

 canvasApp();

}

function supportedAudioFormat(audio) {
 var returnExtension = "";
 if (audio.canPlayType("audio/ogg") =="probably" ||
 audio.canPlayType("audio/ogg") == "maybe") {
 returnExtension = "ogg";

Case Study in Audio: Space Raiders Game | 371

 } else if(audio.canPlayType("audio/wav") =="probably" ||
 audio.canPlayType("audio/wav") == "maybe") {
 returnExtension = "wav";
 } else if(audio.canPlayType("audio/mp3") == "probably" ||
 audio.canPlayType("audio/mp3") == "maybe") {
 returnExtension = "mp3";
 }

 return returnExtension;

}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp() {

 const STATE_INIT = 10;
 const STATE_LOADING = 20;
 const STATE_RESET = 30;
 const STATE_PLAYING = 40;
 var appState = STATE_INIT;
 var loadCount= 0;
 var itemsToLoad = 0;
 var alienImage = new Image();
 var missileImage = new Image();
 var playerImage = new Image();

 const SOUND_EXPLODE = "explode1";
 const SOUND_SHOOT = "shoot1";
 const MAX_SOUNDS = 6;
 var soundPool = new Array();
 var explodeSound ;
 var explodeSound2 ;
 var explodeSound3 ;
 var shootSound;
 var shootSound2;
 var shootSound3;
 var audioType;

 var mouseX;
 var mouseY;
 var player = {x:250,y:475};
 var aliens = new Array();
 var missiles = new Array();

 const ALIEN_START_X = 25;
 const ALIEN_START_Y = 25;
 const ALIEN_ROWS = 5;
 const ALIEN_COLS = 8;
 const ALIEN_SPACING = 40;

372 | Chapter 7: Working with Audio

 if (!canvasSupport()) {
 return;
 }

 var theCanvas = document.getElementById("canvasOne");
 var context = theCanvas.getContext("2d");

 function itemLoaded(event) {

 loadCount++;
 if (loadCount >= itemsToLoad) {

 shootSound.removeEventListener("canplaythrough",itemLoaded, false);
 shootSound2.removeEventListener("canplaythrough",itemLoaded, false);
 shootSound3.removeEventListener("canplaythrough",itemLoaded, false);
 explodeSound.removeEventListener("canplaythrough",itemLoaded,false);
 explodeSound2.removeEventListener("canplaythrough",itemLoaded,false);
 explodeSound3.removeEventListener("canplaythrough",itemLoaded,false);
 soundPool.push({name:"explode1", element:explodeSound, played:false});
 soundPool.push({name:"explode1", element:explodeSound2, played:false});
 soundPool.push({name:"explode1", element:explodeSound3, played:false});
 soundPool.push({name:"shoot1", element:shootSound, played:false});
 soundPool.push({name:"shoot1", element:shootSound2, played:false});
 soundPool.push({name:"shoot1", element:shootSound3, played:false});

 appState = STATE_RESET;

 }

 }

 function initApp() {
 loadCount=0;
 itemsToLoad = 9;
 explodeSound = document.createElement("audio");
 document.body.appendChild(explodeSound);
 audioType = supportedAudioFormat(explodeSound);
 explodeSound.setAttribute("src", "explode1." + audioType);
 explodeSound.addEventListener("canplaythrough",itemLoaded,false);

 explodeSound2 = document.createElement("audio");
 document.body.appendChild(explodeSound2);
 explodeSound2.setAttribute("src", "explode1." + audioType);
 explodeSound2.addEventListener("canplaythrough",itemLoaded,false);

 explodeSound3 = document.createElement("audio");
 document.body.appendChild(explodeSound3);
 explodeSound3.setAttribute("src", "explode1." + audioType);
 explodeSound3.addEventListener("canplaythrough",itemLoaded,false);

 shootSound = document.createElement("audio");
 document.body.appendChild(shootSound);
 shootSound.setAttribute("src", "shoot1." + audioType);
 shootSound.addEventListener("canplaythrough",itemLoaded,false);

Case Study in Audio: Space Raiders Game | 373

 shootSound2 = document.createElement("audio");
 document.body.appendChild(shootSound2);
 shootSound2.setAttribute("src", "shoot1." + audioType);
 shootSound2.addEventListener("canplaythrough",itemLoaded,false);

 shootSound3 = document.createElement("audio");
 document.body.appendChild(shootSound3);
 shootSound3.setAttribute("src", "shoot1." + audioType);
 shootSound3.addEventListener("canplaythrough",itemLoaded,false);

 alienImage = new Image();
 alienImage.onload = itemLoaded;
 alienImage.src = "alien.png";
 playerImage = new Image();
 playerImage.onload = itemLoaded;
 playerImage.src = "player.png";
 missileImage = new Image();
 missileImage.onload = itemLoaded;
 missileImage.src = "missile.png";
 appState = STATE_LOADING;
 }

 function startLevel() {

 for (var r = 0; r < ALIEN_ROWS; r++) {
 for(var c= 0; c < ALIEN_COLS; c++) {
 aliens.push({speed:2,x:ALIEN_START_X+c*ALIEN_SPACING, y:ALIEN_START_Y+r*
 ALIEN_SPACING,width:alienImage.width, height:alienImage.height});
 }
 }
 }

 function resetApp() {

 playSound(SOUND_EXPLODE,0);
 playSound(SOUND_SHOOT,0);
 startLevel();
 appState = STATE_PLAYING;

 }

 function drawScreen () {

 //Move missiles
 for (var i=missiles.length−1; i>= 0;i−−) {
 missiles[i].y −= missiles[i].speed;
 if (missiles[i].y < (0-missiles[i].height)) {
 missiles.splice(i,1);
 }

 }

 //Move Aliens
 for (var i=aliens.length−1; i>= 0;i−−) {
 aliens[i].x += aliens[i].speed;

374 | Chapter 7: Working with Audio

 if (aliens[i].x > (theCanvas.width-aliens[i].width) || aliens[i].x < 0) {
 aliens[i].speed *= -1;
 aliens[i].y += 20;
 }
 if (aliens[i].y > theCanvas.height) {
 aliens.splice(i,1);
 }

 }

 //Detect Collisions
 missile: for (var i=missiles.length−1; i>= 0;i−−) {
 var tempMissile = missiles[i]
 for (var j=aliens.length−1; j>= 0;j−−) {
 var tempAlien =aliens[j];
 if (hitTest(tempMissile,tempAlien)) {
 playSound(SOUND_EXPLODE,.5);
 missiles.splice(i,1);
 aliens.splice(j,1);
 break missile;
 }
 }

 if (aliens.length <=0) {
 appState = STATE_RESET;
 }
 }

 //Background
 context.fillStyle = "#000000";
 context.fillRect(0, 0, theCanvas.width, theCanvas.height);
 //Box
 context.strokeStyle = "#EEEEEE";
 context.strokeRect(5, 5, theCanvas.width−10, theCanvas.height−10);

 //Draw Player
 context.drawImage(playerImage,player.x,player.y);

 //Draw Missiles
 for (var i=missiles.length−1; i>= 0;i−−) {
 context.drawImage(missileImage,missiles[i].x,missiles[i].y);

 }

 //draw aliens
 for (var i=aliens.length−1; i>= 0;i−−) {
 context.drawImage(alienImage,aliens[i].x,aliens[i].y);

 }

 //Draw Text
 context.fillStyle = "#FFFFFF";
 context.fillText ("Active Sounds: " + soundPool.length, 200 ,480);

 }

Case Study in Audio: Space Raiders Game | 375

 function hitTest(image1,image2) {
 r1left = image1.x;
 r1top = image1.y;
 r1right = image1.x + image1.width;
 r1bottom = image1.y + image1.height;
 r2left = image2.x;
 r2top = image2.y;
 r2right = image2.x + image2.width;
 r2bottom = image2.y + image2.height;
 retval = false;

 if ((r1left > r2right) || (r1right < r2left) || (r1bottom < r2top) ||
 (r1top > r2bottom)) {
 retval = false;
 } else {
 retval = true;
 }

 return retval;
 }

 function eventMouseMove(event) {
 if (event.layerX || event.layerX == 0) { // Firefox
 mouseX = event.layerX ;
 mouseY = event.layerY;
 } else if (event.offsetX || event.offsetX == 0) { // Opera
 mouseX = event.offsetX;
 mouseY = event.offsetY;
 }

 player.x = mouseX;
 player.y = mouseY;

 }

 function eventMouseUp(event) {

 missiles.push({speed:5, x: player.x+.5*playerImage.width,
 y:player.y-missileImage.height,width:missileImage.width,
 height:missileImage.height});

 playSound(SOUND_SHOOT,.5);
 }

 function playSound(sound,volume) {

 var soundFound = false;
 var soundIndex = 0;
 var tempSound;

 if (soundPool.length> 0) {
 while (!soundFound && soundIndex < soundPool.length) {

376 | Chapter 7: Working with Audio

 var tSound = soundPool[soundIndex];
 if ((tSound.element.ended || !tSound.played) && tSound.name == sound) {
 soundFound = true;
 tSound.played = true;
 } else {
 soundIndex++;
 }

 }
 }
 if (soundFound) {
 tempSound = soundPool[soundIndex].element;
 tempSound.volume = volume;
 tempSound.play();

 } else if (soundPool.length < MAX_SOUNDS){
 tempSound = document.createElement("audio");
 tempSound.setAttribute("src", sound + "." + audioType);
 tempSound.volume = volume;
 tempSound.play();
 soundPool.push({name:sound, element:tempSound, type:audioType, played:true});
 }

 }

 function run() {
 switch(appState) {
 case STATE_INIT:
 initApp();
 break;
 case STATE_LOADING:
 //wait for call backs
 break;
 case STATE_RESET:
 resetApp();
 break;
 case STATE_PLAYING:
 drawScreen();
 break;

 }

 }

 theCanvas.addEventListener("mouseup",eventMouseUp, false);
 theCanvas.addEventListener("mousemove",eventMouseMove, false);

 setInterval(run, 33);

}

</script>
</head>

Case Study in Audio: Space Raiders Game | 377

<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

What’s Next
Since this is not a book about the HTML5 <audio> tag, we did not cover every aspect
of that new feature. Instead, we focused on the elements of audio that could be used
with HTML5 Canvas. We created two in-depth applications that make use of sound
with HTML5 Canvas in very different ways: an audio player that plays one song, and
a game that plays many sounds dynamically. During that process we learned that audio
in HTML, while being a wonderful new feature, is not without its pitfalls and gotchas.

In the next two chapters we will expand upon the last section we presented here, and
discuss how to implement games on HTML5 Canvas.

378 | Chapter 7: Working with Audio

CHAPTER 8

Canvas Game Essentials

Games are the reason why many of us initially became interested in computers, and
they continue to be a major driving force that pushes computer technology to new
heights. In this chapter, we will examine how to build a mini game framework that can
be used to create games on the canvas. We will explore many of the core building blocks
associated with game development and apply them to HTML5 Canvas with the Java-
Script API.

We don’t have the space to cover every type of game you might want to create, but we
will discuss many elementary and intermediate topics necessary for most games. At the
end of this chapter, we will have a basic clone of Atari’s classic Asteroids game. We will
step through the creation of this game by first applying some of the techniques for
drawing and transformations specific to our game’s visual objects. This will help get
our feet wet by taking some of the techniques we covered in previous chapters and
applying them to an arcade game application. Next, we will create a basic game frame-
work that can be applied to any game we want to make on the canvas. Following this,
we will dive into some game techniques and algorithms, and finally, we will apply
everything we have covered to create the finished product.

Why Games in HTML5?
Playing games in a browser has become one of the most popular activities for Internet
users. HTML5 Canvas gives web developers an API to directly manage drawing to a
specific area of the browser. This functionality makes game development in JavaScript
much more powerful than ever before.

Canvas Compared to Flash
We’ve covered this topic in earlier chapters, but we expect that a large portion of readers
might have previously developed games in Flash. If so, you will find that Canvas offers
similar functionality in certain areas, but lacks some of the more refined features of
Flash.

379

No Flash timeline
There is no frame-based timeline for animation intrinsic to Canvas. This means
that we will need to code all of our animations using images and/or paths, and
apply our own frame-based updates.

No display list
Flash AS3 offers the very powerful idea of an object display list; a developer can
add hundreds of individual physical display objects to the game screen. HTML5
Canvas has only a single display object (the canvas itself).

What Does Canvas Offer?
Even though Canvas lacks some of the features that make the Flash platform very nice
for game development, it also has some strengths.

A powerful single stage
HTML5 Canvas is closely akin to the Flash Stage. It is a rectangular piece of screen
real estate that can be manipulated programmatically. Advanced Flash developers
might recognize the canvas as a close cousin to both the BitmapData and Shape
objects in ActionScript. We can draw directly to the canvas with paths and images,
and transform them on the fly.

Logical display objects
Canvas gives us a single physical display object, but we can create any number of
logical display objects. We will use JavaScript objects to hold all of the logical data
and methods we need to draw and transform our logical game objects to the phys-
ical canvas.

Our Basic Game HTML5 File
Before we start to develop our arcade game, let’s look at Example 8-1, the most basic
HTML file we will use in this chapter (CH8EX1.html). We’ll start by using the basic
HTML5 template we defined in Chapter 1. Our canvas will be a 200×200 square.

Example 8-1. The Basic HTML file for Chapter 8

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH8EX1: Filled Screen With Some Text</title>
<script type="text/javascript">
 window.addEventListener('load', eventWindowLoaded, false);
 function eventWindowLoaded() {
 canvasApp();
 }
 function canvasApp(){
 var theCanvas = document.getElementById("canvas");

380 | Chapter 8: Canvas Game Essentials

 if (!theCanvas || !theCanvas.getContext) {
 return;
 }
 var context = theCanvas.getContext("2d");
 if (!context) {
 return;
 }
 drawScreen();
 function drawScreen() {
 context.fillStyle = '#ffaaaa';
 context.fillRect(0, 0, 200, 200);
 context.fillStyle = '#000000';
 context.font = '20px _sans';
 context.textBaseline = 'top';
 context.fillText ("Canvas!", 0, 0);
 }
 }
</script>
</head>
 <body>
 <div style="position: absolute; top: 50px; left: 50px;">
 <canvas id="canvas" width="200" height="200">
 Your browser does not support HTML5 Canvas.
 </canvas>
 </div>
 </body>
</html>

This example will do nothing more than place a 200×200 gray box on the canvas and
write “Canvas!” starting at 0,0. We will be replacing the drawScreen() function for most
of the next few examples. Figure 8-1 illustrates Example 8-1.

Figure 8-1. The basic HTML file for Chapter 8

Next, we will begin to make our Asteroids-like game, which we’ve named Geo Blaster
Basic. See Figure 8-7 for an example of the final game in action.

Our Basic Game HTML5 File | 381

Our Game’s Design
We are not going to assume that everyone who reads this chapter knows of or under-
stands Atari’s classic arcade game Asteroids. So, let’s start by taking a peek at Aste-
roids’ game-play elements.

Asteroids, designed by Ed Logg and Lyle Rains, was released by Atari in 1979. The game
pitted a lone triangular two-dimensional vector spaceship (the player ship) against
screen after screen of asteroid rocks that needed to be dodged and destroyed. Every so
often a space saucer would enter the screen attempting to destroy the player ship.

All asteroids started the game as large rocks; once they were hit, they would split into
two medium-sized rocks. When hit by a player missile, these medium-sized rocks
would then split into two small rocks. The small rocks would simply be destroyed when
hit (small was the final size for all asteroids).

When the player destroyed all the asteroids, a new screen of more and slightly faster
asteroids would appear. This went on until the player exhausted his three ships. At
each 10,000-point score mark, the player was awarded an extra ship.

All of the game objects moved (thrusting, rotating, and/or floating) freely across the
entire screen, which represented a slice of space as a flat plane. When an object went
off the side of the screen, it would reappear on the opposite side, in warp-like fashion.

Game Graphics: Drawing with Paths
Let’s jump into game development on Canvas by first taking a look at some of the
graphics we will use in our game. This will help give us a visual feel for what type of
code we will need to implement.

Needed Assets
For our Asteroids-like game, Geo Blaster Basic, we will need some very simple game
graphics, including:

• A solid black background.

• A player ship that will rotate and thrust (move on a vector) across the game screen.
There will be two frames of animation for this ship: a “static” frame and a “thrust”
frame.

• A saucer that flies across the screen and shoots at the player.

• Some “rocks” for the player to shoot. We will use a simple square as our rock.

There are two different methods we can employ to draw the graphics for our game:
bitmap images or paths. For the game in this chapter, we will focus on using paths. In
Chapter 9, we will explore how to manipulate bitmap images for our game graphics.

382 | Chapter 8: Canvas Game Essentials

Using Paths to Draw the Game’s Main Character
Paths offer us a very simple but powerful way to mimic the vector look of the classic
Asteroids game. We could use bitmap images for this purpose, but in this chapter we
are going to focus on creating our game in code with no external assets. Let’s take a
look at the two frames of animation we will create for our player ship.

The static player ship (frame 1)

The main frame of the player ship will be drawn with paths on a 20×20 grid, as shown
in Figure 8-2.

Figure 8-2. The player ship

Using the basic HTML file presented in Example 8-1, we can simply swap the
drawScreen() function with the code in Example 8-2 to draw the ship.

Example 8-2. Drawing the player ship

function drawScreen() {
 // draw background and text
 context.fillStyle = '#000000';
 context.fillRect(0, 0, 200, 200);
 context.fillStyle = '#ffffff';
 context.font = '20px _sans';
 context.textBaseline = 'top';
 context.fillText ("Player Ship - Static", 0, 180);

 //drawShip
 context.strokeStyle = '#ffffff';
 context.beginPath();
 context.moveTo(10,0);
 context.lineTo(19,19);
 context.lineTo(10,9);
 context.moveTo(9,9);
 context.lineTo(0,19);
 context.lineTo(9,0);

 context.stroke();
 context.closePath();
}

Game Graphics: Drawing with Paths | 383

Drawing with Paths
The list below is a refresher on drawing with paths:

1. Always start a new path with the context.beginPath() function call.

2. Set context.strokeStyle() before starting to draw the path.

3. Use a combination of the context.moveTo() and context.drawTo() stroke com-
mands to paint the path lines.

4. End the drawing with the context.stroke() call, and close off the path with
context.closePath().

We are drawing to the upper-left corner of the screen starting at 0,0. Figure 8-3 shows
what this will look like.

Figure 8-3. The player ship on the canvas

The ship with thrust engaged (frame 2)

Now let’s take a look at the second frame of animation for the player ship, which is
shown in Figure 8-4.

Figure 8-4. The player ship with thrust engaged

384 | Chapter 8: Canvas Game Essentials

The drawScreen() function code to add this extra “thrust” graphic is very simple; see
Example 8-3.

Example 8-3. Drawing the player ship with thrust

function drawScreen() {
 // draw background and text
 context.fillStyle = '#000000';
 context.fillRect(0, 0, 200, 200);
 context.fillStyle = '#ffffff';
 context.font = '20px _sans';
 context.textBaseline = 'top';
 context.fillText ("Player Ship - Thrust", 0, 180);

 //drawShip
 context.strokeStyle = '#ffffff';
 context.beginPath();
 context.moveTo(10,0);
 context.lineTo(19,19);
 context.lineTo(10,9);
 context.moveTo(9,9);
 context.lineTo(0,19);
 context.lineTo(9,0);

 //draw thrust
 context.moveTo(8,13);
 context.lineTo(11,13);
 context.moveTo(9,14);
 context.lineTo(9,18);
 context.moveTo(10,14);
 context.lineTo(10,18);

 context.stroke();
 context.closePath();
}

Animating on the Canvas
The player ship we just created has two frames (static and thrust), but we can only
display a single frame at a time. Our game will need to switch out the frame of animation
based on the state of the player ship, and it will need to run on a timer so this animation
can occur. Let’s take a quick look at the code necessary to create our game timer.

Game Timer Loop
Games on HTML5 Canvas require the use of the repeated update/render loop to sim-
ulate animation. We do this by using the setInterval() JavaScript function, which will
repeatedly call a function of our choosing at millisecond intervals. Each second of game/
animation time is made up of 1,000 milliseconds. If we want our game to run at 30
update/render cycles per second, we call this a 30 frames per second (FPS) rate. To run

Animating on the Canvas | 385

our interval at 30 FPS, we first need to divide 1,000 by 30. The result is the number of
milliseconds in each interval:

const FRAME_RATE = 30;
var intervalTime = 1000/FRAME_RATE;
setInterval(drawScreen, intervalTime);

By calling the drawScreen() function repeatedly on each interval, we can simulate
animation.

Sometimes we will refer to each of the frame intervals as a frame tick.

The Player Ship State Changes
We simply need to switch between the static and thrust states to simulate the animation.
Let’s take a look at the full HTML file to do this. In Example 8-4, we will start to place
canvasApp class-level variables in a new section just above the drawScreen() function.
This will be the location going forward for all variables needing a global scope inside
the canvasApp() object.

Example 8-4. The player ship state changes for thrust animation

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH8EX4: Ship Animation Loop</title>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {

 canvasApp();
}

function canvasApp(){

 var theCanvas = document.getElementById("canvas");
 if (!theCanvas || !theCanvas.getContext) {
 return;
 }

 var context = theCanvas.getContext("2d");

 if (!context) {
 return;
 }

 //canvasApp level variables
 var shipState = 0; //0 = static, 1 = thrust

386 | Chapter 8: Canvas Game Essentials

 function drawScreen() {
 //update the shipState
 shipState++;
 if (shipState >1) {
 shipState=0;
 }

 // draw background and text
 context.fillStyle = '#000000';
 context.fillRect(0, 0, 200, 200);
 context.fillStyle = '#ffffff';
 context.font = '20px _sans';
 context.textBaseline = 'top';
 context.fillText ("Player Ship - animate", 0, 180);

 //drawShip
 context.strokeStyle = '#ffffff';
 context.beginPath();
 context.moveTo(10,0);
 context.lineTo(19,19);
 context.lineTo(10,9);
 context.moveTo(9,9);
 context.lineTo(0,19);
 context.lineTo(9,0);

 if (shipState==1) {
 //draw thrust
 context.moveTo(8,13);
 context.lineTo(11,13);
 context.moveTo(9,14);
 context.lineTo(9,18);
 context.moveTo(10,14);
 context.lineTo(10,18);
 }

 context.stroke();
 context.closePath();
 }

 const FRAME_RATE = 40;
 var intervalTime = 1000/FRAME_RATE;
 setInterval(drawScreen, intervalTime);

}

</script>
</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvas" width="200" height="200">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>

Animating on the Canvas | 387

</body>
</html>

When we run Example 8-4 we will see the player ship in the upper-left corner of the
canvas. The static and thrust states will alternate on each frame.

Applying Transformations to Game Graphics
Our game will probably have many individual logical display objects that need to be
updated on a single frame tick. We can make use of the Canvas stack (save() and
restore() functions), and use the transformation matrix to ensure the final output
affects only the current object we are working on—not the entire canvas.

The Canvas Stack
The Canvas state can be saved to a stack and retrieved. This is important when we are
transforming and animating game objects because we want our transformations to
affect only the current game object and not the entire canvas. The basic workflow for
using the Canvas stack in a game looks like this:

1. Save the current canvas to the stack.

2. Transform and draw the game object.

3. Retrieve the saved canvas from the stack.

As an example, let’s set up a basic rotation for our player ship. We will rotate it by 1
degree on each frame. Since we are currently drawing the player ship in the top-left
corner of the canvas, we are going to move it to a new location. We do this because the
basic rotation will use the top-left corner of the ship as the registration point: the axis
location used for rotation and scale operations. So, if we kept the ship at the 0,0 location
and rotated it by its top-left corner, you would not see it half the time because its
location would be off the top and left edges of the canvas. Instead, we will place the
ship at 50,50.

We will be using the same HTML code as in Example 8-4, changing out only the
drawCanvas() function. To simplify this example, we will remove the shipState variable
and concentrate on the static state only. We will be adding in three new variables above
the drawCanvas() function:

var rotation = 0; - holds the current rotation of the player ship
var x = 50; - holds the x location to start drawing the player ship
var y = 50; - holds the y location to start drawing the player ship

Example 8-5 gives the full code.

388 | Chapter 8: Canvas Game Essentials

Example 8-5. Rotating an image

//canvasApp level variables
 var rotation = 0;
 var x = 50;
 var y = 50;

 function drawScreen() {

 // draw background and text
 context.fillStyle = '#000000';
 context.fillRect(0, 0, 200, 200);
 context.fillStyle = '#ffffff';
 context.font = '20px _sans';
 context.textBaseline = 'top';
 context.fillText ("Player Ship - rotate", 0, 180);

 //transformation
 var angleInRadians = rotation * Math.PI / 180;
 context.save(); //save current state in stack
 context.setTransform(1,0,0,1,0,0); // reset to identity

 //translate the canvas origin to the center of the player
 context.translate(x,y);
 context.rotate(angleInRadians);

 //drawShip
 context.strokeStyle = '#ffffff';
 context.beginPath();
 context.moveTo(10,0);
 context.lineTo(19,19);
 context.lineTo(10,9);
 context.moveTo(9,9);
 context.lineTo(0,19);
 context.lineTo(9,0);

 context.stroke();
 context.closePath();

 //restore context
 context.restore(); //pop old state on to screen

 //add to rotation
 rotation++;
 }

As you can see, the player ship rotates clockwise one degree at a time. As we’ve men-
tioned many times already, we must convert from degrees to radians because the
context.rotate() transformations use radians for calculations. In the next section, we’ll
take a deeper look at some of the transformations we will use in our Geo Blaster
Basic game.

Applying Transformations to Game Graphics | 389

Game Graphic Transformations
As we saw in the previous section, we can easily rotate a game graphic at the top-left
corner by using the context.rotate() transformation. However, our game will need to
rotate objects at the center rather than the top-left corner. To do this, we must change
the transformation point to the center of our game graphic object.

Rotating the Player Ship from the Center
The code to rotate the player ship from its center point is almost exactly like the code
used to rotate it at the top-left corner. What we need to modify is the point of the
translation. In Example 8-5, we placed the immediate-mode drawing context at the x
and y coordinates of our game object (50,50). This had the effect of rotating the object
from the top-left corner. Now we must move the translation to the center of our object:

context.translate(x+.5*width,y+.5*height);

The width and height variables represent attributes of our drawn player
ship. We will create these attributes in Example 8-6.

This is not the only change we need to make; we also need to draw our ship as though
it is the center point. To do this, we will subtract half the width from each x attribute
in our path draw sequence, and half the height from each y attribute:

context.moveTo(10-.5*width,0-.5*height);
context.lineTo(19-.5*width,19-.5*height);

As you can see, it might get a little confusing trying to draw coordinates in this manner.
It is also slightly more processor-intensive than using constants. In that case, we would
simply hardcode in the needed values. Remember, the width and height attributes of
our ship are both 20. The hardcoded version would look something like this:

context.moveTo(0,−10); //10-10, 0-10
context.lineTo(9,9); //19-10, 19-10

The method where we use the calculated values (using the width and height variables)
is much more flexible, while the hardcoded method is much less processor-intensive.
Example 8-6 contains all the code to use either method. We have commented out the
calculated version of the code.

Example 8-6. Rotating an image from its center point

//canvasApp level variables
 var rotation = 0;
 var x = 50;
 var y = 50;

390 | Chapter 8: Canvas Game Essentials

 var width = 20;
 var height = 20;

 function drawScreen() {
 // draw background and text
 context.fillStyle = '#000000';
 context.fillRect(0, 0, 200, 200);
 context.fillStyle = '#ffffff';
 context.font = '20px _sans';
 context.textBaseline = 'top';
 context.fillText ("Player Ship - rotate", 0, 180);

 //transformation
 var angleInRadians = rotation * Math.PI / 180;
 context.save(); //save current state in stack
 context.setTransform(1,0,0,1,0,0); // reset to identity

 //translate the canvas origin to the center of the player
 context.translate(x+.5*width,y+.5*height);
 context.rotate(angleInRadians);

 //drawShip

 context.strokeStyle = '#ffffff';
 context.beginPath();

 //hardcoding in locations
 context.moveTo(0,-10);
 context.lineTo(9,9);
 context.lineTo(0,-1);
 context.moveTo(-1,-1);
 context.lineTo(-10,9);
 context.lineTo(-1,-10);

 /*
 //using the width and height to calculate
 context.moveTo(10-.5*width,0-.5*height);
 context.lineTo(19-.5*width,19-.5*height);
 context.lineTo(10-.5*width,9-.5*height);
 context.moveTo(9-.5*width,9-.5*height);
 context.lineTo(0-.5*width,19-.5*height);
 context.lineTo(9-.5*width,0-.5*height);
 */

 context.stroke();
 context.closePath();

 //restore context
 context.restore(); //pop old state on to screen

 //add to rotation
 rotation++;

 }

Game Graphic Transformations | 391

Alpha Fading the Player Ship
When a new player ship in Geo Blaster Basic enters the game screen, we will have it
fade from transparent to opaque. Example 8-7 shows how we will create this transfor-
mation in our game.

Using the context.globalAlpha attribute

To use the context.globalAlpha attribute of the canvas, we simply set it to a number
between 0 and 1 before we draw the game graphics. We will create a new variable in
our code called alpha, which will hold the current alpha value for our player ship. We
will increase it by .01 until it reaches 1. When we actually create our game we will stop
it at 1 and then start the game level. However, for this demo, we will just repeat it over
and over.

Example 8-7. Alpha fading to the player ship

//canvasApp level variables
 var x = 50;
 var y = 50;
 var width = 20;
 var height = 20;
 var alpha = 0;
 context.globalAlpha = 1;

 function drawScreen() {

 context.globalAlpha = 1;
 context.fillStyle = '#000000';
 context.fillRect(0, 0, 200, 200);
 context.fillStyle = '#ffffff';
 context.font = '20px _sans';
 context.textBaseline = 'top';
 context.fillText ("Player Ship - alpha", 0, 180);
 context.globalAlpha = alpha;
 context.save(); //save current state in stack
 context.setTransform(1,0,0,1,0,0); // reset to identity

 //translate the canvas origin to the center of the player
 context.translate(x+.5*width,y+.5*height);

 //drawShip
 context.strokeStyle = '#ffffff';
 context.beginPath();

 //hardcoding in locations
 context.moveTo(0,-10);
 context.lineTo(9,9);
 context.lineTo(0,-1);
 context.moveTo(-1,-1);
 context.lineTo(-10,9);
 context.lineTo(-1,-10);

392 | Chapter 8: Canvas Game Essentials

 context.stroke();
 context.closePath();

 //restore context
 context.restore(); //pop old state on to screen

 //add to rotation
 alpha+=.01;
 if (alpha > 1) {
 alpha=0;
 }
 }

Game Object Physics and Animation
All of our game objects will move on a two-dimensional plane. We will use basic di-
rectional movement vectors to calculate the change in the x and y coordinates for each
game object. At its very basic level, we will be updating the delta x (dx) and delta y
(dy) of each of our game objects on each frame to simulate movement. These dx and
dy values will be based on the angle and direction in which we want the object to move.
All of our logical display objects will add their respective dx and dy values to their x and
y values on each frame of animation. The player ship will not use strict dx and dy because
it needs to be able to float and turn independently. Let’s take a closer look at the player
movement now.

How Our Player Ship Will Move
Our player ship will change its angle of center axis rotation when the game player
presses the left and right arrow keys. When the game player presses the up arrow key,
the player ship will accelerate (thrust) in the angle it is facing. Because there is no friction
applied to the ship, it will continue to float in the current accelerated angle until a
different angle of acceleration is applied. This happens when the game player rotates
to a new angle and presses the up (thrust) key once again.

The difference between facing and moving

Our player ship can rotate to the direction it is facing while it is moving in a different
direction. For this reason, we cannot simply use classic dx and dy values to represent
the movement vector on the x and y axes. We must keep both sets of values for the ship
at all times. When the player rotates the ship but does not thrust it, we need to draw
the ship in the new rotated angle. All missile projectiles the ship fires must also move
in the direction the ship is facing. On the x-axis, we will name this value facingX; on
the y-axis, it’s facingY. movingX and movingY values will handle moving the ship in the
direction it was pointed in when the thrust was applied. All four values are needed to
thrust the ship in a new direction. Let’s take a look at this next.

Game Object Physics and Animation | 393

Thrusting in the rotated direction

Once the ship is rotated to the desired direction, the player can thrust it forward by
pressing the up arrow key. This thrust will accelerate the player ship only while the key
is pressed. Since we know the rotation of the ship, we can easily calculate the angle of
the rotation. We will then add new movingX and movingY values to the ship’s x and y
attributes to move it forward.

First, we must change the rotation value from degrees to radians:

var angleInRadians = rotation * Math.PI / 180;

You have seen this before—it’s identical to how we calculated the rotation transfor-
mation before it was applied to the player ship.

Once we have the angle of the ship’s rotation, we must calculate the facingX and
facingY values for this current direction. We only do this when we are going to thrust
because it is an expensive calculation, processor-wise. We could calculate these each
time the player changes the ship’s rotation, but doing so would add unnecessary pro-
cessor overhead:

facingX = Math.cos(angleInRadians);
facingY = Math.sin(angleInRadians);

Once we have values on the x and y axes that represent the direction the player ship is
currently facing, we can calculate the new movingX and movingY values for the player:

movingX = movingX+thrustAcceleration*facingX;
movingY = movingY+thrustAcceleration*facingY;

To apply these new values to the player ship’s current position, we need to add them
to its current x and y positions. This does not occur only when the player presses the up
key. If it did, the player ship would not float; it would only move when the key was
pressed. We must modify the x and y values on each frame with the movingX and
movingY values:

x = x+movingX;
y = y+movingY;

Redrawing the player ship to start at angle 0

As you may recall, when we first drew the image for our player ship, we had the point
end (the top) of the ship pointing up. We did this for ease of drawing, but it’s not really
the best direction in which to draw our ship when we intend to apply calculations for
rotational thrust. The pointing-up direction is actually the -90 (or 270) degree angle. If
we want to leave everything the way it currently is, we will need to modify the angleIn
Radians calculation to look like this:

var angleInRadians = (Math.PI * (player.rotation -90))/ 180;

394 | Chapter 8: Canvas Game Essentials

This is some ugly code, but it works fine if we want our player ship to be pointing up
before we apply rotation transformations. A better method is to keep the current
angleInRadians calculation but draw the ship pointing in the actual angle 0 direction
(to the right). Figure 8-5 shows how we would draw this.

Figure 8-5. The player ship drawn at the 0 degree rotation

The drawing code for this direction would be modified to look like this:

//facing right
context.moveTo(−10,−10);
context.lineTo(10,0);
context.moveTo(10,1);
context.lineTo(−10,10);
context.lineTo(1,1);
context.moveTo(1,−1);
context.lineTo(−10,−10);

Controlling the Player Ship with the Keyboard
We will add in two keyboard events and an array object to hold the state of each key
press. This will allow the player to hold down a key and have it repeat without a pause.
Arcade games require this type of key-press response.

The array to hold our key presses

An array will hold the true or false value for each keyCode associated with key events.
The keyCode will be the index of the array that will receive the true or false value:

var keyPressList = [];

The key events

We will use separate events for both key down and key up. The key down event will put
a true value in the keyPressList array at the index associated with the event’s
keyCode. Conversely, the key up event will place a false in that array index:

Game Object Physics and Animation | 395

document.onkeydown = function(e){

 e=e?e:window.event;
 //ConsoleLog.log(e.keyCode + "down");
 keyPressList[e.keyCode] = true;
 }

 document.onkeyup = function(e){
 //document.body.onkeyup=function(e){
 e = e?e:window.event;
 //ConsoleLog.log(e.keyCode + "up");
 keyPressList[e.keyCode] = false;
 };

Evaluating key presses

Our game will need to include code to look for true (or false) values in the keyPress
List array, and use those values to apply game logic:

if (keyPressList[38]==true){
 //thrust
 var angleInRadians = player.rotation * Math.PI / 180;
 facingX = Math.cos(angleInRadians);
 facingY = Math.sin(angleInRadians);

 movingX = movingX+thurstAcceleration*facingX;
 movingY = movingY+thurstAcceleration*facingY;
}

if (keyPressList[37]==true) {
 //rotate counterclockwise
 rotation-=rotationalVelocity;
}

if (keyPressList[39]==true) {
 //rotate clockwise
 rotation+=rotationalVelocity;;
}

Let’s add this code to our current set of rotation examples and test it out. We have
made some major changes, so Example 8-8 presents the entire HTML file once again.

Example 8-8. Controlling the player ship

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH8EX8: Ship Turn With Keys</title>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {

 canvasApp();

396 | Chapter 8: Canvas Game Essentials

}

function canvasApp(){

 var theCanvas = document.getElementById("canvas");
 if (!theCanvas || !theCanvas.getContext) {
 return;
 }

 var context = theCanvas.getContext("2d");

 if (!context) {
 return;
 }

 //canvasApp level variables

 var rotation = 0;
 var x = 50;
 var y = 50;
 var facingX = 0;
 var facingY = 0;
 var movingX = 0;
 var movingY = 0;
 var width = 20;
 var height = 20;
 var rotationalVelocity = 5; //how many degrees to turn the ship
 var thrustAcceleration = .03;
 var keyPressList = [];
 function drawScreen() {

 //check keys

 if (keyPressList[38]==true){
 //thrust
 var angleInRadians = rotation * Math.PI / 180;
 facingX = Math.cos(angleInRadians);
 facingY = Math.sin(angleInRadians);

 movingX = movingX+thrustAcceleration*facingX;
 movingY = movingY+thrustAcceleration*facingY;

 }

 if (keyPressList[37]==true) {
 //rotate counterclockwise
 rotation −= rotationalVelocity;
 }

 if (keyPressList[39]==true) {
 //rotate clockwise
 rotation += rotationalVelocity;;
 }

Game Object Physics and Animation | 397

 x = x+movingX;
 y = y+movingY;

 // draw background and text
 context.fillStyle = '#000000';
 context.fillRect(0, 0, 200, 200);
 context.fillStyle = '#ffffff';
 context.font = '20px _sans';
 context.textBaseline = 'top';
 context.fillText ("Player Ship - key turn", 0, 180);

 //transformation
 var angleInRadians = rotation * Math.PI / 180;
 context.save(); //save current state in stack
 context.setTransform(1,0,0,1,0,0); // reset to identity

 //translate the canvas origin to the center of the player
 context.translate(x+.5*width,y+.5*height);
 context.rotate(angleInRadians);

 //drawShip

 context.strokeStyle = '#ffffff';
 context.beginPath();

 //hardcoding in locations
 //facing right
 context.moveTo(-10,-10);
 context.lineTo(10,0);
 context.moveTo(10,1);
 context.lineTo(-10,10);
 context.lineTo(1,1);
 context.moveTo(1,-1);
 context.lineTo(-10,-10);

 context.stroke();
 context.closePath();

 //restore context
 context.restore(); //pop old state on to screen
 }

 const FRAME_RATE = 40;
 var intervalTime = 1000/FRAME_RATE;
 setInterval(drawScreen, intervalTime);

 document.onkeydown = function(e){
 e = e?e:window.event;
 //ConsoleLog.log(e.keyCode + "down");
 keyPressList[e.keyCode] = true;
 }

 document.onkeyup = function(e){
 //document.body.onkeyup = function(e){
 e = e?e:window.event;

398 | Chapter 8: Canvas Game Essentials

 //ConsoleLog.log(e.keyCode + "up");
 keyPressList[e.keyCode] = false;
 };

}

</script>
</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">
<canvas id="canvas" width="200" height="200">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Once this file is run in a browser, you should be able to press the left and right keys to
rotate the ship on its center axis. If you press the up key, the ship will move in the
direction it is facing.

Giving the Player Ship a Maximum Velocity
If you play with the code in Example 8-8, you will notice two problems:

1. The ship can go off the sides of the screen and get lost.

2. The ship has no maximum speed.

We’ll resolve the first issue when we start to code the complete game, but for now, let’s
look at how to apply a maximum velocity to our current movement code. Suppose we
give our player ship a maximum acceleration of 2 pixels per frame. It’s easy to calculate
the current velocity if we are only moving in the four primary directions: up, down,
right, left. When we are moving left or right, the movingY value will always be 0. If we
are moving up or down, the movingX value will always be 0. The current velocity we are
moving on one axis would be easy to compare to the maximum velocity.

But in our game, we are almost always moving in the x and y directions at the same
time. To calculate the current velocity and compare it to a maximum velocity, we must
use a bit more math.

First, let’s assume that we will add a maximum velocity variable to our game:

var maxVelocity = 2;

Next, we must make sure to calculate and compare the maxVelocity to the current
velocity before we calculate the new movingX and movingY values. We will do this with
local variables used to store the new values for movingX and movingY before they are
applied:

var movingXNew = movingX+thrustAcceleration*facingX;
var movingYNew = movingY+thrustAcceleration*facingY;

Game Object Physics and Animation | 399

The current velocity of our ship is the square root of movingXNew^2 + movingYNew^2:

var currentVelocity = Math.sqrt ((movingXNew*movingXNew) + (movingXNew*movingXNew));

If the currentVelocity is less than the maxVelocity, we set the movingX and movingY
values:

if (currentVelocity < maxVelocity) {
 movingX = movingXNew;
 movingY = movingYNew;
}

A Basic Game Framework
Now that we have gotten our feet wet (so to speak) by taking a peek at some of the
graphics, transformations, and basic physics we will use in our game, let’s look at how
we will structure a simple framework for all games we might want to create on HTML5
Canvas. We will begin by creating a simple state machine using constant variables.
Next, we will introduce our game timer interval function to this structure, and finally,
we will create a simple reusable object that will display the current frame rate our game
is running in. Let’s get started.

The Game State Machine
A state machine is a programming construct that allows for our game to be in only a
single application state at any one time. We will create a state machine for our game,
called application state, which will include seven basic states (we will use constants to
refer to these states):

• GAME_STATE_TITLE

• GAME_STATE_NEW_GAME

• GAME_STATE_NEW_LEVEL

• GAME_STATE_PLAYER_START

• GAME_STATE_PLAY_LEVEL

• GAME_STATE_PLAYER_DIE

• GAME_STATE_GAME_OVER

We will create a function object for each state that will contain game logic necessary
for the state to function and to change to a new state when appropriate. By doing this,
we can use the same structure for each game we create by simply changing out the
content of each state function (as we will refer to them).

Let’s take a look at a very basic version of this in action. We will use a function reference
variable called currentGameStateFunction, as well as an integer variable called current
GameState that will hold the current application state constant value:

400 | Chapter 8: Canvas Game Essentials

var currentGameState = 0;
var currentGameStateFunction = null;

We will create a function called switchAppState() that will be called only when we want
to switch to a new state:

function switchGameState(newState) {
 currentGameState = newState;
 switch (currentState) {

 case GAME_STATE_TITLE:
 currentGameStateFunction = gameStateTitle;
 break;

 case GAME_STATE_PLAY_LEVEL:
 currentGameStateFunctionappStatePlayeLevel;
 break;

 case GAME_STATE_GAME_OVER:
 currentGameStateFunction = gameStateGameOver;
 break;

 }

}

We will call the runGame() function repeatedly in the setInterval() method. run
Game() will call the currentGameStateFunction reference variable on each frame tick.
This allows us to easily change the function called by runGame() based on changes in
the application state:

setInterval(runGame, intervalTime);

function runGame(){
 currentGameStateFunction();
}

Let’s look at the complete code. We will create some shell functions for the various
application state functions. Before the application starts, we will call the switchGame
State() function, and pass in the constant value for the new function we want as the
currentGameStateFunction:

//*** application start
 switchGameState(GAME_STATE_TITLE);

In Example 8-9, we will use the GAME_STATE_TITLE state to draw a simple title screen
that will be redrawn on each frame tick.

Example 8-9. The tile screen state

<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {

 canvasApp();

A Basic Game Framework | 401

}

 function canvasApp(){

 var theCanvas = document.getElementById("canvas");
 if (!theCanvas || !theCanvas.getContext) {
 return;
 }

 var context = theCanvas.getContext("2d");

 if (!context) {
 return;
 }

 //application states

 const GAME_STATE_TITLE = 0;
 const GAME_STATE_NEW_LEVEL = 1;
 const GAME_STATE_GAME_OVER = 2;

 var currentGameState = 0;
 var currentGameStateFunction = null;

 function switchGameState(newState) {
 currentGameState = newState;
 switch (currentGameState) {

 case GAME_STATE_TITLE:
 currentGameStateFunction = gameStateTitle;
 break;

 case GAME_STATE_PLAY_LEVEL:
 currentGameStateFunctionappStatePlayeLevel;
 break;

 case GAME_STATE_GAME_OVER:
 currentGameStateFunction = gameStateGameOver;
 break;

 }

 }

 function gameStateTitle() {
 ConsoleLog.log("appStateTitle");
 // draw background and text
 context.fillStyle = '#000000';
 context.fillRect(0, 0, 200, 200);
 context.fillStyle = '#ffffff';
 context.font = '20px _sans';
 context.textBaseline = 'top';
 context.fillText ("Title Screen", 50, 90);

402 | Chapter 8: Canvas Game Essentials

 }

 function gameStatePlayLevel() {
 ConsoleLog.log("appStateGamePlay");
 }

 function gameStateGameOver() {
 ConsoleLog.log("appStateGameOver");
 }

 function runGame(){
 currentGameStateFunction();
 }

 //*** application start
 switchGameState(GAME_STATE_TITLE);

 //**** application loop
 const FRAME_RATE = 40;
 var intervalTime = 1000/FRAME_RATE;
 setInterval(runGame, intervalTime);

}

//***** object prototypes *****

//*** consoleLog util object
//create constructor
function ConsoleLog(){

}

//create function that will be added to the class
console_log = function(message) {
 if(typeof(console) !== 'undefined' && console != null) {
 console.log(message);
 }
}
//add class/static function to class by assignment
ConsoleLog.log = console_log;

//*** end console log object

</script>

Example 8-9 added in the ConsoleLog object from the previous chapters.
We will continue to use this utility to create helpful debug messages in
the JavaScript log window of the browser.

We will continue to explore the application state machine, and then create one for our
game logic states in the upcoming section, “Putting It All Together” on page 407.

A Basic Game Framework | 403

The Update/Render (Repeat) Cycle
In any of our application states, we might need to employ animation and screen up-
dates. We will handle these updates by separating our code into distinct update() and
render() operations. For example, as you might recall, the player ship can move around
the game screen, and when the player presses the up arrow key, the ship’s thrust frame
of animation will be displayed rather than its static frame. In the previous examples,
we contained all the code that updates the properties of the ship, as well as the code
that actually draws the ship, in a single function called drawScreen(). Starting with
Example 8-10, we will rid ourselves of this simple drawScreen() function and instead
employ update() and render() functions separately. We will also separate out the code
that checks for the game-specific key presses into a checkKeys() function.

Let’s reexamine the contents of the drawScreen() function from Example 8-8, but this
time break the function up into separate functions for each set of tasks, as shown in
Example 8-10.

Example 8-10. Splitting the update and render cycles

function gameStatePlayLevel() {
 checkKeys();
 update();
 render();
}

function checkKeys() {

 //check keys

 if (keyPressList[38]==true){
 //thrust
 var angleInRadians = rotation * Math.PI / 180;
 facingX = Math.cos(angleInRadians);
 facingY = Math.sin(angleInRadians);

 movingX = movingX+thrustAcceleration*facingX;
 movingY = movingY+thrustAcceleration*facingY;

 }

 if (keyPressList[37]==true) {
 //rotate counterclockwise
 rotation−=rotationalVelocity;
 }

 if (keyPressList[39]==true) {
 //rotate clockwise
 rotation+=rotationalVelocity;;
 }
}

function update() {

404 | Chapter 8: Canvas Game Essentials

 x = x+movingX;
 y = y+movingY;
}

function render() {
 //draw background and text
 context.fillStyle = '#000000';
 context.fillRect(0, 0, 200, 200);
 context.fillStyle = '#ffffff';
 context.font = '20px _sans';
 context.textBaseline = 'top';
 context.fillText ("render/update", 0, 180);

 //transformation
 var angleInRadians = rotation * Math.PI / 180;
 context.save(); //save current state in stack
 context.setTransform(1,0,0,1,0,0); // reset to identity

 //translate the canvas origin to the center of the player
 context.translate(x+.5*width,y+.5*height);
 context.rotate(angleInRadians);

 //drawShip

 context.strokeStyle = '#ffffff';
 context.beginPath();

 //hardcoding in locations
 //facing right
 context.moveTo(−10,−10);
 context.lineTo(10,0);
 context.moveTo(10,1);
 context.lineTo(−10,10);
 context.lineTo(1,1);
 context.moveTo(1,−1);
 context.lineTo(−10,−10);

 context.stroke();
 context.closePath();

 //restore context
 context.restore(); //pop old state on to screen
}

const FRAME_RATE = 40;
var intervalTime = 1000/FRAME_RATE;
setInterval(appStateGamePlay, intervalTime);

We left out the entire application state machine from Example 8-9 to save space. In
Example 8-10, we are simply showing what the gameStatePlayLevel() function might
look like.

In the section “Putting It All Together” on page 407, we will go into this in greater
detail as we start to build out the entire application.

A Basic Game Framework | 405

The FrameRateCounter Object Prototype
Arcade games such as Asteroids and Geo Blaster Basic rely on fast processing and screen
updates to ensure all game-object rendering and game-play logic are delivered to the
player at a reliable rate. One way to tell whether your game is performing up to par is
to employ the use of a frame rate per second (FPS) counter. Below is a simple one that
can be reused in any game you create on the canvas:

//*** FrameRateCounter object prototype
function FrameRateCounter() {

 this.lastFrameCount = 0;
 var dateTemp = new Date();
 this.frameLast = dateTemp.getTime();
 delete dateTemp;
 this.frameCtr = 0;
}

FrameRateCounter.prototype.countFrames=function() {
 var dateTemp = new Date();
 this.frameCtr++;

 if (dateTemp.getTime() >=this.frameLast+1000) {
 ConsoleLog.log("frame event");
 this.lastFrameCount = this.frameCtr;
 this.frameLast = dateTemp.getTime();
 this.frameCtr = 0;
 }

 delete dateTemp;
}

Our game will create an instance of this object and call the countFrames() function on
each frame tick in our update() function. We will write out the current frame rate in
our render() function.

Example 8-11 shows these functions by adding code to Example 8-10. Make sure you
add the definition of the FrameRateCounter prototype object to the code in Exam-
ple 8-10 under the canvasApp() function but before the final <script> tag. Alternatively,
you can place it in its own <script\> tags, or in a separate .js file and set the URL as the
src= value of a <script> tag. For simplicity’s sake, we will keep all our code in a single
file.

Example 8-11 contains the definition for our FrameRateCounter object prototype, as
well as the code changes to Example 8-10 that are necessary to implement it.

Example 8-11. The FrameRateCounter is added

function update() {
 x = x+movingX;
 y = y+movingY;
 frameRateCounter.countFrames();
}

406 | Chapter 8: Canvas Game Essentials

function render() {
 // draw background and text
 context.fillStyle = '#000000';
 context.fillRect(0, 0, 200, 200);
 context.fillStyle = '#ffffff';
 context.font = '20px _sans';
 context.textBaseline = 'top';
 context.fillText ("FPS:" + frameRateCounter.lastFrameCount, 0, 180);

 //...Leave everything else from Example 8-10 intact here
}

frameRateCounter = new FrameRateCounter();
const FRAME_RATE = 40;
var intervalTime = 1000/FRAME_RATE;
setInterval(runGame, intervalTime);

Putting It All Together
We are now ready to start coding our game. First, we will look at the structure of the
game and some of the ideas behind the various algorithms we will employ to create it.
After that, we will present the full source code for Geo Blaster Basic.

Geo Blaster Game Structure
The structure of the game application is very similar to the structure we started to build
earlier in this chapter. Let’s take a closer look at the state functions and how they will
work together.

Game application states

Our game will have seven distinct game application states. We will store these in
constants:

const GAME_STATE_TITLE = 0;
const GAME_STATE_NEW_GAME = 1;
const GAME_STATE_NEW_LEVEL = 2;
const GAME_STATE_PLAYER_START = 3;
const GAME_STATE_PLAY_LEVEL = 4;
const GAME_STATE_PLAYER_DIE = 5;
const GAME_STATE_GAME_OVER = 6;

Game application state functions

Each individual state will have an associated function that will be called on each frame
tick. Let’s look at the functionality for each:

Putting It All Together | 407

gameStateTitle()
Displays the title screen text and waits for the space bar to be pressed before the
game starts.

gameStateNewGame()
Sets up all the defaults for a new game. All of the arrays for holding display objects
are reinitialized—the game level is reset to 0, and the game score is set to 0.

gameStateNewLevel()
Increases the level value by one, and then sets the “game knob” values to control
the level difficulty. See the upcoming section “Level Knobs” on page 415 for
details.

gameStatePlayerStart()
Fades the player graphic onto the screen from 0 alpha to 1. Once this is complete,
level play will start.

gameStatePlayLevel()
Controls the play of the game level. It calls the update() and render() functions,
as well as the functions for evaluating keyboard input for player ship control.

gameStatePlayerDie()
Starts up an explosion at the location where the player ship was when it was hit by
a rock, saucer, or saucer missile. Once the explosion is complete (all particles in
the explosion have exhausted their individual life values), it sets the move to the
GAME_STATE_PLAYER_START state.

gameStateGameOver()
Displays the “Game Over” screen, and starts a new game when the space bar is
pressed.

Game application functions

Aside from the game application state functions, there are a number of functions we
need for the game to run. Each state function will call these functions as needed:

resetPlayer()
Resets the player to the center of the game screen and readies it for game play.

checkForExtraShip()
Checks to see whether the player should be awarded an extra ship. See the section
“Awarding the Player Extra Ships” on page 416 for details on this algorithm.

checkForEndOfLevel()
Checks to see whether all the rocks have been destroyed on a given level and, if so,
starts up a new level. See the section “Level and Game End” on page 415 for details
on this algorithm.

fillBackground()
Fills the canvas with the background color on each frame tick.

408 | Chapter 8: Canvas Game Essentials

setTextStyle()
Sets the base text style before text is written to the game screen.

renderScoreBoard()
Is called on each frame tick. It displays the updated score, number of ships re-
maining, and the current FPS for the game.

checkKeys()
Checks the keyPressList array, and then modifies the player ship attributes based
on the values found to be true.

update()
Is called from GAME_STATE_PLAY_LEVEL. It in turn calls the update() function for each
individual display object array.

Individual display object update() functions
The unique functions listed below update each different type of display object.
These functions (with the exception of updatePlayer()) will loop through the
respective array of objects associated with its type of display object, and update
the x and y values with dx and dy values. The updateSaucer() function contains
the logic necessary to check whether to create a new saucer, and whether any
current saucers on the screen should fire a missile at the player.

• updatePlayer()

• updatePlayerMissiles()

• updateRocks()

• updateSaucers()

• updateSaucerMissiles()

• updateParticles()

render()
Is called from GAME_STATE_PLAY_LEVEL. It in turn calls the render() function for each
individual display object array.

Individual display object render() functions
Like the update() functions, the unique functions listed below render each
different type of display object. Again, with the exception of the render
Player() object (because there is only a single player ship), each of these func-
tions will loop through the array of objects associated with its type and draw
them to the game screen. As we saw when drawing the player ship earlier in
this chapter, we will draw each object by moving and translating the canvas
to the point at which we want to draw our logical object. We will then trans-
form our object (if necessary) and paint the paths to the game screen.

• renderPlayer()

• renderPlayerMissiles()

• renderRocks()

Putting It All Together | 409

• renderSaucers()

• renderSaucerMissiles()

• renderParticles()

checkCollisions()
Loops through the individual game display objects and checks them for collisions.
See the section “Applying Collision Detection” on page 417 for a detailed discus-
sion of this topic.

firePlayerMissile()
Creates a playerMissile object at the center of the player ship and fires it in the
direction the player ship is facing.

fireSaucerMissile()
Creates a saucerMissile object at the center of the saucer and fires it in the direction
of the player ship.

playerDie()
Creates an explosion for the player by calling createExplode(), as well as changing
the game application state to GAME_STATE_PLAYER_DIE.

createExplode()
Accepts in the location for the explosion to start and the number of particles for
the explosion.

boundingBoxCollide()
Determines whether the rectangular box that encompasses an object’s width and
height is overlapping the bounding box of another object. It takes in two logical
display objects as parameters, and returns true if they are overlapping and false
if they are not. See the section “Applying Collision Detection” on page 417 for
details on this function.

splitRock()
Accepts in the scale and x and y starting points for two new rocks that will be
created if a large or medium rock is destroyed.

addToScore()
Accepts in a value to add to the player’s score.

Geo Blaster Global Game Variables
Now let’s look at the entire set of game application scope variables needed for our game.

Variables that control screen flow
These variables will be used when the title and “Game Over” screens first appear.
They will be set to true once the screen is drawn. When these variables are true,
the screens will look for the space bar to be pressed before moving on to the next
application state:

410 | Chapter 8: Canvas Game Essentials

var titleStarted = false;
var gameOverStarted = false;

Game environment variables
These variables set up the necessary defaults for a new game. We will discuss the
extraShipAtEach and extraShipsEarned in the section, “Awarding the Player Extra
Ships” on page 416:

var score = 0;
var level = 0;
var extraShipAtEach = 10000;
var extraShipsEarned = 0;
var playerShips = 3;

Playfield variables
These variables set up the maximum and minimum x and y coordinates for the
game stage:

var xMin = 0;
var xMax = 400;
var yMin = 0;
var yMax = 400;

Score value variables
These variables set the score value for each of the objects the player can destroy:

var bigRockScore = 50;
var medRockScore = 75;
var smlRockScore = 100;
var saucerScore = 300;

Rock size constants
These variables set up some human-readable values for the three rock sizes, al-
lowing us to simply use the constant instead of a literal value. We can then change
the literal value if needed:

const ROCK_SCALE_LARGE = 1;
const ROCK_SCALE_MEDIUM = 2;
const ROCK_SCALE_SMALL = 3;

Logical display objects
These variables set up the single player object and arrays to hold the various other
logical display objects for our game. See the upcoming sections “The player Ob-
ject” and “Arrays of Logical Display Objects” on page 412 for further details on
each:

var player = {};
var rocks = [];
var saucers = [];
var playerMissiles = [];
var particles = []
var saucerMissiles = [];

Putting It All Together | 411

Level-specific variables
The level-specific variables handle the difficulty settings when the game level in-
creases. See the section “Level Knobs” on page 415 for more details on how these
are used:

var levelRockMaxSpeedAdjust = 1;
var levelSaucerMax = 1;
var levelSaucerOccurrenceRate = 25
var levelSaucerSpeed = 1;
var levelSaucerFireDelay = 300;
var levelSaucerFireRate = 30;
var levelSaucerMissileSpeed = 1;

The player Object
The player object contains many of the variables we encountered earlier in this chapter
when we discussed animating, rotating, and moving the player ship about the game
screen. We have also added in three new variables that you have not seen before:

player.maxVelocity = 5;
player.width = 20;
player.height = 20;
player.halfWidth = 10;
player.halfHeight = 10;
player.rotationalVelocity = 5
player.thrustAcceleration = .05;
player.missileFrameDelay = 5;
player.thrust = false;

The new variables are halfWidth, halfHeight, and missileFrameDelay. halfWidth and
halfHeight simply store half the width and half the height values, so these need not be
calculated on each frame tick in multiple locations inside the code. The missileFrame
Delay variable contains the number of frame ticks the game will count between firing
player missiles. This way, the player cannot simply fire a steady stream of ordnance
and destroy everything with little difficulty.

The player.thrust variable will be set to true when the player presses the up key.

Geo Blaster Game Algorithms
The game source code covers a lot of ground that we did not touch on earlier in this
chapter. Let’s discuss some of those topics now; the rest will be covered in detail in
Chapter 9.

Arrays of Logical Display Objects
We have used arrays to hold all our logical display objects, and we have an array for
each type of object (rocks, saucers, playerMissiles, saucerMissiles, and particles).

412 | Chapter 8: Canvas Game Essentials

Each logical display object is a simple object instance. We have created a separate
function to draw and update each of our objects.

The use of an object class prototype similar to FrameRateCounter can be
implemented easily for the various display object types. To conserve
space, we have not implemented them in this game. However, these
objects would allow us to separate the update and draw code from the
current common functions, and then place that code into the individual
object prototypes. We have included a Rock prototype at the end of this
chapter as an example (see Example 8-13).

You will notice that saucers and rocks are drawn with points in the same manner as
the player ship.

Rocks

The rocks will be simple squares that rotate clockwise or counterclockwise. The rock
instances will be in the rocks array. When a new level starts, these will all be created in
the upper-right corner of the game screen.

Here are the variable attributes of a rock object:

newRock.scale = 1;
newRock.width = 50;
newRock.height = 50;
newRock.halfWidth = 25;
newRock.halfHeight = 25;
newRock.x
newRock.y
newRock.dx
newRock.dy
newRock.scoreValue = bigRockScore;
newRock.rotation = 0;

The rock scale will be set to one of the three rock-scale constants discussed earlier.
halfWidth and halfHeight will be set based on the scale, and they will be used in cal-
culations in the same manner as the player object versions. The dx and dy values rep-
resent the values to apply to the x and y axes when updating the rock on each frame tick.

Saucers

Unlike Atari’s Asteroids game, which has both small and large saucers, we are only
going to have one size in Geo Blaster Basic. It will be stored in the saucers array. On a
28×13 grid (using paths), it looks like Figure 8-6.

Geo Blaster Game Algorithms | 413

Figure 8-6. The saucer design

The variable attributes of the saucer object are very similar to the attributes of a rock
object, although without the rock scale attribute. Also, saucers don’t have a rotation;
it is always set at 0. The saucer also contains variables that are updated on each new
level to make the game more challenging for the player. Here are those variables, which
will be discussed in more detail in the upcoming section “Level Knobs”:

newSaucer.fireRate = levelSaucerFireRate;
newSaucer.fireDelay = levelSaucerFireDelay;
newSaucer.fireDelayCount = 0;
newSaucer.missileSpeed = levelSaucerMissileSpeed;

Missiles

Both the player missiles and saucer missiles will be 2×2-pixel blocks. They will be stored
in the playerMissiles and saucerMissiles arrays, respectively.

The objects are very simple. They contain enough attributes to move them across the
game screen and to calculate life values:

newPlayerMissile.dx = 5*Math.cos(Math.PI*(player.rotation)/180);
newPlayerMissile.dy = 5*Math.sin(Math.PI*(player.rotation)/180);
newPlayerMissile.x = player.x+player.halfWidth;
newPlayerMissile.y = player.y+player.halfHeight;
newPlayerMissile.life = 60;
newPlayerMissile.lifeCtr = 0;
newPlayerMissile.width = 2;
newPlayerMissile.height = 2;

Explosions and particles

When a rock, saucer, or the player ship is destroyed, that object explodes into a series
of particles. The createExplode() function creates this so-called particle explosion.
Particles are simply individual logical display objects with their own life, dx, and dy
values. Randomly generating these values makes each explosion appear to be unique.
Particles will be stored in the particles array.

Like missiles, particle objects are rather simple. They also contain enough information
to move them across the screen and to calculate their life span in frame ticks:

newParticle.dx = Math.random()*3;
newParticle.dy = Math.random()*3;
newParticle.life = Math.floor(Math.random()*30+30);

414 | Chapter 8: Canvas Game Essentials

newParticle.lifeCtr = 0;
newParticle.x = x;
newParticle.y = y;

Level Knobs
Even though we never show the level number to the game player, we are adjusting the
difficulty every time a screen of rocks is cleared. We do this by increasing the level
variable by 1 and then recalculating these values before the level begins. We refer to the
variance in level difficulty as knobs, which refers to dials or switches. Here are the
variables we will use for these knobs:

level+3
Number of rocks

levelRockMaxSpeedAdjust = level*.25;
Rock max speed

levelSaucerMax = 1+Math.floor(level/10);
Number of simultaneous saucers

levelSaucerOccurrenceRate = 10+3*level;
Percent chance a saucer will appear

levelSaucerSpeed = 1+.5*level;
Saucer speed

levelSaucerFireDelay = 120-10*level;
Delay between saucer missiles

levelSaucerFireRate = 20+3*level;
Percent chance a saucer will fire at the player

levelSaucerMissileSpeed = 1+.2*level;
Speed of saucer missiles

Level and Game End
We need to check for game and level end so we can transition to either a new game or
to the next level.

Level end

We will check for level end on each frame tick. The function to do so will look like this:

function checkForEndOfLevel(){
 if (rocks.length==0) {
 switchGameState(GAME_STATE_NEW_LEVEL);
 }
}

Once the rocks array length is 0, we switch the state to GAME_STATE_NEW_LEVEL.

Geo Blaster Game Algorithms | 415

Game end

We do not need to check for the end of the game on each frame tick. We only need to
check when the player loses a ship. We do this inside the gameStatePlayerDie()
function:

function gameStatePlayerDie(){
 if (particles.length >0 || playerMissiles.length>0) {
 fillBackground();
 renderScoreBoard();
 updateRocks();
 updateSaucers();
 updateParticles();
 updateSaucerMissiles();
 updatePlayerMissiles();
 renderRocks();
 renderSaucers();
 renderParticles();
 renderSaucerMissiles();
 renderPlayerMissiles();
 frameRateCounter.countFrames();

 }else{
 playerShips--;
 if (playerShips<1) {
 switchGameState(GAME_STATE_GAME_OVER);
 }else{
 resetPlayer();
 switchGameState(GAME_STATE_PLAYER_START);
 }
 }
}

This is the state function that is called on each frame tick during the
GAME_STATE_PLAYER_DIE state. First, it checks to see that there are no longer any particles
on the screen. This ensures that the game will not end until the player ship has finished
exploding. We also check to make sure that all the player’s missiles have finished their
lives. We do this so we can check for collisions between the playerMissiles, and for
rocks against saucers. This way the player might earn an extra ship before player
Ships-- is called.

Once the particles and missiles have all left the game screen, we subtract 1 from the
playerShips variable and then switch to GAME_STATE_GAME_OVER if the playerShips num-
ber is less than 1.

Awarding the Player Extra Ships
We want to award the player extra ships at regular intervals based on her score. We do
this by setting an amount of points that the game player must achieve to earn a new
ship—this also helps us keep a count of the number of ships earned:

416 | Chapter 8: Canvas Game Essentials

function checkForExtraShip() {
 if (Math.floor(score/extraShipAtEach) > extraShipsEarned) {
 playerShips++
 extraShipsEarned++;
 }
}

We call this function on each frame tick. The player earns an extra ship if the score/
extraShipAtEach variable (with the decimals stripped off) is greater than the number of
ships earned. In our game, we have set the extraShipAtEach value to 10000. When the
game starts, extraShipsEarned is 0. When the player’s score is 10000 or more, score/
extraShipAtEach will equal 1, which is greater than the extraShipsEarned value of 0. An
extra ship is given to the player, and the extraShipsEarned value is increased by 1.

Applying Collision Detection
We will be checking the bounding box around each object when we do our collision
detection. A bounding box is the smallest rectangle that will encompass all four corners
of a game logic object. We have created a function for this purpose:

function boundingBoxCollide(object1, object2) {

 var left1 = object1.x;
 var left2 = object2.x;
 var right1 = object1.x + object1.width;
 var right2 = object2.x + object2.width;
 var top1 = object1.y;
 var top2 = object2.y;
 var bottom1 = object1.y + object1.height;
 var bottom2 = object2.y + object2.height;

 if (bottom1 < top2) return(false);
 if (top1 > bottom2) return(false);

 if (right1 < left2) return(false);
 if (left1 > right2) return(false);

 return(true);

};

We can pass any two of our game objects into this function as long as each contains
x, y, width, and height attributes. If the two objects are overlapping, the function will
return true. If not, it will return false.

The checkCollision() function for Geo Blaster Basic is quite involved. The full code
listing is given in Example 8-12. Rather than reprint it here, let’s examine some of the
basic concepts.

One thing you will notice is the use of “labels” next to the for loop constructs. Using
labels such as in the following line can help streamline collision detection:

rocks: for (var rockCtr=rocksLength;rockCtr>=0;rockCtr--){

Geo Blaster Game Algorithms | 417

We will need to loop through each of the various object types that must be checked
against one another. But we do not want to check an object that was previously de-
stroyed against other objects. To ensure we do the fewest amount of collision checks
necessary, we have implemented a routine that employs label and break statements.

Here is the logic behind the routine:

1. Create a rocks: label and then start to loop through the rocks array.

2. Create a missiles: label inside the rocks iteration, and loop through the player
Missiles array.

3. Do a bounding box collision detection between the last rock and the last missile.
Notice that we loop starting at the end of each array so that we can remove elements
(when collisions occur) in the array without affecting array members that have not
been checked yet.

4. If a rock and a missile collide, remove them from their respective arrays, and then
call break rocks and then break missiles. We must break back to the next element
in an array for any object type that is removed.

5. Continue looping through the missiles until they have all been checked against the
current rock (unless break rocks was fired off for a rock/missile collision).

6. Check each saucer, each saucer missile, and the player against each of the rocks.
The player does not need a label because there is only a single instance of the player.
The saucers and saucerMissiles will follow the same logic as missiles. If there is
a collision between one and a rock, break back to their respective labels after re-
moving the objects from their respective arrays.

7. Once we have checked the rocks against all the other game objects, check the
playerMissiles against the saucers using the same basic logic of loop labels, looping
backward through the arrays, and breaking back to the labels once objects are
removed.

8. Check the saucerMissiles against the player in the same manner.

Over the years, we have found this to be a powerful way to check multiple objects’
arrays against one another. It certainly is not the only way to do so. If you are not
comfortable using loop labels, you can employ a method such as the following:

1. Add a Boolean hit attribute to each object and set it to false when an object is
created.

2. Loop through the rocks and check them against the other game objects. This time
the direction (forward or backward) through the loops does not matter.

3. Before calling the boundingBoxCollide() function, be sure that each object’s hit
attribute is false. If not, skip the collision check.

4. If the two objects collide, set each object’s hit attribute to true. There is no need
to remove objects from the arrays at this time.

418 | Chapter 8: Canvas Game Essentials

5. Loop though playerMissiles and check against the saucers, and then loop through
the saucers to check against the player.

6. When all the collision-detection routines are complete, reloop through each object
array (backward this time) and remove all the objects with true as a hit attribute.

We have used both methods—and variations—on each. While the second method is
a little cleaner, this final loop through all of the objects might add more processor
overhead when dealing with a large number of objects. We will leave the implementa-
tion of this second method to you as an exercise, in case you wish to test it.

The Geo Blaster Basic Full Source
Example 8-12 shows the entire set of code for our game. You can download this and
the entire set of example files from the book’s website.

Example 8-12. The Geo Blaster Basic full source listing

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Geo Blaster Basic Game</title>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 canvasApp();
}

function canvasApp(){
 var theCanvas = document.getElementById("canvas");
 if (!theCanvas || !theCanvas.getContext) {
 return;
 }

 var context = theCanvas.getContext("2d");

 if (!context) {
 return;
 }

 //application states
 const GAME_STATE_TITLE = 0;
 const GAME_STATE_NEW_GAME = 1;
 const GAME_STATE_NEW_LEVEL = 2;
 const GAME_STATE_PLAYER_START = 3;
 const GAME_STATE_PLAY_LEVEL = 4;
 const GAME_STATE_PLAYER_DIE = 5;
 const GAME_STATE_GAME_OVER = 6;
 var currentGameState = 0;
 var currentGameStateFunction = null;

The Geo Blaster Basic Full Source | 419

 //title screen
 var titleStarted = false;

 //gameover screen
 var gameOverStarted = false;

 //objects for game play

 //game environment
 var score = 0;
 var level = 0;
 var extraShipAtEach = 10000;
 var extraShipsEarned = 0;
 var playerShips = 3;

 //playfield
 var xMin = 0;
 var xMax = 400;
 var yMin = 0;
 var yMax = 400;

 //score values
 var bigRockScore = 50;
 var medRockScore = 75;
 var smlRockScore = 100;
 var saucerScore = 300;

 //rock scale constants
 const ROCK_SCALE_LARGE = 1;
 const ROCK_SCALE_MEDIUM = 2;
 const ROCK_SCALE_SMALL = 3;

 //create game objects and arrays
 var player = {};
 var rocks = [];
 var saucers = [];
 var playerMissiles = [];
 var particles = []
 var saucerMissiles = [];

 //level specific
 var levelRockMaxSpeedAdjust = 1;
 var levelSaucerMax = 1;
 var levelSaucerOccurrenceRate = 25;
 var levelSaucerSpeed = 1;
 var levelSaucerFireDelay = 300;
 var levelSaucerFireRate = 30;
 var levelSaucerMissileSpeed = 1;

 //keyPresses
 var keyPressList = [];

 function runGame(){
 currentGameStateFunction();
 }

420 | Chapter 8: Canvas Game Essentials

 function switchGameState(newState) {
 currentGameState = newState;
 switch (currentGameState) {

 case GAME_STATE_TITLE:
 currentGameStateFunction = gameStateTitle;
 break;
 case GAME_STATE_NEW_GAME:
 currentGameStateFunction = gameStateNewGame;
 break;
 case GAME_STATE_NEW_LEVEL:
 currentGameStateFunction = gameStateNewLevel;
 break;
 case GAME_STATE_PLAYER_START:
 currentGameStateFunction = gameStatePlayerStart;
 break;
 case GAME_STATE_PLAY_LEVEL:
 currentGameStateFunction = gameStatePlayLevel;
 break;
 case GAME_STATE_PLAYER_DIE:
 currentGameStateFunction = gameStatePlayerDie;
 break;

 case GAME_STATE_GAME_OVER:
 currentGameStateFunction = gameStateGameOver;
 break;

 }

 }

 function gameStateTitle() {
 if (titleStarted !=true){
 fillBackground();
 setTextStyle();
 context.fillText ("Geo Blaster Basic", 130, 70);
 context.fillText ("Press Space To Play", 120, 140);

 titleStarted = true;
 }else{
 //wait for space key click
 if (keyPressList[32]==true){
 ConsoleLog.log("space pressed");
 switchGameState(GAME_STATE_NEW_GAME);
 titleStarted = false;

 }
 }
 }

 function gameStateNewGame(){
 ConsoleLog.log("gameStateNewGame")
 //set up new game
 level = 0;

The Geo Blaster Basic Full Source | 421

 score = 0;
 playerShips = 3;
 player.maxVelocity = 5;
 player.width = 20;
 player.height = 20;
 player.halfWidth = 10;
 player.halfHeight = 10;
 player.rotationalVelocity = 5; //how many degrees to turn the ship
 player.thrustAcceleration = .05;
 player.missileFrameDelay = 5;
 player.thrust = false;

 fillBackground();
 renderScoreBoard();
 switchGameState(GAME_STATE_NEW_LEVEL)

 }

 function gameStateNewLevel(){
 rocks = [];
 saucers = [];
 playerMissiles = [];
 particles = [];
 saucerMissiles = [];
 level++;
 levelRockMaxSpeedAdjust = level*.25;
 if (levelRockMaxSpeedAdjust > 3){
 levelRockMaxSpeed = 3;
 }

 levelSaucerMax = 1+Math.floor(level/10);
 if (levelSaucerMax > 5){
 levelSaucerMax = 5;
 }
 levelSaucerOccurrenceRate = 10+3*level;
 if (levelSaucerOccurrenceRate > 35){
 levelSaucerOccurrenceRate = 35;
 }
 levelSaucerSpeed = 1+.5*level;
 if (levelSaucerSpeed>5){
 levelSaucerSpeed = 5;
 }
 levelSaucerFireDelay = 120-10*level;
 if (levelSaucerFireDelay<20) {
 levelSaucerFireDelay = 20;
 }

 levelSaucerFireRate = 20 + 3*level;
 if (levelSaucerFireRate<50) {
 levelSaucerFireRate = 50;
 }

 levelSaucerMissileSpeed = 1+.2*level;
 if (levelSaucerMissileSpeed > 4){
 levelSaucerMissileSpeed = 4;

422 | Chapter 8: Canvas Game Essentials

 }
 //create level rocks
 for (var newRockctr=0;newRockctr<level+3;newRockctr++){
 var newRock={};

 newRock.scale = 1;
 //scale
 //1 = large
 //2 = medium
 //3 = small
 //these will be used as the divisor for the new size
 //50/1 = 50
 //50/2 = 25
 //50/3 = 16
 newRock.width = 50;
 newRock.height = 50;
 newRock.halfWidth = 25;
 newRock.halfHeight = 25;

 //start all new rocks in upper left for ship safety
 newRock.x = Math.floor(Math.random()*50);

 //ConsoleLog.log("newRock.x=" + newRock.x);
 newRock.y = Math.floor(Math.random()*50);

 //ConsoleLog.log("newRock.y=" + newRock.y);
 newRock.dx = (Math.random()*2)+levelRockMaxSpeedAdjust;
 if (Math.random()<.5){
 newRock.dx*=-1;
 }

 newRock.dy = (Math.random()*2)+levelRockMaxSpeedAdjust;
 if (Math.random()<.5){
 newRock.dy*=-1;
 }

 //rotation speed and direction
 newRock.rotationInc = (Math.random()*5)+1;

 if (Math.random()<.5){
 newRock.rotationInc*=-1;
 }

 newRock.scoreValue = bigRockScore;
 newRock.rotation = 0;

 rocks.push(newRock);
 //ConsoleLog.log("rock created rotationInc=" + newRock.rotationInc);
 }
 resetPlayer();
 switchGameState(GAME_STATE_PLAYER_START);

 }

The Geo Blaster Basic Full Source | 423

 function gameStatePlayerStart(){
 fillBackground();
 renderScoreBoard();
 if (player.alpha < 1){
 player.alpha += .02;
 context.globalAlpha = player.alpha;
 }else{
 switchGameState(GAME_STATE_PLAY_LEVEL);
 }

 renderPlayerShip(player.x, player.y,270,1);
 context.globalAlpha = 1;
 updateRocks();
 renderRocks();
 }

 function gameStatePlayLevel(){
 checkKeys();
 update();
 render();
 checkCollisions();
 checkForExtraShip();
 checkForEndOfLevel();
 frameRateCounter.countFrames();
 }

 function resetPlayer() {
 player.rotation = 270;
 player.x = .5*xMax;
 player.y = .5*yMax;
 player.facingX = 0;
 player.facingY = 0;
 player.movingX = 0;
 player.movingY = 0;
 player.alpha = 0;
 player.missileFrameCount = 0;
 }

 function checkForExtraShip() {
 if (Math.floor(score/extraShipAtEach) > extraShipsEarned) {
 playerShips++
 extraShipsEarned++;
 }
 }

 function checkForEndOfLevel(){
 if (rocks.length==0) {
 switchGameState(GAME_STATE_NEW_LEVEL);
 }
 }

 function gameStatePlayerDie(){
 if (particles.length >0 || playerMissiles.length>0) {
 fillBackground();
 renderScoreBoard();

424 | Chapter 8: Canvas Game Essentials

 updateRocks();
 updateSaucers();
 updateParticles();
 updateSaucerMissiles();
 updatePlayerMissiles();
 renderRocks();
 renderSaucers();
 renderParticles();
 renderSaucerMissiles();
 renderPlayerMissiles();
 frameRateCounter.countFrames();

 }else{
 playerShips--;
 if (playerShips<1) {
 switchGameState(GAME_STATE_GAME_OVER);
 }else{
 resetPlayer();
 switchGameState(GAME_STATE_PLAYER_START);
 }
 }
 }

 function gameStateGameOver() {
 //ConsoleLog.log("Game Over State");
 if (gameOverStarted !=true){
 fillBackground();
 renderScoreBoard();
 setTextStyle();
 context.fillText ("Game Over!", 150, 70);
 context.fillText ("Press Space To Play", 120, 140);

 gameOverStarted = true;
 }else{
 //wait for space key click
 if (keyPressList[32]==true){
 ConsoleLog.log("space pressed");
 switchGameState(GAME_STATE_TITLE);
 gameOverStarted = false;

 }
 }
 }

 function fillBackground() {
 // draw background and text
 context.fillStyle = '#000000';
 context.fillRect(xMin, yMin, xMax, yMax);

 }

 function setTextStyle() {
 context.fillStyle = '#ffffff';
 context.font = '15px _sans';
 context.textBaseline = 'top';

The Geo Blaster Basic Full Source | 425

 }

 function renderScoreBoard() {

 context.fillStyle = "#ffffff";
 context.fillText('Score ' + score, 10, 20);
 renderPlayerShip(200,16,270,.75)
 context.fillText('X ' + playerShips, 220, 20);

 context.fillText('FPS: ' + frameRateCounter.lastFrameCount, 300,20)

 }

 function checkKeys() {
 //check keys

 if (keyPressList[38]==true){
 //thrust
 var angleInRadians = player.rotation * Math.PI / 180;
 player.facingX = Math.cos(angleInRadians);
 player.facingY = Math.sin(angleInRadians);

 var movingXNew = player.movingX+player.thrustAcceleration*player.facingX;
 var movingYNew = player.movingY+player.thrustAcceleration*player.facingY;

 var currentVelocity = Math.sqrt ((movingXNew*movingXNew)
 + (movingXNew*movingXNew));

 if (currentVelocity < player.maxVelocity) {
 player.movingX = movingXNew;
 player.movingY = movingYNew;
 }
 player.thrust = true;

 }else{
 player.thrust = false;
 }

 if (keyPressList[37]==true) {
 //rotate counterclockwise
 player.rotation −= player.rotationalVelocity;

 }

 if (keyPressList[39]==true) {
 //rotate clockwise
 player.rotation += player.rotationalVelocity;;
 }

 if (keyPressList[32]==true) {
 //ConsoleLog.log("player.missileFrameCount=" + player.missileFrameCount);
 //ConsoleLog.log("player.missileFrameDelay=" + player.missileFrameDelay);

426 | Chapter 8: Canvas Game Essentials

 if (player.missileFrameCount>player.missileFrameDelay){
 firePlayerMissile();
 player.missileFrameCount = 0;

 }
 }
 }

 function update() {
 updatePlayer();
 updatePlayerMissiles();
 updateRocks();
 updateSaucers();
 updateSaucerMissiles();
 updateParticles();
 }

 function render() {
 fillBackground();
 renderScoreBoard();
 renderPlayerShip(player.x,player.y,player.rotation,1);
 renderPlayerMissiles();
 renderRocks();
 renderSaucers();
 renderSaucerMissiles();
 renderParticles();
 }

 function updatePlayer() {
 player.missileFrameCount++;

 player.x += player.movingX;
 player.y += player.movingY;

 if (player.x > xMax) {
 player.x =- player.width;
 }else if (player.x<-player.width){
 player.x = xMax;
 }

 if (player.y > yMax) {
 player.y =- player.height;
 }else if (player.y<-player.height){
 player.y = yMax;
 }
 }

 function updatePlayerMissiles() {
 var tempPlayerMissile= {};
 var playerMissileLength = playerMissiles.length-1;
 //ConsoleLog.log("update playerMissileLength=" + playerMissileLength);

 for (var playerMissileCtr=playerMissileLength;
 playerMissileCtr>=0;playerMissileCtr--){

The Geo Blaster Basic Full Source | 427

 //ConsoleLog.log("update player missile" + playerMissileCtr)
 tempPlayerMissile = playerMissiles[playerMissileCtr];
 tempPlayerMissile.x += tempPlayerMissile.dx;
 tempPlayerMissile.y += tempPlayerMissile.dy;
 if (tempPlayerMissile.x > xMax) {
 tempPlayerMissile.x =- tempPlayerMissile.width;
 }else if (tempPlayerMissile.x<-tempPlayerMissile.width){
 tempPlayerMissile.x = xMax;
 }

 if (tempPlayerMissile.y > yMax) {
 tempPlayerMissile.y =- tempPlayerMissile.height;
 }else if (tempPlayerMissile.y<-tempPlayerMissile.height){
 tempPlayerMissile.y = yMax;
 }

 tempPlayerMissile.lifeCtr++;
 if (tempPlayerMissile.lifeCtr > tempPlayerMissile.life){
 //ConsoleLog.log("removing player missile");
 playerMissiles.splice(playerMissileCtr,1)
 tempPlayerMissile = null;
 }
 }
 }

 function updateRocks(){

 var tempRock = {};
 var rocksLength = rocks.length−1;
 //ConsoleLog.log("update rocks length=" + rocksLength);
 for (var rockCtr=rocksLength;rockCtr>=0;rockCtr--){
 tempRock = rocks[rockCtr]
 tempRock.x += tempRock.dx;
 tempRock.y += tempRock.dy;
 tempRock.rotation += tempRock.rotationInc;
 //ConsoleLog.log("rock rotationInc="+ tempRock.rotationInc)
 //ConsoleLog.log("rock rotation="+ tempRock.rotation)
 if (tempRock.x > xMax) {
 tempRock.x = xMin-tempRock.width;
 }else if (tempRock.x<xMin-tempRock.width){
 tempRock.x = xMax;
 }

 if (tempRock.y > yMax) {
 tempRock.y = yMin-tempRock.width;
 }else if (tempRock.y<yMin-tempRock.width){
 tempRock.y = yMax;
 }

 //ConsoleLog.log("update rock "+ rockCtr)
 }
 }

 function updateSaucers() {
 //first check to see if we want to add a saucer

428 | Chapter 8: Canvas Game Essentials

 if (saucers.length< levelSaucerMax){
 if (Math.floor(Math.random()*100)<=levelSaucerOccurrenceRate){
 //ConsoleLog.log("create saucer")
 var newSaucer = {};

 newSaucer.width = 28;
 newSaucer.height = 13;
 newSaucer.halfHeight = 6.5;
 newSaucer.halfWidth = 14;
 newSaucer.scoreValue = saucerScore;
 newSaucer.fireRate = levelSaucerFireRate;
 newSaucer.fireDelay = levelSaucerFireDelay;
 newSaucer.fireDelayCount = 0;
 newSaucer.missileSpeed = levelSaucerMissileSpeed;
 newSaucer.dy = (Math.random()*2);
 if (Math.floor(Math.random)*2==1){
 newSaucer.dy*=-1;
 }

 //choose betweeen left or right edge to start
 if (Math.floor(Math.random()*2)==1){
 //start on right and go left
 newSaucer.x = 450;
 newSaucer.dx=-1*levelSaucerSpeed;

 }else{
 //left to right
 newSaucer.x=-50;
 newSaucer.dx = levelSaucerSpeed;
 }

 newSaucer.missileSpeed = levelSaucerMissileSpeed;
 newSaucer.fireDelay = levelSaucerFireDelay;
 newSaucer.fireRate = levelSaucerFireRate;
 newSaucer.y = Math.floor(Math.random()*400);

 saucers.push(newSaucer);
 }

 }

 var tempSaucer = {};
 var saucerLength = saucers.length-1;
 //ConsoleLog.log("update rocks length=" + rocksLength);
 for (var saucerCtr=saucerLength;saucerCtr>=0;saucerCtr--){
 tempSaucer = saucers[saucerCtr];

 //should saucer fire
 tempSaucer.fireDelayCount++;

 if (Math.floor(Math.random()*100) <=tempSaucer.fireRate
 && tempSaucer.fireDelayCount>tempSaucer.fireDelay){

The Geo Blaster Basic Full Source | 429

 fireSaucerMissile(tempSaucer)
 tempSaucer.fireDelayCount= 0;
 }

 var remove = false;
 tempSaucer.x += tempSaucer.dx;
 tempSaucer.y += tempSaucer.dy;

 //remove saucers on left and right edges
 if (tempSaucer.dx > 0 && tempSaucer.x >xMax){
 remove = true;
 }else if (tempSaucer.dx <0 &&tempSaucer.x<xMin-tempSaucer.width){
 remove = true;
 }

 //bounce saucers off over vertical edges
 if (tempSaucer.y > yMax || tempSaucer.y<yMin-tempSaucer.width) {
 tempSaucer.dy*=-1
 }

 if (remove==true) {
 //remove the saucer
 ConsoleLog.log("saucer removed")
 saucers.splice(saucerCtr,1);
 tempSaucer = null;
 }

 }
 }

 function updateSaucerMissiles() {
 var tempSaucerMissile = {};
 var saucerMissileLength = saucerMissiles.length-1;

 for (var saucerMissileCtr=saucerMissileLength;
 saucerMissileCtr>=0;saucerMissileCtr--){

 //ConsoleLog.log("update player missile" + playerMissileCtr)
 tempSaucerMissile = saucerMissiles[saucerMissileCtr];
 tempSaucerMissile.x += tempSaucerMissile.dx;
 tempSaucerMissile.y += tempSaucerMissile.dy;
 if (tempSaucerMissile.x > xMax) {
 tempSaucerMissile.x=-tempSaucerMissile.width;
 }else if (tempSaucerMissile.x<-tempSaucerMissile.width){
 tempSaucerMissile.x = xMax;
 }

 if (tempSaucerMissile.y > yMax) {
 tempSaucerMissile.y=-tempSaucerMissile.height;
 }else if (tempSaucerMissile.y<-tempSaucerMissile.height){
 tempSaucerMissile.y = yMax;
 }

 tempSaucerMissile.lifeCtr++;
 if (tempSaucerMissile.lifeCtr > tempSaucerMissile.life){

430 | Chapter 8: Canvas Game Essentials

 //remove
 saucerMissiles.splice(saucerMissileCtr,1)
 tempSaucerMissile = null;
 }
 }
 }

 function updateParticles() {
 var tempParticle = {};
 var particleLength = particles.length-1;
 //ConsoleLog.log("particle=" + particleLength)
 for (var particleCtr=particleLength;particleCtr>=0;particleCtr--){
 var remove = false;
 tempParticle = particles[particleCtr];
 tempParticle.x += tempParticle.dx;
 tempParticle.y += tempParticle.dy;

 tempParticle.lifeCtr++;
 //ConsoleLog.log("particle.lifeCtr=" + tempParticle.lifeCtr);

 //try{
 if (tempParticle.lifeCtr > tempParticle.life){
 remove = true;

 } else if ((tempParticle.x > xMax) || (tempParticle.x<xMin)
 || (tempParticle.y > yMax) || (tempParticle.y<yMin)){

 remove = true;

 }
 //}
 //catch(err) {
 // ConsoleLog.log ("error in particle");
 // ConsoleLog.log("particle:" + particleCtr);

 //}

 if (remove) {
 particles.splice(particleCtr,1)
 tempParticle = null;
 }

 }
 }

 function renderPlayerShip(x,y,rotation, scale) {
 //transformation
 var angleInRadians = rotation * Math.PI / 180;
 context.save(); //save current state in stack
 context.setTransform(1,0,0,1,0,0); // reset to identity

 //translate the canvas origin to the center of the player
 context.translate(x+player.halfWidth,y+player.halfHeight);
 context.rotate(angleInRadians);
 context.scale(scale,scale);

The Geo Blaster Basic Full Source | 431

 //drawShip
 context.strokeStyle = '#ffffff';
 context.beginPath();

 //hardcoding in locations
 //facing right
 context.moveTo(-10,-10);
 context.lineTo(10,0);
 context.moveTo(10,1);
 context.lineTo(-10,10);
 context.lineTo(1,1);
 context.moveTo(1,-1);
 context.lineTo(-10,-10);

 if (player.thrust==true && scale==1) {
 //check for scale==1 for ship indicator does not display with thrust
 context.moveTo(-4,-2);
 context.lineTo(-4,1);
 context.moveTo(-5,-1);
 context.lineTo(-10,-1);
 context.moveTo(-5,0);
 context.lineTo(-10,0);
 }
 context.stroke();
 context.closePath();

 //restore context
 context.restore(); //pop old state on to screen
 }

 function renderPlayerMissiles() {
 var tempPlayerMissile = {};
 var playerMissileLength = playerMissiles.length-1;
 //ConsoleLog.log("render playerMissileLength=" + playerMissileLength);

 for (var playerMissileCtr=playerMissileLength;
 playerMissileCtr>=0;playerMissileCtr--){

 //ConsoleLog.log("draw player missile " + playerMissileCtr)
 tempPlayerMissile = playerMissiles[playerMissileCtr];
 context.save(); //save current state in stack
 context.setTransform(1,0,0,1,0,0); // reset to identity

 //translate the canvas origin to the center of the player
 context.translate(tempPlayerMissile.x+1,tempPlayerMissile.y+1);
 context.strokeStyle = '#ffffff';

 context.beginPath();

 //draw everything offset by 1/2. Zero Relative 1/2 is 15
 context.moveTo(-1,-1);
 context.lineTo(1,-1);
 context.lineTo(1,1);
 context.lineTo(-1,1);

432 | Chapter 8: Canvas Game Essentials

 context.lineTo(-1,-1);
 context.stroke();
 context.closePath();
 context.restore(); //pop old state on to screen
 }
 }

 function renderRocks() {
 var tempRock = {};
 var rocksLength = rocks.length-1;
 for (var rockCtr=rocksLength;rockCtr>=0;rockCtr--){

 tempRock = rocks[rockCtr];
 var angleInRadians = tempRock.rotation * Math.PI / 180;
 //ConsoleLog.log("render rock rotation"+(tempRock.rotation));
 context.save(); //save current state in stack
 context.setTransform(1,0,0,1,0,0); // reset to identity

 //translate the canvas origin to the center of the player
 context.translate(tempRock.x+tempRock.halfWidth,
 tempRock.y+tempRock.halfHeight);

 //ConsoleLog.log("render rock x"+(tempRock.x+tempRock.halfWidth));
 //ConsoleLog.log("render rock y"+(tempRock.y+tempRock.halfHeight));
 context.rotate(angleInRadians);
 context.strokeStyle = '#ffffff';

 context.beginPath();

 //draw everything offset by 1/2.
 //Zero Relative 1/2 is if .5*width -1. Same for height

 context.moveTo(-(tempRock.halfWidth-1),-(tempRock.halfHeight-1));
 context.lineTo((tempRock.halfWidth-1),-(tempRock.halfHeight-1));
 context.lineTo((tempRock.halfWidth-1),(tempRock.halfHeight-1));
 context.lineTo(-(tempRock.halfWidth-1),(tempRock.halfHeight-1));
 context.lineTo(-(tempRock.halfWidth-1),-(tempRock.halfHeight-1));

 context.stroke();
 context.closePath();
 context.restore(); //pop old state on to screen

 }
 }

 function renderSaucers() {
 var tempSaucer = {};
 var saucerLength = saucers.length-1;
 for (var saucerCtr=saucerLength;saucerCtr>=0;saucerCtr--){
 //ConsoleLog.log("saucer: " + saucerCtr);
 tempSaucer = saucers[saucerCtr];

 context.save(); //save current state in stack
 context.setTransform(1,0,0,1,0,0); // reset to identity

The Geo Blaster Basic Full Source | 433

 //translate the canvas origin to the center of the player
 //context.translate(this.x+halfWidth,this.y+halfHeight);
 context.translate(tempSaucer.x,tempSaucer.y);
 context.strokeStyle = '#ffffff';

 context.beginPath();

 //did not move to middle because it is drawn in exact space

 context.moveTo(4,0);
 context.lineTo(9,0);
 context.lineTo(12,3);
 context.lineTo(13,3);
 context.moveTo(13,4);
 context.lineTo(10,7);
 context.lineTo(3,7);
 context.lineTo(1,5);
 context.lineTo(12,5);
 context.moveTo(0,4);
 context.lineTo(0,3);
 context.lineTo(13,3);
 context.moveTo(5,1);
 context.lineTo(5,2);
 context.moveTo(8,1);
 context.lineTo(8,2);
 context.moveTo(2,2);
 context.lineTo(4,0);

 context.stroke();
 context.closePath();
 context.restore(); //pop old state on to screen
 }
 }

 function renderSaucerMissiles() {
 var tempSaucerMissile = {};
 var saucerMissileLength = saucerMissiles.length-1;
 //ConsoleLog.log("saucerMissiles= " + saucerMissiles.length)

 for (var saucerMissileCtr=saucerMissileLength;
 saucerMissileCtr>=0;saucerMissileCtr--){

 //ConsoleLog.log("draw player missile " + playerMissileCtr)
 tempSaucerMissile = saucerMissiles[saucerMissileCtr];
 context.save(); //save current state in stack
 context.setTransform(1,0,0,1,0,0); // reset to identity

 //translate the canvas origin to the center of the player
 context.translate(tempSaucerMissile.x+1,tempSaucerMissile.y+1);
 context.strokeStyle = '#ffffff';

 context.beginPath();

 //draw everything offset by 1/2. Zero Relative 1/2 is 15
 context.moveTo(-1,-1);

434 | Chapter 8: Canvas Game Essentials

 context.lineTo(1,-1);
 context.lineTo(1,1);
 context.lineTo(-1,1);
 context.lineTo(-1,-1);
 context.stroke();
 context.closePath();
 context.restore(); //pop old state on to screen

 }
 }

 function renderParticles() {

 var tempParticle = {};
 var particleLength = particles.length-1;
 for (var particleCtr=particleLength;particleCtr>=0;particleCtr--){
 tempParticle = particles[particleCtr];
 context.save(); //save current state in stack
 context.setTransform(1,0,0,1,0,0); // reset to identity

 //translate the canvas origin to the center of the player
 context.translate(tempParticle.x,tempParticle.y);
 context.strokeStyle = '#ffffff';

 context.beginPath();

 //draw everything offset by 1/2. Zero Relative 1/2 is 15
 context.moveTo(0,0);
 context.lineTo(1,1);
 context.stroke();
 context.closePath();
 context.restore(); //pop old state on to screen

 }

 }

 function checkCollisions() {

 //loop through rocks then missiles. There will always be rocks and a ship,
 //but there will not always be missiles.

 var tempRock = {};
 var rocksLength = rocks.length-1;
 var tempPlayerMissile = {};
 var playerMissileLength = playerMissiles.length-1;
 var saucerLength = saucers.length-1;
 var tempSaucer = {};
 var saucerMissileLength = saucerMissiles.length-1;

 rocks: for (var rockCtr=rocksLength;rockCtr>=0;rockCtr--){
 tempRock = rocks[rockCtr];

 missiles:for (var playerMissileCtr=playerMissileLength;
 playerMissileCtr>=0;playerMissileCtr--){

The Geo Blaster Basic Full Source | 435

 tempPlayerMissile = playerMissiles[playerMissileCtr];

 if (boundingBoxCollide(tempRock,tempPlayerMissile)){
 //ConsoleLog.log("hit rock");

 createExplode(tempRock.x+tempRock.halfWidth,
 tempRock.y+tempRock.halfHeight,10);

 if (tempRock.scale<3) {
 splitRock(tempRock.scale+1, tempRock.x, tempRock.y);
 }
 addToScore(tempRock.scoreValue);
 playerMissiles.splice(playerMissileCtr,1);
 tempPlayerMissile = null;

 rocks.splice(rockCtr,1);
 tempRock = null;

 break rocks;
 break missiles;
 }
 }

 saucers:for (var saucerCtr=saucerLength;saucerCtr>=0;saucerCtr--){
 tempSaucer = saucers[saucerCtr];

 if (boundingBoxCollide(tempRock,tempSaucer)){
 //ConsoleLog.log("hit rock");
 createExplode(tempSaucer.x+tempSaucer.halfWidth,
 tempSaucer.y+tempSaucer.halfHeight,10);

 createExplode(tempRock.x+tempRock.halfWidth,
 tempRock.y+tempRock.halfHeight,10);

 if (tempRock.scale<3) {
 splitRock(tempRock.scale+1, tempRock.x, tempRock.y);
 }

 saucers.splice(saucerCtr,1);
 tempSaucer = null;

 rocks.splice(rockCtr,1);
 tempRock = null;

 break rocks;
 break saucers;
 }
 }
 //saucer missiles against rocks
 //this is done here so we don't have to loop
 //through rocks again as it would probably
 //be the biggest array

436 | Chapter 8: Canvas Game Essentials

 saucerMissiles:for (var saucerMissileCtr=saucerMissileLength;
 saucerMissileCtr>=0;saucerMissileCtr--){

 tempSaucerMissile = saucerMissiles[saucerMissileCtr];

 if (boundingBoxCollide(tempRock,tempSaucerMissile)){
 //ConsoleLog.log("hit rock");

 createExplode(tempRock.x+tempRock.halfWidth,
 tempRock.y+tempRock.halfHeight,10);
 if (tempRock.scale<3) {
 splitRock(tempRock.scale+1, tempRock.x, tempRock.y);
 }

 saucerMissiles.splice(saucerCtr,1);
 tempSaucerMissile = null;

 rocks.splice(rockCtr,1);
 tempRock = null;

 break rocks;
 break saucerMissiles;
 }
 }

 //check player aginst rocks

 if (boundingBoxCollide(tempRock,player)){
 //ConsoleLog.log("hit player");
 createExplode(tempRock.x+tempRock.halfWidth,tempRock.halfHeight,10);
 addToScore(tempRock.scoreValue);
 if (tempRock.scale<3) {
 splitRock(tempRock.scale+1, tempRock.x, tempRock.y);
 }
 rocks.splice(rockCtr,1);
 tempRock = null;

 playerDie();
 }
 }

 //now check player against saucers and then saucers against player missiles
 //and finally player against saucer missiles

 playerMissileLength = playerMissiles.length-1;
 saucerLength = saucers.length-1;
 saucers:for (var saucerCtr=saucerLength;saucerCtr>=0;saucerCtr--){
 tempSaucer = saucers[saucerCtr];

 missiles:for (var playerMissileCtr=playerMissileLength;
 playerMissileCtr>=0;playerMissileCtr--){

 tempPlayerMissile = playerMissiles[playerMissileCtr];

The Geo Blaster Basic Full Source | 437

 if (boundingBoxCollide(tempSaucer,tempPlayerMissile)){
 //ConsoleLog.log("hit rock");

 createExplode(tempSaucer.x+tempSaucer.halfWidth,
 tempSaucer.y+tempSaucer.halfHeight,10);

 addToScore(tempSaucer.scoreValue);

 playerMissiles.splice(playerMissileCtr,1);
 tempPlayerMissile = null;

 saucers.splice(saucerCtr,1);
 tempSaucer = null;

 break saucers;
 break missiles;
 }
 }

 //player against saucers
 if (boundingBoxCollide(tempSaucer,player)){
 ConsoleLog.log("hit player");
 createExplode(tempSaucer.x+16,tempSaucer.y+16,10);
 addToScore(tempSaucer.scoreValue);

 saucers.splice(rockCtr,1);
 tempSaucer = null;

 playerDie();
 }
 }

 //saucerMissiles against player
 saucerMissileLength = saucerMissiles.length-1;

 saucerMissiles:for (var saucerMissileCtr=saucerMissileLength;
 saucerMissileCtr>=0;saucerMissileCtr--){

 tempSaucerMissile = saucerMissiles[saucerMissileCtr];

 if (boundingBoxCollide(player,tempSaucerMissile)){
 ConsoleLog.log("saucer missile hit player");

 playerDie();
 saucerMissiles.splice(saucerCtr,1);
 tempSaucerMissile = null;

 break saucerMissiles;
 }
 }
 }

 function firePlayerMissile(){
 //ConsoleLog.log("fire playerMissile");
 var newPlayerMissile = {};

438 | Chapter 8: Canvas Game Essentials

 newPlayerMissile.dx = 5*Math.cos(Math.PI*(player.rotation)/180);
 newPlayerMissile.dy = 5*Math.sin(Math.PI*(player.rotation)/180);
 newPlayerMissile.x = player.x+player.halfWidth;
 newPlayerMissile.y = player.y+player.halfHeight;
 newPlayerMissile.life = 60;
 newPlayerMissile.lifeCtr = 0;
 newPlayerMissile.width = 2;
 newPlayerMissile.height = 2;
 playerMissiles.push(newPlayerMissile);
 }

 function fireSaucerMissile(saucer) {
 var newSaucerMissile = {};
 newSaucerMissile.x = saucer.x+.5*saucer.width;
 newSaucerMissile.y = saucer.y+.5*saucer.height;

 newSaucerMissile.width = 2;
 newSaucerMissile.height = 2;
 newSaucerMissile.speed = saucer.missileSpeed;

 //ConsoleLog.log("saucer fire");
 //fire at player from small saucer
 var diffx = player.x-saucer.x;
 var diffy = player.y-saucer.y;
 var radians = Math.atan2(diffy, diffx);
 var degrees = 360 * radians / (2 * Math.PI);
 newSaucerMissile.dx = saucer.missileSpeed*Math.cos(Math.PI*(degrees)/180);
 newSaucerMissile.dy = saucer.missileSpeed*Math.sin(Math.PI*(degrees)/180);
 newSaucerMissile.life = 160;
 newSaucerMissile.lifeCtr = 0;
 saucerMissiles.push(newSaucerMissile);
 }

 function playerDie() {
 ConsoleLog.log("player die");
 createExplode(player.x+player.halfWidth, player.y+player.halfWidth,50);
 switchGameState(GAME_STATE_PLAYER_DIE);

 }

 function createExplode(x,y,num) {
 //create 10 particles
 for (var partCtr=0;partCtr<num;partCtr++){
 var newParticle = new Object();
 newParticle.dx = Math.random()*3;
 if (Math.random()<.5){
 newParticle.dx*=-1;
 }
 newParticle.dy = Math.random()*3;
 if (Math.random()<.5){
 newParticle.dy*=-1;
 }

 newParticle.life = Math.floor(Math.random()*30+30);
 newParticle.lifeCtr = 0;

The Geo Blaster Basic Full Source | 439

 newParticle.x = x;
 newParticle.y = y;
 //ConsoleLog.log("newParticle.life=" + newParticle.life);
 particles.push(newParticle);
 }

 }

 function boundingBoxCollide(object1, object2) {

 var left1 = object1.x;
 var left2 = object2.x;
 var right1 = object1.x + object1.width;
 var right2 = object2.x + object2.width;
 var top1 = object1.y;
 var top2 = object2.y;
 var bottom1 = object1.y + object1.height;
 var bottom2 = object2.y + object2.height;

 if (bottom1 < top2) return(false);
 if (top1 > bottom2) return(false);

 if (right1 < left2) return(false);
 if (left1 > right2) return(false);

 return(true);

 };

 function splitRock(scale,x,y){
 for (var newRockctr=0;newRockctr<2;newRockctr++){
 var newRock = {};
 //ConsoleLog.log("split rock");

 if (scale==2){
 newRock.scoreValue = medRockScore;
 newRock.width = 25;
 newRock.height = 25;
 newRock.halfWidth = 12.5;
 newRock.halfHeight = 12.5;

 }else {
 newRock.scoreValue = smlRockScore;
 newRock.width = 16;
 newRock.height = 16;
 newRock.halfWidth = 8;
 newRock.halfHeight = 8;
 }

 newRock.scale = scale;
 newRock.x = x;
 newRock.y = y;
 newRock.dx = Math.random()*3;
 if (Math.random()<.5){
 newRock.dx*=-1;

440 | Chapter 8: Canvas Game Essentials

 }
 newRock.dy = Math.random()*3;
 if (Math.random()<.5){
 newRock.dy*=-1;
 }
 newRock.rotationInc = (Math.random()*5)+1;
 if (Math.random()<.5){
 newRock.rotationInc*=-1;
 }
 newRock.rotation = 0;
 ConsoleLog.log("new rock scale"+(newRock.scale));
 rocks.push(newRock);

 }

 }

 function addToScore(value){
 score+=value;
 }

 document.onkeydown = function(e){

 e = e?e:window.event;
 //ConsoleLog.log(e.keyCode + "down");
 keyPressList[e.keyCode] = true;
 }

 document.onkeyup = function(e){
 //document.body.onkeyup = function(e){
 e = e?e:window.event;
 //ConsoleLog.log(e.keyCode + "up");
 keyPressList[e.keyCode] = false;
 };

 //*** application start
 switchGameState(GAME_STATE_TITLE);
 frameRateCounter = new FrameRateCounter();
 //**** application loop
 const FRAME_RATE = 40;
 var intervalTime = 1000/FRAME_RATE;
 setInterval(runGame, intervalTime);

}

//***** object prototypes *****

//*** consoleLog util object
//create constructor
function ConsoleLog(){

}

The Geo Blaster Basic Full Source | 441

//create function that will be added to the class
console_log = function(message) {
 if(typeof(console) !== 'undefined' && console != null) {
 console.log(message);
 }
}
//add class/static function to class by assignment
ConsoleLog.log = console_log;

//*** end console log object

//*** FrameRateCounter object prototype
function FrameRateCounter() {

 this.lastFrameCount = 0;
 var dateTemp = new Date();
 this.frameLast = dateTemp.getTime();
 delete dateTemp;
 this.frameCtr = 0;
}

FrameRateCounter.prototype.countFrames = function() {
 var dateTemp = new Date();
 this.frameCtr++;

 if (dateTemp.getTime() >=this.frameLast+1000) {
 ConsoleLog.log("frame event");
 this.lastFrameCount = this.frameCtr;
 this.frameLast = dateTemp.getTime();
 this.frameCtr = 0;
 }

 delete dateTemp;
}
</script>
</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">
<canvas id="canvas" width="400" height="400">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>
</html>

Figure 8-7 shows a screenshot of the game in action.

442 | Chapter 8: Canvas Game Essentials

Figure 8-7. Geo Blaster Basic in action

Rock Object Prototype
To conserve space, we did not create separate object prototypes for the various display
objects in this game. However, Example 8-13 is a Rock prototype object that can be
used in a game such as Geo Blaster Basic.

Example 8-13. The Rock.js prototype

//*** Rock Object Prototype

function Rock(scale, type) {

 //scale
 //1 = large
 //2 = medium
 //3 = small
 //these will be used as the divisor for the new size
 //50/1 = 50
 //50/2 = 25
 //50/3 = 16

 this.scale = scale;
 if (this.scale <1 || this.scale >3){
 this.scale=1;
 }

Rock Object Prototype | 443

 this.type = type;
 this.dx = 0;
 this.dy = 0;
 this.x = 0;
 this.y = 0;
 this.rotation = 0;
 this.rotationInc = 0;
 this.scoreValue = 0;

 //ConsoleLog.log("create rock. Scale=" + this.scale);
 switch(this.scale){

 case 1:
 this.width = 50;
 this.height = 50;
 break;
 case 2:
 this.width = 25;
 this.height = 25;
 break;
 case 3:
 this.width = 16;
 this.height = 16;
 break;
 }

}

Rock.prototype.update = function(xmin,xmax,ymin,ymax) {
 this.x += this.dx;
 this.y += this.dy;
 this.rotation += this.rotationInc;
 if (this.x > xmax) {
 this.x = xmin-this.width;
 }else if (this.x<xmin-this.width){
 this.x = xmax;
 }

 if (this.y > ymax) {
 this.y = ymin-this.width;
 }else if (this.y<ymin-this.width){
 this.y = ymax;
 }
}

Rock.prototype.draw = function(context) {

 var angleInRadians = this.rotation * Math.PI / 180;
 var halfWidth = Math.floor(this.width*.5); //used to find center of object
 var halfHeight = Math.floor(this.height*.5)// used to find center of object
 context.save(); //save current state in stack
 context.setTransform(1,0,0,1,0,0); // reset to identity

444 | Chapter 8: Canvas Game Essentials

 //translate the canvas origin to the center of the player
 context.translate(this.x+halfWidth,this.y+halfHeight);
 context.rotate(angleInRadians);
 context.strokeStyle = '#ffffff';

 context.beginPath();

 //draw everything offset by 1/2. Zero Relative 1/2 is if .5*width -1. Same for height

 context.moveTo(-(halfWidth-1),-(halfHeight-1));
 context.lineTo((halfWidth-1),-(halfHeight-1));
 context.lineTo((halfWidth-1),(halfHeight-1));
 context.lineTo(-(halfWidth-1),(halfHeight-1));
 context.lineTo(-(halfWidth-1),-(halfHeight-1));

 context.stroke();
 context.closePath();
 context.restore(); //pop old state on to screen

}

//*** end Rock Class

What’s Next
We covered quite a bit in this chapter. HTML5 Canvas might lack some of the more
refined features common to web game development platforms such as Flash, but it
contains powerful tools for manipulating the screen in immediate mode. These features
allow us to create a game application with many individual logical display objects—
even though each canvas can support only a single physical display object (the canvas
itself).

In Chapter 9 we will explore some more advanced game topics, such as replacing paths
with bitmap images, creating object pools, and adding a sound manager. We’ll extend
the game we built in this chapter and create a new turn-based strategy game.

What’s Next | 445

CHAPTER 9

Combining Bitmaps and Sound

Geo Blaster Basic was constructed using pure paths for drawing. In its creation, we
began to cover some game-application-related topics, such as basic collision detection
and state machines. In this chapter, we will focus on using bitmaps and tile sheets
for our game graphics, and we will also add sound using techniques introduced in
Chapter 7.

Along the way, we will update the FrameRateCounter from Chapter 8 by adding in a
“step timer.” We will also examine how we can eliminate the use of a tile sheet for
rotations by precreating an array of imageData instances using the getImageData() and
putImageData() Canvas functions.

In the second half of this chapter, we will create another small turn-based strategy game
using bitmaps. This game will be roughly based on the classic computer game Daleks.

Geo Blaster Extended
We will create a new game, Geo Blaster Extended, by adding bitmaps and sound to the
Geo Blaster Basic game from Chapter 8. Much of the game logic will be the same, but
adding bitmaps to replace paths will enable us to optimize the game for rendering.
Optimized rendering is very important when you are targeting limited-processor devi-
ces, such as mobile phones. We will also add sound to Geo Blaster Extended, and apply
an object pool to the particles used for game explosions. Figure 9-1 shows an example
screen of the finished game.

447

Figure 9-1. Geo Blaster Extended

First, let’s look at the tile sheets we will use for our new game.

Geo Blaster Tile Sheet
In Chapter 4, we examined applying bitmap graphics to the canvas, and we explored
using tile sheet methods to render images. In Chapter 8, we drew all our game graphics
as paths and transformed them on the fly. In this chapter, we will apply the concepts
from Chapter 4 to optimizing the rendering of the Geo Blaster Basic game. We will do
this by prerendering all of our game graphics and transformations as bitmaps. We will
then use these bitmaps instead of paths and the immediate-mode transformations that
were necessary in Chapter 8 to create Geo Blaster Extended.

Figure 9-2 shows one of the tile sheets we will use for this game (ship_tiles.png).

These tiles are the 36 rotations for our player ship. We are “canning” the rotations in
a tile sheet to avoid spending processor cycles transforming them on each frame tick
as we draw them to the canvas.

448 | Chapter 9: Combining Bitmaps and Sound

Figure 9-2. The ship_tiles.png tile sheet

Figure 9-3 shows a second set of tiles for the ship with the “thruster” firing
(ship_tiles2.png). We will use this set to depict the ship when the user is pressing the
up arrow key.

Figure 9-3. The ship_tiles2.png tile sheet

The next three sets of tiles are for the rocks that the player will destroy. We have three
sheets for these: largerocks.png (Figure 9-4), mediumrocks.png (Figure 9-5), and small-
rocks.png (Figure 9-6).

Figure 9-4. The largerocks.png tile sheet

Figure 9-5. The mediumrocks.png tile sheet

Figure 9-6. The smallrocks.png tile sheet

Geo Blaster Extended | 449

These three tile sheets only need to be five tiles each. Since the rock is a square, we can
simply repeat the five frames to simulate rotation in either the clockwise or counter-
clockwise direction.

The saucer that attempts to shoot the player is a single tile, saucer.png, shown in
Figure 9-7.

Figure 9-7. The saucer.png tile

Finally, parts.png (Figure 9-8), is a tiny 8×2 tile sheet that contains four 2×2 “particle”
tiles. These will be used for the explosions and missiles fired by the player and the
saucer.

Figure 9-8. The parts.png tile sheet

You cannot see the colors in a black-and-white printed book, but you can view them
by downloading the files from this book’s website. The first tile is green, and it will be
used for the small rock and saucer explosions. The second tile is light blue, and it will
depict the player’s missiles and the player explosion. The third tile is reddish pink
(salmon, if you will), and it will illustrate the large rock explosions. The final, purple
tile will be used for the medium rock explosions.

Now that we have our tiles in place, let’s look at the methods we will use to transform
Geo Blaster Basic’s immediate-mode path, rendering it to Geo Blaster Extended’s tile-
based bitmap.

Refresher: Calculating the tile source location

In Chapter 4, we examined the method to calculate a tile’s location on a tile sheet if we
know the single-dimension id of that tile. Let’s briefly look back at this, as it will be
reused to render all the tiles for the games in this chapter.

Given that we have a tile sheet such as ship_tiles.png, we can locate the tile we want to
display with a simple math trick.

ship_tiles.png is a 36-tile animation with the player ship starting in the 0-degree angle,
or “pointing right” direction. Each of the remaining 35 tiles displays the ship rotating
in 10-degree increments.

If we would like to display tile 19 (the ship pointing to the left, or in the 190-degree
angle), we first need to find the x and y coordinates for the top-left corner of the tile,
by calculating sourceX and sourceY.

450 | Chapter 9: Combining Bitmaps and Sound

Here is pseudocode for the sourceX calculation:

sourceX = integer(current_frame_index modulo
the_number_columns_in_the_tilesheet) * tile_width

The modulo (%) operator will return the remainder of the division calculation. Below
is the actual code (with variables replaced with literals) we will use for this calculation:

var sourceX = Math.floor(19 % 10) *32;

The result is x = 9*32 = 288;.

The calculation for the sourceY value is similar except we divide rather than use the
modulo operator:

sourceY = integer(current_frame_index divided by
the_number_columns_in_the_tilesheet) *tile_height

Here’s the actual code we will use for this calculation:

var sourceY = Math.floor(19 / 10) *32;

This works out to y = 1*32 = 32;. So, the top-left location on the ship_tiles.png from
which to start copying pixels is 288,32.

To actually copy this to the canvas, we will use this statement:

context.drawImage(shipTiles, sourceX, sourceY,32,32,player.x,player.y,32,32);

In Chapter 8, we needed quite a lot of code to draw and translate the player ship at the
current rotation. When we use a tile sheet, this code is reduced considerably.

Here is the code we will use to render the player ship. It will replace the render
Player() function in Example 8-12 in Chapter 8:

function renderPlayerShip(x,y,rotation, scale) {
 //transformation
 context.save(); //save current state in stack
 context.globalAlpha = parseFloat(player.alpha);
 var angleInRadians = rotation * Math.PI / 180;
 var sourceX = Math.floor((player.rotation/10) % 10) * 32;
 var sourceY = Math.floor((player.rotation/10) /10) *32;
 if (player.thrust){
 context.drawImage(shipTiles2, sourceX, sourceY, 32, 32,
 player.x,player.y,32,32);
 }else{
 context.drawImage(shipTiles, sourceX, sourceY, 32, 32,
 player.x,player.y,32,32);
 }

 //restore context
 context.restore(); //pop old state on to screen

 context.globalAlpha = 1;

 }

Geo Blaster Extended | 451

You will find the entire source code for Geo Blaster Extended (Exam-
ple 9-1) later, in “Geo Blaster Extended Full Source” on page 468.

The renderPlayer() function divides the player.rotation by 10 to determine which of
the 36 tiles in the shipTiles image instance to display on the canvas. If the player is in
“thrust” mode, the shipTiles2 image is used instead of shipTiles.

This works because we have set the ship to rotate by 10 degrees with each press of the
left or right arrow key. In Chapter 8’s version of the game, we set this to 5 degrees. If
we had created a 72-frame tile sheet, with the player ship rotated in 5-degree incre-
ments, we could have kept the player.rotationalVelocity at 5. For Geo Blaster Ex-
tended, we only drew 36 tiles for the player ship, so we are using the value 10 for the
rotational velocity. There certainly is no reason why we could not use 72 or even 360
frames for the player ship rotation tiles. This is only limited by creative imagination
(and patience with a drawing tool).

Let’s look at the rotationalVelocity value assigned earlier in the gameStateNewGame()
function:

function gameStateNewGame(){
 ConsoleLog.log("gameStateNewGame")
 //setup new game
 level = 0;
 score = 0;
 playerShips = 3;
 player.maxVelocity = 5;
 player.width = 32;
 player.height = 32;
 player.halfWidth = 16;
 player.halfHeight = 16;
 player.hitWidth = 24;
 player.hitHeight = 24;
 player.rotationalVelocity = 10; //how many degrees to turn the ship
 player.thrustAcceleration = .05;
 player.missileFrameDelay = 5;
 player.thrust = false;
 player.alpha = 1;
 player.rotation = 0;
 player.x = 0;
 player.y = 0;

 fillBackground();
 renderScoreBoard();
 switchGameState(GAME_STATE_NEW_LEVEL)

}

452 | Chapter 9: Combining Bitmaps and Sound

Other new player attributes

Along with the change in the rotational velocity, we have also modified the player’s
width and height attributes. These are both now 32, which is the same as the tile width
and height. If you look at the first frame of the ship_tiles.png tile sheet, you will see that
the player ship does not fill the entire 32×32 tile. It is centered in the middle, taking up
roughly 24×24 of the tile, which leaves enough space around the edges of the tile to
eliminate clipping when the ship is rotated. We also used this concept when we created
the rock rotations.

The extra pixels of padding added to eliminate clipping during frame rotation poses a
small problem for collision detection. In the Chapter 8 version of the game, we used
the width and height values for bounding box collision detection. We will not use those
values in this new version because we have created two new variables to use for collision
detection: hitWidth and hitHeight. Instead of setting these values to 32, they are 24.
This new smaller value makes our collision detection more accurate than if we used
the entire tile width and height.

The new boundingBoxCollide() algorithm

All the other game objects will also have new hitWidth and hitHeight attributes. We
will modify the boundingBoxCollide() function from Geo Blaster Basic to use these new
values for all collision testing:

function boundingBoxCollide(object1, object2) {

 var left1 = object1.x;
 var left2 = object2.x;
 var right1 = object1.x + object1.hitWidth;
 var right2 = object2.x + object2.hitWidth;
 var top1 = object1.y;
 var top2 = object2.y;
 var bottom1 = object1.y + object1.hitHeight;
 var bottom2 = object2.y + object2.hitHeight;

 if (bottom1 < top2) return(false);
 if (top1 > bottom2) return(false);

 if (right1 < left2) return(false);
 if (left1 > right2) return(false);

 return(true);

 }

Next, we will take a quick look at how we will use these same ideas to render the rest
of the game objects with the new tile sheets.

Geo Blaster Extended | 453

Rendering the Other Game Objects
The rocks, saucers, missiles, and particles will all be rendered in a manner similar to
the method implemented for the player ship. Let’s first look at the code for the saucer’s
render function.

Rendering the saucers

The saucers do not have a multiple-cell tile sheet, but to be consistent, we will render
them as though they do. This will allow us to add more animation tiles for the saucers
later:

function renderSaucers() {
 var tempSaucer = {};
 var saucerLength = saucers.length-1;
 for (var saucerCtr=saucerLength;saucerCtr>=0;saucerCtr--){
 //ConsoleLog.log("saucer: " + saucerCtr);
 tempSaucer = saucers[saucerCtr];

 context.save(); //save current state in stack
 var sourceX = 0;
 var sourceY = 0;
 context.drawImage(saucerTiles, sourceX, sourceY, 30, 15,
 tempSaucer.x,tempSaucer.y,30,15);
 context.restore(); //pop old state on to screen
 }
}

There is no need to actually calculate the sourceX and sourceY values for the saucer
because the saucer is only a single tile. In this instance, we can just set them to 0. We
have hardcoded the saucer.width (30) and saucer.height (15) as an example, but with
all the rest of the game objects, we will use the object width and height attributes rather
than literals.

Next, let’s look at the rock rendering, which varies slightly from both the player ship
and the saucers.

Rendering the rocks

The rock tiles are contained inside three separate tile sheets based on their size (large,
medium, and small), and we have used only five tiles for each rock. The rocks are square
with a symmetrical pattern, so we only need to precreate a single quarter-turn rotation
for each of the three sizes.

Here is the renderRocks() function. Notice that we must “switch” based on the scale
of the rock (1=large, 2=medium, 3=small) to choose the right tile sheet to render:

function renderRocks() {
 var tempRock = {};
 var rocksLength = rocks.length-1;
 for (var rockCtr=rocksLength;rockCtr>=0;rockCtr--){
 context.save(); //save current state in stack

454 | Chapter 9: Combining Bitmaps and Sound

 tempRock = rocks[rockCtr];
 var sourceX = Math.floor((tempRock.rotation) % 5) * tempRock.width;
 var sourceY = Math.floor((tempRock.rotation) /5) *tempRock.height;

 switch(tempRock.scale){
 case 1:
 context.drawImage(largeRockTiles, sourceX, sourceY,
 tempRock.width,tempRock.height,tempRock.x,tempRock.y,
 tempRock.width,tempRock.height);
 break;
 case 2:
 context.drawImage(mediumRockTiles, sourceX,
 sourceY,tempRock.width,tempRock.height,tempRock.x,tempRock.y,
 tempRock.width,tempRock.height);
 break;
 case 3:
 context.drawImage(smallRockTiles, sourceX,
 sourceY,tempRock.width,tempRock.height,tempRock.x,tempRock.y,
 tempRock.width,tempRock.height);
 break;

 }

 context.restore(); //pop old state on to screen

 }
 }

In the renderRocks() function, we are no longer using the rock.rotation attribute as
the angle of rotation as we did in Geo Blaster Basic. Instead, we have repurposed the
rotation attribute to represent the tile id (0–4) of the current tile on the tile sheet to
render.

In the Chapter 8 version, we were able to simulate faster or slower speeds for the rock
rotations by simply giving each rock a random rotationInc value. This value, either
negative for counterclockwise or positive for clockwise, was added to the rotation
attribute on each frame. In this new tilesheet-based version, we only have five frames
of animation, so we don’t want to skip frames because it will look choppy. Instead, we
are going to add two new attributes to each rock: animationCount and animationDelay.

The animationDelay will represent the number of frames between each tile change for
a given rock. The animationCount variable will restart at 0 after each tile frame change
and will increase by 1 on each subsequent frame tick. When animationCount is greater
than animationDelay, the rock.rotation value will be increased (clockwise) or decreased
(counterclockwise). Here is the new code that we will have in our updateRocks()
function:

tempRock.animationCount++;
 if (tempRock.animationCount > tempRock.animationDelay){
 tempRock.animationCount = 0;
 tempRock.rotation += tempRock.rotationInc;

Geo Blaster Extended | 455

 if (tempRock.rotation > 4){
 tempRock.rotation = 0;
 }else if (tempRock.rotation <0){
 tempRock.rotation = 4;
 }
 }

You will notice that we have hardcoded the values 4 and 0 into the tile id maximum
and minimum checks. We could have just as easily used a constant or two variables for
this purpose.

Rendering the missiles

Both the player missiles and saucer missiles are rendered in the same manner. For each,
we simply need to know the tile id on the four-tile particleTiles image representing
the tile we want to display. For the player missiles, this tile id is 1; for the saucer missile,
the tile id is 0.

Let’s take a quick look at both of these functions:

 function renderPlayerMissiles() {
 var tempPlayerMissile = {};
 var playerMissileLength = playerMissiles.length-1;
 //ConsoleLog.log("render playerMissileLength=" + playerMissileLength);
 for (var playerMissileCtr=playerMissileLength; playerMissileCtr>=0;
 playerMissileCtr--){

 //ConsoleLog.log("draw player missile " + playerMissileCtr)
 tempPlayerMissile = playerMissiles[playerMissileCtr];
 context.save(); //save current state in stack
 var sourceX = Math.floor(1 % 4) * tempPlayerMissile.width;
 var sourceY = Math.floor(1 / 4) * tempPlayerMissile.height;

 context.drawImage(particleTiles, sourceX, sourceY,
 tempPlayerMissile.width,tempPlayerMissile.height,
 tempPlayerMissile.x,tempPlayerMissile.y,tempPlayerMissile.width,
 tempPlayerMissile.height);

 context.restore(); //pop old state on to screen
 }
 }

function renderSaucerMissiles() {
 var tempSaucerMissile = {};
 var saucerMissileLength = saucerMissiles.length-1;
 //ConsoleLog.log("saucerMissiles= " + saucerMissiles.length)
 for (var saucerMissileCtr=saucerMissileLength;
 saucerMissileCtr >= 0;saucerMissileCtr--){
 //ConsoleLog.log("draw player missile " + playerMissileCtr)
 tempSaucerMissile = saucerMissiles[saucerMissileCtr];
 context.save(); //save current state in stack
 var sourceX = Math.floor(0 % 4) * tempSaucerMissile.width;
 var sourceY = Math.floor(0 / 4) * tempSaucerMissile.height;

456 | Chapter 9: Combining Bitmaps and Sound

 context.drawImage(particleTiles, sourceX, sourceY,
 tempSaucerMissile.width,tempSaucerMissile.height,
 tempSaucerMissile.x,tempSaucerMissile.y,tempSaucerMissile.width,
 tempSaucerMissile.height);

 context.restore(); //pop old state on to screen

 }
 }

The particle explosion will also be rendered using a bitmap tile sheet, and its code will
be very similar to the code for the projectiles. Let’s examine the particles next.

Rendering the particles

The particles will use the same four-tile parts.png file (as shown in Figure 9-8) that
rendered the projectiles. The Geo Blaster Basic game from Chapter 8 used only a single
white particle for all explosions. We replace the createExplode() function from this
previous game with a new one that will be able to use a different-colored particle for
each type of explosion. This way the rocks, saucers, and player ship can all have unique
colored explosions.

The new createExplode() function will handle this by adding a final type parameter to
its parameter list. Let’s look at the code:

function createExplode(x,y,num,type) {

 playSound(SOUND_EXPLODE,.5);
 for (var partCtr=0;partCtr<num;partCtr++){
 if (particlePool.length > 0){
 newParticle = particlePool.pop();
 newParticle.dx = Math.random()*3;
 if (Math.random()<.5){
 newParticle.dx *= -1;
 }
 newParticle.dy = Math.random()*3;
 if (Math.random()<.5){
 newParticle.dy *= -1;
 }

 newParticle.life = Math.floor(Math.random()*30+30);
 newParticle.lifeCtr = 0;
 newParticle.x = x;
 newParticle.width = 2;
 newParticle.height = 2;
 newParticle.y = y;
 newParticle.type = type;
 //ConsoleLog.log("newParticle.life=" + newParticle.life);
 particles.push(newParticle);
 }

 }

}

Geo Blaster Extended | 457

As the particle objects are created in createExplode(), we added a new type attribute
to them. When an explosion is triggered in the checkCollisions() function, the call to
createExplode() will now include this type value based on the object that was de-
stroyed. Each rock already has a scale parameter that varies from 1 to 3 based on its
size. We will use those as our base type value to pass in for the rocks. Now we only
need type values for the player and the saucer. For the saucer we will use 0, and for the
player we will use 4. We pulled these id values out of the air. We very well could have
used 99 for the saucer and 200 for the player. We just could not use 1, 2, or 3 because
those values are used for the rocks. The type breakdown looks like this:

• Saucer: type=0

• Large rock: type=1

• Medium rock: type=2

• Small rock: type=3

• Player: type=4

This type value will need to be used in a switch statement inside the render
Particles() function to determine which of the four tiles to render for a given particle.
Let’s examine this function now:

function renderParticles() {

 var tempParticle = {};
 var particleLength = particles.length-1;
 for (var particleCtr=particleLength;particleCtr>=0;particleCtr--){
 tempParticle = particles[particleCtr];
 context.save(); //save current state in stack

 var tile;

 console.log("part type=" + tempParticle.type)
 switch(tempParticle.type){
 case 0: // saucer
 tile = 0;
 break;
 case 1: //large rock
 tile = 2
 break;
 case 2: //medium rock
 tile = 3;
 break;
 case 3: //small rock
 tile = 0;
 break;
 case 4: //player
 tile = 1;
 break;

 }

458 | Chapter 9: Combining Bitmaps and Sound

 var sourceX = Math.floor(tile % 4) * tempParticle.width;
 var sourceY = Math.floor(tile / 4) * tempParticle.height;

 context.drawImage(particleTiles, sourceX, sourceY,
 tempParticle.width, tempParticle.height, tempParticle.x,
 tempParticle.y,tempParticle.width,tempParticle.height);

 context.restore(); //pop old state on to screen

 }

In checkCollisions(), we will need to pass the type parameter to the createExplode()
function so the type can be assigned to the particles in the explosion. Here is an example
of a createExplode() function call used for a rock instance:

createExplode(tempRock.x+tempRock.halfWidth,tempRock.y+tempRock.halfHeight,
 10,tempRock.scale);

We pass the tempRock.scale as the final parameter because we are using the rock’s scale
as the type.

For a saucer:

createExplode(tempSaucer.x+tempSaucer.halfWidth,
 tempSaucer.y+tempSaucer.halfHeight,10,0);

For the saucers and the player, we will pass a number literal into the createExplode()
function. In the saucer’s case, we pass in a 1. For the player ship, we pass in a 4:

createExplode(player.x+player.halfWidth, player.y+player.halfWidth,50,4);

Note that the createExplode() function call for the player is in the playerDie() function,
which is called from checkCollisions().

After we discuss adding sound and a particle pool to this game, we will
present the entire set of code (Example 9-1), replacing the Geo Blaster
Basic code. There will be no need to make the changes to the individual
functions.

Adding Sound
In Chapter 7, we covered everything we need to know to add robust sound management
to our canvas applications. If you are unfamiliar with the concepts presented in Chap-
ter 7, please review that chapter first. In this chapter, we will cover only the code nec-
essary to include sound in our game.

Arcade games need to play many sounds simultaneously, and sometimes those sounds
play very rapidly in succession. In Chapter 7, we used the HTML5 <audio> tag to create
a pool of sounds, solving the problems associated with playing the same sound instance
multiple times.

Geo Blaster Extended | 459

As of this writing, the Opera browser in Windows offers the best support
for playing sounds. If you are having trouble with the sound in this game,
any other sound example in the book, or in your own games, please test
them out in the Opera browser.

The sounds for our game

We will be adding three sounds to our game:

• A sound for when the player shoots a projectile (shoot1.mp3, .ogg, .wav)

• A sound for explosions (explode1.mp3, .ogg, .wav)

• A sound for when the saucer shoots a projectile (saucershoot.mp3, .ogg, .wav)

In the file download for this chapter, we have provided each of the three sounds in three
different formats: .wav, .ogg, and .mp3.

Adding sound instances and management variables to the game

In the variable definition section of our game code, we will create variables to work
with the sound manager code from Chapter 7. We will create three instances of each
sound that goes into our pool:

var explodeSound;
var explodeSound2;
var explodeSound3;
var shootSound;
var shootSound2;
var shootSound3;
var saucershootSound;
var saucershootSound2;
var saucershootSound3;

We also need to create an array to hold our pool of sounds:

var soundPool = new Array();

To control which sound we want to play, we will assign a constant string to each, and
to play the sound, we only ever need to use the constant. This way, we can change the
sound names easily, which will help in refactoring code if we want to modify the sounds
at a later time:

 const SOUND_EXPLODE = "explode1";
 const SOUND_SHOOT = "shoot1";
 const SOUND_SAUCER_SHOOT = "saucershoot"

Finally, we need a variable called audioType, which we will use to reference the current
file type (.ogg, .mp3, or .wav) by the sound manager code.

460 | Chapter 9: Combining Bitmaps and Sound

Loading in sounds and tile sheet assets

In Chapter 7, we used a function to load all of the game assets while our state machine
waited in an idle state. We will add this code to our game in a function called game
StateInit():

function gameStateInit() {
 loadCount = 0;
 itemsToLoad = 16;

 explodeSound = document.createElement("audio");
 document.body.appendChild(explodeSound);
 audioType = supportedAudioFormat(explodeSound);
 explodeSound.setAttribute("src", "explode1." + audioType);
 explodeSound.addEventListener("canplaythrough",itemLoaded,false);

 explodeSound2 = document.createElement("audio");
 document.body.appendChild(explodeSound2);
 explodeSound2.setAttribute("src", "explode1." + audioType);
 explodeSound2.addEventListener("canplaythrough",itemLoaded,false);

 explodeSound3 = document.createElement("audio");
 document.body.appendChild(explodeSound3);
 explodeSound3.setAttribute("src", "explode1." + audioType);
 explodeSound3.addEventListener("canplaythrough",itemLoaded,false);

 shootSound = document.createElement("audio");
 audioType = supportedAudioFormat(shootSound);
 document.body.appendChild(shootSound);
 shootSound.setAttribute("src", "shoot1." + audioType);
 shootSound.addEventListener("canplaythrough",itemLoaded,false);

 shootSound2 = document.createElement("audio");
 document.body.appendChild(shootSound2);
 shootSound2.setAttribute("src", "shoot1." + audioType);
 shootSound2.addEventListener("canplaythrough",itemLoaded,false);

 shootSound3 = document.createElement("audio");
 document.body.appendChild(shootSound3);
 shootSound3.setAttribute("src", "shoot1." + audioType);
 shootSound3.addEventListener("canplaythrough",itemLoaded,false);

 saucershootSound = document.createElement("audio");
 audioType = supportedAudioFormat(saucershootSound);
 document.body.appendChild(saucershootSound);
 saucershootSound.setAttribute("src", "saucershoot." + audioType);
 saucershootSound.addEventListener("canplaythrough",itemLoaded,false);

 saucershootSound2 = document.createElement("audio");
 document.body.appendChild(saucershootSound2);
 saucershootSound2.setAttribute("src", "saucershoot." + audioType);
 saucershootSound2.addEventListener("canplaythrough",itemLoaded,false);

 saucershootSound3 = document.createElement("audio");
 document.body.appendChild(saucershootSound3);

Geo Blaster Extended | 461

 saucershootSound3.setAttribute("src", "saucershoot." + audioType);
 saucershootSound3.addEventListener("canplaythrough",itemLoaded,false);

 shipTiles = new Image();
 shipTiles.src = "ship_tiles.png";
 shipTiles.onload = itemLoaded;

 shipTiles2 = new Image();
 shipTiles2.src = "ship_tiles2.png";
 shipTiles2.onload = itemLoaded;

 saucerTiles= new Image();
 saucerTiles.src = "saucer.png";
 saucerTiles.onload = itemLoaded;

 largeRockTiles = new Image();
 largeRockTiles.src = "largerocks.png";
 largeRockTiles.onload = itemLoaded;

 mediumRockTiles = new Image();
 mediumRockTiles.src = "mediumrocks.png";
 mediumRockTiles.onload = itemLoaded;

 smallRockTiles = new Image();
 smallRockTiles.src = "smallrocks.png";
 smallRockTiles.onload = itemLoaded;

 particleTiles = new Image();
 particleTiles.src = "parts.png";
 particleTiles.onload = itemLoaded;

 switchGameState(GAME_STATE_WAIT_FOR_LOAD);

}

Notice that we must create and preload three separate instances of each sound, even
though they share the same sound file (or files). In this function, we also load in our
tile sheets. The application scope itemsToLoad variable will be used to check against the
application scope loadCount variable in the load event callback itemLoaded() function,
which is shared by all assets to be loaded. This will make it easy for the application to
change state so that it can start playing the game when all assets have loaded. Let’s
briefly look at the itemLoaded() function now:

function itemLoaded(event) {

 loadCount++;
 //console.log("loading:" + loadCount)
 if (loadCount >= itemsToLoad) {

 shootSound.removeEventListener("canplaythrough",itemLoaded, false);
 shootSound2.removeEventListener("canplaythrough",itemLoaded, false);
 shootSound3.removeEventListener("canplaythrough",itemLoaded, false);
 explodeSound.removeEventListener("canplaythrough",itemLoaded,false);
 explodeSound2.removeEventListener("canplaythrough",itemLoaded,false);

462 | Chapter 9: Combining Bitmaps and Sound

 explodeSound3.removeEventListener("canplaythrough",itemLoaded,false);
 saucershootSound.removeEventListener("canplaythrough",itemLoaded,false);
 saucershootSound2.removeEventListener("canplaythrough",itemLoaded,false);
 saucershootSound3.removeEventListener("canplaythrough",itemLoaded,false);

 soundPool.push({name:"explode1", element:explodeSound, played:false});
 soundPool.push({name:"explode1", element:explodeSound2, played:false});
 soundPool.push({name:"explode1", element:explodeSound3, played:false});
 soundPool.push({name:"shoot1", element:shootSound, played:false});
 soundPool.push({name:"shoot1", element:shootSound2, played:false});
 soundPool.push({name:"shoot1", element:shootSound3, played:false});
 soundPool.push({name:"saucershoot", element:saucershootSound,
 played:false});
 soundPool.push({name:"saucershoot", element:saucershootSound2,
 played:false});
 soundPool.push({name:"saucershoot", element:saucershootSound3,
 played:false});

 switchGameState(GAME_STATE_TITLE)
 }

}

In this function, we first remove the event listener from each loaded item, then add the
sounds to our sound pool. Finally, we call the switchGameState() to send the game to
the title screen.

Playing sounds

Sounds will be played using the playSound() function from Chapter 7. We will not
reprint that function here, but it will be in Example 9-1 where we give the entire set of
code for the game. We will call the playSound() function at various instances in our
code to play the needed sounds. For example, the createExplode() function presented
earlier in this chapter included this line:

playSound(SOUND_EXPLODE,.5);

When we want to play a sound instance from the pool, we call the playSound() function
and pass in the constants representing the sound and the volume for the sound. If an
instance of the sound is available in the pool, it will be used and the sound will play.

Now, let’s move on to another type of application pool—the object pool.

Pooling Object Instances
We have looked at object pools as they relate to sounds, but we have not applied this
concept to our game objects. Object pooling is a technique designed to save processing
time, so it is very applicable to an arcade game application such as the one we are
building. By pooling object instances, we avoid the sometimes processor-intensive task
of creating object instances on the fly during game execution. This is especially appli-
cable to our particle explosions, as we create multiple objects on the same frame tick.

Geo Blaster Extended | 463

On a lower-powered platform, such as a handheld device, object pooling can help
increase frame rate.

Object pooling in Geo Blaster Extended

In our game, we will apply the pooling concept to the explosion particles. Of course,
we can extend this concept to rocks, projectiles, saucers, and any other type of object
that requires multiple instances. For this example, though, let’s focus on the particles.
As we will see, adding pooling in JavaScript is a relatively simple but powerful
technique.

Adding pooling variables to our game

We will need to add four application scope variables to our game to make use of pooling
for our game particle:

 var particlePool = [];
 var maxParticles = 200;
 var newParticle;
 var tempParticle;

The particlePool array will hold the list of particle object instances that are waiting
to be used. When createExplode() needs to use a particle, it will first look to see whether
any are available in this array. If one is available, it will be “popped” off the top of the
particlePool stack and placed in the application scope newParticle variable—which
is a reference to the pooled particle. The createExplode() function will set the properties
of the newParticle, and then “push” it to the end of the existing particles array.

Once a particle’s life has been exhausted, the updateParticles() function will splice
the particle from the particles array and push it back into the particlePool array. We
have created the tempParticle reference to alleviate the updateParticles() function’s
need to create this instance on each frame tick.

The maxParticles value will be used in a new function called createObjectPools(). We
will call this function in the gameStateInit() state function before we create the sound
and tile sheet loading events.

Let’s take a look at the createObjectPools() function now:

function createObjectPools(){
 for (var ctr=0;ctr<maxParticles;ctr++){
 var newParticle = {};
 particlePool.push(newParticle)
 }
 console.log("particlePool=" + particlePool.length)
}

As you can see, we simply iterate from 0 to 1 less than the maxParticles value, and place
a generic object instance at each element in the pool. When a particle is needed, the
createExplode() function will look to see whether particlePool.length is greater

464 | Chapter 9: Combining Bitmaps and Sound

than 0. If a particle is available, it will be added to the particles array after its attributes
are set. If no particle is available, none will be used.

This functionality can be extended to add a particle as needed to the
pool when none is available. We have not added that functionality to
our example, but it is common in some pooling algorithms.

Here is the newly modified createExplode() function in its entirety:

function createExplode(x,y,num,type) {

 playSound(SOUND_EXPLODE,.5);
 for (var partCtr=0;partCtr<num;partCtr++){
 if (particlePool.length > 0){

 newParticle = particlePool.pop();
 newParticle.dx = Math.random()*3;
 if (Math.random()<.5){
 newParticle.dx* = -1;
 }
 newParticle.dy = Math.random()*3;
 if (Math.random()<.5){
 newParticle.dy* = -1;
 }

 newParticle.life = Math.floor(Math.random()*30+30);
 newParticle.lifeCtr = 0;
 newParticle.x = x;
 newParticle.width = 2;
 newParticle.height = 2;
 newParticle.y = y;
 newParticle.type = type;
 //ConsoleLog.log("newParticle.life=" + newParticle.life);
 particles.push(newParticle);
 }

 }

}

The updateParticles() function will loop through the particles instances, update the
attributes of each, and then check to see whether the particle’s life has been exhausted.
If it has, the function will place the particle back in the pool. Here is the code we will
add to updateParticles() to replenish the pool:

if (remove) {
 particlePool.push(tempParticle)
 particles.splice(particleCtr,1)

}

Geo Blaster Extended | 465

Adding in a Step Timer
In Chapter 8, we created a simple FrameRateCounter object prototype that was used to
display the current frame rate as the game was running. We are going to extend the
functionality of this counter to add in a “step timer.” The step timer will use the time
difference calculated between frames to create a “step factor.” This step factor will be
used when updating the positions of the objects on the canvas. The result will be
smoother rendering of the game objects when there are drops in frame rate, as well as
keeping relatively consistent game play on browsers and systems that cannot maintain
the frame rate needed to play the game effectively.

How the step timer works

We will update the constructor function for FrameRateCounter to accept in a new single
parameter called fps. This value will represent the frames per second that we want our
game to run:

function FrameRateCounter(fps) {
 if (fps == undefined){
 this.fps = 40
 }else{
 this.fps = fps
 }

If no fps value is passed in, the value 40 will be used.

We will also add in two new object-level scope variables to calculate the step in our
step timer:

this.lastTime = dateTemp.getTime();
this.step = 1;

The lastTime variable will contain the time in which the previous frame completed its
work.

We calculate the step by comparing the current time value with the lastTime value on
each frame tick. This calculation will occur in the FrameRateCounter countFrames()
function:

FrameRateCounter.prototype.countFrames=function() {

 var dateTemp = new Date();

 var timeDifference = dateTemp.getTime()-this.lastTime;
 this.step = (timeDifference/1000)*this.fps;
 this.lastTime = dateTemp.getTime();

The local timeDifference value is calculated by subtracting the lastTime value from the
current time (represented by the dateTemp.getTime() return value).

To calculate the step value, divide the timeDifference by 1000 (the number of milli-
seconds in a single second), and multiply the result by the desired frame rate. If the

466 | Chapter 9: Combining Bitmaps and Sound

game is running with no surplus or no deficit in time between frame ticks, the step value
will be 1. If the current frame tick took longer than a single frame to finish, the value
will be greater than 1 (a deficit). If the current frame took less time than a single frame,
the step value will be less than 1 (a surplus).

For example, if the last frame took too long to process, the current frame will com-
pensate by moving each object a little bit more than the step value of 1. Let’s illustrate
this with a simple example.

Let’s say we want the saucer to move five pixels to the right on each frame tick. This
would be a dx value of 5.

For this example, we will also say that our desired frame rate is 40 FPS. This means that
we want each frame tick to use up 25 milliseconds (1000/40 = 25).

Let’s also suppose that the timeDifference between the current frame and the last frame
is 26 milliseconds. Our game is running at a deficit of 1 millisecond per frame—this
means that the game processing is taking more time than we want it to.

To calculate the step value, divide the timeDifference by 1000: 26/1000 = .026.

We multiply this value by the desired fps for our game: .026 * 40 = 1.04

Our step value is 1.04 for the current frame. Because of the deficit in processing time,
we want to move each game object slightly more than a frame so there is no surplus or
deficit. In the case of no surplus or deficit, the step value would be 1. If there is a surplus,
the step value would be less than 1.

This step value will be multiplied to the changes in movement vectors for each object
in the update functions. This allows the game to keep a relatively smooth look even
when there are fluctuations in the frame rate. In addition, the game will update the
screen in a relatively consistent manner across the various browsers and systems, re-
sulting in game play that is relatively consistent for each user.

Here are the new movement vector calculations for each object:

player

player.x += player.movingX*frameRateCounter.step;
player.y += player.movingY*frameRateCounter.step;

playerMissiles

tempPlayerMissile.x += tempPlayerMissile.dx*frameRateCounter.step;
tempPlayerMissile.y += tempPlayerMissile.dy*frameRateCounter.step;

rocks

tempRock.x += tempRock.dx*frameRateCounter.step;
tempRock.y += tempRock.dy*frameRateCounter.step;

Geo Blaster Extended | 467

saucers

tempSaucer.x += tempSaucer.dx*frameRateCounter.step;
tempSaucer.y += tempSaucer.dy*frameRateCounter.step;

saucerMissiles

tempSaucerMissile.x += tempSaucerMissile.dx*frameRateCounter.step;
tempSaucerMissile.y += tempSaucerMissile.dy*frameRateCounter.step;

particles

tempParticle.x += tempParticle.dx*frameRateCounter.step;
tempParticle.y += tempParticle.dy*frameRateCounter.step;

We have now covered all of the major changes to turn Geo Blaster Basic into Geo Blaster
Extended. Let’s look at Example 9-1, which has the entire code for the final game.

Geo Blaster Extended Full Source
Example 9-1. Geo Blaster Extended full source code listing

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH9EX1: Geo Blaster Extended</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {

 canvasApp();

}

function canvasSupport () {
 return Modernizr.canvas;
}

function supportedAudioFormat(audio) {
 var returnExtension = "";
 if (audio.canPlayType("audio/ogg") =="probably" ||
 audio.canPlayType("audio/ogg") == "maybe") {
 returnExtension = "ogg";
 } else if(audio.canPlayType("audio/wav") =="probably" ||
 audio.canPlayType("audio/wav") == "maybe") {
 returnExtension = "wav";
 } else if(audio.canPlayType("audio/wav") == "probably" ||
 audio.canPlayType("audio/wav") == "maybe") {
 returnExtension = "mp3";
 }

 return returnExtension;

468 | Chapter 9: Combining Bitmaps and Sound

}

function canvasApp(){

 if (!canvasSupport()) {
 return;
 }else{
 theCanvas = document.getElementById("canvas");
 context = theCanvas.getContext("2d");
 }

 //sounds
 const SOUND_EXPLODE = "explode1";
 const SOUND_SHOOT = "shoot1";
 const SOUND_SAUCER_SHOOT = "saucershoot"
 const MAX_SOUNDS = 9;
 var soundPool = new Array();
 var explodeSound;
 var explodeSound2;
 var explodeSound3;
 var shootSound;
 var shootSound2;
 var shootSound3;
 var saucershootSound;
 var saucershootSound2;
 var saucershootSound3;
 var audioType;

 //application states
 const GAME_STATE_INIT = 0;
 const GAME_STATE_WAIT_FOR_LOAD = 5;
 const GAME_STATE_TITLE = 10;
 const GAME_STATE_NEW_GAME = 20;
 const GAME_STATE_NEW_LEVEL = 30;
 const GAME_STATE_PLAYER_START = 40;
 const GAME_STATE_PLAY_LEVEL = 50;
 const GAME_STATE_PLAYER_DIE = 60;
 const GAME_STATE_GAME_OVER = 70;
 var currentGameState = 0;
 var currentGameStateFunction = null;

 //title screen
 var titleStarted = false;

 //game over screen
 var gameOverStarted = false;

 //objects for game play

 //game environment
 var score = 0;
 var level = 0;

Geo Blaster Extended | 469

 var extraShipAtEach = 10000;
 var extraShipsEarned = 0;
 var playerShips = 3;

 //playfield
 var xMin = 0;
 var xMax = 400;
 var yMin = 0;
 var yMax = 400;

 //score values
 var bigRockScore = 50;
 var medRockScore = 75;
 var smlRockScore = 100;
 var saucerScore = 300;

 //rock scale constants
 const ROCK_SCALE_LARGE = 1;
 const ROCK_SCALE_MEDIUM = 2;
 const ROCK_SCALE_SMALL = 3;

 //create game objects and arrays
 var player = {};
 var rocks = [];
 var saucers = [];
 var playerMissiles = [];
 var particles = [];
 var saucerMissiles = [];
 var particlePool = [];
 var maxParticles = 200;
 var newParticle;
 var tempParticle;

 //level specific
 var levelRockMaxSpeedAdjust = 1;
 var levelSaucerMax = 1;
 var levelSaucerOccurrenceRate = 25;
 var levelSaucerSpeed = 1;
 var levelSaucerFireDelay = 300;
 var levelSaucerFireRate = 30;
 var levelSaucerMissileSpeed = 1;

 //keyPresses
 var keyPressList=[];

 //tile sheets
 var shipTiles;
 var shipTiles2;
 var saucerTiles;
 var largeRockTiles;
 var mediumRockTiles;
 var smallRockTiles;
 var particleTiles;

 function itemLoaded(event) {

470 | Chapter 9: Combining Bitmaps and Sound

 loadCount++;
 //console.log("loading:" + loadCount)
 if (loadCount >= itemsToLoad) {

 shootSound.removeEventListener("canplaythrough",itemLoaded, false);
 shootSound2.removeEventListener("canplaythrough",itemLoaded, false);
 shootSound3.removeEventListener("canplaythrough",itemLoaded, false);
 explodeSound.removeEventListener("canplaythrough",itemLoaded,false);
 explodeSound2.removeEventListener("canplaythrough",itemLoaded,false);
 explodeSound3.removeEventListener("canplaythrough",itemLoaded,false);
 saucershootSound.removeEventListener("canplaythrough",itemLoaded,false);
 saucershootSound2.removeEventListener("canplaythrough",itemLoaded,
 false);
 saucershootSound3.removeEventListener("canplaythrough",itemLoaded,
 false);

 soundPool.push({name:"explode1", element:explodeSound, played:false});
 soundPool.push({name:"explode1", element:explodeSound2, played:false});
 soundPool.push({name:"explode1", element:explodeSound3, played:false});
 soundPool.push({name:"shoot1", element:shootSound, played:false});
 soundPool.push({name:"shoot1", element:shootSound2, played:false});
 soundPool.push({name:"shoot1", element:shootSound3, played:false});
 soundPool.push({name:"saucershoot", element:saucershootSound,
 played:false});
 soundPool.push({name:"saucershoot", element:saucershootSound2,
 played:false});
 soundPool.push({name:"saucershoot", element:saucershootSound3,
 played:false});

 switchGameState(GAME_STATE_TITLE)

 }

 }
 function playSound(sound,volume) {
 ConsoleLog.log("play sound" + sound);
 var soundFound = false;
 var soundIndex = 0;
 var tempSound;

 if (soundPool.length> 0) {
 while (!soundFound && soundIndex < soundPool.length) {

 var tSound = soundPool[soundIndex];
 if ((tSound.element.ended || !tSound.played) && tSound.name == sound) {
 soundFound = true;
 tSound.played = true;
 } else {
 soundIndex++;
 }

 }
 }

Geo Blaster Extended | 471

 if (soundFound) {
 ConsoleLog.log("sound found");
 tempSound = soundPool[soundIndex].element;
 //tempSound.setAttribute("src", sound + "." + audioType);
 //tempSound.loop = false;
 //tempSound.volume = volume;
 tempSound.play();

 } else if (soundPool.length < MAX_SOUNDS){
 ConsoleLog.log("sound not found");
 tempSound = document.createElement("audio");
 tempSound.setAttribute("src", sound + "." + audioType);
 tempSound.volume = volume;
 tempSound.play();
 soundPool.push({name:sound, element:tempSound, type:audioType,
 played:true});
 }

 }
 function runGame(){
 currentGameStateFunction();
 }

 function switchGameState(newState) {
 currentGameState = newState;
 switch (currentGameState) {

 case GAME_STATE_INIT:
 currentGameStateFunction = gameStateInit;
 break;
 case GAME_STATE_WAIT_FOR_LOAD:
 currentGameStateFunction = gameStateWaitForLoad;
 break;
 case GAME_STATE_TITLE:
 currentGameStateFunction = gameStateTitle;
 break;
 case GAME_STATE_NEW_GAME:
 currentGameStateFunction = gameStateNewGame;
 break;
 case GAME_STATE_NEW_LEVEL:
 currentGameStateFunction = gameStateNewLevel;
 break;
 case GAME_STATE_PLAYER_START:
 currentGameStateFunction = gameStatePlayerStart;
 break;
 case GAME_STATE_PLAY_LEVEL:
 currentGameStateFunction = gameStatePlayLevel;
 break;
 case GAME_STATE_PLAYER_DIE:
 currentGameStateFunction = gameStatePlayerDie;
 break;
 case GAME_STATE_GAME_OVER:
 currentGameStateFunction = gameStateGameOver;
 break;

472 | Chapter 9: Combining Bitmaps and Sound

 }

 }

 function gameStateWaitForLoad(){
 //do nothing while loading events occur
 console.log("doing nothing...")
 }

 function createObjectPools(){
 for (var ctr=0;ctr<maxParticles;ctr++){
 var newParticle = {};
 particlePool.push(newParticle)
 }
 console.log("particlePool=" + particlePool.length)
 }

 function gameStateInit() {
 createObjectPools();

 loadCount = 0;
 itemsToLoad = 16;

 explodeSound = document.createElement("audio");
 document.body.appendChild(explodeSound);
 audioType = supportedAudioFormat(explodeSound);
 explodeSound.setAttribute("src", "explode1." + audioType);
 explodeSound.addEventListener("canplaythrough",itemLoaded,false);

 explodeSound2 = document.createElement("audio");
 document.body.appendChild(explodeSound2);
 explodeSound2.setAttribute("src", "explode1." + audioType);
 explodeSound2.addEventListener("canplaythrough",itemLoaded,false);

 explodeSound3 = document.createElement("audio");
 document.body.appendChild(explodeSound3);
 explodeSound3.setAttribute("src", "explode1." + audioType);
 explodeSound3.addEventListener("canplaythrough",itemLoaded,false);

 shootSound = document.createElement("audio");
 audioType = supportedAudioFormat(shootSound);
 document.body.appendChild(shootSound);
 shootSound.setAttribute("src", "shoot1." + audioType);
 shootSound.addEventListener("canplaythrough",itemLoaded,false);

 shootSound2 = document.createElement("audio");
 document.body.appendChild(shootSound2);
 shootSound2.setAttribute("src", "shoot1." + audioType);
 shootSound2.addEventListener("canplaythrough",itemLoaded,false);

 shootSound3 = document.createElement("audio");
 document.body.appendChild(shootSound3);
 shootSound3.setAttribute("src", "shoot1." + audioType);
 shootSound3.addEventListener("canplaythrough",itemLoaded,false);

Geo Blaster Extended | 473

 saucershootSound = document.createElement("audio");
 audioType = supportedAudioFormat(saucershootSound);
 document.body.appendChild(saucershootSound);
 saucershootSound.setAttribute("src", "saucershoot." + audioType);
 saucershootSound.addEventListener("canplaythrough",itemLoaded,false);

 saucershootSound2 = document.createElement("audio");
 document.body.appendChild(saucershootSound2);
 saucershootSound2.setAttribute("src", "saucershoot." + audioType);
 saucershootSound2.addEventListener("canplaythrough",itemLoaded,false);

 saucershootSound3 = document.createElement("audio");
 document.body.appendChild(saucershootSound3);
 saucershootSound3.setAttribute("src", "saucershoot." + audioType);
 saucershootSound3.addEventListener("canplaythrough",itemLoaded,false);

 shipTiles = new Image();
 shipTiles.src = "ship_tiles.png";
 shipTiles.onload = itemLoaded;

 shipTiles2 = new Image();
 shipTiles2.src = "ship_tiles2.png";
 shipTiles2.onload = itemLoaded;

 saucerTiles= new Image();
 saucerTiles.src = "saucer.png";
 saucerTiles.onload = itemLoaded;

 largeRockTiles = new Image();
 largeRockTiles.src = "largerocks.png";
 largeRockTiles.onload = itemLoaded;

 mediumRockTiles = new Image();
 mediumRockTiles.src = "mediumrocks.png";
 mediumRockTiles.onload = itemLoaded;

 smallRockTiles = new Image();
 smallRockTiles.src = "smallrocks.png";
 smallRockTiles.onload = itemLoaded;

 particleTiles = new Image();
 particleTiles.src = "parts.png";
 particleTiles.onload = itemLoaded;

 switchGameState(GAME_STATE_WAIT_FOR_LOAD);
 }

 function gameStateTitle() {
 if (titleStarted !=true){
 fillBackground();
 setTextStyleTitle();
 context.fillText ("Geo Blaster X-ten-d", 120, 70);

474 | Chapter 9: Combining Bitmaps and Sound

 setTextStyle();
 context.fillText ("Press Space To Play", 130, 140);

 setTextStyleCredits();
 context.fillText ("An HTML5 Example Game", 125, 200);
 context.fillText ("From our upcoming HTML5 Canvas", 100, 215);
 context.fillText ("book on O'Reilly Press", 130, 230);

 context.fillText ("Game Code - Jeff Fulton", 130, 260);
 context.fillText ("Sound Manager - Steve Fulton", 120, 275);

 titleStarted = true;
 }else{
 //wait for space key click
 if (keyPressList[32]==true){
 ConsoleLog.log("space pressed");
 switchGameState(GAME_STATE_NEW_GAME);
 titleStarted = false;

 }

 }

 }

 function gameStateNewGame(){
 ConsoleLog.log("gameStateNewGame")
 //set up new game
 level = 0;
 score = 0;
 playerShips = 3;
 player.maxVelocity = 5;
 player.width = 32;
 player.height = 32;
 player.halfWidth = 16;
 player.halfHeight = 16;
 player.hitWidth = 24;
 player.hitHeight = 24;
 player.rotationalVelocity = 10; //how many degrees to turn the ship
 player.thrustAcceleration = .05;
 player.missileFrameDelay = 5;
 player.thrust = false;
 player.alpha = 1;
 player.rotation = 0;
 player.x = 0;
 player.y = 0;

 fillBackground();
 renderScoreBoard();
 switchGameState(GAME_STATE_NEW_LEVEL)

 }

Geo Blaster Extended | 475

 function gameStateNewLevel(){
 rocks = [];
 saucers = [];
 playerMissiles = [];
 particles = [];
 saucerMissiles = [];
 level++;
 levelRockMaxSpeedAdjust = level*.25;
 if (levelRockMaxSpeedAdjust > 3){
 levelRockMaxSpeed = 3;
 }

 levelSaucerMax = 1+Math.floor(level/10);
 if (levelSaucerMax > 5){
 levelSaucerMax = 5;
 }
 levelSaucerOccurrenceRate = 10+3*level;
 if (levelSaucerOccurrenceRate > 35){
 levelSaucerOccurrenceRate = 35;
 }
 levelSaucerSpeed = 1+.5*level;
 if (levelSaucerSpeed>5){
 levelSaucerSpeed = 5;
 }
 levelSaucerFireDelay = 120-10*level;
 if (levelSaucerFireDelay<20) {
 levelSaucerFireDelay = 20;
 }

 levelSaucerFireRate = 20 + 3*level;
 if (levelSaucerFireRate<50) {
 levelSaucerFireRate = 50;
 }

 levelSaucerMissileSpeed = 1+.2*level;
 if (levelSaucerMissileSpeed > 4){
 levelSaucerMissileSpeed = 4;
 }
 //create level rocks
 for (var newRockctr=0;newRockctr<level+3;newRockctr++){
 var newRock = {};

 newRock.scale = 1;
 //scale
 //1 = large
 //2 = medium
 //3 = small
 //these will be used as the divisor for the new size
 //50/1 = 50
 //50/2 = 25
 //50/3 = 16
 newRock.width = 64;
 newRock.height = 64;
 newRock.halfWidth = 32;
 newRock.halfHeight = 32;

476 | Chapter 9: Combining Bitmaps and Sound

 newRock.hitWidth = 48;
 newRock.hitHeight = 48;

 //start all new rocks in upper left for ship safety
 newRock.x = Math.floor(Math.random()*50);
 //ConsoleLog.log("newRock.x=" + newRock.x);
 newRock.y = Math.floor(Math.random()*50);
 //ConsoleLog.log("newRock.y=" + newRock.y);
 newRock.dx = (Math.random()*2)+levelRockMaxSpeedAdjust;
 if (Math.random()<.5){
 newRock.dx *= -1;
 }
 newRock.dy=(Math.random()*2)+levelRockMaxSpeedAdjust;
 if (Math.random()<.5){
 newRock.dy *= -1;
 }
 //rotation speed and direction

 if (Math.random()<.5){
 newRock.rotationInc = -1;
 }else{
 newRock.rotationInc = 1;
 }

 newRock.animationDelay = Math.floor(Math.random()*3+1);
 newRock.animationCount = 0;

 newRock.scoreValue = bigRockScore;
 newRock.rotation = 0;

 rocks.push(newRock);
 //ConsoleLog.log("rock created rotationInc=" + newRock.rotationInc);
 }
 resetPlayer();
 switchGameState(GAME_STATE_PLAYER_START);

 }

 function gameStatePlayerStart(){

 fillBackground();
 renderScoreBoard();
 if (player.alpha < 1){
 player.alpha += .01;

 ConsoleLog.log("player.alpha=" + context.globalAlpha)
 }else{
 switchGameState(GAME_STATE_PLAY_LEVEL);
 player.safe = false; // added chapter 9

 }

 //renderPlayerShip(player.x, player.y,270,1);
 context.globalAlpha = 1;

Geo Blaster Extended | 477

 //new in chapter 9
 checkKeys();
 update();
 render(); //added chapter 9
 checkCollisions();
 checkForExtraShip();
 checkForEndOfLevel();
 frameRateCounter.countFrames();

 }

 function gameStatePlayLevel(){
 checkKeys();
 update();
 render();
 checkCollisions();
 checkForExtraShip();
 checkForEndOfLevel();
 frameRateCounter.countFrames();

 }

 function resetPlayer() {
 player.rotation = 270;
 player.x = .5*xMax;
 player.y = .5*yMax;
 player.facingX = 0;
 player.facingY = 0;
 player.movingX = 0;
 player.movingY = 0;
 player.alpha = 0;
 player.missileFrameCount = 0;
 //added chapter 9
 player.safe = true;
 }

 function checkForExtraShip() {
 if (Math.floor(score/extraShipAtEach) > extraShipsEarned) {
 playerShips++
 extraShipsEarned++;
 }
 }

 function checkForEndOfLevel(){
 if (rocks.length==0) {
 switchGameState(GAME_STATE_NEW_LEVEL);
 }
 }

 function gameStatePlayerDie(){
 if (particles.length >0 || playerMissiles.length>0) {
 fillBackground();
 renderScoreBoard();
 updateRocks();
 updateSaucers();

478 | Chapter 9: Combining Bitmaps and Sound

 updateParticles();
 updateSaucerMissiles();
 updatePlayerMissiles();
 renderRocks();
 renderSaucers();
 renderParticles();
 renderSaucerMissiles();
 renderPlayerMissiles();
 frameRateCounter.countFrames();

 }else{
 playerShips--;
 if (playerShips<1) {
 switchGameState(GAME_STATE_GAME_OVER);
 }else{
 //resetPlayer();
 switchGameState(GAME_STATE_PLAYER_START);
 }
 }
 }

 function gameStateGameOver() {
 //ConsoleLog.log("Game Over State");
 if (gameOverStarted !=true){
 fillBackground();
 renderScoreBoard();
 setTextStyle();
 context.fillText ("Game Over!", 160, 70);
 context.fillText ("Press Space To Play", 130, 140);

 gameOverStarted = true;
 }else{
 //wait for space key click
 if (keyPressList[32]==true){
 ConsoleLog.log("space pressed");
 switchGameState(GAME_STATE_TITLE);
 gameOverStarted = false;

 }

 }
 }

 function fillBackground() {
 // draw background and text
 context.fillStyle = '#000000';
 context.fillRect(xMin, yMin, xMax, yMax);

 }

 function setTextStyle() {
 context.fillStyle = '#ffffff';
 context.font = '15px _sans';
 context.textBaseline = 'top';
 }

Geo Blaster Extended | 479

 function setTextStyleTitle() {
 context.fillStyle = '#54ebeb';
 context.font = '20px _sans';
 context.textBaseline = 'top';
 }

 function setTextStyleCredits() {
 context.fillStyle = '#ffffff';
 context.font = '12px _sans';
 context.textBaseline = 'top';
 }

 function renderScoreBoard() {

 context.fillStyle = "#ffffff";
 context.fillText('Score ' + score, 10, 20);
 renderPlayerShip(200,16,270,.75)
 context.fillText('X ' + playerShips, 220, 20);

 context.fillText('FPS: ' + frameRateCounter.lastFrameCount, 300,20)

 }

 function checkKeys() {
 //check keys

 if (keyPressList[38]==true){
 //thrust
 var angleInRadians = player.rotation * Math.PI / 180;
 player.facingX = Math.cos(angleInRadians);
 player.facingY = Math.sin(angleInRadians);

 var movingXNew = player.movingX+player.thrustAcceleration*player.facingX;
 var movingYNew = player.movingY+player.thrustAcceleration*player.facingY;

 var currentVelocity = Math.sqrt ((movingXNew*movingXNew) +
 (movingXNew*movingXNew));

 if (currentVelocity < player.maxVelocity) {
 player.movingX = movingXNew;
 player.movingY = movingYNew;
 }
 player.thrust = true;

 }else{
 player.thrust = false;
 }

 if (keyPressList[37]==true) {
 //rotate counterclockwise
 player.rotation -= player.rotationalVelocity;
 if (player.rotation <0) {
 player.rotation = 350
 }

480 | Chapter 9: Combining Bitmaps and Sound

 }

 if (keyPressList[39]==true) {
 //rotate clockwise
 player.rotation += player.rotationalVelocity;
 if (player.rotation >350) {
 player.rotation = 10
 }
 }

 if (keyPressList[32]==true) {
 if (player.missileFrameCount>player.missileFrameDelay){
 playSound(SOUND_SHOOT,.5);
 firePlayerMissile();
 player.missileFrameCount = 0;

 }
 }
 }

 function update() {
 updatePlayer();
 updatePlayerMissiles();
 updateRocks();
 updateSaucers();
 updateSaucerMissiles();
 updateParticles();
 }

 function render() {
 fillBackground();
 renderScoreBoard();
 renderPlayerShip(player.x,player.y,player.rotation,1);
 renderPlayerMissiles();
 renderRocks();
 renderSaucers();
 renderSaucerMissiles();
 renderParticles();
 }

 function updatePlayer() {
 player.missileFrameCount++;

 player.x += player.movingX*frameRateCounter.step;
 player.y += player.movingY*frameRateCounter.step;

 if (player.x > xMax) {
 player.x =- player.width;
 }else if (player.x<-player.width){
 player.x = xMax;
 }

 if (player.y > yMax) {
 player.y =- player.height;

Geo Blaster Extended | 481

 }else if (player.y<-player.height){
 player.y = yMax;
 }
 }

 function updatePlayerMissiles() {
 var tempPlayerMissile = {};
 var playerMissileLength=playerMissiles.length-1;
 //ConsoleLog.log("update playerMissileLength=" + playerMissileLength);
 for (var playerMissileCtr=playerMissileLength;playerMissileCtr>=0;
 playerMissileCtr--){
 //ConsoleLog.log("update player missile" + playerMissileCtr)
 tempPlayerMissile = playerMissiles[playerMissileCtr];
 tempPlayerMissile.x += tempPlayerMissile.dx*frameRateCounter.step;;
 tempPlayerMissile.y += tempPlayerMissile.dy*frameRateCounter.step;;
 if (tempPlayerMissile.x > xMax) {
 tempPlayerMissile.x =- tempPlayerMissile.width;
 }else if (tempPlayerMissile.x<-tempPlayerMissile.width){
 tempPlayerMissile.x = xMax;
 }

 if (tempPlayerMissile.y > yMax) {
 tempPlayerMissile.y =- tempPlayerMissile.height;
 }else if (tempPlayerMissile.y<-tempPlayerMissile.height){
 tempPlayerMissile.y = yMax;
 }

 tempPlayerMissile.lifeCtr++;
 if (tempPlayerMissile.lifeCtr > tempPlayerMissile.life){
 //ConsoleLog.log("removing player missile");
 playerMissiles.splice(playerMissileCtr,1)
 tempPlayerMissile = null;
 }
 }
 }

 function updateRocks(){

 var tempRock = {};
 var rocksLength = rocks.length-1;
 //ConsoleLog.log("update rocks length=" + rocksLength);
 for (var rockCtr=rocksLength;rockCtr>=0;rockCtr--){
 tempRock = rocks[rockCtr]
 tempRock.x += tempRock.dx*frameRateCounter.step;
 tempRock.y += tempRock.dy*frameRateCounter.step;

 tempRock.animationCount++;
 if (tempRock.animationCount > tempRock.animationDelay){
 tempRock.animationCount = 0;
 tempRock.rotation += tempRock.rotationInc;

 if (tempRock.rotation > 4){
 tempRock.rotation = 0;
 }else if (tempRock.rotation <0){
 tempRock.rotation = 4;

482 | Chapter 9: Combining Bitmaps and Sound

 }
 }

 if (tempRock.x > xMax) {
 tempRock.x = xMin-tempRock.width;
 }else if (tempRock.x<xMin-tempRock.width){
 tempRock.x = xMax;
 }

 if (tempRock.y > yMax) {
 tempRock.y = yMin-tempRock.width;
 }else if (tempRock.y<yMin-tempRock.width){
 tempRock.y = yMax;
 }

 //ConsoleLog.log("update rock "+ rockCtr)
 }
 }

 function updateSaucers() {
 //first check to see if we want to add a saucer

 if (saucers.length< levelSaucerMax){
 if (Math.floor(Math.random()*100)<=levelSaucerOccurrenceRate){
 //ConsoleLog.log("create saucer")
 var newSaucer = {};

 newSaucer.width = 30;
 newSaucer.height = 13;
 newSaucer.halfHeight = 6.5;
 newSaucer.halfWidth = 15;
 newSaucer.hitWidth = 30;
 newSaucer.hitHeight = 13;
 newSaucer.scoreValue = saucerScore;
 newSaucer.fireRate = levelSaucerFireRate;
 newSaucer.fireDelay = levelSaucerFireDelay;
 newSaucer.fireDelayCount = 0;
 newSaucer.missileSpeed = levelSaucerMissileSpeed;
 newSaucer.dy = (Math.random()*2);
 if (Math.floor(Math.random)*2==1){
 newSaucer.dy *= -1;
 }

 //choose betweeen left or right edge to start
 if (Math.floor(Math.random()*2)==1){
 //start on right and go left
 newSaucer.x = 450;
 newSaucer.dx = -1*levelSaucerSpeed;

 }else{
 //left to right
 newSaucer.x = -50;
 newSaucer.dx = levelSaucerSpeed;
 }

Geo Blaster Extended | 483

 newSaucer.missileSpeed = levelSaucerMissileSpeed;
 newSaucer.fireDelay = levelSaucerFireDelay;
 newSaucer.fireRate = levelSaucerFireRate;
 newSaucer.y = Math.floor(Math.random()*400);

 saucers.push(newSaucer);
 }

 }

 var tempSaucer = {};
 var saucerLength = saucers.length-1;
 //ConsoleLog.log("update rocks length=" + rocksLength);
 for (var saucerCtr=saucerLength;saucerCtr>=0;saucerCtr--){
 tempSaucer = saucers[saucerCtr];

 //should saucer fire
 tempSaucer.fireDelayCount++;
 if (Math.floor(Math.random()*100) <=tempSaucer.fireRate &&
 tempSaucer.fireDelayCount>tempSaucer.fireDelay){
 playSound(SOUND_SAUCER_SHOOT,.5);
 fireSaucerMissile(tempSaucer)
 tempSaucer.fireDelayCount=0;
 }

 var remove = false;
 tempSaucer.x += tempSaucer.dx*frameRateCounter.step;
 tempSaucer.y += tempSaucer.dy*frameRateCounter.step;

 //remove saucers on left and right edges
 if (tempSaucer.dx > 0 && tempSaucer.x >xMax){
 remove = true;
 }else if (tempSaucer.dx <0 &&tempSaucer.x<xMin-tempSaucer.width){
 remove = true;
 }

 //bounce saucers off over vertical edges
 if (tempSaucer.y > yMax || tempSaucer.y<yMin-tempSaucer.width) {
 tempSaucer.dy *= -1
 }

 if (remove==true) {
 //remove the saucer
 ConsoleLog.log("saucer removed")
 saucers.splice(saucerCtr,1);
 tempSaucer = null;
 }

 }

 }

484 | Chapter 9: Combining Bitmaps and Sound

 function updateSaucerMissiles() {
 var tempSaucerMissile = {};
 var saucerMissileLength = saucerMissiles.length-1;
 for (var saucerMissileCtr = saucerMissileLength;saucerMissileCtr>=0;
 saucerMissileCtr--){
 //ConsoleLog.log("update player missile" + playerMissileCtr)
 tempSaucerMissile = saucerMissiles[saucerMissileCtr];
 tempSaucerMissile.x += tempSaucerMissile.dx*frameRateCounter.step;
 tempSaucerMissile.y += tempSaucerMissile.dy*frameRateCounter.step;
 if (tempSaucerMissile.x > xMax) {
 tempSaucerMissile.x =- tempSaucerMissile.width;
 }else if (tempSaucerMissile.x<-tempSaucerMissile.width){
 tempSaucerMissile.x = xMax;
 }

 if (tempSaucerMissile.y > yMax) {
 tempSaucerMissile.y =- tempSaucerMissile.height;
 }else if (tempSaucerMissile.y<-tempSaucerMissile.height){
 tempSaucerMissile.y = yMax;
 }

 tempSaucerMissile.lifeCtr++;
 if (tempSaucerMissile.lifeCtr > tempSaucerMissile.life){
 //remove
 saucerMissiles.splice(saucerMissileCtr,1)
 tempSaucerMissile = null;
 }
 }
 }

 function updateParticles() {

 var particleLength=particles.length-1;
 ConsoleLog.log("particle=" + particleLength)
 ConsoleLog.log("particlePool=" + particlePool.length)
 for (var particleCtr=particleLength;particleCtr>=0;particleCtr--){
 var remove = false;
 tempParticle = particles[particleCtr];
 tempParticle.x += tempParticle.dx*frameRateCounter.step;
 tempParticle.y += tempParticle.dy*frameRateCounter.step;

 tempParticle.lifeCtr++;

 if (tempParticle.lifeCtr > tempParticle.life){
 remove = true;

 } else if ((tempParticle.x > xMax) || (tempParticle.x<xMin)
 || (tempParticle.y > yMax) || (tempParticle.y<yMin)){
 remove=true;

 }

Geo Blaster Extended | 485

 if (remove) {
 particlePool.push(tempParticle)
 particles.splice(particleCtr,1)

 }

 }

 }

 function renderPlayerShip(x,y,rotation, scale) {
 //transformation
 context.save(); //save current state in stack
 context.globalAlpha = parseFloat(player.alpha);
 var angleInRadians = rotation * Math.PI / 180;
 var sourceX = Math.floor((player.rotation/10) % 10) * 32;
 var sourceY = Math.floor((player.rotation/10) /10) *32;
 if (player.thrust){
 context.drawImage(shipTiles2, sourceX, sourceY, 32,32,
 player.x,player.y,32,32);
 }else{
 context.drawImage(shipTiles, sourceX, sourceY, 32,32,
 player.x,player.y,32,32);
 }

 //restore context
 context.restore(); //pop old state on to screen

 context.globalAlpha = 1;

 }

 function renderPlayerMissiles() {
 var tempPlayerMissile = {};
 var playerMissileLength=playerMissiles.length-1;
 //ConsoleLog.log("render playerMissileLength=" + playerMissileLength);
 for (var playerMissileCtr=playerMissileLength;playerMissileCtr>=0;
 playerMissileCtr--){
 //ConsoleLog.log("draw player missile " + playerMissileCtr)
 tempPlayerMissile = playerMissiles[playerMissileCtr];
 context.save(); //save current state in stack
 var sourceX=Math.floor(1 % 4) * tempPlayerMissile.width;
 var sourceY=Math.floor(1 / 4) * tempPlayerMissile.height;

 context.drawImage(particleTiles, sourceX, sourceY,
 tempPlayerMissile.width,tempPlayerMissile.height,
 tempPlayerMissile.x,tempPlayerMissile.y,
 tempPlayerMissile.width,tempPlayerMissile.height);

 context.restore(); //pop old state on to screen
 }
 }

486 | Chapter 9: Combining Bitmaps and Sound

 function renderRocks() {
 var tempRock = {};
 var rocksLength = rocks.length-1;
 for (var rockCtr = rocksLength;rockCtr>=0;rockCtr--){
 context.save(); //save current state in stack
 tempRock = rocks[rockCtr];
 var sourceX = Math.floor((tempRock.rotation) % 5) * tempRock.width;
 var sourceY = Math.floor((tempRock.rotation) /5) *tempRock.height;

 switch(tempRock.scale){
 case 1:
 context.drawImage(largeRockTiles, sourceX, sourceY,
 tempRock.width,tempRock.height,tempRock.x,tempRock.y,
 tempRock.width,tempRock.height);
 break;
 case 2:
 context.drawImage(mediumRockTiles, sourceX,
 sourceY,tempRock.width,tempRock.height,tempRock.x,tempRock.y,
 tempRock.width,tempRock.height);
 break;
 case 3:
 context.drawImage(smallRockTiles, sourceX,
 sourceY,tempRock.width,tempRock.height,tempRock.x,tempRock.y,
 tempRock.width,tempRock.height);
 break;

 }
 context.restore(); //pop old state on to screen

 }
 }

 function renderSaucers() {
 var tempSaucer = {};
 var saucerLength = saucers.length-1;
 for (var saucerCtr = saucerLength;saucerCtr>=0;saucerCtr--){
 //ConsoleLog.log("saucer: " + saucerCtr);
 tempSaucer = saucers[saucerCtr];

 context.save(); //save current state in stack
 var sourceX = 0;
 var sourceY = 0;
 context.drawImage(saucerTiles, sourceX, sourceY, 30,15,
 tempSaucer.x,tempSaucer.y,30,15);
 context.restore(); //pop old state on to screen
 }
 }
 function renderSaucerMissiles() {
 var tempSaucerMissile = {};
 var saucerMissileLength = saucerMissiles.length-1;
 //ConsoleLog.log("saucerMissiles= " + saucerMissiles.length)
 for (var saucerMissileCtr=saucerMissileLength;saucerMissileCtr>=0;
 saucerMissileCtr--){
 //ConsoleLog.log("draw player missile " + playerMissileCtr)
 tempSaucerMissile = saucerMissiles[saucerMissileCtr];

Geo Blaster Extended | 487

 context.save(); //save current state in stack
 var sourceX = Math.floor(0 % 4) * tempSaucerMissile.width;
 var sourceY = Math.floor(0 / 4) * tempSaucerMissile.height;

 context.drawImage(particleTiles, sourceX, sourceY,
 tempSaucerMissile.width,tempSaucerMissile.height,
 tempSaucerMissile.x,tempSaucerMissile.y,tempSaucerMissile.width,
 tempSaucerMissile.height);

 context.restore(); //pop old state on to screen

 }
 }

 function renderParticles() {

 var tempParticle = {};
 var particleLength = particles.length-1;
 for (var particleCtr=particleLength;particleCtr>=0;particleCtr--){
 tempParticle = particles[particleCtr];
 context.save(); //save current state in stack

 var tile;

 //console.log("part type=" + tempParticle.type)
 switch(tempParticle.type){
 case 0: // saucer
 tile = 0;
 break;
 case 1: //large rock
 tile = 2
 break;
 case 2: //medium rock
 tile = 3;
 break;
 case 3: //small rock
 tile = 0;
 break;
 case 4: //player
 tile = 1;
 break;

 }

 var sourceX = Math.floor(tile % 4) * tempParticle.width;
 var sourceY = Math.floor(tile / 4) * tempParticle.height;

 context.drawImage(particleTiles, sourceX, sourceY,
 tempParticle.width,tempParticle.height,tempParticle.x,
 tempParticle.y,tempParticle.width,tempParticle.height);

 context.restore(); //pop old state on to screen

 }
 }

488 | Chapter 9: Combining Bitmaps and Sound

 function checkCollisions() {

 //loop through rocks then missiles.
 //There will always be rocks and a ship,
 //but there will not always be missiles.
 var tempRock = {};
 var rocksLength = rocks.length-1;
 var tempPlayerMissile = {};
 var playerMissileLength = playerMissiles.length-1;
 var saucerLength = saucers.length-1;
 var tempSaucer = {};
 var saucerMissileLength = saucerMissiles.length-1;

 rocks: for (var rockCtr=rocksLength;rockCtr>=0;rockCtr--){
 tempRock = rocks[rockCtr];

 missiles:for (var playerMissileCtr=playerMissileLength;
 playerMissileCtr>=0;playerMissileCtr--){
 tempPlayerMissile = playerMissiles[playerMissileCtr];

 if (boundingBoxCollide(tempRock,tempPlayerMissile)){
 //ConsoleLog.log("hit rock");
 createExplode(tempRock.x+tempRock.halfWidth,
 tempRock.y+tempRock.halfHeight,10,tempRock.scale);
 if (tempRock.scale<3) {
 splitRock(tempRock.scale+1, tempRock.x, tempRock.y);
 }
 addToScore(tempRock.scoreValue);
 playerMissiles.splice(playerMissileCtr,1);
 tempPlayerMissile = null;

 rocks.splice(rockCtr,1);
 tempRock = null;

 break rocks;
 break missiles;
 }
 }

 saucers:for (var saucerCtr=saucerLength;saucerCtr>=0;saucerCtr--){
 tempSaucer = saucers[saucerCtr];

 if (boundingBoxCollide(tempRock,tempSaucer)){
 //ConsoleLog.log("hit rock");
 createExplode(tempSaucer.x+tempSaucer.halfWidth,
 tempSaucer.y+tempSaucer.halfHeight,10,0);
 createExplode(tempRock.x+tempRock.halfWidth,
 tempRock.y+tempRock.halfHeight,10,tempRock.scale);

 if (tempRock.scale<3) {
 splitRock(tempRock.scale+1, tempRock.x, tempRock.y);
 }

Geo Blaster Extended | 489

 saucers.splice(saucerCtr,1);
 tempSaucer = null;

 rocks.splice(rockCtr,1);
 tempRock = null;

 break rocks;
 break saucers;
 }
 }
 //saucer missiles against rocks
 //this is done here so we don't have to loop through
 //rocks again as it would probably
 //be the biggest array
 saucerMissiles:for (var saucerMissileCtr=saucerMissileLength;
 saucerMissileCtr>=0;saucerMissileCtr--){

 tempSaucerMissile = saucerMissiles[saucerMissileCtr];
 if (boundingBoxCollide(tempRock,tempSaucerMissile)){
 //ConsoleLog.log("hit rock");

 createExplode(tempRock.x+tempRock.halfWidth,
 tempRock.y+tempRock.halfHeight,10,tempRock.scale);
 if (tempRock.scale<3) {
 splitRock(tempRock.scale+1, tempRock.x, tempRock.y);
 }

 saucerMissiles.splice(saucerCtr,1);
 tempSaucerMissile = null;

 rocks.splice(rockCtr,1);
 tempRock = null;

 break rocks;
 break saucerMissiles;
 }
 }

 //check player against rocks

 if (boundingBoxCollide(tempRock,player) && player.safe==false){
 //ConsoleLog.log("hit player");
 createExplode(tempRock.x+tempRock.halfWidth,
 tempRock.halfHeight,10,tempRock.scale);
 addToScore(tempRock.scoreValue);
 if (tempRock.scale<3) {
 splitRock(tempRock.scale+1, tempRock.x, tempRock.y);
 }
 rocks.splice(rockCtr,1);
 tempRock=null;

 playerDie();
 }

 }

490 | Chapter 9: Combining Bitmaps and Sound

 //now check player against saucers and then saucers against player missiles
 //and finally player against saucer missiles
 playerMissileLength = playerMissiles.length-1;
 saucerLength = saucers.length-1;
 saucers:for (var saucerCtr=saucerLength;saucerCtr>=0;saucerCtr--){
 tempSaucer = saucers[saucerCtr];

 missiles:for (var playerMissileCtr=playerMissileLength;
 playerMissileCtr>=0;playerMissileCtr--){

 tempPlayerMissile = playerMissiles[playerMissileCtr];

 if (boundingBoxCollide(tempSaucer,tempPlayerMissile)){
 //ConsoleLog.log("hit rock");
 createExplode(tempSaucer.x+tempSaucer.halfWidth,
 tempSaucer.y+tempSaucer.halfHeight,10,0);
 addToScore(tempSaucer.scoreValue);

 playerMissiles.splice(playerMissileCtr,1);
 tempPlayerMissile = null;

 saucers.splice(saucerCtr,1);
 tempSaucer = null;

 break saucers;
 break missiles;
 }
 }

 //player against saucers
 if (boundingBoxCollide(tempSaucer,player) & player.safe==false){
 ConsoleLog.log("hit player");
 createExplode(tempSaucer.x+16,tempSaucer.y+16,10,tempRock.scale);
 addToScore(tempSaucer.scoreValue);

 saucers.splice(rockCtr,1);
 tempSaucer = null;

 playerDie();
 }
 }

 //saucerMissiles against player
 saucerMissileLength = saucerMissiles.length-1;

 saucerMissiles:for (var saucerMissileCtr=saucerMissileLength;
 saucerMissileCtr>=0;saucerMissileCtr--){

 tempSaucerMissile = saucerMissiles[saucerMissileCtr];

 if (boundingBoxCollide(player,tempSaucerMissile) & player.safe==false){
 ConsoleLog.log("saucer missile hit player");

 playerDie();

Geo Blaster Extended | 491

 saucerMissiles.splice(saucerCtr,1);
 tempSaucerMissile = null;

 break saucerMissiles;
 }
 }

 }

 function firePlayerMissile(){

 //ConsoleLog.log("fire playerMissile");
 var newPlayerMissile = {};
 newPlayerMissile.dx = 5*Math.cos(Math.PI*(player.rotation)/180);
 newPlayerMissile.dy = 5*Math.sin(Math.PI*(player.rotation)/180);
 newPlayerMissile.x = player.x+player.halfWidth;
 newPlayerMissile.y = player.y+player.halfHeight;
 newPlayerMissile.life = 60;
 newPlayerMissile.lifeCtr = 0;
 newPlayerMissile.width = 2;
 newPlayerMissile.height = 2;
 newPlayerMissile.hitHeight = 2;
 newPlayerMissile.hitWidth = 2;
 playerMissiles.push(newPlayerMissile);
 }

 function fireSaucerMissile(saucer) {
 var newSaucerMissile = {};
 newSaucerMissile.x = saucer.x+.5*saucer.width;
 newSaucerMissile.y = saucer.y+.5*saucer.height;
 newSaucerMissile.width = 2;
 newSaucerMissile.height = 2;
 newSaucerMissile.hitHeight = 2;
 newSaucerMissile.hitWidth = 2;
 newSaucerMissile.speed = saucer.missileSpeed;

 //ConsoleLog.log("saucer fire");
 //fire at player from small saucer
 var diffx = player.x-saucer.x;
 var diffy = player.y-saucer.y;
 var radians = Math.atan2(diffy, diffx);
 var degrees = 360 * radians / (2 * Math.PI);
 newSaucerMissile.dx = saucer.missileSpeed*Math.cos(Math.PI*(degrees)/180);
 newSaucerMissile.dy = saucer.missileSpeed*Math.sin(Math.PI*(degrees)/180);
 newSaucerMissile.life = 160;
 newSaucerMissile.lifeCtr = 0;
 saucerMissiles.push(newSaucerMissile);
 }

 function playerDie() {

 ConsoleLog.log("player die");
 createExplode(player.x+player.halfWidth, player.y+player.halfWidth,50,4);
 resetPlayer();
 switchGameState(GAME_STATE_PLAYER_DIE);

492 | Chapter 9: Combining Bitmaps and Sound

 }

 function createExplode(x,y,num,type) {

 playSound(SOUND_EXPLODE,.5);
 for (var partCtr=0;partCtr<num;partCtr++){
 if (particlePool.length > 0){

 newParticle = particlePool.pop();
 newParticle.dx = Math.random()*3;
 if (Math.random()<.5){
 newParticle.dx *= -1;
 }
 newParticle.dy = Math.random()*3;
 if (Math.random()<.5){
 newParticle.dy *= -1;
 }

 newParticle.life = Math.floor(Math.random()*30+30);
 newParticle.lifeCtr = 0;
 newParticle.x = x;
 newParticle.width = 2;
 newParticle.height = 2;
 newParticle.y = y;
 newParticle.type = type;
 //ConsoleLog.log("newParticle.life=" + newParticle.life);
 particles.push(newParticle);
 }

 }

 }

 function boundingBoxCollide(object1, object2) {

 var left1 = object1.x;
 var left2 = object2.x;
 var right1 = object1.x + object1.hitWidth;
 var right2 = object2.x + object2.hitWidth;
 var top1 = object1.y;
 var top2 = object2.y;
 var bottom1 = object1.y + object1.hitHeight;
 var bottom2 = object2.y + object2.hitHeight;

 if (bottom1 < top2) return(false);
 if (top1 > bottom2) return(false);

 if (right1 < left2) return(false);
 if (left1 > right2) return(false);

 return(true);

 };

Geo Blaster Extended | 493

 function splitRock(scale,x,y){
 for (var newRockctr=0;newRockctr<2;newRockctr++){
 var newRock = {};
 //ConsoleLog.log("split rock");

 if (scale==2){
 newRock.scoreValue = medRockScore;
 newRock.width = 32;
 newRock.height = 32;
 newRock.halfWidth = 16;
 newRock.halfHeight = 16;
 newRock.hitWidth = 24;
 newRock.hitHeight = 24;

 }else {
 newRock.scoreValue = smlRockScore;
 newRock.width = 24;
 newRock.height = 24;
 newRock.halfWidth = 12;
 newRock.halfHeight = 12;
 newRock.hitWidth = 16;
 newRock.hitHeight = 16;
 }

 newRock.scale = scale;
 newRock.x = x;
 newRock.y = y;
 newRock.dx = Math.random()*3;
 if (Math.random()<.5){
 newRock.dx *= -1;
 }
 newRock.dy = Math.random()*3;
 if (Math.random()<.5){
 newRock.dy *= -1;
 }
 if (Math.random()<.5){
 newRock.rotationInc = -1;
 }else{
 newRock.rotationInc = 1;
 }

 newRock.animationDelay = Math.floor(Math.random()*3+1);
 newRock.animationCount = 0;

 newRock.rotation = 0;
 ConsoleLog.log("new rock scale"+(newRock.scale));
 rocks.push(newRock);

 }

 }

494 | Chapter 9: Combining Bitmaps and Sound

 function addToScore(value){
 score += value;
 }

 document.onkeydown = function(e){

 e = e?e:window.event;
 //ConsoleLog.log(e.keyCode + "down");
 keyPressList[e.keyCode] = true;
 }

 document.onkeyup = function(e){
 //document.body.onkeyup = function(e){
 e = e?e:window.event;
 //ConsoleLog.log(e.keyCode + "up");
 keyPressList[e.keyCode] = false;
 };

 //*** application start

 switchGameState(GAME_STATE_INIT);
 const FRAME_RATE = 40;
 frameRateCounter = new FrameRateCounter(FRAME_RATE);
 //**** application loop
 var intervalTime = 1000/FRAME_RATE;
 setInterval(runGame, intervalTime);

}

//***** object prototypes *****

//*** consoleLog util object
//create constructor
function ConsoleLog(){

}

//create function that will be added to the class
console_log = function(message) {
 if(typeof(console) !== 'undefined' && console != null) {
 console.log(message);
 }
}
//add class/static function to class by assignment
ConsoleLog.log = console_log;

//*** end console log object

//*** new FrameRateCounter object prototype

Geo Blaster Extended | 495

function FrameRateCounter(fps) {
 if (fps == undefined){

 this.fps = 40
 }else{
 this.fps = fps
 }

 this.lastFrameCount = 0;
 var dateTemp = new Date();
 this.frameLast = dateTemp.getTime();
 delete dateTemp;
 this.frameCtr = 0;
 this.lastTime = dateTemp.getTime();

 this.step = 1;

}

FrameRateCounter.prototype.countFrames = function() {

 var dateTemp = new Date();
 var timeDifference = dateTemp.getTime()-this.lastTime;
 this.step = (timeDifference/1000)*this.fps;
 this.lastTime = dateTemp.getTime();
 this.frameCtr++;

 if (dateTemp.getTime() >=this.frameLast+1000) {
 ConsoleLog.log("frame event");
 this.lastFrameCount = this.frameCtr;
 this.frameCtr = 0;
 this.frameLast = dateTemp.getTime();
 }
 delete dateTemp;

}
</script>
</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">

<canvas id="canvas" width="400" height="400">
 Your browser does not support HTML5 Canvas.
</canvas>

</div>
</body>
</html>

496 | Chapter 9: Combining Bitmaps and Sound

Creating a Dynamic Tile Sheet at Runtime
In Chapter 4, we briefly examined two principles we can use to help eliminate the need
to precreate rotations of objects in tile sheets. Creating these types of tile sheets can be
cumbersome and use up valuable time that’s better spent elsewhere in the project.

The idea will be to take a single image of a game object (e.g., the first tile in the medium
rock tile sheet), create a “dynamic tile sheet” at runtime, and store it in an array rather
than using the prerendered image rotation tiles.

To accomplish this, we need to make use of a second canvas, as well as the getImage
Data() and putImageData() Canvas functions. If you recall from Chapter 4, getImage
Data() will throw a security error if the HTML page using it is not on a web server.

Currently, only the Safari browser will not throw this error if the file is used on a local
filesystem. For this reason, we have separated this functionality from the Geo Blaster
Extended game and will simply demonstrate how it could be used instead of replacing
all the tile sheets in the game with this type of prerendering.

We will start by creating two <canvas> elements on our HTML page:

<body>
<div>
<canvas id="canvas" width="256" height="256" style="position: absolute; top:
50px; left: 50px;">
 Your browser does not support HTML5 Canvas.
</canvas>

<canvas id="canvas2" width="32" height="32" style="position: absolute; top:
 256px; left: 50px;">
 Your browser does not support HTML5 Canvas.
</canvas>
</div>
</body>

The first <canvas>, named canvas, will represent our hypothetical game screen, which
will be used to display the precached dynamic tile sheet animation.

The second <canvas>, named canvas2, will be used as a drawing surface to create the
dynamic tile frames for our tile sheet.

We will need to separate context instances in the JavaScript, one for each <canvas>:

var theCanvas = document.getElementById("canvas");
var context = theCanvas.getContext("2d");
var theCanvas2 = document.getElementById("canvas2");
var context2= theCanvas2.getContext("2d");

We will use the mediumrocks.png file (Figure 9-9) from the Geo Blaster Extended game
as our source for the dynamic tile sheet. Don’t let this confuse you. We are not going
to use all five tiles on this tile sheet—only the first tile.

Creating a Dynamic Tile Sheet at Runtime | 497

Figure 9-9. The mediumrocks.png tile sheet

In Geo Blaster Extended, we used all five tiles to create a simulated rotation animation.
Here, we will only use the first tile. We will draw this first tile and rotate it on the
Canvas2 by 10 degrees, and then copy the current imageData pixels from this canvas to
an array of imageData instances, called rotationImageArray.

We will then repeat this process by rotating theCanvas2 by 10 more degrees and in a
loop until we have 36 individual frames of imageData representing the rotation anima-
tion for our medium rock in an array:

var rotationImageArray = [];
var animationFrame = 0;
var tileSheet = new Image();
tileSheet.addEventListener('load', eventSheetLoaded , false);
tileSheet.src = "mediumrocks.png";

The rotationImageArray variable will hold the generated imageData instances, which
we will create by using a rotation transformation on theCanvas2.

The animationFrame is used when redisplaying the rotation animation frames in
rotationImageArray back to the first theCanvas to demo the animation.

When the tileSheet is loaded, the eventSheetLoaded() function is called, which in turn
calls the startup() function. The startup() function will use a loop to create the 36
frames of animation:

function startUp(){

 for (var ctr=0;ctr<360;ctr+=10){
 context2.fillStyle = "#ffffff";
 context2.fillRect(0,0,32,32);
 context2.save();
 context2.setTransform(1,0,0,1,0,0)
 var angleInRadians = ctr * Math.PI / 180;
 context2.translate(16, 16);
 context2.rotate(angleInRadians);
 context2.drawImage(tileSheet, 0, 0,32,32,-16,-16,32,32);
 context2.restore();
 var imagedata = context2.getImageData(0, 0, 32, 32)
 rotationImageArray.push(imagedata);
 }
 setInterval(drawScreen, 100);
}

This loop first clears theCanvas2 with a white color, and then saves it to the stack. We
then translate to the center of our object and rotate the canvas by the current ctr value
(an increment of 10). Next, we draw the first tile from mediumrocks.png and save the
result into a new local imageData instance using the getImageData() function.

498 | Chapter 9: Combining Bitmaps and Sound

This is the place where the security error will be thrown if the domain
of the image and the domain of the HTML file are not the same. On a
local machine (not running on a local web server, but from the filesys-
tem), this error will be thrown on all browsers but Safari (currently).

Finally, the new imageData is pushed into the rotationImageArray. When the loop is
complete, we set up an interval to run and call the drawScreen() function every 100
milliseconds.

To display the animation on the first canvas, we use this timer loop interval and call
putImageData() to draw each frame in succession, creating the simulation of animation.
As with the tile sheet, we didn’t have to use 36 frames of animation, we could use just
five. Naturally, the animation is much smoother with more frames. But this process
shows how easy it is to create simple transformation animations “on the fly” rather
than precreating them in image files:

function drawScreen() {

 //context.fillStyle = "#ffffff";
 //context.fillRect(50,50,32,32);
 context.putImageData(rotationImageArray[animationFrame],50,50);
 animationFrame++;
 if (animationFrame ==rotationImageArray.length){
 animationFrame=0;
 }
}

Example 9-2 shows the entire code.

Example 9-2. A dynamic tile sheet example

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH9EX2: Canvas Copy</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {
 canvasApp();
}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp(){

 if (!canvasSupport()) {
 return;

Creating a Dynamic Tile Sheet at Runtime | 499

 }else{
 var theCanvas = document.getElementById("canvas");
 var context = theCanvas.getContext("2d");

 var theCanvas2 = document.getElementById("canvas2");
 var context2= theCanvas2.getContext("2d");
 }
 var rotationImageArray = []
 var tileSheet = new Image();
 var animationFrame = 0;
 tileSheet.addEventListener('load', eventSheetLoaded , false);
 tileSheet.src = "mediumrocks.png";
 function eventSheetLoaded() {
 startUp();
 }

 function startUp(){
 //context.drawImage(tileSheet, 0, 0);
 //context2.drawImage(theCanvas, 0, 0,32,32,0,0,32,32);

 for (var ctr=0;ctr<360;ctr+=10){
 context2.fillStyle="#ffffff";
 context2.fillRect(0,0,32,32);

 context2.save();
 context2.setTransform(1,0,0,1,0,0)
 var angleInRadians = ctr * Math.PI / 180;
 context2.translate(16, 16)
 context2.rotate(angleInRadians);
 context2.drawImage(tileSheet, 0, 0,32,32,-16,-16,32,32);
 context2.restore();

 var imagedata = context2.getImageData(0, 0, 32, 32);

 rotationImageArray.push(imagedata);
 }
 setInterval(drawScreen, 100);
 }

 function drawScreen() {
 //context.fillStyle="#ffffff";
 //context.fillRect(50,50,32,32);
 context.putImageData(rotationImageArray[animationFrame],50,50);
 animationFrame++;
 if (animationFrame ==rotationImageArray.length){
 animationFrame = 0;
 }
 }

}

</script>
</head>
<body>
<div>

500 | Chapter 9: Combining Bitmaps and Sound

<canvas id="canvas" width="256" height="256" style="position: absolute; top:
 50px; left: 50px;">
 Your browser does not support the HTML 5 Canvas.
</canvas>

<canvas id="canvas2" width="32" height="32" style="position: absolute; top:
 256px; left: 50px;">
 Your browser does not support HTML5 Canvas.
</canvas>

</div>
</body>
</html>

In the rest of the chapter, we will look at creating a simple tile-based game using some
of the techniques first discussed in Chapter 4.

A Simple Tile-Based Game
Let’s move from Asteroids to another classic game genre, the tile-based maze-chase
game. When you’re discussing early tile-based games, undoubtedly Pac-Man enters the
conversation. Pac-Man was one of the first commercially successful tile-based games,
although it certainly was not the first of its kind. The maze-chase genre was actually
well covered by budding game developers before microcomputers were even thought
possible. Many minicomputer and mainframe tile-based games, such as Daleks, were
crafted in the ’60s and ’70s. In this section, we will create a simple turn-based maze-
chase game. Our game, Micro Tank Maze, will be based loosely on Daleks, but we will
use the tank sprites from Chapter 4. Figure 9-10 is a screenshot from the finished game.

Micro Tank Maze Description
Micro Tank Maze is a simple turn-based strategy game played on a 15×15 tile-based
grid. At the beginning of each game, the player (the green tank), 20 enemy tanks (the
blue tanks), 25 wall tiles, and a single goal tile (the phoenix) are randomly placed on
the grid. The rest of the grid is simply “road” tiles on which the tanks move. The player
is tasked with getting to the goal object without running into any walls or any of the
enemy tanks. On each turn, the player and all enemy tanks will move a single space
(tile) on the grid. Neither the player nor the enemy tanks can move off the grid edges.
If the player runs into a wall tile or an enemy tank, his game is over. If an enemy tank
runs into a wall or another tank, it is destroyed and removed from the game board. If
an enemy tank runs into the player tank, it and the player are destroyed. If the player
hits the goal tile without an enemy tank also hitting the tile on the same turn, the player
wins.

A Simple Tile-Based Game | 501

Game progression

Each time the player collects the goal object and wins the game, the next game will start
with one more enemy tank (up to 50 enemy tanks). The ultimate goal of the game is to
see how many times you (the player) can win before your tank is finally destroyed. The
game will keep a session-based high score, and even if you lose, you always start from
the last completed level.

This is a simple game, and much more can be added to it to enhance the gaming ex-
perience. In this chapter, though, we want to cover the basics of creating a tile-based
game on HTML5 Canvas. By combining what we have learned throughout this book,
you should have enough skill and knowledge to extend this simple contest into a much
more robust game-play experience.

Game strategy

The player must try to reach the goal while avoiding the enemy tanks. The enemy will
follow or chase the player to a fault. Most of the time (75%), each enemy tank will
stupidly follow the player, even if that means moving into a wall and destroying itself.

Figure 9-10. Micro Tank Maze in action

502 | Chapter 9: Combining Bitmaps and Sound

The player then has the advantage of intelligence to compensate for the large number
of tanks the enemy employs. The other 25% of the time, an enemy tank will randomly
choose a direction to move in.

Now, let’s get into the game by looking at the tile sheet we will be using.

The Tile Sheet for Our Game
Make sure you’ve read Chapter 4 and the Chapter 8 section “A Basic Game Frame-
work” on page 400 before moving on. Even though Micro Tank Maze is a relatively
simple game, it is still quite a few lines of code. We’ll hit the major points, but we don’t
have space to discuss every detail.

The tile sheet (tanks_sheet.png) we are going to use will look very familiar if you’ve read
Chapter 4. Figure 9-11 shows tanks_sheet.png.

Figure 9-11. The Micro Tank Maze tile sheet

We will be using only a very small portion of these tiles for Micro Tank Maze.

Road tile
This is the tile on which the player and the enemy tanks can move. Tile 0, the road
tile, is in the top-left corner.

Wall tile
The wall tile will cause any tank moving on it to be destroyed. Tile 30, the second
to last tile on the sheet, will be the wall tile.

Goal tile
This is the tile the player must reach to win the game. It is the last tile in the second
to last row (the phoenix).

Player tiles
The player will be made up of the first eight green tank tiles. Each tile will be used
to simulate the tank treads moving from tile to tile.

Enemy tiles
The enemy will be made up of the second eight blue tank tiles. These tiles will be
used to animate the tank treads as it moves from tile to tile.

A Simple Tile-Based Game | 503

Our game code will store the tile ids needed for each of these game objects in application
scope variables:

var playerTiles = [1,2,3,4,5,6,7,8];
var enemyTiles = [9,10,11,12,13,14,15,16];
var roadTile = 0;
var wallTile = 30;
var goalTile = 23;
var explodeTiles = [17,18,19,18,17];

The tile sheet will be loaded into an application scope Image instance and given the
name tileSheet:

var tileSheet;

In the application’s initialization state, we will load in and assign the Image instance:

tileSheet = new Image();
tileSheet.src = "tanks_sheet.png";

Next, we will examine the setup of the game playfield.

The Playfield
The game playfield will be a 15×15 grid of 32×32 tiles. This is a total of 225 tiles with
a width and height of 480 pixels each. Every time we start a new game, all the objects
will be placed randomly onto the grid. The playField[] array will hold 15 row arrays
each with 15 columns. This gives us 225 tiles that can be easily accessed with the simple
playField[row][col] syntax.

Creating the board

We will first place a road tile on each of the 225 playField array locations. We then
randomly place all of the wall tiles (these will actually replace some of the road tiles at
locations in the playField array).

Next, we randomly place all of the enemy tank tiles. Unlike the wall tiles, the tank tiles
will not replace road tiles in the playField array. Instead, they will be placed into an
array of their own called enemy. To ensure that neither the player nor the goal object
occupies the same tile space as the enemy tanks, we will create another array called
items.

The items array will also be a 15×15 two-dimensional array of rows and columns, which
can be considered the “second” layer of playfield data. Unlike the playField array, it
will only be used to make sure no two objects (player, enemy, or goal) occupy the same
space while building the playfield. We must do this because the player and enemy
objects are not added to the playField array.

Once we have placed the enemy, we will randomly place the player at a spot that is not
currently occupied by an enemy or a wall. Finally, we will place the goal tile in a spot
not taken by the player, a wall, or an enemy tank.

504 | Chapter 9: Combining Bitmaps and Sound

The code for this will be in the createPlayField() function. If you would like to review
it now, go to the section “Micro Tank Maze Complete Game Code” on page 516
(Example 9-3).

All the data about the playField will be stored in application scope variables:

//playfield
var playField = [];
var items = [];
var xMin = 0;
var xMax = 480;
var yMin = 0;
var yMax = 480;

To create the playField, the game code will need to know the maximum number of
each type of tile. These will also be application scope variables:

var wallMax = 20;
var playerMax = 1;
var enemyMax = 20;
var goalMax = 1;

The Player
The player and all of its current attributes will be contained in the player object. Even
a game as simple as Micro Tank Maze requires quite a few attributes. Here is a list and
description of each:

player.row
The current row on the 15×15 playField grid where the player resides.

player.col
The current column on the 15×15 playField grid where the player resides.

player.nextRow
The row the player will move to next, after a successful key press in that direction.

player.nextCol
The column the player will move to next, after a successful key press in that
direction.

player.currentTile
The id of the current tile used to display the player from the playerTiles array.

player.rotation
The player starts pointed up, so this will be the 0 rotation. When the player moves
in one of the four basic directions, this rotation will change and will be used to
move the player in the direction it is facing.

player.speed
The number of pixels the player object will move on each frame tick.

A Simple Tile-Based Game | 505

player.destinationX
The final x location for the 32×32 player object while it is moving to a new tile. It
represents the top-left corner x location for this new location. During the player
movement and animation phase of the game, this value determines when the player
has arrived at its new x-axis location.

player.destinationY
The final y location for the 32×32 player object while it is moving to a new tile. It
represents the top-left corner y location for this new location. During the player
movement and animation phase of the game, this value determines when the player
has arrived at its new y-axis location.

player.x
The current x location of the top-left corner of the 32×32 player object.

player.y
The current y location of the top-left corner of the 32×32 player object.

player.dx
The player’s change in x direction on each frame tick while it is animating. This
will be -1, 0, or 1, depending on the direction in which the player is moving.

player.dy
The player’s change in y direction on each frame tick while it is animating. This
will be -1, 0, or 1, depending on the direction in which the player is moving.

player.hit
Set to true when the player moves to a new square that is occupied by an enemy
tank or a wall.

player.dead
When player.hit is true, it will be replaced on the playField by an explosion sprite.
With dead set to true, it will not be rendered to the game screen.

player.win
Set to true if the player collects the goal object.

The enemy and the player share many of the same attributes, as they both use the same
type of calculations to move about the grid. Now let’s examine how the enemy object
is constructed.

The Enemy
Each enemy object will have its own set of attributes that are very similar to those of the
player. Like the player, each enemy will be an object instance.

Here is the code from the createPlayField() function that sets up the attributes for a
new enemy object:

EnemyLocationFound = true;
var tempEnemy = {};
tempEnemy.row = randRow;

506 | Chapter 9: Combining Bitmaps and Sound

tempEnemy.col = randCol;
tempEnemy.nextRow = 0;
tempEnemy.nextCol = 0;
tempEnemy.currentTile = 0;
tempEnemy.rotation = 0;
tempEnemy.x = tempEnemy.col*32;
tempEnemy.y = tempEnemy.row*32;
tempEnemy.speed = 2;
tempEnemy.destinationX = 0;
tempEnemy.destinationY = 0;
tempEnemy.dx = 0;
tempEnemy.dy = 0;
tempEnemy.hit = false;
tempEnemy.dead = false;
tempEnemy.moveComplete = false;
enemy.push(tempEnemy);
items[randRow][randCol] = 1;

There are a couple extra things worth pointing out in this code. The first is that each
enemy object needs an attribute called moveComplete. This is used in the animate
Enemy() game state function. When the entire enemy battalion has moved to its new
location, the game will transition to the next game state. This is discussed in detail in
the next section “Turn-Based Game Flow and the State Machine”.

Also, notice that the new enemy objects are added to the enemy array, as well as to the
items multidimensional array. This ensures that the player and the goal cannot be
placed on to an enemy location. Once the enemy moves from its initial location, the
playField array will still have a road tile to show in its place. We call the player and the
enemy “moving object” tiles because they can move about the game board. When they
move, they must “uncover” the road tile in the spot they were in before moving.

Now let’s take a quick look at the goal tile to solidify your understanding of the dif-
ference between the playField and the moving object tiles.

The Goal
The tile id of the goal tile will be stored in the playField array along with the road and
wall tiles. It is not considered a separate item because, unlike the player and enemy
objects, it does not need to move. As we have described previously, since the enemy
and player tiles move on top of the playfield, they are considered moving items and not
part of the playfield.

The Explosions
The explosion tiles are unique. They will be rendered on top of the playfield when an
enemy tank or the player’s hit attribute has been set to true. The explosion tiles will
animate through a list of five tiles and then be removed from the game screen. Again,
tiles for the explosion are set in the explodeTiles array:

var explodeTiles = [17,18,19,18,17];

A Simple Tile-Based Game | 507

Next, we will examine the entire game flow and state machine to give you an overall
look at how the game logic is designed.

Turn-Based Game Flow and the State Machine
Our game logic and flow is separated into 16 discrete states. The entire application runs
on a 40 frames per second interval timer:

switchGameState(GAME_STATE_INIT);
const FRAME_RATE = 40;
var intervalTime = 1000/FRAME_RATE;
setInterval(runGame, intervalTime)

As with the other games, in Chapter 8 and earlier in this chapter, we will use a function
reference state machine to run our current game state. The switchGameState()
function will be used to transition to a new game state. Let’s begin by discussing
this function briefly, and then moving through the rest of the game functions.

We will not reprint each line of code or dissect it in detail here. Use this
section as a guide for perusing the entire set of game code included at
the end of this chapter (in Example 9-3). By now, you have seen most
of the code and ideas used to create this game logic. We will break out
the new ideas and code in the sections that follow.

GAME_STATE_INIT

This state loads in the assets we need for our game. We are loading in only a single tile
sheet and no sounds for Micro Tank Maze.

After the initial load, it sends the state machine to the GAME_STATE_WAIT_FOR_LOAD state
until the load event has occurred.

GAME_STATE_WAIT_FOR_LOAD

This state simply makes sure that all the items in GAME_STATE_INIT have loaded properly.
It then sends the state machine to the GAME_STATE_TITLE state.

GAME_STATE_TITLE

This state shows the title screen and then waits for the space bar to be pressed. When
this happens, it sends the state machine to GAME_STATE_NEW_GAME.

GAME_STATE_NEW_GAME

This state resets all of the game arrays and objects and then calls the createPlay
Field() function. The createPlayField() function creates the playField and enemy ar-
rays for the new game, as well as sets the player object’s starting location. Once it has

508 | Chapter 9: Combining Bitmaps and Sound

finished, it calls the renderPlayField() function a single time to display the initial board
on the game screen.

Once this completes, the state machine is now ready to start the real game loop. This
is done by moving the game state machine to the GAME_STATE_WAIT_FOR_PLAYER_MOVE
state.

GAME_STATE_WAIT_FOR_PLAYER_MOVE

This state waits for the player to press one of the four arrow buttons. Once the player
has done so, the switch statement checks to see which arrow was pressed. Based on the
direction pressed, the checkBounds() function is called.

This state contains a bit of the new code for tile movement logic that we
have not seen previously in this book. See the upcoming section “Simple
Tile Movement Logic Overview” on page 512 for more details on these
concepts.

The checkBounds() function accepts in three parameters:

• The number to increment the row the player is currently in

• The number to increment the column the player is currently in

• The object being tested (either the player or one of the enemy tanks)

The sole purpose of this function is to determine whether the object being tested can
move in the desired direction. In this game, the only illegal moves are off the side of
the screen. In games such as Pac-Man, this would check to make sure that the tile was
not a wall tile. Our game does not do this because we want the player and the enemy
objects to be able to move mistakenly onto the wall tiles (and be destroyed).

If a valid move is found for the player in the direction pressed, the setPlayerDestina
tion() function is called. This function simply sets the player.destinationX and
player.destinationY attributes based on the new tile location.

checkBounds() sets the player.nextRow and player.nextCol attributes. The setPlayer
Destination() function multiplies the player.nextRow and the player.nextCol by the
tile size (32) to determine the player.destinationX and player.destinationY attributes.
These will be used to move the player to its new location.

GAME_STATE_ANIMATE_PLAYER is then set as the current game state.

GAME_STATE_ANIMATE_PLAYER

This function moves the player to its destinationX and destinationY locations. Since
this is a turn-based game, we don’t have to do any other processing while this movement
is occurring.

A Simple Tile-Based Game | 509

On each iteration, the player.currentTile is incremented by 1. This will change the
tile that is rendered to be the next tile in the playerTiles array. When destinationX and
destinationY are equal to the x and y values for the player, the movement and animation
stop, and the game state is changed to the GAME_STATE_EVALUATE_PLAYER_MOVE state.

GAME_STATE_EVALUATE_PLAYER_MOVE

Now that the player has been moved to the next tile, the player.row and player.col
attributes are set to player.nextRow and player.nextCol, respectively.

Next, if the player is on a goal tile, the player.win attribute will be set to true. If the
player is on a wall tile, the player.hit will be set to true.

We then loop though all of the enemy objects and see whether any occupy the same tile
as the player. If they do, both the player and the enemy hit attributes are set to true.

Next, we move the game to the GAME_STATE_ENEMY_MOVE state.

GAME_STATE_ENEMY_MOVE

This state uses the homegrown chase AI—discussed in “Simple Homegrown AI Over-
view” on page 515—to choose a direction in which to move each enemy tank. It does
this by looping through all the tanks and applying the logic to them individually.

This function first uses a little tile-based math to determine where the player is in re-
lation to an enemy tank. It then creates an array of directions to test based on these
calculations. It stores these as string values in a variable called directionsToTest.

Next, it uses the chanceRandomMovement value (25%) to determine whether it will use the
list of directions it just compiled, or whether it will throw them out and simply choose
a random direction to move in.

In either case, it must check all of the available directions (either in the list of
directionsToMove or in all four directions for random movement) to see which is the
first that will not move the tank off the side of the screen.

Once it has the direction to move in, it sets the destinationX and destinationY values
of the enemy tank using the same tile size * x and tile size * y trick used for the
player.

Finally, it sets the game state to GAME_STATE_ANIMATE_ENEMY.

GAME_STATE_ANIMATE_ENEMY

Like GAME_STATE_ANIMATE_PLAYER, this state moves and animates the tank to its new
location represented by its destinationX and destinationY values. It must do this for
each of the enemy tanks, so it uses the enemyMoveCompleteCount variable to keep count
of how many of the enemy tanks have finished their moves.

510 | Chapter 9: Combining Bitmaps and Sound

When all the enemy tanks have completed their moves, the game state is changed to
the GAME_STATE_EVALUATE_ENEMY_MOVE state.

GAME_STATE_EVALUATE_ENEMY_MOVE

Like GAME_STATE_EVALUATE_PLAYER_MOVE, this state looks at the location of each tank to
determine which ones need to be destroyed.

If a tank occupies the same tile as the player, a wall, or another tank, the tank is “to be
destroyed”. If the player and enemy tank occupy the same tile, the player is also “to be
destroyed”. This “to be destroyed” state is set by placing true in the hit attribute of
the enemy tank or the player.

The game is then moved to the GAME_STATE_EVALUATE_OUTCOME state.

GAME_STATE_EVALUATE_OUTCOME

This function looks at each of the enemy tanks and the player tank to determine which
have a hit attribute set to true. If any do, that tank’s dead attribute is set to true, and
an explosion is created by calling createExplode() and passing in the object instance
(player or enemy tank). In the case of the enemy, a dead enemy is also removed from
the enemy array.

The GAME_STATE_ANIMATE_EXPLODE state is called next.

GAME_STATE_ANIMATE_EXPLODE

If the explosions array length is greater than 0, this function loops through each instance
and animates them using the explodeTiles array. Each explosion instance is removed
from the explosions array after it finishes its animation. When the explosions array
length is 0, the game moves to the GAME_STATE_CHECK_FOR_GAME_OVER state.

GAME_STATE_CHECK_FOR_GAME_OVER

This state will first check to see whether the player is dead, and then check to see
whether he has won. That means that the player cannot win if an enemy tank makes it
to the goal on the same try as the player.

If the player has lost, the state changes to GAME_STATE_PLAYER_LOSE; if the player has
won, it moves to the GAME_STATE_PLAYER_WIN state. If neither of those has occurred, the
game is set to GAME_STATE_WAIT_FOR_PLAYER_MOVE. This starts the game loop iteration
over, and the player begins her next turn.

A Simple Tile-Based Game | 511

GAME_STATE_PLAYER_WIN

If the player wins, the maxEnemy is increased for the next game. The player’s score is also
checked against the current session high score to determine whether a new high score
has been achieved. This state waits for a space bar press and then moves to the
GAME_STATE_NEW_GAME state.

GAME_STATE_PLAYER_LOSE

The player’s score is checked against the current session high score to determine
whether a new high score has been achieved. This state waits for a space bar press and
then moves to the GAME_STATE_NEW_GAME state.

Simple Tile Movement Logic Overview
Micro Tank Maze employs simple tile-to-tile movement using the “center of a tile” logic.
This logic relies on making calculations once the game character has reached the center
of a tile. The origin point of our game character tiles is the top-left corner. Because of
this, we can easily calculate that a game character is in the center of a tile when its x
and y coordinates are equal to the destination tile’s x and y coordinates.

When the user presses a movement key (up, down, right, or left arrow), we first must
check whether the player is trying to move to a “legal” tile on the playField. In Micro
Tank Maze, all tiles are legal. The only illegal moves are off the edges of the board. So,
if the player wants to move up, down, left, or right, we must first check the tile in that
direction based on the key pressed in the gameStateWaitForPlayerMove() function. Here
is the switch statement used to determine whether the player pressed an arrow key:

if (keyPressList[38]==true){
 //up
 if (checkBounds(-1,0, player)){
 setPlayerDestination();
 }
 }else if (keyPressList[37]==true) {
 //left
 if (checkBounds(0,-1, player)){
 setPlayerDestination();
 }
 }else if (keyPressList[39]==true) {
 //right
 if (checkBounds(0,1, player)){
 setPlayerDestination();
 }
 }else if (keyPressList[40]==true){
 //down
 if (checkBounds(1,0, player)){
 setPlayerDestination();
 }
 }

512 | Chapter 9: Combining Bitmaps and Sound

Notice that the checkBounds() function takes a row increment and then a column incre-
ment to test. It is important to note that we don’t access tiles in the same manner that
we would access pixels on the screen. Tiles in the playField array are accessed by
addressing the vertical (row) and then the horizontal (column) (using [row][column],
not [column][row]). This is because a simple array is organized into a set of rows. Each
row has a set of 15 columns. Therefore, we do not access a tile in the playField using
the [horizontal][vertical] coordinates. Instead, we use the [row][column] syntax that
simple arrays use to powerful and elegant effect.

In the checkBounds() function, enter the row increment, then the column increment,
and then the object to be tested. If this is a legal move, the checkBounds() function sets
the nextRow and nextCol to be row+rowInc and col+colInc, respectively:

function checkBounds(rowInc, colInc, object){
 object.nextRow = object.row+rowInc;
 object.nextCol = object.col+colInc;

 if (object.nextCol >=0 && object.nextCol<15 &&
 object.nextRow>=0 && object.nextRow<15){
 object.dx = colInc;
 object.dy = rowInc;

 if (colInc==1){
 object.rotation = 90;
 }else if (colInc==-1){
 object.rotation = 270;
 }else if (rowInc==-1){
 object.rotation = 0;
 }else if (rowInc==1){
 object.rotation = 180;
 }

 return(true);

 }else{
 object.nextRow = object.row;
 object.nextCol = object.col;
 return(false);

 }

}

If the move is legal, the dx (delta, or change in x) and dy (delta, or change in y) are set
to the colInc and rowInc, respectively.

The animatePlayer() function is called next. Its job is to move the player object to its
new location while running through its animation frames. Here is the code from the
animatePlayer() function:

player.x += player.dx*player.speed;
player.currentTile++;

A Simple Tile-Based Game | 513

if (player.currentTile==playerTiles.length){
 player.currentTile = 0;
}
renderPlayField();
if (player.x==player.destinationX && player.y==player.destinationY){
 switchGameState(GAME_STATE_EVALUATE_PLAYER_MOVE);
}

First, the player object’s x and y locations are increased by the player.speed *
player.dx (or dy). The tile size is 32, so we must use a speed value that is evenly divided
into 32. The values 1, 2, 4, 8, 16, and 32 are all valid.

This function also runs though the playerTiles array on each game loop iteration. This
will render the tank tracks moving, simulating a smooth ride from one tile to the next.

Next, let’s take a closer look at how we render the playField.

Rendering Logic Overview
Each time the game renders objects to the screen, it runs through the entire render()
function. It does this to ensure that even the nonmoving objects are rendered back to
the game screen. The render() function looks like this:

function renderPlayField() {
 fillBackground();
 drawPlayField();
 drawPlayer();
 drawEnemy();
 drawExplosions();
}

First, we draw the plain black background, then we draw the playField, and after that
we draw the game objects. drawPlayField() draws the map of tiles to the game screen.
This function is similar to the functions in Chapter 4, but with some additions for our
game. Let’s review how it is organized:

function drawPlayField(){
 for (rowCtr=0;rowCtr<15;rowCtr++){

 for (colCtr=0;colCtr<15;colCtr++) {
 var sourceX = Math.floor((playField[rowCtr][colCtr]) % 8) * 32;
 var sourceY = Math.floor((playField[rowCtr][colCtr]) /8) *32;

 if (playField[rowCtr][colCtr] != roadTile){
 context.drawImage(tileSheet, 0, 0,32,32,colCtr*32,rowCtr*32,32,32);
 }
 context.drawImage(tileSheet, sourceX, sourceY, 32,32,
 colCtr*32,rowCtr*32,32,32);
 }
 }
 }

514 | Chapter 9: Combining Bitmaps and Sound

The drawPlayField() function loops through the rows in the playField array, and then
through each column inside each row. If the tile id number at playField[rowCtr]
[colCtr] is a road tile, it simply paints that tile at the correct location on the play
Field. If the tile id is a game object (not a road tile), it first paints a road tile in that spot
and then paints the object tile in that spot.

Simple Homegrown AI Overview
The enemy tanks chase the player object based on a set of simple rules. We have coded
those rules into the gameStateEnemyMove() function, which is one of the longest and
most complicated functions in this book. Let’s first step through the logic used to create
the function, and then you can examine it in Example 9-3.

This function starts by looping through the enemy array. It must determine a new tile
location on which to move each enemy. To do so, it follows some simple rules that
determine the order in which the testBounds() function will test the movement
directions:

1. First, it tests to see whether the player is closer to the enemy vertically or
horizontally.

2. If vertically, and the player is above the enemy, it places up and then down into the
directionsToTest array.

3. If vertically, and the player is below the enemy, it places down and then up into the
directionsToTest array.

The up and then down, or down and then up, directions are pushed
into the directionsTest array to simplify the AI. The logic here is
if the player is “up” from the enemy, but the enemy is blocked by
an object, the enemy will try the opposite direction first. In our
game, there will be no instance where an object blocks the direction
the enemy tank wants to move in. This is because the only illegal
direction is trying to move off the bounds of the screen. If we add
tiles to our playfield that “block” the enemy, this entire set of AI
code suddenly becomes very useful and necessary. We have inclu-
ded this entire “homegrown chase AI” in our game in case more of
these tile types are added.

4. It then looks to see where to add the left and right directions. It does this based
on which way will put it closer to the player.

5. If the horizontal direction and not the vertical direction is the shortest, it runs
through the same type of logic, but this time using left and then right, then up
and then down.

6. When this is complete, all four directions will be in the directionsToTest array.

A Simple Tile-Based Game | 515

Next, the logic finds a number between 0 and 99, and checks to see whether it is less
than the chanceRandomEnemyMovement value. If it is, it will ignore the directionsToTest
array and simply try to find a random direction to move in. In either case, all the di-
rections (either in the directionsToTest array or in order up, down, left, and right) are
tested until the testBounds() function returns true.

That’s all there is to this code. In Example 9-3, you will find the entire set of code for
this game.

Micro Tank Maze Complete Game Code
Example 9-3. Micro Tank Maze full source code listing

 <!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH(EX3: Micro Tank Maze Game</title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript">
window.addEventListener('load', eventWindowLoaded, false);
function eventWindowLoaded() {

 canvasApp();
}

function canvasSupport () {
return Modernizr.canvas;
}

function canvasApp(){

 if (!canvasSupport()) {
 return;
 }else{
 theCanvas = document.getElementById("canvas");
 context = theCanvas.getContext("2d");
 }

 //application states
 const GAME_STATE_INIT = 0;
 const GAME_STATE_WAIT_FOR_LOAD = 10;
 const GAME_STATE_TITLE = 20;
 const GAME_STATE_NEW_GAME = 30;
 const GAME_STATE_WAIT_FOR_PLAYER_MOVE = 40;
 const GAME_STATE_ANIMATE_PLAYER = 50;
 const GAME_STATE_EVALUATE_PLAYER_MOVE = 60;
 const GAME_STATE_ENEMY_MOVE = 70;
 const GAME_STATE_ANIMATE_ENEMY = 80;
 const GAME_STATE_EVALUATE_ENEMY_MOVE = 90;
 const GAME_STATE_EVALUATE_OUTCOME = 100;
 const GAME_STATE_ANIMATE_EXPLODE = 110;
 const GAME_STATE_CHECK_FOR_GAME_OVER = 120;

516 | Chapter 9: Combining Bitmaps and Sound

 const GAME_STATE_PLAYER_WIN = 130;
 const GAME_STATE_PLAYER_LOSE = 140;
 const GAME_STATE_GAME_OVER = 150;

 var currentGameState = 0;
 var currentGameStateFunction = null;

 //loading
 var loadCount = 0;
 var itemsToLoad = 1;

 //keyPresses
 var keyPressList = [];

 var tileSheet;

 var mapRows = 15;
 var mapCols = 15;

 //playfield
 var playField = [];
 var items = [];
 var xMin = 0;
 var xMax = 480;
 var yMin = 0;
 var yMax = 480;

 //tiles
 var playerTiles = [1,2,3,4,5,6,7,8];
 var enemyTiles = [9,10,11,12,13,14,15,16];
 var roadTile = 0;
 var wallTile = 30;
 var goalTile = 23;
 var explodeTiles = [17,18,19,18,17];

 var wallMax = 20;
 var playerMax = 1;
 var enemyMax = 20;
 var goalMax = 1;

 var enemyMoveCompleteCount=0;

 //objects
 var player = {};
 var enemy = [];
 var explosions = [];

 //screens
 var screenStarted = false;
 var score = 0;
 var enemyScore = 10;
 var goalScore = 50;
 var highScore = 0;

 var chanceRandomEnemyMovement = 25;

A Simple Tile-Based Game | 517

 function runGame(){
 currentGameStateFunction();
 }

 function switchGameState(newState) {
 currentGameState = newState;
 switch (currentGameState) {

 case GAME_STATE_INIT:
 currentGameStateFunction = gameStateInit;
 break;
 case GAME_STATE_WAIT_FOR_LOAD:
 currentGameStateFunction = gameStateWaitForLoad;
 break;
 case GAME_STATE_TITLE:
 currentGameStateFunction = gameStateTitle;
 break;
 case GAME_STATE_NEW_GAME:
 currentGameStateFunction = gameStateNewGame;
 break;
 case GAME_STATE_WAIT_FOR_PLAYER_MOVE:
 currentGameStateFunction = gameStateWaitForPlayerMove;
 break;
 case GAME_STATE_ANIMATE_PLAYER:
 currentGameStateFunction = gameStateAnimatePlayer;
 break;
 case GAME_STATE_EVALUATE_PLAYER_MOVE:
 currentGameStateFunction = gameStateEvaluatePlayerMove;
 break;
 case GAME_STATE_ENEMY_MOVE:
 currentGameStateFunction = gameStateEnemyMove;
 break;
 case GAME_STATE_ANIMATE_ENEMY:
 currentGameStateFunction = gameStateAnimateEnemy;
 break;
 case GAME_STATE_EVALUATE_ENEMY_MOVE:
 currentGameStateFunction = gameStateEvaluateEnemyMove;
 break;
 case GAME_STATE_EVALUATE_OUTCOME:
 currentGameStateFunction = gameStateEvaluateOutcome;
 break;
 case GAME_STATE_ANIMATE_EXPLODE:
 currentGameStateFunction = gameStateAnimateExplode;
 break;
 case GAME_STATE_CHECK_FOR_GAME_OVER:
 currentGameStateFunction = gameStateCheckForGameOver;
 break;
 case GAME_STATE_PLAYER_WIN:
 currentGameStateFunction = gameStatePlayerWin;
 break;
 case GAME_STATE_PLAYER_LOSE:
 currentGameStateFunction = gameStatePlayerLose;
 break;

518 | Chapter 9: Combining Bitmaps and Sound

 }

 }

 function gameStateWaitForLoad(){
 //do nothing while loading events occur
 //console.log("doing nothing...")
 }

 function gameStateInit() {

 tileSheet = new Image();
 tileSheet.src = "tanks_sheet.png";
 tileSheet.onload = itemLoaded;

 switchGameState(GAME_STATE_WAIT_FOR_LOAD);

 }

 function itemLoaded(event) {

 loadCount++;
 ////console.log("loading:" + loadCount)
 if (loadCount >= itemsToLoad) {

 switchGameState(GAME_STATE_TITLE)

 }

 }

 function gameStateTitle() {
 if (screenStarted !=true){
 fillBackground();
 setTextStyleTitle();
 context.fillText ("Micro Tank Maze", 160, 70);
 context.fillText ("Press Space To Play", 150, 140);

 screenStarted = true;
 }else{
 //wait for space key click
 if (keyPressList[32]==true){
 //console.log("space pressed");
 switchGameState(GAME_STATE_NEW_GAME);
 screenStarted = false;

 }

 }

 }

 function gameStatePlayerWin(){

 if (!screenStarted){

A Simple Tile-Based Game | 519

 score += goalScore;
 fillBackground();
 setTextStyleTitle();
 context.fillText ("YOU WON THE GAME!", 135, 70);
 context.fillText ("Final Score: " + score, 150, 100);
 context.fillText ("Number of enemy: " + enemyMax, 150,130);

 if (score > highScore){
 highScore = score;
 context.fillText ("NEW HIGH SCORE!", 150,160);
 }

 context.fillText ("High Score: " + score, 150, 190);

 screenStarted = true;

 enemyMax++;
 if (enemyMax >50){
 enemyMax = 50;
 }
 context.fillText ("Number of enemy for next game: " +
 enemyMax, 100,220);

 context.fillText ("Press Space To Play", 150, 300);

 }else{
 //wait for space key click
 if (keyPressList[32]==true){
 //console.log("space pressed");
 switchGameState(GAME_STATE_NEW_GAME);
 screenStarted = false;

 }

 }

 }

 function gameStatePlayerLose(){
 if (!screenStarted){
 fillBackground();
 setTextStyleTitle();
 context.fillText ("SORRY, YOU LOST THE GAME!", 100, 70);
 context.fillText ("Final Score: " + score, 150, 100);
 context.fillText ("Number of enemy: " + enemyMax, 150,130);

 if (score > highScore){
 highScore = score;
 context.fillText ("NEW HIGH SCORE!", 150,160);
 }

 context.fillText ("High Score: " + score, 150, 190);

 screenStarted = true;

520 | Chapter 9: Combining Bitmaps and Sound

 context.fillText ("Number of enemy for next game: " +
 enemyMax, 100,220);
 context.fillText ("Press Space To Play", 150, 300);
 }else{
 //wait for space key click
 if (keyPressList[32]==true){
 //console.log("space pressed");
 switchGameState(GAME_STATE_NEW_GAME);
 screenStarted = false;

 }

 }

 }

 function gameStateNewGame(){
 score = 0;
 enemy = [];
 explosions = [];
 playField = [];
 items = [];
 resetPlayer();
 createPlayField();
 renderPlayField();

 switchGameState(GAME_STATE_WAIT_FOR_PLAYER_MOVE);

 }

 function createPlayField(){
 var wallCount = 0;
 var playerCount = 0;
 var enemyCount = 0;
 var goalCount = 0;
 var roadCount = 0;

 //fill with road
 for (var rowCtr=0;rowCtr<15;rowCtr++){
 var tempRow = [];
 for (colCtr=0;colCtr<15;colCtr++) {
 tempRow.push(roadTile)
 }

 playField.push(tempRow);

 }
 //console.log("playField=" + playField);

 //create items array
 for (rowCtr=0;rowCtr<15;rowCtr++){
 var tempRow = [];
 for (colCtr=0;colCtr<15;colCtr++) {
 tempRow.push(0);

A Simple Tile-Based Game | 521

 }

 items.push(tempRow);

 }

 var randRow;
 var randCol;
 //placewalls
 for (var wallCtr=0;wallCtr<wallMax;wallCtr++){
 var wallLocationFound = false;
 while(!wallLocationFound){
 randRow = Math.floor(Math.random()*15);
 randCol = Math.floor(Math.random()*15);
 if (playField[randRow][randCol]==roadTile){
 playField[randRow][randCol] = wallTile;
 wallLocationFound = true;
 }
 }
 }

 //place enemy
 for (var enemyCtr=0;enemyCtr<enemyMax;enemyCtr++){
 var enemyLocationFound = false;
 while(!enemyLocationFound){
 randRow = Math.floor(Math.random()*15);
 randCol = Math.floor(Math.random()*15);
 if (playField[randRow][randCol]==roadTile){
 enemyLocationFound = true;
 var tempEnemy = {};
 tempEnemy.row = randRow;
 tempEnemy.col = randCol;
 tempEnemy.nextRow = 0;
 tempEnemy.nextCol = 0;
 tempEnemy.currentTile = 0;
 tempEnemy.rotation = 0;
 tempEnemy.x = tempEnemy.col*32;
 tempEnemy.y = tempEnemy.row*32;
 tempEnemy.speed = 2;
 tempEnemy.destinationX = 0;
 tempEnemy.destinationY = 0;
 tempEnemy.dx = 0;
 tempEnemy.dy = 0;
 tempEnemy.hit = false;
 tempEnemy.dead = false;
 tempEnemy.moveComplete = false;
 enemy.push(tempEnemy);
 items[randRow][randCol] = 1;
 }
 }
 }

 //place player
 var playerLocationFound = false;
 while(!playerLocationFound){

522 | Chapter 9: Combining Bitmaps and Sound

 randRow = Math.floor(Math.random()*15);
 randCol = Math.floor(Math.random()*15);
 if (playField[randRow][randCol]==roadTile &&
 items[randRow][randCol]==0){
 playerLocationFound = true;
 player.col = randCol;
 player.row = randRow;
 player.x = player.col*32;
 player.y = player.row*32;
 items[randRow][randCol] = 1;
 }
 }

 //place goal
 var goalLocationFound = false;
 while(!goalLocationFound){
 randRow = Math.floor(Math.random()*15);
 randCol = Math.floor(Math.random()*15);
 if (playField[randRow][randCol]==roadTile &&
 items[randRow][randCol]==0){
 playField[randRow][randCol] = goalTile;
 goalLocationFound = true;
 }
 }

 //console.log("playField=" + playField);

 }

 function resetPlayer(){
 player.row = 0;
 player.col = 0;
 player.nextRow = 0;
 player.nextCol = 0;
 player.currentTile = 0;
 player.rotation = 0;
 player.speed = 2;
 player.destinationX = 0;
 player.destinationY = 0;
 player.x = 0;
 player.y = 0;
 player.dx = 0;
 player.dy = 0;
 player.hit = false;
 player.dead = false;
 player.win = false;
 }

 function gameStateWaitForPlayerMove() {
 if (keyPressList[38]==true){
 //up
 if (checkBounds(-1,0, player)){
 setPlayerDestination();

A Simple Tile-Based Game | 523

 }
 }else if (keyPressList[37]==true) {
 //left
 if (checkBounds(0,-1, player)){
 setPlayerDestination();
 }
 }else if (keyPressList[39]==true) {
 //right
 if (checkBounds(0,1, player)){
 setPlayerDestination();
 }
 }else if (keyPressList[40]==true){
 //down
 if (checkBounds(1,0, player)){
 setPlayerDestination();
 }
 }
 }

 function setPlayerDestination(){
 player.destinationX = player.nextCol*32;
 player.destinationY = player.nextRow*32;
 switchGameState(GAME_STATE_ANIMATE_PLAYER);
 }

 function checkBounds(rowInc, colInc, object){
 object.nextRow = object.row+rowInc;
 object.nextCol = object.col+colInc;

 if (object.nextCol >=0 && object.nextCol<15 &&
 object.nextRow>=0 && object.nextRow<15){
 object.dx = colInc;
 object.dy = rowInc;

 if (colInc==1){
 object.rotation = 90;
 }else if (colInc==-1){
 object.rotation = 270;
 }else if (rowInc==-1){
 object.rotation = 0;
 }else if (rowInc==1){
 object.rotation = 180;
 }

 return(true);

 }else{
 object.nextRow = object.row;
 object.nextCol = object.col;
 return(false);

 }

 }

524 | Chapter 9: Combining Bitmaps and Sound

 function gameStateAnimatePlayer(){
 player.x += player.dx*player.speed;
 player.y += player.dy*player.speed;
 player.currentTile++;
 if (player.currentTile==playerTiles.length){
 player.currentTile = 0;
 }
 renderPlayField();
 if (player.x==player.destinationX && player.y==player.destinationY){
 switchGameState(GAME_STATE_EVALUATE_PLAYER_MOVE);
 }

 }

 function gameStateEvaluatePlayerMove(){
 player.row = player.nextRow;
 player.col = player.nextCol;

 if (playField[player.row][player.col]==wallTile){
 player.hit = true;
 }else if (playField[player.row][player.col]==goalTile){
 player.win = true;
 }

 for (var eCtr=enemy.length-1;eCtr>=0;eCtr--){
 if (player.row==enemy[eCtr].row && player.col==enemy[eCtr].col){
 enemy[eCtr].hit = true;
 player.hit = true;
 }
 }

 switchGameState(GAME_STATE_ENEMY_MOVE);

 }

 function gameStateEnemyMove(){
 for (var eCtr=0;eCtr<enemy.length;eCtr++){
 var tempEnemy = enemy[eCtr];
 if (!tempEnemy.hit){

 var directionsToTest=[];
 var hDiff = tempEnemy.col - player.col;
 var vDiff = tempEnemy.row - player.row;

 if (Math.abs(vDiff) < Math.abs(hDiff)){
 if (vDiff > 0){
 directionsToTest.push("up");
 directionsToTest.push("down");
 }else if (vDiff <0){
 directionsToTest.push("down");
 directionsToTest.push("up");
 }

A Simple Tile-Based Game | 525

 if (hDiff >0){
 directionsToTest.push("left");
 directionsToTest.push("right");
 }else if (hDiff <0){
 directionsToTest.push("right");
 directionsToTest.push("left");
 }
 }else if (Math.abs(hDiff) < Math.abs(vDiff)) {
 if (hDiff >0){
 directionsToTest.push("left");
 directionsToTest.push("right");
 }else if (hDiff<0){
 directionsToTest.push("right");
 directionsToTest.push("left");
 }else if (vDiff > 0){
 directionsToTest.push("up");
 directionsToTest.push("down");
 }else if (vDiff <0){
 directionsToTest.push("down");
 directionsToTest.push("up");
 }
 }else if (Math.abs(hDiff) == Math.abs(vDiff)) {
 //make an educated random guess
 if (Math.floor(Math.random()*2)==0){
 //try vertical first
 if (vDiff >0){
 directionsToTest.push("up");
 directionsToTest.push("down");
 }else if (vDiff<0){
 directionsToTest.push("down");
 directionsToTest.push("up");
 }
 }else{
 //try vertical first
 if (hDiff >0){
 directionsToTest.push("left");
 directionsToTest.push("right");
 }else if (hDiff<0){
 directionsToTest.push("right");
 directionsToTest.push("left");
 }
 }
 }
 var chooseRandom = false;
 var moveFound = false;
 var movePtr = 0;
 var move;

 if (Math.floor(Math.random()*100)> chanceRandomEnemyMovement){

 //not random movement

 while(!moveFound){

 move = directionsToTest[movePtr];

526 | Chapter 9: Combining Bitmaps and Sound

 switch(move){
 case "up":
 if (checkBounds(-1,0,tempEnemy)){
 moveFound = true;

 }
 break;

 case "down":
 if (checkBounds(1,0,tempEnemy)){
 moveFound = true;

 }
 break;

 case "left":
 if (checkBounds(0,-1, tempEnemy)){
 moveFound = true;

 }
 break;
 case "right":
 if (checkBounds(0,1,tempEnemy)){
 moveFound = true;

 }
 break
 }

 movePtr++
 if (movePtr==directionsToTest.length){
 //do not move if no move found
 //this should be impossible
 chooseRandom = true;

 }
 }

 }else{
 chooseRandom = true;
 }
 //pick random direction to test;
 if (chooseRandom) {

 while(!moveFound){
 switch(Math.floor(Math.random()*4)){
 case 0:
 if (checkBounds(-1,0,tempEnemy)){
 moveFound = true;

 }else{

 }
 break;

A Simple Tile-Based Game | 527

 case 1:
 if (checkBounds(1,0,tempEnemy)){
 moveFound = true;

 }else{

 }
 break;

 case 2:
 if (checkBounds(0,-1, tempEnemy)){
 moveFound = true;

 }else{

 }
 break;
 case 3:
 if (checkBounds(0,1,tempEnemy)){
 moveFound = true;

 }else{

 }
 break
 }
 }

 }

 tempEnemy.destinationX = tempEnemy.nextCol*32;
 tempEnemy.destinationY = tempEnemy.nextRow*32;

 }else{
 tempEnemy.nextCol = tempEnemy.col;
 tempEnemy.nextRow = tempEnemy.row;
 tempEnemy.destinationX = tempEnemy.nextCol*32;
 tempEnemy.destinationY = tempEnemy.nextRow*32;
 }

 }
 switchGameState(GAME_STATE_ANIMATE_ENEMY);
 }

 function gameStateAnimateEnemy(){
 for (var eCtr=enemy.length-1;eCtr>=0;eCtr--){
 var tempEnemy = enemy[eCtr];

 if (!tempEnemy.moveComplete){

528 | Chapter 9: Combining Bitmaps and Sound

 tempEnemy.x += tempEnemy.dx*tempEnemy.speed;
 tempEnemy.y += tempEnemy.dy*tempEnemy.speed;
 tempEnemy.currentTile++;
 if (tempEnemy.currentTile==enemyTiles.length){
 tempEnemy.currentTile = 0;
 }
 renderPlayField();
 if (tempEnemy.x==tempEnemy.destinationX &&
 tempEnemy.y==tempEnemy.destinationY){
 tempEnemy.moveComplete = true;
 enemyMoveCompleteCount++;
 }
 }
 }

 if (enemyMoveCompleteCount >= enemy.length){
 enemyMoveCompleteCount = 0;
 for (var eCtr=0;eCtr<enemy.length;eCtr++){
 var tempEnemy = enemy[eCtr];
 tempEnemy.moveComplete = false;
 }
 switchGameState(GAME_STATE_EVALUATE_ENEMY_MOVE);

 }

 }

 function gameStateEvaluateEnemyMove(){
 for (var eCtr=enemy.length-1;eCtr>=0;eCtr--){
 var tempEnemy = enemy[eCtr];
 tempEnemy.row = tempEnemy.nextRow;
 tempEnemy.col = tempEnemy.nextCol;

 if (playField[tempEnemy.row][tempEnemy.col]==wallTile){
 tempEnemy.hit = true;
 }

 if (player.row==tempEnemy.row && player.col==tempEnemy.col){
 tempEnemy.hit = true;
 player.hit = true;

 }

 //check against other enemy
 for (var eCtr2=enemy.length-1;eCtr2>=0;eCtr2--){
 var tempEnemy2 = enemy[eCtr2];

 if (tempEnemy.row==tempEnemy2.row &&
 tempEnemy.col==tempEnemy2.col && eCtr != eCtr2){
 tempEnemy.hit = true;
 tempEnemy2.hit = true;
 }

 }

A Simple Tile-Based Game | 529

 }
 switchGameState(GAME_STATE_EVALUATE_OUTCOME);
 }

 function gameStateEvaluateOutcome(){
 if (player.hit){
 player.dead = true;
 createExplode(player);
 }

 for (var eCtr=enemy.length-1;eCtr>=0;eCtr--){
 var tempEnemy = enemy[eCtr];
 if (tempEnemy.hit){
 score += enemyScore;
 tempEnemy.dead = true;
 createExplode(tempEnemy)
 enemy.splice(eCtr,1);
 tempEnemy = null;
 }
 }

 switchGameState(GAME_STATE_ANIMATE_EXPLODE);
 }

 function createExplode(object){
 var newExplode = {};
 newExplode.currentTile = 0;
 newExplode.row = object.row;
 newExplode.col = object.com;
 newExplode.x = object.x;
 newExplode.y = object.y;
 newExplode.rotation = 0;
 explosions.push(newExplode);
 }

 function gameStateAnimateExplode(){
 for (var eCtr=explosions.length-1;eCtr>=0;eCtr--){
 var tempExplosion = explosions[eCtr];
 renderPlayField();
 tempExplosion.currentTile++;
 if (tempExplosion.currentTile == explodeTiles.length){
 explosions.splice(eCtr,1);
 tempExplode = null;
 }
 }

 if (explosions.length==0){
 switchGameState(GAME_STATE_CHECK_FOR_GAME_OVER);
 }
 }

 function gameStateCheckForGameOver() {
 if (player.dead){
 switchGameState(GAME_STATE_PLAYER_LOSE);

530 | Chapter 9: Combining Bitmaps and Sound

 }else if (player.win){
 switchGameState(GAME_STATE_PLAYER_WIN)
 }else{
 switchGameState(GAME_STATE_WAIT_FOR_PLAYER_MOVE);
 }
 }

 function drawPlayField(){
 for (rowCtr=0;rowCtr<15;rowCtr++){

 for (colCtr=0;colCtr<15;colCtr++) {
 var sourceX = Math.floor((playField[rowCtr][colCtr]) % 8) * 32;
 var sourceY = Math.floor((playField[rowCtr][colCtr]) /8) *32;

 if (playField[rowCtr][colCtr] != roadTile){
 context.drawImage(tileSheet, 0, 0,32,32, colCtr*32,
 rowCtr*32,32,32);
 }
 context.drawImage(tileSheet, sourceX, sourceY,32,32,
 colCtr*32,rowCtr*32,32,32);
 }
 }
 }

 function drawPlayer(){
 if (!player.dead){
 context.save();

 context.setTransform(1,0,0,1,0,0);
 context.translate(player.x+16, player.y+16);
 var angleInRadians = player.rotation * Math.PI / 180;
 context.rotate(angleInRadians);

 var sourceX = Math.floor(playerTiles[player.currentTile] % 8) * 32;
 var sourceY = Math.floor(playerTiles[player.currentTile] /8) *32;

 context.drawImage(tileSheet, sourceX, sourceY,32,32,-16,-16,32,32);

 context.restore();
 }

 }

 function drawEnemy(){
 for (var eCtr=enemy.length-1;eCtr>=0;eCtr--){
 tempEnemy = enemy[eCtr];
 if (!tempEnemy.dead){
 context.save();

 context.setTransform(1,0,0,1,0,0);
 context.translate(tempEnemy.x+16, tempEnemy.y+16);
 var angleInRadians = tempEnemy.rotation * Math.PI / 180;
 context.rotate(angleInRadians);

A Simple Tile-Based Game | 531

 var sourceX = Math.floor(enemyTiles[tempEnemy.currentTile] % 8) * 32;
 var sourceY = Math.floor(enemyTiles[tempEnemy.currentTile] /8) *32;

 context.drawImage(tileSheet, sourceX, sourceY,32,32,-16,-16,32,32);

 context.restore();
 }
 }
 }

 function drawExplosions(){
 for (var eCtr=explosions.length-1;eCtr>=0;eCtr--){
 tempExplosion = explosions[eCtr];

 context.save();

 var sourceX = Math.floor(explodeTiles[tempExplosion.currentTile]
 % 8) * 32;
 var sourceY = Math.floor(explodeTiles[tempExplosion.currentTile] /8) *32;

 context.drawImage(tileSheet, sourceX, sourceY,32,32,
 tempExplosion.x,tempExplosion.y,32,32);

 context.restore();

 }
 }

 function fillBackground() {
 // draw background and text
 context.fillStyle = '#000000';
 context.fillRect(xMin, yMin, xMax, yMax);

 }

 function setTextStyleTitle() {
 context.fillStyle = '#54ebeb';
 context.font = '20px _sans';
 context.textBaseline = 'top';
 }

 function renderPlayField() {
 fillBackground();
 drawPlayField();
 drawPlayer();
 drawEnemy();
 drawExplosions();

 }

 document.onkeydown = function(e){

 e = e?e:window.event;
 keyPressList[e.keyCode]=true;
 }

532 | Chapter 9: Combining Bitmaps and Sound

 document.onkeyup = function(e){
 //document.body.onkeyup = function(e){
 e = e?e:window.event;
 keyPressList[e.keyCode] = false;
 };

//*** application start
 switchGameState(GAME_STATE_INIT);
 const FRAME_RATE = 40;
 frameRateCounter = new FrameRateCounter(FRAME_RATE);
 //**** application loop
 var intervalTime = 1000/FRAME_RATE;
 setInterval(runGame, intervalTime);

}

//*** new FrameRateCounter object prototype

function FrameRateCounter(fps) {
 if (fps == undefined){
 this.fps = 40
 }else{
 this.fps = fps
 }
 this.lastFrameCount = 0;
 var dateTemp = new Date();

 this.frameLast = dateTemp.getTime();
 delete dateTemp;
 this.frameCtr = 0;
 this.lastTime = dateTemp.getTime();
 this.step = 1;
}
FrameRateCounter.prototype.countFrames=function() {

 var dateTemp = new Date();
 var timeDifference = dateTemp.getTime()-this.lastTime;
 this.step = (timeDifference/1000)*this.fps;
 this.lastTime = dateTemp.getTime();
 //console.log("step=",this.step)
 this.frameCtr++;

 if (dateTemp.getTime() >=this.frameLast+1000) {
 ConsoleLog.log("frame event");
 this.lastFrameCount = this.frameCtr;
 this.frameCtr = 0;
 this.frameLast = dateTemp.getTime();
 }
 delete dateTemp;

}

</script>
</head>

A Simple Tile-Based Game | 533

<body>
<div style="position: absolute; top: 50px; left: 50px;">
<canvas id="canvas" width="480" height="480">
 Your browser does not support HTML5 Canvas.
</canvas>
</body>
</html>

What’s Next
Throughout this entire book, we have used game- and entertainment-related subjects
to demonstrate canvas application building concepts. Over these last two chapters,
we’ve sped up the game discussion and covered many game concepts directly by cre-
ating two unique games and optimizing a third with bitmaps and object pooling. In
doing so, we have applied many of the concepts from the earlier chapters in full-blown
game applications. The techniques used to create a game on Canvas can be applied to
almost any canvas application from image viewers to stock charting. The sky is really
the limit, as the canvas allows the developer a full suite of powerful low-level capabilities
that can be molded into any application.

In Chapter 10, we will look at porting a simple game from the canvas into a native
iPhone application.

534 | Chapter 9: Combining Bitmaps and Sound

CHAPTER 10

Mobilizing Games with PhoneGap

Going Mobile!
Nowadays it seems that everyone is making, planning to make, or thinking of making
applications for mobile devices. Mobile is the next great (or maybe actually the current)
place to make money by selling applications. The Apple iPhone is currently one of the
most popular personal communication devices, and the iTunes Store gives budding
application developers a place to show and sell the fruits of their labor. Apple separates
their application-development platforms into three categories: Desktop (OS X),
Browser (Safari), and iPhone/iPad/iPod Touch (iOS).

Most iOS applications, especially games, are written in Objective-C and compiled di-
rectly to the platform using the Xcode IDE. This is a large barrier to entry to develop
native applications, as Objective-C is not widely used on platforms other than Apple
devices. Up until early 2010, Objective-C/Xcode was the only viable development sys-
tem for targeting iOS development.

In this chapter, we will “port” our HTML5 Canvas application to the iPhone using a
technology called PhoneGap. PhoneGap allows an HTML application to run natively
on an iPhone by packaging the application as a Safari Mobile “app.” This app can be
run from the iPhone interface, and it will look and act like an app compiled in Objective-
C. Applications packaged with PhoneGap can even be sold in the iTunes Store.

Other third-party tools can be used to create iOS applications and
games. For example, Unity (http://unity3d.com/) is a powerful game-
development platform that can target iOS. In addition, there are tools
such as Ansca’s Corona SDK (http://www.anscamobile.com/) that use
scripting languages to harness the power of the platform.

535

Introducing PhoneGap
PhoneGap is an open source development tool created by Nitobi (http://www.nitobi
.com) that acts as a software bridge between standards-based HTML development and
several mobile platforms. Using PhoneGap, the HTML5 Canvas developer has access
to the various hardware APIs for supported devices through an abstraction layer. This
software interface allows the same code to be used to target features common among
various devices—such as geolocation, touch screens, microphones, and other hardware
capabilities—so that separate code does not need to be written for each device.

You will need an Intel-based Macintosh running Xcode to be able to
compile a PhoneGap project. There currently is no development plat-
form for Windows that will allow compiling Safari Mobile applications
to the iOS platform with an Objective-C wrapper.

We won’t target too many specific iPhone features in this chapter. In the allotted space,
we will cover the basics needed to take a simple application and get it up and running
in the iPhone simulator, and then onto a physical device. We will then implement an
accelerometer feature into our application.

For further reading, Jonathan Stark’s Building iPhone Apps with HTML,
CSS, and JavaScript (O’Reilly) covers PhoneGap and hardware feature
API integration in detail. If you’d rather try this with Android, explore
the similar Building Android Apps with HTML, CSS, and JavaScript
(O’Reilly), also by Jonathan Stark, which applies PhoneGap to create
applications for Android.

The Application
The application we are going to create is a simple BS Bingo game. BS Bingo was designed
on paper well before mobile devices were available. This cynical game concept is based
on the feeling (by some) that the typical business workplace has been overtaken with
Dilbert- or Office Space-esque annoying corporate jargon and doublespeak. This dou-
blespeak seems to have deeply rooted itself in the workplace over the last 20 years,
mostly to the annoyance of software developers (such as ourselves).

In the pen-and-paper version of the game, each player brings a “bingo card” to a meeting
where he expects to hear a lot of this corporate doublespeak. The bingo card is a 5×5
grid, and each of the 25 squares is filled with one of the annoying words or jargon
phrases. During the meeting, each player marks off squares as the words or phrases are
said aloud by the unsuspecting (and not playing) members of the meeting. When a
player has a full column of his card marked off, he is supposed to jump up from the
meeting table and yell “BS!”

536 | Chapter 10: Mobilizing Games with PhoneGap

Whether this game was ever widely played (or even played at all) is a debatable urban
legend, but the simple concept of clicking squares to highlight them makes for a useful
piece of code that we can build easily and then port to the iPhone. We are not even
going to build the entire game here; we will leave extending it into a full application
(possibly adding multiplayer, which is discussed in Chapter 11) for you, the reader.

The Code
Example 10-1 gives the code for our game. We’ll discuss the various functions in the
next section before we move on to installing, modifying, and testing it in Xcode using
PhoneGap. This version of the game will work fine on a Safari desktop browser. We
will highlight the modifications necessary to port it to the iPhone in the next section.

Example 10-1. BSBingo.html full source listing

<!doctype html>
 <html lang="en">
 <head>
 <meta charset="UTF-8">

 <title>BS Bingo</title>
 <script src="modernizr-1.6.min.js"></script>
 <script src="TextButton.js"></script>
 <script src="ConsoleLog.js"></script>
 <script type="text/javascript">

 window.addEventListener('load', eventWindowLoaded, false);
 function eventWindowLoaded() {

 canvasApp();

 }

 function canvasSupport () {
 return Modernizr.canvas;
 }

 function canvasApp(){

 if (!canvasSupport()) {
 return;
 }else{
 theCanvas = document.getElementById("canvas");
 context = theCanvas.getContext("2d");
 }

 var bingoCard = [];
 var buttons = [];

 var standardJargonList = [];
 var tempButton = {};
 var clickSound;

Going Mobile! | 537

 function initLists(){

 standardJargonList=[
 "Actionable", "Assessment" ,"Bandwidth", "Benchmark",
 "Best\nPractices", "Bottle neck" , "Change\nManagement", "Coach",
 "Competitive\nAdvantage", "Constraints", "Core\nCompetencies",
 "Core values", "Critical\nthinking", "Cutting\nedge",
 "Dashboard", "Deliverables", "Enterprise","Gatekeeper",
 "Individual\nContributor", "Leadership", "Matrix\norganisation",
 "Metrics", "Milestones", "Momentum", "Moving target",
 "Initiative","Partnership", "Process", "Process\nmanagement",
 "Re-engineer", "Requirements", "Rightsize", "Seat at\nthe table",
 "Tentpole", " Silo", "Standards", "State of the art",
 "Supply chain", "Synergy","Teamwork", "Thought\nleader",
 "Touchpoints", "Value\nadded", "Drink the\nKool Aid",
 "Baked In", "Champion", "Circle Back", "Dialogue", "Emerge",
 "Enhance", "Evolve", "Execute", "Facilitate" ,"Incentivise",
 "Leverage", "Partner", "Spearhead", "Strategize","Synergise",
 "Throw\na\nCurve", "Touch Base", "Outside\nthe\nBox",
 "Opportunity", "Open Door\nPolicy","Win-Win\n(Anything)",
 "Risk\n(Anything)","Proactive","Reactive","Buy-In",
 "Paradigm\nShift","Task-Oriented","Empower","Team\nPlayer",
 "Enterprise\nWide","Globalization","Localization",
 "Mission-critical", "Magic\nQuadrant","Agile\n(Anything)",
 "Waterfall","Outsourcing","Off-Shoring","Blue Sky",
 "20/20 \nindsight","Low\nHanging\nFruit","10,000\nFoot View",
 "Take\nOwnership","Ramp up", "Out of\nthe Box", "24x7",
 "Fast Track", "Out of\nthe Loop", "In the\nLoop","Touch Base",
 "Mindset", "Game Plan", "Bring to \nthe Table", "Drill Down",
 "Elevator\nSpeech", "Level the\nPlaying field",
 "Ping\n(Someone)","Pushback","Retool", "Take Away",
 "Life-Time\nValue", "Thought\nLeadership", "Up Sell"
];

 }

 function initButtons(){
 buttons = [
 [

 new TextButton(0,0,"Button
 0,0",85,50,gr,"#000000","#ffff00","#000000"),

 new TextButton(92,0,"Button
 0,1",85,50,gr,"#000000","#ffff00","#000000"),

 new TextButton(184,0,"Button
 0,2",85,50,gr,"#000000","#ffff00","#000000"),

 new TextButton(276,0,"Button
 0,3",85,50,gr,"#000000","#ffff00","#000000"),

 new TextButton(368,0,"Button
 0,4",85,50,gr,"#000000","#ffff00","#000000")

538 | Chapter 10: Mobilizing Games with PhoneGap

],

 [

 new TextButton(0,57,"Button
 1,0",85,50,gr,"#000000","#ffff00","#000000"),

 new TextButton(92,57,"Button
 1,1",85,50,gr,"#000000","#ffff00","#000000"),

 new TextButton(184,57,"Button
 1,2",85,50,gr,"#000000","#ffff00","#000000"),

 new TextButton(276,57,"Button
 1,3",85,50,gr,"#000000","#ffff00","#000000"),

 new TextButton(368,57,"Button
 1,4",85,50,gr,"#000000","#ffff00","#000000")

],

 [

 new TextButton(0,114,"Button
 2,0",85,50,gr,"#000000","#ffff00","#000000"),

 new TextButton(92,114,"Button
 2,1",85,50,gr,"#000000","#ffff00","#000000"),

 new TextButton(184,114,"Button
 2,2",85,50,gr,"#000000","#ffff00","#000000"),

 new TextButton(276,114,"Button
 2,3",85,50,gr,"#000000","#ffff00","#000000"),

 new TextButton(368,114,"Button
 2,4",85,50,gr,"#000000","#ffff00","#000000")

],

 [

 new TextButton(0,171,"Button
 3,0",85,50,gr,"#000000","#ffff00","#000000"),

 new TextButton(92,171,"Button
 3,1",85,50,gr,"#000000","#ffff00","#000000"),

 new TextButton(184,171,"Button
 3,2",85,50,gr,"#000000","#ffff00","#000000"),

 new TextButton(276,171,"Button
 3,3",85,50,gr,"#000000","#ffff00","#000000"),

Going Mobile! | 539

 new TextButton(368,171,"Button
 3,4",85,50,gr,"#000000","#ffff00","#000000")

],

 [

 new TextButton(0,228,"Button
 4,0",85,50,gr,"#000000","#ffff00","#000000"),

 new TextButton(92,228,"Button
 4,1",85,50,gr,"#000000","#ffff00","#000000"),

 new TextButton(184,228,"Button
 4,2",85,50,gr,"#000000","#ffff00","#000000"),

 new TextButton(276,228,"Button
 4,3",85,50,gr,"#000000","#ffff00","#000000"),

 new TextButton(368,228,"Button
 4,4",85,50,gr,"#000000","#ffff00","#000000")

]
];
 }

 function initSounds(){
 clickSound = document.getElementById('clicksound');
 }

 function chooseButtonsForCard(){
 //copy jargon into temp array
 var tempArray = [];
 for (var arrayctr=0;arrayctr<standardJargonList.length;arrayctr++){
 tempArray.push(standardJargonList[arrayctr]);
 }

 for (var ctr1=0;ctr1<buttons.length;ctr1++){

 for (var ctr2=0; ctr2<buttons[ctr1].length;ctr2++){
 var randInt = Math.floor(Math.random()*tempArray.length)
 buttons[ctr1][ctr2].text = tempArray[randInt];
 tempArray.splice(randInt,1)
 }
 }

 }

 function drawScreen() {
 //ConsoleLog.log("standardAcronymList="+standardAcronymList.length);
 //ConsoleLog.log("standardJargonList="+standardJargonList.length);
 for (var ctr1=0;ctr1<buttons.length;ctr1++){
 ConsoleLog.log("ctr1="+ctr1)

540 | Chapter 10: Mobilizing Games with PhoneGap

 for (var ctr2=0; ctr2<buttons[ctr1].length;ctr2++){
 ConsoleLog.log("ctr2="+ctr2)
 buttons[ctr1][ctr2].draw(context);
 }
 }

 }

 function onMouseClick(e) {

 //select case through states and then the locations of
 //buttons in those states
 mouseX = e.clientX-theCanvas.offsetLeft;
 mouseY = e.clientY-theCanvas.offsetTop;
 ConsoleLog.log("click " + mouseX + "," + mouseY);
 //find the button clicked

 var col = Math.floor(mouseX/92);
 var row = Math.floor(mouseY/57);

 console.log("row",row,"col", col);
 tempButton = buttons[row][col];
 clickSound.play();
 tempButton.pressDown();
 tempButton.draw(context);

 }

 function onMouseMove(e) {
 mouseX = e.clientX-theCanvas.offsetLeft;
 mouseY = e.clientY-theCanvas.offsetTop;

 //ConsoleLog.log("move: " + mouseX + "," + mouseY);
 }

 //**** start application
 var gr = context.createLinearGradient(0, 0, 85, 50);

 // Add the color stops.
 gr.addColorStop(0,'#ffffff');
 gr.addColorStop(.5,'#bbbbbb');
 gr.addColorStop(1,'#777777');

 theCanvas.addEventListener("mousemove", onMouseMove, false);
 theCanvas.addEventListener("click", onMouseClick, false);

 initSounds();
 initButtons();
 initLists();
 chooseButtonsForCard();
 drawScreen();

 }

 </script>

Going Mobile! | 541

 </head>
 <body>
 <div style="position: absolute; top: 0px; left: 0px;">
 <canvas id="canvas" width="570" height="418">
 Your browser does not support HTML5 Canvas.
 </canvas>
 <audio id ="clicksound" preload="auto">
 <source src="click.mp3" type="audio/mpeg" />

 Your browser does not support the audio element.
 </audio>
 </div>
 </body>
 </html>

Name this file BSBingo.html and save it in a folder. If you are going to follow along and
create the example project, you will also want to create a folder to hold the project files.

Examining the Code for BSBingo.html

When designing an application for the iPhone using PhoneGap, we are
actually targeting the Safari Mobile browser. This means we can
make concessions rather than having to target all available HTML5-
compatible devices. You will notice this especially when we discuss
<audio> tag usage.

The TextButton.js file

Our BS Bingo game will be played on a grid of 25 squares. We created a class (an object
prototype, actually) called TextButton.js to help us create buttons with the text, as well
as a “press” state we can use to show that the button has been clicked. You will want
to save this file in the project folder along with the BSBingo.html file. Here is the code
for this file:

function TextButton(x,y,text, width, height, backColor, strokeColor,
 overColor, textColor){
 this.x = x;
 this.y = y;
 this.text = text;
 this.width = width;
 this.height = height;
 this.backColor = backColor;
 this.strokeColor = strokeColor;
 this.overColor = overColor;
 this.textColor = textColor;
 this.press = false;
}

TextButton.prototype.pressDown=function() {
 if (this.press==true){
 this.press = false;

542 | Chapter 10: Mobilizing Games with PhoneGap

 }else{
 this.press = true;
 }
}

TextButton.prototype.draw = function(context){

 context.save();
 context.setTransform(1,0,0,1,0,0); // reset to identity
 context.translate(this.x, this.y);

 context.shadowOffsetX = 3;
 context.shadowOffsetY = 3;
 context.shadowBlur = 3;
 context.shadowColor = "#222222";

 context.lineWidth = 4;
 context.lineJoin = 'round';
 context.strokeStyle = this.strokeColor;

 if (this.press==true){
 context.fillStyle = this.overColor;
 }else{
 context.fillStyle = this.backColor;
 }

 context.strokeRect(0, 0, this.width,this.height);
 context.fillRect(0, 0, this.width,this.height);

 //text
 context.shadowOffsetX = 1;
 context.shadowOffsetY = 1;
 context.shadowBlur = 1;
 context.shadowColor = "#ffffff";
 context.font = "14px serif"
 context.fillStyle = this.textColor;
 context.textAlign = "center";
 context.textBaseline = "middle";
 var metrics = context.measureText(this.text)
 var textWidth = metrics.width;
 var xPosition = this.width/2;
 var yPosition = (this.height/2);

 var splitText = this.text.split('\n');
 var verticalSpacing = 14;
 console.log("text=" + this.text)
 console.log("text split length=" + splitText.length)

 for (var ctr1=0; ctr1<splitText.length;ctr1++) {
 context.fillText (splitText[ctr1], xPosition,
 yPosition+ (ctr1*verticalSpacing));
 }

 context.restore();
}

Going Mobile! | 543

This object prototype contains functions for creating, drawing, and clicking a gray
square button with black text on it. When clicked, the button will be drawn with a
yellow background. We have covered all these drawing functions earlier in this book,
so they will look familiar to you if you have read those chapters. If you have not, it’s
especially a good idea to read Chapter 2, which covers drawing and shading objects
drawn with paths.

Let’s now take a quick look at the functions we have created in BSBingo.html.

The initLists() function

The first game-related function you will encounter is initLists(). For our simple game
implementation, we have created a single list of words based on some common business
jargon. The standardJargonList application scope variable will contain a single-
dimension array of words that will be placed randomly on the player’s bingo card. We
can add more types of lists if we would like to target other types of jargon-speak, such
as pure IT process-speak, marketing-speak, or even sports- or geek-speak.

The initButtons() function

This function creates a grid of 25 TextButton instances, 85 pixels in width and 25 in
height. These are stored in the application scope buttons two-dimensional array so they
can be accessed via the [row][column] syntax.

The initSounds() function

The initSounds() function needs to initialize only a single sound referenced in an
HTML5 <audio> tag. Since we are targeting the iOS platform, we need to provide only
a single .mp3-formatted sound. We do not need .ogg or .wav because we are not tar-
geting any other browsers. Here is the HTML5 <audio> tag:

<audio id="clicksound" preload="auto">
 <source src="click.mp3" type="audio/mpeg" />
 Your browser does not support the audio element.
 </audio>

The chooseButtonsForCard() function

This function creates a local array called tempArray and fills it with the contents of the
standardJargonList. Next, it randomly chooses an element from the tempArray for each
of the 25 row/column combinations on the bingo card. As it selects a word, it splices
it from the tempArray so it cannot be selected again, leaving the card with no duplicates.

544 | Chapter 10: Mobilizing Games with PhoneGap

The drawScreen() function

This function loops through the buttons two-dimensional array and draws the initial
25 buttons with text onto the canvas.

The onMouseClick() function

When the user clicks the mouse on the game screen, this event listener function deter-
mines which of the 25 squares was clicked. It calls the appropriate TextButton instance’s
pressDown() function and then its draw() function, passing in the context.

The onMouseMove() function

When the mouse is moved, this event listener function will set the mouseX and mouseY
values to the current mouse position on the canvas.

The Application Code
Once all the functions and the TextButton object prototype are created, the actual ap-
plication code is very simple. Because this is a completely event-based application, we
don’t need a main loop. We also have not put in any other states or buttons, such as a
title screen or a reset button. This makes the app less user-friendly, but it is fine for this
simple example. It also makes the application code very simple:

 //**** start application
 var gr = context.createLinearGradient(0, 0, 100, 100);

 // Add the color stops.
 gr.addColorStop(0,'#ffffff');
 gr.addColorStop(.5,'#bbbbbb');
 gr.addColorStop(1,'#777777');

 theCanvas.addEventListener("mousemove", onMouseMove, false);
 theCanvas.addEventListener("click", onMouseClick, false);
 initSounds();
 initButtons();
 initLists();
 chooseButtonsForCard();
 drawScreen();

First, we create a shared linear gradient that can be used by all the TextButton instances.
Next, we add the mouse event listeners for click and move. Finally, we run through our
functions to set up the card, and then we simply wait for the user to click a button.
That’s all there is to it. We haven’t even added a way to announce that the player has
won. Extending this into a full-fledged application would be very simple, so we leave
this task up to the reader if you have the desire to do so.

Figure 10-1 shows the screen for the finished application.

Going Mobile! | 545

Figure 10-1. BS Bingo in Safari Desktop Edition

Next, we will look at how to use PhoneGap to turn this simple game into a native iOS
application.

Creating the iOS Application with PhoneGap
You will need to install and set up two tools to get an iOS application up and running
on your iOS device simulator: Xcode, a free application development IDE from Apple,
and PhoneGap. Let’s start with Xcode.

Installing Xcode
Xcode actually comes packaged on the installable operating system DVD for Snow
Leopard, but this version will not be as up-to-date as the version available on the Apple
developer website.

First, you will want to visit the iOS Developer Center: http://developer.apple.com/dev
center/ios/index.action. Once there, you can create a free user account, which you will
need to download Xcode and the latest iOS developer SDK. You will also need to create
a paid account if you would like to test or deploy on a physical device and/or sell your
application in the iTunes Store. You do not need a paid account to build and test your
application in the SDK and the included iOS device simulators.

Download and install the latest version of Xcode and the iOS SDK. This is a large
download (3.5 GB at the time of this writing). See Figure 10-2.

546 | Chapter 10: Mobilizing Games with PhoneGap

Figure 10-2. Download the iOS SDK

Once these are downloaded (most likely to your Downloads folder), start the Xcode
installer. The file will be named similar to xcode_3.2.3_and_ios_sdk_4.0.2.dmg. Run
the package installer to set up Xcode and the development kit on your computer.

Once installed (using the default location), Xcode can be found in the
Developer folder on your main storage drive.

Installing PhoneGap
Download PhoneGap from https://github.com/phonegap/phonegap, choosing the ZIP
file option, as shown in Figure 10-3.

The file will most likely be saved into your Mac Downloads folder. Unpack this ZIP
file in a safe location, such as the desktop.

Inside the ZIP, you will find a series of folders for various devices. We are interested in
the iOS folder. Figure 10-4 illustrates this folder structure.

Creating the iOS Application with PhoneGap | 547

Figure 10-3. Download PhoneGap

Figure 10-4. PhoneGap folder structure

548 | Chapter 10: Mobilizing Games with PhoneGap

In the iOS folder there will be an installer with a name similar to PhoneGapLibInstal-
ler.pkg. Open this to start the install process.

After the install, you will be given the latest install notes. It is important to read them
carefully as they give great information, including the latest tips for getting started with
PhoneGap. For example, after this installation, the notes read as follows:

To get started creating PhoneGap projects, launch Xcode, then under the File menu,
select “New Project…”.

Navigate to the section “User Templates”, select PhoneGap, then in the right pane, select
“PhoneGap-based Application”.

Select the “Choose…” button, name your project and choose the location where you
want the new project to be.

That’s it! Modify the contents of the “www” directory to add your HTML, CSS and
JavaScript.

iPad:

Go to your project folder and launch the “[projectname]-iPad” Xcode project. You will
need the 3.2 iPhone OS SDK.

http://www.phonegap.com

http://github.com/phonegap

In the next section, we will follow these directions closely to get BS Bingo into a
PhoneGap Xcode project.

Creating the BS Bingo PhoneGap Project in Xcode
To begin, launch Xcode and create a new PhoneGap project. See Figure 10-5 for an
example of the New Project screen.

Select the PhoneGap-based application and click the Choose button.

You will next be asked to save the project in a location and give it a name. We will use
the name chapter10_bs_bingo.

You will be presented with a screen that resembles Figure 10-6.

On the lefthand side, you will find a folder called “www”. This is the most important
folder because it is where we will place all of the files for our game. Before we do that,
we need to make sure that the SDK is set to the correct version. In the top left, you
might see a drop-down with the words “Base SDK Missing” (as shown in Fig-
ure 10-6). This means that we will not be able to build and compile our game until we
choose an SDK.

Creating the iOS Application with PhoneGap | 549

Figure 10-5. Xcode New Project screen

Figure 10-6. The chapter10_bs_bingo project

550 | Chapter 10: Mobilizing Games with PhoneGap

The Base SDK Missing message simply indicates that the default SDK is not the current
version installed. In the [Project] drop-down menu, you will find a menu item called
Edit Project Settings. Click this and you will see a screen similar to Figure 10-7.

Figure 10-7. Select the correct Base SDK

Make sure that you select an SDK that is present on your machine (4.2 is the latest as
of this writing).

Close this window and click on the Base SDK Missing drop-down, and be sure to select
the Simulator option rather than the Device option. See Figure 10-8 for an example of
this screen.

Testing the New Blank Application in the Simulator
We are now ready to build our first application and see it in the simulator. We have
not added any of our own code yet (though we will in the next section), so we will be
testing the contents of the index.html file in the project’s www folder. Simply click the
“Build and Run” button at the top of the IDE. If everything is set up properly, the
simulator will come up with a blank screen, as shown in Figure 10-9.

Creating the iOS Application with PhoneGap | 551

Figure 10-8. Setting up an app to run in the simulator

Figure 10-9. A basic app running in the simulator

For a single second you will see the PhoneGap banner show up on the screen. We will
customize this banner for our own game shortly.

552 | Chapter 10: Mobilizing Games with PhoneGap

Integrating BS Bingo into the Project
We are now going to copy code from the BSBingo.html file we created earlier into the
index.html file in our project.

First we will copy our JavaScript include files and add them under the phonegap.js script
include. We will not need the modernizer.js file, as we will assume the iOS platform
can use HTML5 Canvas:

<script type="text/javascript" charset="utf-8" src="phonegap.js"></script>
<script src="TextButton.js"></script>
<script src="ConsoleLog.js"></script>

The phonegap.js file should already be included in the www folder, along with
index.html. It is part of the project template and is needed for all PhoneGap iOS
applications.

Next, we will need to add the call to start our application into the deviceReady()
function:

/*When this function is called, PhoneGap has been initialized and is ready to roll*/
 function onDeviceReady()
 {
 // do your thing!
 canvasApp();
 }

We can now replace the rest of the script code in the file with our code.

At this step, don’t replace from the <body> tag down to the end of the
<html>. Just add the game code inside the <script> tags. You can use
the existing <script></script> tags; if you do, be careful not to copy
them from BSBingo.html.

Make sure that the first few lines look like this because we are removing the check for
Canvas support:

function canvasApp(){

 theCanvas = document.getElementById("canvas");
 context = theCanvas.getContext("2d");
 var bingoCard = [];

 var buttons = [];

 var standardJargonList = [];

 var tempButton = {};

 var clickSound;

Creating the iOS Application with PhoneGap | 553

Notice that we have removed this set of code:

if (!canvasSupport()) {
 return;

}else{

 theCanvas = document.getElementById("canvas");

 context = theCanvas.getContext("2d");

}

We have replaced it with just the following since we no longer need to check whether
the device can use the canvas (we must assume it can):

theCanvas = document.getElementById("canvas");
context = theCanvas.getContext("2d");

We have also deleted the canvasSupport() function, as it is not needed. We will next
copy the rest of the code, including our HTML, and replace everything in the
index.html file.

We need to make sure that the current opening <body> tag remains in index.html. It
should look like this:

</head>
<body onload="onBodyLoad()">

The next step is to replace the rest of the file with HTML code from BSBingo.html:

<div style="position: absolute; top: 0px; left: 0px;">
<canvas id="canvas" width="570" height="418">

 Your browser does not support HTML5 Canvas.

</canvas>

<audio id ="clicksound" preload="auto">
<source src="click.mp3" type="audio/mpeg" />

Your browser does not support the audio element.
</audio>
</div>
</body>
</html>

We now have enough code to do a preliminary test of our game in the simulator.

We will first need to move our files into the project folder. Take TextButton.js,
ConsoleLog.js, and click.mp3 and move them to the www folder on the disk. The project
in Xcode will now reflect the new files, as seen in Figure 10-10.

554 | Chapter 10: Mobilizing Games with PhoneGap

Figure 10-10. The project www file listing

You will see that we have added the BSBingo.html file to the www folder.
This is not necessary, but it makes it easier to edit and copy code into
the index.html file.

Setting the Orientation
It is important to note that Safari Mobile and iOS applications render the screen in
different ways. A Safari Mobile application can be set to automatically scale to fit in the
iOS device’s window, while a pure iOS application needs to be coded to fit the size of
the target device. If an application targeted to the iOS platform is taller or wider than
the device, the application will automatically be put into “scroll” mode.

We set the width of our application to be 570 and the height to be 418. The height will
fit fine in either Landscape or Portrait orientation, but the width will only fit in Land-
scape (without scrolling). For this reason, we will want our application to run in
Landscape mode only.

To set the application to default to Landscape and not allow Portrait, we must make
some changes to a file called chapter10_bs_bingo-info.plist, which is in the root folder
(the parent of the www folder) for our project.

Creating the iOS Application with PhoneGap | 555

Open this file and you will see settings called “Supported interface orientations” and
“Supported interface orientations (iPad)”. You will want to be sure to have four entries
in each that allow only the “Landscape (left home button)” value. See Figure 10-11 for
an example.

The iPad entries are only necessary if you are targeting that platform.
There is a separate PhoneGap project created by the template for iPad-
targeted projects.

Figure 10-11. Setting Landscape orientation

Next, we will customize the banner and icon for our application.

Changing the Banner and Icon
We have the option of changing the startup banner and “desktop” icon for our appli-
cation to customized graphics.

In the root folder of our project, we will customize two image files. default.png is the
banner image that shows up when the application starts. icon.png is the “desktop” icon
that remains on the iOS device just like any other installed application.

556 | Chapter 10: Mobilizing Games with PhoneGap

Our icon is a 57×75 image called bingo_icon.png (see Figure 10-12).

Figure 10-12. The BS Bingo icon.png customization

The startup banner is a 320×460 image, which we will name startup.png. It will look
like Figure 10-13.

Figure 10-13. The BS Bingo default.png customization

Now we need to replace the existing default.png and icon.png files with these new
images.

Once you change these files in the project, you should be able to explore the root project
folder in Xcode and see the new images. Figure 10-14 illustrates the root folder for our
project.

Creating the iOS Application with PhoneGap | 557

Figure 10-14. The BS Bingo root folder

Included in the source for this chapter is the full Xcode project with all
of these changes ready to be made and compiled.

We are ready to test on the iPhone simulator. If you have any problems or questions
up to this point, you can always examine the source files on this book’s download site.

Testing on the Simulator
Our project is set to target the iPhone (not iPad). Before we test, we must make sure
that we target that platform in the simulator. To do this, choose the iPhone simulator
from the SDK drop-down menu at the top left of the Xcode screen, as shown in
Figure 10-15.

558 | Chapter 10: Mobilizing Games with PhoneGap

Figure 10-15. Setting the build target to the simulator

The PhoneGap template has created a second project file, called chap-
ter10_bs_bingo-iPad.xcodeproj, to target the iPad.

Once this is set, click on the “Build and Run” icon at the top center of this screen.

You should see the simulator fire up, show the custom banner image oriented to Land-
scape mode, and present the game, as shown in Figure 10-16.

If you click on the buttons, the simulator will even play the click.mp3 file we included.
When the iPhone “control button” is clicked (the big black circle on the left), the game
will exit to the iOS “desktop.” On the desktop, the custom icon.png will wait to be
clicked once again, as shown in Figure 10-17.

Creating the iOS Application with PhoneGap | 559

Figure 10-16. BS Bingo running in the simulator

Figure 10-17. The BS Bingo iOS desktop icon

You will notice that the iPhone simulator has made our plain icon look
much better by adding a bevel and highlighting. There is no need for
you to create anything other than a plain image, as the phone takes care
of the rest.

560 | Chapter 10: Mobilizing Games with PhoneGap

Adding in an iPhone “Gesture”
The PhoneGap API allows us to add in control over various iOS features, such as vibrate,
geolocation, and accelerometer. We will target one of these features by adding code
that will wipe our board clean and create a fresh new game when the phone is shaken.

To do this, we will look for changes to the device’s physical location in space (using
JavaScript), and then simply call our existing chooseButtonsForCard() and
drawScreen() functions to refresh the card.

First, we need to add a single line to the chooseButtonsForCard() function that will set
all the buttons instances’ press attributes to false:

function chooseButtonsForCard(){
 //copy jargon into temp array
 var tempArray = [];
 for (var arrayctr=0;arrayctr<standardJargonList.length;arrayctr++){
 tempArray.push(standardJargonList[arrayctr]);
 }

 for (var ctr1=0;ctr1<buttons.length;ctr1++){

 for (var ctr2=0; ctr2<buttons[ctr1].length;ctr2++){
 var randInt = Math.floor(Math.random()*tempArray.length)
 buttons[ctr1][ctr2].text = tempArray[randInt];
 buttons[ctr1][ctr2].press = false;
 tempArray.splice(randInt,1);
 }
 }

 }

Next, we need to add a function that will listen for the iOS “shake” event, and then
refresh the card.

Apple makes it pretty easy to test for changes in the x, y, and z coordinate spaces of an
iOS device (and PhoneGap makes it even easier), but acting on this information is a
little tricky and will require the use of an actual device for testing.

At the time of this writing, a PhoneGap Adobe AIR iPhone simulator
was available that goes beyond the limited shake gestures available in
the SDK simulator. If you do not have a device to test with, we recom-
mend trying this emulator. It can be found at http://blogs.nitobi.com/
yohei/2009/04/01/phonegap-air-simulator-in-development/.

Adding the Gesture Functions to index.html
Inside the canvasApp() function, we will need to add a series of functions and a variable
to use in testing the iPhone’s accelerometer, which detects movement in our
application.

Creating the iOS Application with PhoneGap | 561

Example 10-2 shows the code necessary to do this. Notice we are placing it under the
current application start code (the new code is in bold).

Example 10-2. The gesture code added to BS Bingo

 theCanvas.addEventListener("mousemove", onMouseMove, false);
 theCanvas.addEventListener("click", onMouseClick, false);
 initSounds();
 initButtons();
 initLists();
 chooseButtonsForCard();
 drawScreen();

 var accelerationWatchId = null;

 startAccelerationWatch();

 function startAccelerationWatch() {

 // Update acceleration every 3 seconds
 var options = { frequency: 100 };

 accelerationWatchId = navigator.accelerometer.watchAcceleration
 (onSuccess, onError, options);
 }

 function stopAccelerationWatch() {
 if (accelerationWatchId) {
 navigator.accelerometer.clearWatch(accelerationWatchId);
 accelerationWatchIdD = null;
 }
 }

 function onSuccess(acceleration) {

 if (Math.abs(acceleration.x) > 2 || Math.abs(acceleration.y)>2
 || Math.abs(acceleration.z)>2) {
 alert('Acceleration X: ' + acceleration.x + '\n' +
 'Acceleration Y: ' + acceleration.y + '\n' +
 'Acceleration Z: ' + acceleration.z + '\n' +
 'Timestamp: ' + acceleration.timestamp + '\n');
 stopAccelerationWatch()
 chooseButtonsForCard();
 drawScreen();
 startAccelerationWatch();
 }

 }

 // onError: Failed to get the acceleration
 //
 function onError() {
 alert('onError!');
 }

562 | Chapter 10: Mobilizing Games with PhoneGap

The new code begins with the var accelerationWatchId = null; variable setting. We
have created a startAccelerationWatch() function, which will call the onSuccess()
function every 100 milliseconds.

The onSuccess() function receives the “acceleration” values from the API, which consist
of delta changes to the x, y, and z of the device. These values are set to 0,0,0 when the
application begins.

On each 100-millisecond interval, these values are checked. If any is 2 units greater (in
either the positive or negative direction) from the 0 beginning values, we fire off an
alert and then call our functions to reset the card. First, we call the stopAcceleration
Watch() function, which acts as a reset for the location of the device in physical space.
Next, we call the chooseButtonsForCard() and drawScreen() functions. Finally, we set
up the watch again with startAccelerationWatch().

For the most detailed and up-to-date information on integrating
PhoneGap with iOS and other device features, visit the PhoneGap doc-
umentation website. Most of the information for this example is based
off the explanation and examples found at http://docs.phonegap.com/
phonegap_accelerometer_accelerometer.md.html.

Testing on a Device
Before we can test the application on an actual device, we need to “provision” the
device. To do this, we will need the device, a paid iOS developer account, and a de-
velopment Mac computer all synced up into a single provisioning profile. This neces-
sary process is not for the faint of heart.

Step 1: Launch the Provisioning Assistant

Begin by visiting the Developer Provisioning Assistant (http://developer.apple.com/
iphone) and logging in with your paid iOS developer ID. Once logged in, click on the
link for the “iOS Provisioning Portal” (currently in the upper-right side menu). There
should be a button called “Launch the Provisioning Assistant.” Click on this button
and follow all the on-screen instructions.

Step 2: Find the device’s Unique ID

You will be asked to find the Unique ID of your physical device. This is found by
plugging the device into your computer, and then looking up the ID in Xcode. In the
Window→Organizer Information window, you will see a list of the attached devices.
The ID will be a long alphanumeric string next to the word Identifier.

Creating the iOS Application with PhoneGap | 563

Step 3: Generate a Certificate Signing Request

When asked by the Provisioning Assistant, input this ID value. You will next be asked
to “Generate a Certificate Signing Request”, which involves the Apple Keychain. Follow
all the on-screen dialogs carefully because this can be a confusing process. You will
need to open the Keychain Access application in the Applications→Utilities folder on
your machine, and then follow the on-screen instructions from the Provisioning
Assistant.

Step 4: Locate saved Certificate Signing Request File

This will save a Certificate Signing Request File to your desktop. In the next step, the
Provisioning Assistant will need to find this file, so it is important to remember where
you save the request.

After you find the file, the assistant will ask you to name your profile. This will generate
a file that you must download and install on your Mac.

Step 5: Drag provisioning file into Xcode Organizer window

With the location of the downloaded file handy, plug in your device (if it isn’t already
plugged in), and open up the Xcode Window→Organizer once again. Simply drag
the .mobileProvision file into the Organizer window, and it will set up the profile in
Xcode automatically.

Step 6: Set up certificates with the Keychain

Next, you will be asked to download and install development certificates that match
this profile. Save the .cer file and double-click it to add it to the Keychain Access list.

You should now see both Public and Private keys paired together with your developer
account name inside the Keychain Access provisioning list.

Success

Whew! That certainly was not simple, but the Provisioning Assistant is very easy to use
as long as you follow each step carefully. We are now ready to test the application on
a physical device.

Using Xcode to Target a Test Device
We will need to change the build profile to target the attached device rather than the
simulator. To do this, we simply change the drop-down in the upper left from Simulator
to Device, as shown in Figure 10-18.

564 | Chapter 10: Mobilizing Games with PhoneGap

Figure 10-18. Setting the build target to a device

After all that, now it is time to click the “Build and Run” icon.

After a few seconds, the application will initialize and show up on the device like a
normal iOS application.

When running the app on a device, you will be able to click the buttons, hear the sounds,
and see the buttons change color. When you want to reset the card, give the device a
good shake to see the alert box with the current location offsets for the accelerometer.
Click the OK button, and the card will reset.

Beyond the Canvas
A nice set of tools and frameworks are available (with more emerging every day) that
can help transform the look and feel of HTML or an HTML5 application (not neces-
sarily just on Canvas) into an iPhone-like application. These can be used in conjunction
with a canvas app to provide a seamless iPhone look and feel for the user.

Beyond the Canvas | 565

If you would like to explore mobile functionality further, we recommend the following
technologies, which can be combined with PhoneGap to create very powerful mobile
applications:

jQTouch
jQTouch (http://www.jqtouch.com/) is a framework that makes use of jQuery to
target mobile-device-specific features across platforms that use WebKit (iOS, Palm,
Nexus, etc.).

jQuery Mobile Framework
The jQuery Mobile Framework (http://jquerymobile.com/) is another jQuery-based
mobile framework for building cross-platform applications. It can be used to create
a unified user interface across mobile platforms.

What’s Next
As you can see, HTML5 Canvas is a powerful and easy way to target native apps across
a variety of mobile devices. In this chapter, we built a small game to run in the Safari
browser, and then installed PhoneGap and modified the application to run on the
iPhone simulator using an Xcode project template. Once the simulation was successful,
we added in a device-specific accelerometer feature, and then provisioned a physical
device for testing. Finally, we were able to see our completed application running on
an actual iOS device.

In Chapter 11, we will look at applying multiplayer capabilities to a canvas application
using ElectroServer, and we’ll even take a small tour of 3D in Canvas.

566 | Chapter 10: Mobilizing Games with PhoneGap

CHAPTER 11

Further Explorations

There are many emerging technologies and frameworks that can help take HTML5
Canvas into rarely explored areas. In this chapter, we will cover a couple of those areas:
using Canvas for 3D with WebGL, and using Canvas for multiplayer applications. Both
of these areas are still experimental, requiring you to either download beta/developer
versions of browsers, or launch browsers using command-line switches so you can turn
various technologies off and on.

This chapter is structured a bit differently. The discussions are focused on giving you
some tools and information about these new and emerging areas for Canvas. While we
will offer code, examples, and some explanation, it’s geared more toward getting you
started on the path to learning than on teaching you how every detail works. We have
structured these two topics in this way for one very simple reason: they are incom-
plete. With APIs, libraries, locations, browsers, names, etc., all subject to change, we
are not comfortable presenting these topics as finished and ready to go. You need to
approach this chapter knowing that things are bound to go wrong or change
frequently.

Having said that, even though these topics are experimental, that does not mean you
cannot use them right now, nor does it mean they are not useful or capable of doing
very cool things. You just need to be aware of the pitfalls before treading forward.

3D with WebGL
The 2D capabilities of HTML5 Canvas are impressive, but what about 3D? There is no
“production” 3D context available in the standard version of any web browser at this
time. However, the best support for a 3D context will probably come in the form of
WebGL.

567

What Is WebGL?
WebGL is a JavaScript API that gives programmers access to the 3D hardware on the
user’s machine. Currently, it is only supported by the debug/development versions of
Opera, Firefox, and Chrome. The API is managed by Kronos, the same organization
that manages OpenGL. In fact, much of WebGL is similar to programming in OpenGL.
This is both good and bad. It’s good because it’s a standard programming interface that
is recognizable to many developers, but bad because it is not as easy to learn as the 2D
Canvas context.

How Do I Test WebGL?
First, you need to find a web browser that supports WebGL. When trying to run a
WebGL application, a browser that does not support WebGL might give a message
like the one shown in Figure 11-1.

Figure 11-1. Trying to run WebGL in a standard web browser

Chromium, the open source version of Chrome, will display WebGL.
You can download the latest development build of Chromium from
http://build.chromium.org/f/chromium/continuous/.

Once you have a browser that can display WebGL, you need to write the code to make
it happen. You start that process by accessing the WebGL context instead of the Canvas
2d context. So, instead of this code, which we have used throughout this book:

context = theCanvas.getContext("2d");

We reference the experimental-webgl context, like this:

gl = theCanvas.getContext("experimental-webgl");

568 | Chapter 11: Further Explorations

How Do I Learn More About WebGL?
The best place to learn about WebGL is at http://learningwebgl.com/. This site has an
FAQ, a blog, and some helpful low-level lessons on how to create apps using WebGL.
You can also find a ton of great content about WebGL at http://developer.mozilla.org.

One warning, though: programming WebGL is not for the uninitiated. Although
WebGL is based on OpenGL, it is still a very low-level API, meaning you will need to
create everything by hand. At the end of this section, we will guide you toward some
higher-level libraries that should make this process a bit easier.

What Does a WebGL Application Look Like?
Now we are going to show you a WebGL application demo that rotates a 3D cube on
Canvas (see Figure 11-2). Since we are not experts in 3D graphics, we will forgo our
practice of describing every line of code in the example; instead, we will highlight in-
teresting sections of code to help you understand what is happening.

This demo is based on Lesson 4 from Giles Thomas’s Learning WebGL website (http:
//learningwebgl.com/blog/?p=370). While this is only one short demo, it should give you
a very good idea of how to structure and build code for a WebGL application.

Much of this code has been adapted from the work of Giles Thomas
with his expressed, written permission.

JavaScript libraries

First, we add some JavaScript libraries. Modernizr 1.6 includes a test for WebGL sup-
port in a web browser. This version was freshly released, but it could be updated with
new features at any time (in fact, at the time of this writing, this had been updated to
version 1.7). It is necessary to make sure you have the most recent versions of your
libraries:

<script src="modernizr-1.6.min.js"></script>

We now need to include some JavaScript libraries to assist with our application.
sylvester.js and glUtils.as are two libraries that you will find included for most apps that
use WebGL. sylvester.js (http://sylvester.jcoglan.com/) is a library that helps when per-
forming vector and matrix math calculations in JavaScript. glUtils.as is an extension
for sylvester.js, specifically for helping with math related to WebGL:

<script type="text/javascript" src="sylvester.js"></script>
<script type="text/javascript" src="glUtils.js"></script>

3D with WebGL | 569

Shaders

Shaders are pieces of code that run directly on a graphics card. They describe how a
scene—how you refer to a 3D canvas when working with WebGL—should be rendered.
Many of these little programs perform mathematical transformations that would oth-
erwise run very slowly in JavaScript. In fact, we are pointing these out because they are
not JavaScript; they are written in a way that WebGL can understand. These sections
of code will be read in like text files and passed to the graphics hardware. Full discus-
sions of topics like shaders are far out of scope for this little section of the book, but
we will tell you a bit about each one of them to help set the tone for what comes next.

The first shader below is a fragment shader, which tells the graphics card that we will
be using floating-point numbers and blended colors. The second shader is the vertex
shader. It works with the vertices (defined points in 3D space used to create 3D objects)
and will be used for every vertex we draw onto the Canvas 3D context:

Figure 11-2. 3D rotating cube (CH11EX1.html)

570 | Chapter 11: Further Explorations

<script id="shader-fs" type="x-shader/x-fragment">
 #ifdef GL_ES
 precision highp float;
 #endif

 varying vec4 vColor;

 void main(void) {
 gl_FragColor = vColor;
 }
</script>

<script id="shader-vs" type="x-shader/x-vertex">
 attribute vec3 aVertexPosition;
 attribute vec4 aVertexColor;

 uniform mat4 uMVMatrix;
 uniform mat4 uPMatrix;

 varying vec4 vColor;

 void main(void) {
 gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
 vColor = aVertexColor;
 }
</script>

Testing for WebGL support with Modernizr

The structure of the code in this example is much like the other applications we have
written in this book. However, it has been modified to work with the specific needs of
the 3D context. In the canvasApp() function, we need to test to see whether the browser
has WebGL support. This is easily accomplished by using the Modernizr.webgl static
constant in Modernizr 1.6:

if (!webglSupport()) {
 alert("Unable to initialize WebGL");
 return;
}
function webglSupport() {
 return Modernizr.webgl;
}

Initialization in canvasApp()

In canvasApp() we still get a context, but this time it is the experimental-webgl context.
Also, just like in our other apps, we still call drawScreen() on an interval to render the
canvas:

var theCanvas = document.getElementById("canvasOne");
webGLContext = theCanvas.getContext("experimental-webgl");

setInterval(drawScreen, 33);

3D with WebGL | 571

However, there is additional code in canvasApp() required to set up the application to
rotate the cube. A couple of the most important initialization steps are the calls to
initShaders() and initBuffers():

initShaders();
initBuffers();

The initShaders() function itself calls a function named getShader() to load in the text
of the shader programs we have already defined. You can see the code for these func-
tions in the code listing a bit later in Example 11-1.

You can learn about the shaders used in this program in “Lesson 2—
Adding colour” on the LearningWebGL website: http://learningwebgl
.com/blog/?p=134.

Once we have loaded the shader programs, we need to create the buffers. Buffers refer
to space in the video card’s memory that we set aside to hold the geometry describing
our 3D objects. In our case, we need to create buffers to describe the cube we will rotate
on the canvas. We do this in initBuffers().

The initBuffers() function contains a lot of code, but we’ll discuss only a couple very
interesting sections. The first is the Vertex Position buffer, which describes the vertices
that make up the sides of the cube:

webGLContext.bindBuffer(webGLContext.ARRAY_BUFFER, cubeVertexPositionBuffer);
 vertices = [
 // Front face
 -1.0, -1.0, 1.0,
 1.0, -1.0, 1.0,
 1.0, 1.0, 1.0,
 -1.0, 1.0, 1.0,

 // Back face
 -1.0, -1.0, -1.0,
 -1.0, 1.0, -1.0,
 1.0, 1.0, -1.0,
 1.0, -1.0, -1.0,

 // Top face
 -1.0, 1.0, -1.0,
 -1.0, 1.0, 1.0,
 1.0, 1.0, 1.0,
 1.0, 1.0, -1.0,

 // Bottom face
 -1.0, -1.0, -1.0,
 1.0, -1.0, -1.0,
 1.0, -1.0, 1.0,
 -1.0, -1.0, 1.0,

572 | Chapter 11: Further Explorations

 // Right face
 1.0, -1.0, -1.0,
 1.0, 1.0, -1.0,
 1.0, 1.0, 1.0,
 1.0, -1.0, 1.0,

 // Left face
 -1.0, -1.0, -1.0,
 -1.0, -1.0, 1.0,
 -1.0, 1.0, 1.0,
 -1.0, 1.0, -1.0,
];

The Vertex Color buffer holds information about the color that will appear on each
side of the cube. These values are set as percentages of RBGA values (red, green, blue,
alpha):

webGLContext.bindBuffer(webGLContext.ARRAY_BUFFER, cubeVertexColorBuffer);
 var colors = [
 [1.0, 1.0, 1.0, 1.0], // Front face
 [0.9, 0.0, 0.0, 1.0], // Back face
 [0.6, 0.6, 0.6, 1.0], // Top face
 [0.6, 0.0, 0.0, 1.0], // Bottom face
 [0.3 ,0.0, 0.0, 1.0], // Right face
 [0.3, 0.3, 0.3, 1.0], // Left face
];

The Vertex Index buffer is kind of like a map that builds the object (our cube) based
on the colors specified in Vertex Color (the order of these elements) and the vertices
specified in the Vertex Position buffer. Each of these sets of three values represents a
triangle that will be drawn onto the 3D context:

webGLContext.bindBuffer(webGLContext.ELEMENT_ARRAY_BUFFER, cubeVertexIndexBuffer);
 var cubeVertexIndices = [
 0, 1, 2, 0, 2, 3, // Front face
 4, 5, 6, 4, 6, 7, // Back face
 8, 9, 10, 8, 10, 11, // Top face
 12, 13, 14, 12, 14, 15, // Bottom face
 16, 17, 18, 16, 18, 19, // Right face
 20, 21, 22, 20, 22, 23 // Left face
]

Again, there is more code in initBuffers() than we described here, but start with these
three sections when you want to play with the code and make your own objects.

Animating the cube

Now that you know a bit about creating an object in WebGL, let’s learn about ani-
mating the cube on the canvas. Similar to what we did in the 2D context, we use the
drawScreen() function to position, draw, and animate objects in the 3D context. The
first thing we do here is set up the viewport, which defines the canvas’ view of the 3D
scene. Next, we clear the canvas and then set up the perspective. The perspective has
four parameters:

3D with WebGL | 573

Field of view
The angle at which we will view the 3D scene (25 degrees).

Width-to-height ratio
The radio of width to height of the current size of the canvas (500×500).

Minimum units
The smallest unit size away from our viewport we want to display (0.1).

Maximum units
The furthest unit size away from our viewport that we want to see (100.0).

function drawScreen() {

 webGLContext.viewport(0, 0, webGLContext.viewportWidth,
 webGLContext.viewportHeight);
 webGLContext.clear(webGLContext.COLOR_BUFFER_BIT |
 webGLContext.DEPTH_BUFFER_BIT);

 perspective(25, (webGLContext.viewportWidth / webGLContext.viewportHeight),
 0.1, 100.0);

Next, we move to the center of the 3D scene, calling loadIdentity() so we can start
drawing. We then call mvTranslate(), passing the locations on the x, y, and z axes to
draw the cube. To rotate the cube, we call a function named mvPushMatrix(), and
later mvPopMatrix(), which is similar to how we called context.save() and con
text.restore() when rotating objects on the 2D canvas. The call to mvRotate() then
makes the cube rotate from the center, tilted up and to the right:

loadIdentity();

mvTranslate([0, 0.0, -10.0])

mvPushMatrix();
mvRotate(rotateCube, [0, .5, .5]);

Next, we draw the cube by binding the buffers that hold the vertices and color infor-
mation that we set up earlier for the cube’s sides. We then draw each side, made up of
two triangles each:

webGLContext.bindBuffer(webGLContext.ARRAY_BUFFER, cubeVertexPositionBuffer);
webGLContext.vertexAttribPointer(shaderProgram.vertexPositionAttribute,
 cubeVertexPositionBuffer.itemSize, webGLContext.FLOAT, false, 0, 0);

webGLContext.bindBuffer(webGLContext.ARRAY_BUFFER, cubeVertexColorBuffer);
webGLContext.vertexAttribPointer(shaderProgram.vertexColorAttribute,
 cubeVertexColorBuffer.itemSize, webGLContext.FLOAT, false, 0, 0);

webGLContext.bindBuffer(webGLContext.ELEMENT_ARRAY_BUFFER, cubeVertexIndexBuffer);
setMatrixUniforms();

574 | Chapter 11: Further Explorations

webGLContext.drawElements(webGLContext.TRIANGLES, cubeVertexIndexBuffer.numItems,
 webGLContext.UNSIGNED_SHORT, 0);

mvPopMatrix();

Finally, we increase the rotateCube variable so that the next time drawScreen() is called,
the cube will be updated with a new angle. The code below adds 2 degrees to the rotation
angle each time drawScreen() is called:

 rotateCube += 2;

 }

Full Code Listing
Example 11-1 gives the full code listing for CH11EX1.html. Notice that many of the
code styles and constructs we have used over the past 10 chapters are still in place in
this application. Besides the obvious inclusion of code related directly to WebGL, this
application operates essentially the same way as the other apps we discussed in this
book.

Example 11-1. WebGL test

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH11EX1: WebGL Test </title>
<script src="modernizr-1.6.min.js"></script>
<script type="text/javascript" src="sylvester.js"></script>
<script type="text/javascript" src="glUtils.js"></script>

<script id="shader-fs" type="x-shader/x-fragment">
 #ifdef GL_ES
 precision highp float;
 #endif

 varying vec4 vColor;

 void main(void) {
 gl_FragColor = vColor;
 }
</script>

<script id="shader-vs" type="x-shader/x-vertex">
 attribute vec3 aVertexPosition;
 attribute vec4 aVertexColor;

 uniform mat4 uMVMatrix;
 uniform mat4 uPMatrix;

 varying vec4 vColor;

3D with WebGL | 575

 void main(void) {
 gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
 vColor = aVertexColor;
 }
</script>

<script type="text/javascript">
window.addEventListener("load", eventWindowLoaded, false);

function eventWindowLoaded () {
 canvasApp();
}

function canvasSupport () {
 return Modernizr.canvas;
}

function webglSupport() {
 return Modernizr.webgl;
}
function canvasApp () {

function drawScreen() {

 webGLContext.viewport(0, 0, webGLContext.viewportWidth,
 webGLContext.viewportHeight);
 webGLContext.clear(webGLContext.COLOR_BUFFER_BIT | webGLContext.DEPTH_BUFFER_BIT);

 perspective(25, (webGLContext.viewportWidth / webGLContext.viewportHeight),
 0.1, 100.0);
 loadIdentity();

 mvTranslate([0, 0.0, -10.0])

 mvPushMatrix();
 mvRotate(rotateCube, [0, .5, .5]);

 webGLContext.bindBuffer(webGLContext.ARRAY_BUFFER, cubeVertexPositionBuffer);
 webGLContext.vertexAttribPointer(shaderProgram.vertexPositionAttribute,
 cubeVertexPositionBuffer.itemSize, webGLContext.FLOAT, false, 0, 0);

 webGLContext.bindBuffer(webGLContext.ARRAY_BUFFER, cubeVertexColorBuffer);
 webGLContext.vertexAttribPointer(shaderProgram.vertexColorAttribute,
 cubeVertexColorBuffer.itemSize, webGLContext.FLOAT, false, 0, 0);

 webGLContext.bindBuffer(webGLContext.ELEMENT_ARRAY_BUFFER, cubeVertexIndexBuffer);
 setMatrixUniforms();
 webGLContext.drawElements(webGLContext.TRIANGLES, cubeVertexIndexBuffer.numItems,
 webGLContext.UNSIGNED_SHORT, 0);

 mvPopMatrix();
 rotateCube += 2;

 }

576 | Chapter 11: Further Explorations

 if (!canvasSupport()) {
 alert("Unable to initialize Canvas");
 return;
 }

 if (!webglSupport()) {
 alert("Unable to initialize WebGL");
 return;
 }

 var webGLContext;
 var rotateCube = 0;

 var theCanvas = document.getElementById("canvasOne");
 webGLContext =theCanvas.getContext("experimental-webgl");
 webGLContext.viewportWidth =theCanvas.width;
 webGLContext.viewportHeight = theCanvas.height;

 initShaders()
 initBuffers();

 webGLContext.clearColor(0.0, 0.0, 0.0, 1.0);
 webGLContext.clearDepth(1.0);
 webGLContext.enable(webGLContext.DEPTH_TEST);
 webGLContext.depthFunc(webGLContext.LEQUAL);

 setInterval(drawScreen, 33);

 function getShader(webglcontext, id) {
 var shaderScript = document.getElementById(id);
 if (!shaderScript) {
 return null;
 }

 var str = "";
 var scriptChild = shaderScript.firstChild;
 while (scriptChild) {
 if (scriptChild.nodeType == 3) {
 str += scriptChild.textContent;
 }
 scriptChild = scriptChild.nextSibling;
 }

 var shader;
 if (shaderScript.type == "x-shader/x-fragment") {
 shader = webGLContext.createShader(webGLContext.FRAGMENT_SHADER);
 } else if (shaderScript.type == "x-shader/x-vertex") {
 shader = webGLContext.createShader(webGLContext.VERTEX_SHADER);
 } else {
 return null;
 }

 webGLContext.shaderSource(shader, str);
 webGLContext.compileShader(shader);

3D with WebGL | 577

 if (!webGLContext.getShaderParameter(shader, webGLContext.COMPILE_STATUS)) {
 alert(webGLContext.getShaderInfoLog(shader));
 return null;
 }

 return shader;
 }

 var shaderProgram;
 function initShaders() {
 var fragmentShader = getShader(webGLContext, "shader-fs");
 var vertexShader = getShader(webGLContext, "shader-vs");

 shaderProgram = webGLContext.createProgram();
 webGLContext.attachShader(shaderProgram, vertexShader);
 webGLContext.attachShader(shaderProgram, fragmentShader);
 webGLContext.linkProgram(shaderProgram);

 if (!webGLContext.getProgramParameter(shaderProgram, webGLContext.LINK_STATUS)) {
 alert("Could not initialize shaders");
 }

 webGLContext.useProgram(shaderProgram);

 shaderProgram.vertexPositionAttribute = webGLContext.getAttribLocation
 (shaderProgram, "aVertexPosition");
 webGLContext.enableVertexAttribArray(shaderProgram.vertexPositionAttribute);

 shaderProgram.vertexColorAttribute = webGLContext.getAttribLocation
 (shaderProgram, "aVertexColor");
 webGLContext.enableVertexAttribArray(shaderProgram.vertexColorAttribute);

 shaderProgram.pMatrixUniform = webGLContext.getUniformLocation
 (shaderProgram, "uPMatrix");
 shaderProgram.mvMatrixUniform = webGLContext.getUniformLocation
 (shaderProgram, "uMVMatrix");
 }

 var mvMatrix;
 var mvMatrixStack = [];

 function mvPushMatrix(matrix) {
 if (matrix) {
 mvMatrixStack.push(matrix.dup());
 mvMatrix = matrix.dup();
 } else {
 mvMatrixStack.push(mvMatrix.dup());
 }
 }

 function mvPopMatrix() {
 if (mvMatrixStack.length == 0) {
 throw "Invalid popMatrix!";
 }

578 | Chapter 11: Further Explorations

 mvMatrix = mvMatrixStack.pop();
 return mvMatrix;
 }

 function loadIdentity() {
 mvMatrix = Matrix.I(4);
 }

 function multMatrix(matrix) {
 mvMatrix = mvMatrix.x(matrix);
 }

 function mvTranslate(vector) {
 var matrix = Matrix.Translation($V([vector[0], vector[1], vector[2]])).ensure4x4();
 multMatrix(matrix);
 }

 function mvRotate(angle, vector) {
 var radians = angle * Math.PI / 180.0;
 var matrix = Matrix.Rotation(radians, $V([vector[0],
 vector[1], vector[2]])).ensure4x4();
 multMatrix(matrix);
 }

 var pMatrix;
 function perspective(fovy, aspect, znear, zfar) {
 pMatrix = makePerspective(fovy, aspect, znear, zfar);
 }

 function setMatrixUniforms() {
 webGLContext.uniformMatrix4fv(shaderProgram.pMatrixUniform, false,
 new Float32Array(pMatrix.flatten()));
 webGLContext.uniformMatrix4fv(shaderProgram.mvMatrixUniform, false,
 new Float32Array(mvMatrix.flatten()));
 }

 var cubeVertexPositionBuffer;
 var cubeVertexColorBuffer;
 var cubeVertexIndexBuffer;
 function initBuffers() {

 cubeVertexPositionBuffer = webGLContext.createBuffer();
 webGLContext.bindBuffer(webGLContext.ARRAY_BUFFER, cubeVertexPositionBuffer);
 vertices = [
 // Front face
 -1.0, -1.0, 1.0,
 1.0, -1.0, 1.0,
 1.0, 1.0, 1.0,
 -1.0, 1.0, 1.0,

 // Back face
 -1.0, -1.0, -1.0,
 -1.0, 1.0, -1.0,
 1.0, 1.0, -1.0,

3D with WebGL | 579

 1.0, -1.0, -1.0,

 // Top face
 -1.0, 1.0, -1.0,
 -1.0, 1.0, 1.0,
 1.0, 1.0, 1.0,
 1.0, 1.0, -1.0,

 // Bottom face
 -1.0, -1.0, -1.0,
 1.0, -1.0, -1.0,
 1.0, -1.0, 1.0,
 -1.0, -1.0, 1.0,

 // Right face
 1.0, -1.0, -1.0,
 1.0, 1.0, -1.0,
 1.0, 1.0, 1.0,
 1.0, -1.0, 1.0,

 // Left face
 -1.0, -1.0, -1.0,
 -1.0, -1.0, 1.0,
 -1.0, 1.0, 1.0,
 -1.0, 1.0, -1.0,
];
 webGLContext.bufferData(webGLContext.ARRAY_BUFFER, new Float32Array(vertices),
 webGLContext.STATIC_DRAW);
 cubeVertexPositionBuffer.itemSize = 3;
 cubeVertexPositionBuffer.numItems = 24;

 cubeVertexColorBuffer = webGLContext.createBuffer();
 webGLContext.bindBuffer(webGLContext.ARRAY_BUFFER, cubeVertexColorBuffer);
 var colors = [
 [1.0, 1.0, 1.0, 1.0], // Front face
 [0.9, 0.0, 0.0, 1.0], // Back face
 [0.6, 0.6, 0.6, 1.0], // Top face
 [0.6, 0.0, 0.0, 1.0], // Bottom face
 [0.3 ,0.0, 0.0, 1.0], // Right face
 [0.3, 0.3, 0.3, 1.0], // Left face
];

 var unpackedColors = []
 for (var i in colors) {
 var color = colors[i];
 for (var j=0; j < 4; j++) {
 unpackedColors = unpackedColors.concat(color);
 }
 }
 webGLContext.bufferData(webGLContext.ARRAY_BUFFER, new Float32Array(unpackedColors),
 webGLContext.STATIC_DRAW);
 cubeVertexColorBuffer.itemSize = 4;
 cubeVertexColorBuffer.numItems = 24;

 cubeVertexIndexBuffer = webGLContext.createBuffer();

580 | Chapter 11: Further Explorations

 webGLContext.bindBuffer(webGLContext.ELEMENT_ARRAY_BUFFER, cubeVertexIndexBuffer);
 var cubeVertexIndices = [
 0, 1, 2, 0, 2, 3, // Front face
 4, 5, 6, 4, 6, 7, // Back face
 8, 9, 10, 8, 10, 11, // Top face
 12, 13, 14, 12, 14, 15, // Bottom face
 16, 17, 18, 16, 18, 19, // Right face
 20, 21, 22, 20, 22, 23 // Left face
]
 webGLContext.bufferData(webGLContext.ELEMENT_ARRAY_BUFFER,
 new Uint16Array(cubeVertexIndices), webGLContext.STATIC_DRAW);
 cubeVertexIndexBuffer.itemSize = 1;
 cubeVertexIndexBuffer.numItems = 36;

 }

}

</script>
</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">
<canvas id="canvasOne" width="500" height="500">
 Your browser does not support HTML5 Canvas or WebGLContext.
</canvas>
</div>
</body>
</html>

Further Explorations with WebGL
Obviously, we cannot teach you all about WebGL in this chapter. We opted to include
this demo and short discussion to introduce you to WebGL and show you what it looks
like. In reality, a full discussion of WebGL, even the basic concepts, could take up an
entire volume.

If you are interested in WebGL, we strongly recommend you consult http://learning
webgl.com for more examples and the latest information about this exciting yet still
experimental context for HTML5 Canvas.

WebGL JavaScript Libraries
At the start of this section, we promised to show you some libraries that can be used
with WebGL to make it easier to develop applications. Here are some of the more
interesting libraries and projects.

Google O3D

Google’s O3D library (http://code.google.com/p/o3d/) was once a browser plug-in but
has now been released as a standalone JavaScript library for WebGL. The examples of
using O3D with JavaScript—including a fairly spectacular 3D pool game—are very

3D with WebGL | 581

impressive. O3D allows you to load COLLADA 3D models created with Google
SketchUp (as well as other 3D packages).

The required code looks about as complex as straight WebGL code, so while this is
very powerful, you might want to look at some of the other libraries here first if you
are just starting out.

GLGE

“WebGL for the lazy” is the tagline for this JavaScript library (http://www.glge.org/).
The author of the library, Paul Brunt, says this about GLGE:

The aim of GLGE is to mask the involved nature of WebGL from the web developer,
who can then spend his/her time creating richer content for the Web.

This is a high-level API that is still in development. Just like O3D, it has the ability to
load COLLADA models. Applications written with GLGE are created with a combi-
nation of XML and JavaScript. It looks very promising.

C3DL

The tagline for C3DL (http://www.c3dl.org/) is “WebGL made easy!” C3DL, or “Canvas
3D JS Library,” is similar to GLGE, but it seems to have a head start thanks to a larger
API and more support. This library also appears to be slanted toward games, as a real-
time strategy (RTS) and an arcade game are featured as its more prominent demos. The
library supports COLLADA models, and the code also appears very straightforward to
implement.

SpiderGL

“3D Graphics for Next-Generation WWW” is how SpiderGL (http://spidergl.org/) bills
itself to the world. This library appears to be very similar to GLGE and C3DL, except
that the demos focus more on lighting, color, and textures than on games and appli-
cations. It also supports COLLADA models.

SceneJS

SceneJS (http://scenejs.org/) is geared toward rendering 3D scenes built as COLLADA
JSON models in WebGL. You can also define and manipulate 3D scenes. Loading and
rendering the models is a straightforward process, and the results are quite impressive.

CopperLicht

This commercial library (http://www.ambiera.com/copperlicht/) advertises itself as the
“fast WebGL JavaScript 3D Engine.” All the demos are game-oriented, and the library
supports many commercial 3D formats. It has both collision detection and physics built
in. The demos are fast and are fun to play. This library appears to be centered around

582 | Chapter 11: Further Explorations

loading and using external 3D assets, so if that is what you are looking for, this might
be your best choice.

Multiplayer Applications with ElectroServer 5
The extended HTML5 specification includes an API for what is known as
WebSockets. Socket communications allow a client application to remain constantly
connected to a server-aide application. This type of communication can be especially
useful for chat, multiplayer games, e-learning applications, and multiuser whiteboards,
as well as many others. At this point, WebSockets is just a promise with very little
support beyond test and development builds of web browsers. In fact, security concerns
have halted some implementations and slowed others. However, this does not mean
you cannot make use of socket-server applications with HTML5 Canvas.

Because Flash has built-in support for communication via sockets, its applications have
had the ability to open socket communications with server-side applications for many
years. HTML, on the other hand, has never had the ability to reliably communicate to
a socket server without performing some sleight of hand, usually involving constant
polling by the web browser for new information from the web server.

ElectroServer from Electrotank was one of the first reliable socket-server applications
built to communicate with Flash clients. Over the past couple years, ElectroServer has
been updated with APIs for iOS, C#, C++, and now JavaScript. This first iteration of
the ElectroServer JavaScript API does not use WebSockets, but instead implements
JavaScript polling. However, with the availability of ElectroServer’s simplified Java-
Script API, you can still start to write multiplayer applications using HTML5 Canvas.

While this portion of the chapter is specific to ElectroServer, many of
the multiplayer/multiuser concepts are applicable to other technologies
as well.

Installing ElectroServer
To get started with multiplayer development using HTML5 Canvas and the Electro-
Server socket server, you first need to download the free, 25-user version of the software
from Electrotank. You can download the appropriate version for your operating system
(Windows, Mac, Linux) at http://www.electrotank.com/resources/downloads.html.

There are some installation prerequisites, such as having Java version
1.6. For detailed installation instructions for every OS, visit http://www
.electrotank.com/docs/es5/manual/index.html?operating_system.htm.

Multiplayer Applications with ElectroServer 5 | 583

The install package includes the server software, client APIs, documentation, and sam-
ple applications. Once you have installed the server software, you should have a folder
named something like “Electroserver_5_x_” on your computer. We used Mac OS X
for this test, so this folder was created inside the Mac Applications folder. On Windows,
it will be created in the location you specify upon installation.

Starting the server

Once you have the files installed, you need to start the ElectroServer socket server by
finding the installation directory and executing the file Start_ElectroServer_5_0_1.
(Note: the three numbers at the end of this file will change as the version is upgraded,
but the concept will remain the same.)

When ElectroServer starts, you should see a screen similar to Figure 11-3.

Figure 11-3. ElectroServer started

The server will run on your local machine for testing purposes. However, for any real-
world application, you will need to install a production version of the software on a
web server.

The ElectroServer admin tool

Because ElectroServer is a socket server, it listens on a specified port for communication
from the JavaScript client using one of the supported protocols. ElectroServer supports
multiple protocols, but we need to make sure we are using the BinaryHTTP protocol
for the JavaScript API. The default port for BinaryHTTP in ElectroServer is 8989.

584 | Chapter 11: Further Explorations

When the ElectroServer JavaScript API is updated to support Web-
Sockets, the port and protocol will likely be different.

There is a nifty admin tool for ElectroServer that allows you to view and modify all the
supported protocols and ports, as well as many other cool features of the socket server.
In the /admin directory of the install folder, you should find both an installer for an
Adobe AIR admin tool (named something like es5-airadmin-5.0.0.air), and a /
webadmin directory with an HTML file named webadmin.html. Either one will work
for this exercise.

In order for the admin console to display properly, the server needs to
be started.

When you launch the admin tool, you will be asked to supply a username and password.
The default is administrator and password, unless you changed them upon installation.

Once you log in, click the Server Management button on the top menu, and then the
Gateways option from the side menu. You should see a screen that looks similar to
Figure 11-4.

This screen shows you the port settings for each protocol that ElectroServer supports.
For the JavaScript API, we are most interested in the BinaryHTTP setting, which you
can see is set to port 8989.

The JavaScript API

Besides starting ElectroServer, you will also need the JavaScript API so you can begin
building Canvas apps that connect to the server. You should be able to find the Java-
Script API in the /apis/client/javascript directory of the folder in which you installed
ElectroServer (this name might change in the final version). The API should be named
ElectroServer-5-Client-JavaScript.js.

The Basic Architecture of a Socket-Server Application
Now that you have ElectroServer ready to go, and you have the JavaScript API, it is
time to learn a bit about how socket-server-based multiplayer/multiuser applications
are designed. Using a socket server means you are creating an application that relies on
a client for input from a user, as well as relying on a server to distribute that input to
other users who are connected to the first user.

A good example of this is a chat application. Most chat applications require a user to
enter a room (a logical space in which people are “chatting,” i.e., exchanging messages),

Multiplayer Applications with ElectroServer 5 | 585

where that user can see the messages of other people in the same virtual space. In that
room, the client is “connected” to those other users. However, it is usually not a direct
connection (e.g., peer-to-peer), but instead a connection through a port to a socket
server.

The socket server acts as the traffic cop for the chat messages. It listens on a port (in
our case, 8989) for messages coming in from the clients. Those messages need to be
formatted in a way that the server can understand so it can process them. The JavaScript
API we will use performs this formatting for our client applications.

When the socket server receives a message from the client, it routes the various text
messages sent by each client back out to the other clients in the room. However, it can
also do much more by using server-side processing, such as hold the list of current
messages, so people entering the room while the chat is ongoing can see what has been
said previously, scan chat messages for swear words, award points to users for their
input, or anything else you can dream up.

When the server finally processes the message and sends it back, the client then pro-
cesses that message. In the case of the chat, that processing usually involves displaying
the message on the canvas.

Figure 11-4. ElectroServer ports and protocols

586 | Chapter 11: Further Explorations

The Basic Architecture of an ElectroServer Application
ElectroServer acts very much like the socket-server application we described in the
previous section. It listens on specified ports for different protocols; when messages
arrive, they are routed back to the connected clients.

However, ElectroServer has some specific features that we should discuss. Some of
these exist on other socket-server platforms, while some don’t. However, much of this
discussion will still be applicable to other socket servers once they make JavaScript APIs
available.

Client

The client for an ElectroServer application is a program written in one of the API-
supported language platforms, including Flash ActionScript 2, Flash ActionScript 3,
Java, Objective-C, C#/.NET, and now JavaScript. The client is the application, which
the user will manipulate to send messages through the API to ElectroServer. This is
usually a game, a chat room, a virtual world, or some other kind of multiuser social or
communication application.

All the communication with ElectroServer is event-based. The client application uses
the JavaScript API to send events, and the client defines event handlers that listen for
messages from ElectroServer. All of these messages and events are communicated
through the API, which in turn is communicating through port 8989 using the
BinaryHTTP protocol (at least for our examples).

Zones, rooms, and games

When a user first connects to ElectroServer, she needs to join or create a zone, which
is simply a collection of rooms. If the user tries to create a zone that already exists, she
will be added to that zone without creating a new one.

After entering a zone, the user needs to join a room in that zone. If a user attempts to
create a new room that already exists, she will be added to that room instead.

Beyond zones and rooms, ElectroServer also offers a GameManager API
that allows you to further segment users into specific instances of a game
that is being played. We do not get this granular for the examples in this
chapter.

Extensions

Extensions are server-side code modules that can process data sent by clients before
that data is sent back to other clients. Extensions can also process and create their own
events. For many games, the extension contains much of the game logic, relying on the
clients for displaying and gathering user input.

Multiplayer Applications with ElectroServer 5 | 587

At the very minimum, an extension contains what is known as a plug-in. A plug-in is a
code module written in ActionScript 1 (basically JavaScript) or Java that can be in-
stantiated and scoped to a room. For example, if you were making a card game, you
would want a card game plug-in on the server to handle things like shuffling the deck
and making sure the correct player wins a hand. In this way, the server holds the true
state of the game. Using an extension helps keep a game flowing and lessens the users’
ability to cheat. For the simple examples in this chapter, we will not be using any server-
side extensions. However, if you delve further into ElectroServer or other socket-server
applications, you should make sure to learn as much as possible about them.

Creating a Chat Application with ElectroServer
As an example, we are going to create a single chat application using the ElectroServer
JavaScript API. Users will submit a chat message through an HTML form, and the
displayed chat will be in HTML5 Canvas. We are also going to create and display some
messages from ElectroServer so you can see the status of the connection to the server.

Establishing a connection to ElectroServer

First, a client application is written so that it includes the ElectroServer JavaScript API:

<script src="ElectroServer-5-Client-JavaScript.js"></script>

The client application makes a connection to ElectroServer running on a server at a
specific URL, listening on a specific port, using a specific protocol. For our examples,
this will be localhost, 8989, and BinaryHTTP, respectively.

We need to use these values to make a connection from the client to the server. We do
this by first creating an instance of the ElectroServer object, and then calling its meth-
ods. We start by creating an instance of an ElectroServer server connection named
server. We then configure a new variable named availableConnection with the previ-
ous properties we described, then add it to the server variable with a call to the method
addAvailableConnection(). We will create all of this code inside our canvasApp()
function:

var server = new ElectroServer.Server("server1");
var availableConnection = new ElectroServer.AvailableConnection
 ("localhost", 8989, ElectroServer.TransportType.BinaryHTTP);
server.addAvailableConnection(availableConnection);

Now, we need to use the server variable we just configured to establish a connection
to ElectroServer. We do this by setting a new variable, es, as an instance of the class
ElectroServer. We then call its initialize() method and add the server we just con-
figured to the es object by calling the addServer() method of the ElectroServer server
engine property:

var es = new ElectroServer();
es.initialize();
es.engine.addServer(server);

588 | Chapter 11: Further Explorations

We are almost ready to try to connect to ElectroServer. First though, we need to create
some event handlers for ElectroServer events. Remember when we told you that
all the communication with ElectroServer is done through creating and listening
for events? This is where that process begins. We need to listen for the following events:
ConnectionResponse, LoginResponse, JoinRoomEvent, JoinZoneEvent, ConnectionAttemp
tResponse, and PublicMessageEvent:

es.engine.addEventListener(MessageType.ConnectionResponse, onConnectionResponse);
es.engine.addEventListener(MessageType.LoginResponse, onLoginResponse);
es.engine.addEventListener(MessageType.JoinRoomEvent, onJoinRoomEvent);
es.engine.addEventListener(MessageType.JoinZoneEvent, onJoinZoneEvent);
es.engine.addEventListener(MessageType.ConnectionAttemptResponse,
 onConnectionAttemptResponse);
es.engine.addEventListener(MessageType.PublicMessageEvent, onPublicMessageEvent);

Finally, once we have everything ready, we call the connect method of the Electro
Server object, and wait for events to be handled by the event listener functions we have
just established:

es.engine.connect();

When the ElectroServer API object tries to connect to an ElectroServer server, a
ConnectionAttemptResponse event will be fired back to the client from the server. We
handle that event with the onConnectionAttemptResponse() event handler. For our ap-
plication, we don’t do anything with this event, except create a status message for it
that we will display. The statusMessages variable is an array of messages that we keep
around to display back as debug information for our chat application. We will discuss
this briefly in the next section:

function onConnectionAttemptResponse(event) {
 statusMessages.push("connection attempt response!!");
}

At this point, the client waits for a ConnectionResponse event to be sent back from the
ElectroServer server. When the client application receives a ConnectionResponse event,
it handles it with the onConnectionResponse() event handler. Once the connection is
established, the client then attempts to log on to the server. To make a logon attempt,
we need a username. We will create a random username, but it could come from an
account on a web server, a form field or cookie, Facebook Connect, or any other location
or service you might have available.

After we have a username, we create a LoginRequest() object, set the userName property,
and then call the send() method of the es.engine object. This is how we will send all
messages to ElectroServer from this point forward:

function onConnectionResponse(event) {
 statusMessages.push("Connect Successful?: "+event.successful);
 var r = new LoginRequest();
 r.userName = "CanvasUser_" + Math.floor(Math.random() * 1000);
 es.engine.send(r);
 }

Multiplayer Applications with ElectroServer 5 | 589

When ElectroServer responds from the LoginRequest, it is time to join a zone and a
room. Recall that any user connected to ElectroServer needs to belong to a room, and
every room belongs to a zone. Therefore, we need to make a user belong to one of each,
which we accomplish with a CreateRoomRequest(). We set the zoneName property to
TestZoneChat, and the roomName property to TestRoomChat. If either of these do not al-
ready exist, they will be created by the server. If they do exist, the user will be added
to them. We then send the message to ElectroServer:

function onLoginResponse(event) {
 statusMessages.push("Login Successful?: "+event.successful);

 username = event.userName;

 var crr = new CreateRoomRequest();
 crr.zoneName = "TestZoneChat";
 crr.roomName = "TestRoomChat";

 es.engine.send(crr);
}

We still need to wait for a couple responses from ElectroServer events that come back
through the API via port 8989. We know we have to join a zone, and we handle the
event with the function onJoinZoneEvent(), but we don’t need to do anything with it:

function onJoinZoneEvent(event) {
 statusMessages.push("joined a zone");
}

The most important event we are waiting to handle is JoinRoomEvent. When we receive
this event, we know that we have joined both a zone and a room, and the application is
ready to run. For the chat application, this means the user can start typing and sending
messages. First, we set the _room variable equal to the Room object, which was returned
by the event from ElectroServer. We will use this variable for our further communi-
cations with ElectroServer. The other thing we do in this function is set an HTML
<div> with the id of inputForm, which is made visible by changing its style. The inputForm
<div> is invisible when the page loads. We do this so the user won’t send chat messages
before the connection to ElectroServer is established. Now that everything is ready to
go, we display the inputForm <div> so chatting can start:

function onJoinRoomEvent(event) {
 statusMessages.push("joined a room");
 _room = es.managerHelper.zoneManager.zoneById
 (event.zoneId).roomById(event.roomId);
 var formElement = document.getElementById("inputForm");
 formElement.setAttribute("style", "display:true");
 }

Creating the chat functionality

Now that we have established a connection to ElectroServer and joined a zone and a
room, the chat application can start.

590 | Chapter 11: Further Explorations

First, let’s talk a bit about a few more variables we have created in our canvasApp()
function, which we must scope to the rest of the chat application. The status
Messages array will hold a set of messages that we want to keep about the connection
to ElectroServer. We will display these in a box on the right side of the canvas. The
chatMessages array holds all the messages users have sent into the chat room. The
username variable holds the name of the user who is running the Canvas application,
and _room is a reference to the room object that user has joined:

var statusMessages = new Array();
var chatMessages = new Array();
var username;
var _room;

The HTML page holds a <form> that we will use to collect the chat messages from the
user. It contains a text box for the user to type into (the id of textBox), and a button
with the id of sendChat. This is the same form that was invisible until we received the
JoinRoomEvent event:

<form>
<input id="textBox" placeholder="your text" />
<input type="button" id ="sendChat" value="Send"/>
</form>

In canvasApp(), we set up an event listener for when the user clicks the sendChat button.
When a click event occurs, the function sendMessage handles the event:

var formElement = document.getElementById("sendChat");
formElement.addEventListener('click', sendMessage, false);

The sendMessage() function is one of the most important functions in this application.
This is where we create a couple very critical objects for communicating with Electro-
Server. The first is a PublicMessageRequest, which is one of several types we can
make to the ElectroServer socket server. Others include a PrivateMessageRequest and
a PluginMessageRequest. A PublicMessageRequest is a message that will be sent to ev-
eryone in the room. We send that data using an EsObject, which is native to the Elec-
troServer API. It allows you to create and access ad hoc data elements for any type of
information you want to send to other users in the same room.

For a full discussion of EsObject and ElectroServer events, see the
ElectroServer documentation. It is installed with the server on your local
machine in [your install folder]//documentation/html/index.html *.

For this simple chat example, we want to send the chat message the user typed and
submitted. To do this, we will use the setString() method of EsObject. This method
takes two parameters: the text you want to send, and an identifier you can use to access
the text. We also set another element named type, which will tell us what kind of
message we are sending. We do this because in a more complicated application, you

Multiplayer Applications with ElectroServer 5 | 591

may send all sorts of messages and need a way to identify what they are so you can
process them.

Once we have configured our PublicMessageEvent with the roomId, the zoneId, and the
EsObject, we call es.engine.send(pmr) to send it to the rest of the room:

function sendMessage(event) {
 var formElement = document.getElementById("textBox");
 var pmr = new PublicMessageRequest();
 pmr.message = "";
 pmr.roomId = _room.id;
 pmr.zoneId = _room.zoneId;
 var esob = new ElectroServer.EsObject();
 esob.setString("message", formElement.value);
 esob.setString("type","chatmessage");
 pmr.esObject = esob;
 es.engine.send(pmr);
 statusMessages.push("message sent")
}

Notice that we did not print the user’s chat message to the canvas when it was sub-
mitted. Instead, we will wait for the PublicMessageEvent to return from Electro
Server, and then handle it like all the other chats. This keeps the interface clean, while
preserving a create event/handle event processing model across the entire application.

After the socket server processes the chat message, it is broadcast out to all the users
in the room. All the users must create an event handler for a PublicMessageEvent so
they can receive and process the message; we have created the onPublicMessageEvent
handler for this purpose. This function is very simple. It checks the type EsObject
variable we set to see whether it is a chatmessage. If so, it pushes a string that includes
the user who submitted the message (event.userName) and the message itself (esob.get
String("message")) into the chatMessages array. This is what will be displayed on the
canvas:

function onPublicMessageEvent(event) {

 var esob = event.esObject;
 statusMessages.push("message received")
 if (esob.getString("type") == "chatmessage") {

 chatMessages.push(event.userName + ":" + esob.getString("message"));

 }

}

Now, all that remains is to display the messages that we have collected. We do this
(where else?) in drawScreen(). For both the statusMessages and chatMessages arrays,
we need to display the “current” 22 messages (if we have 22), and start them at the y
position of 15 pixels. We only display the last 22 messages so both the chat and the
status messages will appear to scroll up the screen as more chatting and status messages
are generated:

592 | Chapter 11: Further Explorations

var starty = 15;
var maxMessages = 22;

If the array is larger than maxMessages, we display only the latest 22. To find those
messages, we set a new variable named starti to the length of the statusMessages array,
subtracted by the value in maxMessages. This gives us the index into the array of the first
message we want to display. We do the exact same thing for the chatMessages array:

//status box
 context.strokeStyle = '#000000';
 context.strokeRect(345, 10, 145, 285);
 var starti = 0;

 if (statusMessages.length > maxMessages) {
 starti = (statusMessages.length) - maxMessages;

 }
 for (var i = starti;i< statusMessages.length;i++) {
 context.fillText (statusMessages[i], 350, starty);
 starty+=12;
//chat box
 context.strokeStyle = '#000000';
 context.strokeRect(10, 10, 335, 285);

 starti = 0;
 lastMessage = chatMessages.length-1;
 if (chatMessages.length > maxMessages) {
 starti = (chatMessages.length) - maxMessages;
 }
 starty = 15;
 for (var i = starti;i< chatMessages.length;i++) {
 context.fillText (chatMessages[i], 10, starty);
 starty+=12;
 }
 }

That’s it! We’ve finished developing our multiuser chat application.

Testing the Application in Google Chrome
To test the current ElectroServer JavaScript API, you need to start Google Chrome with
web security disabled. The method of doing this varies by OS, but on Mac OS X, you
can open a Terminal session and execute the following command (which will open
Chrome if you have it in your Applications folder):

/Applications/Google\ Chrome.app/Contents/MacOS/Google\ Chrome --disable-web-security

On a Windows PC, input a command similar to this from a command prompt or from
a .bat file:

"C:\Program Files (x86)\Google\Chrome\Application\chrome.exe" --disable-web-security

Multiplayer Applications with ElectroServer 5 | 593

Obviously this is not a workable solution for a production application.
As Electrotank (and other companies who make similar products) con-
tinue to improve the functionality of their APIs and add support for
HTML5 WebSockets, this limitation should disappear.

The best way to test a multiplayer application on your own development machine is to
open two web browsers, or two web browser windows, at the same time. When you
look at CH11EX2.html in Google Chrome using this method, you should see something
that looks like Figure 11-5.

Figure 11-5. ElectroServer chat demo on the canvas with JavaScript API

The full source code is listed in Example 11-2.

Example 11-2. ES5 chat demo

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH11EX2: ES5 Chat Demo</title>
<script src="modernizr-1.6.min.js"></script>
<script src="ElectroServer-5-Client-JavaScript.js"></script>
<script type="text/javascript">
window.addEventListener("load", eventWindowLoaded, false);

 function eventWindowLoaded () {
 canvasApp();
}

594 | Chapter 11: Further Explorations

 function canvasSupport () {
 return Modernizr.canvas;
}

 function canvasApp () {

 if (!canvasSupport()) {
 return;
 }

 var theCanvas = document.getElementById("canvasOne");
 var context = theCanvas.getContext("2d");

 var formElement = document.getElementById("sendChat");
 formElement.addEventListener('click', sendMessage, false);

 function drawScreen() {
 //background
 context.fillStyle = "#ffffaa";
 context.fillRect(0, 0, 500, 320);

 context.fillStyle = "#000000";
 context.font = "10px _sans";
 context.textBaseline = "top";

 //box
 context.strokeStyle = '#000000';
 context.strokeRect(5, 5, 490, 310);

 var starty = 15;
 var maxMessages = 22;

 //status box
 context.strokeStyle = '#000000';
 context.strokeRect(345, 10, 145, 285);
 var starti = 0;

 if (statusMessages.length > maxMessages) {
 starti = (statusMessages.length) - maxMessages;

 }
 for (var i = starti;i< statusMessages.length;i++) {
 context.fillText (statusMessages[i], 350, starty);
 starty+=12;
 }

 //chat box
 context.strokeStyle = '#000000';
 context.strokeRect(10, 10, 335, 285);

 starti = 0;
 lastMessage = chatMessages.length-1;
 if (chatMessages.length > maxMessages) {
 starti = (chatMessages.length) - maxMessages;

Multiplayer Applications with ElectroServer 5 | 595

 }
 starty = 15;
 for (var i = starti;i< chatMessages.length;i++) {
 context.fillText (chatMessages[i], 10, starty);
 starty+=12;
 }

 context.fillText ("User Name:" + username, 10, 295);

 }

 var statusMessages = new Array();
 var chatMessages = new Array();

 var server = new ElectroServer.Server("server1");

 statusMessages.push(server);

 var availableConnection = new ElectroServer.AvailableConnection
 ("localhost", 8989, ElectroServer.TransportType.BinaryHTTP);

 server.addAvailableConnection(availableConnection);

 var es = new ElectroServer();
 es.initialize();

 var username;
 var _room;

 es.engine.addServer(server);

 es.engine.addEventListener(MessageType.ConnectionResponse, onConnectionResponse);
 es.engine.addEventListener(MessageType.LoginResponse, onLoginResponse);
 es.engine.addEventListener(MessageType.JoinRoomEvent, onJoinRoomEvent);
 es.engine.addEventListener(MessageType.JoinZoneEvent, onJoinZoneEvent);
 es.engine.addEventListener(MessageType.ConnectionAttemptResponse,
 onConnectionAttemptResponse);
 es.engine.addEventListener(MessageType.PublicMessageEvent, onPublicMessageEvent);

 es.engine.connect();

 statusMessages.push("Connecting...");

 setInterval(drawScreen, 33);

 function onConnectionAttemptResponse(event) {
 statusMessages.push("connection attempt response!!");
 }

 function onJoinRoomEvent(event) {
 statusMessages.push("joined a room");
 _room = es.managerHelper.zoneManager.zoneById
 (event.zoneId).roomById(event.roomId);
 var formElement = document.getElementById("inputForm");
 formElement.setAttribute("style", "display:true");

596 | Chapter 11: Further Explorations

 }

 function onJoinZoneEvent(event) {
 statusMessages.push("joined a zone");

 }

 function onConnectionResponse(event) {
 statusMessages.push("Connect Successful?: "+event.successful);
 var r = new LoginRequest();
 r.userName = "CanvasUser_" + Math.floor(Math.random() * 1000);
 es.engine.send(r);
 }

 function onLoginResponse(event) {
 statusMessages.push("Login Successful?: "+event.successful);

 username = event.userName;

 var crr = new CreateRoomRequest();
 crr.zoneName = "TestZoneChat";
 crr.roomName = "TestRoomChat";

 es.engine.send(crr);
 }

 function sendMessage(event) {
 var formElement = document.getElementById("textBox");
 var pmr = new PublicMessageRequest();
 pmr.message = "";
 pmr.roomId = _room.id;
 pmr.zoneId = _room.zoneId;
 var esob = new ElectroServer.EsObject();
 esob.setString("message", formElement.value);
 esob.setString("type","chatmessage");
 pmr.esObject = esob;
 es.engine.send(pmr);
 statusMessages.push("message sent")

 }

 function onPublicMessageEvent(event) {

 var esob = event.esObject;
 statusMessages.push("message received")
 if (esob.getString("type") == "chatmessage") {

 chatMessages.push(event.userName + ":" + esob.getString("message"));

 }

 }

}

Multiplayer Applications with ElectroServer 5 | 597

</script>
</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">
<canvas id="canvasOne" width="500" height="320">
 Your browser does not support HTML5 Canvas.
</canvas>
<div id="inputForm" style="display:none;">
<form>
<input id="textBox" placeholder="your text" />
<input type="button" id ="sendChat" value="Send"/>
</form>
</div>

</div>
</body>
</html>

Further Explorations with ElectroServer
Displaying text on HTML5 Canvas is interesting, but as we have shown you in this
book, you can do much more. Let’s add some graphics to the previous demo. We have
added a second application for you to peruse, named CH11EX3.html. This application
adds the bouncing ball demo app from Chapter 5 to the chat application we just created.
It allows chatters to “send” bouncing balls to each other by clicking on the canvas.

The heart of the app is simply another use of the EsObject from the chat application,
which is created when the user clicks on the canvas. This EsObject adds information
about a ball that one user created for the others in the room:

function eventMouseUp(event) {
 var mouseX;
 var mouseY;
 if (event.layerX || event.layerX == 0) { // Firefox
 mouseX = event.layerX ;
 mouseY = event.layerY;
 } else if (event.offsetX || event.offsetX == 0) { // Opera
 mouseX = event.offsetX;
 mouseY = event.offsetY;
 }
 ballcounter++;
 var maxSize = 8;
 var minSize = 5;
 var maxSpeed = maxSize+5;
 var tempRadius = Math.floor(Math.random()*maxSize)+minSize;
 var tempX = mouseX;
 var tempY = mouseY;
 var tempSpeed = maxSpeed-tempRadius;
 var tempAngle = Math.floor(Math.random()*360);
 var tempRadians = tempAngle * Math.PI/ 180;
 var tempvelocityx = Math.cos(tempRadians) * tempSpeed;
 var tempvelocityy = Math.sin(tempRadians) * tempSpeed;
 var pmr = new PublicMessageRequest();

598 | Chapter 11: Further Explorations

 pmr.message = "";
 pmr.roomId = _room.id;
 pmr.zoneId = _room.zoneId;
 var esob = new ElectroServer.EsObject();
 esob.setFloat("tempX",tempX);
 esob.setFloat("tempY",tempY);
 esob.setFloat("tempRadius",tempRadius);
 esob.setFloat("tempSpeed",tempSpeed);
 esob.setFloat("tempAngle",tempAngle);
 esob.setFloat("velocityx",tempvelocityx);
 esob.setFloat("velocityy",tempvelocityy);
 esob.setString("usercolor",usercolor);
 esob.setString("ballname",username+ballcounter);
 esob.setString("type", "newball");
 pmr.esObject = esob;
 es.engine.send(pmr);
 statusMessages.push("send ball");

 }

When a user connected in the same room receives this public message, we handle the
newball event in a similar manner to how we handled the chat text, by using the on
PublicMessageEvent() function. When the function sees an event with the type new
ball, it calls createNetBall(). The createNetBall() function creates ball objects to
bounce around the canvas, much like the ones we created in Chapter 5:

function onPublicMessageEvent(event) {
 statusMessages.push("message received")
 var esob = event.esObject;
 if (esob.getString("type") == "chatmessage") {
 chatMessages.push(event.userName + ":" + esob.getString("message"));
 } else if (esob.getString("type") == "newball") {
 statusMessages.push("create ball")
 createNetBall(esob.getFloat("tempX"),esob.getFloat("tempY"),
 esob.getFloat("tempSpeed"),esob.getFloat("tempAngle"),
 esob.getFloat("tempRadius"),esob.getFloat("velocityx"),
 esob.getFloat("velocityy"),event.userName,esob.getString("usercolor"),
 esob.getString("ballname"));
 }

}

function createNetBall(tempX,tempY,tempSpeed,tempAngle,tempRadius,tempvelocityx,
 tempvelocityy, user, usercolor, ballname) {

 tempBall = {x:tempX,y:tempY,radius:tempRadius, speed:tempSpeed, angle:tempAngle,
 velocityx:tempvelocityx, velocityy:tempvelocityy,nextx:tempX, nexty:tempY,
 mass:tempRadius, usercolor:usercolor, ballname:ballname}
 balls.push(tempBall);
 }

Figure 11-6 shows what this demo looks like when users click the mouse button to send
balls to other users. The colors of the balls are assigned randomly.

Multiplayer Applications with ElectroServer 5 | 599

Figure 11-6. ElectroServer chat ball demo

Example 11-3 gives the full set of code for CH11EX3.html.

Example 11-3. ES5 ball demo

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>CH11EX3: ES5 Ball Demo</title>
<script src="modernizr-1.6.min.js"></script>
<script src="ElectroServer-5-Client-JavaScript.js"></script>
<script type="text/javascript">
window.addEventListener("load", eventWindowLoaded, false);

function eventWindowLoaded () {
 canvasApp();
}

function canvasSupport () {
 return Modernizr.canvas;
}

function canvasApp () {

 if (!canvasSupport()) {
 return;
 }

 var theCanvas = document.getElementById("canvasOne");
 var context = theCanvas.getContext("2d");

600 | Chapter 11: Further Explorations

 var formElement = document.getElementById("sendChat");
 formElement.addEventListener('click', sendMessage, false);

 function drawScreen() {
 //background
 context.fillStyle = "#ffffaa";
 context.fillRect(0, 0, 500, 320);

 context.fillStyle = "#000000";
 context.font = "10px _sans";
 context.textBaseline = "top";

 //box
 context.strokeStyle = '#000000';
 context.strokeRect(5, 5, 490, 310);

 var starty = 15;
 var maxMessages = 22;

 //status box
 context.strokeStyle = '#000000';
 context.strokeRect(345, 10, 145, 285);
 var starti = 0;

 if (statusMessages.length > maxMessages) {
 starti = (statusMessages.length) - maxMessages;

 }
 for (var i = starti;i< statusMessages.length;i++) {
 context.fillText (statusMessages[i], 350, starty);
 starty+=12;
 }

 //chat box
 context.strokeStyle = '#000000';
 context.strokeRect(10, 10, 335, 285);

 starti = 0;
 lastMessage = chatMessages.length-1;
 if (chatMessages.length > maxMessages) {
 starti = (chatMessages.length) - maxMessages;
 }
 starty = 15;
 for (var i = starti;i< chatMessages.length;i++) {
 context.fillText (chatMessages[i], 10, starty);
 starty+=12;
 }

 context.fillText ("User Name:" + username, 10, 295);

 update();
 testWalls();
 render();

 }

Multiplayer Applications with ElectroServer 5 | 601

 function updateBall(ball) {
 ball.radians = ball.angle * Math.PI/ 180;
 ball.velocityx = Math.cos(ball.radians) * ball.speed;
 ball.velocityy = Math.sin(ball.radians) * ball.speed;

 }

 var statusMessages = new Array();
 var chatMessages = new Array();

 var server = new ElectroServer.Server("server1");

 statusMessages.push(server);

 var availableConnection = new ElectroServer.AvailableConnection
 ("localhost", 8989, ElectroServer.TransportType.BinaryHTTP);

 server.addAvailableConnection(availableConnection);

 var es = new ElectroServer();
 es.initialize();

 var username;
 var usercolor;
 var _room;
 var ballcounter = 0;

 es.engine.addServer(server);

 es.engine.addEventListener(MessageType.ConnectionResponse, onConnectionResponse);
 es.engine.addEventListener(MessageType.LoginResponse, onLoginResponse);
 es.engine.addEventListener(MessageType.JoinRoomEvent, onJoinRoomEvent);
 es.engine.addEventListener(MessageType.JoinZoneEvent, onJoinZoneEvent);
 es.engine.addEventListener(MessageType.ConnectionAttemptResponse,
 onConnectionAttemptResponse);
 es.engine.addEventListener(MessageType.PublicMessageEvent, onPublicMessageEvent);

 es.engine.connect();

 statusMessages.push("Connecting...");

 var balls = new Array();

 theCanvas.addEventListener("mouseup",eventMouseUp, false);

 var friction = 0;

 setInterval(drawScreen, 33);

 function eventMouseUp(event) {
 var mouseX;
 var mouseY;

602 | Chapter 11: Further Explorations

 if (event.layerX || event.layerX == 0) { // Firefox
 mouseX = event.layerX ;
 mouseY = event.layerY;
 } else if (event.offsetX || event.offsetX == 0) { // Opera
 mouseX = event.offsetX;
 mouseY = event.offsetY;
 }
 ballcounter++;
 var maxSize = 8;
 var minSize = 5;
 var maxSpeed = maxSize+5;
 var tempRadius = Math.floor(Math.random()*maxSize)+minSize;
 var tempX = mouseX;
 var tempY = mouseY;
 var tempSpeed = maxSpeed-tempRadius;
 var tempAngle = Math.floor(Math.random()*360);
 var tempRadians = tempAngle * Math.PI/ 180;
 var tempvelocityx = Math.cos(tempRadians) * tempSpeed;
 var tempvelocityy = Math.sin(tempRadians) * tempSpeed;
 var pmr = new PublicMessageRequest();
 pmr.message = "";
 pmr.roomId = _room.id;
 pmr.zoneId = _room.zoneId;
 var esob = new ElectroServer.EsObject();
 esob.setFloat("tempX",tempX);
 esob.setFloat("tempY",tempY);
 esob.setFloat("tempRadius",tempRadius);
 esob.setFloat("tempSpeed",tempSpeed);
 esob.setFloat("tempAngle",tempAngle);
 esob.setFloat("velocityx",tempvelocityx);
 esob.setFloat("velocityy",tempvelocityy);
 esob.setString("usercolor",usercolor);
 esob.setString("ballname",username+ballcounter);
 esob.setString("type", "newball");
 pmr.esObject = esob;
 es.engine.send(pmr);
 statusMessages.push("send ball");

 }

 function createNetBall(tempX,tempY,tempSpeed,tempAngle,tempRadius,tempvelocityx,
 tempvelocityy, user, usercolor, ballname) {

 tempBall = {x:tempX,y:tempY,radius:tempRadius, speed:tempSpeed,
 angle:tempAngle, velocityx:tempvelocityx, velocityy:tempvelocityy,
 nextx:tempX, nexty:tempY, mass:tempRadius, usercolor:usercolor,
 ballname:ballname}
 balls.push(tempBall);
 }

 function onConnectionAttemptResponse(event) {
 statusMessages.push("connection attempt response!!");
 }

Multiplayer Applications with ElectroServer 5 | 603

 function onJoinRoomEvent(event) {
 statusMessages.push("joined a room");
 _room = es.managerHelper.zoneManager.zoneById
 (event.zoneId).roomById(event.roomId);
 var formElement = document.getElementById("inputForm");
 formElement.setAttribute("style", "display:true");
 }

 function onJoinZoneEvent(event) {
 statusMessages.push("joined a zone");

 }

 function onConnectionResponse(event) {
 statusMessages.push("Connect Successful?: "+event.successful);
 var r = new LoginRequest();
 r.userName = "CanvasUser_" + Math.floor(Math.random() * 1000);
 es.engine.send(r);
 }

 function onLoginResponse(event) {
 statusMessages.push("Login Successful?: "+event.successful);

 username = event.userName;
 usercolor = "#"+(Math.random()*0xFFFFFF<<0).toString(16);

 var crr = new CreateRoomRequest();
 crr.zoneName = "TestZoneCuesors";
 crr.roomName = "TestRoomCursors";

 es.engine.send(crr);

 }

 function sendMessage(event) {
 var formElement = document.getElementById("textBox");
 var pmr = new PublicMessageRequest();
 pmr.message = "";
 pmr.roomId = _room.id;
 pmr.zoneId = _room.zoneId;
 var esob = new ElectroServer.EsObject();
 esob.setString("message", formElement.value);
 esob.setString("type","chatmessage");
 pmr.esObject = esob;
 es.engine.send(pmr);
 statusMessages.push("message sent")

 }

 function onPublicMessageEvent(event) {
 statusMessages.push("message received")
 var esob = event.esObject;

 if (esob.getString("type") == "chatmessage") {

604 | Chapter 11: Further Explorations

 chatMessages.push(event.userName + ":" + esob.getString("message"));

 } else if (esob.getString("type") == "newball") {
 statusMessages.push("create ball")
 createNetBall(esob.getFloat("tempX"),esob.getFloat("tempY"),
 esob.getFloat("tempSpeed"),esob.getFloat("tempAngle"),
 esob.getFloat("tempRadius"),esob.getFloat("velocityx"),
 esob.getFloat("velocityy"),event.userName,esob.getString("usercolor"),
 esob.getString("ballname"));
 }

 }

 function update() {
 for (var i =0; i <balls.length; i++) {
 ball = balls[i];
 //Friction
 ball.velocityx = ball.velocityx - (ball.velocityx*friction);
 ball.velocityy = ball.velocityy - (ball.velocityy*friction);

 ball.nextx = (ball.x += ball.velocityx);
 ball.nexty = (ball.y += ball.velocityy);
 }

 }

 function testWalls() {
 var ball;
 var testBall;

 for (var i = 0; i <balls.length; i++) {
 ball = balls[i];

 if (ball.nextx+ball.radius > theCanvas.width) {
 ball.velocityx = ball.velocityx*-1;
 ball.nextx = theCanvas.width - ball.radius;

 } else if (ball.nextx-ball.radius < 0) {
 ball.velocityx = ball.velocityx*-1;
 ball.nextx = ball.radius;

 } else if (ball.nexty+ball.radius > theCanvas.height) {
 ball.velocityy = ball.velocityy*-1;
 ball.nexty = theCanvas.height - ball.radius;

 } else if(ball.nexty-ball.radius < 0) {
 ball.velocityy = ball.velocityy*−1;
 ball.nexty = ball.radius;
 }

 }

 }

Multiplayer Applications with ElectroServer 5 | 605

 function render() {
 var ball;

 for (var i =0; i <balls.length; i++) {

 ball = balls[i];
 ball.x = ball.nextx;
 ball.y = ball.nexty;
 context.fillStyle = ball.usercolor;
 context.beginPath();
 context.arc(ball.x,ball.y,ball.radius,0,Math.PI*2,true);
 context.closePath();
 context.fill();
 }

 }

}

</script>
</head>
<body>
<div style="position: absolute; top: 50px; left: 50px;">
<canvas id="canvasOne" width="500" height="320">
 Your browser does not support HTML5 Canvas.
</canvas>
<div id="inputForm" style="display:none;">
<form>
<input id="textBox" placeholder="your text" />
<input type="button" id ="sendChat" value="Send"/>
</form>
</div>

</div>
</body>
</html>

This Is Just the Tip of the Iceberg
There is much more you can do with ElectroServer than what we showed you in this
chapter. Sending and receiving PublicMessage events can only get you so far when de-
signing multiuser/multiplayer applications.

To start designing multiplayer applications seriously, you will need to delve into the
extension and plug-in architecture of ElectroServer, as well as explore plug-in events,
which are used to communicate to the server portion of an application. We suggest you
check out http://www.electrotank.com/es5.html for more information about the socket
server. You can also read ActionScript for Multiplayer Games and Virtual Worlds by
Jobe Makar (New Riders). Even though it centers on Flash and an earlier version of

606 | Chapter 11: Further Explorations

ElectroServer, the architectural information about designing apps for a socket server is
well worth your time.

At the same time, ElectroServer can be used with technologies other than Canvas (Flash,
iOS, etc.), so Canvas will be able to communicate with other socket servers via Java-
Script and WebSockets. We chose to base this example on ElectroServer because it
allowed us to create a full application for you to test and work through. Other libraries
and tools are bound to appear very soon that can work with canvas; for example, the
SmartFoxServer Ajax API. Still in beta, this API uses the Google Web Toolkit to connect
to the SmartFox socket server through an Ajax connection in JavaScript. This library
requires the SmartFoxServer BlueBox add-on module. In theory, this means Smart-
FoxServer could be used in conjunction with Canvas right now.

Conclusion
Over the past 11 chapters, you have been immersed in the world of HTML5 Canvas.
We have given you dozens of examples and applications to work from and through
so you can start building your own creations. From simple text displays to high-
performance games, we have showed you many ways to bring some of the magic of
previous RIA (Rich Internet Application) technologies into the plug-in-less browser
experience.

We offered many strategies for integrating Canvas with other HTML5 technologies, as
well as techniques for handling text, displaying graphics, scrolling bitmaps, creating
animation, detecting multiple types of collisions, embedding and manipulating video,
playing music, handling sound effects, creating user interfaces, optimizing code, and
preparing apps for mobile platforms. We even introduced you to the future of 3D and
multiuser applications directly in the web browser.

The true future, though, is up to you. HTML5 and Canvas are dynamic topics that are
still in a rapid state of change and adoption. While this book is a good starting point,
you will need to keep abreast of new changes to the technology. Visit our website, http:
//www.8bitrocket.com, for news and updates on HTML5 Canvas.

O’Reilly also has several books that you might find useful, including:

• HTML5: Up and Running by Mark Pilgrim

• Supercharged JavaScript Graphics by Raffaele Cecco

If you are interested in learning how some of the game-development techniques de-
scribed in this book (as well as many others) can be applied to Flash, check out our
other most recent book, The Essential Guide to Flash Games (friendsofED).

There is a real paradigm shift occurring right now on the Web. For most of the first
decade of the 21st century, Java, Flash, Silverlight, and other plug-in RIA technologies
dominated application development and design. At the time, there appeared to be no

Conclusion | 607

better solution for the development of rich applications in a web browser than to bolt
on technology that was not native to the browser.

The emergence of the “connected apps” culture is changing this. Every platform—from
phones to TVs, e-readers to tablets, wireless printers to desktop PCs—is targeted for
web-enabled applications sold or distributed through an app store. In many ways, these
apps are replacing RIA applications, or at the very least offering a compelling new
platform for their development and distribution.

Where RIA technologies of the past—like Java, Flash, and Silverlight—could target
nearly all web browsers and PCs, they are having trouble finding a true foothold in the
area of connected apps (especially on platforms where they are restricted from running,
like iOS). This is where HTML5 Canvas can really make a difference. With true cross-
platform execution, applications run in the web browser (or compiled with technolo-
gies like PhoneGap) can be made available to the widest audience possible. Soon these
applications will be enhanced with 3D graphics and have the ability to communicate
with one another via technologies like the ElectroServer socket server. One can envision
a day in the near future where technology platforms fade away, and the web-connected
app world simply works, regardless of screen or location. This is the promise of
HTML5—especially HTML5 Canvas. So, now that you have the tools to begin, what
do you plan to build?

608 | Chapter 11: Further Explorations

Index

Symbols
- (minus sign), -- (decrement) operator, 175
2D context, 1

and current state, 15
retrieving, 11

3D with WebGL, 567–583
JavaScript libraries used with WebGL, 581
resources for learning about WebGL, 569
rotating cube application, 569

adding JavaScript libraries, 569
animating the cube, 573
complete code, 575–581
initialization in canvasApp(), 571
shaders, 570
testing for WebGL support, 571

testing WebGL, 568
? (question mark), ?: ternary operator, 155

A
accelerometer (iPhone), 561

adding gesture to BS Bingo game (example),
561–563

addColorStop() method, CanvasGradient
objects, 100

addEventListener() method, window objects,
7, 19

alignment, text, 86–90
centering text with TextMetrics, width

property, 72
handling in Text Arranger (example), 87–

90
horizontal, 87
setting vertical alignment with textBaseline

property, 11

vertical, 86
vertically centering text on canvas, 72

alpha values
alpha fading player ship (game example),

392
globalAlpha property, 39

using with text, 94
manipulating via pixel color values, 160
rgba colors, 52

angle of incidence, 183
angle of reflection, 183
angles

defined in radians for drawing arcs, 34
direction of movement on a vector, 179
measurement in radians, 42

animations
adding step timer to FrameRateCounter

object prototype, 466–468
advanced cell-based animation, 132–137
bouncing off walls, 183–216

multiple balls, 188–193
multiple balls bouncing with friction,

210–216
multiple balls colliding, 198–210
multiple balls with dynamically resized

canvas, 193–198
single ball, 184–188

Canvas compared to Flash, 379
combining rotation, animation, and

movement, 141–142
displaying tile map on canvas, 147

combining with rotation transformations,
140

curve and circular movement, 216–236

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

609

creating cubic Bezier curve loop, 232–
236

moving image on cubic Bezier curve,
228–232

moving in spiral, 220–223
moving on cubic Bezier curve, 223–228
uniform circular motion, 217–220

easing, 249–256
easing in, 253–256
easing out, 249–253

game (example), 385–388
player ship state changes, 386
timer loop, 386

game object, physics and, 393–400
controlling player ship with keyboard,

395–399
giving player ship maximum velocity,

399
how player ship will move, 393–395

gravity with bounce and applied elasticity,
243–246

moving in straight line, 171–179
moving between two points, 174

moving on a vector, 179–183
simple cell-based sprite animation, 130–

132
simple gravity, 236–240

with bounce, 240–243
simple gravity, elasticity, and friction

applied to bouncing ball, 246–
249

tile-based game, tile movement logic, 512–
514

update/render (repeat) cycle, 404–405
using dynamic tile sheet created at runtime,

497–501
video, 316–320
WebGL 3D rotating cube, 573–581

appendChild() method, document.body DOM
object, 331

Apple
application development platforms, 535
Keychain for certificates, 564
Xcode IDE, 546

application functions, Geo Blaster game
(example), 408

application states
CanvasRenderingContext2D object and,

15

Geo Blaster Basic game (example), 407
player ship state changes, animation

(example), 386–388
state machine for games, 400
state machine for Space Raiders game, 354

STATE_INIT, 355
STATE_LOADING, 356
STATE_PLAYING, 360
STATE_RESET, 358

turn-based game flow and state machine,
508–512

arcs, drawing on Canvas, 34–36
arc() method, 34
arcTo() method, 35
stroke gradient, 60

Array objects
indexOf() method, 20
push() method, 19
toString() method, 21

arrays
creating to hold tiles for animation, 133
of logical display objects (Geo Blaster game),

413
points array for tracing movement, 176
swapping elements in two-dimensional

array, 302
Atari, Asteroids game, 382
Audacity, converting audio file formats, 322
audio, 321–378

adding sound to Geo Blaster Extended
game, 459–463

adding sound instances and
management variables, 460

loading in sounds and tile sheet assets,
461

playing sounds, 463
basic <audio> tag, 321
case study, Space Raiders game, 352–378

creating sound pool, 365
creating unlimited dynamic sounds, 362
final code, 371–378
game structure, 353–362
playing sounds using single object, 362
reusing preloaded sounds, 368–371
sounds in games, 353

creating canvas audio player, 336–352
click-and-drag volume slider, 344
complete code, 347–352
custom user controls, 337

610 | Index

handlers for common mouse events,
340

loading button assets, 338
loop toggle button, 343
play/pause push button, 342
sliding play indicator, 340
values for placement of controls, 339

displaying audio element attributes on
canvas, 327–331

formats, 322
converting in Audacity, 322
using .mp3, .ogg, and .wav formats

(example), 323
functions, 324
important events, 326
important properties, 325
loading and playing, 326
playing sound with no audio tag, 331–336

creating audio element dynamically,
331

finding supported audio format, 332
playing the sound, 333

autoplay property
audio objects, 325
video objects, 262, 265, 281

B
Base SDK, selecting for PhoneGap project,

551
baseline and alignment, fonts, 86–90

handling in Text Arranger (example), 87–
90

horizontal alignment, 87
vertical alignment, 86

beginPath() function, 31
Bezier curves, 36, 225, 232

(see also curve and circular movement)
defined, 223

BinaryHTTP protocol, 585, 587
bitmaps

adding to Geo Blaster game, 447
rendering other game objects, 454–459
tile sheet, 448–453

bitmapped image of Canvas object, 16
bitmapped screen, 1

bouncing effects
adding bouncing balls to ElectroServer 5

chat application, 598–606

gravity with bounce and applied elasticity,
243–246

simple gravity with a bounce, 240–243
simple gravity, elasticity, and friction

applied to, 246–249
video animation, 316–320

bouncing off walls, 183–216
multiple balls, 188–193

with collisions, 198–210
with dynamically resized canvas, 193–

198
with friction, 210–216

single ball, 184–188
bounding box collision detection, 359
bounding box theory, 50
BS Bingo game (example), 536

application code, 545
complete source code, 537
porting to iPhone using PhoneGap, 546–

565
adding gesture functions to index.html,

561
changing banner and icon, 556
creating project in Xcode, 549
installing PhoneGap, 547
installing Xcode, 546
integrating BS Bingo into project, 553
setting orientation, 555
testing blank application in simulator,

551
testing on a device, 563
testing on iPhone simulator, 558

TextButton.js file, 542–545
buffers, creating for WebGL application, 572
buttons

creating and adding to form, 22
creating video control buttons, 307
listening for presses in video controls, 310
placing video control buttons, 309
preloading for audio player, 338
preloading for video controls, 307

C
C3DL library, 582
canplaythrough events

audio, 326
event listener for, 332
using to force audio loading, 327

video, 272

Index | 611

problem with, 275
canPlayType() method

audio objects, 325
HTMLAudioElement object, 328

finding supported format, 332
video objects, 277

Canvas
benefits of using, 380
comparison to Flash, 379
Document Object Model (DOM) and, 5
encapsulating JavaScript code for, 8
JavaScript as programming language, 6
resources for further information, 607
testing for web browser support of, 10

<canvas> elements, 5
adding to HTML page, 9
copying image data from one to another,

166–168
Canvas objects, 9

dir attribute, 87
getContext() method, 10, 15
properties and methods, 16
toDataURL() method, 22, 110
width and height properties, 106

canvasApp() function, 7
drawScreen() function local to, 8
in ElectroServer chat application, 591
Guess The Letter game (example), 17
Text Arranger (example)

event handler functions for font size and
face changes, 81

event handlers for font size and face
changes, 81

font size, face, weight, and style
variables, 81

gradient and patterns, 104
shadow variables, 97
text baseline and alignment, 87
textFillcolor variable, 84

CanvasGradient objects, 70
addColorStop() method, 100

CanvasPattern objects, 70
creating, 102

CanvasPixelArray interface, 158
CanvasRenderingContext2D objects, 1

(see also context objects)
current state and, 15
retrieving, 11

capturing events, 7

Cascading Style Sheets (see CSS)
case statements, 155–158
cell-based animation

advanced, 132–137
simple sprite animation, 130–132

center point
finding for any shape, 50
rotating shapes around, 44
scaling from, 48

centering text, 72
certificate signing request, 564
character encodings, 3
chat applications

creating with ElectroServer 5, 588–593
adding bouncing ball, 598–606

testing ElectroServer chat application in
Chrome, 593–598

use of socket servers, 586
chooseButtonsForCard() function, BS Bingo

game (example), 544
Chrome

problem with events and embedded video,
274

testing ElectroServer chat application in,
593–598

circle arcs, creating, 34
circle collision detection, 201
circles, radial gradient applied to, 60
circular movement, 216–220
clearRect() method, context objects, 29
clients for ElectroServer applications, 587
clipping regions, 15, 37
closePath() function, 31
code examples from this book, running, xv
codecs, 259
COLLADA 3D models, 582
collisions, 198–210

applying collision detection in Geo Blaster
game (example), 417

ball collisions in depth, 203–210
balls colliding, 201
circle collision detection, 201
detection in Geo Blaster Extended

(example), 453
detection in Space Raiders game, 359
elastic, 198
hit test point-style collision detection, 300
testing if balls are colliding, 203
update-collide-render cycle, 201

612 | Index

color stops, 52
colors

context.strokeColor property, 73
formatting for fillStyle or strokeStyle, 105
setting basic fill colors, 51
setting font color, 83
setting for text, 70
shadow, picking with jsColor, 98
shadowColor property, 65
text gradient fills, 104
Vertex Color buffer, WebGL application,

573
compositing, 39–41

example, 40
“connected apps” culture, 608
connection to ElectroServer, establishing, 588–

590
console.log, 14
context

accessing WebGL context, 568
defined, 10
retrieving 2D context, 11
retrieving 3D context, 571

context objects, 11
arc() method, 34
arcTo() method, 35
bezierCurveTo() method, 36
CanvasRenderingContext2D, 15
clip() method, 37
createImageData() method, 158
createLinearGradient() method, 52–58,

100
createPattern() method, 62, 102
createRadialGradient() method, 58–61,

102
drawImage() method, 12, 125
drawing basic rectangle shape, 28
drawing states, 29
drawing with paths, methods for, 384
fill() method, 56
fillColor property, 73
fillStyle property, 70
fillText() method, 12, 70, 73
font property, 69, 78
globalAlpha property, 39, 94
globalCompositeOperation property, 39
measureText() method, 72, 89
moveTo() and lineTo() methods, 31
properties, 15

putImageData() method, 159
quadraticCurveTo() method, 36
rotate() method, 43
saving and restoring state, 30, 137
scale() method, 47
setTransform() method, 42
shadow properties, 65, 96–100
strokeColor property, 73
strokeRect() method, 12
strokeText() method, 73
textAlign property, 87
textBaseline property, 86
translate() method, 44

controls
controls property, audio objects, 321, 325

setting, 323
controls property, videos, 281
creating custom user controls for audio

player, 337
hit/pause push button, 342
loading button assets, 338
loop toggle button, 343
mouse event handlers, 340
setting values for placement of, 339
sliding play indicator, 340
source code for custom player, 347–352
volume slider, 344–347

creating video controls on Canvas, 307–
316

listening for button presses, 310
placing the buttons, 309
preloading buttons, 307
source code, 312–316

video, 265
converters for video formats, 261
CopperLicht library, 582
copying image data from one canvas to another,

166–168
copying part of image to Canvas, 128
cosine, 180
counters

creating animation frame counter, 130
FrameRateCounter object prototype, 406–

407
tracking current index of animation array,

133
CraftyMind.com, 320
createElement() method, document objects,

276, 331

Index | 613

createImageData() function, 158
createLinearGradient() method, context

objects, 52–58, 100
createPattern() method, context objects, 62,

102
video element as source, 103

createRadialGradient() method, context
objects, 58–61, 102

CSS (Cascading Style Sheets), 4
font styles, 79
font weights, 79

cubic Bezier curves, 36, 223
(see also curve and circular movement)

current state, 15
currentSrc property, audio objects, 326
currentTime property

audio objects, 325
video objects, 263, 281

using to create video events, 285–289
curve and circular movement, 216–236

creating cubic Bezier curve loop, 232–236
moving an image on cubic Bezier curve path,

228–232
moving in simple spiral, 220–223
moving on cubic Bezier curve, 223–228
uniform circular motion, 217–220

curves, Bezier, 36
(see also curve and circular movement)

D
Daleks game, 447, 501
data property, ImageData objects, 159
debugging, using console.log, 14
decrement operator (--), 175
degrees, converting to radians for angles, 42
deltaX (dx) and deltaY (dy) change in axis

position, 135
descenders (font), 86
Developer Provisioning Assistant, 563
development certificates, 564
diagonal linear gradients, 57
dir attribute, Canvas object, 87
direction of movement (vectors), 179
displaying video on HTML5 Canvas, 275–281

embedding video in HTML, 275
setting interval to update display, 278–280

distance of a line, 174–179
distance equation, 174

<div> tags, 4

doctype tags, 3
document objects, 5

createElement() method, 276, 331
getElementById() method, 22, 71
using to reference canvas element in

JavaScript, 9
DOM (Document Object Model), Canvas and,

5
drag and drop, click-and-drag volume slider

control, 344–347
drawImage() method, context objects, 124

copying part of image to Canvas, 128
displaying image on Canvas, 125
drawing a video, 278
drawing image for rotation transformation,

138
drawing image window, 150
drawing puzzle pieces for video puzzle, 299
Hello World program (example), 12
resizing image as it is drawn, 127
using all parameters, 129

Drawing API, 27
drawing on Canvas, 27–67

arcs, 34
Bezier curves, 36
Canvas state, 29
clipping region, 37
compositing, 39–41
creating lines using paths, 30–34
creating shadows, 65
filling objects with colors, 51
filling shapes with gradients, 52–61
filling shapes with patterns, 61–63
rectangle basic shape, 28
transformations, 41–51

combining scale and rotation, 49
rotation and translation, 42–47
scale, 47

drawing states, 29
current state, 15

drawing with paths, 34, 382–385
(see also drawing on Canvas)
creating lines, 30–34
drawing game’s main character, 383

player ship with thrust engaged, 384
static player ship, 383

graphics for Asteroids-like game, 382
drawScreen() function, 11

drawing screen for video puzzle game, 298

614 | Index

in Guess The Letter game (example), 21
Hello World program (example), 8
Text Arranger (example)

setting font, 82
shadow settings and changes, 97
text fill color changes, 84

TextButton object in BS Bingo game
(example), 545

using in 3D context, 573
duration property

audio objects, 325
video objects, 263, 281

E
easing, 249–256

easing in, 253–256
easing out, 249–253
Robert Penner’s easing equations and

implementation in jQuery, 256
elastic collisions, 198
elasticity

applied with gravity and friction to bouncing
ball, 246–249

gravity with bounce and applied simple
elasticity, 243

ElectroServer 5, 583–607
admin tool, 584
basic architecture of an application, 587
basic architecture of socket-server

application, 585
creating chat application with, 588–593

adding bouncing ball to chat, 598
creating chat functionality, 590–593
establishing connection to ElectroServer,

588–590
full code for ball demo, 600–606

installing, 583
JavaScript API, 585
other uses of, 606
starting the server, 584
testing chat application in Google Chrome,

593–598
Electrotank, 583
em square (fonts), 86
embedding video in HTML, 275

plain-vanilla embed, 263
properties and methods, 262
video with controls, loop, and autoplay,

265

end of game, Geo Blaster Basic (example), 415
ended events, audio, 326
ended property

audio objects, 326, 341
video objects, 263

enemy object (Micro Tank Maze game), 506
EsObject objects, 591

use in bouncing balls application, 598
eval() function, 75
event handlers, 22

(see also events)
adding for keyup event in Guess The Letter

game (example), 19
createImageDataPressed() function

(example), 22
creating for mouse events on play/pause

push button, 342
defining for click-and-drag volume slider,

346
defining for mouse events in Space Raiders

game, 359
eventKeyPressed() function, 19
mouse events on loop toggle button, 343
registering, 7
setting in canvasApp(), Text Arranger

(example), 81
events, 7

canplay event handler for video, changing to
itemLoaded, 308

changes in shadow settings, Text Arranger
(example), 98

ElectroServer, creating handlers for, 589
embedded video in HTML5, problem with,

274
handler for keyup event of textBox, 71
handling for videoSize form control, 269
handling keyup event in Guess The Letter

game, 19
handling mouse events in Tile Stamper

application, 161
handling mouse events in video puzzle

game, 300
handling range controls change event, 194
important audio events, 326
interactivity of mouse events with audio

player controls, 340
keyboard controlling game player ship, 395–

399

Index | 615

keyboard input handler for controlled pan
and zoom, 155

listening for mouse button click in video
controls, 310

setting event handler for button click event,
22

video, creating using currentTime property,
285–289

eventWindowLoaded() function, 7
explosions (Micro Tank Maze game), 507
explosions and particles (in Geo Blaster game),

414
prerendering as bitmaps, 450
rendering for Geo Blaster Extended, 457
using object pooling, 464

exporting current Canvas to an image, 22
extensions, ElectroServer applications, 587

F
faces, font, 80
facing versus moving, game object animation,

393
fade effects, alpha fading player ship (game

example), 392
Feldman, Ari, 126
fill() method, context objects, 56
fillColor property, context objects, 73
fillRect() method, context objects, 11, 28, 57

linear gradient fills, 52–54
fills, 51–63

filling shapes with gradients, 52–61
diagonal linear gradients, 57
linear horizontal gradients, 52–56
radial gradients, 58–61
vertical linear gradients, 56

filling shapes with patterns, 61–63
setting basic fill colors, 51
setting for filled text, 70

fillStyle property, context objects, 15, 70
formatting with color, gradient, or pattern,

105
pattern, 103
setting colors, 51
setting font color for text, 83
setting for Hello World (example), 11
setting gradients, 52–61
setting in Guess The Letter game (example),

21
fillStyle() method, context objects, 11

fillText() method, context objects, 12, 70, 73
Flash

comparison to Canvas, 379
retained mode drawing surface, 16

flip-book animation, 130
font property, context objects, 15

setting for Hello World (example), 11
setting in Guess The Letter game (example),

21
fonts, 78–94

baseline and alignment, 86–90
handling text baseline alignment, 87–90
horizontal alignment, 87
vertical alignment, 86

color, 83
context.font property, 73
context.font style, setting, 69
handling font size and face in Text Arranger

(example), 79–83
handling in Text Arranger 2.0 (example),

90–94
size, face weight, and style basics, 78

for:next loops, 286
using in video puzzle game, 300

formats
audio, 322

converting, 322
finding supported format, 332
using .mp3, .ogg, and .wav formats, 323

video, 259
.mp4 files, 260
.ogg files, 260
.webm, 260
converting, 261
web browsers’ support of, 261

forms (see HTML forms)
fragment shaders, 570
frame counter, creating for animation, 130
frame tick, 131
FrameRateCounter object prototype, 406–407

adding step timer, 466–468
frames per second (FPS), 278, 386
frameworks, JavaScript, 6
friction

ball bouncing with applied gravity,
elasticity, and friction, 246–249

multiple balls bouncing with, 210–216
fromCharCode() method, String object, 19
functions

616 | Index

encapsulating for Canvas applications, 8
placement on HTML page, 2

G
GameManager API (ElectroServer), 587
games, 379–445

animating on canvas, 385–388
game timer loop, 386
player ship state changes (example),

386
applying transformations to graphics, 388–

389
basic game framework, 400–407

FrameRateCounter object prototype,
406–407

state machine, 400–403
update/render (repeat) cycle, 404–405

basic HTML5 file for, 380
creating dynamic tile sheet at runtime, 497–

501
creating for mobile devices with PhoneGap,

535
creating simple tile-based game, 501–534

Micro Tank Maze complete code, 516–
534

design, Asteroids-like game, 382
development using HTML5 Canvas, 379
Geo Blaster Basic (example)

applying collision detection, 417
arrays of logical display objects, 412
awarding player extra ships, 416
full source code, 419–443
game structure, 407–410
global game variables, 410
level and game end, 415
level knobs, 415
Rock object prototype, 443–445

going mobile (see BS Bingo game;
PhoneGap)

graphic transformations
alpha fading player ship (example), 392
rotating player ship from center

(example), 390
graphics, drawing with paths, 382–385

drawing game’s main character, 383
Guess The Letter (example), 17–26
multiplayer applications with ElectroServer

5, 583–607
object physics and animation, 393–400

controlling player ship with keyboard,
395–399

how player ship will move (example),
393–395

maximum velocity for player ship, 399
player object, 412
tile-based environment for backgrounds and

level graphics, 143
Geo Blaster Basic (example)

applying collision detection, 417
arrays of logical display objects, 412

explosions and particles, 414
missiles, 414
rocks, 413
saucers, 413

awarding player extra ships, 416
Basic version, full source code, 419–443
game structure, 407

application functions, 408
application states, 407

global variables, 410
level and game end, 415
level knobs, 415
player object, 412
Rock object prototype, 443–445

Geo Blaster Extended (example), 447
adding sound, 459–463
adding step timer, 466–468
complete source code, 468–497
pooling object instances, 464–466
rendering other game objects, 454
tile sheet, 448

gesture (iPhone), adding to BS Bingo (example),
561

adding gesture functions to index.html,
561–563

getContext() method, Canvas object, 10, 15,
16

getElementById() method, document objects,
9, 22, 71

getImageData() function, 159, 497
getShader() function, WebGL application,

572
GLGE library, 582
global variables

Geo Blaster game (example), 410
initializing Space Raiders game without

using, 355

Index | 617

preloading assets without, Space Raiders
game, 356

globalAlpha property, context objects, 15, 39
alpha fading player ship (game example),

392
text and, 94

globalCompositeOperation property, context
objects, 15, 39

Google’s O3D library, 582
gradients, 52–61

linear, 52–58
diagonal, 57
horizontal, 52–56
vertical, 56

radial, 58–61
text with, 100

handling in Text Arranger (example),
103–106

linear gradients, 100
radial gradients, 102

gravity, simulating
with bounce and applied simple elasticity,

243–246
simple gravity, 236–240
simple gravity with a bounce, 240–243

Guess The Letter game (example), 17–26
drawScreen() function, 21
eventKeyPressed() function, 19
exporting canvas to an image, 22
final code, 23–26
initGame() function, 19
variables, 17

H
H.264 video standard, 260
<head> tags, placement of JavaScript in, 6
height attribute, <canvas> element, 9
height of text, 72
height property, Canvas objects, 16
“Hello World!” program (example), 7–14
hex number string, using to set fill color, 52
hit test point

collision detection in video puzzle game,
300

detecting for audio player play/pause
button, 342

horizontal alignment of text, 87
horizontal linear gradients, 52–56

applying to complex shape, 55

applying to strokes, 54
on multiple objects, 53

HTML
adding Canvas to a page, 9
basic page, 2
basic tags used in this book, 4

</html><!doctype html> tags, 3
HTML forms

communication between Canvas and, 71
creating and adding button to, 22
ElectroServer chat application, 591

<html lang="en"> tags, 3
HTML5, 1

Canvas Hello World, 7–14
resources for further information, 607
simple page viewed in browsers, 3

HTMLAudioElement objects, 324
canPlayType() function, 328
creating array to hold for Space Raiders

game, 363
creating dynamically, 331, 362

finding supported audio format, 332
playing sound with no <audio> tag, 334–

336
paused property, 343
reusing preloaded sounds, 368
setAttribute() method, 331
Space Raiders game, 355
using in sound pool, 365

HTMLMediaElement interface, 262
properties, 281

HTMLVideoElement objects
canPlayType() method, 277
methods, 263
properties, 262, 263, 281–285

I
id attribute, <canvas> element, 9
if:then statements, 301
Image objects, 124

src property, 12
image patterns

text with image pattern applied, 106
using with text, 102

ImageData objects, 158
attributes, 158
data, organization in Tile Stamper

(example), 160
images, 123–169

618 | Index

advanced cell-based animation, 132–137
choosing tile to display, 133
creating animation array, 133
drawing the tile, 134
looping through tiles, 134
moving image across Canvas, 135–137
tile sheet, 133

applying rotation transformations to, 137–
142

animating transformed image, 140–141
combining rotation, animation, and

movement, 141–142
rotation transformation code, 138–140
transformation basics, 137–140

audiocontrols.png image for audio player,
337

basics of Canvas API, 124
copying from one canvas to another, 166–

168
copying part of image to Canvas, 128
creating grid of tiles, 143–148

creating tile map with Tiled, 143
defining tile map, 143
displaying tile map on canvas, 145–148

displaying image of canvas on the screen,
12

displaying on Canvas with drawImage(),
125

exporting canvas to an image, 22
exporting with toDataURL() method of

Canvas, 110
file formats, 16
moving on cubic Bezier curve path, 228–

232
pixel manipulation, 158

Tile Stamper application (example),
159

preloading, 125
resizing while drawing to canvas, 127
simple cell-based sprite animation, 130–

132
using as fills, 61

using no-repeat, repeat-x, and repeat-y
strings, 62

using repeat string, 62
zooming and panning, 149–158

controlled pan and zoom application,
154–158

creating and drawing window for image,
149–152

panning the image, 152
zooming and panning the image, 153

immediate mode, 1, 15
indexOf() method, Array objects, 20
initBuffers() function, WebGL application,

572
initButtons() function, BS Bingo game

(example), 544
initGame() function, Guess The Letter game

(example), 19
initLists() function, BS Bingo game (example),

544
initShaders() function, WebGL application,

572
initSounds() function, BS Bingo game

(example), 544
innerHTML property, element objects, 272
interval for video display update, 278–280
iOS applications, 535
iOS Developer Center, 546
iOS SDK, downloading, 546
iPad, Supported Interface Orientations, 556
iPhone

application development for, 535
porting HTML5 Canvas application to (see

PhoneGap)
iPhone gesture, adding to BS Bingo game

(example), 561
adding gesture functions to index.html,

561
iTunes Store, 535

J
JavaScript

dynamically creating audio element, 331
ElectroServer API, 585
encapsulating code for Canvas, 8
events, 7
frameworks and libraries, 6
libraries for WebGL, 569, 581
modernizr.js library, 2
placement in HTML documents, 6
preloading video, 271–274
programming Canvas applications with, 6
using document object to reference canvas

element in, 9
jQTouch, 566

Index | 619

jQuery Mobile Framework, 566
JSColor, 84

K
keyboard

checks for game-specific key presses, 404
controlling player ship (game example),

395–399
array holding key presses, 395
evaluating key presses, 396
key events, 395
source code, 396–399

event listener and handler for keyup event,
19

keyboard input, event handler for controlled
pan and zoom, 155

L
language, specifying in <html> tag, 3
law of conservation of momentum, 204
layerX and layerY properties, event objects,

300
Learning WebGL website, 569
level knobs (Geo Blaster game), 415
levels, checking in Geo Blaster Basic (example),

415
libraries, JavaScript, 6
linear gradients, 52–58

diagonal, 57
horizontal, 52–56

applying to a stroke, 54
applying to complex shape, 55
on multiple objects, 53

text with, 100
vertical, 56

lineCap property, context objects, 15
defining attributes, 31
using in more advanced line drawing, 32

lineJoin property, context objects
defining attributes, 32
using in more advanced line drawing, 32

lines
creating using paths, 30–34

more advanced examples, 32–34
finding length of, 174
moving in straight line, 171–179

lineTo() method, context objects, 31
lineWidth property, context objects, 15

setting, 32
listeners for events, 7

(see also event handlers; events)
load event, window objects, 7
load() function, audio objects, 325
loading audio, 326
Logg, Ed, 382
logging text messages to JavaScript console,

14
logical display objects, arrays of, 413
look and feel for iPhone-like application, 565
loop property

audio objects, 325
video objects, 262, 265

loop toggle button, 337
implementing for canvas audio player, 343
values for placement of, 339

M
magnitude (speed) of movement, 179
Makar, Jobe, 198
math-based movement, 171

moving in straight line, 171–179
length of a line, 174

Math.atan2() function, 204
Math.cos() function, 180, 204
Math.PI, 179
Math.PI/180, 35
Math.sin() function, 180, 204
Math.sqrt() function, 175, 204
measureText() method, context objects, 72,

89
<meta charset="UTF-8"> tags, 3
Micro Tank Maze game (example), 501–534

complete code, 516–534
description of game, 501
enemy object, 506
player, 505
playfield, 504
rendering logic overview, 514
simple AI overview, 515
tile movement logic overview, 512–514
tile sheet, 503

MIME types
audio, 332
canPlayType() method parameter, 277

missiles (in Geo Blaster game), 414
prerendering as bitmaps, 450
rendering for Geo Blaster Extended, 456

620 | Index

miterLimit property, context objects, 15
mobile devices, creating games for (see

PhoneGap)
modernizr.js library, 2

including in HTML page, 10
testing for audio support, 333
testing for WebGL support, 571

momentum, conservation of, 198, 204
mouse events

handling for click-and-drag volume slider,
346

handling for loop toggle button, 343
handling in Space Raiders game, 359
handling in Tile Stamper application, 161
handling in video puzzle game, 300
hit test point for play/pause push button,

342
interactivity with canvas audio player

controls, 340
listening for button click in video controls,

310
movement, 220

(see also animations; curve and circular
movement)
combining rotation, animation, and

movement, 141
displaying tile map on canvas, 147

moving in straight line, 171–179
distance between two points, 174

moving object on a vector, 179–183
player ship movement in Geo Blaster game

(example), 393–395
simple tile movement logic overview, 512–

514
simulating in animation, 135–137

movement vector calculations for step timer,
467

moveTo() method, context objects, 31
moving versus facing in game object animation,

393
.mp3 files, 322
.mp4 files, 260
multiplayer applications with ElectroServer 5,

583–607
basic architecture of ElectroServer

applications, 587
basic architecture of socket-server

application, 585

chat application with bouncing ball added,
598–606

creating chat application, 588–593
installing ElectroServer, 583
resources for further information, 607
testing chat application in Chrome, 593–

598
muted property

audio objects, 325
video objects, 263, 281

mvPopMatrix() function, 574
mvPushMatrix() function, 574
mvRotate() function, 574
mvTranslate() function, 574

N
Nitobi, PhoneGap, 536

O
O3D library, 582
object pools in Geo Blaster Extended

(example), 464–466
Objective-C, iOS applications in, 535
offsetX and offsetY properties, event objects,

300
.ogg files, 260, 322
onMouseClick() function, TextButton object

in BS Bingo (example), 545
onMouseMove() function, TextButton object

in BS Bingo (example), 545
open() method, window objects, 22
OpenGL, 568
orientation, setting for iOS application, 555

P
Pac-Man, 501
panning an image, 152

(see also zooming and panning images)
paths, 27

advanced drawing methods, 34–39
arcs, 34
Bezier curves, 36
clipping region, 37

drawing game graphics with, 382–385
drawing methods of context object, 384
tracing movement with path of points, 176
using to create lines, 30–34

Index | 621

examples of more advanced line
drawing, 32

simple line path (example), 31
starting and ending paths, 31

patterns
filling shapes with, 61–63

image file using repeat string, 62
using no-repeat, repeat-x, and repeat-y

strings, 62
image patterns and text, 102

handling in Text Arranger (example),
103–106

video as source, 103
pause button, video controls, 309
pause() method

HTMLAudioElement objects, 325
HTMLVideoElement objects, 263

paused property
audio objects, 325, 343
videos, 263

Penner, Robert, 256
perspective, setting up for 3D scene, 573
Peters, Keith, 205
PhoneGap, 535

creating iOS application with, 546–565
adding gesture functions to index.html,

561
adding iPhone gesture, 561
changing game banner and icon, 556
creating BS Bingo project in Xcode, 549
installing PhoneGap, 547
installing Xcode, 546
integrating BS Bingo into project, 553
setting orientation, 555
testing application on a device, 563
testing new app in simulator, 551
testing on iPhone simulator, 558

physics
angle of reflection and angle of incidence,

183
friction, 246
game objects and animation, 393–400

giving player ship maximum velocity,
399

how player ship will move (example),
393–395

law of conservation of momentum, 198
vectors, 179

Pilgrim, Mark, 10

pixel manipulation, 158
Canvas Pixel Manipulation API, 158
Tile Stamper application (example), 159–

166
play button, video controls, 310
play() method

calling on audio elements, 333
HTMLAudioElement objects, 325
HTMLVideoElement objects, 263

play/pause push button, 337
implementing for canvas audio player, 342
values for placement of, 339

player object
Geo Blaster Basic game (example), 412
Micro Tank Maze game (example), 505

players
creating canvas audio player, 336–352

click-and-drag volume slider, 344
complete code, 347–352
creating custom user controls, 337
handlers for commonmouse events, 340
loading button assets, 338
loop toggle button, 343
play/pause push button, 342
setting up player values, 339
sliding play indicator, 340

playfield (Micro Tank Maze game), 504
playing events, audio, 326
playing sounds in Geo Blaster Extended game,

463
playing Space Raiders game, 360
plug-ins for ElectroServer applications, 588
PluginMessageRequest object, 591
.png image file, exporting current canvas as,

16
points, path, of, use in tracing movement, 176
pooling variables, adding to Geo Blaster

Extended (example), 464
ports and protocols, ElectroServer, 585
positions of objects, updating in multiple balls

bouncing with collisions, 202
poster property, videos, 262
preload property, audio objects, 326
preloading

button assets for audio player, 338
buttons for video controls, 307
Space Raiders game assets, without global

variables, 356
video in JavaScript, 271–274

622 | Index

PrivateMessageRequest object, 591
programming languages for web development,

xvi
progress bar, sliding, 337

drawing sliding play indicator onto canvas,
340

values for placement of, 339
progress events

audio, 326
video, 272

problem with, 275
properties

audio, displaying on canvas, 327–331
CanvasRenderingContext2D (context), 15
important audio properties, 325
important video properties, 262

protocols and ports, ElectroServer, 585
Provisioning Assistant, launching, 563
PublicMessageRequest object, 591
push() method, Array objects, 19
putImageData() function, 159, 497
puzzle game, video, 294–307

creating hit test point-style collision
detection, 300

drawing the screen, 298
handling mouse events, 300
randomizing puzzle pieces, 296
setting up the game, 294
swapping elements in two-dimensional

array, 302
testing the game, 302–307

Pythagorean theorem, 174, 201

Q
quadratic Bezier curves, 36, 232

R
radial gradients, 52, 58–61

applied to a circle, 60
arc stroke gradient, 60
complex, 59
simple, 59
text with, 102

radians
converting angles to, 42, 179
defining angles in, 34

Rains, Lyle, 382
range controls, 193

adding to dynamically scale videos, 268
event handlers for change event, 194
specifying font size, 80

rect() method, context objects, 37
rectangles

drawing basic, 28
scaling and rotating, 49

rendering
Micro Tank Maze game (example), logic

overview, 514
splitting render cycle from updates, 404–

405
repeats, image fills, 62

text with pattern fill, 102
using no-repeat, repeat-x, and repeat-y

strings, 62
using repeat string, 62

resetting Space Raiders game, 358
resizing

dynamically resizing canvas, 106–109
multiple balls bouncing animation, 193–

198
image as it’s drawn, 127

restore() method, context objects, 138
retained mode, 1, 15
rgb() method, setting fill color, 52
rgba() method, setting fill color, 52
RIA (Rich Internet Application) technology,

shift away from, 607
rocks (in Geo Blaster game), 413

prerendering as bitmaps, 449
rendering for Geo Blaster Extended, 454
Rock object prototype, 443–445

rooms in ElectroServer zones, 587
rotate() function, 43
rotation

around the center point, 45
redrawing player ship (example) to start at

angle 0, 394
thrusting in rotated direction (game

example), 394
rotation transformations, 42–47, 137–142

animating rotated image, 140–141
Canvas state and, 43
Canvas transformation basics, 137–140
combining with animation and movement,

141–142
displaying tile map, 147

combining with scale transformations, 49

Index | 623

multiple rotated squares (example), 46
prerendering as bitmaps for Geo Blaster

Extended, 448
rotating game graphic (example), 388–389
rotating game player ship from center, 390–

392
translation with, 44
using dynamic tile sheets created at runtime,

497–501
video, 289–294

S
Safari Mobile applications, automatic scaling to

iOS device window, 555
Sampaio, Felipe, 205
saucers (in Geo Blaster game), 413

prerendering as bitmaps, 450
rendering for Geo Blaster Extended, 454

save() and restore() methods, context objects,
30, 137

scale transformations, 47
combining with rotation transformations,

49
performing translation before, 48

scale() function, 47
scaling

altering width and height of video, 267
dynamically scaling the Canvas, 109
dynamically scaling video, 268
resizing image as it’s drawn, 127

SceneJS library, 582
scenes, 570
SDK (iOS)

downloading, 546
setting for PhoneGap project, 549

SECURITY_ERR: DOM Exception 18, 112
<select> elements, 74
sendMessage() function, 591
setAttribute() method, 110

HTMLAudioElement object, 331
setInterval() function, 278, 386
setTransform() method, context objects, 42,

138
shaders, 570
shadowBlur property, context objects, 65, 97
shadowColor property, context objects, 65, 97
shadowOffsetX property, context objects, 15,

65, 97

shadowOffsetY property, context objects, 15,
65, 97

shadows
creating on shapes, 65
global shadows and text, 96–100

Silverlight
and move away from RIA technologies,

607
retained mode drawing surface, 16

simulator (Xcode)
testing blank PhoneGap application, 551
testing iPhone PhoneGap app on, 558

sine, 180
socket-server applications, 583

basic architecture of, 585
sound pool, creating, 365
<source> tags, within <video> tag, 264
Space Raiders game, audio case study, 352–

378
creating sound pool, 365
creating unlimited dynamic sounds, 362
final code, 371–378
game structure, 353–362

bounding box collision detection, 359
initializing game, 355
mouse control, 359
playing the game, 360
preloading assets, 356
resetting the game, 358
state machine, 354

other possible improvements, 371
playing sounds using single object, 362
reusing preloaded sounds, 368–371
sounds and games, 353

speed
magnitude of movement, 179
multiple balls bouncing, 189

SpiderGL library, 582
spiral, moving in, 220–223
sprite sheet, 128
SpriteLib, 126
sqrt() function, Math object, 175
src property

Image objects, 12, 124
setting for audio element, 331
videos, 262

stack, saving and retrieving current canvas,
388

state

624 | Index

current path and current bitmap, not
included in, 30

drawing states, 29
rotation and Canvas state, 43
saving and restoring, 30

state functions, 400
animateEnemy() game state function, 507
gameStateEnemyMove() function

overview, 515
gameStateInit() function, 464
Geo Blaster Basic game (example), 407

state machine
application states, Space Raiders game, 354

STATE_INIT, 355
STATE_LOADING, 356
STATE_PLAYING, 360
STATE_RESET, 358

for games, 400–403
Micro Maze Tank game, turn-based game

flow and, 508–512
step timer, adding to Geo Blaster Extended

game, 466–468
stop button, video controls, 311
String object, fromCharCode() method, 19
stroke

arc stroke radial gradient, 60
horizontal stroke gradient, 54
vertical gradient stroke, 57

strokeColor property, context objects, 73
strokeRect() method, context objects, 12, 29

horizontal stroke gradient, 54
strokeStyle property, context objects, 15

defining attributes of, 32
formatting with color, gradient, or pattern,

105
horizontal gradient, 54
pattern, 103
setting font color for text, 83

strokeText() method, context objects, 73
style.width and style.height properties of

canvas
dynamically scaling the canvas, 109

styles, font, 79
subpaths, 31
Supported Interface Orientations setting, 556
switch statements, 75

switch/case statement, 155–158
sylvester.js library, 569

T
ternary operator (?:), 155
text

drawing to screen in Guess The Letter game
(example), 21

putting “Hello World!” on the screen, 11
Text API, 69–121

basic text display, 69
communicating between HTML forms and

Canvas, 71
dynamically resizing the canvas, 106–109
dynamically scaling the canvas, 109
fillText() and strokeText() methods, 73
final version of Text Arranger (example),

112–121
global shadows and text, 96–100
handling basic text in Text Arranger, 70
handling gradient and patterns in Text

Arranger, 103
setting fonts, 78–94

baseline and alignment, 86–90
Text Arranger 2.0 (example), 90–94

text and Canvas context, 94–100
text with gradients, 100
text with image patterns, 102
toDataURL() method of Canvas object,

110
using measureText() method, 72

Text Arranger (example)
complete code, version 1.0, 76–78
dynamically resizing text, 108
final version 3.0, 112–121
handling basic text, 70
handling font color, 83
handling font size and face, 79–83
handling gradient and patterns, 103–106
handling text baseline and alignment, 87–

90
version 2.0, 90–94

textAlign property, context objects, 15, 87
textBaseline property, context objects, 15, 86

setting in Guess The Letter game (example),
21

setting in Hello World (example), 11
TextButton.js file, BS Bingo game (example),

542–545
chooseButtonsForCard() function, 544
drawScreen() function, 545
initButtons() function, 544

Index | 625

initLists() function, 544
initSounds() function, 544
onMouseClick() function, 545
onMouseMove() function, 545

TextMetrics objects, 72
width property, 89

Theora, 260
Thomas, Giles, 569
three-way swap programming construct, 302
thrusting in rotated direction (game object),

394
tile maps, 143

creating with Tiled, 143
displaying on Canvas, 145–148

displaying map on Canvas, 146
map height and width, 146
storing map data, 146

tile sheets, 128
calculating tile source location, 450
creating dynamic tile sheet at runtime, 497–

501
Geo Blaster Extended (example), 448

loading, 461
Micro Tank Maze game tile sheet, 503
using in advanced cell-based animation,

132–137
choosing tile to display, 133
drawing tile on each iteration, 134
looping through tiles, 134

using in simple cell-based animation, 130–
132

changing tile to display, 131
Tile Stamper application (example), 159–166

adding mouse events to canvas, 161
complete code, 164
highlightTile() function, 163
organization of ImageData.data, 160

tile-based games, 501
Micro Tank Maze game (example)

complete code, 516–534
description of game, 501
enemy, 506
explosions, 507
goal tile, 507
player, 505
playfield, 504
rendering logic overview, 514
simple AI overview, 515
tile movement logic overview, 512–514

tile sheet, 503
turn-based game flow and state machine,

508–512
Tiled, 143
timer tick, 131
timers

adding step timer to Geo Blaster Extended
(example), 466–468

creating timer loop for cell-based animation,
131

creating timer loop for cell-based sprite
animation, 131

game/animation timer loop, 386
title screen state (game example), 401–403
<title>…</title> tags, 3
toDataURL() method, Canvas objects, 16, 22,

110
toString() method, Array objects, 21
transformation matrix, 15
transformations, 41–51, 137–142

alpha fading player ship (game example),
392

animating transformed image, 140–142
applying to game graphics, 388–389
Canvas transformation basics, 137–140
combining rotation, animation, and

movement, 141, 147
combining scale and rotation

transformations, 49
prerendering as bitmaps for Geo Blaster

Extended, 448
rotating game player ship from center

(example), 390–392
rotation and translation, 42–47
scale, 47
video, rotation transformation, 289–294

translate() function, 44
translations

performing before scale transforms, 48
in rotation transformations, 44

transparency
controlling with globalAlpha property, 39
globalAlpha property and text, 94

turn-based game flow, state machine and, 508–
512

U
Unique ID, finding for physical mobile device,

563

626 | Index

update-collide-render cycle, 201
update/render (repeat) cycle, 404–405
useCapture option, 7
UTF-8 character encoding, 3

V
variables

encapsulating for Canvas applications, 8
Guess The Letter game (example), 17

vectors
moving object on, 179–183
object moving on, simple gravity with, 236

velocity (maximum), giving to player ship
(example), 399

Vertex Color buffer, WebGL application, 573
Vertex Index buffer, WebGL application, 573
vertex shaders, 570
vertical alignment of text, 86
vertical linear gradients, 56
video, 259–320

animation, 316–320
basic HTML5 implementation, 262–271

altering video’s width and height, 267–
271

plain-vanilla embed, 263
video with controls, loop, and autoplay,

265
converting formats, 261
displaying on HTML5 Canvas, 275–281
HTML5 properties, 281–285
HTML5 video format support, 259
preloading in JavaScript, 271–275

problem with events, 274
using as source for patterns, 103
using with Canvas, examples

creating video controls on Canvas, 307–
316

rotation video transformation, 289–294
using currentTime property to create

video events, 285–289
video puzzle game, 294–307

video codecs, 259
<video> tags, 259
viewport, setting up, 573
volume property

audio objects, 325
video objects, 262, 281

volume slider, interactive, 337
click-and-drag volume slider, 344

volume slider functionality, 346
volume slider variables, 345

values for placement of, 339
volumechange events, audio, 326
Vorbis, 260
VP8 codec, 260

W
W3C website, coverage of Canvas 2D Drawing

API, 27
walls, better interaction with, in balls bouncing

with collisions, 202
.wav files, 322
web application development, paradigm shift

in, 607
web browsers

HTML5 Canvas Text API support, 69
looking at simple HTML5 page, 3
pattern fills, 63
running examples in this book, xv
support for HTML5 Canvas, 2
supported audio formats, 322
testing for canvas support, 10
testing for WebGL support, 571
video formats supported by, 261

web page for this book, xviii
web security, disabling for Chrome, 593
WebGL, 567–583

application, 3D rotating cube, 569
adding JavaScript libraries, 569
animating the cube, 573
complete code, 575–581
initialization in canvasApp(), 571
shaders, 570
testing for WebGL support with

Modernizr, 571
defined, 568
JavaScript libraries used with, 581
resources for information, 569
testing, 568

.webm files, 260
WebM video standard, 260
WebSockets, 583
weights, font, 79
while loops, 297
width and height

altering for videos, 267–271
dynamically resizing the canvas, 106
ImageData objects, 158

Index | 627

width attribute, <canvas> element, 9
width property

Canvas objects, 16
TextMetrics object, 72

window objects, 5
addEventListener() method, 7, 19
load event, 7
open() method, 22

windows, creating logical window for zoomed
or panned image, 149–152

Winiarczyk, Ben, 198

X
Xcode IDE, 535

creating BS Bingo PhoneGap project, 549
installing, 546
looking up mobile device’s Unique ID, 563
setting build target to a device, 564
testing BS Bingo on iPhone simulator, 558

Z
zones, rooms, and games in ElectroServer, 587
zooming and panning images, 149–158

controlled pan and zoom, 154–158
creating logical window for, 149–152
panning an image, 152
simultaneously zooming and panning an

image, 153

628 | Index

	Team rebOOk

