Network Security with OpenSSL

By Pravir Chandra, Matt Messier, John Viega

Publisher : O'Reilly

e Pub Date : June 2002
ISBN : 0-596-00270-X
Table of Pages : 384
Contents

OpenSSL is apopular and effective open source version of SSL/TLS, the most widely
used protocol for secure network communications. The only guide available on the
subject, Network Security with OpenSSLdetails the challenges in securing network
communications, and shows you how to use OpenSSL tools to best meet those
challenges. Focused on the practical, this book provides only the information that is
necessary to use OpenSSL safely and effectively.

http://www.oreillynet.com/cs/catalog/view/au/904?x-t=book.view
http://www.oreillynet.com/cs/catalog/view/au/903?x-t=book.view
http://www.oreillynet.com/cs/catalog/view/au/902?x-t=book.view

Table of Content

Table Of CONENL........o.eoe e e I
D=0 (o= (o] [T PP Vi
PIEIACE ... et Vil
ADOUL THIS BOOK ... e s viii
Conventions Used in ThiS BOOK.........cccoiiiiiiiiinieeeee e X
Comments and QUESTIONSc.eecveeiiiecieceecee et re e e e eree s Xi
ACKNOWIEAGMENLS ...t nns Xi
Chapter 1. INtrOUCTION.........ooiiiiiieeeie e e 1
1.1 Cryptography for the Rest Of US........ccccevevirieviciece e 1
1.2 OVEIVIEW OF SSL ..ttt 8
1.3 Problems With SSL ..o e 10
1.4 What SSL D0esSN't DO Wl ..o 16
1.5 OPENSSL BASICS....ciiieiiieiisiesiecie e seesteeee e esae e sseessesee e essesnessneensesneens 17
1.6 Securing Third-Party SOftWareccccveceveeiieeieseere e 18
Chapter 2. Command-Line Interface..........ccoovrviieninie e 23
P2 R g T = = 1 o USSP 23
2.2 Message Digest AlgOrithmscccccveieiecie e 25
2.3 SYMMELINC CIPNEIS .o e 27
2.4 Public Key Cryptography ... 28
2.5 SIMIME ...ttt 32
2.6 Passwords and PasSPhrasescccccceveeieceeseese e seese e see s 33
2.7 Seeding the Pseudorandom Number Generator..........cc.ccvceeverceenuennnn. 35
Chapter 3. Public Key Infrastructure (PKI).....ccccoeiveieiieneeeseese e 37
N O 1] 1 T0F= 1= USROS 37
3.2 Obtaining @ CertifiCatecceveereeiieieseee s 44
3.3 Setting Up a Certification AUtNOILYcccoevvireriiniineeeeee e 47
Chapter 4. SUPPOrt INFraStIUCTUIEccveeeeieecece e 60
v R \V/ [0 1 g T == To IS U o] oo g A 60
4.2 Internal Error HANAIING.....coooiiiieeee e e 66
4.3 Abstract INPUI/OULPULcceeeeeieceee e 70
4.4 Random NUumber Generationc.ccccevererereneseseseseeee e 80
4.5 Arbitrary Precision Math ... 85
4.6 USING ENQINES ...ttt 91
Chapter 5. SSL/TLS Programming.........ccccceereeresieesiesieeseeseeseeseessessseseessesneens 93
5.1 Programming With SSL.......cccoooeiieiieeeccece e 93
5.2 Advanced Programming With SSLccocceiiriininiieeeeree e 125
Chapter 6. Symmetric Cryptography......cccccceceeveeienieereee e eee e 143
6.1 Concepts in Symmetric Cryptography......ccccccevvevevieseese e eee s 143
6.2 Encrypting with the EVP APl ... 145
6.3 General Recommendationscocuoeieererieneeseeee e 161
Chapter 7. Hashes and MACScccoriiie e 162
7.1 Overview of Hashes and MACS ..o 162
7.2 Hashing With the EVP APl........o e 163
7.3 USING MACS ...ttt sre e aeeneenreenaesnee e 168
7.4 Secure HTTP COOKIEScccooiiiiiriesiireeee e 179
Chapter 8. Public Key AlgOrithmsS.........cooiiiiiiieeeee e 184

8.1 When to Use Public Key Cryptography........cccccocvevvrienieeneecevieseenns 184

8.2 Diffie-HellMan. ..o 185
8.2 Diffie-HellMan.........cooie e 190
8.3 Digital Signature Algorithm (DSA).....cccceieeieieereere e 195
B4 RSA . ettt 200
8.5 The EVP Public Key INterfaceccocveieriineneeseeeseeeee e 205
8.6 Encoding and Decoding ODJECtS........cccceierieiieneereeeesee e 213
Chapter 9. OpenSSL in Other LangUagesccceecveeeereeieeseerieeieseeseesee e 220
9.1 Net::SSLeay fOr Perl ... 220
9.2 M2Crypto fOr PYtNON ... 225
9.3 OpenSSL SUpPOrt iN PHP ... 233
Chapter 10. Advanced Programming TOPICS.....cccceveererrerseerreererseesseeseesseenns 241
10.1 ODJECE STACKScveiieeiieiee ettt s 241
10.2 Configuration FlES ..o s 242
10.3 X509 .ttt e 245
10.4 PKCSH7 and SIMIMEcccocoiiiiieieieiese et 259
O R o O3 SO 268
Appendix A. Command-Line Reference..........cccooeveeveseeveece s 270
BSNLPAISE. ... ettt ettt e e e e b b e e r e nn e s ne e sne e sne e nanes 270
(o7 TSP PR PRRR 271
(o] o] 0= £ U SURRRRTRTRRN 277
o o SRS 277
CIT2PKEST ..ttt st sttt be et e ere e sbe e nneen 279
0 [0 S PTTPRR 280
(0] 01072 7T o USRS 281
(0 5= TSP TTRURR 282
(0520 = o USRS 284
< 0o OO TRR PP PROPRPRN 285
S S 1 TSP UPRP TR 287
(01510 157 USSR 287
[0S 0155 H TP 288
Lo RSP P O P SRR 289
872 55 TR 289
0L S 290
012(0S S RS 291
811 OSSP 293
721110 PSR 296
1= PRSP RRSPR 296
552 VPRSPPI 301
L5721 || OSSP 302
ST & 11 | ST SPRRPRURRP 304
SIS = Y/ PRSPPI 306
S HIMIB. e r e ane e s nn e e nes 309
S =SS o TP SURRPRRRN 311
S 00 PP PR PSPPSR 312
S 07 o RS URURTRTRRN 316
S 1o USRS 316
1YL 11 YRR 317
(VL £ Lo o RSSO 318
DG 01 SRR 319

Colophon

Copyright © 2002 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O'Rellly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information
contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

The O'Reilly logo is aregistered trademark of O'Rellly & Associates, Inc. Many of the
designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was
aware of atrademark claim, the designations have been printed in caps or initial caps. The
association between the image of a group of sealions and seals and the topic of network security
with OpenSSL is atrademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and the
author(s) assume no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

http://safari.oreilly.com/
mailto:corporate@oreilly.com

Dedication

To the memory of Arthur J. Zoebelein, former Chief of the Office of Cryptologic Archives and
History, National Security Agency

Vi

Preface

About This Book

Conventions Used in This Book

Comments and Questions

Acknowledgments

Vii

About This Book

The Internet is a dangerous place, more dangerous than most people realize. Many technical
people know that it's possible to intercept and modify data on the wire, but few realize how easy it
actually is. If an application doesn't properly protect data when it travels an untrusted network, the
application is a security disaster waiting to happen.

The SSL (Secure Socket Layer) protocol and its successor TLS (Transport Layer Security) can be
used to secure applications that need to communicate over a network. OpenSSL is an open source
library that implements the SSL and TLS protocols, and is by far the most widely deployed, freely
available implementation of these protocols. OpenSSL is fully featured and cross-platform,
working on Unix and Windows alike. It's primarily used from C and C++ programs, but you can
use it from the command line (see Chapter 1 through Chapter 3) and from other languages such as
Python, Perl, and PHP (see Chapter 9).

In this book, welll teach developers and administrators how to secure applications with OpenSSL.
We won't just show you how to SSL-enable your applications, well be sure to introduce you to the
most significant risks involved in doing so, and the methods for mitigating those risks. These
methods are important; it takes more work to secure an SSL-enabled application than most people
think, especially when code needs to run in multithreaded, highly interoperable environments
where efficiency is a concern.

OpenSSL is more than just afree implementation of SSL. It also includes a general-purpose
cryptographic library, which can be useful for situations in which SSL isn't an appropriate solution.
Working with cryptography at such alow level can be dangerous, since there are many pitfallsin
applying cryptography of which few devel opers are fully aware. Nonethel ess, we do discuss the
available functionality for those that wish to use it. Additionally, OpenSSL provides some high-
level primitives, such as support for the SMIME email standard.

The bulk of this book describes the OpenSSL library and the many ways to use it. We orient the
discussion around working examples, instead of simply providing reference material. We discuss
all of the common options OpenSSL users can support, as well as the security implications of each
choice.

Depending on your needs, you may end up skipping around in this book. For people who want to
use OpenSSL from the command line for administrative tasks, everything they need isin thefirst
three chapters. Developers interested in SSL-enabling an application can probably read Chapter 1,
then skip directly to Chapter 5 (though they will have to refer to parts of Chapter 4 to understand
all the code).

Here's an overview of the book's contents:

Chapter 1

This chapter introduces SSL and the OpenSSL library. We give an overview of the
biggest security risks involved with deploying the library and discuss how to mitigate
them at ahigh level. We also look at how to use OpenSSL along with Stunnel to secure
third-party software, such as POP servers that don't otherwise have built-in SSL support.

Chapter 2
Here we discuss how to use basic OpenSSL functionality from the command line, for

those who wish to use OpenSSL interactively, call out to it from shell scripts, or interface
with it from languages without native OpenSSL support.

viii

Chapter 3

This chapter explains the basics of Public Key Infrastructure (PK1), especially asit
manifests itself in OpenSSL. This chapter is primarily concerned with how to go about
getting certificates for usein SSL, SIMIME, and other PKI-dependent cryptography. We
also discuss how to manage your own PKI using the OpenSSL command line, if you so
choose.

Chapter 4

In this chapter, we talk about the various low-level APIsthat are most important to
OpenSSL. Some of these APIs need to be mastered in order to make full use of the
OpenSSL library. Particularly, we lay the foundation for enabling multithreaded
application support and performing robust error handling with OpenSSL. Additionally,
we discuss the OpenSSL 10 AP, its randomness AP, its arbitrary precision math API,
and how to use cryptographic acceleration with the library.

Chapter 5

Here we discuss the ins and outs of SSL-enabling applications, particularly with SSLv3
and its successor, TLSv1. We not only cover the basics but also go into some of the more
obscure features of these protocols, such as session resumption, which is atool that can
help speed up SSL connection times in some circumstances.

Chapter 6

This chapter covers everything you need to know to use OpenSSL's interface to secret-
key cryptographic algorithms such as Triple DES, RC4, and AES (the new Advanced
Encryption Standard). In addition to covering the standard API, we provide guidelines on
selecting algorithms that you should support for your applications, and we explain the
basics of these algorithms, including different modes of operation, such as counter mode.
Additionally, we talk about how to provide some security for UDP-based traffic, and
discuss genera considerations for securely integrating symmetric cryptography into your
applications.

Chapter 7

In this chapter, we discuss how to use nonreversible (one-way) cryptographic hash
functions, often called message digest algorithms. We also show how to use Message
Authentication Codes (MACs), which can be used to provide data integrity via a shared
secret. We show how to apply MACs to ensure that tampering with HTTP cookies will be
detected.

Chapter 8
Here we talk about the various public key algorithms OpenSSL exports, including Diffie-

Hellman key exchange, the Digital Signature Algorithm (DSA), and RSA. Additionally,
we discuss how to read and write common storage formats for public keys.

Chapter 9

This chapter describes how to use OpenSSL programmiatically from Perl using the
Net::SSL eay package, from Python using the M2Crypto library, and from PHP.

Chapter 10

In this chapter, we discuss many of the more esoteric parts of the OpenSSL API that are
still useful, including the OpenSSL configuration AP, creating and using SMIME email,
and performing certificate management programmatically.

Appendix A
Here we provide areference to the many options in the OpenSSL command-line interface.

Additionally, the book's web site (http://www.openssibook.com) contains API reference material
that supplements this book. We also give pointers to the official OpenSSL documentation.

Note that we do not cover using SSL from Apache. While Apache does use OpenSSL for its
cryptography, it provides its own API for configuring everything. Covering that isn't in the scope
of this book. Refer to the Apache documentation, or the book Apache: The Definitive Guide by
Ben Laurie and Peter Laurie (O'Reilly & Associates).

Aswe finish this book, OpenSSL isat Version 0.9.6¢, and 0.9.7 isin feature freeze, though afinal
release is not expected until well after this book's publication. Additionally, we expect developers
to have to interoperate with 0.9.6 for some time. Therefore, we have gone out of our way to
support both versions. Usually, our discussion will apply to both 0.9.6 and 0.9.7 releases unless
otherwise noted. If there are features that were experimental in 0.9.6 and changed significantly in
0.9.7 (most notably support for hardware acceleration), we tend to explain only the 0.9.7 solution.

We've set up aweb site at www.openssibook.com. It contains an up-to-date archive of all the
example code used in this book. All the examples have been tested with the appropriate version of
OpenSSL on Mac OS X, FreeBSD, Linux, and Windows 2000. They're expected to work portably
in any environment that supports OpenSSL.

In addition, the web site contains API reference documentation. Because OpenSSL contains
literally thousands of functions, we thought it best to offload such documentation to the Web,
especially considering that many of the APIs are still evolving.

The book's web site also contains links to related secure programming resources and will contain
an erratalisting of any problems that are found after publication.

Y ou can contact the authors by email at authors@opensslbook.com.

Conventions Used in This Book
The following conventions are used in this book:
Italic

Used for filenames, directory names, and URLS. It is also used to emphasize new terms
and concepts when they are introduced.

Constant Width
Used for commands, attributes, variables, code examples, and system output.

Constant Width Italic

http://www.opensslbook.com/
http://www.opensslbook.com/
mailto:authors@opensslbook.com

Used in syntax descriptions to indicate user-defined items.

Constant Width Bold

Indicates user input in examples showing an interaction. Also indicates emphasized code
elements to which you should pay particular attention.

il Indicates atip, suggestion, or general note.

Indicates awarning or caution.

Comments and Questions

We have tested and verified the information in this book to the best of our ability, but you may
find that features have changed or that we have made mistakes. If so, please notify us by writing to:

O'Rellly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (internationa or local)

(707) 829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookguestions@oreilly.com

We have aweb site for this book, where you can find examples and errata (previously reported
errors and corrections are available for public view there). Y ou can access this page at:

http://www.oreilly.com/catal og/openssl/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

Acknowledgments

Wed like to thank everyone who has contributed to this book, either directly or indirectly.
Everyone at O'Reilly has been very helpful, particularly Julie Flanagan, and Kyle Hart, and our
editor Robert Denn.

All of our co-workers at Secure Software Solutions have been extremely tolerant of our work on
this book and have helped us out whenever necessary. Particularly, we'd like to thank Zachary

mailto:bookquestions@oreilly.com
http://www.oreilly.com/catalog/openssl/
http://www.oreilly.com/

Girouard, Jamie McGann, Michael Shinn, Scott Shinn, Grisha Trubetskoy, and Robert Zigweid
for their direct support.

Aswith our co-workers, we'd like to thank all of our family and friends for their tolerance, support
and enthusiasm, particularly our parents, Anne, Emily, and Molly Viega, Ankur Chandra, Nupur
Chandra, Sara Elliot, Bob Fleck, Shawn Geddis, Tom O'Connor, Bruce Potter, Greg Pryzby,
George Reese, Ray Schneider, and John Steven.

We'd particularly like to thank the people who reviewed this book, including Simson Garfinkel,
Russ Housley, Lutz Janicke, and Stefan Norberg. Their input was highly valuable across the board.

Everyone who has contributed to what is now OpenSSL deserves specia thanks, including Mark
Cox, Ralf Engelschall, Dr. Stephen Henson, Tim Hudson, Lutz Jénicke, Ben Laurie, Richard
Levitte, Bodo Mdller, UIf Mdller, Andy Polyakov, Holger Reif, Paul Sutton, Geoff Thorpe, and
Eric A. Young.

We also thank Sue Miller for encouraging usto write this book in the first place.

—John Viega, Matt Messier, and Pravir Chandra
March 2002
Fairfax, VA

Xii

Chapter 1. Introduction

In today's networked world, many applications need security, and cryptography is one of the
primary tools for providing that security. The primary goals of cryptography, data confidentiality,
data integrity, authentication, and non-repudiation (accountability) can be used to thwart

numerous types of network-based attacks, including eavesdropping, |P spoofing, connection
hijacking, and tampering. OpenSSL is a cryptographic library; it provides implementations of the
industry's best-regarded a gorithms, including encryption agorithms such as 3DES ("Triple DES"),
AES and RSA, as well as message digest algorithms and message authentication codes.

Using cryptographic algorithms in a secure and reliable manner is much more difficult than most
people believe. Algorithms are just building blocks in cryptographic protocols, and cryptographic
protocols are notorioudly difficult to get right. Cryptographers have a difficult time devising
protocols that resist all known attacks, and the average devel oper tends to do alot worse. For
example, developers often try to secure network connections ssmply by encrypting data before
sending it, then decrypting it on receipt. That strategy often failsto ensure the integrity of data. In
many situations, attackers can tamper with data, and sometimes even recover it. Even when
protocols are well designed, implementation errors are common. Most cryptographic protocols
have limited applicability, such as secure online voting. However, protocols for securely
communicating over an insecure medium have ubiquitous applicability. That's the basic purpose
of the SSL protocol and its successor, TLS (when we generically refer to SSL, we are referring to
both SSL and TLS): to provide the most common security servicesto arbitrary (TCP-based)
network connectionsin such away that the need for cryptographic expertise is minimized.

Ultimately, it would be niceif developers and administrators didn't need to know anything about
cryptography or even security to protect their applications. It would be nice if security was as
simple as linking in adifferent socket library when building a program. The OpenSSL library
strives toward that ideal as much as possible, but in reality, even the SSL protocol requires a good
understanding of security principles to apply securely. Indeed, most applications using SSL are
susceptible to attack.

Nonetheless, SSL certainly makes securing network connections much simpler. Using SSL doesn't
require any understanding of how cryptographic algorithms work. Instead, you only need to
understand the basic properties important algorithms have. Similarly, devel opers do not need to
worry about cryptographic protocols; SSL doesn't require any understanding of itsinternal
workings in order to be used. Y ou only need to understand how to apply the algorithm properly.

The goal of this book isto document the OpenSSL library and how to use it properly. Thisisa
book for practitioners, not for security experts. We'll explain what you need to know about
cryptography in order to use it effectively, but we don't attempt to write a comprehensive
introduction on the subject for those who are interested in why cryptography works. For that, we
recommend Applied Cryptography, by Bruce Schneier (John Wiley & Sons). For those interested
in amore technical introduction to cryptography, we recommend Menezes, van Oorschot, and
Vanstone's Handbook of Applied Cryptography (CRC Press). Similarly, we do not attempt to
document the SSL protocol itself, just its application. If you're interested in the protocol details,
we recommend Eric Rescorla’'s SSL and TLS (Addison-Wesley).

1.1 Cryptography for the Rest of Us

For those who have never had to work with cryptography before, this section introduces you to the
fundamental principles you'll need to know to understand the rest of the material in this book. First,

well look at the problems that cryptography aims to solve, and then well look at the primitives
that modern cryptography provides. Anyone who has previously been exposed to the basics of
cryptography should feel free to skip ahead to the next section.

1.1.1 Goals of Cryptography

The primary goal of cryptography is to secure important data as it passes through a medium that
may not be secure itself. Usually, that medium is a computer network.

There are many different cryptographic algorithms, each of which can provide one or more of the
following servicesto applications:

Confidentiality (secrecy)

Datais kept secret from those without the proper credentials, even if that datatravels
through an insecure medium. In practice, this means potential attackers might be able to
see garbled data that is essentialy "locked," but they should not be able to unlock that
data without the proper information. In classic cryptography, the encryption (scrambling)
algorithm was the secret. In modern cryptography, that isn't feasible. The algorithms are
public, and cryptographic keys are used in the encryption and decryption processes. The
only thing that needs to be secret isthe key. In addition, as we will demonstrate a bit | ater,
there are common cases in which not all keys need to be kept secret.

Integrity (anti-tampering)

The basic idea behind data integrity is that there should be away for the recipient of a
piece of data to determine whether any modifications are made over a period of time. For
example, integrity checks can be used to make sure that data sent over awireisn't
modified in transit. Plenty of well-known checksums exist that can detect and even
correct simple errors. However, such checksums are poor at detecting skilled intentional
modifications of the data. Several cryptographic checksums do not have these drawbacks
if used properly. Note that encryption does not ensure data integrity. Entire classes of
encryption algorithms are subject to "bit-flipping" attacks. That is, an attacker can change
the actual value of abit of data by changing the corresponding encrypted bit of data.

Authentication
Cryptography can help establish identity for authentication purposes.
Non-repudiation

Cryptography can enable Bob to prove that a message he received from Alice actually
came from Alice. Alice can essentially be held accountable when she sends Bob such a
message, as she cannot deny (repudiate) that she sent it. In the real world, you haveto
assume that an attacker does not compromise particular cryptographic keys. The SSL
protocol does not support non-repudiation, but it is easily added by using digital
signatures.

These simple services can be used to stop awide variety of network attacks, including:
Shooping (passive eavesdr opping)

An attacker watches network traffic as it passes and records interesting data, such as
credit card information.

Tampering

An attacker monitors network traffic and maliciously changes datain transit (for example,
an attacker may maodify the contents of an email message).

Spoofing

An attacker forges network data, appearing to come from a different network address than
he actually comes from. This sort of attack can be used to thwart systems that authenticate
based on host information (e.g., an |P address).

Hijacking

Once alegitimate user authenticates, a spoofing attack can be used to "hijack" the
connection.

Capture-replay

In some circumstances, an attacker can record and replay network transactionstoill effect.
For example, say that you sell asingle share of stock while the price is high. If the
network protocol is not properly designed and secured, an attacker could record that
transaction, then replay it later when the stock price has dropped, and do so repeatedly
until all your stock is gone.

Many people assume that some (or all) of the above attacks aren't actually feasiblein practice.
However, that's far from the truth. Especially due to tool sets such as dsniff
(http://www.monkey.org/~dugsong/dsniff/), it doesn't even take much experience to launch all of
the above attacks if access to any node on a network between the two endpointsis available.
Attacks are equally easy if you're on the same local network as one of the endpoints. Talented high
school students who can use other people's software to break into machines and manipul ate them
can easily manage to use these tools to attack real systems.

Traditionally, network protocols such asHTTP, SMTP, FTP, NNTP, and Telnet don't provide
adequate defenses to the above attacks. Before electronic commerce started taking off in mid-1990,
security wasn't really alarge concern, especially considering the Internet's origins as a platform for
sharing academic research and resources. While many protocols provided some sort of
authentication in the way of password-based logins, most of them did not address confidentiality
or integrity at all. Asaresult, all of the above attacks were possible. Moreover, authentication
information could usually be among the information "snooped” off a network.

SSL isagreat boon to the traditional network protocols, because it makes it easy to add
transparent confidentiality and integrity services to an otherwise insecure TCP-based protocol. It
can aso provide authentication services, the most important being that clients can determine if
they are talking to the intended server, not some attacker that is spoofing the server.

1.1.2 Cryptographic Algorithms

The SSL protocol covers many cryptographic needs. Sometimes, though, it isn't good enough. For
example, you may wish to encrypt HTTP cookies that will be placed on an end user's browser.
SSL won't help protect the cookies while they're being stored on that disk. For situations like this,
OpenSSL exports the underlying cryptographic algorithms used in its implementation of the SSL
protocol.

Generally, you should avoid using cryptographic algorithms directly if possible. You're not likely
to get atotally secure system simply by picking an algorithm and applying it. Usualy,

http://www.monkey.org/%7Edugsong/dsniff/

cryptographic algorithms are incorporated into cryptographic protocols. Plenty of nonobvious
things can be wrong with a protocol based on cryptographic algorithms. That iswhy it's better to
try to find awell-known cryptographic protocol to do what you want to do, instead of inventing
something yourself. In fact, even the protocols invented by cryptographers often have subtle holes.

If not for public review, most protocols in use would be insecure. Consider the original WEP
protocol for IEEE 802.11 wireless networking. WEP (Wired Equivalent Privacy) is the protocol
that is supposed to provide the same level of security for datathat physical lines provide. Itisa
challenge, because data is transmitted through the air, instead of across awire. WEP was designed
by veteran programmers, yet without soliciting the opinions of any professional cryptographers or
security protocol devel opers. Although to a seasoned developer with moderate security knowledge
the protocol looked fine, in redlity, it was totally lacking in security.

Nonethel ess, sometimes you might find a protocol that does what you need, but can't find an
implementation that suits your needs. Alternatively, you might find that you do need to come up
with your own protocol. For those cases, we do document the SSL cryptographic API.

Five types of cryptographic algorithms are discussed in this book: symmetric key encryption,
public key encryption, cryptographic hash functions, message authentication codes, and digital
signatures.

1.1.2.1 Symmetric key encryption

Symmetric key agorithms encrypt and decrypt data using asingle key. As shown in Figure 1-1,
the key and the plaintext message are passed to the encryption algorithm, producing ciphertext.
The result can be sent across an insecure medium, alowing only arecipient who has the origina
key to decrypt the message, which is done by passing the ciphertext and the key to a decryption
algorithm. Obviously, the key must remain secret for this scheme to be effective.

Figure 1-1. Symmetric key cryptography

encryption algorthm

EF. =

decryptian algorithm

The primary disadvantage of symmetric key algorithmsis that the key must remain secret at all
times. In particular, exchanging secret keys can be difficult, since you'll usually want to exchange
keys on the same medium that you're trying to use encryption to protect. Sending the key in the

clear before you use it leaves open the possibility of an attacker recording the key before you even
begin to send data.

One solution to the key distribution problem is to use a cryptographic key exchange protocol.
OpenSSL provides the Diffie-Hellman protocol for this purpose, which alows for key agreement
without actually divulging the key on the network. However, Diffie-Hellman does not guarantee
the identity of the party with whom you are exchanging keys. Some sort of authentication
mechanism is necessary to ensure that you don't accidentally exchange keys with an attacker.

Right now, Triple DES (usually written 3DES, or sometimes DES3) is the most conservative
symmetric cipher available. It isin wide use, but AES, the new Advanced Encryption Standard,
will eventually replace it as the most widely used cipher. AES s certainly faster than 3DES, but
3DES has been around alot longer, and thus is a more conservative choice for the ultra-paranoid.
It isworth mentioning that RC4 iswidely supported by existing clients and servers. It isfaster
than 3DES, but is difficult to set up properly (don't worry, SSL uses RC4 properly). For purposes
of compatibility with existing software in which neither AES nor 3DES are supported, RC4 is of
particular interest. We don't recommend supporting other algorithms without a good reason. For
the interested, we discuss cipher selection in Chapter 6.

Security is related to the length of the key. Longer key lengths are, of course, better. To ensure
security, you should only use key lengths of 80 bits or higher. While 64-bit keys may be secure,
they likely will not be for long, whereas 80-bit keys should be secure for at least afew yearsto
come. AES supports only 128-bit keys and higher, while 3DES has afixed 112 bits of effective
security.™”! Both of these should be secure for all cryptographic needs for the foreseeable future.
Larger keys are probably unnecessary. Key lengths of 56 bits (regular DES) or less (40-bit keys
are common) are too weak; they have proven to be breakable with a modest amount of time and
effort.

M 3pEs provides 168 bits of security against brute-force attacks, but there is an attack that reduces
the effective security to 112 bits. The enormous space requirements for that attack makes it about
as practical as brute force (which is completely impractical in and of itself).

1.1.2.2 Public key encryption

Public key cryptography suggests a solution to the key distribution problem that plagues
symmetric cryptography. In the most popular form of public key cryptography, each party has two
keys, one that must remain secret (the private key) and one that can be freely distributed (the
public key). The two keys have a special mathematical relationship. For Alice to send a message to
Bob using public key encryption (see Figure 1-2), Alice must first have Bob's public key. She then
encrypts her message using Bob's public key, and deliversit. Once encrypted, only someone who
has Bob's private key can successfully decrypt the message (hopefully, that's only Bob).

Figure 1-2. Public key cryptography

encrypied

MESSgE
%
L b SR RE R B N R R B RN R R e ..
encryption algarthm e
oviginal .
messige) it
jﬁ.- :

decryptian E.'QE; rithim

Public key encryption solves the problem of key distribution, assuming there is some way to find
Bob's public key and ensure that the key really does belong to Bob. In practice, public keys are
passed around with a bunch of supporting information called a certificate, and those certificates
are validated by trusted third parties. Often, atrusted third party is an organization that does
research (such as credit checks) on people who wish to have their certificates validated. SSL uses
trusted third parties to help address the key distribution problem.

Public key cryptography has a significant drawback, though: it isintolerably slow for large
messages. Symmetric key cryptography can usually be done quickly enough to encrypt and
decrypt al the network traffic a machine can manage. Public key cryptography is generally
limited by the speed of the cryptography, not the bandwidth going into the computer, particularly
on server machines that need to handle multiple connections simultaneously.

Asaresult, most systems that use public key cryptography, SSL included, use it aslittle as
possible. Generaly, public key encryption is used to agree on an encryption key for a symmetric
algorithm, and then all further encryption is done using the symmetric algorithm. Therefore,
public key encryption algorithms are primarily used in key exchange protocols and when non-
repudiation is required.

RSA is the most popular public key encryption algorithm. The Diffie-Hellman key exchange
protocol is based on public key technology and can be used to achieve the same ends by
exchanging a symmetric key, which is used to perform actual data encryption and decryption. For
public key schemes to be effective, there usually needs to be an authentication mechanism
involving atrusted third party that is separate from the encryption itself. Most often, digital
signature schemes, which we discuss below, provide the necessary authentication.

Keysin public key algorithms are essentially large numbers with particular properties. Therefore,
bit length of keysin public key ciphers aren't directly comparable to symmetric algorithms. With
public key encryption algorithms, you should use keys of 1,024 bits or more to ensure reasonable
security. 512-bit keys are probably too weak. Anything larger than 2,048 bits may be too slow,
and chances are it will not buy security that is much more practical. Recently, there's been some
concern that 1,024-bit keys are too weak, but as of this writing, there hasn't been conclusive proof.
Certainly, 1,024 bitsis a bare minimum for practical security from short-term attacks. If your keys

potentially need to stay protected for years, then you might want to go ahead and use 2,048-bit
keys.

When selecting key lengths for public key algorithms, you'll usually need to select symmetric key
lengths as well. Recommendations vary, but we recommend using 1,024-bit keys when you are
willing to work with symmetric keys that are less than 100 bitsin length. If you're using 3DES or
128-hit keys, we recommend 2,048-bit public keys. If you are paranoid enough to be using 192-bit
keys or higher, we recommend using 4,096-bit public keys.

Requirements for key lengths change if you're using elliptic curve cryptography (ECC), whichisa
modification of public key cryptography that can provide the same amount of security using faster
operations and smaller keys. OpenSSL currently doesn't support ECC, and there may be some
lingering patent issues for those who wish to use it. For developers interested in this topic, we
recommend the book Implementing Elliptic Curve Cryptography, by Michael Rosing (Manning).

1.1.2.3 Cryptographic hash functions and Message Authentication Codes

Cryptographic hash functions are essentially checksum a gorithms with special properties. Y ou
pass data to the hash function, and it outputs a fixed-size checksum, often called a message digest,
or simply digest for short. Passing identical data into the hash function twice will alwaysyield
identical results. However, the result gives away no information about the data input to the
function. Additionally, it should be practically impossible to find two inputs that produce the same
message digest. Generally, when we discuss such functions, we are talking about one-way
functions. That is, it should not be possible to take the output and algorithmically reconstruct the
input under any circumstances. There are certainly reversible hash functions, but we do not
consider such thingsin the scope of this book.

For general-purpose usage, a minimally secure cryptographic hash agorithm should have a digest
twice as large as aminimally secure symmetric key algorithm. MD5 and SHA 1 are the most
popular one-way cryptographic hash functions. MD5's digest length is only 128 bits, whereas
SHA1'sis 160 bits. For some uses, MD5's key length is suitable, and for others, it isrisky. To be
safe, we recommend using only cryptographic hash algorithms that yield 160-bit digests or larger,
unless you need to support legacy algorithms. In addition, MD5 iswidely considered "nearly
broken" due to some cryptographic weaknesses in part of the algorithm. Therefore, we
recommend that you avoid using MD5 in any new applications.

Cryptographic hash functions have been put to many uses. They are frequently used as part of a
password storage solution. In such circumstances, logins are checked by running the hash function
over the password and some additional data, and checking it against a stored value. That way, the
server doesn't have to store the actual password, so awell-chosen password will be safe even if an
attacker manages to get a hold of the password database.

Anather thing people like to do with cryptographic hashesis to release them alongside a software
release. For example, OpenSSL might be released alongside a MD5 checksum of the archive.
When you download the archive, you can aso download the checksum. Then you can compute the
checksum over the archive and see if the computed checksum matches the downloaded checksum.
Y ou might hope that if the two checksums match, then you securely downloaded the actual
released file, and did not get some modified version with a Trojan horse in it. Unfortunately, that
isn't the case, because there is no secret involved. An attacker can replace the archive with a
modified version, and replace the checksum with avalid value. Thisis possible because the
message digest algorithm is public, and there is no secret information input to it.

If you share a secret key with the software distributor, then the distributor could combine the
archive with the secret key to produce a message digest that an attacker shouldn't be able to forge,
since he wouldn't have the secret. Schemes for using keyed hashes, i.e., hashes involving a secret
key, are called Message Authentication Codes (MACs). MACs are often used to provide message

integrity for general-purpose data transfer, whether encrypted or not. Indeed, SSL uses MACs for
this purpose.

The most widely used MAC, and the only one currently supported in SSL and in OpenSSL, is
HMAC. HMAC can be used with any message digest algorithm.

1.1.2.4 Digital signatures

For many applications, MACs are not very useful, because they require agreeing on a shared
secret. It would be nice to be able to authenticate messages without needing to share a secret.
Public key cryptography makes this possible. If Alice signs a message with her secret signing key,
then anyone can use her public key to verify that she signed the message. RSA provides for digital
signing. Essentialy, the public key and private key are interchangeable. If Alice encryptsa
message with her private key, anyone can decrypt it. If Alice didn't encrypt the message, using her
public key to decrypt the message would result in garbage.

There is also apopular scheme called DSA (the Digital Signature Algorithm), which the SSL
protocol and the OpenSSL library both support.

Much like public key encryption, digital signatures are very slow. To speed things up, the
algorithm generally doesn't operate on the entire message to be signed. Instead, the message is
cryptographically hashed, and then the hash of the message is signed. Nonetheless, signature
schemes are still expensive. For thisreason, MACs are preferable if any sort of secure key
exchange has taken place.

One place where digital signatures are widely used isin certificate management. If Aliceiswilling
to validate Bob's certificate, she can sign it with her private key. Once she's done that, Bob can
attach her signature to his certificate. Now, let's say he gives the certificate to Charlie, and Charlie
does not know that Bob actually gave him the certificate, but he would believe Aliceif shetold
him the certificate belonged to Bob. In this case, Charlie can validate Alice's signature, thereby
demonstrating that the certificate does indeed belong to Bob.

Since digital signatures are aform of public key cryptography, you should be sure to use key
lengths of 1,024 bits or higher to ensure security.

1.2 Overview of SSL

SSL is currently the most widely deployed security protocol. It is the security protocol behind
secure HTTP (HTTPS), and thusis responsible for the little lock in the corner of your web
browser. SSL is capable of securing any protocol that works over TCP.

An SSL transaction (see Figure 1-3) starts with the client sending a handshake to the server. In the
server's response, it sends its certificate. As previously mentioned, a certificate is a piece of data
that includes a public key associated with the server and other interesting information, such as the
owner of the certificate, its expiration date, and the fully qualified domain name? associated with
the server.

(2] By fully qualified, we mean that the server's hostname is written out in a full, unambiguous
manner that includes specifying the top-level domain. For example, if our web server is named
"www", and our corporate domain is "securesw.com", then the fully qualified domain name for that
host is "www.securesw.com". No abbreviation of this name would be considered fully qualified.

Figure 1-3. An overview of direct communication in SSL

pello, server!

P and egotiatin,

-

g
=
:

(A signs server’s pubilic
ey with CA's private key

Cortificate authority
(LA, twsted 3nd party)

During the connection process, the server will proveitsidentity by using its private key to
successfully decrypt a challenge that the client encrypts with the server's public key. The client
needs to receive the correct unencrypted data to proceed. Therefore, the server's certificate can
remain public—an attacker would need a copy of the certificate as well as the associated private
key in order to masquerade as a known server.

However, an attacker could always intercept server messages and present the attacker's certificate.
The data fields of the forged certificate can look legitimate (such as the domain name associated
with the server and the name of the entity associated with the certificate). In such a case, the
attacker might establish a proxy connection to the intended server, and then just eavesdrop on all
data. Such an attack is called a "man-in-the-middle" attack and is shown in Figure 1-4. To thwart a
man-in-the-middle attack completely, the client must not only perform thorough validation of the
server certificate, but aso have some way of determining whether the certificate itself is
trustworthy. One way to determine trustworthiness is to hardcode alist of valid certificates into
the client. The problem with this solution is that it is not scalable. Imagine needing the certificate
for every secure HT TP server you might wish to use on the net stored in your web browser before
you even begin surfing.

Figure 1-4. A man-in-the-middle attack

Request server ey Request server key

IE] Send aftacker key Send server ey

-y

Client Attacker Server

The practical solution to this problem isto involve atrusted third party that is responsible for
keeping a database of valid certificates. A trusted third party, called a Certification Authority,
signs valid server certificates using its private key. The signature indicates that the Certification
Authority has done a background check on the entity that owns the certificate being presented,

©

thus ensuring to some degree that the data presented in the certificate is accurate. That signatureis
included in the certificate, and is presented at connection time.

The client can validate the authority's signature, assuming that it has the public key of the
Certification Authority locally. If that check succeeds, the client can be reasonably confident the
certificate is owned by an entity known to the trusted third party, and can then check the validity
of other information stored in the certificate, such as whether the certificate has expired.

Although rare, the server can also reguest a certificate from the client. Before certificate validation
is done, client and server agree on which cryptographic algorithms to use. After the certificate
validation, client and server agree upon a symmetric key using a secure key agreement protocol
(dataistransferred using a symmetric key encryption algorithm). Once al of the negotiations are
complete, the client and server can exchange data at will.

The details of the SSL protocol get slightly more complex. Message Authentication Codes are
used extensively to ensure data integrity. Additionally, during certificate validation, a party can go
to the Certification Authority for Certificate Revocation Lists (CRLS) to ensure that certificates
that appear valid haven't actually been stolen.

We won't get into the details of the SSL protocol (or its successor, TLS). For our purposes, we can
treat everything else as a black box. Again, if you are interested in the details, we recommend Eric
Rescorlasbook S3_ and TLS.

1.3 Problems with SSL

SSL isan excellent protocol. Like many tools, it is effective in the hands of someone who knows
how to use it well, but is easy to misuse. There are many pitfalls that people fall into when
deploying SSL, most of which can be avoided with a bit of work.

1.3.1 Efficiency

SSL isalot slower than atraditional unsecured TCP/IP connection. This problemis adirect result
of providing adequate security. When anew SSL session is being established, the server and the
client exchange a sizable amount of information that is required for them to authenticate each
other and agree on a key to be used for the session. Thisinitial handshake involves heavy use of
public key cryptography, which, as we've already mentioned, is very slow. It's also the biggest
dowdown when using SSL. On current high-end PC hardware, OpenSSL struggles to make 100
connections per second under real workloads.

Oncethe initial handshake is complete and the session is established, the overhead is significantly
reduced, but some of it still remainsin comparison with an unsecured TCP/IP connection.
Specifically, more data is transferred than normal. Data is transmitted in packets, which contain
information required by the SSL protocol as well as any padding required by the symmetric cipher
that isin use. Of course, there isthe overhead of encrypting and decrypting the data as well, but
the good news is that a symmetric cipher isin use, so it usually isn't a bottleneck. The efficiency
of symmetric cryptography can vary greatly based on the algorithms used and the strength of the
keys. However, even the slowest algorithms are efficient enough that they are rarely a bottleneck
at al.

Because of the inefficiency of public key cryptography, many people decide not to use SSL when
they realize it can't handle a large enough load. Some people go without security at al, whichis
obviously not agood idea. Other people try to design their own protocols to compensate. Thisisa
bad idea, because there are many nonobvious pitfalls that can besiege you. Protocols that aren't

10

designed by a skilled cryptographer inevitably have problems. SSL's design does consider
efficiency; it simply isn't willing to sacrifice security for a speed improvement. Y ou should be
skeptical of using protocols that are more efficient.

There are ways to ameliorate this problem without abandoning the protocol. SSL does support a
connection resumption mechanism so that clients that reconnect shortly after disconnecting can do
so without incurring the full overhead of establishing a connection. While that is useful for
HTTP,[31 it often isn't effective for other protocols.

Bl As is HTTP keepalive, which is a protocol option to keep sockets open for a period of time after a
request is completed, so that the connection may be reused if another request to the same server
follows in short order.

1.3.1.1 Cryptographic acceleration hardware

One common approach for speeding up SSL is to use hardware acceleration. Many vendors
provide PCI cards that can unload the burden of cryptographic operations from your processor,
and OpenSSL supports most of them. We discuss the specifics of using hardware acceleration in

Chapter 4.

1.3.1.2 Load balancing

Anather popular option for managing efficiency concerns with SSL isload balancing, which is
simply distributing connections transparently across multiple machines, such that the group of
machines appears as a single machine to the outside world for all intents and purposes. This can be
amore cost-effective solution than accelerator cards, especialy if you aready have hardware

lying around. Often, however, load balancing requires more work to ensure that persistent datais
readily available to al servers on the backend. Another problem with load balancing is that many
solutions route new connections to arbitrary machines, which can remove most of the benefit of
connection resumption, since few clients will actually connect to the original machine during
reconnection.

One simple load balancing mechanism is round-robin DNS, in which multiple IP addresses are
assigned to asingle DNS name. In response to DNS lookups, the DNS server cycles through al
the addresses for that DN'S name before giving out the same address twice. Thisis a popular
solution because it is low-cost, requiring no special hardware. Connection resumption generally
works well with this solution, since machines tend to keep a short-term memory of DNS results.

One problem with this solution is that the DNS server handles the load management, and takes no
account of the actual load on individual servers. Additionally, large ISPs can perform DNS
caching, causing an uneven distribution of load. To solve that problem, entries must be set to
expire frequently, which increases the load on the DNS server.

Hardware load balancers vary in price and features. Those that can remember outside machines
and map them to the same internal machine across multiple connections tend to be more expensive,
but also more effective for SSL.

Version 0.9.7 of OpenSSL adds new functionality that allows applications to handle load
balancing by way of manipulating session IDs. Sessions are a subset of operating parameters for
an SSL connection, which we'll discussin more detail in Chapter 5.

1.3.2 Keys in the Clear

In atypical SSL installation, the server maintains credentials so that clients can authenticate the
server. In addition to a certificate that is presented at connection time, the server also maintains a

11

private key, which is necessary for establishing that the server presenting a certificate is actually
presenting its own certificate.

That private key needs to live somewhere on the server. The most secure solution isto use
cryptographic accel eration hardware. Most of these devices can generate and store key material,
and additionally prevent the private key from being accessed by an attacker who has broken into
the machine. To do this, the private key is used only on the card, and is not allowed off except
under special circumstances.

In cases in which hardware solutions aren't feasible, there is no absolute way to protect the private
key from an attacker who has obtained root access, because, at the very least, the key must be
unencrypted in memory when handling a new connection.! If an attacker has root, she can
generally attach a debugger to the server process, and pull out the unencrypted key.

“ Some operating systems (particularly "trusted" OSs) can provide protection in such cases,
assuming no security problems are in the OS implementation. Linux, Windows, and most of the
BSD variants offer no such assurance.

There are two options in these situations. First, you can simply keep the key unencrypted on disk.
Thisisthe easiest solution, but it also makes the job of an attacker simple if he has physical access,
since he can power off the machine and pull out the disk, or ssimply reboot to single-user mode.
Alternatively, you can keep the key encrypted on disk using a passphrase, which an administrator
must type when the SSL server starts. In such a situation, the key will only be unencrypted in the
address space of the server process, and thus won't be available to someone who can shut the
machine off and directly access the disk.

Furthermore, many attackers are looking for low-hanging fruit, and will not likely go after the key
even if they have the skills to do so. The downside to this solution is that unattended reboots are
not possible, because whenever the machine restarts (or the SSL server process crashes), someone
must type in the passphrase, which is often not very practical, especially in alights-out
environment. Storing the key in the clear obviously does not exhibit this problem.

In either case, your best defense isto secure the host and your network with the best available
lockdown techniques (including physical lockdown techniques). Such solutions are outside the
scope of this book.

What exactly does it mean if the server's private key is compromised? The most obvious result is
that the attacker can masguerade as the server, which we discuss in the next section. Another
result (which may not be as obvious) isthat all past communications that used the key can likely
be decrypted. If an attacker is able to compromise a private key, it isalso likely that the attacker
could have recorded previous communications. The solution to this problemis to use ephemeral
keying. This means atemporary key pair is generated when anew SSL session is created. Thisis
then used for key exchange and is subsequently destroyed. By using ephemeral keying, it is
possible to achieve forward secrecy, meaning that if a key is compromised, messages encrypted
with previous keys will not be subject to attack.®! We discuss ephemeral keying and forward
secrecy in more detail in Chapter 5.

B! Note that if you are implementing a server in particular, it is often not possible to get perfect
forward secrecy with SSL, since many clients don't support Diffie-Hellman, and because using
cryptographically strong ephemeral RSA keys violates the protocol specification.

1.3.3 Bad Server Credentials

A server's private key can be stolen. In such a case, an attacker can usually masquerade as the
server with impunity. Additionally, Certification Authorities sometimes sign certificates for
people who are fraudulently representing themselves, despite the efforts made by the CA to

12

validate all of the important information about the party that requests the certificate signing.®! For
example, in early 2001, VeriSign signed certificates that purported to belong to Microsoft, when
in reality they did not. However, since they had been signed by a well-known Certification
Authority, they would look authentic to anyone validating the signature on those certificates.

(6] Actually, a Registration Authority (RA) is responsible for authenticating information about the
CA's customers. The CA can be its own RA, or it can use one or more third-party RAs. From the
perspective of the consumer of certificates, the RA isn't really an important concept, so we will just
talk about CAs to avoid confusion, even though it is technically not accurate.

SSL has a mechanism for thwarting these problems: Certificate Revocation Lists. Once the
Certification Authority learns that a certificate has been stolen or signed inappropriately, the
Authority adds the certificate's serial number to a CRL. The client can access CRLs and validate
them using the CA's certificate, since the server signs CRLs with its private key.

One problem with CRLs is that windows of vulnerability can be large. It can take time for an
organization to realize that a private key may have been stolen and to notify the CA. Even when
that happens, the CA must update its CRLs, which generally does not happen in real time (the
time it takes depends on the CA). Then, once the CRLs are updated, the client must download
them in order to detect that a presented certificate has been revoked. In most situations, clients
never download or update CRLSs. In such cases, compromised certificates tend to remain
compromised until they expire.

There are several reasons for this phenomenon. First, CRLs tend to be large enough that they can
take significant time to download, and can require considerabl e storage space locally, especially
when the SSL client is an embedded device with limited storage capacity. The Online Certificate
Status Protocol (OCSP), specified in RFC 2560, addresses these problems. Unfortunately, thisis
not yet awidely accepted standard protocol, nor isit likely to become so anytime soon.
Additionally, the only version that is widely deployed has serious security issues (see Chapter 3
for more information). OpenSSL has only added OCSP support in Version 0.9.7, and few CAs
even offer it as a service. Other authorities have facilities for incremental updatesto CRLS,
allowing for minimal download times, but that solution still requires space on the client, or some
sort of caching server.

These solutions all require the CA's server to be highly availableif clients are to have up-to-the-
minute information. Some clients will be deployed in environments where a constant link to the
CA isnot possible. In addition, the need to query the CA can add significant latency to connection
times that can be intolerable to the end user.

Ancther problem is that there is no standard delivery mechanism specified for CRLs. Asaresult,
OpenSSL in particular does not provide a simple way to access CRL information, not even from
VeriSign, currently the most popular CA. One common method of CRL (and certificate)
distribution is using the Lightweight Directory Access Protocol (LDAP). LDAP provides a
hierarchical structure for storing such information and fits nicely for PKI distribution.

Due to the many problems surrounding CRLS, it becomes even more important to take whatever
measures are feasible to ensure that SSL private keys are not stolen. At the very least, you should
put intrusion detection systemsin place to detect compromises of your private key so that you can
report the compromise to the CA quickly.

1.3.4 Certificate Validation

CRLsaren't useful if aclient isn't performing adequate validation of server certificates to begin
with. Often, they don't. Certainly, for SSL to work at al, the client must be able to extract the
public key from a presented certificate, and the server must have a private key that corresponds

13

with that public key. However, there is no mechanism to force further validation. As aresult, man-
in-the-middle attacks are often feasible.

First, developers must decide which Certification Authorities should be trusted, and must locate
the certificates associated with each of those authorities. That's more effort than most devel opers
are willing to exert. As aresult, many applications using SSL are at the mercy of man-in-the-
middle attacks.

Second, even those applications that install CA certificates and use them to validate server
certificates often fail to perform adequate checking on the contents of the certificate. As aresult,
such systems are susceptible to man-in-the-middle attacks in which the attacker gets his hands on
credentials that will look legitimate to the client, such as a stolen set of credentialsin which the
certificate is signed by the CA that has not yet appeared on any CRLSs.

The best solution for thwarting this problem depends on the authentication needs of the client.
Many applications can expect that they will only legitimately talk to a small set of servers. In such
acase, you can check appropriate fields in the certificate against awhite list of valid server names.
For example, you might allow any certificate signed by VeriSign in which the fully qualified
domain name mentioned in the certificate ends with "yourcompany.com”. Another option isto
hardcode a list of known server certificates. However, thisis afar more difficult solution to
manage if you ever wish to add servers.

Additionally, if you do not wish to trust the authentication mechanisms of the established CAs,
you could consider running your own CA, which we discuss in Chapter 3 (of course, we are
assuming you control both the client and server code in such a situation). In environments where
you expect that anyone can set up their own server, and thus managing DNS space or your own
Certification Authority is not feasible, then the best you can do is ensure that the DNS address for
the server that the client tried to contact is the same as the one presented in the certificate. If that is
true, and the certificate was signed by avalid CA, everything should be fine if the certificate was
not stolen or fraudulently obtained.

1.3.5 Poor Entropy

In the SSL protocol, both the client and the server need to generate random data for keys and other
secrets. The data must be generated in such away that a knowledgeabl e attacker cannot guess
anything about it. SSL implementations usually generate such data using a pseudorandom number
generator (PRNG). PRNGs are deterministic algorithms that produce a series of random-looking
numbers. Classical PRNGs are not suitable for use in security-critical situations. Instead, SSL
implementations use "cryptographic* PRNGs, which work in security-critical situations, aslong as
they are "seeded" properly.

A seed isapiece of datafed to the PRNG to get it going. Given asingle, known seed at startup,
the PRNG should produce a predictable set of outputs. That is, if you seed the PRNG and ask for
three random numbers, reseed with the same value, and then ask for three more random numbers,
the first three numbers and the second three numbers should be identical.

The seed itself must be a random number, but it can't just be a cryptographically random number.
It must be truly unguessable to keep the PRNG outputs unguessable. Entropy is a measurement of
how much unguessable information actually exists in data from the point of view of an attacker
who might be able to make reasonable guesses about the state of the machine on which the
number is stored. If asingle bit isjust aslikely to bea0 asal, then it is one bit of entropy. If you
have 128 bits of data, it can have up to 128 bits of entropy. However, it may have aslittle as O bits
of entropy—as would be the case if the data's value is public knowledge. The work an attacker
must do to guess a piece of datais directly related to how much entropy thereisin the data. If the
data has 4 bits of entropy, then the attacker hasa 1 in 2* chance (1 in 16) chance of guessing right
thefirst time. Additionally, within 16 guesses, the attacker will have tried the right value (On

14

average, he will find the right value in 8 guesses). If the data has 128 bits of entropy in it, then the
attacker will need, on average 2"’ guesses to find the seed, which is such alarge number asto be
infeasible for all practical purposes. In practice, if you're using 128-bit keys, it's desirable to use a
seed with 128 bits of entropy or more. Anything less than 64 bits of entropy can probably be
broken quickly by an organization with a modest hardware budget.

Toillustrate, in 1996, lan Goldberg and David Wagner found a problem with the way Netscape
was seeding its PRNG in its implementation of SSLv2. Netscape was using three inputs hashed
with the MD5 message digest algorithm, the time of day, the process ID, and the parent process ID.
None of these valuesis particularly random. At most, their PRNG seed could have had 47 bits of
entropy. A clever attacker could decrease that substantially. Indeed, in practice, Goldberg and
Wagner were able to compromise real SSL sessions within 25 seconds.

If you try to use OpenSSL without bothering to seed the random number generator, the library will
complain. However, the library has no real way to know whether the seed you give it contains
enough entropy. Therefore, you must have some idea how to get entropy. There are certainly
hardware devices that do agood job of collecting it, including most of the cryptographic
accelerator cards. However, in many cases hardware isimpractical, because your software will be
deployed across alarge number of clients, most of whom will have no access to such devices.

Many software tricks are commonly employed for collecting entropy on a machine. They tend to
work by indirectly measuring random information in external events that affect the machine. Y ou
should never need to worry about those actual techniques. Instead, use a package that harvests
entropy for you. Many Unix-based operating systems now come with arandom device, which
provides entropy harvested by the operating system. On other Unix systems, you can use tools
such as EGADS (http://www.securesw.com/egads/), which is a portable entropy collection
system.”2 EGADS also works on Windows systems.

[We realize that Linux isn't technically a Unix operating system, since it is not derived from the
original Unix code base. However, we feel the common usage of the term Unix extends to any Unix-
like operating system, and that's how we use this term throughout the book.

If you're interested in the entropy harvesting techniques behind random devices and tools like
EGADS, see Chapter 10 of the book Building Secure Software by John Viega and Gary McGraw
(Addison-Wesley).

1.3.6 Insecure Cryptography

While Version 3 of the SSL protocol and TLS are believed to be reasonably secure if used
properly, SSLv2 (Version 2) had fundamental design problems that led to wide-ranging changes
in subsequent versions (Version 1 was never publicly deployed). For this reason, you should not
support Version 2 of the protocol, just to ensure that an attacker does not launch a network attack
that causes the client and server to settle upon the insecure version of the protocol. All you need to
do isintercept the connection request and send a response that makes it look like av3 server does
not exist. The client will then try to connect using Version 2 of the protocol.

B while a Netscape engineer designed previous versions of SSL, Paul Kocher, a well-regarded
cryptographer, designed Version 3 of the protocol, and it has subsequently seen significant review,
especially during the standardization process that led to TLS.

Unfortunately, people commonly configure their clients and servers to handle both versions of the
protocol. Don't do that. Support only SSLv3 and TLS, to whatever degree possible. Note that
clients can't really support TLS only, because TL S implementations are supposed to be able to
speak SSLv3. If you wish to use only TLSin aclient, you must connect then terminate the
connection if the server chooses SSLv3.

15

http://www.securesw.com/egads/

As we mentioned when discussing different types of cryptographic algorithms, you should also
avoid small key lengths and, to alesser degree, algorithms that aren't well regarded. 40-bit keys
are never secure and neither is 56-bit DES. Nonetheless, it's common to see servers that support
only these weak keys, dueto old U.S. export regulations that no longer apply.

Asfor individual agorithm choicesin SSL, RC4 and 3DES are both excellent solutions. RC4 is
much faster, and 3DES is more conservative. Soon, TLS will be standardizing on AES, at which
time thiswill be widely regarded as a good choice.

Note that the server generally picks a cipher based on alist of supported ciphers that the client
presents. We recommend supporting only strong ciphersin the server, where feasible. In other
cases, make sure to prefer the strongest cipher the client offers. We discuss cipher selection in
detail in Chapter 5.

1.4 What SSL Doesn't Do Well

SSL isagreat general-purpose agorithm for securing network connections. So far, we've seen the
important risks with SSL that you must avoid. Here, we'll look at those things people would like
SSL to do, even though it doesn't really do them well (or at all).

1.4.1 Other Transport Layer Protocols

SSL works well with TCP/IP. However, it doesn't work at all with transport layer protocols that
are not connection-oriented, such as UDP and IPX. There's not really away to make it work for
such protocols, either. Secure encryption of protocols in which order and reliability are not
ensured is a challenge, and is outside the scope of SSL. We do outline solutions for encrypting
UDP traffic in Chapter 6.

1.4.2 Non-Repudiation

Let's say that Alice and Bob are communicating over SSL. Alice may receive a message from Bob
that she would like to show to Charlie, and she would like to prove that she received the message
from Bob. If that was possible, the message would be non-repudiated, meaning that Bob cannot
deny that he sent the message. For example, Alice may receive areceipt for a product, and wish to
demonstrate that she purchased the product for tax purposes.

SSL has no support for non-repudiation. However, it is simple to add on top of SSL, if both Alice
and Bob have well-established certificates. In such a case, they can sigh each message before
SSL-encrypting it. Of course, in such a situation, if Bob wishes to have a message he can
repudiate, he just attaches an invalid signature. In such a case, Alice should refuse further
communications.

In Chapter 10, we discuss how to sign encrypted messages using S'MIME. This same technique
can be used for sending messages over SSL by signing the data before sending it. Alternatively,
S/MIME messages could simply be sent over an SSL connection to achieve the same resullt.

1.4.3 Protection Against Software Flaws

Sometimes SSL fails to secure an application because of afundamental security flaw in the
application itself, not because of any actual problem in SSL'sdesign. That is, SSL doesn't protect
against buffer overflows, race conditions, protocol errors, or any other design or implementation
flaws in the application that uses SSL.

16

Even though there are many common risks when deploying SSL, those risks are often minor
compared to the gaping holes in software design and implementation. Attackers will tend to target
the weakest link, and SSL is often not the weakest link.

Developers should thoroughly educate themselves on building secure software. For administrators
deploying other people's software, try to use well-regarded software if you have any option
whatsoever.

1.4.4 General-Purpose Data Security

SSL can protect datain transit on alive connection, but it provides no facilities for protecting data
beforeit is sent, or after it arrives at its destination. Additionally, if there is no active connection,
SSL can do nothing. For any other data security needs, other solutions are necessary.

1.5 OpenSSL Basics

Now that you have a good understanding of cryptography basics, and have seen the SSL protocol
at ahigh level (wartsand all), it'stimeto look specifically at the OpenSSL library. OpenSSL isa
derived work from SSLeay. SSLeay was originally written by Eric A. Young and Tim J. Hudson
beginning in 1995. In December 1998, devel opment of SSLeay ceased, and the first version of
OpenSSL was released as 0.9.1c, using SSLeay 0.9.1b (which was never actually released) asits
starting point. OpenSSL is essentially two toolsin one: a cryptography library and an SSL toolkit.

The SSL library provides an implementation of all versions of the SSL protocol, including TLSv1.
The cryptography library provides the most popular algorithms for symmetric key and public key
cryptography, hash algorithms, and message digests. It aso provides a pseudorandom number
generator, and support for manipulating common certificate formats and managing key material.
There are aso general -purpose helper libraries for buffer manipulation and manipulation of
arbitrary precision numbers. Additionally, OpenSSL supports most common cryptographic
acceleration hardware (prior to Version 0.9.7, forthcoming as of this writing, hardware support is
available only by downloading the separate "engine" release).

OpenSSL isthe only free, full-featured SSL implementation currently available for use with the C
and C++ programming languages. It works across every mgjor platform, including all Unix OSs
and all common versions of Microsoft Windows.

OpenSSL is available for download in source form from http://www.openssl.org/. Detailed
installation instructions for a variety of platforms, including Unix, Windows, Mac OS (versions
prior to Mac OS X), and OpenVMS are included in the source distribution. If you'reinstalling on
Mac OS X, you should follow the Unix instructions.2 The instructions for Mac OS and
OpenVMS are very specific for their respective platforms, so we'll not discuss them here. Instead,
we recommend that you read and follow the instructions included with the source distribution
carefully.

B 0s X comes with the OpenSSL library preinstalled, but it is usually not the most current version.
Additionally, if you are a developer, the OpenSSL header files are most likely not installed.

Installations on Unix and Windows have similar requirements; they both require Perl and aC
compiler. On Windows systems, Borland C++, Visual C++, and the GNU C compilers are
supported. If you want to use the assembly language optimizations on Windows, you'll also need
either MASM or NASM. The details of how to build on Windows vary depending on which
compiler you're using and whether you're using the assembly language optimizations. We
recommend that you refer to the included installation instructions for full details.

17

http://www.openssl.org/

The process of building OpenSSL on Unix and Windows systems involves first running a
configuration script that isincluded in the distribution. The configuration script examines the
environment on which it's running in to determine what libraries and options are available. Using
that information, it builds the make scripts. On Unix systems, the configuration script is named
config ; it figures some Unix-specific parameters and then runs the Configure script, which is
written in Perl. On Windows systems, Configureis run directly. Example 1-1 shows the basic
steps necessary to build on a Unix system.

Example 1-1. Building and installing OpenSSL on a Unix system

$./config

$ make

$ make test # This step is optional.

$ su # You need to be root to "make install™
make install

Once the configuration script has been run, the source is ready to be compiled. Thisis normally
achieved by running the make program. If you're building on Windows with Visual C++, you'll
need to use the nmake program. On Unix systems, once the build is complete, some optional tests
can be run to ensure that the library was built properly. Thisis done by running make test, as
shown in Example 1-1.

When the library isfinally built and optionally tested, it's ready to be installed. On Unix systems,
thisis done by running make again and specifying atarget of instal I. On Windows systems,
thereisno install process, per se. You'll need to create directories for the header files, import
libraries, dynamic load libraries, and the command-line tool. Y ou can place the files anywhere you
like, but you should make sure that you put the DLLs and command-line tool into a directory that
isin your path.

1.6 Securing Third-Party Software

While much of this book focuses on how to use the OpenSSL API to add security to your own
applications, you'll often want to use OpenSSL to secure other people's applications. Many
applications are already built to support OpenSSL. For example, OpenSSH uses the OpenSSL
cryptography foundation extensively, and requires the library to be present before it can compile.
In this particular case, the normal process of installing the software will take care of all the details,
as long as you have aversion of OpenSSL installed in awell-known place on the system.
Otherwise, you can explicitly specify the location of OpenSSL when configuring the software.

OpenSSH is special, because it requires OpenSSL to function. However, many other software
packages can support OpenSSL as an option. MySQL is a great example. Simply configure the
package with two options, --wi th-openssl and --with-vio, and the package will build with
SSL support. 22

[10] By default, MySQL connections are not encrypted, even after compiling with SSL. You have to
explicitly state that a particular user connects with SSL. See the MySQL GRANT documentation for
details.

Sometimes it would be niceto use SSL for encrypting arbitrary protocols without actually
modifying the source code implementing the protocol. For example, you may have a preferred
POP3 implementation that does not support SSL. Y ou'd like to make an SSL-enabled version
available, but you have no desire to hack OpenSSL into the code.

18

In most cases, you can use Stunnel (http://www.stunnel .org/) to SSL-enable arbitrary protocols,
which it does by proxying. Stunnel in and of itself is not a complete tool— it requires OpenSSL to
run.

Y ou can use Stunnel to protect HTTP traffic. However, it's generally better to use the web server's
preferred SSL solution. For example, Apache's mod_ssl (see http://www.modssl.orq) is afar better
solution for Apache users than Stunnel, because it is far more configurable. And, under the hood,
mod_ssl also usesthe OpenSSL library. The details of mod_sdl are beyond the scope of this book.
For more information on thistopic, refer to the mod_sdl web site or the book Apache: The
Definitive Guide, by Ben Laurie and Peter Laurie (O'Reilly).

1.6.1 Server-Side Proxies

Let's say that we want to run SSL-enabled POP3 on the standard port for this (995). If we aready
have the unencrypted POP3 server running on port 110, we simply put Stunnel on port 995, and
tell it to forward connections to port 110 on the loopback interface (so that unencrypted dataisn't
sent over your local network, just to come back onto the current machine). When SSL -enabled
POP3 clients connect to port 995, Stunnel will negotiate the connection, connect itself to the POP3
port, then start decrypting data. When it has data to pass on to the POP3 server, it does so.
Similarly, when the POP3 server responds to a client request, it talks with the Stunnel proxy,
which encrypts the response, and passesit on to the client. See Figure 1-5 for agraphical overview
of the process.

Figure 1-5. Stunnel proxies

SS[-eneryphed fnk P — lnencrypted ik

H % 1
IE] 1---1-1--1-55 :;""""""!' """
P £ i fover asecuve network such
e G asalngphack inferfoce) -

Chient Smneipm:r Unencrypted server

To use Stunnel on the server side, you must install avalid server certificate and private key. An
appropriate Certification Authority should sign the certificate. Y ou can generate your own
credentials using OpenSSL. That process is covered in Chapter 3.

These server credentials will need to be made available to Stunnel. Often, the correct location of
these credentials will be hardcoded into the Stunnel binary. If not, you can specify their location
on the command line.

Assuming the POP3 server is already running, here is how you would run Stunnel from the
command line to implement the above scenario (assuming that you're running as root, which is
necessary for binding to low ports on Unix machines):

stunnel -d 995 -r 127.0.0.1:110

The -d flag specifies that Stunnel should run as a proxy in daemon mode on the specified port
(you can also specify the IP address on which to bind; the default is al IPs on the machine). The -
r flag specifies the location of the service to which Stunnel will proxy. In this case, we
specifically mention the loopback address to avoid exposing unencrypted traffic to other hosts on
the same local network. Optionally, we could hide the port from external eyesusing afirewall.

The location of the certificate file can be specified with the -p flag, if necessary. If your machine's
services file contains entries for the POP3 and the Secure POP3 protocol, you can aso run Stunnel
like this:

19

http://www.stunnel.org/
http://www.modssl.org/

stunnel -d pop3s -r 127.0.0.1:pop3

Y ou can also run Stunnel from inetd. However, thisis generally not desirable, because you forego
the efficiency benefits of session caching. If you're running on Windows, Stunnel is available as a
precompiled binary, and can be easily launched from a DOS-style batch file. See the Stunnel FAQ
(http://www.stunnel.org/fag) for more details.

Unfortunately, Stunnel can't protect all the services you might want to run. First, it can protect
only TCP connections, not UDP connections. Second, it can't really protect protocols like FTP that
use out-of -band connections. The FTP daemon can bind to arbitrary ports, and there's no good
way to have Stunnel detect it. Also, note that some clients that support SSL-enabled versions of a
protocol will expect to negotiate SSL as an option. In such cases, the client won't be able to
communicate with the Stunnel proxy, unless it goes through an SSL proxy on the client end as
well.

Since Stunnel will proxy to whatever address you tell it to use, you can certainly proxy to services
running on other machines. Y ou can use this ability to offload the cost of establishing SSL
connections to a machine by itself, providing a cost-effective way of accelerating SSL. In such a
scenario, the unencrypted server should be connected only to the SSL proxy by a crossover cable,
and should be connected to no other machines. That way, the unencrypted data won't be visible to
other machines on your network, even if they are compromised. If you have aload balancer, you
can handle even more SSL connections by installing additional proxies (see Figure 1-6). For most
applications, asingle server is sufficient to handle the unencrypted load.

Figure 1-6. Load balancing with Stunnel for cryptographic acceleration

Load balancer

‘Stunnel proxy * Stunnel proxy * Stunnel proxy

'

v
&

Appsarver

The biggest problem with using Stunnel as a proxy is that 1P header information that would
normally be available to the server isn't. In particular, the server may log |P addresses with each
transaction. Since the server is actually talking to the proxy, from the server's point of view, every
single connection will appear to come from the proxy's IP address. Stunnel provides alimited
solution to this problem. If the secure port is on a Linux machine, then the Stunnel process can be
configured to rewrite the IP headers, thus providing transparent proxying. Simply adding the -T
flag to the command line does this. For transparent proxying to work this way, the client's default
route to the unencrypted server must go through the proxy machine, and the route cannot go
through the loopback interface.

Stunnel can be configured to log connections to afile by specifying the -o flag and afilename.
That at least allows you to get information about connecting |P addresses (which should never be

20

http://www.stunnel.org/faq

used for security purposes anyway, since they are easy to forge), even when transparent proxying
isnot an option.

1.6.2 Client-Side Proxies

Stunnel can also be used to connect clients that are SSL-unaware with servers that do speak the
protocol. Setting up aclient-side proxy is abit more work than setting up a server-side proxy
because, while clients are usually authenticated using some sort of password mechanism, servers
are authenticated primarily using cryptographic certificates. Y ou can set up the client not to
authenticate, but if you do so, be warned that man-in-the-middle attacks will be easy to perform.
Unauthenticating client proxies only buys you security against the most naive eavesdropping
attacks, but is till better than no protection at all.

Let's start with a case in which we are not yet validating certificates. Let's say that wed liketo
connect to Amazon.com's SSL-enabled web server, running on port 443 on www.amazon.com.
First, we can interactively test the connection by running Stunnel in client mode (specified by the

-c flag):

$ stunnel -c -r www.amazon.com:443

Stunndl silently connects. We type in an HTTP request, and get back the appropriate response. For
example:

GET /

<IDOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN'>

<HTML><HEAD>

<TITLE>302 Found</TITLE>

</HEAD><BODY>

<H1>Found</H1>

The document has moved here_<P>
</BODY></HTML>

After sending its response, the server closes the connection.

Asyou can see, we can talk with the SSL-enabled web server running on Amazon.com, yet the
SSL handling is completely transparent from our point of view.

Running Stunnel in interactive mode is useful for the purposes of debugging. However, interactive
mode is not practical for use with arbitrary clients. Let's say we wish to point an SSL-unaware
POP3 client at an SSL-enabled POP3 server running on mail.example.com. On the machine
running the client, we would like to set up a proxy that only accepts connections from the local
machine, and then makes connections on behalf of the local machine to the SSL-enabled server.
We can easily do that with the following command:

stunnel -c -r mail.example.com:pop3s -d 127.0.0.1:pop3

This command sets up a proxy on the local machine that does what we want it to. Now we can
simply point our mail client to our loopback interface, and we will magically connect to the
intended SSL-enabled POP3 server (assuming no man-in-the-middle attacks).

Note that the above command will work only if you have permission to bind to the POP3 port
locally. If that is an issue, and your POP client can connect to servers on arbitrary ports, the
problem is easy to fix. Otherwise, you'll need to grant the proxy process root privileges, or find a
new client. Root privileges pose a big risk, because there may be an obscure security bug in
Stunnel that would allow data passing through the proxy to gain root privileges. If you do choose
to grant the proxy root privileges, on most operating systems you should probably run the proxy as

21

http://www.amazon.com/

root, and then use the -s flag to specify a username to switch to after the port is bound. Y ou might
consider making the binary setuid—»but you shouldn't, because you would then let any user bind to
privileged ports as long as he can run the Stunnel binary.

Aswe mentioned previously, you should always have client proxies perform certificate validation.
To use certificate validation, you must specify where on the client machine valid CA certificates
live, and you must specify the level of validation you want. We recommend maximum validation
(level 3), and we think you should completely stay away from level 1, since it offers no real
validation. Here's an extension of the above example that takes into account certificate validation:

stunnel -c -r mail.example.com:pop3s -d 127.0.0.1:pop3 -A
/etc/ca_certs -v 2

Thefile/etc/ca_certs storesalist of trusted CA certificates (see Chapter 3 for more information on
obtaining such certificates). Unfortunately, Stunnel doesn't support validation based on domain-
name matching. If you wish to restrict valid servers to a small set (usualy a very good ided), you
can use validation level 3 (the maximum), and place the known certificates in a directory of their
own. The certificate's filename must be the hash value of the certificate's subjected (see the -hash
option to the X509 command in Chapter 2 to find out how to generate this value), with a".0" file
extension. Additionally, you use the -a flag to specify where valid server certificates live. For
example:

stunnel -c -r mail.example.com:pop3s -d 127.0.0.1:pop3 -A
/etc/ca _certs -a
/etc/server_certs -v 3

Again, we talk more about certificate formats in Chapter 3.

Aswith server-side SSL proxies, there are some situations in which client-side use of Stunnel isn't
appropriate. Once again, it doesn't make sense to use Stunnel in a UDP-based environment or with
aprotocol that makes out-of-band connections. Additionally, some servers that support SSL
expect to negotiate whether or not to use it. These servers won't understand a connection that is
encrypted with SSL from start to finish. Such negotiation is especially popular with SSL-enabled
SMTP servers.

Stunnel has support for negotiating some of the more common protocols. To use that support,
invoke Stunnel in the same way as in the previous client-side example, but add the —-n argument,
which takes a single argument (the name of the protocol). Currently, SSL supports SMTP, POP3,
and NNTP. For example, to connect to a secure SMTP server over SSL, use the command:

stunnel -c -r mail._example.com:smtp -d 127.0.0.1:smtp -A
/etc/ca_certs -a /etc/
server_certs -v 3 -n smtp

Unfortunately, as of thiswriting, Stunnel doesn't support any other protocols for which SSL isa
negotiated option, most notably SSL-TELNET.

22

Chapter 2. Command-Line Interface

OpenSSL is primarily alibrary that is used by developers to include support for strong
cryptography in their programs, but it is also atool that provides access to much of its
functionality from the command line. The command-line tool makes it easy to perform common
operations, such as computing the MD5 hash of afile's contents. What's more, the command-line
tool provides the ability to access much of OpenSSL's higher-level functionality from shell scripts
on Unix or batch files on Windows. It also provides a simpleinterface for languages that do not
have native SSL bindings, but can run shell commands.

There's no question that the command-line tool can seem quite complex to the uninitiated. It sports
alarge set of commands, and even larger sets of options that can be used to further refine and
control those commands. OpenSSL does come with some documentation that covers most of the
available commands and options supported by the command-line tool, but even that
documentation can seem intimidating. Indeed, when you're trying to discover the magical
incantation to create a self-signed certificate, the documentation provided with OpenSSL does not
provide an intuitive way to go about finding that information, even though it isin fact buried in
there.

This chapter contains an overview of the command-line tool, providing some basic background
information that will help make some sense of how the tool's command structure is organized.
WEe'll also provide a high-level overview of how to accomplish many common tasks, including
using message digests, symmetric ciphers, and public key cryptography. The Appendix contains a
reference for the commands that the command-line tool supports.

We will refer to the command-line tool throughout this book, and, in some instances, we a so
provide examples that are more complex than what we've included in this chapter. In particular,
Chapter 3 makes extensive use of the command-line tool.

2.1 The Basics

The command-line tool executable is aptly named openssl on Unix, and openssl.exe on Windows.
It has two modes of operation: interactive and batch. When the program is started without any
options, it will enter interactive mode. When operating in interactive mode, a prompt is displayed
indicating that it is ready to process your command. After each command is completed, the
prompt is redisplayed, and it's once again ready to process another command. The program can be
exited by simply issuing the qu it command. Commands entered in interactive mode are handled
in precisely the same manner asif you'd entered them from the command line in batch mode; the
only differenceisthat you don't need to type "openssl” before each command. We'll normally
operate the tool in batch mode in our examples, but if you feel more comfortable using the
interactive mode, that's fine.

Thefirst part of acommand is the name of the command itself. It's followed by any options that
you wish to specify, each one separated by a space. Options normally begin with a hyphen and
often require a parameter of their own, in which case the parameter is placed after a space.

Unless indicated otherwise, the order in which you specify optionsis not significant. There are
only asmall number of casesin which the order is significant, usually because a specific option
must appear on the command line as the last option specified.

2.1.1 Configuration Files

23

The command-line tool provides alarge number of options for each of its many commands.
Remembering the option names, their defaults if they're not specified, and even to include them
with a command to obtain the desired result can be difficult, if not downright frustrating at times.
The task of managing options is made considerably simpler using configuration files.

OpenSSL includes a default configuration file that is normally used unless an aternate oneis
specified. The settings in the default configuration are all quite reasonable, but it can often be
useful to replace them with settings that are better tailored to your own needs. The location of the
default configuration file varies greatly, depending on the operating system that you're using and
how OpenSSL was built and installed. So, unfortunately, we can't point you to any one specific
location to find it. Although it isnot at all intuitive, the command-line tool will tell you where the
default configuration file is located if you issue the ca command without any options. Any errors
that are issued due to the lack of options may be safely ignored.

Unfortunately, only three of the many commands supported by the command-line tool make any
use of the configuration file. On the bright side, the three commands that do use it are perhaps the
most complex of al of the supported commands, and accept the greatest number of options to
control their behavior. The commands that do support the configuration file are ca, req, and
x509 (we discuss these commands below).

An OpenSSL configuration file is organized in sections. Each section contains a set of keys, and
each key has an associated value. Sections and keys are both named and case-sensitive. A
configuration fileis parsed from top to bottom with sections delimited by aline containing the
name of the section surrounded by square brackets. The other lines contain key and value pairs
that belong to the most recently parsed section delimiter. In addition, an optional global section
that is unnamed occurs before the first named section in the file. Keys are separated from their
associated value by an equals sign (=).

For the most part, whitespace is insignificant. Comments may begin anywhere on aline with a
hash mark (#), and they end at the end of the line on which they begin. Key and section names
may not contain whitespace, but they may be surrounded by it. Leading and trailing whitespaceis
stripped from avalue, but any whitespace in the middle is significant. Example 2-1 shows an
excerpt from the default OpenSSL configuration file.

Example 2-1. An excerpt from the default OpenSSL configuration file

[cal
default_ca = CA default # The default ca section

L L L L L L D L L
[CA default]

dir = _/demoCA # Where everything is kept
certs = $dir/certs # Where the issued certs are
kept

cri_dir = $dir/crl # Where the issued crl are
kept

database $dir/index.txt database index file

H# 1

new_certs_dir $dir/newcerts default place for new certs

certificate = $dir/cacert.pem # The CA certificate

serial = $dir/serial # The current serial number
crl = $dir/crl_pem # The current CRL
private_key = $dir/private/cakey.pem# The private key

RANDFILE = $dir/private/.rand # private random number file

X509 extensions
the cert

usr_cert # The extentions to add to

24

Extensions to add to a CRL. Note: Netscape communicator chokes on
V2 CRLs
so this is commented out by default to leave a V1 CRL.

crl_extensions = crl_ext

default_days = 365 # how long to certify for

default_crl_days= 30 # how long before next CRL
default_md = md5 # which md to use

preserve = no # keep passed DN ordering

A few difference way of specifying how similar the request should
look

For type CA, the listed attributes must be the same, and the
optional

and supplied fields are just that :-)

policy = policy_match

In the example, you'll notice the use of $dir. Used in avalue, akey name preceded by a dollar
sign is known as amacro, and is replaced with the value for that key. Only macros using keys that
are defined within the same section or in the global section will be expanded. Additionally, the
key must be defined before you use it as a macro in a value, because the macro is expanded as the
configuration file parses rather than when the value is used. Macros are particularly useful when
you have a number of values referencing the same path in afilename.

Although only afew commands currently make any use of a configuration file, other commands
may be modified in the future to take advantage of them. Each command that currently uses the
configuration file reads its base configuration information from a section that shares the name of
the command. Other sections that are not named after acommand may exist, and quite frequently,
they do. Many keys' values are interpreted as the name of a section to use for finding more keys.
WEe'll see frequent examples of this as we examine the commands that do use the configuration file
in detail.

2.2 Message Digest Algorithms

In Chapter 1, we introduced cryptographic hash functions, better known as message digest
algorithms, which can be used for computing a checksum of ablock of data. OpenSSL includes
support for MD2, MD4, MD5, MDC2, SHA1 (sometimes called DSS1), and RIPEMD-160. SHA1
and RIPEMD-160 produce 160-bit hashes, and the others all produce 128-bit hashes. Unless you
have a need for compatibility, we recommend that you use only SHA 1 or RIPEMD-160. Both
SHA1 and RIPEM D-160 provide excellent security for general-purpose use, but SHA1 is
significantly more common. MD5 is a very popular message digest algorithm, but it does not have
agood security margin for all applications. We discuss message digestsin detail in Chapter 7.

OpenSSL handles SHA 1 oddly. There are places where you must refer to it as DSS1 (the dgst
command, described later), and there are places where you cannot refer to it as DSS1 (everywhere
else). Thisisalimitation of the implementation. Use SHA1 as the name, unless we specifically
mention that you need to use DSSL.

The command-line tool provides commands for using most of the supported algorithms. The dgst
command is the main command for accessing message digests, but most of the algorithms can be
accessed using a command of the same name as the algorithm. The exception is RIPEMD-160,
which is named rmd160.

25

When using the dgst command, the algorithm is specified using an option with the name of the
algorithm, with the exception of RIPEMD-160, which also uses the name rmd160 for this
interface. Regardless of the agorithm or form of the command, each of the algorithms accepts the
same options to control how the command will function.

The default operation performed with any of the message digest commands is computing a hash
for ablock of data. That block of data can be read from stdin, or it can be one or morefiles.
When more than one file is used, a separate hash is computed for each file. By default, the
computed hash or hashes are written in hexadecimal format to stdout, unless an aternate output
fileis specified.

In addition to computing hashes, the message digest commands can a so be used for signing and
verifying signatures. When signing or verifying a signature, only one file should be used at atime;
otherwise, the signatures will run together and end up being difficult to separate into a usable form.
When signing, a signature is generated for the hash of thefileto be signed. A private key is
required to sign, and either RSA or DSA may be used. When you use a DSA private key, you
must use the DSS1 message digest (even though it is the same as the SHA 1 algorithm). Y ou may
use any algorithm other than DSS1 with an RSA private key. Verifying asignature is smply the
reverse of signing. Normally, a public key is required to verify a signature, but a private key will
work, too, because a public key can be derived from the private key, but not vice versal When
verifying a signature with an RSA key, public or private, you'll also need to know which message
digest algorithm was used to generate the signature.

2.2.1 Examples
The following examples illustrate the use of the message digest commands:
$ openssl dgst -shal file.txt

Computes an SHA 1 hash for the file named file.txt and write it to stdout in hexadecimal
form.

$ openssl shal -out digest.txt file_txt

Computes an SHA 1 hash for the file named file.txt and write it in hexadecimal form to the
file named digest.txt.

$ openssl dgst -dssl -sign dsakey.pem -out dsasign.bin file._txt
Signsthe SHA1 (DSS1) hash of the file named file.txt using the DSA private key in the
file dsakey.pem and write the signature out to the file dsasign.bin. The PEM file format is
awidely used format for storing cryptographic objects such as private keys, certificates,
and so on. The "bin" extension indicates that the output is raw binary.

$ openssl dgst -dssl -prverify dsakey.pem -signature dsasign.bin
file_txt

Verifies the signature of the file named file.txt that is contained in the file dsasign.bin
using the SHA 1 (DSS1) message digest algorithm and the DSA private key from the file
dsakey.pem.

$ openssl shal -sign rsaprivate.pem -out rsasign.bin file.txt
Signs the SHA 1 hash of the file named file.txt using the RSA private key in thefile

rsaprivate.pem and write the signature out to the file rsasign.bin.

26

$ openssl shal -verify rsapublic.pem -signhature rsasign.bin
file.txt

Verifies the signature of the file named file.txt that is contained in the file rsasign.bin
using the SHA 1 message digest algorithm and the RSA public key from the file
rsapublic.pem.

2.3 Symmetric Ciphers

OpenSSL supports awide variety of symmetric ciphers. Of course, these ciphers are also available
for use with the command-line tool. Many of the large number of ciphers are variations of a base
cipher. The basic ciphers supported by the command-line tool are Blowfish, CAST5, DES, 3DES
(Triple DES), IDEA, RC2, RC4, and RC5. Version 0.9.7 of OpenSSL adds support for AES. Most
of the supported symmetric ciphers support a variety of different modes, including CBC, CFB,
ECB, and OFB. For each cipher, the default mode is always CBC if amode is not explicitly
specified. Each of the supported symmetric ciphers and their various modes of operation are
discussed in detail in Chapter 6. In particular, it isimportant to mention that you should generally
never use ECB, becauseit isincredibly difficult to use securely.

The enc command is the main command for accessing symmetric ciphers, but each cipher can
also be accessed using a command of the same name as the cipher. With the enc command, the
cipher is specified using an option with the name of the cipher. Regardless of the cipher or form of
the command that is used, each of the ciphers accepts the same options to control how the
command will function. In addition to providing encryption and decryption of data with
symmetric ciphers, the base64 command or option to the enc command can aso be used for
encoding and decoding of datain base64.

The default operation to be performed with any of the cipher commands is to encrypt or base64
encode the data. Normally, datais read from stdin and written to stdout, but input and output
files may be specified. Only asingle file can be encrypted, decrypted, base64 encoded, or base64
decoded at atime. When encrypting or decrypting, an option can be specified to perform base64
encoding after encryption or base64 decoding before decryption.

Each of the ciphers requires a key when encryption or decryption is performed. Recall from the
brief discussion of symmetric ciphersin Chapter 1 that the key iswhat provides the security of a
symmetric cipher. In contrast with traditional cryptographic techniques, modern cipher algorithms
are widely available to be scrutinized by anyone that has the time and interest. The key used to
encrypt data must be known only to you and the intended recipient or recipients of the encrypted
data.

A password is often used to derive a key and initialization vector that will encrypt or decrypt the
data. It is also possible to specify the key and initialization vector to be used explicitly, but
supplying that information on your own is often prone to error. In addition, different ciphers have
different key requirements, so supplying your own key requires in-depth knowledge of the
particular cipher. The password can be specified with the pass option, according to the generd
guidelines for passwords and passphrases outlined later in this chapter. If no password or key
information is specified, the tool will present a prompt to obtain it.

If you specify a password or passphrase to derive the key and initialization vector, the command-
line tool uses a standard OpenSSL function to perform the task. Essentially, the password or
passphrase that you specify is combined with asalt. The salt that is used in this case is sSimply
eight random bytes. The MD5 hash of the combined salt and password or passphrase is then
computed and broken into two parts, which are then used as the key and initialization vector.

27

2.3.1 Examples
The following examples illustrate the use of the symmetric cipher commands:
$ openssl enc -des3 -salt -in plaintext.doc -out ciphertext.bin

Encrypts the contents of the file plaintext.doc using DES3 in CBC mode and places the
resulting ciphertext into ciphertext.bin. Since no password or key parameters were
specified, a prompt for a password from which akey can be derived will be presented.

$ openssl enc -des3-ede-ofb -d -in ciphertext.bin -out
plaintext.doc -pass pass:trousers

Decrypts the contents of the file ciphertext.bin using DES3 operating in OFB mode and
places the resulting plaintext into plaintext.doc. The password "trousers’ will be used to
decrypt the file. Note that this example will not successfully decrypt the file from the

previous example, since we used a different mode of encryption (CBC instead of OFB).

$ openssl bf-cfb -salt -in plaintext.doc -out ciphertext.bin -
pass env:PASSWORD

Encrypts the contents of the file plaintext.doc using the Blowfish cipher in CFB mode and
places the resulting ciphertext into ciphertext.bin. The contents of the environment
variable PASSWORD will be used for the password to generate the key.

$ openssl base64 -in ciphertext.bin -out base64.txt

Encodes the contents of the file ciphertext.bin in base64 and writes the result to thefile
base64.txt.

$ openssl rc5 -in plaintext.doc -out ciphertext.bin -S
C62CB1D49F158ADC -iv E9EDACA1BD7090C6 -K
89D4B1678D604FAA3DBFFDO30A314B29

Encrypts the contents of the file plaintext.doc using the RC5 cipher in CBC mode and
places the resulting ciphertext into ciphertext.bin. The specified salt, key, and
initialization vector will be used to encrypt the plaintext. Keys are specified by their
hexadecimal representation.

The Appendix gives a complete list of algorithms used to perform symmetric encryption.

2.4 Public Key Cryptography

The SSL protocol relies heavily on avariety of different cryptographic algorithms, including
message digest algorithms, symmetric ciphers, and public key cryptography. Its use of most of
these algorithms is generally done without the need for any human intervention. A common
exception, though, isits use of public key cryptography. For example, in order for a server to
employ the SSL protocal, it requires a private key and a certificate. The certificate contains the
public key that matches the server's private key. These keys must be created as part of the process
for configuring the server to use SSL, and they are frequently not created automatically. Instead,
they must be created by whoever is configuring the server.

28

SSL isn't the only protocol that makes use of public key cryptography. Most modern software that
supports encrypted communications uses it, too. Some of the more popular examples include SSH,
PGP (Pretty Good Privacy), and SIMIME. All of these examples use public key cryptography in
some form, and we're overlooking many other applications as well. We discuss OpenSSL's
support for public key cryptography in detail in Chapter 8.

2.4.1 Diffie-Hellman

Diffie-Hellman is used for key agreement. In simple terms, key agreement is the exchange of
information over an insecure medium that allows each of the two partiesin a conversation to
compute avalue that is typically used as the key for a symmetric cipher. By itself, Diffie-Hellman
cannot be used for encryption or authentication; it only provides secrecy. Because the exchange of
information takes place over an insecure medium, it should never be used by itself. Some means
of authenticating the parties in the conversation should a so be used.

Diffie-Hellman works by first creating a set of parameters that are agreed upon by both partiesin
the conversation. The parameters, consisting of a randomly chosen prime number and a generator
value that istypically specified as either 2 or 5, are public and can be either agreed upon before
the conversation begins or exchanged as part of the conversation. Using the agreed-upon
parameters, each party computes a public and private key. Asits name implies, the private key is
never shared with anyone. The parties exchange their public keys, and then each party can
compute the shared secret using their private key and the peer's public key.

The command-line tool provides a command for generating Diffie-Hellman parameters, but the
only method for generating keys is deprecated, and should not be used. OpenSSL 0.9.5 added the
dhparam command, and in doing so, deprecated the two commands dh and gendh, which were
capable of generating Diffie-Hellman parameters and keys, respectively. As of thiswriting, the
two deprecated commands are still accessible in OpenSSL 0.9.7, but because they're deprecated,
well pretend that they do not exist, because they're likely to be completely removed from the next
release of OpenSSL. Unfortunately, the new dhparam command does not support the generation
of DiffieeHellman keys, but it islikely that future versions will add support for it.

2.4.1.1 Examples
The following examples illustrate the use of the Diffie-Hellman commands:
$ openssl dhparam -out dhparam.pem -2 1024

Generates anew set of Diffie-Hellman parameters using a generator of 2 and arandom
1,024-bit prime, and writes the parameters in PEM format to the file dhparam.pem.

$ openssl dhparam -in dhparam.pem -noout -C

Reads a set of Diffie-Hellman parameters from the file dhparam.pem and writes a C code
representation of the parametersto stdout.

2.4.2 Digital Signature Algorithm

Asits name implies, the Digital Signature Algorithm (DSA) is used for creating and verifying
digital signatures. It provides authentication, but cannot be used for encryption or secrecy. DSA is
frequently used in combination with Diffie-Hellman. Two partiesin a conversation can exchange
DSA public keys before the conversation begins (or during the conversation using certificates, as
well explain in Chapter 3) and use the DSA keys to authenticate the communication of Diffie-
Hellman parameters and keys. Combining Diffie-Hellman with DSA provides authentication and

secrecy, and by using the shared secret resulting from the Diffie-Hellman exchange as akey, a
symmetric cipher can then be used for encryption.

Just like Diffie-Hellman, DSA also requires parameters from which keys are generated. There is
no harm in making the parameters used to generate a key pair public, but there's equally no
compelling reason to do so. Only the private key that is generated must be kept private, asis
implied by its name. The public key is the only thing that really needs to be shared with any party
that wishes to verify the authenticity of anything signed with a private key.

Three commands are provided by the command-line tool for generating DSA parameters and keys,
aswell asfor examining and manipulating them. The dsaparam command is used to generate
and examine DSA parameters. Its function and options are not unlike those of the dhparam
command. One magjor difference between the two is that the dsaparam command also provides
an option to generate a private DSA key. The private key resulting from the dsaparam command
will be unencrypted, which means that neither a password nor a passphrase will be required to
decrypt and make use of it.

The gendsa command is used for generating private keys from a set of DSA parameters. By
default, the generated private key will not be encrypted, but options are available that allow the
key to be encrypted using any one of the DES, 3DES, or IDEA ciphers. No options are provided
for specifying the password or passphrase to use for encryption on the command line, so encrypted
DSA private key generation cannot be easily automated.

Both the dsaparam and gendsa commands are capable of generating private keys, either
encrypted or not, but neither of them has the capability for generating a public key, which is
required in order for DSA to provide any utility. The dsa command provides the means by which
apublic key can be generated from a private key. It aso alows changes to be made to the
encryption on a private key. For private keys that are not encrypted, encryption can be added, and
for private keys that are aready encrypted, the password or passphrase can be changed, as well as
the encryption cipher that's used to encrypt it. It's also possible to remove the encryption on a
private key with this command.

2.4.2.1 Examples
The following examples illustrate the use of the DSA commands:
$ openssl dsaparam -out dsaparam.pem 1024

Generates anew set of DSA parameters and writes them to the file dsaparam.pem. The
length of the prime and generator parameters will be 1,024 hits.

$ openssl gendsa -out dsaprivatekey.pem -des3 dsaparam.pem

Generates anew DSA private key using the parameters from the file dsaparam.pem,
encrypts the newly generated private key with the 3DES cipher, and writes the result out
to the file dsaprivatekey.pem.

$ openssl dsa -in dsaprivatekey.pem -pubout -out dsapublickey.pem

Computes the public key that corresponds to the private key contained in the file
dsaprivatekey.pem and writes the public key out to the file dsapublickey.pem.

$ openssl dsa -in dsaprivatekey.pem -out dsaprivatekey.pem -des3

-passin
pass:oldpword -passout pass:newpword

30

Reads a private key from the file dsaprivatekey.pem, decrypts it using the password
"oldpword", re-encryptsit using the password "newpword", and writes the newly
encrypted private key back out to the file dsaprivatekey.pem.

2.4.3 RSA

RSA is the most popular public key algorithm currently in use, despite the fact that it was
encumbered by patent restrictions until the patent expired in September of 2000. It is named after
its creators, Ron Rivest, Adi Shamir, and Leonard Adleman. One of the reasons that it is so
popular is because it provides secrecy, authentication, and encryption all in one neat little package.

Unlike Diffie-Hellman and DSA, the RSA algorithm does not require parameters to be generated
before keys can be generated, which simplifies the amount of work that is necessary to generate
keys, and authenticate and encrypt communications. The command-line tool provides three
commands for generating, examining, manipulating, and using RSA keys.

OpenSSL's genrsa command is used to generate a new RSA private key. Generation of an RSA
private key involves finding two large prime numbers, each approximately half the length of the
key. A typical key size for RSA is 1,024. We don't recommend that you use smaller key lengths or
key lengths greater than 2,048 hits. By default, the generated private key will be unencrypted, but
the command does have the ability to encrypt the resultant key using DES, 3DES, or IDEA.

The rsa command is used to manipulate and examine RSA keys and isthe RSA version of the
dsa command for DSA keys. It is capable of adding, modifying, and removing the encryption
protecting an RSA private key. It is also capable of producing an RSA public key from a private
key. The command can also be used to display information about a public or private key.

The rsautl command provides the ability to use an RSA key pair for encryption and signatures.
Options are provided for encrypting and decrypting data, as well asfor signing and verifying
signatures. Remember that signing is normally performed on hashes, so this command is not
useful for signing large amounts of data, or even more than 160 bits of data. In genera, we do not
recommend that you use this command at all for encrypting data. Y ou should use the enc
command instead. Additionally, encryption and decryption using RSA is slow, and for that reason,
it should not be used on its own. Instead, it is commonly used to encrypt a key for a symmetric
cipher. Thisis discussed in more detail in Chapter 8.

2.4.3.1 Examples
The following examples illustrate the use of the RSA commands:

$ openssl genrsa -out rsaprivatekey.pem -passout pass:trousers -
des3 1024

Generates a 1,024-bit RSA private key, encryptsit using 3DES and a password of
"trousers', and writes the result to the file rsaprivatekey.pem.

$ openssl rsa -in rsaprivatekey.pem -passin pass:trousers -pubout
-out rsapublickey.pem

Reads an RSA private key from the file rsaprivatekey.pem, decrypts it using the password
"trousers’, and writes the corresponding public key to the file rsapublickey.pem.

$ openssl rsautl -encrypt -pubin -inkey rsapublickey.pem -in
plain.txt -out cipher.txt

31

Using the RSA public key from the file rsapublickey.pem, the contents of the file plain.txt
are encrypted and written to the file cipher.txt.

$ openssl rsautl -decrypt -inkey rsaprivatekey.pem -in cipher.txt
-out plain.txt

Using the RSA private key from the file rsaprivatekey.pem, the contents of thefile
cipher.txt are decrypted and written to the file plain.txt.

$ openssl rsautl -sign -inkey rsaprivatekey.pem -in plain.txt -
out signature.bin

Using the RSA private key from the file rsaprivatekey.pem, the contents of thefile
plain.txt are signed, and the signature is written to the file signature.bin.

$ openssl rsautl -verify -pubin -inkey rsapublickey.pem -in
signature.bin -out plain.txt

Using the RSA public key from the file rsapublickey.pem, the signature in the file
signature.bin is verified, and the original unsigned data is written out to the file plain.txt.

2.5 SIMIME

S/MIME is acompeting standard to PGP (Pretty Good Privacy) for the secure exchange of email.
It provides authentication and encryption of email messages using public key cryptography, as
does PGP. One of the primary differences in the two standards is that SMIME uses apublic key
infrastructure to establish trust, whereas PGP does not. Trust is established when there is some
means of proving that someone with a public key is actually that person, and that the key belongs
to that person.

PGP was written and released in 1991 by Phil Zimmermann. It quickly became the de facto
standard for the secure exchange of information throughout the world. Today, PGP has become an
open standard known as OpenPGP, and is documented in RFC 2440. Because PGP does not rely
on apublic key infrastructure to establish trust, it is easy to set up and use. Today, one of the most
common methods of establishing trust is obtaining someone's public key either from a key server
or directly from that person, and manually verifying the key's fingerprint by comparing it with the
fingerprint information obtained directly from the key's owner over some trusted medium, such as
the telephone or paper mail. It is also possible to sign apublic key, so if Alice trusts Bob's key,
and Bob has used his key to sign Charlie's key, Alice knows that she can trust Charlie's key if the
signature matches Bob's. PGP works for small groups of people, but it does not scale well.

S/MIME stands for Secure Multipurpose Internet Mail Exchange. RSA Security developed the
initial version in 1995 in cooperation with several other software companies; the IETF devel oped
Version 3. Like PGP, SIMIME also provides encryption and authentication services. A public key
infrastructure is used as a means of establishing trust, which means that SMIME is capable of
scaling to support large groups of people. The downside is that it requires the use of apublic key
infrastructure, which meansthat it is slightly more difficult to set up than PGP because a
certificate must be obtained from a Certification Authority that is trusted by anyone using the
certificate to encrypt or verify communications. Public keys are exchanged in the form of X.509
certificates, which require a Certification Authority to issue certificates that can be used. Because
a Certification Authority isinvolved in the exchange of public keys, trust can be established if the
Certification Authority that issued a certificate is trusted. Public key infrastructure is discussed in
detail in Chapter 3.

32

S/MIME messages may have multiple recipients. For an encrypted message, the body of the
message is encrypted using a symmetric cipher, and the key for the symmetric cipher is encrypted
using the recipient's public key. When multiple recipients are involved, the same symmetric key is
used, but the key is encrypted using each recipient's public key. For example, if Alice sendsthe
same message to Bob and Charlie, two encrypted copies of the key for the symmetric cipher are
included in the message. One copy is encrypted using Bob's public key, and the other is encrypted
using Charlie's public key. To decrypt a message, the recipient’s certificate is required to
determine which encrypted key to decrypt.

The command-line tool provides the smime command, which supports encryption, decryption,
signing, and verifying S'MIME v2 messages (support for SMIME v3islimited and is not likely
to work). Email applications that do not natively support SMIME can often be made to support it
by using the command-line tool's smime command to process incoming and outgoing messages.
The smime command does have some limitations, and it is not recommended in any kind of
production environment. However, it provides a good foundation for building a more powerful
and fully featured SIMIME implementation.

2.5.1 Examples
The following examples illustrate the use of the S’'MIME commands:

$ openssl smime -encrypt -in mail.txt -des3 -out mail.enc
cert._pem

Obtains a public key from the X.509 certificate in the file cert.pem and encrypts the
contents of the file mail.txt using that key and 3DES. The resulting encrypted SMIME
message is written to the file mail.enc.

$ openssl smime -decrypt -in mail.enc -recip cert.pem -inkey
key.pem -out mail.txt

Obtains the recipient's public key from the X.509 certificate in the file cert.pem and
decrypts the SIMIME message from the file mail.enc using the private key from thefile
key.pem. The decrypted message is written to the file mail.txt.

$ openssl smime -sign -in mail.txt -signer cert.pem -inkey
key.pem -out mail.sgn

The signer's X.509 certificate is obtained from the file cert.pem, and the contents of the
file mail.txt are signed using the private key from the file key.pem. The certificate is
included in the S'MIME message that is written to the file mail.sgn.

$ openssl smime -verify -in mail.sgn -out mail.txt

Verifies the signature on the S’'MIME message contained in the file mail.sgn and writes
the result to the file mail.txt. The signer's certificate is expected to be included as part of
the SSMIME message.

2.6 Passwords and Passphrases

Many commands (particularly those that involve a private key) require a password or passphrase
to complete successfully, usually to decrypt akey that is stored securely on adisk. Normally, the

33

command-line tool will prompt you to enter a password or passphrase when appropriate, even if
you're not running the tool in interactive mode. The need for a password or passphrase to be
physically entered by someone using the keyboard at the computer when it's needed makes using
the tool for automated processes difficult, to say the least.

Fortunately, there's a solution. Many of the commands accept options that allow you to specify the
necessary password or passphrase. Unfortunately, the options are not consistently named, so you
need to use the right option with the right command. In general, the options passin and
passout are used. No matter what the option is named, it requires a parameter that specifies how
the password or passphrase will be obtained. A variety of sources may be specified, some of them
not very secure at al. None of them provides the level of security that someone sitting at the
computer and typing in the password or passphrase does, but you need to determine for yourself
what you consider to be an acceptable risk.

stdin

This method for reading a password is distinctly different from the default method. The
default method reads passwords from the actual terminal device (TTY), thus explicitly
avoiding input redirection from the command line. The stdin method for providing
passwords allows for such input redirection.

pass. < password>

This method can be used to supply the password or passphrase directly on the command
lineitself. If your password or passphrase contains spaces, you typically need to enclose
the whole of the parameter in quotes, but the precise method of handling such a situation
may differ on the platform that you're using.

We strongly recommend that you do not use this method, for two reasons. First, if you're
using batch mode, the command line for a processis readily accessible to any other
process that is running on the system. In fact, on such systems there are commands
specifically designed for this purpose, such asthe ps command on Unix systems. Second,
if you're using this as part of ascript, it usually means the password or passphrase will be
contained in your script, which also means that the password or passphrase can be easily
compromised.

env:<variable>

This method obtains the password or passphrase from an environment variable. We
recommend against using this method, although not as strongly as we do against
specifying the password or passphrase directly on the command line. This method is
dlightly more secure, but a process's environment is still available to other processes on
some operating systems under the right circumstances.

file:<filename>

This method obtains the password or passphrase by reading it from the named file. The
file containing the password or passphrase should be well protected, denying read access
to any user on the system other than the owner of thefile. Additionally, on Unix systems
steps should be taken to ensure that each directory that parents the file does not allow
access to a user other than the owner.

fd: <number>

34

This method obtains the password or passphrase by reading it from the specified file
descriptor. This method is really useful only when the tool is launched from another
process and not directly from the command line because the tool's process must have
inherited the file descriptor from its parent in order for it to gain access.

2.7 Seeding the Pseudorandom Number Generator

In Chapter 1, we briefly discussed the need for cryptographic randomness. Well expand on this
discussion in Chapter 4. For now, we'll just deal with how to seed the OpenSSL PRNG properly
from the command line. Because many of the cryptographic commands depend on random
numbers, it isimportant that the PRNG be seeded properly.

The command-line tool will attempt to seed the PRNG on its own, but it may not always be ableto
do so. When the PRNG is not properly seeded, the tool will emit a warning message indicating
that the random numbers it generates will be predictable. Additionally, you may wish to use a
more conservative seeding mechanism than the one used by default.

On Windows systems, a variety of sources will be used to seed the PRNG, including the contents
of the screen. None of these sourcesis particularly entropic, and depending on the version of
Windows that you're using, the entropy sources vary. Unix systems that have a device named
/dev/urandom will use that device to obtain entropy for seeding the PRNG. Most modern versions
of Unix provide support for this device, which well discuss in detail in Chapter 4. In addition,
beginning with Version 0.9.7, OpenSSL will also attempt to seed the PRNG by connecting to an
EGD socket to obtain entropy. By default, OpenSSL is built with four well-known names for
sockets that it will attempt a connection with.

In addition to the base entropy sources, the command-line tool will also look for afileto obtain
seed data from. If the RANDF I LE environment variable is set, its value will be used as the name of
thefile to use for seeding the PRNG. If it is not set, a default filename of .rnd will be used, and the
value of the HOME environment variable will be used to specify the location of that file. If the
HOME environment variable is not set, as is often the case on non-Unix systems, the current
directory will be used to find the file. Once the name of the file has been determined, the contents
of that file will be loaded and used to seed the PRNG if it exists.

Many of OpenSSL's commands require that its PRNG be properly seeded so that the random
numbers it generates are unpredictable. In particular, any of the commands that generate key pairs
always require unpredictable random numbersin order for them to be effective. When the tool is
unable to seed the PRNG on its own, the tool provides an option named rand that can be used to
provide additional entropy sources.

The rand option requires a parameter that contains a list of files to be used as entropy sources.
Thelist may be as short asasinglefile, or aslong as the number of filenames you can fit on the
command line. Each filein the list is separated by a platform-dependent separator character rather
than a space. The separator character is a semi-colon (;) on Windows, acomma (,) on OpenVMS,
and acolon (:) on al other platforms. On Unix systems, each filenamein the list is first checked to
seeif it isan Entropy Gathering Daemon (EGD) socket. If it is, entropy will be gathered from an
EGD server; otherwise, seed datawill be read from the contents of the named file.

EGD is an entropy-gathering daemon written in Perl that isintended for use in the absence of
/dev/random or /dev/urandom. It is available from http://egd.sourceforge.net/ and runs on any
Unix-based system that has Perl installed. It doesn't work on Windows, but other entropy-
gathering solutions are available for Windows. In particular, we recommend EGADS (Entropy
Gathering And Distribution System), a C-based infrastructure that supports both Unix and

35

http://egd.sourceforge.net/

Windows. Thisis a preferable solution even on Unix machines becauseit is far more conservative
in its entropy collection and estimation. It is even a good solution on systems with a/dev/irandom.
In such cases, it uses /devirandom as a single source of entropy. EGADS is available from
http://www.securesw.com/egads/. It can be used anywhere an EGD socket is expected.

If Perl isinstalled on your system, EGD is easy to set up and run. Perl has become ubiquitousin
the Unix world, so it's unlikely that a modern system does not have it installed. Because EGD uses
Perl, it's very portable, even though it was originally written for Linux systems. On the other hand,
EGD works by gathering its entropy from the output of running processes, a number of which
produce a questionable amount of unpredictable data. Perhaps its biggest limitation is that it works
only on Unix systems.

EGADS can be a bit more difficult to get up and running, but will usually compile straight from
the distribution with a minimal amount of effort. On systems that do not have /dev/random,
EGADS also gathersiits entropy from the output of running processes. These processes are not as
widely varied as EGD's list. EGADS provides an EGD-compatible interface on Unix systems.
Because EGADS provides an EGD interface and will use /dev/irandom to gather entropy, it
provides asimplified interface for gathering entropy to clients such as those built with OpenSSL.
It also supports Windows NT 4.0 and higher, which have no built-in entropy gathering services. It
does not work on Windows 95, 98, or ME. Finally, EGADS also contains a cryptographically
secure PRNG.

36

http://www.securesw.com/egads/

Chapter 3. Public Key Infrastructure (PKI)

In Chapter 1, we described a scenario known as a man-in-the-middle attack, in which an attacker
could intercept and even manipul ate communi cations secured with public key cryptography. The
attack is possible because public key cryptography provides no means of establishing trust when
used on its own. Public Key Infrastructure (PK1) provides the means to establish trust by binding
public keys and identities, thus giving reasonable assurance that we're communicating securely
with who we think we are.

Using public key cryptography, we can be sure that only the encrypted data can be decrypted with
the corresponding private key. If we combine this with the use of a message digest algorithm to
compute a signature, we can be sure that the encrypted data has not been tampered with. What's
missing is some means of ensuring that the party we're communicating with is actually who they
say they are. In other words, trust has not been established. Thisiswhere PKI fitsin.

In the real world, we often have no way of knowing firsthand who a public key belongsto, and
that's a big problem. Unfortunately, there is no sure-fire way to know that we're communicating
with who we think we are. The best we can do is extend our trust to athird party to certify that a
public key belongs to the party that is claiming ownership of it.

Our intention in this chapter isto give you a basis for understanding how PKI fitsinto the big
picture. PKI isimportant to using public key cryptography effectively, and is essential to
understanding and using the SSL protocol. A comprehensive discussion of PKI is beyond the
scope of this book. For much more in-depth discussion, we recommend the book Planning for PKI:
Best Practices Guide for Deploying Public Key Infrastructure by Russ Housley and Tim Polk

(John Wiley & Sons).

In this chapter, well look at how PKI functions. We start by examining the various components
that comprise such an infrastructure. Then we demonstrate how to become a part of a public
infrastructure so that others wishing to communicate securely with us can do so. Finally, we look
at how to use the OpenSSL command-line tool to set up our own private infrastructure.

3.1 Certificates

At the heart of PKI is something called a certificate. In simple terms, a certificate binds a public
key with adistinguished name. A distinguished name is simply the name of the person or entity
that owns the public key to which it's bound. Perhaps a certificate can be best compared to a
passport, which binds a picture with a name, thus solidifying a person'sidentity. A passport is
issued by atrusted third party (the government) and contains information about the person to
whom it has been issued (the subject) as well as information about the government that issued it
(theissuer). Similarly, acertificate is also issued by atrusted third party, contains information
about the subject, and contains information about the third party that issued it.

Not unlike a passport, which contains awatermark used to verify its authenticity, a certificate aso
contains safeguards intended to allow the authenticity of the certificate to be verified, and aid in
the detection of forgery or tampering. Also similar to a passport, a certificate is valid only for a
defined period. Once it has expired, a new certificate must be issued, and the old one should no
longer be trusted.

A certificate is signed with the issuer's private key, and it contains amost all of the information
necessary to verify its validity. It contains information about the subject, the issuer, and the period

37

for which it isvalid. The key component that is missing is the issuer's certificate. The issuer's
certificate is the key component for verifying the validity of a certificate because it contains the
issuer's public key, which is necessary for verifying the signature on the subject’s certificate.

By signing a certificate with the issuer's private key, anyone that has the issuer's public key can
verify its authenticity. The signature serves as a safeguard to prevent tampering. By signing the
subject's certificate, the issuer asserts that it has verified the authenticity of the public key that the
certificate contains and states that it may be trusted. Aslong as the issuer istrusted, the certificates
that it issues can also be trusted.

It's important to note that the issuer's certificate or public key may be contained in an issued
certificate. It's more important to note that this information cannot be trusted to authenticate the
certificate. If it was trusted, the element of trust established from athird party is effectively
eliminated. Anyone could create another key pair to use in signing a certificate and place that
public key in the certificate.

Certificates are also created with a serial number embedded in them. The serial number is unique
only to theissuer of the certificate. No two certificates issued by the same issuer should ever be
assigned the same serial number. The certificate's serial number is often used to identify a
certificate quickly.

3.1.1 Certification Authorities

A Certification Authority (CA) is an organization or company that issues certificates. By its very
nature, a CA has a huge responsibility to ensure that the certificates it issues are legitimate. That is,
the CA must ensure beyond all reasonable doubt that every certificate it issues contains a public
key that was issued by the party that claimsto have issued it. It must be able to produce acceptable
proof for any certificate that it issues on demand. Otherwise, how can the CA itself be trusted?

There are two basic types of CAs. A private CA has the responsihility of issuing certificates only
for members of its own organization, and is likewise trusted only by members of its own
organization. A public CA, such as VeriSign or Thawte, has the responsibility of issuing
certificates for any member of the public, and must be trusted by the public. The burden of proof
varies depending on the type of CA that hasissued a certificate and the type of certificate that is
issued.

A CA must be trusted, and so for that trust to be extended, its certificate containing its public key
must be widely distributed. For public CAs, their certificates are generally published so that
anyone can obtain them. More commonly, the software that makes use of them, such as aweb
browser, is shipped containing them. Most often, the software alows certificates from other CAs
to be added to its list of trusted certificates, thus facilitating the use of private CAs with off-the-
shelf software.

3.1.1.1 Private Certification Authorities

A private CA isoften ideal for use in a corporate setting. For example, a company could set up its
own CA for email, using SMIME as the standard for encrypting and authenticating email
messages. The company's CA would issue certificates to each employee, and each employee
would configure their S'MI1M E-capable email clients to recognize the company's CA as being
trusted.

For aprivate CA, verifying the identity of a subject is often a reasonably simple and
straightforward matter. When used in a corporate environment, for example, employees are known,
and their identities can be easily identified using information obtained from the company's human

38

resources department. In such a scenario, the human resources department is said to be acting as a
Registration Authority (RA).

3.1.1.2 Public Certification Authorities

A public CA commonly issues certificates for public web sites requiring encryption and/or
authentication, often for e-commerce in which customer information must be transmitted securely
to place an order. For such operations, it's essential that the customers transmit their information to
the site that is supposed to be receiving it without worrying about someone else abtaining the
information.

For apublic CA, verifying the identity of a subject™ is considerably more difficult than it is for a
private CA. The information required from the subject to prove itsidentity to the CA varies
depending on whether the subject is an individual or a business. For an individual, the proof
required could be as simple as a photocopy of a government-issued ID, such adriver's license or
passport. For a business or other organization, similar government documentation proving your
right to use the name will also likely be required.

™ As we mentioned in Chapter 1, this is technically the job of an RA instead of a CA, but the CA
generally deals with the RA transparently.

It's important to note that most public CAs provide their services to make money, and not to
simply benefit the public. They still have aresponsibility to verify a subject's identity, but not
actually guarantee anything—the liability istoo great to provide an absolute guarantee. Certainly,
itisinthe CA's best interests to verify a subject's identity to the best of its ability, however. If a
CA gains the reputation of issuing certificates to anyone who asks (and pays them enough money),
they're not going to remain in business for very long because nobody will trust them.

3.1.2 Certificate Hierarchies

A certificate that isissued by a CA can be used to issue and sign another certificate, if the issued
certificate is created with the appropriate permissions to do so. In this way, certificates can be
chained. At theroot of the chain isthe root CA's certificate. Because it is at the root of the chain
and there is no other authority to sign its certificate, the root CA signsits own certificate. Such a
certificate is known as a self-signed certificate .

Thereisno way to digitally verify the authenticity of a self-signed certificate because the i ssuer
and the subject are the same, which iswhy it has become a common practice to provide them with
the software that uses them. When they're included with an application, they are generally
obtained by the software author through some physical means. For example, Thawte providesits
root certificates on its web site, free and clear, but strongly advises anyone making use of them to
confirm the certificate fingerprints with Thawte via tel ephone before using or distributing them.

To verify the authenticity and validity of a given certificate, each certificate in the chain must also
be verified, from the certificate in question's issuer all the way up to the root certificate. If any
certificate in the chain isinvalid, each certificate below it in the chain must also be considered
invalid. Invalid certificates typically have either expired or been revoked (perhaps due to
certificate theft). A certificate is also considered invalid if it has been tampered with and the
signatures on the certificate don't match with the ones that should have been used to sign it.

The decision whether to employ a certificate hierarchy more complex than asingle root CA
depends on many factors. These factors and their trade-offs are well beyond the scope of this book.
Entire books have been devoted to PKI, and we strongly recommend that you consult one or more
of them to assist you in making an informed decision. Again, we strongly recommend Planning

for PKI by Russ Housley and Tim Polk.

3.1.3 Certificate Extensions

The most widely accepted format for certificates is the X.509 format, first introduced in 1988.
There are three versions of the format, known as X.509v1, X.509v2, and X.509v3. The most

recent revision of the standard was introduced in 1996, and most, if not al, modern software now
supportsit. A large number of changes were made between X.509v1 and X.509v3, but perhaps
one of the most significant features introduced in the X.509v3 standard is its support of extensions.

Version 3 extensions alow a certificate to contain additional fields beyond those defined by
previous versions of the X.509 standard. The additional fields may be standard in X.509v3, such
asthebasicConstraints or keyUsage fields, or they may be completely nonstandard,
perhaps recognized only by a single application. Each extension has a name for itsfield, a
designation indicating whether the extension is critical, and avalue to be associated with the
extension field. When an extension is designated as critical, software that does not recognize the
extension must reject the certificate as being invalid. If the extension is noncritical, it may be
ignored.

The X.509v3 standard defines 14 extensionsin an effort to consolidate the most common
extensions implemented by third parties. One example is the permissible uses for a certificate—for
instance, whether a certificate is allowed to sign another certificate, or isusablein an SSL Server.
If each application were to create its own disparate extensions, the information in those extensions
would be either unusable by other applications or significantly complicate the process of
validating a certificate because it would need to recognize a virtually unlimited number of
different extensionsthat all essentially mean the same thing.

Of the 14 standard extensions defined by X.509v3, only 4 are well-supported and in widespread
use. Only one of them must be designated critical according to the standard, while the other three
may or may not be. Since the majority of the standard extensions are not well supported, we won't
discuss them here. Later in this chapter, when we setup our own CA, we'll be making use of some
of the better-supported extensions, as appropriate.

ThebasicConstraints extension is a sequence that may contain two possible components. cA
and pathLenConstraint. Without getting into the technical details of an X.509 certificate, a
seguence can best be thought of as a container, which contains other components; it has no value
of its own. The cA component is a boolean indicating whether the certificate may be used as a
CA'scertificate. If the cA component is absent, OpenSSL will check the keyUsage extension to
determine whether to alow the certificate to be used as a CA certificate. If the keyUsage
extension is present and the keyCertSign bit isnot set, the certificate may not be used as a CA
certificate. The optional pathLenConstraint component is an integer that specifies the
maximum number of certificates in the chain that may be used below this certificate. If the value
is less than the number of certificates in the chain that have already been validated, this certificate
must be rejected.

The keyUsage extension isabit string that defines how a certificate can be used, and may or
may not be designated critical. If the extension is present in the certificate, it should be marked
critical. If it is designated critical, the information that it contains will always be used to determine
valid usage. If the extension is absent or designated noncritical, the certificate should be treated as
though all bits are set. Rather than individually explain what each bit means, it's more useful to
show which bits should be set for each of the common uses for a certificate, whichwe do in Table
3-1.

Table 3-1. Common bit settings for the keyUsage extension
\ Purpose of certificate | Bit settingsto use
Certification Authority Certificate lkeyCertSign and cRLSign

40

Certificate Signing keyCertSign

Object Signing digitalSignature
S/MIME Encryption keyEncipherment
S/MIME Signing digitalSignature
SSL Client digitalSignature
|SSL Server lkeyEncipherment

The extKeyUsage extension is a sequence of object identifiers that further defines which uses of
the certificate are permissible, and may or may not be designated critical. As with the keyUsage
extension, if this extension is present, it should be designated critical. If it is designated critical,
the certificate must be used for one of the purposes defined by the extension. If it is designated
noncritical, the information is advisory only and may be ignored. There are eight possible
purposes defined for use with this extension, as summarized in Table 3-2.

Table 3-2. Purposes defined for the extKeyUsage extension

Purpose of certificate Object identifier (OID)
Server Authentication 13.6.15573.1
Client Authentication 1.3.6.1.5.5.7.3.2
|Code Signing 1.3.6.155.7.3.3
Email 1.3.6.1.55.7.34
IPSec End System 1.3.6.1.55.7.35
IPSec Tunnel 1.3.6.1.55.7.3.6
IPSec User 1.3.6.1.5.5.7.3.7
Timestamping 11.36.15.5.7.38

It's worth noting that neither the keyUsage nor the extKeyUsage extension is well-defined, and
as such, their usage is subject to wide interpretation. In particular, how to treat the critical flag on
either extension is not well-defined, but it would seem that in many existing software products, the
extensions are largely ignored. In addition, various profiles (guidelines that dictate what
certificates should contain) specify their usage differently. For instance, PKIX (the IETF Public
Key Infrastructure working group) has obsoleted the three IPSec-related OIDs that may be present
in an extKeyUsage sequence. Additionally, they are not implemented consistently across
vendors. As aresult of these problems, these two extensions are mostly useless. If you do use
them, be sure that you are using them in a consistent manner with any existing software with
which you'll be interoperating.

ThecRLDistributionPoints extension is asequence that is used to communicate how the
CA that issued the certificate makes its CRLs available. The standard indicates that this extension
should be designated noncritical; however, it does advise CAsto include the information.
Providing the location of the CRL that would contain this certificate's serial number if itis
revoked inside the certificate itself is perhaps the best possible way for software validating a
certificate to obtain the information.

3.1.4 Certificate Revocation Lists

Once a certificate has been issued, it is generally put into production, where it will be distributed
to many clients. If an attacker compromises the associated private key, he now has the ability to
use the certificate even though it doesn't belong to him. Assuming the proper owner is aware of
the compromise, anew certificate with a new key pair should be obtained and put into use. In this
situation there are two certificates for the same entity—both are technically valid, but one should
not be trusted. The compromised certificate will eventually expire, but in the meantime, how will
the world at large know not to trust it?

41

The answer liesin something called a certificate revocation list (CRL). A CRL contains alist of
all of the revoked certificates a CA has issued that have yet to expire. When a certificate is
revoked, the CA declares that the certificate should no longer be trusted.

Bandwidth is a significant concern when distributing CRLSs, since clients need to have reasonably
current revocation information in order to properly validate a certificate. In an idea world, the
client would get up-to-date revocation information as soon as the CA gets the information.
Unfortunately, many CAs distribute CRLs only as a huge list. Downloading a huge list before
validating each certificate could easily add unacceptable latency and place an undue load on the
server when there are alot of clients. Asaresult, CAstend to update their CRLs regularly, but not
immediately after they learn about key compromises. Included in the revocation list is the date and
time that the next update will be published, so once an application has downloaded the list, it
doesn't need to do so again until the one it has expires. Clients are encouraged to cache the
information (which can be infeasible if the client has limited storage space).

This scheme leaves awindow of vulnerability in which the CA knows about a revoked certificate,
yet the client does not find out about it immediately. If a CA publishesthe list too frequently, it
will require massive amounts of bandwidth in order to sustain the frequent demand for the list. On
the other hand, if a CA publishes the list too infrequently, certificates that need to be revoked will
till be considered valid until the next list is published. Each CA needsto strike a balance with the
community that it's serving to determine how frequently to publish itslist.

One solution to this problem isfor the CA to break up its CRLs into segments. To do this, the CA
specifies ranges of certificate serial numbers that each CRL contains. For example, the CA could
create adifferent CRL for each 1,000 seria numbers. Therefore, the first CRL would be for serial
numbers 1 through 1,000; the second would be for serial numbers 1,001 through 2,000, and so on.
This solution does require forethought and planning on the part of the CA, but it reduces the size
of the CRLs that the CA issues. Another option isto use" delta CRLs," where a CA periodically
publishes incremental changesto its CRL list. Delta CRLs still require the client to cache CRL
information or download everything anew each time a certificate needs to be validated.

Ancther problem with CRLs isthat while there is a standard means to publish them formally,
specified in RFC 2459, that mechanism is optional, and many of the more common public CAs,
such as VeriSign, do not distribute their CRLs this way. There are also other standard methods for
distributing CRLs, but the overall problem is that there isn't just one, and so many software
applications do not actually make use of CRLs. Of the various methods of distribution, LDAPis
most commonly used as arepository for CRLs. Additionally, multiple applications on the same
machine, or even on the local network, could be interested in the same data and require that it be
gueried from the CA multiple times within a short period.

The problems with the distribution of CRLs currently make them difficult to manage, and what's
worse, few applications even make the attempt. This essentially makes CRLs useless and leaves
no way for a CA to revoke a certificate effectively once it's been issued. Ideally, CAsneed to
standardize a method for CRL distribution, and both CAs and applications need to start making
use of it.

Ancther potentially serious problem that has not been addressed is what happens when aroot CA's
certificate needsto be revoked. A CRL is not suited to handle this, and neither are applications.
Thereason for thisisthat CRLs areissued by aparent (a CA) for its children, but aroot CA has

no parent. It is possible for a CA to revoke its own certificate aslong as it still hasiits private key.
For the purposes of signing a CRL containing its own certificate, the CA's compromised key can
till be trusted. Unfortunately, given the poor state of CRL handling in existing software in general,
it'snot likely that this situation is handled very well, if at all.

A classic example demonstrating that CRLs are poorly supported is what happened in early 2001
when VeriSign issued two class 3 code-signing certificates to Microsoft Corporation. The problem

42

was that Microsoft never requested these certificates—someone claiming to represent Microsoft
did. VeriSign handled the situation in the appropriate manner and published the serial numbers of
the certificatesin anew CRL. What really demonstrated the flaws with CRLs was how Microsoft
handled the situation. It quickly became clear that Microsoft's software, while distributing
VeriSign'sroot certificates and using their services, did not check VeriSign's CRLs. Microsoft
issued a patch to deal with the problem of the revoked certificates, but the patch did nothing to fix
the problem of their software not utilizing the CRLs at al. Had Microsoft's software made proper
use (or, arguably, any use at all) of CRLs, no patch would have been necessary, and the problem
would have ended with VeriSign's publication of its CRL (minus the inherent window of
vulnerability).

It could be argued that if a major software company like Microsoft can't handle CRLs properly,
how can smaller software companies and individual software developers be expected to handle
them properly? While the argument may very well be faulty in anumber of respects, itis till a
guestion worth asking, and in truth, the answer, at least for right now, is not one that we would all
like to hear. PKI is still relatively immature, and much work needs to be done to remedy not only
the issues that we've discussed here, but others that we leave as an exercise for the reader to
explore as well. While CRLs may not be the ultimate answer to revoking a certificate, for the time
being, they are the most widely implemented means by which to do so. It's worth taking the time
to ensure that your software is capable of dealing with the technology and provides for a
reasonably safe and pleasant experience for your users.

To complicate matters more, the standard CRL specification has changed over time, and both the
old format (Version 1) and the new format (Version 2) are actively used. OpenSSL supports both
Version 1 and Version 2 CRLSs, but there is much software still in common use that does not yet
support Version 2, and certainly old legacy applications that are no longer being developed or
supported never will, even though they continue to be used. The major addition that Version 2
offersis extensions. The standard defines four extensions that are used primarily to indicate when
a certificate was revoked, why a certificate was revoked, and how to handle a certificate that has
been revoked.

The fourth standard extension is used in indirect CRLs. An indirect CRL isone that is not
necessarily issued by a CA, but instead by athird party. Such a CRL can contain certificates from
multiple CAs. The extension, then, is used to indicate which CA issued the certificate that has
been revoked. Currently, indirect CRLs are not very common, because CRLsin Version 2 format
are not widely supported.

3.1.5 Online Certificate Status Protocol

The Online Certificate Status Protocol (OCSP), formally specified in RFC 2560, is arelatively
new addition to PKI. Its primary aim is to address some of the distribution problems that have
traditionally plagued CRLs.

Using OCSP, an application makes a connection to an OCSP responder and requests the status of

a certificate by passing the certificate's serial number. The responder replies "good,” "revoked," or
"unknown." A "good" response indicates that the certificate is valid, so far as the responder knows.
This does not necessarily mean that the certificate was ever issued, just that is hasn't been revoked.
A "revoked" response indicates that the certificate has been issued and that it has indeed been
revoked. An "unknown" response indicates that the responder doesn't know anything about the
certificate. A typical reason for this response could be that the certificate was issued by a CA that
is unknown to the responder.

An OCSP responder istypically operated by a CA or by atrusted third party that is authorized by
the CAsfor which it provides information. The client must trust the OCSP responder in a manner
similar to aroot CA. More importantly, thereis only one way to revoke an OCSP's trusted status,
and it's not pretty. If an OCSP responder is compromised, every client that makes use of that

43

responder must be reconfigured manually either not to trust it or to use anew certificate that can
be trusted.

A client's request includes information about the issuer of the certificateit is requesting status
information for, so it is possible for a single OCSP responder to provide certificate revocation
information for more than asingle CA. Unfortunately, one of the problems of OCSP responders
when run by athird party is that the information they're serving can become stale. At the very least,
adelay often occurs between the time when a CA revokes a certificate and when the responder
receives the information from the CA, particularly if the responder is relying on CRLSs published
by its serviceable CAsto supply its information.

Currently, OCSP is not nearly as widely recognized or implemented as CRLs are, so unless you
know that all your users will have an OCSP server available, it is generally best to use the
technology to supplement CRLs rather than replace them completely.

Three of the more significant problems that OCSP introduces are the potential for denial of service,
replay, and man-in-the-middle attacks. Most servers are vulnerable to denial of service attacksto
some extent, but the nature of the service, the amount of information transferred, and the way
requests are handled help determine just how vulnerable a given server isto such an attack. The
details of denial of service attacks are beyond the scope of this book; however, OCSP responders
are typically more susceptible to them than other common services such asHTTP.

The OCSP Version 1 specification allows responders to pre-produce signed responsesin an effort
to reduce the load on the responder required by signing definitive responses. Allowing for pre-
produced signed responses opens the door for replay attacks. Man-in-the-middle attacks are
possible because error responses are not signed, athough thistype of attack could more accurately
be considered a denia of service attack. Perhaps what's most disturbing about the af orementioned
vulnerabilitiesis the fact that each oneis noted in the RFC, yet nothing was done when
formalizing the standard to prevent them.

There are only a handful of public OCSP responders available at the time of this writing, aslisted
by www.OpenV alidation.org. The small number of respondersis aclear indication that OCSP is
not widely deployed. While OCSP is an attempt at resolving the problems of CRLs, we feel that
the additional problemsit creates, at least in its current state, outweigh the problems that it solves.
Certainly, it cannot be reasonably considered as a replacement for CRLSs. In its defense, there was
an IETF draft submitted in March of 2001 for Version 2 of the protocol, which addresses some of
the issues, but this has not yet completed the standards process.

3.2 Obtaining a Certificate

Before obtaining a certificate, you first need to determine what purpose the certificate will serve.
There are many different types of certificates offered by a variety of CAs, both public and private.
For the purposes of this discussion, we will investigate what is necessary to obtain three different
types of certificates from a public CA. Whileit is certainly not the only public CA, we've chosen
VeriSign asthe CA that well obtain a certificate from because it is perhaps the most established
public CA and offers the widest variety of certificates for a variety of uses.

Aswe mentioned, there are many different types of certificates, each used for different purposes.
VeriSign's offerings range from personal certificates for use with SMIME to enterprise solutions
that are more sophisticated. Well find out how to get a personal certificate for SSMIME, a code-
signing certificate for signing your software so that users can verify that it came from you, and a
certificate for securing your web site for applications such as e-commerce.

http://www.openvalidation.org/

3.2.1 Personal Certificates

S/MIME email relies on persona certificates (as opposed to certificates granted to an
organization), which VeriSign callsa Class 1 Digital ID. It isthe easiest kind of certificate to
obtain, and is available for amodest price, but it islimited to email security only. You can get a
Class 1 Digital ID that works with Netscape M essenger, or you can get one intended to work with
Microsoft Outlook express. If you use a different application to read and write your email, you
should consult with that application’s vendor to find out whether it interoperates with either of
these certificate types.

Thefirst step in obtaining a personal certificate isto visit VeriSign's web site at
http://www.verisign.com/ and follow the links from the main page to " Secure E-Mail", which is
listed under "Home & Home Office" products, to the Digital 1D enrollment form. We won't
outline al of the links here, not only because they're subject to change, but because there'sa
wealth of information on the site that is well worth reading, including information on how to make
use of the certificate once it has been issued. Once you have filled out and submitted the
enrollment form, VeriSign will send an automated email to the address you provided with
instructions on how to "pick up" the certificate.

Thefirst set of questions on the enrollment form is self-explanatory. The first and last name that
you enter will be how your Digital ID islisted in VeriSign's directory service. The email address
that you enter should be the one that you will be using with the Digital ID. It becomes the
certificate's distinguished name. It is also listed alongside your first and last name in the directory.
VeriSign will also use the address to verify its validity by sending an automated email to that
address with instructions on how to retrieve the certificate that has been issued.

Next, VeriSign will request a challenge phrase, which will be used to protect the certificate. The
phrase will be available to you and VeriSign. Y ou should not share it with anyone else! VeriSign
will use the phrase to verify that you are the owner of the certificate when you request that it be
revoked, renewed, or replaced. Be sure to choose a phrase that you'll be able to remember, but one
that will not be easily guessed by someone that knows you well.

VeriSign chooses a default key length for the certificate and issuesit to you based upon the
information from your browser. Y ou shouldn't need to change the key length that is selected for
you unless you're using something other than Netscape or Microsoft products to access your email,
in which case the documentation for your email software or the vendor of the software should

have advised you on the proper setting to choose.

If you're using Microsoft Internet Explorer, your private key will be unprotected by default. That
is, once you install it in your email software, you will not be required to enter any password or
passphrase to gain access to it. If you opt to keep your private key unprotected in this manner, you
must make every assurance that the private key for your certificate is not compromised. It is
generally not agood ideato leave your private key unprotected, so VeriSign offers two methods
of protecting it. One step up from the default of low security is medium security, which requires
your approval each time the private key is accessed. With medium security, you still are not
required to enter a password or passphrase to unlock the private key. High security requires you to
enter a password or passphrase to unlock the key each timeit is accessed.

Remember that anybody gaining access to your private key will be able to use your certificate to
masguerade as you. When an email is signed with your private key, people are going to trust it,
and this can have disastrous effects if your key is compromised. Anyone with access to your
private key will aso be able to decrypt email that has been encrypted with your public key. Sure,
your certificate can be revoked, but as we discussed earlier, revoking a certificate doesn't have any
effect if its revocation status is not being checked. With thisin mind, particularly for mobile users,
we strongly recommend that you choose high security.

45

http://www.verisign.com/

Finally, you must read and accept Veri Sign's subscriber agreement and privacy policy. If you're
using Microsoft Internet Explorer and you checked the checkbox for securing your certificate, a
dialog will be presented to you to select the security level that you wish to apply to the certificate.
Within an hour or so, you will receive an email from VeriSign at the address that you entered into
the enrollment form containing instructions on how to "pick up” your certificate from VeriSign.
Included in the email are a URL and aPIN, both of which will be required to get the certificate
from VeriSign. Y ou should use the same machine and browser to retrieve the certificate as you did
to request it.

That's al thereisto it! Once you've retrieved your certificate from VeriSign, follow the directions
presented on VeriSign's site to use the certificate in either Netscape or Microsoft Internet Explorer.
Again, if you're using other software to access your email, follow the vender's directions to enable
the certificate. Now you're ready to start sending and receiving secure email!

3.2.2 Code-Signing Certificates

VeriSign offers code-signing certificates for use by software devel opers and software vendors.
The purpose of such acertificate is to sign code that users download off the Internet. By signing
your code, users can be assured that the code has not been tampered with or corrupted since it was
digitally signed with your private key. In the online world where people are not only becoming
increasingly aware of security issues, but also worry about viruses and worms, signing your code
provides a certain assurance to your users that they are getting the software that they're expecting
to get.

Obtaining a code-signing certificate is not nearly as quick and easy as obtaining a personal
certificate. They are also considerably more expensive, but then again, they're not really intended
for everyday individual users. At the time that this text was written, VeriSign offered six different
types of code-signing certificates for various types of programs. Y ou must be sure to get the
proper certificate for the code that you wish to sign because the different types of certificates may
not work properly with other types of code. For example, Microsoft Authenticode certificates only
work for Microsoft's Internet Explorer browser. For Netscape browsers, you need to get a
Netscape Object Signing certificate. The available types of code-signing certificates are listed as
part of the process of obtaining a code-signing certificate. Choosing atypeisthefirst stepin
obtaining a code-signing certificate.

The type of code-signing certificate determines the specific requirements for making the request to
VeriSign to obtain it. For a Microsoft Authenticode Digital ID, for example, much of the work is
automated through Microsoft's Internet Explorer, while a Sun Java Signing Digita 1D requires you
to generate a certificate request using Sun's Javatools to be submitted along with the request. For
each type of certificate, VeriSign supplies full instructions on what code-signing-certificate-
dependent information is needed and how to go about obtaining and supplying it to VeriSign.

While each type of code-signing certificate has its own specific requirements for making the
request, there are common requirements that must be met as well. Most of the requirements are
self-explanatory, such as contact and payment information. Each certificate must also have
information about who owns the certificate. Such information includes the name of the company
or organization and the location from which it does business. For example, a company doing
business from the United States would be required to supply the city and state in which itis
located.

Thereis, of course, aso the very important need for the CA, VeriSign in this case, to verify that
they'd be issuing the certificate to someone who should legitimately have it. The quickest and
easiest way for VeriSign to verify thisinformation iswith aDun & Bradstreet D-U-N-S number.
Supplying thisinformation is optional, but the alternatives require more time and effort both on
your part and VeriSign's. If you do not have or do not want to use a D-U-N-S number, you can

46

optionally mail or fax copies of your business license, articles of incorporation, or partnership
papers along with your request for a code-signing certificate.

Once your request, including any appropriate documentation, has been submitted, VeriSign takes
it under review. If everything isin order, a code-signing certificate is issued and instructions on
how to retrieve the certificate so that you may distribute and use it are provided. Unlike a personal
certificate, the request for a code-signing certificate is reviewed and verified by an actua living
human being, and so is not made immediately available. Depending on VeriSign's workload, it
may take several days for the certificate to be issued, although VeriSign expedites requests for an
additional fee.

3.2.3 Web Site Certificates

The process of obtaining a certificate for use in securing aweb site, which VeriSign calls a secure
server certificate, is similar to the process for obtaining a certificate for a code-signing certificate.
Much of the same information is required, although there are some differences worth noting.
Obviously, one of the primary differencesisin the types of certificates offered. While code-
signing certificates differ based on the type of code that will be signed (Netscape plug-ins versus
Java applets, for example), secure server certificates are one of either 40-bit or 128-hit SSL
certificates. That is, web site certificates explicitly restrict the size of the symmetric keys that
should be used with the certificate. We recommend you stick with 128-bit certificates, since 40-hit
symmetric keys are widely regarded as unacceptably weak.

No matter which server software you plan to use, you must follow its instructions on how to
generate a Certificate Sgning Request (CSR). Due to the wide variety of servers available today,
itisnot practical for usto provide instructions on how to do this here. VeriSign has instructions
for many of the more popular servers available on its web site. The CSR you generate will also
generate a key pair. While you must submit the CSR to VeriSign to have the certificate issued,
you should keep the private key to yourself. It should not be sent to VeriSign or to anybody else.

As with code-signing certificates, you must also provide acceptable proof to VeriSign that you
have aright to the certificate you are requesting. The options for providing this proof are the
same—provide either a D-U-N-S number or a copy of one of the aforementioned acceptable
documents. Additionally, a secure server certificate is bound to adomain name. VeriSign will
issue certificates only to the registered owner of adomain. This means that if the domain is owned
by a corporate entity, you must be an employee of that company.

Once your request, including any appropriate documentation, has been submitted, VeriSign takes
it under review. If everything isin order, a secure server certificate isissued and the certificate is
emailed to the technical contact that was provided when the request was submitted. As with code-
signing certificates, an actua living human being reviews the information, so it may take several
daysfor the certificate to be issued, depending on VeriSign's workload. Expedited processing is
also available for an additional fee.

3.3 Setting Up a Certification Authority

Setting up a CA can seem like a daunting task, but it doesn't have to be. There are a number of
free and commercial CA packages available. The OpenSSL command-line tool even provides al
of the functionality required to set up aminimal CA that can be used in asmall organization. The
OpenSSL command-line tool's CA functionality was originally intended as an example only, but
two of the more popular freely available CA packages, OpenCA and pyCA, useit as their
foundation. As of thiswriting, these tools are still fairly immature, and offer very little that the
OpenSSL command-line tool doesn't have (LDAP storage is the notable exception).

47

In this section, we'll go through the necessary stepsto set up a CA using OpenSSL's command-
line tools. We'll show you how to create a self-signed root certificate for use by your CA, how to
build a configuration file that OpenSSL can use for your CA, and how to issue certificates and
CRLswith your CA. Since OpenSSL's command-line CA functionality was intended primarily as
an example of how to use OpenSSL to build a CA, we don't recommend that you attempt to use it
in alarge production environment. Instead, it should be used primarily as atool to learn how PKI
works and as a starting point for building areal CA with tools designed specifically for usein a
production environment.

3.3.1 Creating an Environment for Your Certification Authority

Thefirst step in setting up a CA with the OpenSSL command-line tool is creating an environment
for it to run in. Severa files and directories must be created. The easiest way to set everything up
isfrom the command line, using your favorite text editor to create the necessary files. For our
example CA, well be using the bash shell on aUnix system. Whether the system is Linux or
FreeBSD or some other variety of Unix doesn't matter; the instructions will be the same. There
will be some variation for Windows-based systems.

First, we must choose alocation for al of our CA'sfiles to reside. For our example, we use
/opt/exampleca as the root directory for our CA, but you may choose any location you like on your
system. All of our CA'sfiles, including issued certificates and CRLs, will be contained within this
directory. Keeping the files together makes it easier to find any of the files used by our CA and to
set up multiple CAs.

Within the CA's root directory, we need to create two subdirectories. Well name them certs and
private. The subdirectory certswill be used to keep copies of all of the certificates that we issue
with our CA. The subdirectory private will be used to keep a copy of the CA certificate's private
key. For the most part, the mgjority of the files that the CA uses are visible to anyone on the
system. In fact, many of the files are supposed to be distributed to the public, or at least to anyone
who makes any use of the certificates issued by our CA. The one notable exception isthe CA
certificate's private key. The private key should never be disclosed to anyone not authorized to
issue a certificate or CRL from our CA.

A good CA needsto protect its private key as best it can. 2,048 bits are the bare minimum length
for aCA key. The private key should be stored in hardware, or at least on a machine that is never
put on a network (CSRswould arrive viathe sneaker net).

Besides key generation, we will create three files that our CA infrastructure will need. The first
fileis used to keep track of the last serial number that was used to issue a certificate. It's important
that no two certificates ever be issued with the same serial number from the same CA. Well call
thisfile serial and initialize it to contain the number 1. OpenSSL is somewhat quirky about how it
handles thisfile. It expects the value to be in hex, and it must contain at least two digits, so we
must pad the value by prepending a zero to it. The second file is a database of sorts that keeps
track of the certificates that have been issued by the CA. Since no certificates have been issued at
this point and OpenSSL requires that the file exist, we'll simply create an empty file. Well call this
file index.txt (see Example 3-1).

Example 3-1. Creating the CA's environment

mkdir /opt/exampleca

cd /opt/exampleca

mkdir certs private

chmod g-rwx,o-rwx private
echo "01" > serial

touch index.txt

HFHHFHHFH

48

3.3.2 Building an OpenSSL Configuration File

One morefile still needs to be created, but it is significantly more complex than the first two files
that we've already created. It isaconfiguration file that will be used by the OpenSSL command-
line tool to obtain information about how to issue certificates. We could conceivably skip creating
thisfile and use the OpenSSL defaults, which are actually quite sane, but by using a configuration
file, we save ourselves some work in issuing commands to OpenSSL. We briefly discussed
configuration files and their use with the command-line tool in the Chapter 2. Now it'stime to
actually create a configuration file of our own and put it to use.

The OpenSSL command for the CA functions is aptly named ca, and so the first section that were
interested in is named ca. For our purposes, this section is quite simple, containing only asingle
key: default_ca. Thevaueisthe name of a section containing the configuration for the default
CA. OpenSSL alows for multiple CA configurations in the same configuration file. If the name of
aconfiguration to use is not specified, OpenSSL uses the name paired with the default_ca key.
The default can be overridden on the command line with the name option.

Example 3-2 shows the configuration file for our CA. We've already explained what the files and
directories we've created are for, so the first set of keys in the example should be clear; we're
simply telling OpenSSL where we've decided to place the files and directories that it needs to use.
Thethreekeys, default_crl_days, default_days, and default_md, correspond to the
command-line cr ldays, days, and md options, and may be overridden by using them.

Thedefault_crl_days key specifies the number of days between CRLs. Y ou may wish to use
default_crl_hours instead if you plan to publish CRLs more than once aday. This setting
computes the nextUpdate field of the CRL when it is generated. The default_days key
specifies the number of days an issued certificate will be valid. Thedefault_md specifies the
message digest algorithm that will be used to sign issued certificates and CRLs. Possible legal
valuesfor thiskey include md5, shal, and mdc2.

The pol icy key specifies the name of a section that will be used for the default policy. It may be
overridden on the command line with the pol icy option. A policy definition isa set of keyswith
the same name as the fields in a certificate's distinguished name. For each key or field, there are
threelegal values: match, supplied, or optional. A value of match meansthat the field by
that name in a certificate request must match the same field in the CA's certificate. A value of
supplied meansthat the certificate request must contain the field. A value of optional means
that the field is not required in the certificate request.

By default, when a certificate isissued, OpenSSL orders the DN (distinguished name) fieldsin the
same order as they appear in the policy definition being used. Any fields that are present in the
certificate request but not present in the policy definition are omitted from the issued certificate.
This behavior can be changed by using the preserveDN option or by setting the preserve key
to yes in the CA definition section. When this option is set, al of the fieldsin the certificate
request are included in the issued certificate, and they remain in the same order as they werein the
certificate request. Ordinarily, you should not need to enable this option unless you're dealing with
older versions of Microsoft Internet Explorer, which require the fieldsin the issued certificate to
match the certificate request. If you're dealing with very old versions of Microsoft I nternet
Explorer, you may aso need to enable the "M SIE hack" either by using themsie hack option or
by setting the msie_hack key to yes in the CA definition section.

The x509_extensions key specifies the name of a section that will contain the extensions to be
added to each certificate issued by our CA. If thiskey is absent, OpenSSL creates an X.509v1
certificate, but if it is present, evenif it isempty, an X.509v3 certificate is created. The only
extension that we've included in our exampleisthe basicConstraints extension, and we've
set its cA component to false so that the certificates issued by our CA, in turn, may not be used as

49

CA certificates. The certificate chain stops with certificates that we issue. Example 3-2 shows the
configuration file.

Example 3-2. A simple CA configuration definition

[cal

default_ca = exampleca

[exampleca]

dir /opt/exampleca
certificate $dir/cacert.pem
database $dir/index.txt

$dir/certs
$dir/private/cakey.pem

new_certs_dir
private_key

serial $dir/serial
default_crl _days = 7

default_days = 365

default_md = md5

policy exampleca_policy

Xx509_extensions certificate_extensions

[exampleca policy]

commonName = supplied
stateOrProvinceName = supplied
countryName = supplied
emai lAddress = supplied
organizationName = supplied
organizationalUnitName = optional

[certificate _extensions]
basicConstraints = CA:false

Now that we've created a configuration file, we need to tell OpenSSL where to find it. By default,
OpenSSL uses a system-wide configuration file. Its location is determined by your particular
installation, but common locations are /usr/local/ssl/lib/openssl.cnf or /usr/share/ssl/openssl.cnf.
Since we've created our own configuration file solely for the use of our CA, we do not want to use
the system-wide configuration file. There are two ways to tell OpenSSL where to find our
configuration file: using the environment variable OPENSSL_ CONF, or specifying the filename
with the config option on the command line. Since we will issue a sizable number of commands
that should make use of our configuration file, the easiest way for usto tell OpenSSL about itis
through the environment (see Example 3-3).

Example 3-3. Telling OpenSSL where to find our configuration file

OPENSSL_CONF=/opt/exampleca/openssl .cnf
export OPENSSL_CONF

3.3.3 Creating a Self-Signed Root Certificate

Before we can begin issuing certificates with our CA, it needs a certificate of its own with which
to sign the certificates that it issues. This certificate will also be used to sign any CRLsthat are
published. Any certificate that has the authority to sign certificates and CRLswill do. By this
definition, a certificate from another CA or a self-signed root certificate will work. For our
purposes, we should create our own self-signed root certificate to do the job.

50

The first thing that we need to do is add some more information to our configuration file. Example
3-4 shows the newly added information. Note that we'll be using the command-line tool's req
command, so we'll start by adding a new section by the same name. Since we will use only this
configuration file for our CA, and since we will use only the command-line tool's req command
this onetime, we'll put all of the necessary information that OpenSSL allows in the configuration
file rather than typing it out on the command line. It's alittle more work to do it thisway, but itis
the only way to specify X.509v3 extensions, and it also allows us to keep arecord of how the self-
signed root certificate was created.

Example 3-4. Configuration file additions for generating a self-signed root
certificate

[req]
default_bits = 2048
default_keyfile = /opt/exampleca/private/cakey.pem
default_md = md5
prompt no

distinguished_name root_ca distinguished_name
x509_ extensions = root_ca_extensions

[root ca distinguished name]

commonName = Example CA
stateOrProvinceName = Virginia

countryName = US

emai lAddress = ca@exampleca.org
organizationName = Root Certification Authority

[root_ca extensions]
basicConstraints = CA:true

Thedefault_bits key in the req section tells OpenSSL to generate a private key for the
certificate with alength of 2,048 bits. If we don't specify this, the default isto use 512 hits. A key
length of 2,048 bits provides significantly more protection than 512, and for a self-signed root
certificate, it's best to use all of the protection afforded to us. With the vast computing power that
is affordable today, the speed penalty for using a 2,048-bit key over a 512-bit key iswell worth the
trade-off in protection, since the security of this one key directly impacts the security of all keys
issued by our CA.

Thedefault_keyfile key inthe req section tells OpenSSL where to write the newly
generated private key. Note that we're specifying the same directory for output as we specified
earlier in the ca section as the location of the private key for the certificate. We can't usethe $dir
"macro" here because the dir key is private to the ca section, so we need to type out the full path

again.

Thedefault_md key in the req section tells OpenSSL which message digest algorithm to use to
sign the key. Since we specified MD5 as the algorithm to use when signing new certificates and
CRLs, well use the same algorithm here for consistency. The SHA1 algorithmis actualy a
stronger agorithm and would be preferable, but for the sake of this example, we've chosen MD5
because it is more widely used and all but guaranteed to be supported by any software that could
possibly be using our certificates. If you will be using only software that you know supports
SHA1 with your certificates, we recommend that you use SHA 1 instead of MD5.

The prompt and distinguished_name keys determine how OpenSSL gets the information it
needsto fill in the certificate's distinguished name. By setting prompt to no, we'retelling
OpenSSL that it should get the information from the section named by the

51

distinguished_name key. The default isto prompt for the information, so we must explicitly
turn prompting off here. Thekeysin thedistinguished_name section that we've defined by
the name of root_ca_distinguished_name are the names of the fields making up the
distinguished name, and the values are the values that we want placed in the certificate for each
field. We've included only the distinguished name fields that we previously configured as required
and omitted the one optional field.

Finally, the x509_extensions key specifies the name of a section that contains the extensions
that we want included in the certificate. The keys in the section we've named

root_ca extensions arethe names of the extension fields that we want filled in, and the
values are the values we want them filled in with. We discussed the basicConstraints key
earlier in this chapter. We've set the cA component of the extension to true, indicating that this
certificate is permitted to act as a CA to sign both certificates and CRLs.

Now that we have the configuration set up for generating our self-signed root certificate, it'stime
to actually create the certificate and generate a new key pair to go along with it. The options
required on the command line are minimal because we've specified most of the options that we
want in the configuration file. From the root directory of the CA, /opt/exampleca, or whatever
you've used on your system, execute the following command. Make sure that you've set the
OPENSSL_ CONF environment variable first so that OpenSSL can find your configuration file!

openssl req -x509 -newkey rsa -out cacert.pem -outform PEM

When you run the command, OpenSSL prompts you twice to enter a passphrase to encrypt your
private key. Remember that this private key is a very important key, so choose your passphrase
accordingly. If this key is compromised, the integrity of your CA is compromised, which
essentially means that any certificates issued, whether they were issued before the key was
compromised or after, can no longer be trusted. The key will be encrypted with 3DES, using a key
derived from your passphrase. Example 3-5 shows the results of the command we just generated
followed by atextual dump of the resulting certificate. Although your certificate will be different
because your public and private key will be different from ours, your output should look similar.

Example 3-5. Output from generating a self-signed root certificate

the command output shown is incorrect (it shows a 1024 bit CA key, but given the
example and the configuration file, the key would in fact be 2048 bits)

openssl req -x509 -newkey rsa -out cacert.pem -outform PEM

Using configuration from /opt/exampleca/openssl.cnf
Generating a 1024 bit RSA private key
__ ++++++
_________ ++++++
writing new private key to "/opt/exampleca/private/cakey.pem*”
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:
openssl x509 -in cacert.pem -text -noout
Certificate:
Data:
Version: 3 (0x2)
Serial Number: 0 (0x0)
Signature Algorithm: md5WithRSAEncryption
Issuer: CN=Example CA, ST=Virginia,
C=US/Emai l=ca@exampleca.org, O=Root
Certificate Authority

52

Validity
Not Before: Jan 13 10:24:19 2002 GMT
Not After : Jan 13 10:24:19 2003 GMT
Subject: CN=Example CA, ST=Virginia,
C=US/Emai l=ca@exampleca.org, O=Root
Certificate Authority
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:cb:4f:55:6c:a4:2c:8a:f4:21:44:ec:fc:ca:9f:
ca:c7:43:2F:14:7d:07:1a:05:e7:3f:08:6c:ee:88:
30:ef:5b:24:6c:90:59:a2:81:af:99:bc:16:94:96:
ab:48:53:98:b3:13:b2:42:aa:01:31:7d:59:0d:9a:
99:dc:95:b8:c2:0a:fc:b5:d0:d1:7a:5c:db:87:a3:
e0:db:8a:3f:c3:10:40:b5:d5:e€9:5F:58:8d:fd:f1:
06:65:e2:73:7a:17:7F-98:ac:6f:b5:be:56:el:5F:
16:2b:43:02:60:d8:80:b7:7e:0e:d4:48:3e:6a:c9:
2d:a6:02:3d:b0:el:ac:fc:3d

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Basic Constraints:
CA:TRUE
Signature Algorithm: md5WithRSAEncryption

2e:54:2c:cf:d8:1a:d0:bc:bb:9d:eb:3e:2f:fa:8b:7b:21:ef:
4€:30:0€:93:6€:85:26:8d:¢c2:62:69:49:7b:55:26:09:6a:ea:
00:bc:a0:03:ab:5b:45:8a:71:eb:39:46:6c:50:29:4b:-00:ff:
19:al:e8:a2:4a:75:07:79:50:10:38:6d:d2:20:09:63:48:75:
67:6b:59:41:74-ae:63:69:13:4e:27:6b:5d:7e:55:6a:7b:3c:
86:c8:b2:c5:15:01:e3:68:08:-ec:3c:8a:00:68:43:ce:-43:10:
76:e2:e2:97:ad:88:08:bf:87:ec:ba:dl:db:fa:c4:91:fb:b6:
33:95

You'l notice in Example 3-5's output that when OpenSSL displays a DN in a shortened form, it
uses a honstandard representation that can be somewhat confusing. In this example, we see
C=US/Emai l=ca@exampleca.org as an example of this representation. What's confusing here
is the slash separating the two fields. The reason for thisisthat the Emai I and O fields are
nonstandard in aDN. OpenSSL lists the standard fields first and the nonstandard fields second,
separating them with aslash.

3.3.4 Issuing Certificates

Everything is now set up for our CA, and it'stime to take it out for atest drive by issuing a
certificate. To do that, we need a certificate request. It's also agood idea to know how to create a
certificate request that your CA will be able to use. Unless you plan to create both the certificate
requests and certificates for anybody you'll be issuing a certificate to, you'll probably need to be
able to tell someone how to give you a certificate request that you can use. Either way, you'l still
need to know how to do it yourself.

To create a certificate request, start with a clean shell without the OPENSSL_ CONF environment
variable set so that the default configuration file is used. We don't want to use our custom
configuration file to do this, as that configuration fileis intended for use only by the CA, and
generating a certificate request is not at all afunction of aCA.

The command to generate a certificate request is similar to the command we used to create our

self-signed root certificate. We use the command-line tool's req command, but we'll need to
specify some extra parameters. The operation will be much more interactive, prompting for

53

information to fill in the certificate request's distinguished name. Example 3-6 shows the output
from generating a certificate request.

Example 3-6. Generating a certificate request

openssl req -newkey rsa:1024 -keyout testkey.pem -keyform PEM -out
testreq.pem

-outform PEM

Using configuration from /usr/share/ssl/openssl.cnf

Generating a 1024 bit RSA private key

_________ ++++++

_________ ++++++

writing new private key to "testkey.pem®

Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or
a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

IT you enter ".", the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:Virginia
Locality Name (eg, city) []:Manassas

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Test
Request

Organizational Unit Name (eg, section) []:

Common Name (eg, your name oOr your server®s hostname)
[1:-www.exampleca.org

Email Address []:ca@exampleca.org

Please enter the following "extra® attributes

to be sent with your certificate request

A challenge password []J:cloud noon sundry presto madrid baker
An optional company name []:Examples-R-Us, Inc.

The result of this command is the creation of two files: testreg.pem and testkey.pem. The former,
testreg.pem, contains the certificate request as shown in Example 3-7, and testkey.pem contains
the private key that matches the public key embedded in the certificate request. As part of the
process to generate a certificate request, a new key pair was also generated. The first passphrase
that is prompted for is the passphrase used to encrypt the private key. The challenge phraseis
stored in the certificate request, and is otherwise ignored by OpenSSL. Some CAs may make use
of it, however.

Example 3-7. The resulting certificate request

openssl req -in testreq.pem -text -noout
Using configuration from /usr/share/ssl/openssl.cnf
Certificate Request:
Data:

Version: 0 (0x0)

Subject: C=US, ST=Virginia, L=Manassas, 0O=Test Request,
CN=www .exampleca.org/
Emai l=ca@exampleca.org

Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:d8:a5:1b:c6:b6:e4:75:bf:f3:e3:ce:29:1d:ab:
e2:5b:0d:bb:2e:94:de:52:a1:20:51:b1:77:d9:42:
a3:6c:26:1F:c3:3e:58:8F:91:b1:b3:ed:bd:7c:62:
1c:71:05:3b:47:ff:1a:de:98:f3:b4:a6:91:fd:91:
26:db:41:76:85:b5:10:3F:c2:10:04:26:4F:bc:03:
39:1F:b9:42:d0:d3:2a:89:db:91:8e:75:6d:f5:71:
€c:96:e8:d6:03:29:8e:fe:20:3f:5d:d8:cbh:14:5e:
eb:64:fc:be:fa:d1:27:42:b6:72:eb:b4:16:16:71:
77:d3:0e:8c:cc:87:16:fc:41

Exponent: 65537 (0x10001)

Attributes:
unstructuredName :drowssap egnellahc
chal lengePassword :drowssap egnellahc

Signature Algorithm: md5WithRSAEncryption
25:aa:ca:78:64:fa:29:46:cf:dc:df:d9:95:dd:48:24:bf:4f:
7b:7e:¥4:09:76:96:¢c4:¢c5:b1:10:9b:64:95:19:30:8d:cd:dO:
dazac:b2:21:5e:34:e6:be:7b:41:52:2c:b3:e7:d4:dc:99:eb5:
a0:c2:46:12:9F:ef:99:0e:03:89:¢c1:1f9:db:0d:0d:21:1b:e2:
da:4e:23:ef:cl:aa:1b:24:b5:ce:53:a1:05:08:6e:4a:85:78:
6e:71:ef:bc:36:48:5c:3e:ee:bl:bb:28:14:31:df:23:a9:89:
96:35:1b:b4:01:¥9:63:4d:46:b4:ed:5d:be:1d:28:50:1c:86:
43:5e

With a certificate request now in hand, we can use our CA to issue a certificate. For the sake of
convenience in this example, the certificate request that we'll be using, testreg.pem, which we just
created, should be in the CA's root directory. Make sure that the OPENSSL_ CONF variable is set to
the CA's configuration file, and issue the command to generate a certificate, as shown in Example
3-8.

Example 3-8. Issuing a certificate from a certificate request

openssl ca -in testreq.pem

Using configuration from /opt/exampleca/openssl.cnf
Enter PEM pass phrase:

Check that the request matches the signature
Signature ok

The Subjects Distinguished Name is as follows

countryName :PRINTABLE: "US*

stateOrProvinceName PRINTABLE:"Virginia“

local ityName PRINTABLE: "Manassas”

organizationName PRINTABLE: "Test Request*

commonName :PRINTABLE: "www.exampleca.org"”

emai lAddress :1A5STRING: "ca@exampleca.org”

Certificate is to be certified until Jan 14 04:31:25 2003 GMT (365
days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Certificate:
Data:

Version: 3 (0x2)

Serial Number: 1 (0x1)

Signature Algorithm: md5WithRSAEncryption

Issuer: CN=Example CA, ST=Virginia,
C=US/Emai l=ca@exampleca.org, O=Root
Certificate Authority

55

Validity
Not Before: Jan 14 04:58:29 2002 GMT
Not After : Jan 14 04:58:29 2003 GMT
Subject: CN=www.exampleca.org, ST=Virginia,
C=US/Emai l=ca@exampleca.org,
O=Test Request
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:d8:a5:1b:c6:b6:e4:75:bfF:f3:e3:ce:29:1d:ab:
e2:5b:0d:bb:2e:94:de:52:a1:20:51:b1:77:d9:42:
a3:6c:26:1F:c3:3e:58:81:91:b1:b3:ed:bd:7c:62:
1c:71:05:3b:47:ff:1la:de:98:f3:b4:a6:91:fd:91:
26:db:41:76:85:b5:10:3f:c2:10:04:26:4F:bc:03:
39:fF:b9:42:d0:d3:2a:89:db:91:8e:75:6d:f5:71:
€c:96:e8:d6:03:29:8e:fe:20:3f:5d:d8:ch:14:5e:
e5:64:fc:be:fa:d1:27:42:b6:72:eb:b4:16:16:71:
77:d3:0e:8c:cc:87:16:fc:41

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Basic Constraints:
CA:FALSE
Signature Algorithm: md5WithRSAEncryption

13:33:75:8e:a4:05:9b:76:de:0b:d0:98:b8:86:2a:95:5a:13:
Ob:14:c7:48:83:13:95:0e:3e:bf:76:04:f7-ab-ae:cc:cd:76:
ae:32:77:ea:8c:96:60:28:52:4e:89:c5:ed:85:68:47:68:95:
74:53:9F:dc:64:95:62:1a:b0:21:09:76:75:14:25:d4:fd:17:
de:f9:87:7Ff:d5:dc:ed4:41:1e:ad:f6:7b:2d:bf:a6:8a:cd:65:
60:3b:71:74:bc:4d:0d:94:5a:22:c4:35:de:b0:19:46:f3:cl:
bb:c5:e0:d4:f7:a2:92:65:ec:40:4c:cc:d4:b7:a3:84:bd:a9:
b0:86

M1 1CcjCCAdugAwlIBAgIBATANBgkghkiGOwOBAQQFADB7MRMWEQYDVQQDEwWpFeGFt
cGx 1 lENBMREwWDwWYDVQQ IEwhWaXJnaW5pYTELMAKGALUEBhMCVVMxHzAdBgkghki G
9wWOBCQEWEGNhQGV4YW1wbGVjYS5vemex 1zAhBgNVBAOTG 1Jvb3QgQ2VydG ImaWwNh
dGUgQXV0aG9yaXR5MBAXDTAYMDEXNDAONTgYyOVoXDTAzMDEXNDAONTgyOVowdDEa
MBgGALUEAXMRA3d3LmV4YW1wbGV]jYS5vemexETAPBgNVBAQTCFZpemdpbmhMQsw
CQYDVQQGEWJIVUzETFMBOGCSqGS 1b3DQEJARYQY2FAZXhhbXBsZWNhLmOyZzEVMBMG
ALUEChMMVGVZzdCBSZXF1ZXNOMIGTFMAOGCSqGS 1 b3DQEBAQUAA4AGNADCB 1 QKBgQDY
PRVGtUR1v/Pjzikdg+JbDbsuIN5S0SBRsXFZQqNsJh/DP I iPkbGz7b18YhxxBTtH
/xXremPO0ppHI9kSbbQXaFtRA/WhAEJk+8Azn/uULQ0yqJ25G0dW31ceyWENYDKY 7+
1D9d2MsUXuVk/L760SdCtnLrtBYWcXFTDozMhxb8QQ I DAQABowOwCzAJIBgNVHRME
AJAAMAOGCSqGS 1 b3DQEBBAUAA4GBABMzdY6kBZt23gvQmL i GKpVaEwsUx0i1D85U0
Pr92BPerrszNdg4yd+gMImAoUk6JIxe2FaEdo IXRTnOxk IWIasCEJAnUUJATOF975
h3/V30RBHQ32ey2/porNZWA7cXS8TQ2UWi LENd6wWGUbzwbvFANT30pJ 1 7EBMzZNS3
04S9gbCG

————— END CERTIFICATE-----

Data Base Updated

Thefirst thing that happensis OpenSSL asks for a passphrase. The passphrase that it islooking for
is not the passphrase for the certificate request, but the passphrase for the CA's private key. The
private key will be used to sign the new certificate. After displaying the subject's distinguished
name, OpenSSL prompts you for confirmation to sign the certificate. Since certificate requests are
likely to come from people needing certificates from you, you should check to be sure that the
information they've provided in their certificate requestsis correct before issuing the certificate.
The next and final prompt is to confirm whether the certificates should be committed to the CA's
database. Finaly, the new certificate will be written to stdout, and the command is finished.

56

The confirmation prompts that are issued can be suppressed and automatically answered in the
affirmative by adding the batch option. Thisis useful if you're building a wrapper around the
OpenSSL command-line toal, or if you've already manually verified the information in the request
and you don't want to be prompted. It's aso possible to issue multiple certificates for multiple
certificate requests all with one command. For example, suppose you have three certificate
requests that need to have certificates issued. The infi les option can be used instead of the in
option; thelist of files to be processed follows immediately after it. If you usethe infiles
option, be aware that it must be the last option specified; everything after it is treated as an input
filename.

Theresulting certificate is al so written to the directory that we specified in our configuration file
withthe new_certs_dir key. It'swritten out in PEM format and given afilename composed of
the certificate's serial number and an extension of .pem. The output of the certificate to stdout
when it is created can be suppressed by using the notext option. Using the out option, the name
of afile to write the certificate to can be specified. We recommend that you also use the notext
option if you use the out option. The result will be afile containing a certificate that isidentical
to the one written to the new_certs_di r directory, /opt/exampleca/certsin our example. If you
use the out option, it'll save you having to search through all of the certificates that you've issued
and pick the highest numbered among them to pass on to their owners.

After the command has completed and the certificate has been issued, you should see anew filein
the subdirectory certsthat we created. Thisfileis the certificate that was issued. Y ou should aso
be able to see that information was added to the file index.txt, OpenSSL's CA database. Finaly,
you should be able to see that the serial number in the file serial was incremented. When you look
at the text dump of the certificate that was created, you'll notice that it was assigned a serial
number of "1", the number that we used to seed the serial number file.

3.3.5 Revoking Certificates

Thefirst certificate that we issued with our CA was simply atest certificate to make sure that the
CA isworking properly. We can see that the certificate was issued properly, but it's a certificate
that we don't actually want anybody to be able to use, so we will need to revoke the certificate.
This provides us with an excellent opportunity to find out how certificate revocation works using
OpenSSL's CA command.

Revoking a certificate is asimple process. All you need is a copy of the certificate to be revoked.
Even if you don't keep a copy of al of the certificates that you've issued, the CA infrastructure we
created does. We can obtain a copy of the certificate that way, but it's much easier to keep a copy
of your own and name the file something meaningful since the CA simply namesthefile
containing the certificates it issues with each certificate's serial number. Using the command in the
example from the last section to create the test certificate, we didn't keep a copy for ourselves, but
we issued only asingle certificate, so it's quite easy to get a copy of the certificate file. We'll make
acopy of that certificate file in the CA's root directory and call it testcert.pem. Then well use that
file asthe certificate required by the revoke option to the ca command (see Example 3-9).

Example 3-9. Revoking a certificate

cp certs/01.pem testcert.pem

openssl ca -revoke testcert.pem

Using configuration from /opt/exampleca/openssl.cnf
Enter PEM pass phrase:

Revoking Certificate 01.

Data Base Updated

Once again, the command-line tool prompts us for a passphrase. The passphrase it islooking for is
the passphrase that protects the CA's private key. Although the key is not actually used for any

57

signing as part of the certificate revocation process, it is required to validate the certificate as the
CA'sown and as a security measure to ensure that only someone authorized to use the CA can
revoke a certificate that it hasissued.

No changeis made to the certificate at all. In fact, the only noticeable changeisto the CA's
database to indicate that the certificate has been revoked. Remember that once a certificate has
been issued, it cannot be modified. It's presumably out in the wild and there's no way to ensure

that every copy of the certificate in existence can be updated. This is where CRLs become relevant.
We've revoked the first certificate that we issued with our CA, but the only entity that is aware of
the revocation isthe CA itself. By itself, this doesn't do anybody any good. Anybody that might be
using the certificate also needs to know that the certificate has been revoked, so we need to issue a
CRL.

When we issue our first CRL, we set theinitia policy for how frequently we'll beissuing CRLS.

In our configuration, we've indicated that we'll issue them once aweek. When a CRL is made
available, it contains a field that indicates the next time a new one will be published. In other
words, each CRL is given an expiration date, and a new one must be obtained once the current one
expires. Whether there are any new certificate revocations, a new CRL should be generated when
the old one expires.

While CRLs should be published on aregularly scheduled periodic basis, it is also possible to
generate and publish CRLs when a new one is needed. In fact, it's good practice to do so. Consider
that not all software may cache the CRLsthat it retrieves, particularly if they're retrieved
automatically. It's also possible that the current CRL was most likely not retrieved by everyone
that may be using certificates issued by your CA. Therefore, it's best to make the information as
current as possible rather than waiting until the current CRL expires, especialy if the period
between issuanceis large.

Issuing a CRL before a new one is due means there are possibly two or more CRLs from your CA
in distribution, but that's fine. CRLs usually have only data added to them, and any time dataiis
removed, it's because the revoked certificate has expired, and thus its revocation statusis
irrelevant. Some CAs may opt to keep even expired certificates in their CRLs. While this may not
be abad ideafor a short period of time after a certificate expires, it's generally not a good idea to
keep the information indefinitely; otherwise, the CRL could grow to be quite large and make
distribution of it more costly in terms of both time and bandwidth.

Without any further ado, let'sissue our first CRL. Thisis done by issuing a simple ca command
using the gencrl option, along with an out option to specify the name of the file to write the
resultant CRL to (see Example 3-10). OpenSSL prompts us for the passphrase protecting the CA's
private key, which it will use to sign the CRL that it generates.

The command compl etes without writing anything to stdout indicating success, but if thereisa
problem, an appropriate error message will be written. We can see that the command compl eted
successfully by noting that the file we specified with the —out option has been written. With that
file, we can use the command-line tool's cr I command to investigate the details of the CRL that
we just generated.

Example 3-10. A certificate revocation list

openssl ca -gencrl -out exampleca.crl
Using configuration from /opt/exampleca/openssl.cnf
Enter PEM pass phrase:
openssl crl -in exampleca.crl -text -noout
Certificate Revocation List (CRL):

Version 1 (0x0)

Signature Algorithm: md5WithRSAEncryption

58

Issuer: /CN=Example
CA/ST=Virginia/C=US/Email=ca@exampleca.org/0=Root Ce
rtificate Authority

Last Update: Jan 14 05:42:08 2002 GMT

Next Update: Jan 21 05:42:08 2002 GMT
Revoked Certificates:

Serial Number: 01
Revocation Date: Jan 14 05:16:43 2002 GMT
Signature Algorithm: md5WithRSAEncryption
32:73:3b:e5:b4:f6:2d:57:58:15:e8:87:05:23:27:c3:5d:e5:
10:a0:5d:1d:09:68:27:b8:8c:70:5c:5d:4a:0d:07:FF:63:09:
2d:df:61:13:7b:ea:5a:49:74:3b:0a:e9:2b:2d:92:3e:4d:c6:
f4:4F-18:fa:zc9:9e:17:bb:92:b5:ed:46:14:-al:c2:25:5d:3F:
9d:5a:b4:c9:63:5F:06:Fc:04:22:0b:80:aa:fd:77:a5:16:9d:
36:47:f7:€9:5b:95:16:Fff:bb:e6:db:98:3c:2a:aa:bd:4f:91:
eb:20:86:44:09:7f:ef:62:69:ef:db:1e:79:7e:24:70:72:34:
cf:1le
openssl crl -in exampleca.crl -noout -CAfile cacert.pem
verify OK

When we get atext dump of the CRL, we can see the algorithm that was used to sign it, the CA
that issued it, when it was issued, when the next list will be issued, and alist of all of the
certificates that it contains. We can also use the crI command to verify the signature on the CRL.
Doing so requires us to have a copy of the certificate that was used to sign it.

We can see in Example 3-10 that the version of the CRL that was generated was Version 1. By
default, thisis what OpenSSL will produce unlessthecri_extensions key is specified in the
configuration filein the ca section. We strongly recommend that you produce only Version 1
CRLs, unless you can be sure al of the software you're using with your certificates supports
Version 2. If it'simportant that the software that supports Version 2 CRLs get them, you can
produce both Version 1 and Version 2 lists.

Note that you are essentially on your own when it comes to publishing CRLs. One reasonable
solution isto make CRLs available to all via secure HTTP.

Chapter 4. Support Infrastructure

The OpenSSL library is composed of many different packages. Some of the lower-level packages
can be used independently, while the higher-level ones may make use of several of the lower-level
ones. To use the OpenSSL library effectively, it isimportant to understand the fundamental
concepts of cryptography that we've aready introduced, and to gain familiarity with the more
important supplemental package offerings.

In this chapter, we concentrate on the lower-level APIsthat are most useful with the higher-level
APIsthat we discuss through the rest of this book. We'l start by demonstrating what is necessary
when using the OpenSSL library in a multithreaded environment by developing a small "drop-in”
library for Windows and Unix platforms that use POSIX threads. Well also examine OpenSSL's
error handling and its input/output interface, which are both quite different from how most other
development libraries deal with the same things. OpenSSL also provides packages for arbitrary
precision math and secure random number generation, as we aready mentioned. These packages
are both fundamental to strong crypto, and we'll cover them as well.

For all of the packages that we examine in this chapter, we'll discuss how to use them and provide
examples. Additionally, we'll discuss some of the common pitfalls that devel opers often encounter.

Note that if some of the material in this chapter doesn't seem immediately relevant and interesting,
it is safe to skip it, and come back to this chapter when necessary.

4.1 Multithread Support

Most modern operating systems provide support for multithreaded applications, and it is becoming
increasingly more common for applications to take advantage of that support. OpenSSL can
certainly be used in a multithreaded environment; however, it requires that the devel oper do some
work in order to make a program thread-safe. A common mistake that many developers make with
OpenSSL is that they assume the library is thread-safe without requiring anything special to be
donein the application. Thisis most certainly an incorrect assumption, and failing to set up
OpenSSL for use in amultithreaded environment can result in unpredictable behavior and
seemingly random crashes that are very difficult to debug.

OpenSSL uses many data structures on which operations must be atomic. That is, it must be
guaranteed that only one thread will accessthem at atime. If two or more threads are allowed to
modify the same structure concurrently, there is no way to predict which one's changes will be
realized. What's worse, the operations could end up mixed—part of the first thread's changes
could be made, while part of the second thread's changes could also be made. In either case, the
results are unpredictable, so steps must be taken to make the structures thread-safe.

OpenSSL provides for the thread safety of its data structures by requiring each thread to acquire a
mutually exclusive lock known as a mutex that protects the structure before allowing it to be
accessed. When the thread is finished with the data structure, it releases the mutex, allowing
another thread to acquire the lock and access the data structure. Because OpenSSL is designed for
use on multiple platforms that differ in their implementation of threading, OpenSSL doesn't make
direct callsto create, destroy, acquire, and release mutexes: it requires the application programmer
to perform these operations in a manner appropriate for the platform it's running on by making
callbacks to functions that the application registers with OpenSSL for this purpose.

60

There are two different sets of callbacks that an application is expected to provide to safely
operate in amultithreaded environment. Satic locks provide a fixed number of mutexes available
for OpenSSL's use. Dynamic locks allow OpenSSL to create mutexes as it needs them. OpenSSL
does not currently make use of dynamic locks, but reserves the right to do so in the future. If you
want your applications to continue working with a minimal amount of effort in the future, we
recommend that you implement both static and dynamic locks now.

4.1.1 Static Locking Callbacks

The static locking mechanism requires the application to provide two callback functions. In
addition to providing an implementation for the functions, the application must tell OpenSSL
about them so that it knows to call them when appropriate. The first callback function is used
either to acquire or release alock, and is defined like this:

void locking_function(int mode, int n, const char *file, int line);
mode

Determines the action that the locking function should take. When the CRYPTO_LOCK
flag is set, the lock should be acquired; otherwise, it should be rel eased.

The number of the lock that should be acquired or released. The number is zero-based,
meaning that the first lock isidentified by 0. The value will never be greater than or equal
to the return from the CRYPTO_num_ locks function.

file

The name of the source file requesting the locking operation to take place. It isintended
to aid in debugging and isusually supplied by the _ _FILE_ _ preprocessor macro.

The source line number requesting the locking operation to take place. Like the file
argument, it is also intended to aid in debugging, and it is usually supplied by the
LINE _ preprocessor macro.

The next callback function is used to get aunique identifier for the calling thread. For example,
GetCurrentThreadld on Windows will do just that. For reasons that will soon become clear, it
isimportant the value returned from this function be consistent across calls for the same thread,
but different for each thread within the same process. The return value from the function should be
the unique identifier. The function is defined like this:

unsigned long id_function(void);

Example 4-1 introduces two new OpenSSL library functions: CRYPTO_set_id_callback and
CRYPTO_set_locking_cal lback. These two functions are used to tell OpenSSL about the
callbacks that we've implemented for the static locking mechanism. We can either pass a pointer
to afunction to install a callback or NULL to remove a callback.

Example 4-1. Static locking callbacks for WIN32 and POSIX threads systems

int THREAD_setup(void);
int THREAD_cleanup(void);

61

#iT defined(WIN32)
#define MUTEX_TYPE HANDLE
#define MUTEX_SETUP(X) (X) = CreateMutex(NULL, FALSE, NULL)
#define MUTEX_CLEANUP(x) CloseHandle(x)
#define MUTEX_ LOCK(x) WaitForSingleObject((x), INFINITE)
#define MUTEX_ UNLOCK(x) ReleaseMutex(x)
#define THREAD ID GetCurrentThreadld()
#elif defined(_POSIX_THREADS)
/* _POSIX_THREADS is normally defined in unistd.h if pthreads are
available on your platform. */
#define MUTEX_TYPE pthread mutex_t
#define MUTEX_SETUP(X) pthread_mutex_init(&(x), NULL)
#define MUTEX_CLEANUP(X) pthread_mutex_ destroy(&(x))
#define MUTEX_ LOCK(x) pthread mutex_lock(&(x))
#define MUTEX_UNLOCK(x) pthread mutex_ unlock(&(x))

#define THREAD ID pthread_self()
#else

#error You must define mutex operations appropriate for your
platform!
#endif

/* This array will store all of the mutexes available to OpenSSL. */
static MUTEX TYPE *mutex_buf = NULL;

static void locking_function(int mode, int n, const char * file, int
line)

{
if (mode & CRYPTO_LOCK)
MUTEX_LOCK(mutex_buf[n]);
else
MUTEX_UNLOCK(mutex_buf[n]);
}
static unsigned long id_function(void)
{
return ((unsigned long)THREAD ID);
}
int THREAD_ setup(void)
{

int i;

mutex_buf = (MUTEX_TYPE *)malloc(CRYPTO num_locks() *
sizeof(MUTEX_TYPE));
if (Imutex_buf)
return O;
for (i = 0; 1 < CRYPTO_num_locks(); 1i++)
MUTEX_SETUP(mutex_buf[i]);
CRYPTO_set_id_callback(id_function);
CRYPTO_set_locking_callback(locking_function);

return 1;
}
int THREAD_ cleanup(void)
t

int i;

if (Imutex_buf)
return O;
CRYPTO_set_id_callback(NULL);

62

CRYPTO_set_locking_callback(NULL);

for (i = 0; i < CRYPTO_num_locks(); i++)
MUTEX_CLEANUP(mutex_buf[i]);

free(mutex_buf);

mutex_buf = NULL;

return 1;

}

To use these static locking functions, we need to make one function call before our program starts
threads or calls OpenSSL functions, and we must call THREAD _setup, which returns 1 normally
and O if it isunable to alocate the memory required to hold the mutexes. In our example code, we
do make a potentially unsafe assumption that the initialization of each individual mutex will
succeed. Y ou may wish to add additional error handling code to your programs. Once we've called
THREAD_setup and it returns successfully, we can safely make calls into OpenSSL from
multiple threads. After our program's threads are finished, or if we are done using OpenSSL, we
should call THREAD_cleanup to reclaim any memory used for the mutex structures.

4.1.2 Dynamic Locking Callbacks

The dynamic locking mechanism requires a data structure (CRYPTO_dynlock _value) and
three callback functions. The structure is meant to hold the data necessary for the mutex, and the
three functions correspond to the operations for creation, locking/unlocking, and destruction. As
with the static locking mechanism, we must also tell OpenSSL about the callback functions so that
it knows to call them when appropriate.

Thefirst thing that we must do is define the CRYPTO_dynlock_value structure. We'll be
building on the static locking support that we built in Example 4-1, so we can use the same
platform-dependent macros that we defined already. For our purposes, this structure will be quite
simple, containing only one member:

struct CRYPTO dynlock value
{

¥

MUTEX_TYPE mutex;

Thefirst callback function that we need to defineis used to create a new mutex that OpenSSL will
be able to use to protect a data structure. Memory must be allocated for the structure, and the
structure should have any necessary initialization performed on it. The newly created and
initialized mutex should be returned in arel eased state from the function. The callback is defined
likethis:

struct CRYPTO dynlock value *dyn_create_ function(const char *file,
int line);
file

The name of the source file requesting that the mutex be created. It isintended to aid in
debugging and isusually suppliedby the FILE_ _ preprocessor macro.

The source line number requesting that the mutex be created. Like the Fi e argument, it
isaso intended to aid in debugging, and it isusually supplied by the LINE_
preprocessor macro.

63

The next callback function is used for acquiring or releasing a mutex. It behaves almost identically
to the corresponding static locking mechanism's callback, which performs the same operation. Itis
defined like this:

void dyn_lock function(int mode, struct CRYPTO dynlock value
*mutex, const char *file, int line);
mode

Determines the action that the locking function should take. When the CRYPTO_LOCK
flag is set, the lock should be acquired; otherwise, it should be rel eased.

mutex

The mutex that should be either acquired or released. It will never be NULL and will
always be created and initialized by the mutex creation callback first.

file

The name of the source file requesting that the locking operation take place. It isintended
to aid in debugging and isusually suppliedby the FILE_ _ preprocessor macro.

The source line number requesting that the locking operation take place. Like the File
argument, it is also intended to aid in debugging, and it is usually supplied by the
LINE _ preprocessor macro.

Thethird and final callback function is used to destroy a mutex that OpenSSL no longer requires.
It should perform any platform-dependent destruction of the mutex and free any memory that was
alocated for the CRYPTO_dynlock_value structure. It is defined like this:

void dyn_destroy_function(struct CRYPTO_dynlock_value *mutex,
const char *file, int line);
mutex

The mutex that should be destroyed. It will never be NULL and will always have first been
created and initialized by the mutex creation callback.

file
The name of the source file requesting that the mutex be destroyed. It isintended to aid in
debugging and isusually suppliedby the FILE_ _ preprocessor macro.

line

The source line number requesting that the mutex be destroyed. Like the i le argument,
itisasointended to aid in debugging, and it isusually supplied by the LINE_
preprocessor macro.

Using the static locking mechanism's code from Example 4-1, we can easily build a dynamic
locking mechanism implementation. Example 4-2 shows an implementation of the three dynamic
locking callback functions. It also includes new versions of the THREAD_setup and
THREAD_cleanup functions extended to support the dynamic locking mechanism in addition to

64

the static locking mechanism. The modifications to these two functions are simply to make the
appropriate OpenSSL library callsto install and remove the dynamic locking callback functions.

Example 4-2. E xtensions to the library to support the dynamic locking mechanism

struct CRYPTO_dynlock_value

{
MUTEX_TYPE mutex;
};
static struct CRYPTO dynlock value * dyn_create_function(const char *file,
int line)
{
struct CRYPTO_dynlock_value *value;
value = (struct CRYPTO_dynlock value *)malloc(sizeof(
struct CRYPTO_dynlock value));
if (lvalue)
return NULL;
MUTEX_SETUP(value->mutex);
return value;
}

static void dyn_lock function(int mode, struct CRYPTO dynlock value *I,
const char *file, int line)

{
iT (mode & CRYPTO_LOCK)
MUTEX_LOCK(I->mutex) ;
else
MUTEX_UNLOCK(I->mutex);
¥

static void dyn_destroy_function(struct CRYPTO dynlock value *I,
const char *file, int line)

MUTEX_CLEANUP(I->mutex) ;
free(l);

int THREAD_setup(void)
{

int i;

mutex_buf = (MUTEX_TYPE *)malloc(CRYPTO _num_locks() *
sizeof(MUTEX_TYPE));
it (Imutex_buf)
return O;
for (i = 0; i < CRYPTO_num_locks(); i++)
MUTEX_SETUP(mutex_buf[i]);
CRYPTO_set_id_callback(id_function);
CRYPTO_set_locking_callback(locking_function);

/* The following three CRYPTO_ ... functions are the OpenSSL functions
for registering the callbacks we implemented above */
CRYPTO_set_dynlock_create_callback(dyn_create_function);
CRYPTO_set_dynlock_lock_cal lback(dyn_lock_function);
CRYPTO_set_dynlock _destroy_cal lback(dyn_destroy function);

return 1;
}
int THREAD_cleanup(void)
{

int i;

it (Imutex_buf)
return O;

65

CRYPTO_set_id_callback(NULL);

CRYPTO_set_locking_callback(NULL);

CRYPTO_set_dynlock create_callback(NULL);

CRYPTO_set_dynlock_lock_cal lback(NULL);

CRYPTO_set_dynlock _destroy_ callback(NULL);

for (i = 0; 1 < CRYPTO num_locks(); i++)
MUTEX_CLEANUP(mutex_buf[i]);

free(mutex_buf);

mutex_buf = NULL;

return 1;

4.2 Internal Error Handling

OpenSSL has a package, known as the ERR package, devoted to the handling and processing of
errors. When an OpenSSL function encounters an error, it creates an error report and logs the
information to an error queue. Because the information is logged to aqueue, if multiple errors
occur, information can be gathered for each of them. It is our responsibility as developers to check
the error queue to obtain detailed information when a function returns an error so that we can
handle error conditions appropriately. The OpenSSL error handling mechanism is more complex
than most other libraries of similar stature, but that also means more information is available to
help resolve the error condition.

Let's suppose for amoment that OpenSSL didn't log errors onto a queue. Consider, for example, a
rather common case in which an application calling into a high-level OpenSSL library function
causes OpenSSL to make several successive calls into various lower-level packages that make up
OpenSSL. If an error were to occur at alow level, that error would be propagated back up the call
stack to the application. The problemis that by the time the application gets the information, it's
likely to have changed to something less detailed than the initial error as each function in the chain
causes anew error to be generated all because of the initial low-level error.

4.2.1 Manipulating Error Queues

When an error occurs in the OpenSSL library, asignificant amount of information is logged.
Some of the information can be useful in attempting to recover from an error automatically, but
much of it isfor debugging and reporting the error to a user.

The ERR package provides six basic functions that are useful for obtaining information from the
error queue. Each function always retrieves the oldest information from the queue so that errors
arereturned in the order that they were generated. The most basic piece of information that is
logged is an error code, which describes the error that occurred. The error code is a 32-bit integer
that has meaning only to OpenSSL. That is, OpenSSL defines its own unique error codes for any
error condition that it could possibly encounter. It does not rely on error codes defined by any
other library, including the standard C runtime. For each of the six basic functions, this error code
isthe return value from the function. If there is no error in the queue, the return from any of them
will be O, which also tells us that 0 is never avalid error code.

Thisfirst function retrieves only the error code from the error queue. It aso removes that error
report from the queue, so the next call will retrieve the next error that occurred or possibly O if
there are no more errors in the queue:

unsigned long ERR_get_error(void);

The second function also retrieves only the error code from the error queue, but it does not remove
the error report from the queue, so the next call will retrieve the same error:

66

unsigned long ERR_peek_error(void);

The third function builds on the information returned by ERR_get_error and
ERR_peek_error. In addition to returning the error code, it also returns the name of the source
file and source line number that generated the error. Like ERR_get_error, it aso removes the
error report from the queue:

unsigned long ERR_get_error_line(const char **file, int *line);

file
Receives the name of the source file that generated the error. It is usually supplied to the
error handler fromthe . _FILE_ _ preprocessor macro.

line

Receives the source line number that generated the error. It is usually supplied to the error
handler fromthe LINE_ _ preprocessor macro.

The fourth function returns the same information asERR_get_error_line, but like
ERR_peek_error, it does not remove the error report from the queue. Its arguments and their
meanings are identical to ERR_get_error_line:

unsigned long ERR_peek_error_line(const char **file, int *line);

The fifth function builds on the information returned by ERR_get_error_line and
ERR_peek_error_line. In addition to returning the error code, source filename, and line
number, it also returns extra data and a set of flags that indicate how that data should be treated.
The extra data and flags are supplied when the error is generated. Like ERR_get_error and
ERR_get_error_line, thisfunction also removes the error report from the queue:

unsigned long ERR _get _error_line_data(const char **file, int *line,
const char **data, int *flags);

file
Receives the name of the source file that generated the error. It is usually supplied to the
error handler fromthe . _FILE_ _ preprocessor macro.
line
Receives the source line number that generated the error. It is usually supplied to the error
handler fromthe _ _LINE_ _ preprocessor macro.
data
Receives a pointer to the extra data that was included with the error report. The pointer
that isreturned is not a copy, and so it should not be modified or freed. See below.
flags

Receives a set of flags that define the attributes of the extra data.

67

The sixth function returns the same information asERR_get_error_line_data, but like
ERR_peek_error and ERR_peek_error_line, it does not remove the error report from the
gueue. Its arguments and their meanings are identical to ERR_get_error_line_data:

unsigned long ERR _peek error_line data(const char **file, int *line,
const char **data, int *flags);

ERR_get_error_line_dataand ERR_peek_error_line_data both retrieve the optiona
piece of datathat can be associated with an error report. This optional piece of data can be
anything, but most frequently, it's a string. Stored along with the datais a bit mask of flags that
describe the data so that it can be dealt with appropriately by the error handling package. If the
flag ERR_TXT_MALLOCED is set, the memory for the data will be freed by a call to OpenSSL's
OPENSSL_free function. If theflag ERR_TXT_STRING is set, the datais safe to be interpreted
asaC-style string.

Note that the file and data information that can be obtained from the queue is returned as a pointer
to the information on the queue. It is not a copy, so you should not attempt to modify the data. In
the case of the fileinformation, it isusually aconstant string fromthe _ _FILE_ _ preprocessor
macro. For the datainformation, if you need to store the information for any reason, you should
make a copy and not store the pointer that is returned. When you use the "get” family of functions
to obtain this data, the data remains valid for a short period, but you should be sure to make a copy
before any other error handler function is called if you need to preserve it. Example 4-3
demonstrates how to print out the error information that isin the calling thread's error queue.

Example 4-3. Accessing error information on the error queue

void print_errors(void)

{
int flags, line;
char *data, *file;
unsigned long code;

code = ERR_get _error_line_data(&file, &line, &data, &flags);
while (code)
{

printf("'error code: %lu in %s line %d.\n", code, file, line);
if (data && (flags & ERR_TXT_STRING))

printf("'error data: %s\n'", data);
code = ERR_get _error_line_data(&file, &line, &data, &flags);

}

There is one last queue-manipulation function that we'll discuss here: the function for clearing the
error queue. It will delete al errors currently in the queue. In general, there is no need to call this
function unless we are trying to reset the error status for the current thread and don't care about
any other errors that are on the queue. There is no way to recover the previous errors once it's been
called, so useit judicioudly:

void ERR_clear_error(void);
4.2.2 Human-Readable Error Messages

In some cases, the most appropriate way to handle an error condition is to display or log the error
so that the user of your application can take the necessary steps to resolve the error. To do that, it's
best to display a human-readable error message rather than an error code. The error handling

68

package provides standard error messages for its error codes for just this purpose, but before they
can be used, they must be loaded.

There are two sets of error messages: one for the errors generated by 1ibcrypto , and onefor
the errors generated by Iibssl. Thefunction ERR_load_crypto_strings loadsthe errors
generated by libcrypto, and the function ERR_load_SSL_strings loads the errors
generated by libssl. Thereisan additional function, SSL_load_error_strings, which will
load both sets of error messages.

Oncethe error strings are loaded, ERR_error_string and ERR_error_string_n can be
used to trandlate an error code into an error message that is more meaningful to humans.
Particularly in a multithreaded application, ERR_error_string should never be used. It is
always best to use ERR_error_string_n. Both functions always return a pointer to the start of
the buffer into which the trandated error message was written.

char *ERR_error_string(unsigned long e, char *buf);

e
The error code that will be trandlated.

buf
The buffer into which the error message is written. The buffer must be at |east 256 bytes
in size, or it can be specified asNULL, in which case an internal buffer will be used. Use

of this buffer is never thread-safe.

char *ERR_error_string_n(unsigned fong e, char *buf, size_t len);

e
The error code that will be trand ated.
buf
The buffer into which the error message is written. It must never be NULL.
len

The size of the buf argument in bytes. It should include space for the NULL terminating
character.

The resultant error message is formatted into a colon-separated list of fields. Thefirst field is
always the word "error”, and the second field is always the error code represented in hexadecimal.
Thethird field is the name of the package that generated the error, such as "BIO routines" or
"bignum routines". The fourth field is the name of the function that generated the error, and the
fifth field is the reason why the error was generated. The function name is taken from an internal
table that is actually rather small, and may very likely be represented as func(<code>), in
which code isanumber representing the function.

To get information about an error, ERR_get_error_line_data and ERR_error_string
should be used. Armed with all of the information from these two functions, we can emit rather
detailed error information. The OpenSSL library provides us with two functions that ease this
process for us, however. ERR_print_errors will produce an error listing and writeit to aBIO.

69

ERR_print_errors_fp will produce an error listing and write it to a standard C runtime FI1LE
object. The error listings are produced by iterating through each error report in the error queue and
removing them as it goes. For each error report, ERR_get_error_line_data and
ERR_error_string are used to obtain the information necessary to produce the listing:

void ERR_print_errors(BIO *bp);
bp
The BIO that the error listing should be written to.

void ERR print_errors_fp(FILE *fp);

fp
The FILE object that the error listing should be written to.

4.2.3 Threading and Practical Applications

A common concern of developersisthe handling of errors produced by alibrary when using
threaded code, and rightly so. With afew exceptions that can be easily avoided, OpenSSL's error
handling is completely thread-safe. Each thread is assigned its own error queue, which is one of
the reasons why the id_function calback that we described earlier in the chapter must return a
different identifier for each thread. Each error queue will contain only errors that were caused by
that thread. Thisis convenient for threaded applications because the programmer doesn't need to
do anything special to handle errors correctly.

By creating a separate error queue for each thread, it would seem that all the bases are covered for
error handling, but that's not entirely true. OpenSSL does not use thread-local storage for the error
gueues, and so there is no way for each queue to be automatically destroyed when a thread
terminates. Thread-local storageis a great feature to have in a multithreaded environment, but
unfortunately, it is not supported on al platforms. The bottom line isthat the application is
responsible for destroying a thread's error queue when a thread terminates because OpenSSL has
no way of knowing on its own when athread has terminated.

OpenSSL provides a function to destroy athread's error queue called ERR_remove_state. It
should be called by athread just before it terminates, or it may be called by another thread within
the process after the thread has terminated. The function requires a single argument that isthe
identifier of the thread as it would be returned by the id_function callback that we described
earlier in the chapter.

Until now, we have overlooked the implications of loading the strings for error processing. These
strings do take up memory, and it isn't always appropriate to load them. It should be mentioned
that all of the error handling routines work properly without the strings loaded. The translated
error messages will merely have internal OpenSSL codes inserted instead of the more meaningful
strings. If we do choose to load the error strings, we should also be sure to free them when they're
no longer needed by calling ERR_free_strings. For most applications, this should happen
after the program is done making calls into the OpenSSL library.

4.3 Abstract Input/Output

70

The BIO package provides a powerful abstraction for handling input and output. Many different
types of BIO objects are available for use, but they all fall into one of two basic categories:
source/sink and filter, both of which will be described in detail in upcoming sections. BIOs can be
attached together in chains, allowing the data to flow through multiple BIO objects for processing
asitisread or written. For example, aBIO chain can be created that causes data to be base64-
encoded asit iswritten out to afile and decoded as it is read from afile. This feature of BIOs
makes them very flexible and powerful. A single function with a BIO parameter can be written to
read or write some data, and just by setting up aBIO chain, it is possible for that one function to
deal with all kinds of different types of data encoding.

The OpenSSL library provides a variety of functions for creating and destroying BI1Os, chaining
them together, and reading or writing data. It's important to note that the BIO packageis alow-
level package, and as such, you must exercise care in using it. Many of the functions will allow
you to perform operations that could later lead to unpredictable behavior and even crashes.

B10_new function is used to create a new BIO. It requiresaB10_METHOD object to be specified,
which defines the type of BIO the new object will be. We'l discuss the available B10_METHOD
objects in the next two sections. If the BIO is created successfully, it will be returned. If an error
occurred in creating the BIO, NULL will be returned.

The BIO *BI0_new(BIO_METHOD *type);

OnceaBlO iscreated, itsB10_METHOD can be changed to some other type using the BIO_set
function, which will return O if an error occurs; otherwise, the return will be nonzero to indicate
success. You should take care in using BI1O_set, particularly if the BIO is part of a chain because
the call will improperly break the chain.

int BIO_set(BIO *bio, BIO_METHOD *type);

When aBIO is no longer needed, it should be destroyed. The function BIO_free will destroy a
single BIO and return nonzero if it was successfully destroyed; otherwise, it will return 0.

int BIO_free(BIO *bio);

TheBI10_vfree functionisidentical to BIO_free except that it does not return avalue.

void BIO_vfree(BIO *bio);

TheBI10_free_all function can be used to free an entire chain of BIOs. When using
BI10_free_all, you must ensure that you specify the BIO that is the head of the chain, whichis
usually afilter BIO. If the BIO that you wish to destroy is part of achain, you must first remove it
from the chain before calling BIO_free or BI1O_vfree; otherwise, the chain will end up with a
dangling pointer to the BIO that you've destroyed.

void BI0O_free_all(BIO *bio);

TheBI10_push and B10_pop functions are poorly named because they imply that a stack is
being operated on, but in fact, there is no stack.

TheB10_push function will append aBIO to aBIO, either creating or lengthening aBIO chain.
The returned BIO will aways be the BIO that was initially specified as the head of the chain. In
other words, the return value will be the same as the first argument, bio.

BI10 *BIO_push(BIO *bio, BIO *append);

71

The BIO that should have ancther BIO, typicaly afilter BIO, appended to its chain.
append
The BIO that should be appended to the chain.

TheB10_pop function will remove the specified BIO from the chain that it is part of and return
the next BIO in the chain or NULL if there is no next BIO.

BI10 *BIO_pop(BIO *bio);
bio
The BIO that should be removed from the chain of which it isa part.

B10_read behaves amost identically to the C runtime function read. The primary difference
between the two isin how the return value is interpreted. For both functions, areturn value that is
greater than zero is the number of bytes that were successfully read. A return value of 0 indicates
that no datais currently available to be read. For the C read function, areturn value of -1
indicates that an error occurred. Often, thisisthe case withBI10_read aswell, but it doesn't
necessarily mean that an error has occurred. Well talk more about thisin a moment.

int BIO _read(BI0 *bio, void *buf, int len);

bio
Thefirst BIO in achain that will be used for reading data. If there isno chain, thisisa
source BIO; otherwise, it should be afilter BIO.

buf
The buffer that will receive the data that is read.

len

The number of bytesto read. It may be less than the actual buffer size, but it should never
be larger.

Another function that is provided for reading data from a source BIO isBI10_gets, which usually
behaves ailmost identically to its C runtime counterpart, fgets. In general, you should probably
avoid using this function if you can, because it is not supported by all types of BIOs, and some
types of BIOs may behave differently than you might expect. Normally, though, it will read data
until it finds an end-of-line character or the maximum number of bytes are read, whichever
happens first. If an end-of-line character isread, it will be included in the buffer. The return value
from this function isthe same asfor BIO_read.

int BIO _gets(BI0O *bio, char *buf, int len);
bio

Thefirst BIO in achain that will be used for reading data. If thereisno chain, thisisa
source BIO; otherwise, it should be afilter BIO.

72

buf
The buffer that will receive the data that is read.

len

The maximum number of bytes to read. This length should include space for the NULL
terminating character, and of course, should never exceed the size of the buffer that will
receive the data.

Corresponding to B10_read for reading from asource BIO isB10_wr i te, which writes data to
asink BIO. It behaves almost identically to the C runtime function wr i te. The primary difference
between the two isin how the return value isinterpreted, asistruefor BIO_read, aswe just
described. The return value isinterpreted in much the sasmeway asitisfor BIO_read and
B10_gets, with the difference being that a positive value indicates the number of bytes that were
successfully written.

int BIO write(BIO *bio, const void *buf, int len);

bio
Thefirst BIO in achain that will be used for writing data. If thereis no chain, thisisa
sink BIO; otherwise, it should be afilter BIO.

buf
The buffer that contains the data to be written.

len

The number of bytes from the buffer that should be written. It may be less than the actual
buffer size, but it should never be larger.

B10_puts interprets the specified buffer as a C-style string and attempts to write it out in its
entirety. The buffer must contain aNULL terminating character, but it will not be written out with
the rest of the data. The return value from this function is interpreted the same asit isfor

BIO write.

int BIO puts(BIO *bio, const char *buf);
bio

Thefirst BIO in achain that will be used for writing data. If thereisno chain, thisisa
sink BIO; otherwise, it should be afilter BIO.

buf
The buffer that contains the data to be written.

We mentioned that for each of the four reading and writing functions, a0 or -1 return value may
or may not necessarily indicate that an error has occurred. A suite of functionsis provided that
allows us to determine whether an error really did occur, and whether we should retry the
operation.

73

If BIO_should_retry returns anonzero value, the call that caused the condition should be
retried later. If it returns 0, the actual error condition is determined by the type of BIO. For
example, if BIO_read and B10_should_retry both return 0 and the type of BIO is a socket,
the socket has been closed.

int BIO_should_retry(BI0 *bio);

If BIO_should_read returns nonzero, the BIO needs to read data. As an example, this condition
could occur when afilter BIO is decrypting a block cipher, and a complete block has not been
read from the source. In such a case, the block would need to be completely read in order for the
data to be successfully decrypted.

int BIO_should_read(BIO *bio);

If BIO_should_write returns nonzero, the BIO needsto write data. This condition could
possibly occur when more datais required to satisfy ablock cipher's need to fill a buffer before it
can be encrypted.

int BIO_should write(BIO *bio);

If BIO_should_io_special returns nonzero, an exceptional condition has occurred, and the
meaning is entirely dependent on the type of BIO that caused the condition. For example, with a
socket BIO, this could mean that out-of-band data has been received.

int BIO_should_io_special(BIO *bio);

Thefunction BIO_retry_type returns abit mask that describes the condition. Possible bit
fidldsinclude B10_FLAGS READ, B10_FLAGS WRITE,and BIO FLAGS 10 SPECIAL. Itis
conceivable that more than one bit could be set, but with the types of BIOs that are currently
included as part of OpenSSL, only one will ever be set. The functionsBI10_should_read,
B10_should_write,andBIO_should_io_special areimplemented as macros that test the
three hits corresponding to their names.

int BIO _retry_type(BIO *bio);

Thefunction BIO_get_retry_BI10 will return apointer to the BIO in the BIO chain that caused
the retry condition. If its second argument, reason, isnot NULL, it will be loaded with the reason
code for the retry condition. The retry condition doesn't necessarily have to be caused by a
source/sink BIO, but can be caused by afilter BIO aswell.

BIO *BIO_get_retry BIO(BIO *bio, int *reason);

Thefunction BIO_get_retry_reason returnsthe reason code for the retry operation. The retry
condition must be a special condition, and the BIO passed must be the BIO that caused the
condition. In most cases, the BIO passed to BIO_get_retry_reason should bethe BIO that is
returned by BIO_get_retry_ BIO.

int BIO _get retry reason(BIO *bio);

In many cases, BI0_flush will do nothing, but in cases in which buffered 1/0 isinvolved, it will
force any buffered data to be written. For example, with a buffered file sink, it's effectively the
same as calling fFlush on the FILE object attached to the BIO.

int BIO_flush(BIO *bio);

74

4.3.1 Source/Sink BIOs

A BIO that is used for reading is known as a source BIO, and asink BIO is one that is used for
writing. A source/sink BIO is attached to a concrete input/output medium such as afile, a socket,
or memory. Only a single source/sink BIO may exist in achain. It is possible to conceive of
situations in which it might be useful to have more than one, particularly for writing, but the
source/sink types of BIOs provided by OpenSSL do not currently allow for more than one
source/sink BIO to existin achain.

OpenSSL provides nine source/sink types of BIOs that can be used with BIO_new and B10_set.
A function is provided for each that simply returnsaB10_METHOD object suitable for passing to
BI10 _new or BIO_set. Most of the source/sink types of BIOs require additional setup work
beyond just creating a BIO with the appropriate B10_METHOD. We'll cover only the four most
commonly used types in any detail here due to space limitations and the huge number of
individual functions that are available to operate on them in various ways.

4.3.1.1 Memory sources/sinks

A memory BIO treats a memory segment the same as afile or socket, and can be created by using
BI10_s_mem to obtain aB10_METHOD object suitable for usewith BIO_new and BIO_set. As
an alternative, the function B10_new_mem_buf can be used to create a read-only memory BIO,
which requires a pointer to an existing memory segment for reading as well as the size of the
buffer. If the size of the buffer is specified as -1, the buffer is assumed to be a C-style string, and
the size of the buffer is computed to be the length of the string, not including the NULL
terminating character.

When amemory BIO iscreated using BIO_new and BIO_s_mem, anew memory segment is
created, and resized as necessary. The memory segment is owned by the BIO in thiscase and is
destroyed when the BIO is destroyed unlessB10_set_close preventsit. BIO_get_mem_data
or BIO_get_mem_ptr can be used to obtain a pointer to the memory segment. A memory BIO
created with BIO_new_mem_buf will never destroy the memory segment attached to the BIO,
regardless of whether BIO_set_close isused to enable it. Example 4-4 demonstrates how to
create amemory BIO.

Example 4-4. Creating a memory BIO

/* Create a read/write BIO */
bio = BIO_new(BIO_s_mem());

/* Create a read-only BIO using an allocated buffer */
buffer = malloc(4096);
bio = BIO_new_mem_buf(buffer, 4096);

/* Create a read-only BIO using a C-style string */
bio = BIO_new_mem _buf(*This is a read-only buffer.', -1);

/* Get a pointer to a memory BIO"s memory segment */
BIO _get mem_ptr(bio, &buffer);

/* Prevent a memory BIO from destroying its memory segment when it is
destroyed

*/

BIO_set close(bio, BIO _NOCLOSE);

4.3.1.2 File sources/sinks

75

Two types of file BIOs are available: buffered and unbuffered. A buffered file BIO is awrapper
around the standard C runtime F1LE object and its related functions. An unbuffered file BIO isa
wrapper around afile descriptor and its related functions. With the exception of how the two
different types of file BIOs are created, the interface for using them is essentially the same.

A buffered file BIO can be created by using BIO_s_fi le to obtainaBI10_METHOD object
suitable for usewith BIO_new and BI10O_set. Alternatively, BIO_new_Ti le can be used the
same way as the standard C runtime function, fopen, isused, or BIO_new_fp can be used to
create a BIO around an aready existing FILE object. Using BIO_new_fp, you must specify the
FILE object to use and a flag indicating whether the F I LE object should be closed when the BIO
is destroyed.

An unbuffered file BIO can be created by using BIO_s_fd to obtain aB10_METHOD object
suitable for usewith BIO_new and B10_set. Alternatively, BIO_new_fd can be used in the
same way that BIO_new_fp cisused for buffered BIOs. The difference isthat afile descriptor
rather than aF I LE object must be specified.

For either a buffered or an unbuffered file BIO created withBI10_new or BI10_set, additional
work must be done to make the BIO usable. Initially, no underlying file object is attached to the
BIO, and any read or write operations performed on the BIO aways fail. Unbuffered file types of
BlOsrequirethat BIO_set_fd be used to attach afile descriptor to the BIO. Buffered file types
of BlOsrequirethat BIO_set_fi le beused to attach aF I LE object to the BIO, or one of
BIO_read_filename, BIO write filename, BIO_append_filename, or
B10_rw_filename be used to create an underlying F 1 LE object with the appropriate mode for
the BIO. Example 4-5 shows how to create afile BIO.

Example 4-5. Creating a file BIO

/* Create a buffered file BIO with an existing FILE object that will
be closed when the BIO is destroyed. */

file = fopen(filename.ext", "r+");

bio = BIO_new(BIO_s_Tile());

BIO_set file(bio, file, BIO _CLOSE);

/* Create an unbuffered file BIO with an existing file descriptor
that will not be closed when the BIO is destroyed. */

fd = open('filename.ext”™, O_RDWR);

bio = BIO_new(BI0_s fd());

BIO_set fd(bio, fd, BI0_NOCLOSE);

/* Create a buffered file BIO with a new FILE object owned by the BIO
*/
bio = BIO_new_file("filename.ext", "w");

/* Create an unbuffered file BIO with an existing file descriptor
that will be closed when the BIO is destroyed. */

fd = open('filename.ext'”, O_RDONLY);

bio = BIO_new_fd(fd, BIO_CLOSE);

4.3.1.3 Socket sources/sinks
There are three types of socket BIOs. The simplest is a socket BIO that must have an already
existing socket descriptor attached to it. Such aBIO can be created usingBI10_s_socket to

obtain aB10_METHOD object suitable for use withB10_new and BIO_set. The socket descriptor
can then be attached to the BIO using B10_set_fd. Thistype of BIO works almost like an

76

unbuffered file BIO. Alternatively, BIO_new_socket can be used in the same way that
B10_new_Td works for unbuffered file BIOs.

The second type of BIO socket is a connection socket. This type of BIO creates a new socket that
isinitially unconnected. The IP address and port to connect to must be set, and the connection
established before data can be read from or written to the BIO. BIO_s_connect isused to obtain
aB10_METHOD object suitable for usewith BIO_new and BIO_set. To set the address, either
B10_set_conn_hostname can be used to set the hostname or BIO_set_conn_ip can be
used to set the IP address in dotted decimal form. Both functions take the connection address as a
C-style string. The port to connect to isset using BIO_set_conn_port or
BI10_set_conn_int_port. Thedifference between thetwo isthat BIO_set_conn_port
takes the port number as a string, which can be either a port number or a service name such as
"http" or "https”, and BIO_set_conn_int_port takesthe port number as an integer. Once the
address and port are set for making a connection, an attempt to establish a connection can be made
viaBI10_do_connect. Once aconnection is successfully established, the BIO can be used just as
if it was aplain socket BIO.

Thethird type of BIO socket is an accept socket. Thistype of BIO creates a new socket that will
listen for incoming connections and accept them. When a connection is established, anew BIO
object is created that is bound to the accepted socket. The new BIO object is chained to the
original BIO and should be disconnected from the chain before use. Data can be read or written
with the new BIO abject. The original BIO abject can then be used to accept more connections.

In order to create an accept socket type of socket BIO, useB10_s_accept to obtaina
B10_METHOD object suitable for use withBI10_new and BIO_set. The port used to listen for
connections must be set before the BIO can be placed into listening mode. This can be done using
BI10_set_accept_port, which accepts the port as a string. The port can be either a number or
the name of aservice, just likewithBIO_set_conn_port. Once the port is set,
B10_do_accept will place the BIO's socket into listening mode. Successive callsto
B10_do_accept will block until anew connection is established. Example 4-6 demonstrates.

Example 4-6. Creating a socket BIO

/* Create a socket BIO attached to an already existing socket
descriptor. The socket descriptor will not be closed when the BIO is
destroyed. */

bio = BIO_new(BIO_s socket());

BI10_set_fd(bio, sd, BIO_NOCLOSE);

/* Create a socket BIO attached to an already existing socket
descriptor. The socket descriptor will be closed when the BIO is
destroyed. */

bio = BIO_new_socket(sd, BI0 _CLOSE);

/* Create a socket BIO to establish a connection to a remote host. */
bio = BIO_new(BIO_s connect());

BIO_set _conn_hostname(bio, "www.ora.com');

BIO_set conn_port(bio, "http'™);

BIO_do_connect(bio);

/* Create a socket BIO to listen for an incoming connection. */
bio = BIO_new(BIO_s accept());

BIO_set accept port(bio, "https');

BIO _do_accept(bio); /* place the underlying socket into listening
mode */

for ()

{

77

B10_do_accept(bio); /* wait for a new connection */
new_bio = BI0O_pop(bio);
/* new_bio now behaves like a BIO_s_socket() BIO */

}

4.3.1.4 BIO pairs

Thefina type of source/sink BIO that we'll discussisaBIO pair. A BIO pair issimilar to an
anonymous pipe,™ but does have one important difference. In aBIO pair, two source/sink BIOs
are bound together as peers so that anything written to one can be read from the other. Similarly,
an anonymous pipe creates two endpoints, but only one can be written to, and the other isread
from. Both endpoints of a BIO pair can be read to and written from.

M An anonymous pipe is a common operating system construct in which two file descriptors are
created, but no file is created or socket opened. The two descriptors are connected to each other
where one can be written to and the other read from. The data written to one half of the pipe can be
read from the other half of the pipe.

A BIO pair can be formed by joining two aready existing B10 objects, or two new BIO objects
can be created in ajoined state. The function B10_make_bio_pair will join two existing B10
objects created using the BIO_METHOD object returned fromthe BIO_s_biio function. It accepts
two parameters, each one aB 10 that will be an endpoint in the resultant pair. When aBI0 is
created usingBI10_s_bio to obtainaBI10_METHOD suitable for use with BIO_new, it must be
assigned a buffer with acall toBIO_set_write_buf_size, which accepts two parameters.
Thefirstisthe BI0 to assign the buffer to, and the second is the size in bytes of the buffer to be
assigned.

New B 10 objects can be created already joined with the convenience function
BI10_new_bio_pair, which accepts four parameters. The first and third parameters are pointers
to BI10 objectsthat will receive a pointer to each newly created B10 object. The second and fourth
parameters are the sizes of the buffers to be assigned to each half of the B10 pair. If an error
occurs, such as an out of memory condition, the function will return zero; otherwise, it will return
nonzero.

Thefunction BIO_destroy_bio_pair will sever the pairing of the two endpointsin aBIO pair.
Thisfunction is useful when you want to break up a pair and reassign one or both of the endpoints
to other potential endpoints. The function accepts one parameter, which is one of the endpointsin
apair. It should only be called on one half of apair, not both. Calling BI10_free will aso cleanly
sever apair, but will only free the one endpoint of the pair that is passed to it.

One of the useful features of BIO pairsistheir ability to use the SSL engine (which requires the
use of B10 objects) while maintaining control over the low-level 10 primitives. For example, you
could provide an endpoint of aBIO pair to the SSL engine for reading and writing, and then use
the other end of the endpoint to read and write the data however you wish. In other words, if the
SSL engine writes to the BIO, you can read that data from the other endpoint and do what you
wish with it. Likewise, when the SSL engine needs to read data, you write to the other endpoint,
and the SSL engine will read it. Included in the OpenSSL distribution is atest application (the
source file is sd/sdltest.c) that is a good example of how to use BIO pairs. It implements a client
and a server in the same application. The client and the server talk to each other within the same
application without requiring sockets or some other low-level communication mechanism.
Example 4-7 demonstrates how BIO pairs can be created, detached, and reattached.

Example 4-7. Creating BIO pairs
a = BI10_new(BI0_s bio());

BIO_set write_buf size(a, 4096);

78

b = BI0_new(BI0_s bio());
BIO _set write_buf size(b, 4096);
BIO_make_bio_pair(a, b);

BIO new _bio pair(&a, 8192, &b, 8192);

c = BI0_new(BI0O_s bio());

BIO_set write_buf size(c, 1024);

BIO_destroy bio_pair(a); /* disconnect a from b */
BIO _make bio_pair(a, c);

4.3.2 Filter BIOs

A filter BIO by itself provides no utility. It must be chained with a source/sink BIO and possibly
other filter BIOs to be useful. The ability to chain filters with other BIOs is perhaps the most
powerful feature of OpenSSL's BIO package, and it provides agreat deal of flexibility. A filter
BI10O often performs some kind of translation of data before writing to or after reading from a
concrete medium, such as afile or socket.

Creating BIO chains is reasonably simple and straightforward; however, care must be taken to
keep track of the BIO that is at the end of the chain so that the chain can be manipulated and
destroyed safely. If you destroy a BIO that isin the middle of a chain without first removing it
from the chain, it's a safe bet that your program will crash shortly thereafter. As we mentioned
earlier, the BIO package is one of OpenSSL's lower-level packages, and as such, little error
checking is done. This places the burden on the programmer to be sure that any operations
performed on aBIO chain are both legal and error-free.

When creating a chain, you must also ensure that you create the chain in the proper order. For
example, if you use filters that perform base64 conversion and encryption, you would probably
want to perform base64 encoding after encryption, not before. It's also important to ensure that
your source/sink BIO is at the end of the chain. If it's not, none of thefiltersin the chain will be
used.

Theinterface for creating afilter BIO issimilar to creating source/sink BIO. BIO_new isused to
create a new BIO with the appropriate B10_METHOD object. Filter BIOs are provided by
OpenSSL for performing encryption and decryption, base64 encoding and decoding, computing
message digests, and buffering. There are a handful of others aswell, but they are of limited use,
since they are either platform-specific or meant for testing the BIO package.

The function shown in Example 4-8 can be used to write data to afile using the BIO package.
What's interesting about the function is that it creates a chain of four BIOs. The result is that the
datawritten to thefileis encrypted and base64 encoded with the base64 encoding performed after
the datais encrypted. The datais first encrypted using outer triple CBC DES and the specified key.
The encrypted data is then base64-encoded before it is written to the file through an in-memory
buffer. The in-memory buffer is used because triple CBC DES is a block cipher, and the two

filters cooperate to ensure that the cipher's blocks are filled and padded properly. Chapter 6
discusses symmetric ciphersin detail.

Example 4-8. Assembling and using a BIO chain

int write_data(const char *filename, char *out, int len, unsigned char *key)

{

int total, written;
BIO *cipher, *b64, *buffer, *file;

/* Create a buffered file BIO for writing */

file = BIO_new_file(filename, "w');
it (Ifile)

79

return 0O;

/* Create a buffering filter BIO to buffer writes to the file */
buffer = BI0_new(BI0_T _buffer());

/* Create a base64 encoding filter BIO */
b64 = BI10_new(BI0_f_base64());

/* Create the cipher filter BIO and set the key. The last parameter of
BI10_set_cipher is 1 for encryption and 0 for decryption */

cipher = BIO_new(BIO_T_cipher());

B10_set_cipher(cipher, EVP_des_ede3_cbc(), key, NULL, 1);

/* Assemble the BIO chain to be in the order cipher-b64-buffer-file */
B10_push(cipher, b64);
BI10_push(b64, buffer);
B10_push(buffer, file);

/* This loop writes the data to the file. It checks for errors as if
the underlying file were non-blocking */
for (total = 0; total < len; total += written)

{
it ((written = BIO_write(cipher, out + total, len - total)) <= 0)
{
it (BI0_should_retry(cipher))
{
written = 0;
continue;
}
break;
}
}

/* Ensure all of our data is pushed all the way to the file */
B10_flush(cipher);

/* We now need to free the BIO chain. A call to BIO_free_all(cipher)
would accomplish this, but we"ll first remove b64 from the chain for
demonstration purposes. */

B10_pop(b64);

/* At this point the b64 BIO is isolated and the chain is cipher-buffer-
file. The following frees all of that memory */

B10_free(b64);

B10_free_all(cipher);

4.4 Random Number Generation

Many functions throughout the OpenSSL library require the availability of random numbers. For
example, creating session keys and generating public/private key pairs both require random
numbers. To meet this requirement, the RAND package provides a cryptographically strong
pseudorandom number generator (PRNG). This means that the "random" data it producesisn't
truly random, but it is computationally difficult to predict.

Cryptographically secure PRNGs, including those of the RAND package, require aseed. A seedis
essentially a secret, unpredictable piece of data that we use to set theinitial state of the PRNG.
The security of this seed is the basis for the unpredictability of the output. Using the seed value,
the generator can use mathematical and cryptographic transforms to ensure that its output cannot
be determined. Idedlly, the seed should be high in entropy. Entropy is a measurement of how
random datais. Toillustrate, let's consider generating a bit of data by flipping afair coin. The

80

resulting bit would have a 50% chance of being 0, and a 50% chance of being 1. The output can be
said to have one hit of entropy. We can aso say that the value of the bit istruly random. If the
coin flip was not fair, then we would have less than a bit of entropy, indicating that the resulting
output isn't truly random.

It isdifficult for a deterministic machine like a computer to produce true entropy. Often, entropy is
collected in small bits from all sorts of unpredictable events such as the low-order bits of the time
between keystrokes, thread exits, and hard-disk interrupts. It's hard to determine how much
entropy actually exists in a piece of data, though. It's fairly common to overestimate how much
entropy is available.

In general, entropy is unpredictable data, whereas pseudorandom numbers generated by a PRNG
are not unpredictable at all if both the algorithm and the seed are known. Aside from using
entropic data to seed the PRNG, it's also a good idea to use pure entropy for generating important
keys. If we generate a 256-bit key using a pseudorandom number generator that has a 128-bit seed,
then our key does not contain 256-hits of strength, despite its length. At most, it has 128 bits.
Similarly, if multiple keys are generated using the same seed, there will be correlations between
the keys that are undesirable. The security of the keys should be independent.

For all other random number requirements, pseudorandom numbers generated by the PRNG are
suitable for use.

4.4.1 Seeding the PRNG

A common security pitfall is the incorrect seeding of the OpenSSL PRNG. There are functions
that seed the generator easily enough, but the problems occur when a devel oper uses some
predictable data for the seed. While the internal routines can quantify the amount of "seed" data,
they can do nothing to determine the quality of that data (i.e., how much entropy the data contains).
We've stated that the seed is an important value, but we haven't explicitly looked at why thisis so.
For example, when using a session key to secure a connection, the basis for security is both the
encryption algorithm used to encrypt the messages and the inability of the attacker to simply guess
the session key. If an insecure seed is used, the PRNG output is predictable. If the output is
predictable, the keys generated are predictable; thus the security of even a correctly designed
application will be compromised. Clearly, alot depends on the PRNG's output and as such,
OpenSSL provides severa functions for manipulating it. It'simportant to understand how to use
these functions so that security can be assured.

The function RAND_add seeds the PRNG with the specified data, considering only the specified
number of bytesto be entropic. For example, suppose the buffer contained a pointer to the current
time as returned by the standard C runtime function, time. The buffer size would be four bytes,
but only a single byte of that could be reasonably considered entropic because the high bytes don't
change frequently and are extremely predictable. The current time by itself is never a good source
of entropy; we've only used it here for clarity.

void RAND_add(const void *buf, int num, double entropy);

buf

The buffer that contains the data to be used as the seed for the PRNG.
num

The number of bytes contained in the buffer.
entropy

81

An estimate of the quantity of entropy contained in the buffer.

Like RAND_add, the function RAND seed seeds the PRNG with the specified data, but considers
it to contain pure entropy. In fact, the default implementation of RAND_seed issimply to call
RAND_add using the number of bytesin the buffer as the amount of entropy contained in the
buffer's data.

void RAND_seed(const void *buf, int num);

buf

The buffer that contains the data to be used as the seed for the PRNG.
num

The number of bytes contained in the buffer.

Two additional functions are provided for use on Windows systems. They're not the best sources
of entropy, but lacking a better source, they're better than what most programmers would typically
use or devise on their own. In general, it'sagood idea to avoid using either of these two functions
unless there is no other entropy source available, especially if your application isrunning on a
machine that ordinarily has no user interaction, such as a server. They're intended to be alast
resort, and you should treat them as such.

int RAND _event(UINT iMsg, WPARAM wParam, LPARAM IParam);

RAND_event should be called from message handling functions and pass each message's
identifier and parameters. The current implementation uses only the WM_KEYDOWN and
WM_MOUSEMOVE messages for gathering entropy.

void RAND_screen(void);

RAND_screen can be called periodicaly to gather entropy as well. The function will take a
snapshot of the contents of the screen, generate a hash for each scan-line, and use the hash value
as entropy. This function should not be called too frequently for a couple of reasons. One reason is
that the screen won't change much, which can lead to predictability. The other reason is that the
function is not particularly fast.

A common misuse of the PRNG seeding functionsis to use a static string as the seed buffer. Most
often, thisis done for no reason other than to silence OpenSSL because it will generate warning
messages whenever the PRNG is not seeded and an attempt to use it is made. Another bad ideais
to use an uninitialized memory segment, assuming its contents will be unpredictable enough.
There are plenty of other examples of how not to seed the PRNG, but rather than enumerate them
al here, welll concentrate on the right way. A good rule of thumb to determine whether you're
seeding the PRNG correctly isthis: if you're not seeding it with data from a service whose explicit
purposeisto gather entropy, you're not seeding the PRNG correctly.

On many Unix systems, /dev/random is available as an entropy-gathering service. On systems that
provide such adevice, thereis usually another device, /dev/urandom. The reason for thisis that
the /dev/irandom device will block if there is not enough entropy available to produce the output
requested. The /dev/urandom device, on the other hand, will use a cryptographic PRNG to assure
that it never blocks. It's actually most accurate to say that /dev/irandom produces entropy and that
/dev/urandom produces pseudorandom numbers.

82

The OpenSSL package provides afunction, RAND__load_Fi le, which will seed the PRNG with
the contents of afile up to the number of bytes specified, or its entirety if the limit is specified as -
1. It is expected that the file read will contain pure entropy. Since OpenSSL has no way of
knowing whether the file actually does contain pure entropy, it assumes that the file does;
OpenSSL leaves it to the programmer. Example 4-9 shows some example uses of this function and
its counterpart, RAND_write_fille. On systemsthat do have /dev/random available, seeding the
PRNG with RAND_load_fi le from /dev/random s the best thing to do. Be sureto limit the
number of bytes read from /dev/random to some reasonable value, though! If you specify -1 to
read the entirefile, RAND _load_Fi le will read data forever and never return.

The RAND_write_file function will write 1,024 bytes of random bytes obtained from the
PRNG to the specified file. The bytes written are not purely entropic, but they can be safely used
to seed an unseeded PRNG in the absence of a better entropy source. This can be particularly
useful for a server that starts running immediately when a system boots up because /dev/irandom
will not have much entropy available when the system first boots. Example 4-9 demonstrates
various methods of employing RAND_load_file and RAND _write_file.

Example 4-9. Using RAND_load_file() and RAND_write_file()

int RAND_load_file(const char *filename, long bytes);
int RAND write_file(const char *filename);

/* Read 1024 bytes from /dev/random and seed the PRNG with it */
RAND_load_file('/dev/random™, 1024);

/* Write a seed file */
RAND write_file('prngseed.dat');

/* Read the seed file in its entirety and print the number of bytes
obtained */

nb = RAND_ load_file("prngseed.dat™, -1);

printf(*'Seeded the PRNG with %d byte(s) of data from prngseed.dat.\n",
nb);

When you write seed datato afile with RAND _write_file, you must be sure that you're writing
the file to a secure location. On a Unix system, this means the file should be owned by the user ID
of the application, and all access to group members and other users should be disallowed.
Additionally, the directory in which the file resides and al parent directories should have only
write access enabled for the directory owner. On aWindows system, the file should be owned by
the Administrator and allow no permissions to any other users.

One fina point worth mentioning isthat OpenSSL will try to seed the PRNG transparently with
/dev/urandom on systems that have it available. While thisis better than nothing, it'sa good idea
to go ahead and read better entropy from /dev/random, unless there is a compelling reason not to.
On systems that don't have /dev/urandom, the PRNG will not be seeded at al, and you must make
sure that you seed it properly before you attempt to use the PRNG or any other part of OpenSSL
that utilizes the PRNG. For systems that have /dev/irandom, Example 4-10 demonstrates how to
use it to seed the OpenSSL PRNG.

Example 4-10. Seeding OpenSSL's PRNG with /dev/random

int seed_prng(int bytes)
iT ('RAND_load_file('/dev/random”, bytes))

return 0O;
return 1;

83

4.4.2 Using an Alternate Entropy Source

We've discussed /dev/irandom and /dev/urandom as entropy sources at some length, but what about
systems that don't have these services available? Many operating systems do not provide them,
including Windows. Obtaining entropy on such systems can be problematic, but luckily, thereisa
solution. Several third-party packages are available for various platforms that perform entropy-
gathering services. One of the more full-featured and portable solutions availableis EGADS
(Entropy Gathering and Distribution System). It's licensed under the BSD license, which means
that it's free and the source code is available. Y ou can obtain a copy of EGADS from
http://www.securesw.com/egads/.

Aswe mentioned, there are other entropy solutions available in addition to EGADS. EGD isan
entropy-gathering daemon that is written in Perl by Brian Warner and is available from
http://egd.sourceforge.net/. Because it is written in Perl, it requires a Perl interpreter to be installed.
It provides a Unix domain socket interface for clients to obtain entropy. It does not support
Windows at al. PRNGD is another popular entropy-gathering daemon written by Lutz Janicke. It
provides an EGD-compatible interface for clients to obtain entropy fromit; like EGD itself,
Windows is not supported. Because neither EGD nor PRNGD support Windows, well concentrate
primarily on EGADS, which does support Windows. Where appropriate, we will aso discuss

EGD and PRNGD together, because al three use the same interface.

Before we can use EGADS to abtain entropy, we must first initialize it. Thisis done with asimple
call to egads_init. Oncethelibrary isinitiaized, we can use the function egads_entropy to
obtain entropy. Like /dev/random on systems that make it available, egads_entropy will block
until enough entropy is available to satisfy the request. Example 4-11 shows how to use EGADS
to seed OpenSSL's PRNG.

Example 4-11. Seeding OpenSSL's PRNG with EGADS

int seed prng(int bytes)
{

int error;
char *putf;
prngctx_t ctx;

egads_init(&ctx, NULL, NULL, &error);
it (error)
return O;

buf = (char *)malloc(bytes);
egads_entropy(&ctx, buf, bytes, &error);
it (lerror)

RAND_seed(buf, bytes);
free(buf);

egads_destroy(&ctx);
return (lerror);

}

EGADS, EGD, and PRNGD dl provide a Unix domain socket that allows clientsto obtain
entropy. EGD defines a simple protocol for clients to communicate with that both EGADS and
PRNGD have mimicked. Many cryptographic applications, such as GhuPG and OpenSSH,
provide support for obtaining entropy from a daemon using the EGD protocol. OpenSSL also
provides support for seeding its PRNG using the EGD protocol.

OpenSSL provides two functions for communicating with a server that speaks the EGD protocol.
Version 0.9.7 of OpenSSL adds athird. In addition, Version 0.9.7 will attempt to automatically

84

http://www.securesw.com/egads/
http://egd.sourceforge.net/

connect to four different commonly used names for EGD sockets in the following order:
Ivar/run/egd-pool, /deviegd-pooal, /etc/egd-pool, and /etc/entropy.

RAND_egd attempts to connect to the specified Unix domain socket. If the connectionis
successful, 255 bytes of entropy will be requested from the server. The data returned will be
passed in acall to RAND_add to seed the PRNG. RAND_egd is actually awrapper around the next
function, RAND_egd_bytes.

int RAND_egd(const char *path);

RAND_egd_bytes will attempt to connect to the specified Unix domain socket. If the connection
is successful, the specified number of bytes of entropy will be requested from the server. The data
returned will be passed in acall to RAND_add to seed the PRNG. Both RAND_egd and
RAND_egd_bytes will return the number of bytes obtained from the EGD server if they're
successful. If an error occurred connecting to the daemon, they'll both return -1.

int RAND_egd bytes(const char *path, int bytes);

Version 0.9.7 of OpenSSL adds the function RAND_query_egd_bytes to make a query for data
from an EGD server without automatically feeding the returned datainto OpenSSL's PRNG via
RAND_add. It attempts to connect to the specified Unix domain socket and obtain the specified
number of bytes. The datathat is returned from the EGD server is copied into the specified buffer.
If the buffer is specified as NULL, the function works just like RAND _egd_bytes and passes the
returned datato RAND_add to seed the PRNG. It returns the number of bytes received on success;
otherwise, it returns -1 if an error occurs.

int RAND_query_egd_bytes(const char *path, unsigned char *buf, int
bytes);

Example 4-12 demonstrates how to use the RAND functions to access an EGD socket and seed
the PRNG with the entropy that is obtained from a running entropy-gathering server, whether it's
EGADS, EGD, PRNGD, or another server that provides an EGD socket interface.

Example 4-12. Seeding OpenSSL's PRNG via an EGD socket

#ifndef DEVRANDOM_EGD
#define DEVRANDOM_EGD "/var/run/egd-pool', "/dev/egd-pool’,
""/etc/egd-pool™, \

""/etc/entropy"’

#endif
int seed_prng(int bytes)
L

int i;

char *names[] = { DEVRANDOM_EGD, NULL };

for (i = 0; names[i]; i++)

ifT (RAND_egd(names[i]) != -1) /* RAND egd_bytes(names[i],
255) */
return 1;

return O;

}

4.5 Arbitrary Precision Math

85

To implement many public key encryption algorithms, the library must have support for
mathematical operations on large integers. Use of standard C or C++ data typesis not adequate in
these situations. To alleviate this problem, OpenSSL provides the BN package. This package
declares routines on the aggregate type B 1 GNUM, which have virtually no limits on the upper
bounds of numbers. More specificaly, the size of the number that a B 1GNUM-typed variable can
hold is limited only by available memory.

It's likely that direct exposure to the BN package in developing an SSL-enabled application will be
limited sinceit is avery low-level package, and the higher-level packages generally hide the
details. However, because the package is so widely used and integral to public key cryptography,
we've briefly covered it here.

45.1 The Basics

To use the BIGNUM package in your programs, you'll need to include the header file openssl/bn.h.
Before we can use a B 1GNUM, we must first initialize it. The BN package provides support for

both statically allocated and dynamically allocated B 1GNUMs. The function BN_new will allocate a
new BIGNUM and initidize it for use. The function BN_init will initialize a statically allocated

B 1GNUM. When you're done using a B 1GNUM, you should always be sure to destroy it, evenif it is
allocated on the stack, because internally, a B 1GNUM dynamically allocates memory. The function
BN_free will destroy a BIGNUM. Example 4-13 shows some examples of how these three
functions are used.

Example 4-13. Creating, initializing, and destroying BIGNUMs

BIGNUM static_bn, *dynamic_bn;

/* Initialize a statically allocated BIGNUM */
BN_init(&static_bn);

/* Allocate an initialize a new BIGNUM */
dynamic_bn = BN_new();

/* Destroy the two BIGNUMs that we just created */
BN_free(dynamic_bn);
BN_free(&static_bn);

A BIGNUM isimplemented as an opaque structure that contains dynamically allocated memory.
The functions provided to operate on aBI1GNUM allow the programmer to remain blissfully
unaware of what's going on for the most part, but it isimportant that the programmer does
understand that there is much more going on internally. One such instance is when the value of
one BIGNUM needsto be assigned to another B1GNUM. The natural inclination isto perform a
shallow copy of the structure, but this should never be done! Deep copies must be performed, and
the BN package provides functions for doing just that. Example 4-14 demonstrates the right way
and the wrong way to make a copy of aBIGNUM.

Example 4-14. The wrong way and the right way to copy a BIGNUM

BIGNUM a, b *c;

/* First, the wrong way to copy a BIGNUM */
a = b;

*c = b;

/* Now the right way to copy a BIGNUM */
BN_copy(&a,&b); /* Copies b to a */

86

c = BN_dup(&b); /* Creates c and initializes it to the same value
as b */

It isimportant that we copy B 1GNUMs properly. If we don't, we're likely to experience
unpredictable behavior or crashes. When programming with BIGNUMs, there will likely be
situations in which you'll need to make copies, so it's best to learn this lesson early.

Ancther operation that is similar in nature is the comparison of two B 1GNUMs. We cannot smply
compare two BI1GNUMs using normal C comparison operators like =, <, or >. Instead, we must use
the BN_cmp function to compare two BI1GNUMs. This function will compare the two values, aand
b, and return -1 if aislessthan b, O if they are equal, and 1 if ais greater than b. The function
BN_ucmp will perform the same type of comparison on the absolute values of aand b.

It may be useful to convert aBI1GNUM into aflat binary representation for the purpose of storing it
inafile or sending it over a socket connection to a peer. Since aB 1GNUM contains pointers to
internal, dynamically allocated memory, it is not aflat structure, so we must convert it to one
before we can send it anywhere. Conversely, we must be able to convert aflat representation of a
BIGNUM back into aBI1GNUM structure that the BN package can use. Two functions are provided
for performing these respective operations. The first, BN_bn2bin, will convert aBIGNUM to aflat
binary representation in big-endian form. The second, BN_bin2bn, performs the inverse
operation, converting aflat binary representation of a big-endian number into a B 1GNUM.

Before converting aBIGNUM into a flat binary representation, we need to know the number of
bytes of memory that will be required to hold the converted data. It's also important to know how
big the binary representation is before converting it back into a B 1GNUM. The number of bytes
required to represent a B 1GNUM in flat binary form can be discovered using the BN_num_bytes
function. Example 4-15 demonstrates converting between BIGNUM and flat binary representations.

Example 4-15. Converting between BIGNUM and binary representations

/* Converting from BIGNUM to binary */

len = BN_num_bytes(num);
buf = (unsigned char *)malloc(len);
len = BN_bn2bin(num, buf);

/* Converting from binary to BIGNUM */
BN_bin2bn(buf, len, num);
num = BN_bin2bn(buf, len, NULL);

When BN_bn2bin performsits conversion, it will return the number of bytes that were written
out into the supplied buffer. If an error occursin the conversion, the return will be 0. When
BN_bin2bn performsits conversion, the result is placed into the B1GNUM specified as the third
argument, overwriting any value that it may have previoudy held. If the third argument is
specified asNULL, anew BIGNUM is created and initialized with the value from the binary
representation. In either case, the BN_bin2bn will always return a pointer to the BIGNUM that
received the value or NULL if an error occurred during the conversion.

Binary-encoded numbers are fine when we want to transfer the data over a medium that supports
it—for example, abinary file or a socket. However, for circumstances in which we need a text-
based representation, such as printing the number on the screen, it is inadequate. We can always
base64-encode the data before emitting it, but the BN package provides more intuitive methods.

The function BN_bn2hex converts aBIGNUM into a hexadecimal representation stored in a C-

style string. The C-style string is allocated dynamically using OPENSSL_mal loc, which must
then be freed by the caller using OPENSSL_ free.

87

char *BN_bn2hex(const BIGNUM *num);

The function BN_bn2dec convertsaBIGNUM into a decimal representation stored in a C-style
string. The C-style string is allocated dynamically using OPENSSL_mal Ioc, which must then be
freed by the caller using OPENSSL_ free.

char *BN_bn2dec(const BIGNUM *num);

The function BN_hex2bn converts a hexadecimal representation of a number stored in a C-style
string to aBIGNUM. The resulting value is stored in the supplied B1GNUM, or anew BIGNUM is
created with BN_new if the BIGNUM is supplied as NULL.

int BN_hex2bn(BIGNUM **num, const char *str);

The function BN_dec2bn converts adecimal representation of a number stored in a C-style string
to aBIGNUM. Theresulting value is stored in the supplied B1GNUM, or anew BIGNUM is created
with BN_new if the BIGNUM is supplied as NULL.

int BN_dec2bn(BIGNUM **num, const char *str);

4.5.2 Mathematical Operations

With few exceptions, the mgjority of the remainder of the functions that make up the BN package
all perform mathematical operations such as addition and multiplication. Most of the functions
require at least two B 1GNUM operands and store their result in athird BIGNUM. It is often safe to
use one of the operands to store the result, but it isn't always, so you should exercise care in doing
s0. Consult Table 4-1, which lists the most common arithmetic functions, if you're not sure.
Unless otherwise noted in the table, the BIGNUM that will receive the result of the operation may
not be the same as any of the operands. Each of the functions returns nonzero or zero, indicating
success or failure, respectively.

Many of the functions in Table 4-1 are shown as accepting an argument labeled "ctx". This
argument is a pointer to aBN_CTX structure. This argument may not be specified as NULL, but
instead should be a context structure returned by BN_CTX_new. The purpose of the context
structure is to store temporary values used by many of the arithmetic operations. Storing the
temporary values in a context increases the performance of the various functions. When a context
structure is no longer needed, it should be destroyed using BN_CTX_free.

Table 4-1. Arithmetic functions for BIGNUMs

\ Function | Comments
BN_add(r, a, b) (r=a+ b) r may bethe sameasaor b.
BN_sub(r, a, b) (r=a-h)

BN_mul(r, a, b, ctx) (r=axb) r may bethe sameasaor b.

BN_sqr(r, & ctx) (r = pow(a, 2)) r may be the same as a. Thisfunction isfaster than

BN_mul(r, a, a).
. (d=a/b,r=a% b) Neither d nor r may be the same as either aor b.
BN_div(d, 1, a b, ctx) Either d or r may be NULL.
BN_mod(r, a, b, ctx) (r=a%b)

BN_nnmod(r, a, b, ctx)

(r = abs(a % b))

BN_mod_add(r, a, b, m,
Ctx)

(r =abs((a+ b) % m))

BN mod sub(r, a, b, m,

(r = abs((a- b) % m))

88

ctx) |

BN_mod_mul(r, a b, m,

o) (r = abs((ax b) % m)) r may be the sameasaor b.

BN_mod_sqgr(r, a, m,

ctx) (r = abs(pow(a, 2) % m))

BN_exp(r,a p,ctx) |(r = pow(a p))

BN_mod_exp(r, a, p, m,

cix) (r = pow(a, 2) % m)

Finds the greatest common divisor of aand b. r may be the sameasaor

BN_gcd(r, a, b, ctx) b

4.5.3 Generating Prime Numbers

One of the functions provided by the BN package that is most import to public key cryptography
iSBN_generate_prime. Asits name implies, the function generates prime numbers, but more
importantly, it generates pseudorandom primes. In other words, it repeatedly chooses numbers at
random until one of the choicesit makesis a prime number. Such a function can be quite useful
for other applications as well, which is one of the reasons why we've chosen to pay so much
attention to it in this chapter. Another reason is because its parameter list is rather large and
complex, which can make using the function seem to be a daunting task.

BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe, BIGNUM
*add, BIGNUM *rem, void (*callback)(int,
int, void *), void *cb_arg);

ret
Used to receive the prime number that is generated. If it is specified asNULL, a new
BIGNUM will be created, initialized with BN_new, and returned.

bits
The number of bits that should be used to represent the generated prime.

safe
Either zero or nonzero, indicating whether the generated prime should be safe or not. A
safe primeis defined as a prime, p, in which (p-1)/2 is aso prime.

add
Used to specify additional properties that the generated prime should have. If itis
specified asNULL, no additional properties will be required. Otherwise, the generated
prime must satisfy the condition that when divided by this value, the remainder is one.

rem
Used to specify additional properties that the generated prime should have. If itis
specified asNULL, no additional properties will be required. Otherwise, the generated
prime must satisfy the condition that when divided by add, the remainder must be this
value. If add is specified asNULL, this argument isignored.

callback

[S]
©

A function that is called during the generation of the prime to report the status of the
operation. Generating a prime can often be a rather time-consuming task, so this provides
some means of advising a user that work is being done and that the program hasn't
crashed or hung.

cb_arg

A value that is used only to pass to the callback function if oneis specified. OpenSSL
does not use this argument for anything else and will never attempt to interpret its value
or meaning.

If oneis used, the callback function should accept three arguments and return no value. The third
argument to the callback function is alwaysthe cb_arg argument to BN_generate_prime.
The first argument passed to the callback function is a status code indicating which phase of the
prime generation has just completed. The status code will always be 0, 1, or 2. The meaning of the
second argument depends on the status code. When the status code is O, it indicates that a potential
prime has been found, but it has not yet been tested to ensure that it conformsto the criteria
specified inthe call to BN_generate_prime. The callback can be called with a status code of 0
many times, and each time the second argument will contain a counter of the number of primes
that have been found so far, not including the current one. When the status code is 1, the second
argument indicates the number of Miller-Rabin probabilistic primality tests that have been
completed. Finally, when the status code is 2, a conforming prime has been found, and the second
argument indicates the number of candidates that were tested before it. Example 4-16
demonstrates how to usethe BN_generate_prime function with a callback for displaying the
status of the process.

Example 4-16. Generating a pseudorandom prime number with
BN_generate_prime()

static void prime_status(int code, int arg, void *cb_arg)

if (code == 0)

printfF(C'\n * Found potential prime #%d ...", (arg + 1));
else if (code == 1 && arg && !(arg % 10))
printf('.");
else
printf('"\n Got onel!\n");
}
BIGNUM *generate_prime(int bits, int safe)
{
char *str;
BIGNUM *prime;
printf(*'Searching for a %sprime %d bits in size ...", (safe ?
"safe " '),
bits);

prime = BN_generate prime(NULL, bits, safe, NULL, NULL,
prime_status, NULL);
it (Iprime)
return NULL;

str = BN_bn2dec(prime);

it (str)

{
printf("'Found prime: %s\n", str);
OPENSSL_free(str);

90

}

return prime;

4.6 Using Engines

OpenSSL has built-in support for cryptographic acceleration. Using the ENG INE object type, an
application can get areference to a changeable, underlying representation, most often a hardware
device. This support was built in the 0.9.6 versions of OpenSSL that included the name engine; it
will be incorporated into the main branch of OpenSSL beginning with Version 0.9.7. While 0.9.7
will have a much more robust feature specification for the ENGINE package, 0.9.6-engine
contains some simple functions to set up an ENG INE object. These functions do not appear to have
changed at the time of writing. If they do, we'll update our web site with the relevant information.

The general ideais simple: we retrieve an object representing the type of hardware we wish to
utilize, then we tell OpenSSL to use the device we chose. Example 4-17 shows a small code
example of how we would perform this operation.

Example 4-17. Enabling use of a hardware engine

ENGINE *e;

iT (I(e = ENGINE_by_id(“'cswift™)))
fprintf(stderr, "Error finding specified ENGINE\Nn™);
else if (IENGINE_set_default(e, ENGINE_METHOD ALL))
fprintf(stderr, "Error using ENGINE\Nn"™);
else
fprintf(stderr, "Engine successfully enabled\n™);

The function call ENGINE_by_id will look up an implementation from the built-in methods
available and return an ENGINE object. The single argument to this function should be the string
identifier of the underlying implementation we wish to use. Table 4-2 shows the available
methods for supported cryptographic hardware and software.

Table 4-2. Supported hardware and software engines
| ID string | Description

The engine uses the normal built-in functions for cryptographic operations.
Thisisthe default.

On the OpenBSD operating system, this engine will use the kernel level
cryptography built into the operating system.

openssl

openbsd_dev_crypto

cswift Used for CryptoSwift acceleration hardware.

(chil \Used for nCipher CHIL acceleration hardware.
atalla \Used for Compaq Atalla acceleration hardware.
nuron Used for Nuron acceleration hardware.

ubsec Used for Broadcom uBSec accel eration hardware.
aep Used for Aep acceleration hardware.

sureware \Used for SureWare acceleration hardware.

The ENGINE object that we receive from the lookup should be used in the call to
ENGINE_set_default to alow cryptographic functions to utilize the capabilities of the specific

91

ENGINE. The second parameter allows us to specify constraints on what we allow the engine to
implement. For example, if we had an engine that implemented only RSA, making acall like the
one in Example 4-17 would allow RSA to be handled by the engine. On the other hand, if we
called ENGINE_set_defaul t with our RSA engine and ENGINE_METHOD_DSA, OpenSSL
would not use the engine for any cryptographic calls, since this flag allows the engine to work
only on DSA functions. Table 4-3 provides a complete list of the restraints we can use. They can
be combined with the logical OR operation.

Table 4-3. Flags for ENGINE_set_default

Flag Description
ENGINE_METHOD_RSA Limit engine usage to only RSA operations.
ENGINE METHOD_DSA \Limit engine usage to only DSA operations.
ENGINE METHOD_DH Limit engine usage to only DH operations.

ENGINE_METHOD_RAND Limit engine usage to only random number operation.

ENGINE_METHOD_CIPHERS |Limit engine usage to only symmetric ciphers operations.

ENGINE_METHOD_DIGESTS |Limit engine usage to only digest operations.

[ENGINE_METHOD_ALL /Allow OpenSSL to use any of the above implementations.

Aside from setting the default engine, ENG INE objects are typically used in several other placesin
OpenSSL Version 0.9.7. For instance, the function EVP_EncryptlInit has been deprecated and
replaced by EVP_Encryptlinit_ex. This"ex" function takes one additional parameter: the
ENGINE object. In general, these replacement functions can be passed a NULL argument for the
ENGINE, which will cause OpenSSL to use the default engine. Recall that the default engineis
changed when acall to ENGINE_set_default ismade; if no such call is made, the built-in
software implementation is used.

The purpose of these new "ex" functionsis to allow a more fine-grained control over which
underlying cryptographic deviceis used for each call. Thisis particularly useful for circumstances
in which we have multiple cryptographic accelerators, and we wish to utilize them differently
depending on application code.

92

Chapter 5. SSL/TLS Programming

The main feature of the OpenSSL library is its implementations of the Secure Sockets Layer (SSL)
and Transport Layer Security (TLS) protocols. Originally developed by Netscape for secure web
transactions, the protocol has grown into a general solution for secure stream-based
communications. Netscape's first public version of SSL iswhat we now call SSL Version 2. From
that point, security experts began working to improve upon some of the flawsin SSLv2, and that
gave birth to SSL Version 3. Development of a standard for transport layer security based on SSL
was being done concurrently, which resulted in TLS Version 1. Because of the security flaws with
SSLv2, modern applications should not support it. In this chapter, we'll discuss only programming
with the SSLv3 and TLSv1 protocolsin OpenSSL. Unless otherwise noted, when we refer to SSL,
we refer to both SSLv3 and TLSv1.

From a design perspective, we need to know more than just that we want to use SSL in our
application. The correct implementation of an SSL-enabled program can be difficult due to
complexitiesin protocol setup, the large size of the API, and devel oper inexperience with the
library. OpenSSL's SSL support was originally designed to mimic the Unix socket interface;
however, the likenesses quickly fade as we get into the subtleties of the API. In order to make the
process of becoming acquainted with the massive library easier, we take a small example client
and server through a step-by-step process of making it SSL-enabled and secure. To aid
understanding, we start with some simplifying assumptions that may not be practical for real-
world applications.

From that point, well bridge the gap to the more advanced OpenSSL features. The goal of this
chapter is to compartmentalize the features of the library into smaller groups to establish a sense
of process. We hope that this process will serve as atemplate for developers when it comes to
implementing SSL in their own applications. In adding SSL to an application, the application's
unique requirements must be considered, and the best decision must be made for both security and
functionality.

5.1 Programming with SSL

OpenSSL's API for SSL islarge and can be daunting to inexperienced programmers. Additionally,
as discussed in Chapter 1, SSL can be ineffective at accomplishing its security goals if
implemented incorrectly. These factors compound to leave the devel oper with a difficult task. In
hopes of disentangling the mystery of implementing secure programs, we attack the problemin
three steps. At each step, the devel oper must provide some application-specific knowledge to
make sure SSL does its job. For example, the choices made by a developer of a highly compatible
web browser will be different from those made by a devel oper of a highly secure server
application.

The steps below provide a template for devel opers to follow when implementing an SSL client or
server. We will start with asmall example and build upon it. This example will not be secureto
our satisfaction until all of the steps have been thought through. In each step, we will introduce a
small dose of the API; after al the steps, the developer should be able to think through the design
of an SSL-enabled application much more clearly. Completing these stepsis not the end of the
road, however. In order to address the requirements of many applications, we need to go further
and look into the advanced features of the API.

5.1.1 The Application(s) to Secure

93

We will be using two very simple applications: a client and server in which the server smply
echoes data from the client to the console. Our goa is to augment our two applications so that they
can perform their tasks in a hostile environment. In other words, we'll implement each program to
strictly authenticate connecting peers. Aswe walk the path to creating SSL-enabled versions of
our programs, we discuss the choices that a devel oper must make at each stage.

Before moving forward, let's look at our sample applications. There atotal of four files: common.h,
common.c, client.c, and server.c. The code for each is presented in Example 5-1 through Example
5-4. Also, we use the code presented in Example 4-2 so we can use multiple threads. For Unix
systems, we'll continue to use POSIX threads.

Starting with common.h in Example 5-1, Lines 1-5 include relevant headers from OpenSSL. Right
now, we don't make use of anything from afew of these headers, but we soon will, so they are
included. Lines 22-24 define the strings for the client and server machines as well as the server's
listening port. In addition, the header contains some definitions for convenient error handling and
for threading in a platform-independent manner similar to the definitions set forth in Chapter 4's
threading examples.

Example 5-1. common.h

#include <openssl/bio.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/ssl.h>
#include <openssl/x509v3.h>

#ifndef WIN32
#include <pthread.h>
#define THREAD_CC

10 #define THREAD_ TYPE pthread_t

11 #define THREAD_CREATE(tid, entry, arg) pthread_create(&(tid), NULL, \
12 (entry), (arg))
13 #else

14 #include <windows.h>

15 #define THREAD CC __cdecl

16 #define THREAD_TYPE DWORD

17 #define THREAD_CREATE(tid, entry, arg) do { _beginthread((entry), O,
(arg)):;\
18

GetCurrentThreadld(); \

19 } while (0)

20 #endif

21

22 #define PORT 6001

23 #define SERVER "splat.zork.org"

24 #define CLIENT "shell .zork.org"

25

26 #define int_error(msg) handle_error(__FILE__, _ LINE_ _, msg)
27 void handle_error(const char *file, int lineno, const char *msQg);
28

29 void init_OpenSSL(void);

©O~NOUAWN R

(tid) =

Example 5-2, the file common.c, defines our error reporting function handle_error. The error
handling in our example applicationsis a bit draconian, and you'll most likely want to handle
errors in your own applications in a much more user-friendly manner. In general, it's not
appropriate to handle all possible errors by bringing the application to such an abrupt halt.

The file common.c also defines afunction that will perform common initialization such as setting
up OpenSSL for multithreading, initializing the library, and loading error strings. The call to
SSL_load_error_strings loadsthe associated datafor error codes so that when errors occur
and we print the error stack, we get human-readabl e information about what went wrong. Since

94

loading these diagnostic strings does take memory, there are circumstances in which we would not
want to make this call, such as when we're developing applications for embedded systems or other
machines with limited memory. Generally, it's agood idea to load the strings since it makes the
job of decoding error messages much easier.

Aswe build in SSL support, the file common.c will hold the implementations of functions used by
both our client and server, and common.h will receive the prototypes.

Example 5-2. common.c

1 #include "common.h"

2

3 void handle_error(const char *file, int lineno, const char *msg)
4 {

5 fprintf(stderr, "** %s:%i %s\n", Ffile, lineno, msQg);

6 ERR_print_errors_fp(stderr);

7 exit(-1);

8 }

9

10 void init_OpenSSL(void)

11 {

12 ifT (ITHREAD_setup() |] ! SSL library init())

13 {

14 fprintf(stderr, "** OpenSSL initialization failed!\n");
15 exit(-1);

16 }

17 SSL_load_error_strings();

18 }

The bulk of our client application isin Example 5-3, client.c. At ahigh level, it creates a
connection to the server on port 6001, as specified in common.h. Once a connection is established,
it reads datafrom stdin until EOF isreached. Asdatais read and an internal buffer isfilled, the
datais sent over the connection to the server. Note that at this point, although we're using
OpenSSL for socket communications, we have not yet enabled the use of the SSL protocol.

Lines 27-29 create anew B10 object withaB10_METHOD returned fromB10_s_connect; the
call toBI0_new_connect isasimplified function to accomplish this task. Aslong as no error
occurs, lines 31-32 do the work of actually making the TCP connection and checking for errors.
When a connection is successfully established, do_client_loop iscaled, which continually
reads data from stdin and writes that data out to the socket. If an error while writing occurs or an
EOF isreceived while reading from the console, the function exits and the program terminates.

Example 5-3. client.c

1 #include "common.h"

2

3 void do_client_loop(BIO *conn)

4 {

5 int err, nwritten;

6 char buf[80];

e

8 for (;3;)

9 {

10 it (Ifgets(buf, sizeof(buf), stdin))

11 break;

12 for (nwritten = 0; nwritten < sizeof(buf); nwritten +=
err)

13 {

95

14 err = BI10_write(conn, buf + nwritten, strlen(buf) -
nwritten);

15 if (err <= 0)

16 return;

17 3}

18 }

19 3}

20

21 int main(int argc, char *argv[])

22 {

23 BIO *conn;

24

25 init_OpenSSL();

26

27 conn = BI0O_new_connect(SERVER ":*" PORT);
28 it (Iconn)

29 int_error("Error creating connection BIO™);
30

31 if (B10_do_connect(conn) <= 0)

32 int_error("Error connecting to remote machine™);
33

34 fprintf(stderr, ""Connection opened\n™);
35 do_client_loop(conn);

36 fprintf(stderr, ""Connection closed\n™);
37

38 BIO_ free(conn);

39 return O;

40 3}

The server application in Example 5-4, server.c, differs from the client program in afew ways.
After making the call to our common initialization function (line 44), it creates a different kind of
B10, one based onthe BIO_METHOD returned fromBI10_s_accept. Thistype of BI10 createsa
server socket that can accept remote connections. In lines 50-51, acall toB10_do_accept binds
the socket to port 6001; subsequent callsto BIO_do_accept will block and wait for aremote
connection. The loop in lines 53-60 blocks until a connection is made. When a connection is made,
anew thread to handle the new connection is spawned, which then callsdo_server_loop with
the connected socket's B10. The function do_server_loop simply reads data from the socket
and writes it back out to stdout. If any errors occur here, the function returns and the thread is
terminated. As a note, we call ERR_remove_state on line 33 to make sure any memory used by
the error queue for the thread is freed.

Example 5-4. The server application

1 #include "‘common._h""
2
3 void do_server_loop(BIO *conn)
4 {
5 int err, nread;
6 char buf[80];
b
8 do
9 {
10 for (nread = 0; nread < sizeof(buf); nread += err)
11 {
12 err = BI0_read(conn, buf + nread, sizeof(buf) -
nread);
13 if (err <= 0)
14 break;
15 3}

96

16 fwrite(buf, 1, nread, stdout);

17 3}

18 while (err > 0);

19 3}

20

21 void THREAD CC server_thread(void *arg)

22 {

23 BIO *client = (BIO *)arg;

24

25 #ifndef WIN32

26 pthread_detach(pthread_self());

27 #endif

28 fprintf(stderr, ""Connection opened.\n");
29 do_server_loop(client);

30 fprintf(stderr, ""Connection closed.\n");
31

32 BIO free(client);

33 ERR_remove_state(0);

34 #ifdef WIN32

35 _endthread();

36 #endif

37 }

38

39 int main(int argc, char *argv[])

40 {

41 BIO *acc, *client;

42 THREAD_TYPE tid;

43

44 init_OpenSSL();

45

46 acc = BI10_new_accept(PORT);

47 if (lacc)

48 int_error("Error creating server socket');
49

50 if (BI10_do_accept(acc) <= 0)

51 int_error("Error binding server socket');
52

53 for (;3)

54

55 if (BI10 _do_accept(acc) <= 0)

56 int_error("Error accepting connection™);
57

58 client = BI0_pop(acc);

59 THREAD_CREATE(tid, server_thread, client);
60 }

61

62 BIO_ free(acc);

63 return O;

64 }

Now that we understand the sample application, we're ready to take the steps necessary to secure
the communications with SSL.

5.1.2 Step 1: SSL Version Selection and Certificate Preparation

In order for SSL connections to be secure, we must select a secure version of the protocol and
provide accurate certificate information for the peer to validate. Since thisis our first introduction
tothe SSL API, we will cover the background information about the structures and functions we
need to accomplish our task.

97

5.1.2.1 Background

We need to examine three relevant object types. SSL_METHOD, SSL_CTX, and SSL. An
SSL_METHOD represents an implementation of SSL functionality. In other words, it specifiesa
protocol version. OpenSSL provides populated SSL__METHOD objects and some accessor methods
for them. They arelisted in Table 5-1. The extent of our interaction with this type of object will be
to select the protocol version we wish to support by making a function call from the table.

Table 5-1. Functions to retrieve pointers to SSL_METHOD objects

Function Comments

SSLv2_method Returns a pointer to SSL_METHOD for generic SSL Version 2

SSLv2_client_method |Returnsapointer to SSL_METHOD for an SSL Version 2 client

SsLv2_server_method |Returnsapointer to SSL_METHOD for an SSL Version 2 server

\SSLv3_method \Returns apointer to SSL_METHOD for generic SSL Version 3

SSLv3 client_method Returns a pointer to SSL_METHOD for an SSL Version 3 client

SSLv3_server_method Returns a pointer to SSL_METHOD for an SSL Version 3 server

TLSv1_method Returns a pointer to SSL_METHOD for generic TLS Version 1

TLSv1l_client_method |Returnsapointer to SSL_METHOD for aTLS Version 1 client

TLSv1l_server_method |Returnsapointer to SSL_METHOD for aTLS Version 1 server

\SSLv23_method \Returns apointer to SSL_METHOD for generic SSL/TLS

SSLv23_client_method |Returnsa pointer to SSL_METHOD for an SSL/TLS client

SSLv23_server_method |Returnsapointer to SSL_METHOD for an SSL/TLS server

OpenSSL provides implementations for SSL Version 2, SSL Version 3, and TLS Version 1. Also,
some SSLv23 functions don't indicate a specific protocol version but rather a compatibility mode.
In such amode, a connection will report that it can handle any of the three SSL/TLS protocol
versions. To reiterate, applications should not use SSLv2, since this protocol is known to have
security flaws. Using an SSL_METHOD object retrieved by one of the functionsin Table 5-1, we
create an SSL_CTX object.

nd How would we create an application that supports both SSLv3 and

s TLSv1? If we areto create a server that needs to communicate with both

' 4= 59| v3and TLSvI clients, using either SSLv3_method or

" TLSv1l_method will prevent one kind of client from connecting properly.

Since we do not want to use SSL Version 2 (it isinsecure), it would seem
that the compatibility implementation SSLv23 method isalso not an
option. Thisisn't actually true. We can use the compatibility mode and set
an option in the SSL_CTX object to have it remove SSLv2 from the
acceptable protocols. The function to do thisis
SSL_CTX_set_options, and the relevant details for doing thisarein
Step 3.

An SSL_CTX object will be afactory for producing SSL connection objects. This context allows
us to set connection configuration parameters before the connection is made, such as protocol
version, certificate information, and verification requirements. It is easiest to think of SSL_CTX
objects as the containers for default values for the SSL connections to be made by a program.
Objects of thistype are created with the function SSL_CTX_new. This function takes only one
argument, generally supplied from the return value of one of the functionsin Table 5-1.

98

In general, an application will create just one SSL_CTX object for all of the connections it makes.
From this SSL_CTX object, an SSL type object can be created with the SSL_new function. This
function causes the newly created SSL object to inherit al of the parameters set forth in the
context. Even though most of the settings are copied to the SSL object on invocation of SSL_new,
the order in which calls are made to OpenSSL functions can cause unexpected behavior if we're
not careful.

Applications should set up an SSL_CTX completely, with al connection
*@ invariant settings, before creating SSL objects fromit. In other words,
after calling SSL_new with a particular context object, no more cals
operating on that SSL_ CTX object should be made until al produced SSL
objects are no longer in use. The reason is simple. Modifying a context
can sometimes affect the SSL connections that have already been created
(i.e.., afunction we examine later,
SSL_CTX_set_default_passwd_ch, changes the callback in the
context and in all connections that were already created from this
context). To avoid any unpredictability, never modify the context after
connection creation has begun. If there are any connection-specific
parameters that we do need to set, most SSL_CTX functions have SSL
counterparts that act on SSL-type objects.

5.1.2.2 Certificate preparation

The SSL protocol usually requires the server to present a certificate. The certificate contains
credentials that the client may look at to determine if the server is authentic and can be trusted. As
we know, a peer validates a certificate through verification of its chain of signers. Thus, to
implement an SSL server correctly, we must provide certificate and chain information to the peer.
The SSL protocol also allows the client to optionally present certificate information so that the
server may authenticate it.

There are, in fact, ways of using SSL to create anonymous connectionsin
s which neither the server nor client presents a certificate. These are done
ul . » by using the Diffie-Hellman key-agreement protocol and setting the SSL

* cipher suite to include the anonymous DH algorithm. Thisis discussed
further Section 5.1.4.3 below.

In general, server applications should always provide certificates to peers, and clients can do so
optionally. The purpose and the desired security of the application should dictate whether client
certificates are used. For instance, a server may request a client certificate, and if our client does
not have one to present, we may not be able to establish a secure connection. Thus, it's agood idea
to implement client certificatesif it makes sense to do so. On the other hand, server certificates are
usually required, and, unless our goal isto create a completely nonauthenticated connection, we
should implement them.

OpenSSL presents the client certificate to the server during handshakes, aslong aswe assign a
certificate to the client and the server asksfor it. Thisis actually asmall violation of the TLS
protocol. The protocol calls for the server to present alist of valid CAs, and the client should send
acertificate only if it matches. In practice, this infraction of the standard should not affect
anything, but the behavior may be fixed in future versions of OpenSSL.

The SSL API has severa ways to incorporate certificate information into an SSL_CTX object. The
functiontouseisSSL_CTX_use_certificate_chain_file. It loadsthe chain of
certificates from the filename specified by the second argument. The file should contain the

929

certificate chain in order, starting with the certificate for the application and ending with the root
CA certificate. Each of these entries must be in PEM format.

In addition to loading the certificate chain, the SSL_CTX object must have the application's private
key. This key must correspond to the public key embedded within the certificate. The easiest way
that we can supply this key to the context isthrough the SSL_CTX_use_PrivateKey_ file
function. The second argument specifies the filename, and the third specifies the type of encoding.
Thetypeis specified by using a defined name—either SSL_FILETYPE_PEM or
SSL_FILETYPE_ASNL1. It bears mentioning that this private key must be kept secret for the
application to remain secure. Therefore, using an encrypted PEM format for on-disk storageis
recommended; using triple DES in CBC mode isagood choice. The SSL_CTX will fail to
incorporate an encrypted private key correctly unless the correct passphrase is supplied.

OpenSSL collects passphrases through a callback function. The default callback prompts the user
on the terminal. For some applications, the default will not be acceptable. The function
SSL_CTX_set_default_passwd_cb alowsusto set the callback to something more
appropriate for the application. The assigned function isinvoked during the call to
SSL_CTX_use_PrivateKey_ Tfile if theindicated file contains an encrypted key. Therefore,
the callback should be set before making that cal. In fact, the certificates in our chain could be
encrypted even though there is nothing secret about them, and our callback function would be
invoked to gather the passphrase. More accurately, we could state that the passphrase function is
called any time a piece of encrypted information is loaded as a parameter to the SSL_CTX.

The callback function's obligation is to copy the passphrase into the buffer that is supplied to it
when it iscalled. The callback function is called with four arguments.

int passwd_cb(char * buf, int size, int flag, void *userdata);
buf
The buffer that the passphrase should be copied into. The buffer must be NULL terminated.

Size

The size of the buffer in bytes; includes space for the NULL terminating character.
flag

Passed as either zero or nonzero. When the flag is nonzero, this passphrase will be used to
perform encryption; otherwise, it will be used to perform decryption.

userdata

Application-specific data; SSL_CTX_set_default_passwd_cb_userdataisused
to set this data. Whatever datais set by the application is passed to the callback function
untouched by OpenSSL.

There are two approaches to implementing the passphrase callback. The first method is simply to
have the callback prompt the user, copy the collected passphrase to the buffer, and return. This
method is viable for applications that need to decrypt a key only once, commonly on application
startup. The second way to implement the callback is for the application to prompt the user for a
passphrase on startup and store the collected information in a buffer. The passphrase can be added
tothe SSL_CTX as user dataviathe function
SSL_CTX_set_default_passwd_cb_userdata. With this method, the callback itself only

100

needs to copy the data from the fourth parameter to the first. This method is viable for applications
that need to decrypt keys during normal operation in which constant user prompting is a nuisance.

o An unlimited number of PEM-encoded items can be stored in afile, but
s only one DER item may be stored in afile. Also, different types of PEM
ul . ; items may be stored within asingle file. As aresult, if the private key is

* kept in PEM encoding, it can be appended to the certificate chain file, and
the same filename can be used for the callsto
SSL_CTX use_certificate chain_file ad
SSL_CTX_use_PrivateKey_ Tfile. Thistrick isused in Example 5-5.

PEM and DER encodings are discussed in Chapter 8.

At this stage, we will limit our discussion to the process of providing certificate information to the
peer, rather than discussing the processes of validation. The validation problem will be discussed
in Step 2.

5.1.2.3 Our example extended

Using the same example applications that we've aready provided, let's modify them with what
we've learned about making SSL connections. Keep in mind that this example is not yet secure. It
does not validate anything about the peer to which it connects; it merely provides the
authentication information. The new version of our client in clientl.c is shown in Example 5-5.
The bold lines are those that we have added or changed.

Example 5-5. clientl.c

1 #include "‘common._h""
2
3 #define CERTFILE "client.pem”
4 SSL_CTX *setup_client_ctx(void)
5 {
6 SSL_CTX *ctx;
he
8 ctx = SSL_CTX new(SSLv23 method());
9 iT (SSL_CTX use_certificate_chain_file(ctx, CERTFILE) != 1)
10 int_error("Error loading certificate from file™);
11 if (SSL_CTX use PrivateKey file(ctx, CERTFILE,
SSL_FILETYPE_PEM) = 1)

12 int_error("Error loading private key from file™);

13 return ctx;

14 3}

15

16 int do_client loop(SSL *ssl)

17 {

18 int err, nwritten;

19 char buf[80];

20

21 for (;3;)

22

23 if (Ifgets(buf, sizeof(buf), stdin))

24 break;

25 for (nwritten = 0; nwritten < sizeof(buf); nwritten +=
err)

26 {

27 err = SSL_write(ssl, buf + nwritten, strlen(buf) -
nwritten);

28 if (err <= 0)

101

29 return O;

30 }

31 }

32 return 1;

33 }

34

35 int main(int argc, char *argv[])

36

37 BIO *conn;

38 SSL *ssl;

39 SSL_CTX *ctx;

40

41 init_OpenSSL();

42 seed_prngQ);

43

44 ctx = setup_client_ctx();

45

46 conn = BIO_new_connect(SERVER *':* PORT);

47 if (Iconn)

48 int_error("Error creating connection BIO™);
49

50 if (BI10_do_connect(conn) <= 0)

51 int_error(Error connecting to remote machine™);
52

53 if (I(ssl = SSL _new(ctx)))

54 int_error("Error creating an SSL context');
55 SSL_set_bio(ssl, conn, conn);

56 if (SSL_connect(ssl) <= 0)

57 int_error("Error connecting SSL object'™);
58

59 fprintf(stderr, "SSL Connection opened\n');
60 if (do_client_loop(ssl))

61 SSL_shutdown(ssl);

62 else

63 SSL_clear(ssl);

64 fprintf(stderr, "SSL Connection closed\n");
65

66 SSL_free(ssl);

67 SSL_CTX_free(ctx);

68 return O;

69 3}

In this example, we make a call to the function seed_prng. Asits name suggests, this function
seeds the OpenSSL PRNG. Itsimplementation is left out; see Chapter 4 for detailson an
appropriate implementation. It is very important to maintaining the security of SSL for the PRNG
to be properly seeded, so this function should never be left out in real-world applications.

The function setup_client_ctx performs the actions as discussed earlier to provide certificate
data to the server properly. In this setup process, we leave out any callsto
SSL_CTX_set_default_passwd_cb since the default OpenSSL passphrase callback is
acceptable for our purposes. The only other point of interest isthe error checking performed. This
example prints errors and exits if anything goes wrong; a more robust error handling technique
was left out for clarity. The sidebar contains more information about the contents of thefile
client.pem.

Generating the Files Needed by the Examples

Our example proarams refer to severa filenames that contain PEM-encoded certificates

102

and keys. In this sidebar, we'll describe the process of creating each of them. There are
two certificates used, the files server.pem and client.pem. In addition, we have a trusted
root certificate in the file root.pem. As the example develops, we will also require two
other filesthat will contain DH parameters (dh512.pem and dh1024.pem). All of the
files were generated using the command-line tool described in Chapter 2.

Before moving into the details of the commands themselves, we should first describe
our certificate hierarchy. Aswe've stated, thereisjust one trusted certificate: the root
CA's. This certificate is self-signed, as are all root CA certificates. Thisroot CA
represents the CA for acompany. The qualifications for peer certificate validation for
both our example client and server will be simply to verify that the other has been
signed by the root CA. To demonstrate how a chain can grow and still be verifiable, we
will create a server CA. This CA will be signed by the root CA and it, in turn, will be
used to sign all server identity certificates. The client certificates, on the other hand, will
be signed directly by the root CA. Naothing prevents us from making the hierarchy
arbitrarily complex, but we've left just one intermediate CA to demonstrate how to do it.
Creating more intermediates would follow the same pattern, as we'll see.

The first command shown in each example below generates a certificate signing request.
In creating the request, the command-line utility will prompt the user for the contents of
the data fields that will be put in the request. The values we typed in are printed when
the last command in each example runs. The values that aren't seen are those of the
subjectAltName field. We embed the server and client fully qualified domain name
(FQDN) in the respective certificate's commonName field, and also in the dNSName
field of the subjectAltName. Thelatter is done by changing the configuration file to
include "subjectAltName = DNS:FQDN" under the certificate extensions section (the
"usr_cert" section); the configuration file is the default aside from this change.

To create the root CA:

$ openssl req -newkey rsa:1024 -shal -keyout rootkey.pem -out
rootreq.pem

$ openssl x509 -req -in rootreqg.pem -shal -extfile
myopenssl._.cnf \

> -—extensions v3_ca -signkey rootkey.pem -out rootcert.pem

$ cat rootcert.pem rootkey.pem > root.pem

$ openssl x509 -subject -issuer -noout -in root.pem

subject= /C=US/ST=VA/L=Fairfax/0=Zork.org/CN=Root CA

issuer= /C=US/ST=VA/L=Fairfax/0=Zork.org/CN=Root CA

To create the server CA and sign it with the root CA:

$ openssl req -newkey rsa:1024 -shal -keyout serverCAkey.pem -
out \

> serverCAreq.pem

$ openssl x509 -req -in serverCAreq.pem -shal -extfile \
> myopenssl.cnf -extensions v3_ca -CA root.pem -CAkey
root.pem \

> -CAcreateserial -out serverCAcert.pem

$ cat serverCAcert.pem serverCAkey.pem rootcert.pem >
serverCA.pem

$ openssl x509 -subject -issuer -noout -in serverCA.pem
subject= /C=US/ST=VA/L=Fairfax/0=Zork.org/0U=Server
Division/CN=Server CA

issuer= /C=US/ST=VA/L=Fairfax/0=Zork.org/CN=Root CA

103

To create the server's certificate and sign it with the Server CA:

$ openssl req -newkey rsa:1024 -shal -keyout serverkey.pem -
out \

> serverreq.pem

$ openssl x509 -req -in serverreq.pem -shal -extfile
myopenssl._.cnf \

> -extensions usr_cert -CA serverCA.pem -CAkey serverCA.pem \
> -CAcreateserial -out servercert.pem

$ cat servercert.pem serverkey.pem serverCAcert.pem
rootcert.pem > \

> server.pem

$ openssl x509 -subject -issuer -noout -in server.pem
subject= /C=US/ST=VA/L=Fairfax/0=Zork.org/CN=splat.zork.org
issuer= /C=US/ST=VA/L=Fairfax/0=Zork.org/0U=Server
Division/CN=Server CA

To create the client certificate and sign it with the Root CA

$ openssl req -newkey rsa:1024 -shal -keyout clientkey.pem -
out \

> clientreq.pem

$ openssl x509 -req -in clientreq.pem -shal -extfile
myopenssl.cnf \

> -—extensions usr_cert -CA root.pem -CAkey root.pem \

> -CAcreateserial -out clientcert._pem

$ cat clientcert.pem clientkey.pem rootcert.pem > client.pem
$ openssl x509 -subject -issuer -noout -in client.pem
subject= /C=US/ST=VA/L=Fairfax/0=Zork.org/CN=shell .zork.org
issuer= /C=US/ST=VA/L=Fairfax/0=Zork.org/CN=Root CA

To create dh512.pem and dh1024.pem:

$ openssl dhparam -check -text -5 512 -out dh512.pem
$ openssl dhparam -check -text -5 1024 -out dh1024.pem

Lines 54-58 create the SSL object and connect it. There are some functions used here that we have
not yet discussed. The call to SSL_new creates our SSL object and copies the settings we've
already placed in the SSL_CTX to the newly created object. At this point, the SSL object is till in
ageneric state. In other words, it could play the role of the server or the client in an SSL
handshake.

Ancther factor left unspecified is the path of communications for the SSL object. Since SSL
objects are flexible in the sense that they can perform SSL functions on top of many different
types of 1/0 methods, we must specify aB 10 for our object to use. Line 56 does this through a call
to SSL_set_bio. Thisfunction is passed our connection B10 twice since SSL objects are robust
enough to operate on two one-way |/O typesinstead of requiring a single full-duplex 1/0 method.
Basically, we must specify the BIO to use for writing separately from the BIO used for reading. In
this case, they are the same object, since sockets allow two-way communication.

The last unfamiliar function used hereis SSL_connect. Thisfunction causes the SSL object to
initiate the protocol using the underlying I/O. In other words, it begins the SSL handshake with the
application on the other end of the underlying B10. This function will return an error for problems
such as incompatible protocol versions.

104

Thedo_client_loop functionisamost identical to that of our non-SSL client. We've simply
changed the parameter to an SSL object instead of aB10, and the BIO_wr i te becomes an
SSL_write. In addition, we've added a return value to this function. If no errors occur, we can
call SSL_shutdown to stop the SSL connection; otherwise, we call SSL_clear. Thisisdoneto
force OpenSSL to remove any session with errors from the session cache. We will ook at session
caching in more detail later in this chapter, but for now, it isworth noting that session caching is
effectively disabled in the examples we've provided so far.

The last point to make about this exampleis that we removed the call to BIO_free. Thisisdone
because SSL_free automatically freesthe SSL object's underlying B10sfor us.

Example 5-6 has the contents of server1l.c, the file containing the implementation of our SSL-
enabled server. Again, it isn't yet secure since it validates nothing about the peer; it simply
provides its certificate information to the client.

Example 5-6. serverl.c

1 #include "‘common._h""
2
3 #define CERTFILE 'server.pem"”
4 SSL_CTX *setup_server_ctx(void)
5 {
6 SSL_CTX *ctx;
7
8 ctx = SSL_CTX new(SSLv23 method());
9 iT (SSL_CTX use_certificate_chain_file(ctx, CERTFILE) != 1)
10 int_error("Error loading certificate from file™);
11 if (SSL_CTX use PrivateKey file(ctx, CERTFILE,
SSL_FILETYPE_PEM) 1= 1)

12 int_error("Error loading private key from file™);
13 return ctx;

14 3}

15

16 int do_server_loop(SSL *ssl)

17 {

18 int err, nread;

19 char buf[80];

20

21 do

22 {

23 for (nread = 0; nread < sizeof(buf); nread += err)
24 {

25 err = SSL_read(ssl, buf + nread, sizeof(buf) -
nread);

26 if (err <= 0)

27 break;

28 }

29 fwrite(buf, 1, nread, stdout);

30 }

31 while (err > 0);

32 return (SSL_get_shutdown(ssl) & SSL_RECEIVED SHUTDOWN) ? 1 :
0;

33 }

34

35 void THREAD_CC server_thread(void *arg)

36 {

37 SSL *ssl = (SSL *)arg;

38

39 #ifndef WIN32

105

40 pthread_detach(pthread_self());

41 #endif

42 it (SSL_accept(ssl) <= 0)

43 int_error("Error accepting SSL connection'™);
44 fprintf(stderr, "SSL Connection opened\n');
45 if (do_server_loop(ssl))

46 SSL_shutdown(ssl);

47 else

48 SSL_clear(ssl);

49 fprintf(stderr, "SSL Connection closed\n");
50 SSL_free(ssl);

51

52 ERR_remove_state(0);

53

54 #ifdef WIN32

55 _endthread();

56 #endif

57 }

58

59 int main(int argc, char *argv[])

60 {

61 BIO *acc, *client;

62 SSL *ssl;

63 SSL_CTX *ctx;

64 THREAD_TYPE tid;

65

66 init OpenSSLQ);

67 seed_prngQ);

68

69 ctx = setup_server_ctx();

70

71 acc = BI0_new_accept(PORT);

72 if (lacc)

73 int_error("Error creating server socket');
74

75 if (BI10_do_accept(acc) <= 0)

76 int_error("Error binding server socket');
77

78 for (;3;)

79 {

80 if (BI10 _do_accept(acc) <= 0)

81 int_error("Error accepting connection™);
82

83 client = BI10_pop(acc);

84 if (I(ssl = SSL_new(ctx)))

85 int_error("Error creating SSL context™);
86

87 SSL_set_bio(ssl, client, client);

88 THREAD_CREATE(tid, server_thread, ssl);
89 }

90

91 SSL_CTX_free(ctx);

92 BIO_free(acc);

93 return O;

94 3}

After looking at the new client program, the modifications to the server should be clear. Since this
isthe server side of the SSL negotiation, a different function call is made: SSL_accept. The
SSL_accept function initiates communication on the underlying 1/O layer to perform the SSL
handshake.

106

Inthedo_server_loop function, we useacall to SSL_get_shutdown to check into the error
status of the SSL object. This essentially allows us to differentiate normal client terminations from
actual errors. If the SSL_RECEIVED_SHUTDOWN flag is set, we know the session hasn't had an
error and it's safe to cache. In other words, we can call SSL_shutdown rather than simply clear
the connection. The remainder of the modifications to the server program parallel those made to
the client.

In summary, we've taken our applications and built them to the point of creating the objects
necessary for SSL connections. Each application does provide its certificate data to the peers to
which it connects, but they do not verify the certificates they receive. We will build further in the
next step and learn how to validate peer certificates.

5.1.3 Step 2: Peer Authentication

The security of an SSL-enabled program is compromised by failure to verify peer certificates
properly. In this step, we'll look into the various API calls that deal with trusted certificates,
certificate chain verification, CRL usage, and post-connection verification.

5.1.3.1 Background

Certificate verification can often be confusing, so welll discuss the theory before delving into the
details. Aswe aready know, a certificate is a set of credentials that has been cryptographically
signed by a CA. Each certificate, including a CA certificate, contains a public key with a private
key counterpart held in secret by the certificate owner. Moving forward, the process of signing a
certificate involves using the private key of a CA to sign the public key in the new certificate.
Thus, it should be clear that the process of verification will involve using the public key in a CA
certificate to verify the signature on a certificate.

Aside from using a CA to create an entity certificate, a CA may also sign a certificate and give it
permissions, via X.509v3 extensions, to act as a CA itself. Generally, this procedure allows for a
CA to permit another certificate to act as a CA for a specialized purpose. Through this mechanism,
we become aware of certificate hierarchies, i.e., a certificate tree. Understanding this, we can see
that a single entity certificate may have alist of signing certificates leading up to the original, self-
signed root certificate. Thislist of certificates, each signed by the next, is called a certificate chain.

Jumping back to a simple example of aroot CA signing asingle entity certificate, any party may
verify the entity certificate by checking the signature on it, presuming it trusts the root CA. The
process of validating an entity certificate is that ssmple. Extending thisto a certificate chain, we
must validate each subsequent signature in the list until we reach atrusted CA certificate or until
we reach the end of thelist. If we hit a CA we trust and the signatures are al valid, our entity
certificateis verified; if we find an invalid signature or reach the end of the chain without reaching
atrusted certificate, the entity certificate is not verified.

5.1.3.2 Incorporating trusted certificates

Aswe previously discussed, verifying a certificate's authenticity requires that the verifying agent
have alist of CAsthat it trusts. Therefore, we must provide our application with such alist in
order for it to verify the peer. We will start our discussion of peer verification by first
concentrating on accomplishing this task.

Loading trusted CA certificates into our application is manifested as additional setup to the
SSL_CTX object. Thefunction SSL_CTX_load_verify_locations peformsthistask. This
function will load certificates from files, directories, or both.

int SSL_CTX_ load _verify locations(SSL_CTX *ctx, const char *CAfile,

107

const char *CApath);

ctx
The SSL context object that trusted CA certificates will be loaded into.

CAfile
The name of afile containing CA certificatesin PEM format. More than one CA
certificate may be present in the file.

CApath

The name of adirectory containing CA certificates. Each file in the directory must
contain only asingle CA certificate, and the files must be named by the subject name's
hash and an extension of ".0".

Wecancal SSL_CTX_load_verify_ locations with either the second or the third
arguments specified as NULL, but not both. The behavior of this function isto perform the loading
for the non-NULL arguments. An important difference between file and directory storage is the
time when the certificates get loaded. With aflat file, thefileis parsed and certificates |oaded
during thecall to SSL_CTX_load_verify_locations. However, with adirectory, certificates
are read only when needed, i.e., during the verification phase that occurs during the SSL
handshake.

OpenSSL also has default CA certificate locations. When building the library, these paths are
hardcoded into the library based on the parameters that are used to build it. In genera, thereisan
OpenSSL directory (commonly /usr/local/openssl on Unix systems). The default certificatefileis
named cert.pem, and it livesin this OpenSSL directory. Likewise, the default certificate directory
is named certs, and it too lives in the OpenSSL directory. These default locations provide a
convenient place to store system-wide CA certificates that all of the OpenSSL-based applications
running on the machine require. Using the default files, we will not need to keep separate copies
of common certificates for each application. The function

SSL_CTX_set_default_verify_ paths loadsthese default locationsinto our SSL_CTX
object. For calls to this function, the same rules for determining when the CA certificates actually
get loaded apply aswith acall to SSL_CTX_ load_verify_ locations.

When we load a certificate location into an SSL_CTX object, we are
*@ making the statement that we trust those certificates. It isimportant to
understand that if our application runs on a multiuser system, any user
with permissions to write to the certificate locations that we load can
subvert the security of our application. Thisis especially important when
electing to load the default verify locations. For instance, if our
application loads these defaults, a user with the correct permissions could
dlipinanew CA certificate, thus connecting our application with peers
presenting certificates signed by this rogue CA certificate.

Using these two functions, we can load trusted CA certificates into our SSL_CTX. Even though
they are loaded, the certificates are still not used to verify the peer. We will explore the details of
enabling thisin the next section.

5.1.3.3 Certificate verification

Certificate verification entail s checking the cryptographic signatures on a certificate to be sure an
entity we trust has signed that certificate. It aso involves checking the certificate's notBefore

108

and notAfter dates, trust settings, purpose, and revocation status. Verification of a certificate
takes place during the SSL handshake (during the call to SSL_connect or SSL_accept,
depending on whether the SSL object isaclient or a server).

Once we've properly loaded trusted certificates into the SSL_CTX object, OpenSSL has a built-in
function to verify the peer's certificate chain automatically. The routine used to verify the
certificate chain could be changed from the default viaacall to
SSL_CTX_set_cert_verify_callback, but under amost all circumstances, thisis
undesirable since the default routine for signature verification is amply complete and robust.
Instead, the developer can specify adifferent callback that filters the return status of the default
verification and returns the new verification status. The function to perform thistask is
SSL_CTX_set_verify.

Aside from assigning afilter verify callback, this function's primary purpose is to assign the type
of verification our SSL_CTX object's connections will perform. More accurately, we can useit to
control how certificates and requests are handled during a handshake. The second argument to this
function is a set of flagsthat determine this. Four flags are defined with names that can be
combined with alogical OR operation. Depending on whether the context is being used in client
mode or server mode, these flags can have different meanings.

SSL_VERIFY_NONE

When the context is being used in server mode, no request for a certificate will be sent to
the client, and the client should not send a certificate. When the context is being used in
client mode, any certificate received from the server will be verified, but failure will not
terminate the handshake. Do not combine this flag with any others; the others will take
precedence over this one. This flag should only be used by itself.

SSL_VERIFY_PEER

When the context is being used in server mode, areguest for a certificate will be sent to
the client. The client may opt to ignore the request, but if a certificate is sent back, it will
be verified. If the verification fails, the handshake will be terminated immediately.

When the context is being used in client mode, if the server sends a certificate, it will be
verified. If the verification fails, the handshake will be terminated immediately. The only
time that a server would not send a certificate is when an anonymous cipher isin use.
Anonymous ciphers are disabled by default. Any other flags combined with thisonein
client mode are ignored.

SSL_VERIFY_FAIL_IF_NO_PEER_CERT

If the context is not being used in server mode or if SSL_VERIFY_PEER isnot set, this
flag isignored. Use of this flag will cause the handshake to terminate immediately if no
certificate is provided by the client.

SSL_VERIFY_CLIENT_ONCE

If the context is not being used in server mode or if SSL_VERIFY_PEER isnot set, this
flag isignored. Use of thisflag will prevent the server from requesting a certificate from
the client in the case of arenegotiation. A certificate will still be requested during the
initial handshake.

Thethird argument to SSL_CTX_set_verify isapointer to the verification filter callback.
Since theinternal verification routine is called for each level of the peer certificate chain, our filter

109

routine will be called just after each step. This function's first argument is nonzero if the
verification succeeded, and zero otherwise. The second argument isan X509 STORE_CTX object.
This type of object contains the information necessary to verify a certificate. The object holds the
current certificate being verified and the verification result. The return value from the function
should be either zero or nonzero to indicate whether the certificate should be considered valid or
not.

Asin most of the callbacks used with OpenSSL, there is a default supplied that simply returns the
value of the first argument. When implementing our own version of this function, we need to
maintain this behavior. If we return nonzero when the first parameter is actually zero, an
unverified client certificate will be accepted as a verified one. Likewise, the reverse would cause a
valid certificate to fail verification. At this point, it may seem asif there is no real purpose to
implementing our own version, but thisisn't accurate. The reason we should supply our own is so
that more detailed information about the results of verification can be abtained, especialy when
verification fails. For instance, if a peer presents an expired certificate and we do not implement a
verify callback to check status, then we find out only that the call to SSL_connect or
SSL_accept faled because of "handshake failure.” Example 5-7 shows an implementation for
this callback that we will use in our example applications. To useit in our examples, it should be
implemented in common.c and prototyped in common.h.

Example 5-7. A verify callback (implemented in common.c and prototyped in
common.h)

int verify _callback(int ok, X509 STORE_CTX *store)

{
char data[256];
it (Tok)
{
X509 *cert = X509 _STORE_CTX_get current_cert(store);
int depth = X509 STORE_CTX_get _error_depth(store);
int err = X509 STORE _CTX get error(store);
fprintf(stderr, "-Error with certificate at depth: %i\n",
depth);
X509 NAME_oneline(X509_get issuer_name(cert), data, 256);
fprintf(stderr, " 1issuer = %s\n", data);
X509 NAME_oneline(X509 get subject name(cert), data, 256);
fprintf(stderr, ™ subject = %s\n", data);
fprintf(stderr, ™ err %i:%s\n", err,
X509 verify_cert_error_string(err));
}
return ok;
}

This callback employs several functions from the X509 family of functions to report the detailed
error information.

Thecall to SSL_CTX_set_veriTfy isdone before any SSL objects are created from the context.
We should also make acall to SSL_CTX_set_verify_ depth. Thisfunction sets the maximum
allowable depth for peer certificates. In other words, it limits the number of certificates that we are
willing to verify in order to ensure the chain is trusted. For example, if the depth was set to four
and six certificates are present in the chain to reach the trusted certificate, the verification would
fail because the required depth would be too great. For nearly all applications, the default depth of
nine is more than high enough to ensure that the peer certificate will not fail due to too large of a
certificate chain. On the other hand, if we know that our application will be used only with peers

110

presenting certificates of some smaller chain length, it is agood ideato set the value to exclude
certificates composed of longer chains from being verified successfully. Setting the depth to zero
allows chains of unlimited length to be used.

There is aknown security vulnerability in

”@ SSL_CTX_set_verify_depth inversionsof OpenSSL prior to 0.9.6.
The problem stemmed from the fact that the internal verification routine
did not properly check extensions on peer certificate chains; it approved
certificate chains that contained non-CA certificates as long as they led to
atrusted root CA. Thus, using any verification depth greater than one | eft
the application susceptible to attack from anyone signed by the trusted
root CA. Sincethis problem has been fixed in newer versions of OpenSSL
by checking the X509v3 fields regarding CA authorization, this
vulnerability should be of only academic interest.

5.1.3.4 Incorporating certificate revocation lists

A large problem with SSL security is the availability and usage of certificate revocation lists.
Since certificates can be revoked by the issuing CA, we must somehow account for thisin our
SSL implementation. To do this, an application must load CRL filesin order for the internal
verification process to ensure each certificate it verifiesis not revoked. Unfortunately, OpenSSL's
CRL functionality isincomplete in Version 0.9.6. The features necessary to utilize CRL
information will be complete in new versions starting with 0.9.7.

Because this functionality is not available at the time of writing, CRL usage will not be
incorporated in this example. However, we can tell you what you will need to do once newer
releases are made. Remember, it is paramount to include CRL checking when verifying
certificates. If any new version of OpenSSL is used when building applications, this step is
required for security.

The SSL interface itself does not support CRL incorporation directly; instead, we must use the
underlying X509 interface.

Thefunction SSL_CTX_get_cert_store retrievesthe internal X509_STORE object from the
SSL_CTX object. Operations on this store object allow usto perform avariety of tweaks on the
verification process. In fact, the functions SSL_CTX_load_verify locations and
SSL_CTX_set_default_paths cal functions against this same X509 STORE object to
perform their respective operations.

X509 STORE *SSL_CTX_get _cert_store(SSL_CTX *ctx);

All of the details for interacting with certificate stores to set further verification parameters or
incorporate CRL data are discussed in Chapter 10 with the verification of certificate chains. We
strongly recommend that devel opers implementing applications consult the verification processin
Chapter 10 that uses X509 _STORE abjects to learn the proper method of SSL certificate
verification against CRLs. The process involves adding the CRL filesto the X509_STORE viaa
file lookup method and then setting the store's flags to check certificates against the CRLSs.

5.1.3.5 Post-connection assertions
Essentially, SSL_CTX_set_verify and SSL_CTX_set_verify_depth areall we need to
use in order for OpenSSL to verify the peer certificate chain upon connection. Thereis more,

however. After connecting the SSL object, we need to assert that some assumed properties about
the connection are indeed true. OpenSSL provides several functions that allow usto create a post-

111

connection verification routine to make sure that we haven't been fooled by a malicious peer. This
post-connection verification routine is very important because it allows for much finer grained
control over the certificate that is presented by the peer, beyond the certificate verification that is
required by the SSL protocol proper.

Thefunction SSL_get_peer_certificate will return apointer to an X509 object that
contains the peer's certificate. While the handshake is complete and, presumably, the verification
completed correctly, we must still use this function. Consider the case in which the peer presents
no certificate when one is requested but not required. The certificate verification routines—both
the built-in and the filter—will not return errors since there was nothing wrong with the NULL
certificate. Thus, to prevent this condition, we must call this function and check that the return
valueisnot NULL. If this function returns a non-NULL value, the reference count of the return
object isincreased. In order to prevent memory leaks, we must call X509_free to decrement the
count after we're done using the object.

Our application will be vulnerable if we do not check the peer certificate beyond verification of
the chain. For example, let's say that we're making aweb browsing application. To keep it simple,
well alow just one trusted CA. When we do this, any SSL peer with a certificate signed by the
same CA will be verified correctly. Thisisn't secure. Nothing prevents an attacker from getting his
own certificate signed by the CA and then hijacking all your sessions. We thwart this kind of
masguerade by tying the certificate to some piece of information unique to the machine. For
purposes of SSL, this piece of information is the entity's fully qualified domain name (FQDN),
also called the DNS name.

The common practice with X.509v1 certificates was to put the FQDN in the certificate's
commonName field of the sub jectName field. This practice is no longer recommended for new
applications since X.509v3 alows certificate extensions to hold the FQDN as well as other
identifying information, such as IP address. The proper place for the FQDN isin the dNSName
field of the subjectAltName extension.

We use the function post_connection_check to perform these checks for us. We recommend
always checking for the dNSName field first, and if it isn't present, we can check the
commonName field. Checking the commonName field is strictly for backward compatibility, so if
thisisn't aconcern, it can safely be omitted. Our example function will check for the extension
first and then fall back to the commonName. One feature our example does omit is the optional
wildcard expansion. RFC 2818 specifies a paradigm for allowing FQDNs in certificates to contain
wildcards. Implementing this functionality is simply atext-processing issue and is thus omitted for
clarity.

SSL_get_verify_resultisanother API function that we will employ in our post-connection
check. Thisfunction returns the error code last generated by the verification routines. If no error
has occurred, X509 V_OK isreturned. We should call this function and make sure the returned
value equals X509 _V_OK. When browsing the example application, it is obvious that robust error
handling has been left out for clarity. For example, the programs simply exit when an error occurs.
In most cases, we will want to do something better to handle errorsin some application-specific
way. Checking the verify result is aways a good idea. It makes an assertion that no matter what
error handling occurred up to this point, if the result isn't OK now, we should disconnect.

Example 5-8 shows afunction that performs the checks that we've just described. In the example,
well check to be sure that the certificate contains the FQDN of the peer to which we expect to be
connecting. For the client, we'll want to make sure that the server presents a certificate that
contains the FQDN of the server's address. Likewise, for the server, well want to make sure that
the client presents a certificate that contains the FQDN of the client's address. In this case, our
checking of the client certificate will be very strict because we'll be expecting the client to be

112

using a specific FQDN, and we'll allow only that one. For the purposes of our example client and
server, this function should appear in common.c and be prototyped in common.h.

Example 5-8. A function to do post-connection assertions (implemented in
common.c and prototyped in common.h)

long post_connection_check(SSL *ssl, char *host)

{
X509 *cert;
X509 _NAME *subj ;
char data[256];
int extcount;
int ok = 0;

/* Checking the return from SSL_get peer_certificate here is not
* strictly necessary. With our example programs, it is not
* possible for it to return NULL. However, it is good form to
* check the return since it can return NULL if the examples are
* modified to enable anonymous ciphers or for the server to not
* require a client certificate.

if (I(cert = SSL_get peer_certificate(ssl)) || 'host)
goto err_occured;
if ((extcount = X509 get ext _count(cert)) > 0)

{

int 1;

for (i = 0; 1 < extcount; i++)

{

char *extstr;
X509 EXTENSION *ext;

ext = X509 get ext(cert, i);
extstr =
OBJ_nid2sn(0OBJ_obj2nid(X509_EXTENSION_get_object(ext)));

if (Istrcmp(extstr, "subjectAltName'™))

int J;

unsigned char *data;
STACK_OF(CONF_VALUE) *val;
CONF_VALUE *nval ;

X509V3_EXT_METHOD *meth;

if (I(meth = X509V3_EXT_get(ext)))
break;
data = ext->value->data;

val = meth->i2v(meth,
meth->d2i (NULL, &data, ext->value-
>length), N
NULL);
for (J = 0; J < sk CONF_VALUE num(val); j++)
{
nval = sk CONF_VALUE value(val, j);
if (Istrcmp(nval->name, "DNS'™) && !strcmp(nval-

{

>value, host))

ok = 1;
break;

113

s
if (0k)
break;

}

iT (Jok && (subj = X509 get_subject name(cert)) &&
X509 NAME_get text by NID(subj, NID_commonName, data, 256) >

0)
{
data[255] = O;
if (strcasecmp(data, host) !'= 0)
goto err_occured;
}

X509 free(cert);
return SSL_get verify result(ssl);

err_occured:
it (cert)
X509 free(cert);
return X509 V_ERR_APPLICATION VERIFICATION;

}

At ahigh level, the function post_connection_check isimplemented as a wrapper around
SSL_get_verify_result, which performs our extra peer certificate checks. It uses the
reserved error code X509 V_ERR_APPLICATION_VERIFICATION to indicate errors where
thereis no peer certificate present or the certificate presented does not match the expected FQDN.
This function will return an error in the following circumstances:

e If no peer certificate isfound

e Ifitiscaled withaNULL second argument, i.e., if no FQDN is specified to compare
against

e |If the dNSName fields found (if any) do not match the host argument and the
commonName also doesn't match the host argument (if found)

e AnytimetheSSL_get_verify_result routine returns an error

Aslong as none of the above errors occurs, the value X509 _V_OK will be returned. Our example
programs are further extended below to employ this function.

Unfortunately, the code to check the dNSName is not very clear. We use the X509 functions to
access the extensions. We then iterate through the extensions and use the extension-specific
parsing routines to find all extensions that are subjectAltName fields. Sincea
subjectAltName field may itself contain severa fields, we must then iterate through those
fieldsto find any dNSName fields (they are tagged with the short name DNS). Sinceit israther
confusing, we will step through this function to explain its behavior. Having a stronger
understanding of some of the more advanced programming techniques presented in Chapter 10
will help demystify the implementation of this function.

At the onset, we simply get the peer certificate from the SSL object. If the function

X509 get_ext_count returns a positive number, we know there are some X.509v3 extensions
present in the peer's certificate. Given this, we iterate over the extensions to look for a
subjectAltName. Thefunction X509 get_ext will retrieve an extension for us based on the
counter. We also use the variable extstr to hold the extracted short name of the extension.
Unfortunately, we must use three functions to perform this task: the innermost extracts the

114

ASN1_OBJECT, the next fetches the N 1D, and the outermost function gets the short name as a
const char *fromtheNID.

Next, we check if the extension is what we're looking for by comparing the short name against the
string constant sub jectAltName. Once we're sureit's the right extension, we need to extract the
X509V3_EXT_METHOD object from the extension. This object is a container of extension-specific
functions for manipulating the data within the extension. We access the data we wish to
manipulate directly through the value member of the X509 EXTENSION structure. The d2i and
i 2v functions serve the purpose of converting the raw datain the subjectAltName to a stack of
CONF_VALUE objects. Thisis necessary to make it simple to iterate over the several kinds of
fieldsin the sub jectAltName so that we may find the dNSName field(s). We check each
member of this CONF_VALUE stack to seeif we have a match for the host string in adNSName
field. Keep in mind that the dNSName field is named DNS in the extension itself, sinceit's
referenced by its short name. As soon as we find a match, we stop the iterations over al the
extensions.

We only pursue checking the commonName of the certificate if no match isfound in adNSName
field. If wefail to find an FQDN that matches the host argument in either the dNSName field or
the commonName, we return the code for an application-specific error. In most real-world cases,
matching one specific FQDN is not desirable. Most often, a server would have alist (known asa
whitelist) that contains all of the acceptable FQDNSs for connecting clients. If the client's
certificate contains an FQDN that appears on thislist, the certificate is accepted; otherwise, it is
rejected.

5.1.3.6 Further extension of the examples

Employing what we know about verifying the authenticity of the peer, we can extend our example
applications to make them one step closer to being secure. For these examples, we've added the
functionsverify_callback and post_connection_check to common.c and their
prototypes to common.h.

The code for our revised client application, client2.c, is provided in Example 5-9. The lines that
differ from clientl.c are marked. Line 3 defines the file we use to store trusted certificates. We
define CADIR to be NULL on line 4 since we will use aflat fileinstead. Nothing prevents us from
specifying both afile and a directory; but in this case, we do not need a directory.

Example 5-9. client2.c

1 #include "‘common._h""

2

3 #define CAFILE "rootcert.pem”

4 #define CADIR NULL

5 #define CERTFILE "client.pem"

6 SSL _CTX *setup_client_ctx(void)

7 {

8 SSL_CTX *ctx;

9
10 ctx = SSL_CTX_ new(SSLv23 method());
11 if (SSL_CTX load_verify locations(ctx, CAFILE, CADIR) I= 1)
12 int_error("Error loading CA file and/or directory'™);
13 if (SSL_CTX_set default verify paths(ctx) = 1)
14 int_error("Error loading default CA file and/or

directory'™);

15 iT (SSL_CTX use certificate_chain_file(ctx, CERTFILE) I= 1)
16 int_error("Error loading certificate from file");

115

17

if (SSL_CTX use PrivateKey file(ctx, CERTFILE,

SSL_FILETYPE_PEM) 1= 1)

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

err)

34
35

int

{

int_error("Error loading private key from file™);
SSL_CTX_set_verify(ctx, SSL _VERIFY_PEER, verify_callback);
SSL_CTX_set _verify depth(ctx, 4);
return ctx;

do_client_loop(SSL *ssl)

int err, nwritten;
char buf[80];

for (;3)
{
if (Ifgets(buf, sizeof(buf), stdin))
break;
for (nwritten = 0; nwritten < sizeof(buf); nwritten +=

{

err = SSL_write(ssl, buf + nwritten, strlen(buf) -

nwritten);

36
37
38
39
40
41
42
43
a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

if (err <= 0)
return 0O;

}
}

return 1;

main(int argc, char *argv[])

BIO *conn;
SSL *ssl ;
SSL_CTX *ctx;
long err;

init OpenSSLQ);
seed_prngQ);

ctx = setup _client_ctx();

conn = BIO_new_connect(SERVER ":" PORT);
if (Iconn)
int_error(Error creating connection BIO™);

if (BI10_do_connect(conn) <= 0)
int_error("Error connecting to remote machine™);

ssl = SSL_new(ctx);
SSL_set_bio(ssl, conn, conn);
if (SSL_connect(ssl) <= 0)
int_error("Error connecting SSL object'™);
if ((err = post_connection_check(ssl, SERVER)) != X509 V 0OK)

fprintf(stderr, "-Error: peer certificate: %s\n",
X509 _verify_cert_error_string(err));
int_error("Error checking SSL object after connection™);
}
fprintf(stderr, "'SSL Connection opened\n™);
if (do_client_loop(ssl))
SSL_shutdown(ssl);

116

75 else

76 SSL_clear(ssl);

77 fprintf(stderr, "SSL Connection closed\n™);
78

79 SSL_free(ssl);

80 SSL_CTX_free(ctx);

81 return O;

82 }

To load the trusted certificates from root.pem, we call SSL_CTX_load_verify_locations

on line 11 and check for errors. Since we trust the users of the system on which this client will run,
wealsocal SSL_CTX_set_default_verify paths toload the built-in certificate stores.
Our example does not explicitly require the loading of the default locations; it isincluded for
illustration. It is good design practice to load these defaults only when the application will run on a
trusted system and when the application itself needs to incorporate these extra certificates.

After loading the trusted certificates, we set the verification modeto SSL_VERIFY_PEER and
assign the callback (line 19). When implementing SSL clients, the verification mode should
alwaysinclude SSL_VERIFY_PEER. Without this, we could never tell if the server we connect
with is properly authenticated. As we discussed in the section above, the verify_cal Iback
function simply reports errors in more detail and does not change the behavior of the internal
verification process. The following line, line 20, sets the maximum depth for verification to four.
For this client example, four levels of verification ought to be plenty because our certificate
hierarchy is not too complex. Given the details from the previous sidebar describing our example
PKI1, the minimum depth we can assign to our client is two, since the server's certificate is signed
by the server CA, which, in turn, is signed by the root CA that we trust.

The last major change to this version of the client isin lines 66-71. These lines use the
post_connection_check function that we developed in Example 5-8. This call asserts that
the server we are connected with did present a certificate and the certificate it provided has
"splat.zork.org" asthe FQDN. If any errors occur, we can call

X509 _verify_cert_error_string to convert our error code into a string to print to the
console.

Example 5-10 shows the contents of server2.c, our example server program. The changes made to
it are congruent with the changes made to the client application.

Example 5-10. server2.c

1 #include *"common.h"

2

3 #define CAFILE "rootcert._pem”

4 #define CADIR NULL

5 #define CERTFILE "server.pem"”

6 SSL_CTX *setup_server_ctx(void)

7 A

8 SSL_CTX *ctx;

9

10 ctx = SSL_CTX_new(SSLv23_method());

11 if (SSL_CTX_ load_verify locations(ctx, CAFILE, CADIR) != 1)

12 int_error("Error loading CA file and/or directory'™);

13 if (SSL_CTX_ set_default verify paths(ctx) I= 1)

14 int_error("Error loading default CA file and/or directory'™);

15 if (SSL_CTX use_certificate_chain_file(ctx, CERTFILE) I= 1)

16 int_error("Error loading certificate from file™);

17 if (SSL_CTX_ use_PrivateKey Ffile(ctx, CERTFILE, SSL_FILETYPE_PEM) I=
D)

18 int_error(Error loading private key from file™);

19 SSL_CTX_set_verify(ctx,

SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT,

117

}

verify_callback);
SSL_CTX_set_verify depth(ctx, 4);
return ctx;

do_server_loop(SSL *ssl)

int err, nread;
char buf[80];

for (53)

for (nread = 0; nread < sizeof(buf); nread += err)

{

err = SSL_read(ssl, buf + nread, sizeof(buf) - nread);
if (err <= 0)
break;

}
fwrite(buf, 1, nread, stdout);

¥
return (SSL_get_shutdown(ssl) & SSL_RECEIVED_SHUTDOWN) ? 1 : O;

void THREAD_CC server_thread(void *arg)

SSL *ssl = (SSL *)arg;

long err;

#ifndef WIN32

pthread_detach(pthread_self());

#endi T

if (SSL_accept(ssl) <= 0)
int_error("Error accepting SSL connection™);
if ((err = post_connection_check(ssl, CLIENT)) != X509 V_O0OK)

fprintf(stderr, "-Error: peer certificate: %s\n",
X509_verify_cert_error_string(err));
int_error(Error checking SSL object after connection'™);

fprintf(stderr, "SSL Connection opened\n™);
if (do_server_loop(ssl))

SSL_shutdown(ssl);
else

SSL_clear(ssl);
fprintf(stderr, "SSL Connection closed\n');
SSL_free(ssl);

ERR_remove_state(0);
#ifdef WIN32

_endthread();

#endi T

}

int main(int argc, char *argv[])

{

BIO *acc, *client;
SSL *ssl ;
SSL_CTX *ctx;

THREAD_TYPE tid;

init_OpenSSL();
seed_prngQ;

ctx = setup_server_ctx();
acc = BI0_new_accept(PORT);

if (lacc)
int_error("Error creating server socket'™);

118

88 if (BIO _do_accept(acc) <= 0)

89 int_error("Error binding server socket');
90

91 for ()

92 {

93 if (BIO_do_accept(acc) <= 0)

94 int_error(Error accepting connection');
95

96 client = BIO_pop(acc);

97 if (1(ssl = SSL_new(ctx)))

98 int_error("Error creating SSL context™);
99 SSL_set_accept_state(ssl);

100 SSL_set_bio(ssl, client, client);

101 THREAD_CREATE(tid, server_thread, ssl);
102 }

103

104 SSL_CTX_free(ctx);

105 BIO_free(acc);

106 return O;

107 }

One way the changes to the server stray from the changesto the client isin the verification mode.
In server applications, the behavior of SSL_VERIFY_PEER isdlightly different; it causes the
server to solicit a certificate from the client. The other verification flag used is
SSL_VERIFY_FAIL_IF_NO_PEER_CERT. Thisflag instructs the server to fail on the handshake
if the client presents no certificate.

o The choice of whether to require a client to supply a certificate depends on
o the type of server application you're building. In many cases, requiring a
ul . » client certificate may not be strictly necessary, but it's generally a bad idea

* torequest acertificate without requiring one because it may often cause a
client to present the user with a prompt to select the certificate to use.
Particularly in aweb-based environment, thisis not desirable. If you need
to require a certificate only for specific commands or options, it's better to

force a renegotiation instead.

The client's usage of the SERVER-defined value and the server's usage of CLIENT isan
oversimplification. In many cases, especially with that of a server, the string containing the peer's
FQDN will not be so readily available. Instead, we may need to look at the IP address to which we
are connected and use it to discover the FQDN. For purposes of clarity, this process was omitted,
and the names were hardcoded. Additionally, when verifying peer certificates, the owner will

often not be a machine with a FQDN but rather a person, organization, etc. For these cases, it's
important to change the post_connection_check routine accordingly to alow for successful
connections.

Using the tricks we learned in this step, we have now developed a viable framework for verifying
a peer and assuring authentication is done properly. The majority of the battle to SSL-enable our
application is over; however, we still have one more step.

5.1.4 Step 3: SSL Options and Cipher Suites

We have not yet discussed a few important points about SSL connections. For instance, we
mentioned that SSLv2 shouldn't be used, yet our example was created with the SSLv23_method
that still allows for this insecure protocol version. Beyond protocol limitation, OpenSSL provides
for many workarounds for known bugs in other SSL implementations. While these bugs don't
affect security, our application may lose interoperability if we do not account for them.

119

Additionally, we need to delve into the selection of cipher suites. A cipher suite is a combination
of lower-level algorithms that an SSL connection uses to do authentication, key exchange, and
stream encryption. Suite selection is important because OpenSSL supports some agorithms for
compatibility that we want to exclude for security reasons. Similarly, some of the cipher suites
that are secure require an application to provide callbacks in order to be utilized. Learning how to
do these things properly and extending our example for thisfina step will be the topic of this
section.

5.1.4.1 Setting SSL options

TheSSL_CTX_set_options function provides the devel oper with finer-grained control over
the SSL connections spawned from the context. Using this function, we can enable the bug
workarounds built into the OpenSSL library. For instance, a particular version of a Netscape
product (Netscape-Commerce 1.12) will truncate the material used for key generation. In order for
our SSL programs to establish a connection to a peer with such a bug, we need to enable the
workaround. These fixes are useful only to programs that will communicate with a peer known to
have bugs, but enabling the workarounds does not hurt anything as arule. These bug fixes can be
enabled individually, but instead we should set the SSL_OP_ALL flag, which will enable al of the
workaround code.

Likethe function SSL_CTX_set_verify, the second parameter to this function is a set of flags.
Again, the flags can be combined with the logical OR operation. An important fact about this call
isthat once an option is set, it can't be cleared: this function only adds the options presented by the
second argument to the options set contained in the SSL_CTX object. The new set of optionsis
returned by this function.

In addition to the workarounds for buggy SSL peers, this function allows us to tighten the security
of our SSL connections. By setting the option SSL_OP_NO_SSLv2, we prevent the SSLv2
protocol from being used. Aswe noted in Step 1, thisis avery useful feature. Using this option,
we can create an SSL_CTX object based on the compatibility method, SSLv23_method, and the
context will not allow SSLv2 peers. Thisis useful since electing to base our context upon either
SSLv3_method or TLSv1_method would prevent the other from connecting correctly.

Two server-side-only options that bear consideration are SSL_OP_EPHEMERAL_RSA and
SSL_OP_SINGLE_DH_USE. The former causes our context object to attempt to use a temporary
RSA key for the key exchange. The details of this process are discussed below, but generally, this
option should never be used, since it violates the SSL/TL S protocol specification. We discuss the
SSL_OP_SINGLE_DH_USE flag in the next section.

5.1.4.2 Ephemeral keying

In our examples thus far, both the server and the client certificates have been based on RSA key
pairs. Because the RSA algorithm can be used for most signing and encrypting, SSL usesit to
perform the key agreement necessary to create the shared key under which the datain the streamis
encrypted. This technique, such as when the key exchange is conducted through a persistent key,

is caled static keying. Building on this definition, ephemeral keying is defined as key exchange
through atemporary key. At first, it may seem that temporary keys may not allow for proper
authentication—not true. Generally, with ephemeral keying, the authentication is accomplished
through signature verification with persistent keys, and the temporary keys are used only for key
agreement. There are two main advantages of ephemeral keying over static keying from a security
perspective.

We've said that our example uses RSA keysin the certificates, but consider a case in which the
certificates are based upon DSA keys. The DSA algorithm provides a mechanism for signing but
not for encrypting. Thus, having only DSA keys on either side of an SSL connection leaves the

120

protocol unable to perform key exchange. It follows that static keying is not even an option for
DSA-based certificates; we must supplement them with ephemeral keys.

The second advantage of using temporary keysis that they provide forward secrecy. At ahigh
level, forward secrecy means that if the private key is obtained by athird party, that third party
will not be able to decode previous sessions conducted with that key or even future sessions
conducted by someone else with the compromised key. Thisis due to the ephemeral keys used for
the secrecy of the sessions. When using static keys, there is no forward secrecy since the secrecy
of the key exchange, and hence the following transmission stream, is based on the private key.
With an ephemeral key, the data on which the key exchange was performed no longer exists after
the key exchange, and thus the session remains private regardless of private key compromise.
Thus, forward secrecy means that private key compromise will only allow an attacker to
masguerade as the key owner, but not access the key owner's private data.

These two points make the benefits of using ephemeral keying clear. In the case of DSA
certificates, it's necessary for the protocol to succeed, and in the case of RSA certificates, it affords
us forward secrecy. In terms of SSL, using ephemeral keys essentially mandates that the keys
embedded in the certificates shall be used only for signatures and not for encryption.
Understanding this, it seems as though we've left a hole in the protocol since we do not have a
method for key exchange. OpenSSL provides two options: temporary RSA keys or Diffie-
Hellman (DH) key agreement. Of these two choices, DH is better because temporary RSA keys
violate the SSL/TLS protocols. The RSA keying was originally implemented to make sure export
restrictions on cryptography were not violated.X Today, thisissue is not a primary concern; thus,
ephemeral RSA keys tend not to be used. Additionally, generation of these temporary RSA keysis
much slower than using DH, presuming the DH parameters are pre-generated.

. Export restrictions once required weak RSA keys for encryption, but stronger keys were
acceptable for signing.

In order to allow OpenSSL to use ephemeral Diffie-Hellman (EDH), we must set up the server-
side SSL_CTX object properly. Providing DH parameters directly or, alternatively, a callback that
returns the DH parameters accomplishes this goal. The function SSL_CTX_set_tmp_dh setsthe
DH parameters for a context, while the function SSL_CTX_set_tmp_dh_cal Iback setsthe
callback. Since the callback mechanism subsumes the functionality of the former method,
applications should provide only the callback. The callback function has the following signature:

DH *tmp_dh_callback(SSL *ssl, int is_export, int keylength);

The first argument to the callback isthe SSL object representing the connection on which the
parameters will be used. The second argument indicates whether an export-restricted cipher is
being used; the argument value is nonzero, and zero otherwise. The main advantage of the
callback isits ability to provide different functionality based on the third parameter, the key size.
The DH parameters returned should have a key size equal to the last argument's value. Below, our
server application is extended with afully functional callback. The server applicationinits final
form shows an implementation of this callback.

We've deferred discussion of the SSL option SSL_OP_SINGLE_DH_USE to this point. Some of
the details from Chapter 8 will be helpful in understanding the impact of this option. Essentialy,
DH parameters are public information. A private key is generated and used for the key exchange
from these parameters. Setting this option causes the server to generate a new private key for each
new connection. In the end, setting this option provides better security at the cost of more
computational power to make new connections. Unless there are specia processor usage
considerations, we should enable this option.

5.1.4.3 Cipher suite selection

121

A cipher suiteis a set of algorithmsthat SSL uses to secure a connection. In order to make a suite,
we need to provide algorithms for four functions: signing/authentication, key exchange,
cryptographic hashing, and encrypting/decrypting. Keep in mind that some algorithms can serve
multiple purposes. For example, RSA can be used for signing and for key exchange.

OpenSSL implements a variety of algorithms and cipher suites when it comesto SSL connections.
When designing secure applications, it is essential that algorithms having known security
vulnerabilities not be allowed.

TheSSL_CTX_set_cipher_list function alows usto set thelist of cipher suites that we
authorize our SSL objectsto use. Thelist of ciphersis specified by a specially formatted string.
This string is a colon-delimited list of algorithms. Given the number of possible combinations,
specifying al the acceptable ones explicitly would be quite cumbersome. OpenSSL allows for
several keywordsin the list, which are shortcuts for sets of ciphers. For instance, "ALL" isa
shortcut for every available combination. Additionally, we can precede a keyword with the "!"
operator to remove all ciphers associated with the keyword from the list. Using this, we will create
a string to define our custom cipher list. There are other operators such as"+" or "-", but they are
not essential for specifying a secure list. For applications that need a custom definition, the ciphers
manpage is a good reference on string formation.

SSL allows the use of anonymous ciphers. Anonymous ciphers allow the SSL connection to
succeed without proper authentication of the peer by using the DH algorithm. In amost all
circumstances, we want to block these ciphers; they are identified by the "TADH" keyword. In
addition to suites that do not allow us to authenticate properly, we want to block low-security
algorithms. The "LOW" keyword refersto ciphersthat use akey of 64 bits or 56 bits without
export crippling. Accordingly, the "EXP" keyword marks the ciphers that are export-crippled to 56
or 40 bits. Finally, we should block agorithms that have known weaknesses, e.g., "MD5".

We can aso use the special keyword " @STRENGTH". Using this indicates that the list of cipher
suites should be sorted by their strength (their key size) in order of highest to lowest. Employing
this keyword causes our SSL connections to attempt to select the most secure suite possible, and if
necessary, back off to the next most secure, and so on down the list. This keyword should be
specified last on the list.

5.1.4.4 The final product

Using our knowledge of SSL options, ephemeral keying, and cipher suite selection, we will
implement the last step necessary to make our examples fully SSL-enabled, secure applications.
After looking at the code for the client and server, we will discuss some of the simplifications that
our applications employ.

Example 5-11 contains the code for client3.c, the final client application. Because the only
changes we're making are to the setup_client_ctx function, we truncated the example to
only the contents of the source file up to and including that function.

Example 5-11. client3.c

include ""common.h"

#define CIPHER_LIST "ALL:YADH:!LOW:!EXP:IMD5:@STRENGTH"
#define CAFILE "rootcert.pem"

#define CADIR NULL

#define CERTFILE "client_pem”

SSL_CTX *setup_client_ctx(void)

{

O©CO~NOOTA WNPE

SSL_CTX *ctx;

122

10

11 ctx = SSL_CTX new(SSLv23 method());

12 if (SSL_CTX load_verify_locations(ctx, CAFILE, CADIR) I= 1)
13 int_error("Error loading CA file and/or directory'™);

14 if (SSL_CTX set default verify paths(ctx) != 1)

15 int_error("Error loading default CA file and/or
directory');

16 if (SSL_CTX use_certificate chain_file(ctx, CERTFILE) I= 1)
17 int_error("Error loading certificate from file™);

18 ifT (SSL_CTX use_PrivateKey file(ctx, CERTFILE,
SSL_FILETYPE_PEM) 1= 1)

19 int_error("Error loading private key from file™);

20 SSL_CTX_set_verify(ctx, SSL _VERIFY_PEER, verify_callback);
21 SSL_CTX_set_verify depth(ctx, 4);

22 SSL_CTX_set_options(ctx, SSL_OP_ALL]SSL_OP_NO_SSLv2);

23 iT (SSL_CTX_set_cipher_list(ctx, CIPHER_LIST) I= 1)

24 int_error("Error setting cipher list (no valid
ciphers)™);

25 return ctx;

26 }

Line 3 contains a definition of the cipher list we discussed in the previous section. Trandated to
plain terms, the list is composed of all cipher suitesin order of strength except those containing
anonymous DH ciphers, low bit-size ciphers, export-crippled ciphers, or the MD5 hash algorithm.

As discussed at the beginning of this step, we enable all bug workarounds and disable SSL
Version 2 with the call on line 22. Finally, lines 23-24 actually load our cipher list into the
SSL_CTX object.

The server application appears in Example 5-12. We've made significantly more changes than in
the client, but most of our changes are the addition of new functions that are used only by the SSL
context setup function. We've similarly truncated the source listing for the server example.

Example 5-12. server3.c

1 #include "common.h"

2

3 DH *dh512 = NULL;

4 DH *dh1024 = NULL;

5

6 void init_dhparams(void)

7 A

8 BI10 *bio;

9
10 bio = BI0_new_Tfile("'dh512.pem™, "r'™);
11 if (Ibio)
12 int_error("Error opening file dh512.pem™);
13 dh512 = PEM_read_bio_DHparams(bio, NULL, NULL, NULL);
14 if (1dh512)
15 int_error("Error reading DH parameters from dh512_pem™);
16 BIO_free(bio);
17
18 bio = BI0_new_file("'dh1024.pem™, "r');
19 if (Ibio)
20 int_error("Error opening file dh1024_pem™);
21 dh1024 = PEM_read_bio_DHparams(bio, NULL, NULL, NULL);
22 ifT (1dh1024)
23 int_error("Error reading DH parameters from dhl1024_pem™);
24 BI0_free(bio);
25 %
26

27 DH *tmp_dh_callback(SSL *ssl, iInt is_export, int keylength)

123

45 %

DH *ret;

if (1dh512 || 'dh1024)
init_dhparams(Q);

switch (keylength)
{
case 512:
ret = dh512;
break;
case 1024:
default: /* generating DH params is too costly to do on the fly

ret = dhl1024;
break;

}

return ret;

47 #define CIPHER_LIST "ALL:YADH:YLOW:YEXP: IMD5:@STRENGTH"
48 #define CAFILE "rootcert.pem"

49 #define CADIR NULL

50 #define CERTFILE "server.pem"

51 SSL_CTX *setup_server_ctx(void)

52 {

63
64

SSL_CTX *ctx;

ctx = SSL_CTX_new(SSLv23_method());

if (SSL_CTX load_verify_ locations(ctx, CAFILE, CADIR) != 1)
int_error("Error loading CA file and/or directory');

if (SSL_CTX_set_default_verify paths(ctx) 1= 1)
int_error("Error loading default CA file and/or directory');

if (SSL_CTX use_certificate_chain_file(ctx, CERTFILE) != 1)
int_error("Error loading certificate from file™);

if (SSL_CTX use_PrivateKey Ffile(ctx, CERTFILE, SSL_FILETYPE_PEM) I=

int_error("Error loading private key from file");
SSL_CTX_set_verify(ctx,

SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT,

65
66
67
68
69
70
71
72
73 }

verify_callback);
SSL_CTX_set_verify _depth(ctx, 4);
SSL_CTX_set_options(ctx, SSL_OP_ALL | SSL_OP_NO_SSLv2 |
SSL_OP_SINGLE_DH_USE);
SSL_CTX_set_tmp_dh_callback(ctx, tmp_dh_callback);
if (SSL_CTX_set_cipher_list(ctx, CIPHER_LIST) I= 1)
int_error("Error setting cipher list (no valid ciphers)');
return ctx;

The most obvious change to this file is the addition of the functions init_dhparams and
tmp_dh_cal Iback. Theinitializing function reads the DH parameters from the files dn512.pem
and dh1024.pem and loads them into the global parameters. The callback function simply switches
on the required key size and returns either a 512-bit DH parameter set or a 1,024-bit set. This
function intentionally does not try to perform any on-the-fly generation of parameters becauseit is
simply too computationally expensive to be worthwhile.

The only other changes to the server not done to the client, aside from the call on line 60 to set the
callback, isthe inclusion of the SSL option SSL_OP_SINGLE_DH_USE. Asdiscussed earlier, this
causes the private part of the DH key exchange to be recomputed for each client connecting.

5.1.4.5 Beyond the example

124

For purposes of clarity in the example code, we have avoided several serious considerations for
real applications. The most obviousis error handling. Our examples simply exit if errors of any
kind occur. For most applications, extension of the example to more robustly handle errorsis
application-specific. While specific functions may return different error codes, OpenSSL functions
and macros will generally return 1 on success; thus, implementing better error handling should be
straightforward.

In addition, the examples we've built do two-way authentication. When making a new client and
server application, this should always be done. However, when making applications that are meant
to connect with other SSL peers, such as aweb server, we should take into account that the
stringent security requirements of our example are not always desirable. For instance, to entirely
remove client authentication from a server, we simply need to remove the calls that load the verify
locations, the call to set the verify mode, and the call to the post-connection verification routine.
Thisisn't the best approach, though. When making such compatibility-first applications, we need
to try to incorporate as much security as possible. For instance, instead of removing al of the
verification calls, we could still load the verification locations and request a peer certificate with
the SSL option SSL_VERIFY_PEER. We can, however, omit the

SSL_VERIFY_FAIL_IF _NO_PEER_CERT option and modify the post-connection verification so
that if the client does present a certificate, we go on with high security. If the client does not
present the server with a certificate, the condition and associated information can be logged so that
we can keep track of unauthenticated connections.

Anather point we avoided was the password callback for the encrypted private key for the
certificate. For most server applications, common practice is to leave the private key in afile that
isn't encrypted so that the application can start up and stop without user input. This convention,
born of simplicity of implementation, can easily be subverted. When doing something like this, it
isessential that we make sure users on the machine do not have read permission on the private key
file; idedlly, the file will al'so be owned by the root or administrator user so that the likelihood of
compromise is further reduced. For most client applications, tying the encryption passphrase to the
user should not be a problem.

DSA parameters can be converted to DH parameters. This method is often utilized since the
computational power necessary to generate the DSA parameters is smaller. Often, parameters
generated in this fashion are used for ephemeral DH parameters. Without having to get into the
mathematics behind the algorithms, the SSL option SSL_OP_SINGLE_DH_USE should always be
used in these cases. Without it, applications are susceptible to a subtle attack.

A large flaw of our example programsis their handling of I/O on SSL connections. The examples
rely on blocking 1/0 operations. For most real applications, thisis unacceptable. In the following
section, we broach the important topic of non-blocking 1/0 on SSL connections. We have also
neglected to consider renegotiations (requesting that a handshake be performed during an aready
established connection) on SSL connections and their impact on 1/0. While this should occur
automatically when the peer requestsiit, the 1/0 routines must be robust enough to handle its subtle
impacts. In the next section, we begin by addressing server efficiency with respect to session
caching and then move into a more in-depth look at 1/0 paradigms.

5.2 Advanced Programming with SSL

OpenSSL provides many more routines than those we've discussed up to this point. In fact, most
of the SSL_CTX routines have SSL counterparts that perform the same function except on an SSL
object instead of the context that createsit. Aside from this small point, we will discuss techniques
for caching SSL sessions, using renegotiations, and properly reading and writing on SSL
connections—including during renegotiation.

125

5.2.1 SSL Session Caching

An SSL session is different from an SSL connection. A session refers to the set of parameters and
encryption keys created by performing a handshake, whereas a connection is an active
conversation that uses a session. In other words, the connection refers to the process of
communication, and the session refers to the parameters by which that communication was set up.
Understanding this, we can delve into some of the OpenSSL routines that provide for SSL session
caching.

Since the mgority of the computational expense associated with an SSL server isin setting up
connections with clients and not in maintaining them, session caching can be alifesaver when it
comes to server load reduction. OpenSSL implements sessions as SSL._SESS 10N objects. While
the majority of the work in implementing session caching falls on the server side, the client must
also keep its previous sessions in order for the efficiency benefit to be realized.

From the server's perspective, once it has established a connection, it merely needs to label the
data and cache the session. This label, called the session ID context, is described in Section 5.2.1.2.
After establishing a session, the server assigns atimeout value to it, which is simply atime after
which the session will be discarded and another will need to be negotiated. The default behavior

of asession caching server isto flush expired sessions automatically. From the client side, an
SSL_SESSION object isreceived from the server. The client can then save this session and reuse

it if it needs to make another connection. For instance, aweb browser may need to make several
connections to display all of the information presented from an SSL-enabled web server. By
keeping this session information around, the client connects quickly, and the load on the server is
reduced, since it need not negotiate a new session for each connection.

Aswe've said, the server determines the valid session ID context. When a client attemptsto
connect to a caching server, it has only one attempt at presenting the correct value. If incorrect, a
normal handshake occurs, and a new session is created. If the client saves this newly created
session, it will then have the correct session ID context for future connections.

The detail s associated with sessions, such as enabling a client and server, dealing with timeouts,
and flushing old sessions, are discussed in the following sections. In addition, we will also outline
amechanism for server-side, on-disk storage of sessions.

5.2.1.1 Client-side SSL sessions

When a connection is established, the function SSL_get_session returnsthe SSL_SESSION
object representing the parameters used on the SSL connection. This function returnsNULL if
thereis no session established on the SSL connection; otherwise, it returns the object. Actually,
thisfunction iscalled as either SSL_getO_session or SSL_getl session. Thesetwo
variants are used to ensure that the reference counting on the SSL_SESSION object is updated
correctly. The former does not change the reference count, and the latter incrementsit. In general,
we want to use the latter function since SSL_SESS 10N objects can timeout asynchronously. If
this occurs, our object disappears and we are holding an invalid reference to it. Using

SSL_getl session requiresthat we call SSL_SESSI0N_free on the object when we're done
using it, in order to prevent memory leaks.

After saving areference to the SSL_SESSION object, we can close down the SSL connection and
its underlying transport (normally a socket). For most clients, there will not be alarge number of
SSL sessions established at one time, so caching them in memory is adequate. If thisisn't the case,
we can always write the sessions out to disk using PEM_write_bio_ SSL_SESSION or
PEM_write_SSL_SESSION, and reread them later using PEM_read_bio_SSL_SESSION or
PEM_read_SSL_SESSION. The syntax of these functionsis the same as the functions used for
reading and writing public-key objects. They are discussed in Chapter 8 in Section 8.6.2.

126

To reuse a saved session, we need to call SSL_set_session before caling SSL_connect. The
reference count of the SSL_SESSI0N object will be incremented automatically so we should
follow the call with SSL_SESSION_free. After reusing asession, it isagood ideato call
SSL_getl_session before disconnecting to replace the SSL_SESSION object that we've
cached. The reason is that renegotiations may occur during the connection. Renegotiations cause
the creation of anew SSL_SESS 10N, so we should keep only the most recent (renegotiation is
discussed in more detail later).

Now that we understand the basics of enabling session caching, we'll take a brief look at
incorporating it into a client application. Example 5-13 shows pseudocode for our client-side
session caching. Now that we've established an implementation for aclient, we'll elaborate upon
some of the details of session caching as we explore the implementation necessary for server-side
caching.

Example 5-13. Pseudocode for client-side caching

ssl = SSL_new(ctx)
... setup underlying communications layer for ssl
... connect to host:port ...
iT (saved session for host:port in cache)
SSL_set_session(ssl, saved session)
SSL_SESSION_free(saved session)
SSL_connect(ssl)
call post_connection_check(ssl, host) and check return value
... normal application code here ...
saved session = SSL_getl_session(ssl)
if (saved session != NULL)
enter saved session into cache under host:port
SSL_shutdown(ssl)
SSL_free(ssl)

5.2.1.2 Server-side SSL sessions

All sessions must have a session ID context. For the server, session caching is disabled by default
unlessacall to SSL_CTX_set_session_id_context is made. The purpose of the session ID
context is to make sure the session is being reused for the same purpose for which it was created.
For instance, a session created for an SSL web server should not be automatically allowed for an
SSL FTP server. Along the same lines, we can use session ID contexts to exercise afiner-grained
control over sessions within our application. For example, authenticated clients could have a
different session ID context than unauthenticated ones. The context itself can be any datawe
choose. We set the context through acall to the above function, passing in our context data as the
second argument and its length as the third.

After setting the session ID context, session caching is enabled on the server side; however, it isn't
configured completely yet. Sessions have alimited lifetime. The default value for session timeout
with OpenSSL is 300 seconds. If we want to change this lifetime, acall to
SSL_CTX_set_timeout isnecessary. Although the default server automatically flushes expired
sessions, we may still want to call SSL_CTX_flush_sessions manuadly, e.g., when we disable
automatic session flushing.

One important function that allows us to tweak the behavior of a server with respect to caching is
SSL_CTX_set_session_cache_mode. Like several other mode-setting callsin OpenSSL, the
mode is set using flags that are joined by alogical OR operation. One such flag is

SSL_SESS CACHE_NO_AUTO_CLEAR. This disables the automatic flushing of expired sessions.
It isuseful for serverswith tighter processor usage constraints. The automatic behavior can cause
unexpected delays; thus, disabling it and manually calling the flush routine when free cycles are

127

available can improve performance. Another flag that can be set is

SSL_SESS CACHE_NO_INTERNAL_LOOKUP. Up to this point, we'verelied solely on the
internal lookup, but in the next section, well outline an on-disk caching method that can replace
the internal lookup methods.

Session caching adds subtleties when we al so use connection renegotiations. Before implementing
a caching server, we should be aware of the potentia pitfalls. The section below on renegotiation
explores some of these problems after explaining alittle more about what renegotiation entails.

5.2.1.3 An on-disk, session caching framework

OpenSSL's session caching features include API calls to set three callbacks for synchronization of
sessions with external caches. Like other OpenSSL callbacks, three functions are used to set a
pointer to the callback function. For each one, the first argument isan SSL_CTX object, and the
second argument is a pointer to the callback function.

The callback set by SSL_CTX_sess_set_new_cb isinvoked whenever anew SSL_SESSION
is created by the SSL_CTX object. This callback enables usto add the new session to our external
container. If the callback returns zero, the session object will not be cached. A nonzero return
allows the session to be cached.

int new_session_ch(SSL *ctx, SSL_SESSION *session);

ctx

The SSL connection's connection object.

session
A newly created session object.

The callback set by SSL._CTX_sess_set_remove_ch isinvoked whenever an SSL_SESSI10N
isdestroyed. It iscalled just before the session object is destroyed because it isinvalid or has
expired.
void remove_session_cb(SSL_CTX *ctx, SSL_SESSION *session);
ctx

The SSL_CTX object that is destroying the session.
session

The session object that is about to be destroyed because it'sinvalid or expiring.

TheSSL_CTX_sess_set _get cb function isused to set a cache retrieval callback. The
assigned function is called whenever the internal cache cannot find a hit for the requested session
resumption. In other words, this callback should query our external cache in hopes of finding a
match.

SSL_SESSION *get_session_cb(SSL *ctx, unsigned char *id, int len, int
*ref);

ctx

128

The SSL connection's connection object.

id
The session ID that's being requested by the peer. It should be noted that the session ID is
distinctly different from the session ID context. The context is an application specific
classification on session groups, whereas the session ID is an identifier for a peer.

len
The length of the session ID. Since the session ID can be any arbitrary string of characters,
it may not necessarily be NULL terminated. Thus, the length of the session ID must also
be specified.

ref

An output from the callback. It is used to allow the callback to specify whether the
reference count on the returned session object should be incremented or not. It returns as
nonzero if the object's reference count should be incremented; otherwise, zero is returned.

Some of the features required by the caching mechanism in Example 5-14 are easily implemented.
Since we are using files to store the sessions, we can use the filesystem's built-in locking
mechanisms. In order to write the keysto disk, we can use the macro
PEM_write_bio_SSL_SESSION, but it doesn't alow for encryption. Remember,
SSL_SESSION objects hold the shared secrets that were negotiated; thus, their contents shoud be
protected when serialized. Instead, we can call the underlying function PEM_ASN1_write_bio
directly. Alternatively, it may be sufficient for some applications to simply use a secure directory
and write the sessions unencrypted. In general, it is far safer to use encryption with an in-memory

key.
Example 5-14. A framework for external session caching

new_session_chb()
{
acquire a lock for the file named according to the session id
open file named according to session id
encrypt and write the SSL_SESSION object to the file
release the lock

}

remove_session_cb()

{
acquire a lock for the file named according to the session id
remove the file named according to the session id
release the lock

}
get_session_cb()
{

acquire a lock for the file named according to the session id in
the 2nd arg

read and decrypt contents of file and create a new SSL_SESSION
object

release the lock
set the integer referenced by the fourth parameter to O
return the new session object

}

129

This framework, when implemented, provides a powerful mechanism for session caching. By
using the filesystem, the cache isn't constrained by memory restrictions. Additionally, it iseasier
to use than an in-memory caching scheme since the on-disk scheme allows multiple processes to
access the session cache.

5.2.21/0 on SSL Connections

The motivation behind creating an SSL connection is to transfer data back and forth securely.
Thus far, we've concentrated on making this connection very secure, but we've avoided the details
on how dataistransferred. In the earlier examples, we cheated on the 1/0O processing, since the
client only writes to the SSL connection, and the server only reads fromit. Most real-world
applications do not operate on such asimple model. Since the calls we used to perform the reading
and writing (SSL_read and SSL_write) closely mirror the system calls read and write, it
seems as though 1/O would not be significantly different from 1/O in non-SSL applications.
Unfortunately, thisisfar from the truth.

There are many subtleties in performing /O correctly with OpenSSL. We will first look at
SSL_read and SSL_write in more detail. Once we understand them, we will get into the detail
of the differences between performing blocking and non-blocking I/0O on SSL connections. By the
end of this chapter, we will have built up our knowledge of the pitfalls with 1/0O in OpenSSL. This
will enable usto avoid them when implementing real-world applications that require I/O
paradigms that are more complex than the ones provided in our examples.

5.2.2.1 Reading and writing functions

In the examples, we used the 1/0O functions SSL_read and SSL_wr i te for SSL connections, but
we didn't discuss them in any detail. The arguments for these calls are similar to the system calls
read and wr i te. The way these calls differ from their system call counterpartsisin their return
values. Table 5-2 provides the details of the possible return values.

Table 5-2. Return values of SSL_read and SSL_write

Return Description
value P
>0 Success. The data requested was read or written, and the return value is the number of

bytes.

Failure. Either an error with the SSL connection occurred or the cal failed because the
underlying 1/0 could not perform the operation at the time of calling.

Failure. Either an error with the SSL connection occurred or the application is required

<0 to perform a different function before retrying the failed call.

Knowing these return values helps, but we still can't tell if an error actually occured without some
more information. OpenSSL provides the function SSL_get_error, which accepts the return
value of an SSL 1/0 function and returns different values based on what actually happened.

This function inspects the I/O routine's return value, the SSL object, and the current thread's error
gueue to determine what the effect of the call was. Because the internal errors for OpenSSL are
stored on a per-thread basis, the call to check the errors must be made from the same thread as the
1/0O call. Robust applications should always check the detailed error status of all 1/O operations
with SSL_get_error. Remember that functionslike SSL_connect and SSL_accept areadso
1/O operations.

Thereturn value of SSL_get_error can be many different values. Our application needs to be
able to handle a subset of these conditions and provide a reasonable default behavior of shutting

130

down the SSL connection. Table 5-3 provides the descriptions of the values we should aways be
able to handle.

Table 5-3. Some common return values of SSL_get_error

Return value Description

SSL ERROR_NONE No error occurred with the I/O call.

The operation failed due to the SSL session being closed. The

SSL_ERROR_ZERO_RETURN underlying connection medium may still be open.

The operation couldn't be completed. The underlying medium
SSL_ERROR_WANT_READ |could not fulfill the read requested. This error code means the
call should be retried.

The operation couldn't be completed. The underlying medium
SSL_ERROR_WANT_WRITE |could not fulfill the write requested. This error code means the
call should be retried.

The handling of thefirst error code in the table, SSL_ERROR_NONE, is straightforward.
SSL_ERROR_ZERO_RETURN should be handled in an application-specific way, knowing that the
SSL connection has been closed. In order to handle SSL_ERROR_WANT_READ and
SSL_ERROR_WANT_WRITE, we need to retry the 1/0O operation; thisis discussed in more detail
below. Any of the other possible return values of SSL_get_error should be considered errors.

In order to implement a call to an I/O function correctly, we should check for these different return
values. A sample piece of codeis given in Example 5-15. The handlers for
SSL_ERROR_WANT_READ and SSL_ERROR_WANT_WRITE have been omitted; the details on
handling them properly are discussed below, since the correct actions vary based on whether the
application is using blocking or non-blocking 1/0. This example's purpose is to provide a template
of what arobust I/0O call should look like. Using the switch statement, we handle all the
conditions for which we have interest and error on any others. As stated above, there are other
return values possible, and we may wish to handle them with specific error messages, for instance.

Example 5-15. A sample I/O call template

code = SSL_read(ssl, buf + offset, size - offset);
switch (SSL_get_error(ssl, code))
{
case SSL_ERROR_NONE:
/* update the offset value */
offset += code;
break;
case SSL_ERROR_ZERO_RETURN:
/* react to the SSL connection being closed */
do_cleanup(ssl);
break;
case SSL_ERROR_WANT_READ:
/* handle this in an application specific way to retry the
SSL_read */
break;
case SSL_ERROR_WANT WRITE:
/* handle this in an application specific way to retry the
SSL_read */
break;
default:
/* an error occurred. shutdown the connection */
shutdown_connection(ssl);

131

Typically, using blocking 1/0 alleviates the complications of retrying failed calls. With SSL, this
is not the case. There are timeswhen acall to SSL_read or SSL_wr i te on ablocking
connection requires aretry.

5.2.2.2 Blocking I/0O

Blocking I/0 means that an operation will wait until it can be completed or until an error occurs.
Thus, with blocking 1/0 in general, we shouldn't have to retry an 1/O call, since asingle call's
failure indicates an error with the communication channel, such that the channel is no longer
usable; with blocking 1/0 using OpenSSL, thisis not true. The SSL connection is based upon an
underlying 1/0 layer that handles the actual transfer of data from one side to the other. The
blocking property of an SSL connection is based solely on the underlying communication layer.
For instance, if we create an SSL connection from a socket, the SSL connection will be blocking if
and only if the socket is blocking. It is aso possible to change this property in a connection we've
already established; we change the property on the underlying layer and then handle all SSL 1/0
functions appropriate for the new paradigm.

Conceptualy, SSL_read and SSL_wr i te read and write data from the peer. Actualy, acall to
SSL_read may write data to the underlying 1/0 layer, and a call to SSL_write may read. This
usually occurs during a renegotiation. Since a renegotiation may occur at any time, this behavior
can cause unexpected results when using a blocking 1/0 layer; namely, an I/O call may require a
retry. Thus, our implementation must handle this.

In order to handle a blocking call correctly, we need to retry the SSL 1/O operation if we receive
SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE. Don't let the names of these errors
confuse you. Even though they tell usthe SSL connection needs to wait until we can read or write,
respectively, we just need to retry whatever operation caused the condition. For instance, if an
SSL_read caused the SSL_ERROR_WANT_WRITE error, we must retry the SSL_read rather
than making the call to SSL_write. It isworth taking a moment to understand the potential
errors for asingle 1/0 call. Though nonintuitive, acall to SSL_read may indeed return the error
SSL_ERROR_WANT_WRITE due to the possibility of renegotiations at any point.

In many ways, implementing a blocking call is similar to implementing a non-blocking one. It's
similar in the sense that we must loop for retries, but it differsin that we don't need to check for
I/O availability on the underlying layer, aswith pol I or select. In the end, we will not show an
example of looping to accomplish the blocking call; thereis an easier way.

Using the SSL_CTX_set_mode function or its counterpart for SSL objects, SSL_set_mode, we
can set some /O behaviors of SSL connections. The second parameter is a set of defined
properties joined with the logical OR operator. SSL_MODE_AUTO_RETRY is one such mode.
Setting this on a blocking SSL object (or on the context that will create a object) will cause dl 1/0
operations to automatically retry all reads and complete all negotiations before returning.

Using this option allows us to implement 1/O as simply as normal blocking 1/0 with the system
callsread and write. In general, we should set this option on the SSL_CTX object before
creating the SSL object. We can set the option later on the SSL object itself, but it's best to do so
before any callsto I/O routines on that object.

If we elect not to use this option and instead implement our blocking 1/0 with our own loops, we
might fall into afew traps. Thisis due to some special requirements for function call retries, which
are detailed with our discussion of non-blocking 1/0.

5.2.2.3 Non-blocking I/O

132

This paradigm causes all of our 1/0 calls never to block. If the underlying layer is unable to handle
arequest, it reports its requirement immediately, without waiting. As we've hinted, this adds
complexity to our 1/0 routines.

A non-blocking SSL 1/0 call returns the reason of failure, but only the application can check to
seeif that status has been cleared. Thisis the source of the complexity in implementation. For
instance, acall to SSL_read may return SSL_ERROR_WANT_READ, which tells the application
that once the underlying 1/O layer isready to fulfill aread request, the SSL call may be retried.
Generaly, the application's 1/0 loop will need to serve both read and write requests, however. The
problem we need to solvein the I/O loop is that once we've made acall to an SSL 1/0 function,
and it requires aretry, we should not call other 1/0O functions until the original call has succeeded.

Since the logic for correctly implementing 1/O routines for the application can have several
subtleties, especially with multiple input and output sources, we'll look at a detailed example.
Example 5-16 provides the code for the function data_transfer. Thisfunction takes two SSL
objects as parameters, which are expected to have connections to two different peers. The
data_transfer function will read datafrom one connection (A) and writeit to the other (B)
and at the same time read data from B and writeit to A.

Example 5-16. A sample non-blocking 1/O loop

1 #include <openssl/ssl_h>
2 #include <openssl/err.h>
3 #include <string.h>
4
5 #define BUF_SIZE 80
6
7 void data_transfer(SSL *A, SSL *B)
8 {
9 /* the buffers and the size variables */
10 unsigned char A2B[BUF_SIZE];
11 unsigned char B2A[BUF_SIZE];
12 unsigned int A2B_len = 0;
13 unsigned int B2A_len = 0;
14 /* flags to mark that we have some data to write */
15 unsigned int have_data A2B = 0;
16 unsigned int have_data B2A = 0;
17 /* flags set by check_ availability() that poll for 1/0 status */
18 unsigned int can_read_A = 0;
19 unsigned int can_read_B = 0;
20 unsigned int can_write A = 0;
21 unsigned int can_write B = 0;
22 /* flags to mark all the combinations of why we"re blocking */
23 unsigned int read_waiton_write A = O;
24 unsigned int read_waiton_write_B = 0;
25 unsigned int read_waiton_read_A = 0O;
26 unsigned int read_walton_read B = 0;
27 unsigned int write_waiton_write A = 0;
28 unsigned iInt write_waiton_write_B = 0;
29 unsigned int write_waiton_read A = O;
30 unsigned int write_waiton_read B = O;
31 /* variable to hold return value of an 1/0 operation */
32 int code;
33
34 /* make the underlying 1/0 layer behind each SSL object non-
blocking */
35 set_nonblocking(A);
36 set_nonblocking(B);
37 SSL_set_mode(A, SSL_MODE_ENABLE_PARTIAL_WRITE]
38 SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER);
39 SSL_set_mode(B, SSL_MODE_ENABLE_PARTIAL_WRITE]
40 SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER);
41

133

to

read.

for (;;

/*

)

check 1/0 availability and set flags */

check_availability(A, &can_read_A, &can_write_A,

/*

B, &can_read B, &can_write_B);

this "if" statement reads data from A. it will only be

entered if the following conditions are all true:

1. we"re not in the middle of a write on A

2. there®s space left in the A to B buffer

3. either we need to write to complete a previously blocked
read and now A is available to write, or we can read from
A regardless of whether we"re blocking for availability

if ((write_waiton_read A || write_waiton_write A) &&

}
/*

*

*/

if

(A2B_len = BUF_SIZE) &&
(can_read_A || (can_write_A && read_waiton_write_A)))

/* clear the flags since we"ll set them based on the 1/0
* call®s return

*/

read_waiton_read A = 0;

read_waiton_write A = 0;

/* read into the buffer after the current position */
code = SSL_read(A, A2B + A2B_len, BUF_SIZE - A2B_len);
switch (SSL_get_error(A, code))
{
case SSL_ERROR_NONE:
/* no errors occured. update the new length and
* make sure the "have data™ flag is set.
*/
A2B len += code;
have _data A2B = 1;
break;
case SSL_ERROR_ZERO RETURN:
/* connection closed */
goto end;
case SSL_ERROR_WANT_READ:
/* we need to retry the read after A is available

* reading
*/
read_waiton_read A = 1;
break;
case SSL_ERROR_WANT_WRITE:
/* we need to retry the read after A is available

* writing
*/
read _waiton write A = 1;
break;
default:
/* ERROR */
goto err;

this "if" statement is roughly the same as the previous "if"
statement with A and B switched

("(write_waiton_read B || write_waiton_write_B) &&
(B2A_len = BUF_SIZE) &&
(can_read_B || (can_write B && read_waiton_write_B)))

read_waiton_read B = 0;
read_waiton_write B = 0;

134

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
entered if
129
130
131
132
write
133
134
write
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
A
150
If
151
to O,
152
buffer
153
154
155
156
157
158
159
160
161
162
163
164
165
for
166

code = SSL_read(B, B2A + B2A_len, BUF_SIZE - B2A_len);
switch (SSL_get _error(B, code))

{
case SSL_ERROR_NONE:
B2A len += code;
have_data B2A = 1;
break;
case SSL_ERROR_ZERO_RETURN:
goto end;
case SSL_ERROR_WANT_READ:
read_waiton_read B = 1;
break;
case SSL_ERROR_WANT_WRITE:
read waiton write B = 1;
break;
default:
goto err;
}

/* this "if" statement writes data to A. it will only be

* the following conditions are all true:
* 1. we"re not in the middle of a read on A
* 2. there"s data in the A to B buffer
* 3. either we need to read to complete a previously blocked
* and now A is available to read, or we can write to A
* regardless of whether we"re blocking for availability to
*/
if (1(read_waiton_write A || read_waiton_read_A) &&
have_data_B2A &&
(can_write_A || (can_read_A && write_waiton_read_A)))
{

/* clear the flags */
write_waiton_read A = 0;
write_waiton write A = 0;

/* perform the write from the start of the buffer */
code = SSL_write(A, B2A, B2A len);
switch (SSL_get_error(A, code))
{
case SSL_ERROR_NONE:
/* no error occured. adjust the length of the B to

* buffer to be smaller by the number bytes written.
* the buffer is empty, set the "have data™ flags
* or else, move the data from the middle of the

* to the front.
*/
B2A len -= code;
it (IB2A_len)
have_data B2A = 0;
else
memmove(B2A, B2A + code, B2A len);
break;
case SSL_ERROR_ZERO RETURN:
/* connection closed */
goto end;
case SSL_ERROR_WANT_READ:
/* we need to retry the write after A is available

* reading

135

167 */

168 write waiton_read A = 1;

169 break;

170 case SSL_ERROR_WANT_WRITE:

171 /* we need to retry the write after A is available
for

172 * writing

173 */

174 write_waiton_write A = 1;

175 break;

176 default:

177 /* ERROR */

178 goto err;

179 }

180 }

181

182 /* this "if" statement is roughly the same as the previous "if"
183 * statement with A and B switched

184 */

185 if (!(read_waiton_write B || read_waiton_read_B) &&
186 have _data A2B &&

187 (can_write B || (can_read_B && write_waiton_read_B)))
188 {

189 write_waiton_read B = 0;

190 write_waiton write B = 0;

191

192 code = SSL_write(B, A2B, A2B len);

193 switch (SSL_get_error(B, code))

194 {

195 case SSL_ERROR_NONE:

196 A2B len -= code;

197 if ('A2B len)

198 have_data A2B = 0;

199 else

200 memmove (A2B, A2B + code, A2B_len);
201 break;

202 case SSL_ERROR_ZERO RETURN:

203 /* connection closed */

204 goto end;

205 case SSL_ERROR_WANT_READ:

206 write_waiton_read B = 1;

207 break;

208 case SSL_ERROR_WANT_WRITE:

209 write waiton write B = 1;

210 break;

211 default:

212 /* ERROR */

213 goto err;

214 }

215 }

216 }

217

218 err:

219 /* 1T we errored, print then before exiting */
220 fprintf(stderr, "Error(s) occured\n');

221 ERR_print_errors_fp(stderr);

222 end:

223 /* close down the connections. set them back to blocking to
simplify. */

224 set_blocking(A);

225 set_blocking(B);

226 SSL_shutdown(A);

227 SSL_shutdown(B);

228 %

136

Since the code sample is rather large, well dissect it and explain the reasons behind the
implementation decisions. We use two buffers, A2B and B2A, to hold the data read from A to be
written to B, and the data read from B to be written to A, respectively. The length variables
corresponding to each buffer (A2B_len and B2A_len) areinitiaized to zero; throughout our
function, they will hold the number of bytes of datain their counterpart buffer. An important
observation to make at this point is that we do not use an offset variable for pointing into our
buffer; the data we want to write will always be at the front of our buffers.

We a so declare three sets of flags. Thefirst set (have data_A2B and have_data_ B2A)
indicates whether there is any datain our buffers. We could have left these two variables out,
since throughout the function they will be zero only if the corresponding buffer length's variableis
also zero. We opted to use them for code readability. The next set of variables is availability flags,
which are of theform can_read_A, can_write_B, etc. Theseflags are set to indicate that the
named operation on the named object can be performed, i.e., the connection is available to
perform the operation without needing to block. The last set of flagsisthe blocking flags. When
one of theseis s, it tells us that a particular kind of 1/O operation requires the availability of the
connection to perform another kind of 1/0 operation. For instance, if write_waiton_read_Bis
set, it means that the last write operation performed on B must be retried after B is availableto
read.

We use three functions in this exampl e that are not explicitly defined. Thefirstis
set_nonblocking. Thisfunction takes an SSL object asits only argument and must be
implemented in a platform-specific way to set the underlying I/O layer of the SSL object to be
non-blocking. Likewise, set_blocking needsto set the connection to a blocking state. The last
platform-specific function ischeck_avai labi lity. Thisfunction's obligation isto check the
1/O status of the underlying layers of both A and B and set the variables appropriately.
Additionally, this function should wait until at least one variable is set before returning. We
cannot perform any 1/O operations if nothing is available for either connection. These omitted
functions can be implemented easily. For instance, on a Unix system with SSL objects based on
sockets, set_nonblocking and set_blocking can beimplemented using the fcntl system
call, and the check_avai labi Lty function can use fd_set data structures along with the
select system call.

Thecallsto SSL_set_mode set two mode variables we've not discussed. Normally, acall to
SSL_write will not return success until all of the datain the buffer has been written, even with
non-blocking I/0. Thus, a cdll that requests alarge amount of datato be written can return many
retry requests before succeeding. This behavior is undesirable in our function because we wish to
interlace the reading routines with those that write, and to do this effectively, we cannot retry a
single call for too long because it will prevent us from reading more data from that connection. To
aleviate this problem, the SSL_MODE_ENABLE_PARTIAL_WRITE mode flag instructs the library
to allow partially complete writes to count as successes. This allows our function to perform
several write operations successfully, and between those calls, we can read more data. Because the
SSL protocol is built around sending complete messages on the channel, sometimes we'll be
required to retry a call because only a part of the requested data was actually sent. As aresult, all
retried operations must be called with the exact same arguments as the original call that caused the
error. This behavior can be cumbersome since it does not allow usto add to the write buffer after
making acall to SSL_wr i te that needed aretry. To change this property partially, we use the
SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER flag. Thisflags allows us to retry the write
operation with different parameters, i.e., a different buffer and size, so long as the origina datais
till contained in the new buffer. In our example, we use the same buffer, but enable this mode so
that we can keep reading into the end of the buffer without causing errors on attempts to retry
writes.

The function has one main loop, beginning on line 42 and ending on line 216. In thisloop, we
have four separated subsections, lines 56-96, lines 101-126, lines 136-180 and lines 185-215. Each
of these conditional blocks corresponds respectively to reading data from A, reading data from B,

137

writing datato A, and writing datato B. Looking carefully, we can see that the first and second
section mirror each other just as the third and fourth do.

We must be sureit is safe to read. The entry conditions on the i T statements do this. They assert
we are not in the middle of aread operation by checking the write blocking flags for the
connection (Y (write_waiton_read ... || write waiton_write_...)).
Additionally, it needs to be sure thereis spaceinthe buffers (.. ._len != BUF_SIZE). In
addition to these conditions, we must be sure thisis the right time to call the read function, i.e.,
either we're waiting to retry afailed read because it was waiting for the connection to be available
for writing (can_write_... && read_waiton_write_...), or wesimply have datato
read (can_read_...). If al of these conditions are met, we can attempt aread. Before we do,
though, we reset the blocking flags for the read operation, and then perform the 1/O call and check
the error code. The I/O call itself instructs the SSL library to write the data into the buffer offset
by the number of bytes already stored within it. If the call succeeds, we'll update the length
counter and make sure that the have_data_. .. flagisset. If we areinstructed to retry through
either SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE, we will set the appropriate
blocking flag and carry on. If an error occurs, or the end of the SSL connection is detected, we
will break out of the I/0O loop.

Aswith read operations, write operations are protected by an i T statement to assure entry
conditions. These statements ensure that we are not in the middle of aread operation
(Y(read_waiton_write_... || read_waiton_read_...)). Additionaly, there must be
datain the buffer (have_data_...). Lastly, the write operation must make sure that writing is
possible, i.e., either we've been waiting for read availability to retry a write operation
(can_read_... && write_waiton_read_...),or thereiswrite availability
(can_write_...). Beforeattempting the write, we must zero the blocking flags. The write
operation always tries to write from the beginning of the buffer. If we are successful, we move the
datain the buffer forward so that data already written is pushed out. If the buffer is empty after
writing, we zero the have_data_. .. flag. Aswith the read operation, if we areinstructed to
retry, we set the corresponding blocking flag and continue. If errors occur, or if the SSL
connection has been closed, we break out of the 1/0 loop.

These paradigms for performing reading and writing enable us to do effective non-blocking
communication when combined in the loop. For instance, if B cannot be written to, we will
continue to buffer datafrom A until the buffersfill and we are forced to wait for writing on B. We
can extend the general form presented in this function to allow for many different non-blocking
1/0 needs that applications may have.

5.2.3 SSL Renegotiations

An SSL renegotiation is essentially an SSL handshake during a connection. This causes client
credentials to be reevaluated and a new session to be created. We've discussed the effects of
renegotiation on the I/O and other aspects of a program'’s implementation, but haven't talked about
why renegotiations are important.

Since renegotiations cause the creation of a new session, the session key is replaced. For long-
lasting SSL connections or for those that transfer a high quantity of data, it isagood ideato
replace the session key periodically. In general, the longer a session key exists, the more the
likelihood of key compromise increases. Using renegotiations, we can replace the session key so
that we don't encrypt too much data with just one key.

SSL renegotiations can occur during normal application data transfer. When the new handshake is
completed, both parties switch to using the new key. The function to request renegotiation on an
SSL connectionisSSL_renegotiate.

138

This function does not actually perform the new handshake when called; however, it setsaflag
that causes a renegotiation request to be sent to the peer. The request is sent out on the next call to
an 1/0 function on the SSL connection. An important point to consider isthat the peer has the
option of not renegotiating the connection. If the peer chooses not to respond to the request and to
continue transferring data instead, no renegotiation will occur; unless the requestor checks for
negotiation success, it may not have happened. Thisis especially important when making
applications that will connect with other non-OpenSSL SSL implementations.

A renegotiation can also be done explicitly. In other words, we will send arequest and not send or
receive application data until the new handshake has completed successfully. While thiswill
sometimes be the appropriate way to refresh session keys for long-term connections, it serves
another important purpose. It allows us to upgrade client authentication from the server side. For
instance, our example server above requires avalid client certificate to be presented in order for
theinitial connection to take place. Thisis overly restrictive since at connection time, we do not
know the client's intentions.

As an example, consider a simple protocol that allows clients to connect via SSL and send
commands to the server. A subset of these commands will be reserved for administrators. Our goal
isto alow anyone to connect to the server to run the general commands and allow only
administrators to run reserved commands. If we require all usersto present a certificate at
connection time, we must issue a certificate to every possible client and special certificates to
administrators. This can become cumbersome rather quickly. Alternatively, we can run two
servers, one for normal users and another for administrators. Thisis also a suboptimal solution
since it requires extra consumption of resources.

We can use renegotiations to make our job simpler. First, we will allow anyone to connect without
acertificate. When a client connects, it sends its command. If it's a reserved command, we require
arenegotiation with the more stringent requirements on the client in place. If the client
renegotiates successfully, we can accept the command, or otherwise discard it. Thus, we need to
issue certificates only to administrators. Thisoption is clearly better than the previous two since it
allows us to determine what the client is attempting before putting stronger authentication
requirementsin place.

5.2.3.1 Implementing renegotiations

Aswe've said before, to do apassive renegotiation (i.e., one in which the handshake occurs during
application 1/0) we need to call only SSL_renegotiate. In general, applications can get away
with having the handshake occur during application 1/0O, but making sure that it did indeed happen
isimportant. Unfortunately, thisisn't easy to do with OpenSSL Version 0.9.6. In fact, many
aspects of renegotiations don't work cleanly in this version. However, the forthcoming Version
0.9.7 promises to improve this considerably. These changes are described in the next section.

With Version 0.9.6, we should always use explicit renegotiation since there is no way to determine
if arenegotiation request was ignored by the peer. Thisisthe same problemwe find in
renegotiating client credentials, we will focus on determining if a request wasignored, sinceit is
far more common. Renegotiating for session key refreshment is a subset of this problem. Example
5-17 shows an incompl ete code fragment to force a renegotiation from a server.

Example 5-17. Code fragment to force a renegotiation from a server

/* assume ssl is connected and error free up to here */

set _blocking(ssl); /* this is unnecessary if it is already blocking
*/

SSL_renegotiate(ssl);

SSL_do_handshake(ssl);

if (ssl->state I= SSL_ST_OK)

ASW

int_error("Failed to send renegotiation request');
ssl->state |= SSL_ST_ACCEPT;
SSL_do_handshake(ssl);
if (ssl->state I= SSL_ST_OK)
int_error("'Failed to complete renegotiation™);
/* our renegotiation is complete */

This example uses some functions we've seen before. To avoid extra complication, we ensure the
SSL object is blocking so we don't need to retry failed 1/0O calls. The call to SSL_renegotiate
sends out the request to the peer. The function SSL_do_handshake is a generic routine that
callsthe accept function for server objects or the connect function for client objects. Thisfirst
call to SSL_do_handshake sends out our request and returns. After doing this, we need to check
that the SSL connection hasn't received any errors. We do this by making sure its state is
SSL_ST_OK. At this point, if we call the handshake function again, it will just return if the peer
chose not to renegotiate. This occurs because the SSL/TLS protocols allow requests to be ignored.
Since we have areason for renegotiating, and we need it to compl ete before continuing, we must
manually set the SSL_ ST ACCEPT state of the server object. Thiswill cause the subsequent call
to SSL_do_handshake, which will force a handshake to occur before continuing.

Obviousdly, this method of renegotiation isn't very clean because it requires us to set internal
variables of the SSL object manually. Unfortunately, it is the only way to accomplish aforced
renegotiation. This code fragment is not complete, though. Consider session caching, which
allows aclient to skip the handshake by resuming a previously created session. This can be
extremely bad when our purpose is to collect stronger client credentials since the client has
already obtained avalid session with weak credentials. When we attempt to renegotiate a
connection from a server that does session caching, we must take extra precautions that the client
doesn't simply present the previously negotiated session and bypass the handshake. To make this
discrepancy between the sessions, we need to change the session ID context. Recall that the
session ID context's function is to discern sessions established with clients for different purposes.
To change its value, we use the function SSL_set_session_id_context. It behaves exactly
asthe SSL_CTX version discussed above, except that it operates on SSL objects. The change to
the session ID context must be made before the renegotiation is started.

We haven't discussed the minor detail of setting stronger requirements for verification of the client
during renegotiation. To do this, we use the function SSL_set_verify and passit our new
verify flags. Example 5-18 shows the code fragment that must be built around the fragment shown
in Example 5-17 in order for the renegotiation to be effective. This fragment isfor a caching
server that wishes to upgrade client authentication; if our server isn't caching, we can omit the
callsto set the session ID context.

Example 5-18. Code to cause forced renegotiation in order to request stronger
client authentication and distinguish the sessions

/* assume ctx is an SSL_CTX object that is setup to not have any
verify
options. */
int normal_user = 1;
int admin_user = 2;
SSL_CTX_set_session_id_context(ctx, &normal_user, sizeof(int));
/* perform rest of ctx setup, create an ssl object, and connect it */
/* normal SSL 1/0 operations and application code go here */
/* 1if we want to upgrade client privilege, we enter the following
code block */
SSL_set_verify(ssl, SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
verify_callback);
SSL_set_session_id_context(ssl, &admin_user, sizeof(int));

140

/* code fragment from Example 5-18 goes here. the new session is
made */

post_connection_check(ssl, host);

/* if everything is error-free, we have properly authenticated the
client */

The code in Example 5-18 realizes the solution to the problem we laid out earlier for upgrading
client authentication. By changing the session context ID to admin_user, we allow clients
previously verified as admin users to resume connections, but no others. Thisis effective at
keeping resumed sessions from being mistaken as privileged sessions. In addition, we set the
verify options for the SSL object explicitly, forcing the renegotiation to demand a client certificate
or fail. After renegotiation is complete, we call the post-connection check function. In some cases,
we may want to tailor the post-connection function to meet application-specific needs.

5.2.3.2 Renegotiations in 0.9.7

Overal, renegotiation in Version 0.9.6 isinferior to the functions and simplicity that Version 0.9.7
promises. A new function has been added, SSL_regenotiate_pending. Thisfunction will
return nonzero if areguest is sent, but the handshake hasn't been finished. It will return zero once
the handshake is complete. Using this function, we can eliminate most of the ugliness associated
with renegotiationsin 0.9.6. Before looking at forced renegotiations, welll briefly return to passive
renegotiations.

In most applications, renegotiations for changing the session key rather than upgrading client
authentication are started by byte transfer thresholds. In other words, once our connection has
transferred a certain number of bytes, we will renegotiate. Because of this new function, we can
simply call SSL_renegotiate when the byte limit is reached. Then we periodically check the
value of SSL_renegotiate_pending to determineif the renegotiation completed. Doing this,
we can programmatically fail if the handshake isn't completed in a certain amount of time after the
request.

Furthermore, anew SSL option to aid us has been added in Version 0.9.7. By setting
SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION with acall to
SSL_CTX_set_options, we can automatically prevent clients from being able to resume
sessions when we ask for renegotiations, regardless of the session ID context. When our goal isto
refresh session keys, this option isinvaluable.

Using these two new additions will also allow us to make a much cleaner forced renegotiation for
client authentication. We can call SSL_renegotiate to set the flag and make asingle call to
SSL_do_handshake to send the request out. Instead of setting internal state of the SSL object,
we can now just call SSL_do_handshake until we either programmatically timeout or
SSL_renegotiate_pending returns zero. If the latter condition is met, our renegotiation
completed successfully. Ideally, we want to leave the session ID context changing and not set the
new SSL option when performing renegotiation for client authentication. This is better because it
allows authenticated users to resume authenticated sessions rather than always perform the full
handshake.

5.2.3.3 Further notes

We've limited our discussion of renegotiations to server-side implementation. In general,
applications will be made this way since servers dictate session caching, and a server amost
always presents credentials. However, it is possible for a client to request or force renegotiation,
though it is less common. Doing thisis alogical extension of the methods used by a server. We
now have a better understanding of renegotiations, why they occur, and why they're needed for
certain operations. Forcing arenegotiation to force the client to provide a certificate to continue
the connection is also a popular paradigm for implementing SSL applications. As we discussed

141

early in this section, the aternatives to renegotiation for accomplishing this task are often too
burdensome to be a general solution.

One major point that's been missing up to now is how to make an application react to
renegotiation requests. The good news here isthat it's all handled by the OpenSSL library for us.
Recall the complications with 1/0. The reason we had to handle all the different varieties of retries
isthat arenegotiation request could be received at any time. When an SSL connection is requested
to renegotiate, the implementation automatically does so and completes the new handshake to
generate a new session.

142

Chapter 6. Symmetric Cryptography

So far, we've discussed how to use the OpenSSL programmatic interface for securing arbitrary
TCP/IP connections using SSL. While SSL is a great general-purpose protocol, there are situations
in which it is not appropriate. For example, SSL can't be used to store encrypted data, such ason a
disk or in acookie, nor can it encrypt UDP traffic. In these cases, you should use the OpenSSL
API for symmetric cryptography.

As you have probably noticed, we've been careful to recommend using SSL instead of raw
cryptographic primitives for securing your applications if at all appropriate. We do this because it
isincredibly easy to apply cryptographic primitives in away that isinsecure. Even professional
cryptographic protocol designers have a hard time writing "secure” cryptographic protocols built
on these primitives, which is one reason peer-review is so important in the world of cryptography.

If you're planning to use this chapter to do real work, then we assume that you have some sort of
need that SSL cannoat fill, such aslong-term data storage. We recognize that many people will
want to design their own network protocols despite our recommendations. If you are considering
such an option, we strongly urge you to prefer well-respected protocols, and even pre-existing
implementations of those protocols, if possible. Nonetheless, this chapter is areference for the
basic API, and it is your responsibility to use that API in a secure manner.

6.1 Concepts in Symmetric Cryptography

Although we gave a brief overview of symmetric key cryptography in Chapter 1, there are some
additional things we should discuss as background material for the rest of this chapter. Certainly,
we don't wish to serve as a general-purpose textbook on cryptography. For such things, we
recommend other books, such as Bruce Schneier's Applied Cryptography (John Wiley & Sons).
For that reason, we'll avoid any topic that a devel oper need not care about, such as the internal
workings of ciphers. Anything related to the choices you need to make, however, isfair game.

6.1.1 Block Ciphers and Stream Ciphers

Only two types of symmetric ciphers exist that are well-respected and see any sort of widespread
use: block ciphers and stream ciphers. Block ciphers are traditionally the most popular. They
operate by breaking up data into fixed-size blocks, and then encrypting each block individually, in
which the encryption agorithm is areversible function of the input. Leftover datais traditionally
padded so that the length of the plaintext is a multiple of the cipher's block size. Stream ciphers
are essentially just cryptographic pseudorandom number generators. They use a starting seed asa
key to produce a stream of random bits known as the keystream. To encrypt data, one takes the
plaintext and simply XORs it with the keystream. Stream ciphers don't need to be padded per se,
though they are usually padded to byte-boundaries, since implementations usually operate on a
per-byte level instead of a per-bit level.

The best block ciphers are afar more conservative solution than stream ciphers because they are
better studied. Y et stream ciphers tend to be far faster than block ciphers. For example, RC4,
currently the most popular stream cipher, runs about 4 times faster than Blowfish, which is among
the fastest available block ciphers, and runs amost 15 times faster than 3DES, whichisavery
conservative cipher choice. AES isfaster than 3DES and has more security in terms of alonger
key size, but it is still generally slower than even Blowfish.

143

Neither block ciphers nor stream ciphers can give us perfect security, in which an attacker can
never recover a message as long as the communicating parties use the algorithm properly. For
each type of cipher, the security is, at best, afunction of the key length. It's always possible to
launch a brute-force attack, in which the attacker tries every possible key until the message
properly decrypts. If the key length is long enough, the attack will take so long on average as to be
infeasible in practice.

Even if there was no better attack on an individual cipher than brute force, there are other issues
that plague naive use of both types of cipher. Stream ciphers have the problem that a one-bit flip
of the ciphertext causes a one-bit flip in the decrypted plaintext. Obviously, stream ciphers need to
be supplemented with data integrity checks. For such purposes, we recommend message
authentication codes (MACs—see Chapter 8).

When used directly, block ciphers always encrypt a given block of datain the same way, and thus
do not effectively conceal patternsin a stream of data. An attacker can keep adictionary of known
plaintext blocks to known ciphertext blocks, which can often be useful in deciphering real
messages. Additionally, an attacker can easily substitute one ciphertext block for another, often
with great success. There are ways to use ciphers that can solve these problems to some degree,
which we discuss in the next section. Additionally, MACs can be used to thwart actual
modification attacks.

Stream ciphers are subject to asimilar, more serious problem. Once you start encrypting using a
given key, you must continue to generate new datain the keystream, or generate and exchange a
new key. If you start over using the same key, the security of the stream cipher is effectively lost.
The solution isto never reuse keys when using a stream cipher. Don't even use the same key
across reboots.

6.1.2 Basic Block Cipher Modes

OpenSSL implements four common modes for block ciphers. Each of these modes can be used
with every block cipher in the library, with the exception of DESX, which is defined as having
only asingle mode of operation.

e ECB (Electronic Code Book) mode is the basic mode of operation, in which the cipher
takes a single block of plaintext and produces asingle block of ciphertext. Data streams
are broken into blocks that are individually processed. Usualy, this mode is padded to
accommodate messages that aren't amultiple of the cipher's block size length (in fact, you
cannot avoid padding in OpenSSL prior to 0.9.7). Because of padding, the ciphertext can
be up to ablock longer than the plaintext. In addition, as previously mentioned, this mode
is highly susceptible to dictionary attacks. ECB is amost always the wrong mode for the
job, because it is so difficult to use securely. We strongly recommend that you not use it
under any circumstances, unless you really know what you're doing. The biggest
advantage of ECB over the other common modes is that messages can be encrypted in
parallel. However, thisis not an adequate reason to use ECB—an alternative mode that
allows for paralelization is counter mode, which we discuss later in this chapter.

e CBC (Cipher Block Chaining) mode essentially solves ECB's dictionary problem by
XORing the ciphertext of one block with the plaintext of the next block. Since block
ciphertexts are interdependent, parallelization isn't possible. CBC is still a block-based
mode, meaning that padding is generally used.

CBC mode can be used to encrypt multiple data streams. However, dictionary attacks are
possibleif the data streams have common beginning sequences. For that reason, it is
possible to set an initialization vector (IV), which isablock of data that gets XOR'd with
the first block of plaintext before encrypting that block. The value of the IV need not be
secret, but it should be random. The IV must be available to properly decrypt the
ciphertext.

144

e CFB (Cipher Feedback) mode is one way of turning ablock cipher into a stream cipher,
though a complete block of plaintext must be received before encryption can begin. This
mode isn't as prone to data manipulation attacks as most stream ciphers. Like CBC mode,
CFB mode can use an initialization vector. The IV is more important than in CBC mode,
because if two data streams are encrypted with the same key, and have the same IV, then
both streams can be recovered. In practice, avoid reusing the same key when using CFB
mode.

e OFB (Output Feedback) mode is another way of turning a block cipher into a stream
cipher. OFB mode works more like atraditional stream cipher than CFB mode, and is
therefore more susceptible to the same kind of bit-flipping attacks that affect stream
ciphers (generally not a problem if you use a message authentication code). A compelling
feature of OFB mode is that most of the work can be done offline. That is, you can
generate a keystream before there is even data available to encrypt, while you have spare
CPU cycles. The plaintext simply gets XOR'd into the keystream. OpenSSL doesn't
directly support keystream precomputation. OFB mode can also use an IV. Aswith CBC
mode, avoid using the same key to encrypt multiple data streams, particularly if you
always usethe same 1V.

6.2 Encrypting with the EVP API

The OpenSSL API for symmetric cryptography is vast. Each cipher has its own set of routines for
encryption and decryption. Fortunately, OpenSSL also provides asingle API that serves as an
interface to all symmetric encryption algorithms. the EVP interface, which can be accessed by
including openssl/evp.h. The EVP API provides an interface to every cipher OpenSSL exports.
Before using the EVP interface, we must know how to get areference to the different ciphers we
may wish to use. OpenSSL represents ciphers as data objects that generally get loaded behind the
programmer's back. When you wish to use a particular cipher, you simply request areferenceto
the object associated with that cipher. There are two common methods for doing this. First,
OpenSSL provides a method for each cipher in each mode of interest for that cipher, which loads
the cipher data object into memory if necessary. For example, we can use the following code to
get areference to the Blowfish-CBC cipher object:

EVP_CIPHER *c = EVP_bf cbc();

Second, OpenSSL provides the function EVP_get_cipherbyname, which returns the
appropriate cipher object given a string representation of the cipher configuration, or NULL if no
matching cipher is found. This function can be used only on cipher configurations that have
previously been loaded. Y ou can load al symmetric ciphers with the call
OpenSSL_add_all_ciphers, which takes no parameters.
OpenSSL_add_all_algorithms will aso do thetrick, but will load other kinds of
cryptographic algorithms. The problem with using these functions is that they cause al ciphersto
be linked into an executable at runtime, even when using dynamic loading. To avoid this overhead,
avoid those calls, and manually add ciphers that you wish to use. If you want to add a small set of
ciphersthat you can then look up by name based on dynamic information, you can use
EVP_add_cipher. For example:

EVP_add_cipher(EVP_bf cbc(Q);
6.2.1 Available Ciphers

OpenSSL provides implementations of an array of algorithms that meet most needs. The only
significant lack in some versionsis an implementation of the new Advanced Encryption Standard
(AES). AES is supported in the long-awaited 0.9.7 release.

145

In addition to the actua cipher algorithms that OpenSSL provides, the null cipher isalso
supported, which passes data through untouched. Y ou can access this cipher using
EVP_enc_null. Itisprimarily useful for testing the EVP interface, so you should generally
avoid using it in production systems.

6.2.1.1 AES
AES isthe new Advanced Encryption Standard, also occasionally called Rijndagl. It is available
only in OpenSSL Versions 0.9.7 or later. AES isablock cipher that supports key and block sizes

of 128, 192, and 256 hits. Unfortunately, as of thiswriting, OpenSSL does not provide support for
using AES in CFB or OFB modes. See Table 6-1.

Table 6-1. Referencing the AES cipher (OpenSSL 0.9.7 only)

Cipher mode | Key/block size | EVP call for cipher object String for cipher lookup

ECB 128 bits EVP_aes 128 ech() aes-128-echb
CBC 128 bits EVP_aes 128 cbc() aes-128-cbhc
[ECB 1192 bits [EVP_aes_192_ech() laes-192-ech
ICBC 1192 bits [EVP_aes_192_chc() laes-192-cbc
ECB 256 bits EVP_aes 256 _ecb() aes-256-ecb
CBC 256 bits EVP_aes 256 cbc() aes-256-cbc

6.2.1.2 Blowfish

Blowfishisablock cipher designed by Bruce Schneier of Applied Cryptography fame. This
algorithm has a good security margin and is the fastest block cipher OpenSSL provides. The key
length of Blowfish isvariable (up to 448 bits), but generally, 128-bit keys are used. The block-size
for this cipher isfixed at 64-bits. Its biggest drawback is that key setup timeis slow. As aresullt,
Blowfish isn't a good choice when many different keys are used to encrypt short dataitems. Table
6-2 gives details.

Table 6-2. Referencing the Blowfish cipher

Cipher mode EVP call for cipher object String for cipher lookup
ECB EVP_bT _ecb() bf-ecb
ICBC [EVP_bf_cbcQ bf-cbc
ICFB [EVP_bf_cfb() bf-cfb
(OFB [EVP_bf_ofb() bf-ofb
6.2.1.3 CASTS

The CASTS5 algorithm, authored by Carlisle Adams and Stafford Tavares, is another cipher with
variable-length keys and 64-bit blocks. The CAST5 specification allows for key lengths between 5
and 16 bytes (40 and 128 bits; keys must be a multiple of 8 bitsin length). OpenSSL defaultsto
using 128-bit keys. CAST isafast cipher with no known weaknesses. See Table 6-3.

Table 6-3. Referencing the CAST5 cipher

| Cipher mode | EVP call for cipher object | String for cipher lookup
[ECB [EVP_cast_ecb() cast-ecb
CBC EVP_cast_cbc(Q cast-cbc
CFB EVP_cast_cftb() cast-cfb
OFB EVP_cast_ofb() cast-ofb

146

6.2.1.4 DES

DES, the Data Encryption Standard, uses fixed 64-hit blocks and 64-bit keys. Eight bits are parity
bits, giving a maximum of 56 bits of strength. These days, the parity bits are usually completely
ignored. DES dates back to the mid-1970s and is certainly the most widely scrutinized symmetric
algorithm available. While no significant attacks better than brute force have ever been found,
brute forceisavery rea attack, since a 56-bit keyspace is widely considered too small.
Additionally, DES isthe slowest of the ciphers OpenSSL supports, except for more secure DES
variants. It isagood ideato avoid vanilla DES unless you are supporting legacy systems. See
Table 6-4.

Table 6-4. Referencing standard DES

| Cipher mode | EVP call for cipher object | String for cipher lookup
[ECB [EVP_des_ecb() des-ecb

ICBC [EVP_des_cbcQ) des-cbc

CFB EVP_des_cfb() des-cfb

OFB EVP_des_ofb() des-ofb

6.2.1.5 DESX

DESX isaDES variant that is resistant to brute-force attacks. It uses an additional 64 bits of key
material to obscure the inputs and outputs of DES. The extra key material isused in asimple and
efficient manner, resulting in a cipher that is not much slower than traditional DES, but is far more
resistant to brute-force attacks. In fact, a brute-force attack is infeasible with DESX without a
large number of known plaintexts. Other attacks against DESX may worry you if you think an
attacker might be able to get 2%° plaintext/ciphertext pairs. Usually, that's not much of aworry.
DESX runsonly in CBC mode.

When speed is important and cryptographic acceleration is an option, DESX shines, because most
such hardware supports DES (often exclusively), and DESX can be accelerated using standard
DES acceleration. Nonethel ess, triple DES offers a greater security margin, so is preferableif its
performance can be tolerated. See Table 6-5 for details.

Table 6-5. Referencing DESX

Cipher mode EVP call for cipher object String for cipher lookup

CBC EVP_desx_cbc() desx

6.2.1.6 Triple DES

Triple DES, often written as 3DES, is the most popular variant of DES and is probably the most
conservative symmetric cipher available, due to the wide scrutiny DES has seen in the past quarter
century. It is aso the slowest algorithm available, though acceleration hardware can help. With
3DES, encryption is performed by encrypting data using DES, "decrypting" the ciphertext using a
second key, then encrypting the data again, either with the original key (two-key 3DES) or with a
third key (three-key 3DES). Three-key 3DES is always a better choice than two-key, asit is more
secure and is no slower. The only drawback isthat it requires afew extrabits for storing the
additional key material. See Table 6-6.

Table 6-6. Referencing 3DES

\ Cipher mode | EVP call for cipher object \ String for cipher lookup
ECB (3 key) EVP_des_ede3() des-ede3
CBC (3 key) EVP_des_ede3_cbc() des-ede3-cbc

147

ICFB (3 key) [EVP_des_ede3_cfb() des-ede3-cfb

OFB (3 key) EVP_des_ede3_ofb() des-ede3-ofb
ECB (2 key) EVP_des_ede() des-ede

CBC (2 key) EVP_des_ede_cbc() des-ede-cbhc
CFB (2 key) EVP_des_ede_cfb() des-ede-cfb
(OFB (2 key) [EVP_des_ede_ofb() des-ede-ofb
6.2.1.7 IDEA

The IDEA cipher isagood al-around block cipher with 128-bit keys and 64-bit blocks. It is fast
and iswidely regarded as strong. Its major drawback isthat it is covered by patent in the U.S. and
Europe. Nonetheless, you can use the algorithm without paying a fee for noncommercial purposes.

IDEA isabout 10 years old and has seen afair amount of scrutiny. Bruce Schneier highly
recommends the algorithm in Applied Cryptography, and it is commonly used with PGP. Table 6-
7 gives more information.

Table 6-7. Referencing IDEA

Cipher mode EVP call for cipher object String for cipher lookup
ECB EVP_idea_ecb() idea-ecb
ICBC [EVP_idea_cbcQ) lidea-cbc
CFB EVP_idea_ctb() idea-cfb
OFB EVP_idea_ofb() idea-ofb
6.2.1.8 RC2™

The RC2 algorithm is a block cipher from RSA Labs.

RC2 supports variable-length keys up to 128 bytes. OpenSSL's implementation uses a default
length of 16 bytes (128 bits). There's an additional parameter for setting the "effective” key
strength. What this meansis you can take, say, a 128-hit key and cripple it to 40 bits worth of
security. We strongly recommend against using this parameter.

RC2 is efficient and has no significant published weaknesses. However, the algorithm has not
really seen agreat deal of scrutiny, particularly compared to DES and AES. Table 6-8 gives the
details.

Table 6-8. Referencing RC2

\ Cipher mode | EVP call for cipher object \ String for cipher lookup
ECB EVP_rc2_ecb() rc2-ecb

CBC EVP_rc2_cbc() rc2-cbhc

CFB EVP_rc2_cftb() rc2-cfb

OFB EVP_rc2_ofb() rc2-ofb

6.2.1.9 RC4™

RCA4 is astream cipher with variable-length keys that can be up to 256 bytes long. RC4 was
previously atrade secret but is now in common use due to the publication of areverse-engineered,
third-party implementation. If you use RC4 in acommercia product, RSA Security might come
after you legally, even though it would be unlikely to win. The name RC4 is also trademarked, and
you should consult RSA Security before using it.

148

RC4 isastream cipher and is blazingly fast compared to the available block ciphersin OpenSSL.
It's certainly the fastest algorithm currently implemented in OpenSSL. RC4 is aso well-regarded
as an agorithm. For this reason, and due to its widespread usein SSL, it's vastly popular, though it
iswidely used with insecure 40-bit keys.

RC4 is difficult to use well. The encryption algorithm itself is good, but some problems with the
way it sets up keys require carein using it. In particular, RSA Security recommends you take one
of the following two steps when using this algorithm:

1. Makesurethat al key material is cryptographically hashed before use. The problem
necessitating this solution is most prominent when frequently rekeying RC4. A common
approach to frequent rekeying is to use a base key, and then concatenate with a counter.
In RC4, that turns out to be a bad thing to do. If you take the key material and the counter
and hash them together to get the actual key, the weakness goes away. The general
recommendation of hashing all key material before useis a good one, no matter which
cipher you use in your applications.

2. Discard thefirst 256 bytes of the generated key stream before using it. The easy way to
do thisisto encrypt 256 bytes of random data and discard the results.

Additionally, as previously noted, it is particularly important to supplement use of RC4 with a
MAC to ensure dataintegrity. See Table 6-9 for more information.

Table 6-9. Referencing RC4

Key length EVP call for cipher object String for cipher lookup
40 bits EVP_rc4_400) rc4-40
128 bits EVP_rc4() rca

6.2.1.10 RC5™

RCS5 is another block cipher from RSA Security. Its name is trademarked, and its algorithm is
covered by an issued patent. Y ou should certainly contact RSA Security before using this
algorithm in any application.

RCS5 isinteresting because it is fast, well-regarded, and highly customizable. According to the
RCS5 specification, you can choose 64- or 128-bit blocks, use keys up to 255 bytesin size, and can
use any number of cipher rounds, up to 255. However, OpenSSL's implementation uses 64-bit
blocks and limits roundsto 8, 12, or 16, defaulting to 12. See Table 6-10.

Table 6-10. Referencing RC5

\Cipher mode \ Key bits\ Rounds\ EVP call for cipher object \ String for cipher lookup

ECB 128 12 EVP_rc5 32 16 12 ech() |rc5-ecb
CBC 128 12 EVP_rc5 32 _16_12 cbc() |rc5-cbc
CFB 128 12 EVP_rc5 32 16 12 cfb() |rch5-cfb
OFB 128 12 EVP_rc5 32 16 12 ofb() |rc5-ofb

Note that nondefault parameters to RC5 cannot currently be accessed through EVP calls or
through cipher lookup by name. Instead, you must first reference the default RC5 cipher object in
the correct mode, and then use other calls to set parameters, as described below.

6.2.2 Initializing Symmetric Ciphers

Before we can begin encrypting or decrypting, we must allocate and initialize a cipher context.
The cipher context is a data structure that keeps track of all relevant state for the purposes of

149

encrypting or decrypting data over a period of time. For example, we can have multiple streams of
data encrypted in CBC mode. The cipher context will keep track of the key associated with each
stream and the internal state that needs to be kept between messages for CBC mode. Additionally,
when encrypting with a block-based cipher mode, the context object buffers data that doesn't
exactly align to the block size until more data arrives, or until the buffer is explicitly flushed, at
which point the data is usually padded as appropriate.2!

M This happens only if padding is turned on, of course.

The generic cipher context typeis EVP_CIPHER_CTX. We can initialize one, whether it was
allocated dynamically or statically, by calling EVP_CIPHER_CTX_init, like so:

EVP_CIPHER_CTX *x = (EVP_CIPHER_CTX *)malloc(sizeof(EVP_CIPHER_CTX));
EVP_CIPHER_CTX_init(x);

After allocating the context object and initializing it, we must set up the cipher context. At this
point, we generally determine whether the particular context will be used for encrypting or
decrypting. It is possible to set up a context to do both, but it's a bad idea in any mode other than
ECB mode, because race conditions can easily occur that will desynchronize communication.
Essentialy, theinternal cipher state of the two communicating parties needs to remain
synchronized at al times. If both parties send data at the same time, they will likely end up trying
to decrypt the data they receive using an incorrect state.

When we set up a cipher context, we not only choose whether we're encrypting or decrypting, but
also do the following:

1. Choose the type of cipher we will be using, including the mode in which to use that
cipher. We will be passing an EVP_CIPHER object to an initialization routine.

2. Set the key to be used for operations by passing it to the initialization routine as an array
of bytes.

3. Specify aninitialization vector for the cipher, if appropriate for the mode. A default 1V
will be used if not otherwise specified.

4. If using the "engine" release, we can specify whether we want to use hardware
acceleration, if available. If we do, we must have previously specified an "engine" to use
that supports our hardware. Specifying NULL as an engine tells OpenSSL to use its
default software implementations. In 0.9.7, this functionality will be part of the library
proper.

EVP_EncryptlInit isthe preferred method for setting up a cipher context for encryption. For
decryption, itisEVP_DecryptlIni t. Both of these methods have the same signature, which
includes four parameters.

int EVP_Encryptlnit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
unsigned char *key, unsigned char *iv);

int EVP_Decryptlnit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
unsigned char *key, unsigned char *iv);

ctx

The EVP cipher context object to use.
type

The cipher to use.
key

150

The key to use for encrypting or decrypting.

The initialization vector to use.

Notice that the engine package prefers an extended API, EVP_Encryptlnit_ex and
EVP_DecryptlInit_ex, which inserts afifth argument before the key that is a pointer to the
engine to use; it should be NULL when no hardware acceleration is being used. When Version
0.9.7 of OpenSSL isreleased, these versions of the calls will be the preferred API. When using
engines, many calls can fail, so check error codes. We don't do this because we don't use the
ENGINE API in our examples.

Let's consider an example in which we try to encrypt using Blowfish with 128-hit keysin CBC
mode. CBC mode can use an initialization vector, which is always the size of one block (in this
case, 8 bytes). We will use the OpenSSL pseudorandom number generator to provide a randomly
generated key; however, distributing that key is not really covered in this example. For now, welll
assume that you will do it offline, perhaps by exchanging a disk, or reading the key over the phone
(key exchange protocols are discussed in Chapter 8). To that end, we do print out the key to
stdout in hexadecimal format. Note that doing thisis not really the best idea for real applications.
Example 6-1 shows how to do this.

The following are the declarations for these functions.
int RAND bytes(unsigned char *buf, int num);
int RAND pseudo_bytes(unsigned char *buf, int num);

Thefirst of these functions writes num bytes of cryptographically strong random bytes into the
memory at buT. The second function does precisely the same thing except that the random bytes
provided are not necessarily unpredictable. The latter function is not suitable for cryptographic
needs (it is no more secure than functions like rand).

For more information on these functions, see the man page for RAND_bytes here.
Example 6-1. Preparing to use Blowfish in CBC mode for encryption

#include <openssl/evp.h>

void select_random_key(char *key, int b)

L
int i;
RAND_bytes(key, b);
for (i =0; 1 <b-1; i++t)
printf("'%02X:", key[i]);
printf('%02X\n"", key[b - 1]);

void select_random_iv(char *iv, int b)

RAND_pseudo_bytes(iv, b);
}

int setup_ for_encryption(void)

{

151

EVP_CIPHER_CTX ctx;
char key[EVP_MAX_KEY_LENGTH];
char iv[EVP_MAX_IV_LENGTH];

iT (Iseed_prngQ))

return O;
select_random_key(key, EVP_MAX_KEY_LENGTH);
select_random_iv(iv, EVP_MAX_1V_LENGTH);
EVP_Encryptlnit(&ctx, EVP_bf cbc(), key, i1v);
return 1;

}

Note that multiple implementations of the seed_prng function are provided in Chapter 4. It
returns O if the pseudorandom number generator cannot be seeded securely. We return an error
status from our setup function in this case, so we don't need to check the return value of
RAND_pseudo_bytes whenwe cal it. Also, you may want to use raw entropy. See Chapter 4
for more information.

Ancther thing to note is that the party decrypting the data will need to initialize its cipher context
with the same initialization vector created here. Passing the initialization vector in the clear is OK,
but it should probably be MAC'd so that the receiver can detect tampering. If NULL is passed in
for an IV, an array filled with zeros is used. Note that 1V's can be used in all modes except ECB. In
ECB mode, you can still passin an IV, but block cipherswill ignoreit.

Setting up for decryption is generally easier, because we aready know the key and the IV used.
Example 6-2 shows how to set up for decryption under the same configuration.

Example 6-2. Preparing to use Blowfish in CBC mode for decryption

#include <openssl/evp.h>
void setup_ for_decryption(char *key, char *iv)
EVP_CIPHER_CTX ctx;

EVP_DecryptInit(&ctx, EVP_bFf cbc(), key, iv);
}

Subsequent callsto EVP_Encryptlinit or EVP_DecryptlInit will change the value of any
non-null parameter as long as the cipher type parameter is set to NULL. Otherwise, the context is
completely reinitialized. Additionally, the key and the IV can both be set to NULL on the first call
to these functions, and set separately later. This is necessary when you specify a cipher and then
change the key length from the default. Of course, you will need to at |east provide avalid key
before encryption begins.

6.2.3 Specifying Key Length and Other Options

Many cipherstake a variable key length, which can be easily set after initialization using the call
EVP_CIPHER_CTX_set_key_length. For example, we can set the Blowfish key length to 64
hits, as follows:

EVP_Encryptinit(&ctx, EVP_bf ecb(), NULL, NULL);
EVP_CIPHER_CTX set_key length(&ctx, 8);
EVP_Encryptlnit(&ctx, NULL, key, NULL);

152

In this case, we set the key with asecond call to EVP_EncryptlInit after we specify the key
length.

When using this functionality, make sure you only set the key length to avalid value for the cipher.
If we wish to check the default key length of a cipher object, we can use the call
EVP_CIPHER_key_length. For example, the following will show us the default key length for
Blowfish:

printf("'%d\n"", EVP_CIPHER key length(EVP_bT ecb());

We can a so check to see the length of the keys a cipher context is using:

printf("'%d\n", EVP_CIPHER_CTX_key length(&ctx));

For other cipher parameters, OpenSSL provides ageneric call, EVP_CIPHER_CTX_ctrl.
Currently, this call can only set or query the effective key strength in RC2 or the number of rounds
used in RC5.

int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void
*ptr);

ctx

The cipher context object.

type
The operation to perform, which can be one of the following constants:
e EVP_CTRL_GET_RC2 KEY_BITS
e EVP CTRL_SET RC2 KEY_BITS
e EVP _CTRL_GET_RC5 ROUNDS
e EVP_CTRL_SET _RC5 ROUNDS
arg
The numerical value to set, if appropriate. If not appropriate, its value isignored.
ptr

A pointer to an integer for querying the numerical value of a property.

For example, to query the effective key bits in an RC2 cipher context, storing the result in a
variable called kb:

EVP_CIPHER_CTX_ ctrl(&ctx, EVP_CTRL_GET _RC2_KEY _BITS, 0, &kb);
And to set the effective key strength of RC2 to 64 hits:
EVP_CIPHER_CTX_ ctrl(&ctx, EVP_CTRL_SET RC2_KEY_BITS, 64, NULL);

Setting and querying RC5 rounds works the same way. Remember from our previous discussion
that OpenSSL islimited to 8, 12, or 16 rounds for RCS5.

153

Ancther desirable option to set in a cipher context is whether padding is used. Without padding,
the size of the ciphertext will always be the same size as the plaintext. On the downside, the length
of the data encrypted must be an exact multiple of the block size. With padding, any length in
bytesisfeasible, but the resulting ciphertext can be up to a block longer than the plaintext.
Unfortunately, OpenSSL versions through 0.9.6¢ do not alow padding to be disabled. This
changesin Version 0.9.7, which has afunction called EVP_CIPHER_CTX_set_padding that
takes a pointer to a cipher context, and an integer that represents a Boolean value (0 for no
padding, 1 for padding).

6.2.4 Encryption

Once the c ipher context isinitialized, there are two steps to encryption with the EVP interface:
updating and finalization. When you have data to encrypt, you pass the data to the update function,
along with a pointer to where you'd like any output to go. There may or may not be output as the
result of an update. If the cipher can encrypt one or more entire blocks of data, it will do so. Any
leftover datawill be buffered and processed either during the next call to the update function or
during the call to finalize. When calling finalize, any leftover datais padded and encrypted. If
there is no leftover data, ablock of pad is encrypted.’2! Aswith updating, you must tell the routine
where to store resulting data.

2 For the curious, here is how standard (PKCS) padding works. If n bytes of padding are needed,
then n is used as the value of each byte. For example, the value of a one-byte pad (expressed in
hexadecimal) is Ox01, and the value of an eight-byte pad is 0x0808080808080808. This way, the
extent of the pad can be calculated unambiguously by looking at the last byte of the padded
plaintext.

The update function isEVP_EncryptUpdate.

int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int
*outl,

unsigned char *in, int inl);
ctx

The cipher context to use.

out

A buffer that will receive the encrypted data.
outl

Receives the number of bytes written to the encrypted data buffer.
in

A buffer that contains the data to be encrypted.

Specifies the number of bytes contained in the input data buffer.

When using a block-based cipher mode (ECB or CBC), the amount of output written can be both
larger and smaller than the length of the input, due to internal buffering and padding. If you're
using a cipher with 8-byte (64-bit) blocks, the output could be up to 7 bytes smaller than the input,
or up to 7 bytes larger.2! If you are encrypting incrementally with a single key, and are producing

154

packets of data, thisis good to keep in mind. If, instead, you're encrypting to asingle buffer, you
will always avoid overflow by making the output buffer an entire block bigger than the input
buffer (the extra block may fill with padding). Optionally, you can manually keep track of exactly
how much datawill be output as a function of how much data was input.

3] Actually, the current implementation limits the output to six bytes longer than the input. However,
you should not count on that behavior.

The finalization functionisEVP_EncryptFinal.

int EVP_EncryptFinal (EVP_CIPHER _CTX *ctx, unsigned char *out, int
*outl);
ctx

The cipher context to use.
out
A buffer that will receive the encrypted data.
outl
Receives the number of bytes written to the encrypted data buffer.

Currently, this function always outputs. However, in the forthcoming 0.9.7 release it will not place
anything in the output buffer at all if padding is turned off. In such a case, if thereis any buffered
data, the function returns an error. Additionally,Version 0.9.7 addsan EVP_EncryptFinal_ex
call that should be used when a context has been initialized by EVP_Encryptlinit_ex.

Example 6-3 shows the implementation of a function that takes a pointer to an initialized EVP
cipher context, abuffer to encrypt, an associated length, and a pointer to an integer. The function
then encrypts the data 100 bytes at a time into a heap-allocated buffer, which isthe function's
return value. The length of the resulting ciphertext is passed back in the address specified by the
final parameter.

Example 6-3. Encrypting plaintext 100 bytes at a time

#include <openssl/evp.h>

char *encrypt_example(EVP_CIPHER _CTX *ctx, char *data, int inl, int
*rb)
{

char *ret;

int i1, tmp, ol;

ol = 0;

ret = (char *)malloc(inl + EVP_CIPHER _CTX block _size(ctx));
for (i = 0; 1 < inl / 100; 1i++)

EVP_EncryptUpdate(ctx, &ret[ol], &tmp, &data[ol], 100);
ol += tmp;

}
if (inl % 100)
{

EVP_EncryptUpdate(ctx, &ret[ol], &tmp, &datafol], inl%100);
ol += tmp;

155

EVP_EncryptFinal (ctx, &ret[ol], &tmp);
*rb = ol + tmp;
return ret;

}

Factoring in the block length (done by calling EVP_CIPHER_CTX_block_size) isunnecessary
when using a stream cipher, or when using the CFB or OFB cipher modes, since there is no
padding in those cases. As aresult, the cipher can output encrypted data as needed, without having
to buffer any plaintext.*!

t4] Strictly speaking, this isn't entirely true in CFB mode because the first block can be buffered.

The above example works well when we can afford to encrypt everything into a single buffer
before processing the ciphertext. It doesn't work so well if we need to deal with ciphertext
incrementally. For example, we might wish to send blocks of data as quickly as possible, and not
wait for all datato be processed. Example 6-4 shows a solution for such a scenario. Data to be
encrypted issent to incremental _encrypt as needed. When there's data to be sent,
incremental_encrypt cals incremental _send, which issimply astub, but it can place
those blocks currently encrypted on the network. When all data to be encrypted has been passed to
incremental_encrypt, then incremental_finishiscaled.

Example 6-4. Performing incremental encryption

#include <openssl/evp.h>

int incremental_encrypt(EVP_CIPHER CTX *ctx, char *data, int inl)
{

char *buf;

int ol;

int bl = EVP_CIPHER_CTX_block_size(ctx);

/* Up to the block size - 1 chars can be buffered up. Add that
to the length
* of the input, and then we can easily determine the maximum
number of
* blocks output will take by integer divison with the block size.
*/
buf = (char ®malloc((inl + bl - 1) /7 bl * bl);
EVP_EncryptUpdate(ctx, buf, &ol, data, inl);
if (ol)
incremental_send(buf, ol);
/* incremental_send must copy if it wants to store. */
free(buf);
return ol;

}

/* Also returns the number of bytes written. */
int incremental_finish(EVP_CIPHER _CTX *ctx)
{

char *buf;

int ol;

buf = (char *)malloc(EVP_CIPHER_CTX block_size(ctx));
EVP_EncryptFinal(ctx, buf, &ol);
it (ol)
incremental_send(buf, ol);
free(buf);
return ol;

156

Note that the number of byteswritten by EVP_EncryptFinal should always be 8 when using
64-bit blocks and when padding is enabled.

6.2.5 Decryption

As expected, the decryption API looks similar to the encryption API. After cipher initialization,
two methods are involved, EVP_DecryptUpdate and EVP_DecryptFinal. You can pass as
much data as you want into EVP_DecryptUpdate.

When using a block-based mode (ECB or CBC), you can passin partial blocks of text, but
EVP_DecryptUpdate will output only whole blocks. The rest will be stored until there is more
datato be processed, or until EVP_DecryptFinal iscalled. Moreover, if the context's cached
ciphertext plus the length of the new ciphertext is exactly block-aligned, the entire final block will
be held in the context instead of getting output. With CFB and OFB modes and with stream
ciphers, there's no padding, so the size of the resulting ciphertext will be equal to the size of the
plaintext.

If using a block-based mode, EVP_DecryptFinal first checksto seeif the padding on the last
block isin the right format. If not, the function returns O, signifying failure. Otherwise, it flushes
any remaining data to the buffer passed in as the second argument, and writes the number of bytes
flushed into the third argument, a reference parameter. For other modes, this call does nothing.

Example 6-5 shows a simple function that decrypts a block of encrypted text into a dynamically
allocated buffer and returns it. This function can be used to incrementally decrypt, and thus
requires EVP_DecryptFinal to be called when a block-based mode is used. Of course,
EVP_DecryptlInit should aways be called before passing a context to this function.

Example 6-5. Decrypting ciphertext

char *decrypt_example(EVP_CIPHER _CTX *ctx, char *ct, int inl)

{
/* We"re going to null-terminate the plaintext under the
assumption it"s
* non-null terminated ASCII text. The null can be ignored
otherwise.
*/
char *pt = (char *)malloc(inl + EVP_CIPHER CTX block _size(ctx) +
1);

int ol;

EVP_DecryptUpdate(ctx, pt, &ol, ct, inl);
it (lol) /* there"s no block to decrypt */

{
free(pt);
return NULL;

¥
pt[ol] = O;
return pt;

}

Asisthe case with encryption, factoring in the cipher's block length is strictly only necessary
when using a block-based cipher mode.

Using the above function, and the ones we previously developed, let's look at Example 6-6, which

encrypts a 15-byte string using Blowfish in CBC mode, then passesit into decrypt_example in
two parts. Note, we use the macro EVP_MAX_BLOCK _LENGTH, which existsonly in 0.9.7 and

157

later. If you are using an earlier version of OpenSSL, you can define this macro to the value "64",
which isthe largest possible block size in 0.9.6¢ and earlier.

Example 6-6. Using the example encryption and decryption functions

int main(int argc, char *argv[])

{
EVP_CIPHER_CTX ctx;
char key[EVP_MAX_KEY_LENGTH];
char iv[EVP_MAX_ IV_LENGTH];
char *ct, *out;
char final [EVP_MAX BLOCK LENGTH];
char str[] = "12345678%abcdef";
int i;

if (Iseed_prng())
{
printf("'Fatal Error! Unable to seed the PRNG!I\n™);

abort();
}

select_random_key(key, EVP_MAX_KEY_LENGTH);
select_random_iv(iv, EVP_MAX_IV_LENGTH);

EVP_Encryptlnit(&ctx, EVP_bf cbc(), key, i1v);
ct = encrypt_example(&ctx, str, strlen(str), &i);
printF('Ciphertext is %d bytes.\n", i);

EVP_Decryptlnit(&ctx, EVP_bf cbc(), key, iv);
out = decrypt_example(&ctx, ct, 8);
printf('Decrypted: >>Y%s<<\n", out);
out = decrypt_example(&ctx, ct + 8, 8);
printf('Decrypted: >>%s<<\n", out);
iT (IEVP_DecryptFinal(&ctx, final, &i))
{
printf("'Padding incorrect.\n");
abort();
}
final[i] = O;
printf("'Decrypted: >>Y%s<<\n", final);
}

If we run this example, the first time we try to output decrypted plaintext, we will see nothing,
even though we fed the decryption routine a full block of data. Note that when we feed the
remainder of the data, we are passing in eight bytes, because the encryption routine padded the
datato ablock-aligned length. At that point, one block will be output, and the second block will
be held in reserve until there is more data, or until EVP_DecryptFinal iscaled.

If we were to change the cipher to RC4, the above example would compile, but give slightly
incorrect output. The length of the encrypted text would be 15 bytes, not 16, due to the lack of
padding. As aresult, passing in 16 bytes of ciphertext to the decrypt routine will cause a block of
garbage to be decrypted. Changing the third argument in the second call to decrypt_example
to seven fixes the problem.

6.2.6 Handling UDP Traffic with Counter Mode

It isamost never desirable to use ECB mode for encryption. Schneier recommendsit for
encrypting other keys or other situations in which the data is short and random. However, this

158

advice applies only when the key length is no larger than the cipher block length. Additionally, if
you wish to include an integrity check alongside your data (which is almost always a good idea),
ECB again becomes undesirable.

Anather occasion when people think to use ECB iswhen encrypting datagrams to be sent over a
UDP connection. The problem is that packets may show up out of order, or not at all. All basic
cipher modes besides ECB require an ordered, reliable stream of data.

CBC mode is much better suited to handling UDP traffic. A single key can be used to encrypt all
data, but each packet getsinitialized with arandomly chosen IV, which can be sent alongside the
encrypted data.

Counter mode is dightly better suited than CBC for encrypting UDP traffic. One advantage of
counter mode over OFB and other modes that simulate stream ciphersisthat it can inherently
survive dataloss—the current state of the counter can be passed in the clear each time a packet is
sent. Another major advantage of counter modeisthat it allows for parallelization, which is not
supported by any of the default modes, except for ECB (a CBC-based approach could parallelize
at the packet level, but could not parallelize the processing of datawithin a single packet). Another
feature unique to OFB is that most of the work can be done offline. That is, you can generate a
keystream before there is even data available to encrypt, while you have spare CPU cycles.

Additionally, because counter mode essentially supports arbitrarily jumping around a data stream,
it can enable file encryption where random access to the data is still possible. Moreover, in theory,
counter mode should be able to handle the UDP encryption problem without arekey for every
packet. However, current limitations of the OpenSSL library make that goal difficult to achieve,
although the forthcoming 0.9.7 release will fix the problem.

OpenSSL currently doesn't support counter mode, but it is simple to implement yourself. Counter
mode effectively turns a block cipher into a stream cipher. For each block of plaintext, we encrypt
a counter of exactly one block in length, which gets XOR'd with the corresponding block of
plaintext. Then, the counter isincremented in some way. Increasing the counter by one or using a
PRNG to increment the counter both work. The PRNG doesn't even need to be cryptographically
secure, though it must not repeat items before enumerating all possible values.

We can prevent the attacker from seeing the counter if need be. Let's say that, in addition to an
agreed-upon key, we share a second secret of the same length. Additionally, a sequence number is
sent in the clear with each packet. To generate the counter used to encrypt the first data block in
that packet, we concatenate the second shared secret with the sequence number, and
cryptographically hash that. We show how to use cryptographic hashes in Chapter 7.

Counter mode is easily implemented by keeping track of a counter that is encrypted in ECB mode
once for each block. In our UDP example, each packet would have several blocks. Only one
counter should need to be sent per packet, because the receiving end should be able to recreate the
counter values for the subsequent blocks.

Example 6-7 shows an implementation of counter mode that will work for any cipher in ECB
mode. Thereisjust one function, counter_encrypt_or_decrypt, as encryption and
decryption are identical in counter mode.

int counter_encrypt_or_decrypt(EVP_CIPHER_CTX *ctx, char *pt, char
*ct, int len,

unsigned char *counter);
ctx

The cipher context to use.

pt

A buffer containing the data to be encrypted or decrypted.

ct

A buffer that will contain the encrypted or decrypted data.
len

The number of bytes from the input buffer, pt, to process.
counter

The counter.

In this example, the counter must be the same size as the block size of the cipher we're using (we
guery the cipher's block size to specify that value). Cipher block sizes are usually bigger than 32
bits, so it is best to represent the counter as an array of unsigned bytes. This function also modifies
the counter in place as it processes blocks. To increment the counter, we simply increment the
leftmost byte until it rolls over, at which point we increment the byte next to it, and so on. Note
that it's extremely important not to reuse counter values with a single key, not even across a reboot.
If thereis any chance of reusing a counter, be sure to change the key.

The next function will return -1 if it determines that the cipher is not in ECB mode (we need to use
this mode in order to implement counter mode; do not take this example as an endorsement of
ECB in general). Thisis accomplished by calling EVP_CIPHER_CTX_mode, which returns a
number. If that number is equal to the constant EVP_CIPH_ECB_MODE, then we know the cipher
was initialized improperly. See the documentation on the book's web site for alist of other valid
mode constants.

Note that the code in Example 6-7 should not be used without also using aMAC to provide data
integrity, as discussed in Chapter 7.

Example 6-7. Encryption and decryption using counter mode

int counter_encrypt_or_decrypt(EVP_CIPHER_CTX *ctx, char *pt, char
*ct, int len,

unsigned char *counter)
{

int 1, j, where = 0, num, bl = EVP_CIPHER_CTX block_size(ctx);
char encr_ctrs[len + bl]; /* Encrypted counters. */

if (EVP_CIPHER_CTX_mode(ctx) != EVP_CIPH_ECB_MODE)
return -1;
/* <= is correct, so that we handle any possible non-aligned data.
*/
for (i =0; i <=1len / bl; i++)
{
/* Encrypt the current counter. */
EVP_EncryptUpdate(ctx, &encr_ctrs[where], &num, counter, bl);
where += num;
/* Increment the counter. Remember it"s an array of single
characters */
for (J = 0; J < bl / sizeof(char); j++)
{
it (++counter[jl)

160

break;

}

/* XOR the key stream with the first buffer, placing the results
in the
* second buffer.
*/
for (i = 0; 1 < len; 1i++)
ct[i] = pt[i] » encr_ctrs[i];
return 1; /* Success. */

}

As we discussed, the above example requires the state of the counter to be kept externally.
Another option isto make a COUNTER_CTX data type that could hold a pointer to the underlying
cipher context and the current state of the counter. However, this less-abstract APl makesit easier
to use in a situation in which the counter may need to be reset explicitly after desynchronization,
such as when dealing with UDP traffic.

6.3 General Recommendations

So far, we have looked at how to use the EVP API to perform encryption and decryption. While
we've examined some basic examples, we haven't looked at real-world examples. The primary
reason is that we don't recommend using symmetric key encryption without aMAC; in cases
where an attacker has read access to data, you should be worried about her also gaining write
access. Therefore, we give real-world examples of using encryption along with MACsin Chapter
7.

When you do use MACs, use them with independent keys (that is, do not MAC with your
encryption keys) and use them to validate al of the data, including anything sent in the clear. In
particular, when using counter mode, make sure to include the counter value in the data that you
include in the MAC calculation.

Extending this recommendation, whenever you design protocols based on encryption, avoid any
communication in plaintext at all, and MAC anything that does need to be plaintext. In particular,
if you do plaintext protocol negotiation before a key exchange, you should MAC the payloads of
each message in the negotiation, so that after akey is agreed upon, both sides can validate the
negotiation. For example, let's say that a client connects to the server and immediately asks to
speak Version 2 of protocol X, and receives a response saying the server speaks only the insecure
Version 1. If it turns out that a man in the middle told the server the client wanted Version 1, and
fakes the response from the server, then neither the client nor the server would notice, and would
wind up speaking an insecure version of the protocol.

Ancther recommendation isto design your protocol to be fault-tolerant. In particular, when using
MACsto validate messages, be prepared to perform reasonable error handling if the data doesn't
authenticate on the receiving end. If your protocol failsin such a situation, denial of service
attacks will be quite easy.

Finally, be sure to protect yourself against dictionary and capture-replay type attacks. One thing
you can do is add sequence numbers to the beginning of each message. It's also a good idea to
place unique information per-user or per-connection near the beginning of each message.

161

Chapter 7. Hashes and MACs

In the previous chapter, we looked at the most fundamental part of OpenSSL's cryptography
library, symmetric ciphers. In this chapter, we look at the API for cryptographic hashing
algorithms, also commonly called message digest algorithms or cryptographic one-way hash
functions. Additionally, we will examine OpenSSL's interface to message authentication codes
(MACs), aso known as keyed hashes.

7.1 Overview of Hashes and MACs

We introduced the basic concepts behind cryptographic hashes and MACs in Chapter 1. Here, we
describe the fundamental properties of these cryptographic primitives that you should understand
before integrating them into your applications. As mentioned in Chapter 6, we provide only the
minimum background information that you need to understand as a developer. If you need more
background, or would like to see under the hood of any of the algorithms we discuss, refer to a
general-purpose cryptography reference, such as Bruce Schneier's Applied Cryptography.

Cryptographic one-way hashes take arbitrary binary data as an input and produce afixed-size
binary string as an output, called the hash value or the message digest. Passing the same message
through a single hash function always yields the same result. There are several important
properties exhibited by cryptographic message digests. First, the digest value should contain no
information that could be used to determine the original input. For that to be true, a one-bit change
in the input data should change many bitsin the digest value (on average, half). Second, it should
be extremely difficult to construct a second message that yields the same resulting hash value.
Third, it should also be difficult to find any two messages that yield the same hash value.

The most conservative characterization of the security afforded by a given hash function is
measured by how hard it isto find two arbitrary messages that yield the same hash value.
Generally, the security of a well-respected hash function that has a digest size of n bits should be
about as secure as a well-respected symmetric cipher with half as many bits. For example, SHA L,
which has a 160-hit digest size, is about as resistant to attack as RC5 with 80-bit keys. Some uses
of these algorithms give security equal to their bit length that's just a good, conservative metric.

People frequently use cryptographic hash functions that they believe provide security, but that
don't really provide very much. For example, it is common to rel ease software along with an MD5
digest of the software package (MD5 is a common cryptographic hash function). The intention is
to use the digest as a checksum. The person downloading software should also obtain the MD5
digest, and then calculate the digest himself on the downloaded software. If the two digests match,
it would indicate that the downloaded software is unaltered.

Unfortunately, there are easy ways to attack this scheme. Suppose an attacker has maliciously
modified a copy of the distribution of software package X, resulting in package Y. If the attacker
can break onto the server and replace X with Y, then certainly, the checksum MD5(X) isaso
easily replaceable with the checksum MD5(Y). When auser validates the downloaded checksum,
he will be none the wiser. Even without access to the actual server, attackers could replace X with
Y and MD5(X) with MD5(Y) as they traverse the network.

The fundamental problem is that nothing in this scenario is secret. A much better solution for this
kind of scenario isadigital signature, which anyone can verify, but only someone with the correct
private key can generate (see Chapter 8).

162

Hash functions by themselves aren't often good for security purposes. The major exception is
password storage. In such a situation, passwords are not stored, only hashes of passwords are
stored, usually combined with a known "salt" value to avoid dictionary attacks in cases where the
password database is stolen. When a user triesto log in, the hash of the entered password is
compared against the one stored in the password database. If it's the correct password, the hashes
will beidentical.

Even this scenario works only if atrusted data source collects the authentication information
through atrusted data path. If a client computes the hash and sends it in the clear over a network,
an attacker can capture the hash and replay the information later to log in. Worse, if the server
computes the hash, but the client sent the password in the clear over a network, an attacker could
capture the transmission of the password.

One common use of hashesis as primitives in other cryptographic operations. For example, digita
signature schemes generally work by hashing the input, then encrypting the hash with a private
key. Doing so is generally far more efficient than performing public key encryption on alarge
input. Another frequent use is to remove any trace of patterns in data such as cryptographic keys.
For example, you should hash your key material to make an RC4 key, instead of using the key
material directly.

Anather use of hashes is to ensure the message integrity of encrypted data, by encrypting the hash
of amessage along with the message itself. Thisis a primitive version of a message authentication
code (MAC). A MAC generally uses aregular hash function as a primitive. The MAC algorithm
produces a hash value from the data to protect a secret key. Only people with the correct secret
key can forge the hash value, and only people with the secret key can authenticate the hash value.

One good thing about MACs is that they can provide integrity, even in the absence of encryption.
Ancther good thing is that the best MACs tend to have provable security properties under
reasonabl e assumptions about the strength of the hash algorithm in use. The algorithm we just
described as an example doesn't have either of these advantages.

Like other cryptographic primitives, you should avoid creating your own MAC algorithm, even if
it seems easy. There are good a gorithms with provable properties, such asHMAC, which is
currently the only MAC provided by OpenSSL. Why take the risk?

7.2 Hashing with the EVP API

Much like with symmetric cryptography, OpenSSL's cryptographic library has an API for each
hash algorithm it provides, but the EVP API provides asingle, ssmple interface to these algorithms.
Just as with symmetric key encryption, there are three calls, one for initialization, one for
"updating” (adding text to the context), and one for finalization, which yields the message digest.

At initialization time, you must specify the algorithm you wish to use. Currently, OpenSSL
provides six different digest algorithms: MDC2, MD2, MD4, MD5, SHA 1, and RIPEMD-160.
Thefirst four have digest sizes that are only 128 bits. We recommend that you avoid them except
to support legacy applications. In addition, there are known attacks on MD4, and it iswidely
considered to be a broken algorithm. SHA1 is more common than RIPEM D-160 and is faster, but
the latter is believed to have adlightly better security margin.

For each digest, at least one function returns an instance of the algorithm. Look up algorithms by
name by calling OpenSSL_add_all_digests and EVP_get_digestbyname, and passing in
an appropriate identifier. In both cases, a data structure of type EVP_MD represents the algorithm.
Table 7-1 shows all of the message digest algorithms supported by OpenSSL, including the EVP

163

call to get areference to the algorithm, the digest name for lookup purposes, and the size of the
resulting digests.

Table 7-1. Message digests and the EVP interface

Hash algorithm | EVP call for getting EVP_MD | String for lookup | Digest length (in bits)
MD2 EVP_md2() md2 128
MD4 EVP_md4() md4 128
MD5 EVP_md5() md5 128
MDC2 EVP_mdc2() mdc2 128
EVP_shal() shal
SHA1 160
EVP_dss1() dssl
RIPEMD-160 [EVP_ripend1600) [ripemd 160

The MDC2 agorithm is a construction for turning a block cipher into a hash function. It is usually
used only with DES, and OpenSSL hardcodes this binding. The SHA 1 and DSS1 algorithms are
essentially the same; the only difference isthat in adigital signature, SHA1 is used with RSA keys
and DSS1 is used with DSA keys.

The EVP_DigestlInit functioninitializes a context object, and it must be called before a hash
can be computed.

void EVP_DigestInit(EVP_MD_CTX *ctx, const EVP_MD *type);
ctx

The context object to beinitialized.

type

The context for the message digest algorithm to use. This valueis often obtained using
one of the EVP calls listed in Table 7-1.

The OpenSSL "engine" package and the forthcoming Version 0.9.7 have a preferred version of
this call named EVP_DigestlInit_ex, which adds athird argument that is a pointer to an engine
object. Passing in NULL will get you the default software implementation. Its return value is also
different; it is an integer indicating success (nonzero) or failure (zero). Be sure to check the return
value from the function, because it can fail.

The EVP_DigestUpdate function is used to include data in the computation of the hash. It may
be called repeatedly to pass more data than will fit in asingle buffer. For example, if you're
computing the hash of alarge amount of data, it's reasonable to break the data into smaller bytes
so that you needn't load an entire file into memory.

void EVP_DigestUpdate(EVP_MD_CTX *ctx, const void *buf, unsigned int

len);
ctx

The context object that is being used to compute a hash.
buf

A buffer containing the data to be included in the computation of the hash.

164

len
The number of bytes contained in the buffer.

Once al datato be considered for the hash has been passed to EVP_DigestUpdate, the
resulting hash value can be retrieved using EVP_DigestFinal.

void EVP_DigestFinal (EVP_MD_CTX *ctx, unsigned char *hash, unsigned
int *len);
ctx

The context object that is being used to compute a hash.
hash

A buffer into which the hash value will be placed. This buffer should always be at least
EVP_MAX_MD_SIZE bytesin size.

len

A pointer to an integer that will receive the number of bytes placed into the hash value
buffer. This argument may be specified as NULL if you don't want or need to know this
value.

Besuretouse EVP_DigestFinal_ex with EVP_DigestlInit_ex, even though the arguments
are no different. Once you've called EVP_DigestFinal or EVP_DigestFinal_ex, the
context that you were using is no longer valid and must be re-initialized using EVP_Digestinit
or EVP_DigestlInit_ex beforeit can be used again. Also, be aware that the
EVP_DigestFinal_ex function can fail.

Example 7-1 shows afunction that performs message digests as an all-in-one operation. Y ou pass
in the name of an algorithm to use, a buffer of data to hash, an unsigned integer that denotes how
much data to take from the buffer, and a pointer to an integer. The integer pointed to by the final
argument gets the length of the resulting digest placed in it, and may be NULL if you're not
interested in its value. The digest value is allocated internal to the function and is returned as a
result. If there is any sort of error, such as the specified algorithm not being found, the function
returns NULL.

Example 7-1. Computing a hash value using the EVP API

unsigned char *simple_digest(char *alg, char *buf, unsigned int len,
int *olen)
{

const EVP_MD *mj;

EVP_MD_CTX ctx;

unsigned char *ret;

OpenSSL_add_all_digests();

if (I(m = EVP_get_digestbyname(alg)))
return NULL;

iT (I(ret = (unsigned char *)malloc(EVP_MAX_MD_SIZE)))
return NULL;

EVP_DigestInit(&ctx, m);

EVP_DigestUpdate(&ctx, buf, len);

EVP_DigestFinal (&ctx, ret, olen);

return ret;

165

}

M essage digests cannot be printed directly because they are binary data. Traditionally, when
there's aneed to print a message digest, it is printed in hexadecimal. Example 7-2 shows a
function that uses printf to print an arbitrary binary string in hexadecimal one byte at atime. It
takes two parameters, the string, and an integer specifying the length of the string.

Example 7-2. Printing the hexadecimal representation of a hash value

void print_hex(unsigned char *bs, unsigned int n)

t
int i;
for (i = 0; 1 <n; i++)
printf("%02x", bs[i]);
3

The code in Example 7-3 implements a simple shal command that is similar to the md5
command found on many systems. It gives SHA 1 digests of files passed in on the command line.
If the command is called with no arguments, then the standard input is hashed. Note that you can
get the same results by running the command openss| shal (see Chapter 2).

Example 7-3. Computing SHA1 hashes of files

#define READSIZE 1024

/* Returns O on error, file contents on success */
unsigned char *read_file(FILE *f, int *len)
{
unsigned char *buf = NULL, *last = NULL;
unsigned char inbuf[READSIZE];
int tot, n;

tot = O;
for (53)
{
n = fread(inbuf, sizeof(unsigned char), READSIZE, T);
if (n >0)
{
last = buf;
buf = (unsigned char *)malloc(tot + n);
memcpy(buf, last, tot);
memcpy (&buf[tot], inbuf, n);

if (last)
free(last);
tot += n;

if (feof(F) > 0)

*len = tot;
return buf;

¥
b
else
if (buf)
free(buf);
break;
b

166

return NULL;
3

/* Returns NULL on error, the digest on success */
unsigned char *process_file(FILE *f, insigned int *olen)
{

int filelen;

unsigned char *ret, *contents = read_file(f, &Filelen);

if (Icontents)
return NULL;
ret = simple_digest(*'shal"™, contents, filelen, olen);
free(contents);
return ret;

}

/* Return 0 on failure, 1 on success */
int process_stdin(void)
{
unsigned int olen;
unsigned char *digest = process_file(stdin, &olen);

if (ldigest)

return O;
print_hex(digest, olen);
printf(C"\n"");
return 1;

}

/* Returns O on failure, 1 on success */
int process_file_by name(char *fname)
{
FILE *f = fopen(fname, "'rb'™);
unsigned int olen;
unsigned char *digest;

it (1)

{
perror(fname);
return O;

gest = process_Tile(f, &olen);

}
di
if (ldigest)

.

perror(fname);
fclose(T);
return O;

}
fclose(T);

printfF(""'SHAL(%s)= "', fname);
print_hex(digest, olen);
printf(’'\n"");

return 1;

int main(int argc, char *argv[])

int 1;

if (argc == 1)
{

167

it (Iprocess_stdin())
perror(“'stdin');

}
else
{
for (i = 1; 1 < argc; 1i++)
process_Tile_by name(argv[i]);
}

7.3 Using MACs

The OpenSSL library provides only one MAC implementation, HMAC. For this reason, there's no
EVPinterfaceto MACs. If al of the datato be MAC'd is available in memory at once (i.e., if you
do not need to compute the MAC incrementally), then there isa single call named HMAC (include
the header openssl/hmac.h) that takes care of everything.

unsigned char *HMAC(const EVP_MD *type, const void *key, int keylen,
const unsigned char *data, int datalen,
unsigned char *hash, unsigned int *hashlen);

type
A message digest to use. See Table 7-1 for alist of digests and functions to obtain a
suitable EVP_MD object.
key
A buffer that contains the key that will be used.
keylen
The number of bytesin the key buffer that should be used for the key.
data
A buffer containing the data that an HMAC will be computed for.
datalen
The number of bytesin the data buffer that should be used.
hash
A buffer that the computed message digest will be placed in. It should always be at least
EVP_MAX_MD_SIZE bytesin length.
hashlen

A pointer to an integer that will receive the number of bytes of the hash buffer that were
filled. This argument may be specified as NULL if you're not interested in this information.

168

The return value from the HMAC call will be a pointer to the hash buffer. The output buffer, hash,
may also be specified as NULL, but we strongly recommend against it. When no output buffer is
specified, an interna global buffer will be used. Use of this buffer is not thread-safe.

The key used can be of any size. We recommend your key be as long as any key you're using for a
symmetric cipher (preferably 80 bits or more). However, we advise against using the same key for
your MAC that you use for encryption. Instead, generate and exchange a second key.

Example 7-4 shows how to use the HVAC call to MAC files specified on the command line using a
hardcoded key and the SHA 1 digest algorithm. Of course, in areal application, you should be sure
to choose a cryptographically strong key (see the function sellect_random_key from Chapter
6). Do not use the same key for encryption and MACing under any circumstances.

Example 7-4. Computing a MAC with the HMAC function

/* Warning: DO NOT USE THIS KEY. Generate one randomly. This is for
* the sake of example only.
*/
static const char key[16] = { Oxff, Oxee, Oxdd, Oxcc, Oxbb, Oxaa,
0x99, 0x88,
Ox77, 0x66, Ox55, 0x44, 0x33, 0x22,
0x11, Ox00 };

/* Returns 0 on failure, 1 on success */
int HMAC_file_and_print(unsigned char *fname)

{
FILE *f = fopen(fname, "'rb"™);
unsigned char *contents;
unsigned char result[EVP_MAX MD SiZE];
unsigned int flen, dlen;
if (1)
return O;
contents = read_file(f, &flen);
fclose(T);
iT (Icontents)
return O;
HMAC(EVP_shal(), key, sizeof(key), contents, flen, result, &dlen);
printf(""HMAC(%s, ', fname);
print_hex(key, sizeof(key));
printf()=");
print_hex(result, dlen);
printf(’"\n"");
return 1;
}

Validating MAC'd datais simple. Simply recompute the hash value and compare it against the
transmitted hash value. If they are identical, then the message should not have been modified in
transit. Example 7-5 shows a simple function that does a byte-for-byte comparison.

Example 7-5. A binary comparison function

/* Return 0 if equal, -1 if unequal */
int binary_cmp(unsigned char *sl1, unsigned int lenl,
unsigned char *s2, unsigned int len2)

169

int i, c, X;

it (Ienl = len2)
return -1;

c = lenl / sizeof(x);
for (i = 0; i <c; 1i++)

{
ifT (*(unsigned long *)(sl + (i * sizeof(x))) !=
*(unsigned long *)(s2 + (i * sizeof(x))))
return -1;
}
by

for (i = c * sizeof(x); 1 < lenl; i++)

if (si[i] '= s2[i])

return -1;

}

return O;

}

If the data to be authenticated needs to be authenticated incrementally, the HMAC API provides a
set of methods that works much the same way as the EV P message digest API with the addition of
akey parameter.

The one major change that has been made in OpenSSL Version 0.9.7 is that you will need to zero
out HMAC contexts explicitly before using them by passing them to HMAC_CTX_init. This
function does not exist in previous versions of the library since HMAC _Init previously performed
thisinitialization, although it was undocumented behavior. Once that is done, you can call
HMAC_Init (HMAC_Init_exin0.9.7), which will properly initialize an HMAC context for use
with HMAC_Update and HMAC_Final.

void HMAC_Init(HMAC_CTX *ctx, const void *key, int keylen, const
EVP_MD *type);

ctx
The HMAC context object that will be initialized.
key
A buffer containing the key that will be used.
keylen
The number of bytesin the key buffer to be considered valid key data.
type

A message digest object that will be used. See Table 7-1 for alist of functions that return
suitable values for this argument.

Once an HMAC context isinitialized, it can be used to compute a MAC. Likethe EVP API, data
is passed incrementally to the HMAC_Update function.

170

void HMAC Update(HMAC CTX *ctx, const unsigned char *data, int len);
ctx

The HMAC context object that is being used to compute aMAC.
data

A buffer containing the data that will be MAC'd.
len

The number of bytesin the data buffer that will be considered valid.

All of the data can be passed to HMAC_Update at once, or it can be passed incrementally by
calling the function as many times as necessary. Once all of the data that will be MAC'd has been
passed into the HMAC context viaHMAC_Update, calling HMAC _Final will compute the MAC
and return the hash.

void HMAC_Final (HMAC_CTX *ctx, unsigned char *hash, unsigned int
*len);
ctx

The HMAC context object that is being used to compute aMAC.
hash

A buffer that will receive the computed hash value. This should be at |east
EVP_MAX_MD_SIZE bytesin length.

len

A pointer to an integer that will receive the number of bytes written to the output hash
buffer. This argument may be specified as NULL if you're not interested in the value.

Once HMAC_Final iscalled, the context must either be cleaned up using HMAC_cleanup or
reinitialized for reuse. In other words, after a call to HMAC_Final, you cannot use the same
HMAC context object in acall to HMAC_Update or HMAC_Final without first reinitiaizing it.
When you are finished with an HMAC context, you should always call HMAC_cleanup to
properly destroy the context object and free any resources that may be associated with it.
HMAC_cleanup accepts only a single argument, which is the context object to be destroyed.
Example 7-6 demonstrates how to compute a MAC using HMAC _Init, HMAC Update, and
HMAC_Final.

Example 7-6. Computing a MAC using HMAC_Init, HMAC_Update, and HMAC_Final

/* Warning: DO NOT USE THIS KEY. Generate one randomly. This is for
* the sake of example only.
*/
static const char key[16] = { Oxff, Oxee, Oxdd, Oxcc, Oxbb, Oxaa,
0x99, 0x88,
Ox77, 0x66, Ox55, 0x44, 0x33, 0x22,
0x11, Ox00 }%;

/* Returns 0 on failure, 1 on success */
int HVAC_file_and_print(unsigned char *fname)

171

FILE *f = fopen(fname, "rb™);
unsigned char *contents;

unsigned char result[EVP_MAX MD_SIZE];
unsigned int flen, dlen;

HMAC_CTX ctx;

it (1)
return O;
contents = read_file(f, &flen);
fclose(T);
iT (Icontents)
return O;

HMAC Init(&ctx, key, sizeof(key), EVP_shal());
HMAC Update(&ctx, contents, flen);

HMAC Final (&ctx, result, &dlen);
HMAC_cleanup(&ctx);

printf(""HMAC(%s, ', Tname);
print_hex(key, sizeof(key));
printf(’)=");
print_hex(result, dlen);
printf(’'\n"");

return 1;

7.3.1 Other MACs

OpenSSL has direct support only for HMAC, but there are several other kinds of MACsthat are
easily implemented. Some of the simplest and most useful are based on block ciphers. A large part
of why HMAC is so popular isthat it uses a cryptographic one-way hash asits underlying
cryptographic primitive. A one-way hash was advantageous in the days when it was difficult to
export strong cryptography, since true one-way functions were not restricted in any way.

However, MACs based on block ciphers can be compelling. First, such constructions can be faster,
because HMAC must perform two hash operations. Second, those looking to keep total code size
small will appreciate being able to reuse block cipher code (unless you specifically add the
algorithm, the hash function won't get linked in if you don't useit). This advantage is especially
appealing to people who wish to push cryptography into hardware.

HMAC does have provabl e security properties, but so do many cipher-based MACs, such as CBC-
MAC, UMAC, and XCBC-MAC. In all cases, security proofs rely on an assumption of security in
the underlying cryptographic primitive. For example, HMAC is secure, assuming that the
underlying hash algorithm used with it is secure, and UMAC and XCBC-MAC are secure,
assuming that the underlying block cipher is secure. It's smart to keep security assumptionsto a
minimum. For example, if you use ablock cipher and a hash function, abreak of either islikely to
break the entire system. In such a case, your system isonly as secure as its weakest link.

CBC-MAC is certainly unencumbered by patents, and XCBC-MAC and XOR-MAC are probably
unencumbered. Some of the theoretical work UMAC is based upon might actually be covered by
patent, so use it with caution.

7.3.1.1 CBC-MAC

172

The ssimplest MAC based on ablock cipher is CBC-MAC. Basically, the message to be processed
is encrypted using ablock cipher in CBC mode. The authentication value is the last block of the
ciphertext, or part thereof. This MAC is secure, assuming that the underlying block cipher is
secure, and assuming that a single key processes only messages of afixed size (thefixed sizeis
calculated after padding is added; padding non-block-aligned messages is necessary).

The primary limitation of CBC-MAC isthat it is not parallelizable (also true of HMAC), but this
is not a significant issue except in the realm of gigabit networking. Another issue, one shared with
all MACs based on block ciphers, isthat any party with an authentication key and a resulting
value can create new messages that yield the same MAC value. This problem is usually not
considered a serious drawback, but if such a problem would be worrisome in a system you are
designing, then stick with HMAC.

Many MAC constructions retain their provable security properties when used with a compression
function instead of ablock cipher. For example, XOR-MACs such as XMCC are frequently used
with M D5 as the underlying cryptographic primitive. This can help solve the reversibility problem.

In Example 7-7, we provide a header file for a CBC-MAC implementation, which should be
placed in afile named cbcmac.h.

Example 7-7. cbcmac.h

#ifndef CBC_MAC_H_
#define CBC_MAC_H_

#include <openssl/evp.h>
#include <stdlib.h>

typedef struct CBCMAC CTX_ st

{
EVP_CIPHER_CTX cctx;
char cbcstate[CBCMAC_MAX BYTES];
char workspace[[CBCMAC_MAX BYTES];
short worklen;

} CBCMAC_CTX;

int CBCMAC Init(CBCMAC CTX *mctx, EVP_CIPHER *c, const unsigned char
*k);
int CBCMAC Update(CBCMAC_CTX *mctx, const char *data, int len);
int CBCMAC_Final (CBCMAC_CTX *mctx, unsigned char *out, int *outl);
int CBCMAC(EVP_CIPHER *c, const char *key, int key_ len,

unsigned char *str, int sz, unsigned char *out, int *outlen);

#endif

The above API issimilar to the HMAC API. The context data type is obviously different, and the
user is expected to pass in ablock cipher object instead of a message digest object. Note that the
block cipher must be in ECB mode, even though we're using CBC-MAC. The reason for thisis
that the above code implements the CBC maode itself, without saving encrypted blocks. Also,
simply running a block cipher in CBC mode is not interoperable in cases in which messages need
to be padded, because PKCS block cipher padding is different from the standard CBC-MAC
padding. In this example, we're using ECB mode to implement a more secure mode of operation,
so don't take this use of ECB mode as an endorsement in the general case!

Another difference between the CBC-MAC API and the HMAC API isthat CBC-MAC does not

require the user to passin the key length explicitly. The implementation simply readsin the
number of bytes that corresponds with the selected cipher.

173

Note that we recommend using AES when using CBC-MAC, assuming you are using OpenSSL
0.9.7 or later.

Example 7-8 shows the actual implementation of CBC-MAC.
Example 7-8. cbcmac.c

#include "‘cbcmac.h"

int CBCMAC_Init(CBCMAC_CTX *mctx, EVP_CIPHER *c, const unsigned char

*k)
{
int i, bl;
EVP_Encryptlnit(&(mctx->cctx), c, (unsigned char *)k, 0);
if (EVP_CIPHER_CTX mode(&(mctx->cctx)) != EVP_CIPH_ECB MODE)
return -1;
mctx->worklen = O;
bl = EVP_CIPHER_CTX block size(&(mctx->cctx));
for (i = 0; 1 < bl; i++)
mctx->cbcstate[i] = O;
return O;
}

/* We hand implement CBC-mode because of the requirements for the
last block,

* and to avoid dynamic memory allocation.

*/

int CBCMAC_Update(CBCMAC_CTX *mctx, const char *data, int len)

{
int bl, i, n = 0, outl;

bl = EVP_CIPHER_CTX block size(&(mctx->cctx));

if (mctx->worklen)

{

n = bl - mctx->worklen;
if (n > len) /* Not enough bytes passed in to fill block

buffer. */

{

for (i = 0; 1 < len; 1i++)
mctx->workspace[mctx->worklen + 1] = data[i];

mctx->worklen += len;
return O;

}

else

{

for (i = 0; 1 <n; 1i++)
mctx->workspace[mctx->worklen + 1] = data[i] ™ mctx-
>cbcstate[i];
EVP_EncryptUpdate(&(mctx->cctx), mctx->cbcstate, &outl,
mctx->workspace, bl);

}

while (n < len)
{
for (i = 0; i <bl; i+t
mctx->workspace[i] = data[n + 1] ™ mctx->cbcstate[i];
n=n+ bl;
EVP_EncryptUpdate(&(mctx->cctx), mctx->cbcstate, &outl,

174

mctx->workspace, bl);
}
mctx->worklen = len - n;
for (i = 0; 1 < mctx->worklen; i++)
mctx->workspace[i] = data[n + i];
return O;

}

int CBCMAC_Final (CBCMAC_CTX *mctx, unsigned char *out, int *outl)

{
int i, bl = EVP_CIPHER_CTX_block_size(&(mctx->cctx));

/* Pad with null bytes if necessary. In reality, we just copy in
the
* CBC state, since x ~ 0 = X.
*/
it (mctx->worklen)
{
for (i = mctx->worklen; i < bl; 1i++)
mctx->workspace[i] = mctx->cbcstate[i];
EVP_EncryptUpdate(&(mctx->cctx), out, outl, mctx->workspace,

bl);
}
else
{
for (i = 0; 1 < bl; i++)
out[i] = mctx->cbcstate[i];
*outl = bl;
}
return O;
}

int CBCMAC(EVP_CIPHER *c, const char *key, int key len, unsigned char
*str,

{

int sz, unsigned char *out, int *outlen)

CBCMAC_CTX x;
int e;

iT ((e = CBCMAC_Init(&x, c, key)))
return e;

it ((e = CBCMAC Update(&x, str, sz)))
return e;

return CBCMAC Final (&x, out, outlen);

}

7.3.1.2 XCBC-MAC

Black and Rogaway developed a simple modification to CBC-MAC that can process varying
length messages with asingle key, called XCBC-MAC. The basic ideaisto run CBC-MAC as
normal until it comestime to encrypt the last block. Before that encryption occurs, one of two
supplemental keysis XOR'd into the "plaintext,” depending on the message length. ThisMAC is
not noticeably slower than CBC-MAC, sinceit requires only a single additional X OR operation.
Example 7-9 demonstrates XCBC-MAC.

Example 7-9. xchcmac.h

#ifndef XCBC_MAC_H_
#define XCBC_MAC_H_

175

#include <openssl/evp.h>
#include <stdlib.h>

#define XCBC_MAX_BYTES 32

typedef struct XCMAC CTX_ st

{
EVP_CIPHER_CTX cctx;
char dk1[XCBC_MAX_BYTES];
char dk2[XCBC_MAX_BYTES];
char dk3[XCBC_MAX_BYTES];
char cbcstate[XCBC_MAX BYTES];
char workspace[XCBC_MAX_BYTES];
short worklen;
short started;

} XCMAC_CTX;

int XCMAC_Init(XCMAC_CTX *mctx, EVP_CIPHER *c, const unsigned char

*k) :

int XCMAC Update(XCMAC _CTX *mctx, const char *data, int len);

int XCMAC_Final (XCMAC_CTX *mctx, unsigned char *out, int *outl);

int XCMAC(EVP_CIPHER *c, const char *key, unsigned char *str, int sz,
unsigned char *out, int *outlen);

#endif

Example 7-9 shows an API for XCBC-MAC, which isimplemented in Example 7-10. The APl is
identical to our CBC-MAC API, with the exception of adifferent context type.

While XCBC-MAC uses three keys, it generates them from a single master key. The derived keys
are computed by encrypting three fixed values with the original key, one value for each derived
key. The output of each encryption is the same size as the cipher's block length. That's fine for the
second two derived keys, because they are smply XOR'd into blocks of data. However, asingle
block may not be long enough for the first derived key because it is used in the block cipher,
which may require akey that islonger than the block size.

The only specified instance of XCBC-MAC we've seen to date uses AES with 128-hit keys and
128-hit blocks, which obviously don't have this problem. The original description of XCBC-MAC
describes what to do at ahigh level. Basically, you just perform more encryptions with the master
key until enough datais generated. The only trick is that you need to use a unique plaintext for
each encryption. In our implementation below, we allow for equal block and key sizes, aswell as
the common cases in which key length is twice the block length. Attempting to use any other
block cipher will cause an error to be returned. When run with unequal block sizes and key sizes,
thisimplementation is not guaranteed to interoperate with any other implementation you may find.

Example 7-10. xchcmac.c

#include "xcbcmac.h"

/* These are recommended by Rogaway. */
static char g1[XCBC_MAX_BYTES] =

0x01, O0x01, Ox01, Ox01, Ox01, Ox01, 0Ox01, Ox01, Ox01, Ox01, OxO1,
0x01, 0Ox01,

0x01, O0x01, Ox01, Ox01, Ox01, Ox01, Ox01, Ox01, Ox01, Ox01, OxO1,
0x01, 0x01,

0x01, 0x01, Ox01, Ox01, Ox01, Ox01
3

176

static char g2[XCBC_MAX_BYTES] =

0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02,

0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
0x02, 0x02,

0x02, 0x02, 0x02, 0x02, 0x02, 0x02

};
static char g3[XCBC_MAX_BYTES] =

0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03,
0x03, 0x03,

0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03,
0x03, 0x03,

0x03, 0x03, 0x03, 0x03, 0x03, 0x03

3

/* This is the extra plaintext for when generating the second half of
a key

* when the block size is half the key length.

*/

static char g4[XCBC_MAX_BYTES]

{

0x04, 0x04, 0x04, 0Ox04, 0Ox04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04,

0x04, 0x04, 0x04, 0Ox04, 0Ox04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
0x04, 0x04,

0x04, 0x04, 0x04, 0x04, 0x04, 0x04

3

int XCMAC_Init(XCMAC_CTX *mctx, EVP_CIPHER *c, const unsigned char *k)
{

EVP_CIPHER CTX tctx;
int i, outl, bl, kI;

EVP_Encryptlnit(&tctx, c, (unsigned char *)k, 0);

kl
bl

EVP_CIPHER_CTX key length(&tctx);
EVP_CIPHER_CTX block size(&tctx);

it (kI = bl && bl * 2 1= KI)
return -1;
EVP_EncryptUpdate(&tctx, mctx->dkl, &outl, gl, bl);

it (kI = bl)

EVP_EncryptUpdate(&tctx, &(mctx->dkl1[bl]), &outl, g4, bl);
EVP_EncryptUpdate(&tctx, mctx->dk2, &outl, g2, bl);
EVP_EncryptUpdate(&tctx, mctx->dk3, &outl, g3, bl);

EVP_Encryptlnit(&(mctx->cctx), c, mctx->dkl, 0);

if (EVP_CIPHER_CTX mode(&(mctx->cctx)) != EVP_CIPH_ECB MODE)
return -2;

mctx->worklen
mctx->started
for (i = 0; 1 < bl; i+

mctx->cbcstate[i] =
return O;

=0
=0

+)
0;

177

int XCMAC Update(XCMAC_CTX *mctx, const char *data, int len)

{
int bl, 1, n = 0, outl;
if (1len)
return O;

bl = EVP_CIPHER_CTX block size(&(mctx->cctx));
for (i =0; 1 < len; 1i++)
{
if (Imctx->worklen && mctx->started)
EVP_EncryptUpdate(&(mctx->cctx), mctx->cbcstate, &outl,
mctx->workspace, bl);
else
mctx->started = 1;
mctx->workspace[mctx->worklen] = data[n++] ™ mctx-
>cbcstate[mctx->worklen];
mctx->worklen++;
mctx->worklen %= bl;

}

return O;
}
int XCMAC_Final (XCMAC_CTX *mctx, unsigned char *out, int *outl)
{

int i, bl = EVP_CIPHER_CTX block_size(&(mctx->cctx));

ifT (Imctx->started)
return -1;
if (nctx->worklen)

/* Pad and XOR with K2, then encrypt */

mctx->workspace[mctx->worklen] = O0x90 ~ mctx->cbcstate[mctx-
>worklen];

for (i = mctx->worklen + 1; 1 < bl; i++)
mctx->workspace[i] = mctx->cbcstate[mctx->worklen]; /* »

0 */
for (i = 0; 1 < bl; i++)
mctx->workspace[i] = mctx->dk2[i];
}
else
/* XOR with K3, then encrypt. */
for (i = 0; 1 <bl; i++)
mctx->workspace[i] "= mctx->dk3[i];
}
EVP_EncryptUpdate(&(mctx->cctx), out, outl, mctx->workspace, bl);
return O;
}

int XCMAC(EVP_CIPHER *c, const char *key, unsigned char *str, int sz,
unsigned char *out, int *outlen)

XCMAC_CTX Xx;
int e;

if ((e = XCMAC_Init(&x, c, key)))
return e;

if ((e = XCMAC _Update(&x, str, sz)))
return e;

178

return XCMAC Final(&x, out, outlen);
}

Note that the padding scheme in the above implementation of XCBC-MAC is different from the
one used by CBC-MAC, which pads to the nearest block length with null bytes. The one used here
isthe one that is recommended by the algorithm's authors and is used in other implementations. In
this scheme, the pad is all zeros, except for the first bit, which is set to one.

7.3.1.3 XOR-MAC

XOR MACs are afamily of message authentication algorithms that are based on a block cipher
and are highly parallelizable, and thus suitable for authenticating traffic on a gigabit network. If
you're not worried about potential parallelism, then you should probably use one of the other
MACswe discussin this chapter.

There are two specified XOR-MACs. The only one we have seen used is XMACC, which uses
counter mode encryption. We provide a sequential implementation of this algorithm on the book's
web site.

7.3.1.4 UMAC

UMAC isanincredibly fast MAC based on the mathematical concept of universal functions. It is
provably secure if the underlying block cipher used by the algorithm is secure. UMAC is not
paralleizable, but an implementation running on a current high-end processor can handle over half
agigabyte of data per second.

The IETF IPSec working group is considering adopting it as a standard, but its adoption is being
held up due to potential intellectual property problems. The authors of UMAC have released any
claims they have to intellectual property on that algorithm, but, as of thiswriting, there is
significant concern that there may be a patent covering some of the underlying primitives. If that
turns out to be the case, using UMAC would potentially require paying alicensing fee. If you do
use this algorithm, be attentive to its status, and change quickly if you are unwilling to license. As
we learn new information about this topic, we will update the book's web site.

See the UMAC home page for more information and reference code:
http://www.cs.ucdavis.edu/~rogaway/umac/.

7.4 Secure HTTP Cookies

Let's pull our knowledge of symmetric cryptography and message authentication codes together in
areal application, namely setting cookies over HTTP in auser's web browser from a server-side
application. Web cookies are implemented by setting a value in the MIME header sent to the
client in aserver response. If the client accepts the cookie, then it will present the cookie back to
the server every time the specified conditions are met.

A single MIME header is a header name followed by a colon, a space, and then the header value.
The format of the header value depends on the header name. In this example, we're concerned
with only two headers: the Set-Cookie header, which can be sent to the client when presenting a
web page, and the Cookie header, which the client presents to the server when the user browsesto
asite for which a cookie is stored.

Let's consider an example in which we want to keep track of some history of the user's activity on
our site, but we don't want the user to look at or modify the data. To do this, we should place a

179

http://www.cs.ucdavis.edu/%7Erogaway/umac/

cookie on the user's machine that contains the history information. If thiswill be done in plaintext,
we might send the following MIME header:

Set-Cookie: history=231337+13457;path=/

The path variable specifies the root page in the domain from which the cookie came. The cookie
will be sent with a page request only if it isrooted under the specified path. In the above instance,
the client will return this cookie to any page in the same domain. For the purposes of our example,
our cookies will not persist. That is, once the user shuts down his browser, the cookies will be
gone forever.

The problem with the above cookie is that the user can see and modify the contents. Instead, we
should store two cookies, one containing the encrypted history information, and a second
containing a MAC of the history information. The server does encoding and such when setting a
cookie, then decrypts and validates whenever the cookie comes back. The server does not share its
keys with any other entity—it alone uses them to ensure data has not been read or modified since
it originally left the server.

It doesn't really matter if we use a MAC computed over the ciphertext or the plaintext. The
primary difference between the two is that MACing the encrypted text would alow athird party
with the MAC key to authenticate message integrity without being able to read the actual message.
If you have no use for this feature, and you're at all afraid of the MAC key being stolen, then
MAC the plaintext. Y ou can even concatenate the MAC to the plaintext and encrypt everything.

One important thing when using MACs with encryption: you should never use the same key for
encryption as for MACing. Indeed, in the following example, we will MAC the plaintext with one
key, and encrypt the plaintext with a second key. Each result will be sent in its own cookie. The
first will be called encrypted-history, and the second will be called history-mac.

The problem we encounter is that we can use only alimited character set in cookie headers, yet
the output of our cryptographic algorithmsis always binary. To solve this problem, we encode the
binary datainto the base64 character set. The base64 character set uses the uppercase letters, the
lowercase letters, the numbers, and afew pieces of punctuation to represent data. Out of necessity,
the length of data grows considerably when base64 encoded. We can use the EVP function
EVP_EncodeBlock for base64 encoding to suit our purposes.

Example 7-11 shows part of a server-side infrastructure for setting these cookies. We assume that
thereis asingle server process running continually that maintains state such as the global MAC
key and the global encryption key. Our example produces the entire MM E-formatted cookie, but
does not write the cookie into an actual message.

Example 7-11. Encrypting data for storage in a cookie

#include <stdio.h>
#include <string.-h>
#include <openssl/evp.h>
#include <openssl/hmac.h>

#define MAC_KEY_LEN 16

static char bf_key[EVP_MAX_KEY_LENGTH];
static char i1Vv[EVP_MAX_BLOCK_LENGTH] = {0,}; /* #define
EVP_MAX_BLOCK_LENGTH

* to 64 for OpenSSL
0.9.6¢ and

* earlier.

*/

180

static char mac_key[MAC_KEY_ LEN];

/* A helper function for base64 encoding */
unsigned char *base64_encode(unsigned char *buf, unsigned int len)
{

unsigned char *ret;

unsigned int b64 len;

/* the b64data to data ratio is 3 to 4.
* integer divide by 3 then multiply by 4, add one for NULL
terminator.
*/
b64 len = (((len + 2) / 3) * 4) + 1;
ret = (unsigned char *)malloc(b64_len);
EVP_EncodeBlock(ret, buf, len);
ret[b64 len - 1] = 0;
return ret;

}

void init_keys(void)

{
RAND_pseudo_bytes(bf_key, EVP_MAX_KEY_LENGTH);
RAND_pseudo_bytes(mac_key, MAC_KEY_LEN);

}

static unsigned char *encrypt_input(unsigned char *inp, int *len)
{

EVP_CIPHER _CTX ctx;

unsigned char *res = (unsigned char *)malloc(strlen(inp) +

EVP_MAX_BLOCK_LENGTH);
unsigned int tlen;

EVP_Encryptlnit(&ctx, EVP_bf cbc(), bf _key, iv);
EVP_EncryptUpdate(&ctx, res, &tlen, inp, strlen(inp));
*len = tlen;

EVP_EncryptFinal (&ctx, &res[tlen], &tlen);

*len += tlen;

return res;

}

static char *fmt = "'Set-Cookie: encrypted-history=%s;path=/\r\n"
"Set-Cookie: history-mac=%s;path=/\r\n";

char *create_cookies(char *hist)

{
unsigned int ctlen; /* Length of cipher text in binary */
unsigned int maclen; /* Length of HMAC output in binary */
unsigned char rawmac[EVP_MAX MD_SIZE];
unsigned char *buf, *ct, b64 hist, *b64 _mac;

/* Enough room for everything. */
buf = (unsigned char *)malloc(strlien(fmt) + (strlen(hist) * 4) /
3+ 1+
(EVP_MAX_MD_SIZE * 4) / 3 + 1);
ct = encrypt_input(hist, &ctlen);
HVMAC(EVP_shal(), mac_key, MAC_KEY_LEN, hist, strlen(hist), rawmac,
&maclen);

b64_hist
b64 mac

base64 encode(ct, ctlen);
base64 encode(rawmac, maclen);

181

sprintf(buf, fmt, b64 hist, b64 mac);

free(b64_mac);
free(b64_hist);
return buf;

}

The function init_keys should be called once at startup. The keys remain valid until the server
isrestarted. The function create_cookies takesthe history string as an input, then
dynamically allocates a string into which properly formatted, base64-encoded text is placed. That
string is returned as the result from create_cookies. The server uses 128-bit Blowfish in CBC
mode as the cipher, and HMAC-SHA1 for message authentication.

In Example 7-12, we show how to take the cookie data, remove the base64 encoding, decrypt the
ciphertext, and authenticate the result. The function decrypt_and_auth takes the raw base64-
encoded strings for the encrypted history string and the MAC value (not the full cookie—we
assume the relevant data has been parsed out, for smplicity's sake), along with a pointer to an
unsigned integer, into which the length of the decrypted results will be written. We recalculate the
MAC, comparing against the returned one. The function returns the decrypted value on success,
and NULL on error.

Example 7-12. Decrypting data stored in a cookie

unsigned char *base64 decode(unsigned char *bbuf, unsigned int *len)
{

unsigned char *ret;

unsigned int bin_len;

/* integer divide by 4 then multiply by 3, its binary so no NULL
*/

bin_len = (((strlen(bbuf) + 3) /7 4) * 3);

ret = (unsigned char *)malloc(bin_len);

*len = EVP_DecodeBlock(ret, bbuf, strlen(bbuf));

return ret;

}

static unsigned char *decrypt_history(unsigned char *ctext, int len)
{

EVP_CIPHER_CTX ctx;

unsigned int tlen, tlen2;

unsigned char *res = (unsigned char *)malloc(len + 1);

EVP_Decryptlnit(&ctx, EVP_bf cbc(), bf _key, iv);
EVP_DecryptUpdate(&ctx, res, &tlen, ctext, len);
EVP_DecryptFinal (&ctx, &res[tlen], &tlen2);
res[tlen + tlen2] = O;

return res;

}

unsigned char *decrypt_and_auth(unsigned char *b64 hist, unsigned
char *b64_mac)
{
unsigned char *ctext, *macl, *res, mac2[EVP_MAX_MD_SIZE];
unsigned int macllen, mac2len, ctextlen;

if (I(ctext = base64 decode(b64 hist, &ctextlen)))

return NULL;
if (!(macl = base64_decode(b64 _mac, &macllen)))

182

free(ctext);
return NULL;

}

res = decrypt_history(ctext, ctextlen);

HMAC(EVP_shal(), mac_key, MAC_KEY_LEN, res, strlen(hist), mac2,
&mac2len);

it (binary_cmp(macl, macllen, mac2, mac2len))

free(res);
res = NULL;

}

free(macl);
free(ctext);

return res;

}

Note that when you are using this infrastructure for cookie encryption, you should place auser ID
and potentially a sequence number at the beginning of any text that you encrypt, then check those
on decryption. Doing so will help prevent capture-replay and dictionary attacks.

183

Chapter 8. Public Key Algorithms

In the previous chapters, we discussed aimost all of the algorithms used by the SSL protocol that
make it secure. The one remaining class of algorithms s public key cryptography, which isan
essential element of protocolslike SSL, SMIME, and PGP.

Depending on the algorithm employed, public key cryptography is useful for key agreement,
digital signing, and encryption. Three commonly used public key algorithms are supported by
OpenSSL: Diffie-Hellman (DH), DSA (Digital Signature Algorithm), and RSA (so named for its
inventors, Rivest, Shamir, and Adleman). It'simportant to realize that these algorithms are not
interchangeable. Diffie-Hellman is useful for key agreement, but cannot be used for digital
signatures or encryption. DSA is useful for digital signatures, but is incapable of providing key
agreement or encryption services. RSA can be used for key agreement, digital signing, and
encryption.

Public key cryptography is expensive. Its strength isin the size of its keys, which are usually very
large numbers. As aresult, operations involving public key cryptography are slow. Most often, it
is used in combination with other cryptographic algorithms such as message digests and
symmetric ciphers.

Knowing when to use public key cryptography and how to combine it securely with other
cryptographic algorithmsis important. We'll begin with adiscussion of when it is appropriate to
use public key cryptography, and when it isn't. We'll continue our discussion of public key
cryptography by introducing each of the three algorithms supported by OpenSSL. For each one,
well discuss what they can and cannot do, as well as provide some examples of how to access
their functionality at alow level. In addition, we'll discuss how they can be used together to
compliment each other. Finally, we'll revisit our discussion of the EV P interface from Chapters 6
and 7, demonstrating how the interface can also be used with public key algorithms, which should
be the preferred method, aslong asiit suits your needs.

8.1 When to Use Public Key Cryptography

Suppose that we want to create a secure communications system in which a group of people can
send messages to one another. Using symmetric encryption, such a system can be easily devised.
Everyone in the group agrees on a key to use when encrypting messages to each other. While this
system provides data secrecy by limiting access to the messages to only those people in the group,
it also has some serious drawbacks. For example, Alice cannot send a message to Bob without
Charlie also being able to read it. Additionally, Charlie could forge a message so that it appearsto
have come from someone else in the group—or even worse, he could change a message that
someone el se sent.

In order to stop the threat of forgery or message corruption, we need to have some way to
authenticate and verify the integrity of messages. At the same time, we need to provide for more
granularity in encryption to allow private messages between individuals in the group. With
symmetric encryption, these goals can be met by having each of our users share aunique key with
each of the other users. With three members of the group, Alice, Bob, and Charlie, this would
mean Alice has an Alice-Bob key and an Alice-Charlie key. When she receives a message from
either Bob or Charlie, she decryptsit with the appropriate key, and if she recovers a message, she
has authenticated the sender. Charlie is no longer able to forge or change a message from Aliceto
Bob because he does not have the Alice-Bab key.

184

While alleviating the original problems, we've managed to create new ones. The biggest problem
isthat this new system does not scale very well. If Dave isintroduced into the group, he would
need to agree on different keysto use with Alice, Bob, and Charlie. Every time that a new person
joinsthe group, n-1 keys need to be created, in which n is the number of people now in the group.
With 100 people in the group, there would have to be 4,950 different keys! Imagine, then, what
would happen if Bob's computer was broken into and all of his keys were compromised. New keys
would now have to be created for Bob to communicate with everyone else in the group. Finally,
this system does not provide non-repudiation. Non-repudiation prevents either party involved in a
communication from denying involvement in that communication. For example, Alice could
receive a message from Bob encrypted with the Alice-Bob key, but Bob can credibly deny ever
sending it by claiming Alice fabricated the message and encrypted it herself; non-repudiation
guarantees that thisis not possible.

The use of public key cryptography solves each of these problems, but it does not do so all by
itself. It must be combined properly with message digests and symmetric encryption. Not only
does public key cryptography tend to scale well, it also allows us to negotiate keys online,
authenticate communications, maintain data integrity, and provide non-repudiation. Whenever any
of these thingsis one of your goals, you should turn to public key cryptography for a solution.

Public key cryptography is not a magical solution to all things cryptographic. It can often be better
and clearer not to use public key algorithms. As an example, in Chapter 7, we discussed storing
datain acookie. We used a symmetric cipher to encrypt the dataand a MAC to maintain its
integrity. It was not our intention to share the information with anyone, but only to protect it from
prying eyes and tampering. In such a situation, the algorithms that we used were the right tools for
the job. By themselves, they were able to do what was required. Had we used public key
cryptography, we still would have required the use of a symmetric cipher and a message digest, in
addition to requiring a private and public key. Using public key cryptography would have only
introduced an unnecessary layer of complexity and required significantly more processing power
from the server.

Because public key cryptography also depends on other cryptographic algorithmsto be secure, if
those algorithms can be used securely without public key cryptography, then you shouldn't be
using public key cryptography. It may seem as though we're stating the obvious. All too often,
inexperienced programmers tend to treat public key cryptography as though it was the one and
only solution to all of their cryptographic needs. The fact of the matter is public key cryptography
is frequently over-kill for most situations. It's all about choosing the right tool for the job.

8.2 Diffie-Hellman

The Diffie-Hellman algorithm was the first public key algorithm ever invented. Introduced in
1976 by Whitfield Diffie and Martin Hellman, it is a simple algorithm that alows two partiesto
agree upon a key using an unsecured channel. In other words, it alows a shared secret to be
created. The process is sometimes referred to as key exchange, but with Diffie-Hellman, it is more
accurately called key agreement.

The primary use of Diffie-Hellman is shared-secret negotiation. The algorithm itself can be made
to provide for authentication, but OpenSSL doesn't include any high level interfaces for using
these features, so they must be implemented by the application if they're desired. For this reason,
most OpenSSL applications that use this algorithm will aso use ancther for authentication. For
our purposes, we will discuss Diffie-Hellman mainly from the perspective of key agreement.
Interested readers should refer to RFC 2631 for more information on using it for authentication.

185

Diffie-Hellman guarantees a shared secret will be created that is suitable to use asthe key to a
symmetric algorithm. Failing to provide authentication through some other means, either with
authenticated extensions to the implementation or through use of another algorithm such as DSA,
leaves the protocol susceptible to man-in-the-middle attacks. Welll discuss the details of this type
of attack with regard to Diffie-Hellman toward the end of this section.

8.2.1 The Basics

The low-level interface to Diffie-Hellman provided by OpenSSL consists of a structure of the type
DH and a set of functions that operate on that structure. The DH structure and functions are made
accessible by including the openssl/dh.h header file. The DH structure itself contains many data
members that are of little or no interest to us, but four members are important, as shown in the
following abbreviated DH structure definition:

typedef struct dh_st

{
BIGNUM *p;
BIGNUM *g;
BIGNUM *pub_key;
BIGNUM *priv_key;
} DH;

The p and g members, known as Diffie-Hellman parameters, are public values that must be shared
between the two parties using the algorithm to create a shared secret. Because they're public
values, no harm will come from a potential attacker discovering them, which means that they can
be agreed upon beforehand or exchanged over an insecure medium. Typically, one side of the
conversation generates the parameters and shares them with the peer.

The p member is a prime number that is randomly generated. For temporary keys, it istypically at
least 512 bits in length, whereas persistent keys should more appropriately be at least 1,024 hits.
These sizes correspond to the notion of ephemeral and static keys presented in Chapter 5. The
prime that will be used for p is generated such that (p-1)/2 isaso prime. Such a prime is known
as asafe or strong prime . The g member, also known as the generator, is usually a small number
greater than one. OpenSSL functions best when this number is either two or five. A value of two is
sometimes used for performance reasons, but keep in mind that faster key generation also means
that an attacker can break the algorithm faster. In general, we recommend that a value of five be
used.

Using the two public parameters, p and g, each pair chooses arandom large integer for the
priv_key member. A valuefor the pub_key member is computed from the priv_key member
and shared with the peer. It isimportant that only the value of the pub_key member be shared.
The value of the priv_key member should never be shared.

Using the values of priv_key and the peer's pub_key, each peer can independently compute the
shared secret. The shared secret is suitable for use as the key for a symmetric cipher. The entire
exchange between the peers can be done over an insecure medium. Even if someone captures the
parameter and key exchange, the attacker will not be able to determine the shared secret.

8.2.2 Generating and Exchanging Parameters

Diffie-Hellman requires that both parties involved in the key exchange use the same parameters to
generate public keys. This means the parameters either need to be agreed upon and exchanged
before the conversation begins, or the parameters must be generated and exchanged as part of the
key exchange. Either way, the parameters must first be generated by one party and given to the
other, or perhaps generated by athird party and given to both. For the purposes of this discussion,

186

we will assume that the generation of the parameters will be done as part of the key exchange
process, athough thisis often not desirable because it can take a significant amount of timeto
generate the parameters.

The participantsin the key agreement must first agree which party will be responsible for
generating the parameters that they'll both use. In a client/server scenario, the parameters are
usually generated by the server. Often, the server will generate the parameters when it starts up or
retrieve them from afile that contains already generated parameters, and use the same parameters
for each client that connects. It is also common for both the client and server to have a copy of the
parameters built into the respective applications.

OpenSSL provides the function DH_generate_parameters, which will create anew DH
object that isinitialized with fresh values for p and g. The generation of the parameters generates
avalue only for p. The value of g is specified by the caller and is not chosen randomly by
OpenSSL. The value of g should be a small number greater than one, usually either two or five.

DH *DH_generate_parameters(int prime_len, int generator,

void (*callback)(int, int, void *), void
*cb_arg);
prime_len

The size of the prime to be generated, specified in terms of bits.
generator

The value to be used for g. In general, either DH_GENERATOR_2 or DH_GENERATOR_5
should be used for this argument.

cal lback

A pointer to afunction that will be called during the prime generation process to report
the status of the prime generation. The callback is the same as the callback used by
BN_generate_prime, which we discussed in Chapter 4. In fact,
DH_generate_parameters usesBN_generate prime, anditis
BN_generate_prime that actually makes the cals to the callback function. This
argument may be specified as NULL if no callbacks are desired.

cb_arg

A pointer to application-specific data. OpenSSL does not use this value for anything itself.
It is used only when passed as an argument to the specified callback function.

Using the generation function aone can be dangerous. While the generation function does have
validity checks for the prime that it generates, it could generate a prime that is not suitable for use
with the algorithm. For this reason, the function DH_check should always be used to ensure that
the generated primeis suitable.

int DH_check(DH *dh, int *codes);
dh

The DH object containing the parameters we wish to check.

codes

187

Aninteger that will be treated as a bit mask by DH_check and will contain the results of
the check when the function returns successfully.

If the function encounters an error unrelated to the validity of the generated prime, the return will
be zero; otherwise, it will be nonzero. When the function returns successfully, the codes
argument will contain a bit mask that indicates whether the parameters are suitable for use or not.
If none of the bitsis set, the parameters should be considered suitable for use. If any of the
following bits are set, the parameters may not be suitable for use. In most cases, the parameters
should be thrown away, and new ones should be generated.

DH_CHECK_P_NOT_PRIME

If thisbit is set, it indicates that the generated prime is not actually a prime number.
Ordinarily, this bit should never be set when the parameters are generated using
DH_generate_parameters, but it could very well be set when checking parameters
retrieved from disk or from a peer.

DH_CHECK_P_NOT_SAFE_PRIME

If thishit is set, it indicates that the generated primeis not safe. That is, (p-1)/2 isnot
also a prime number. Aswith DH_CHECK_P_NOT_PRIME, this bit should never be set
when the parameters were generated using DH_generate_parameters, but it could
very well be set when checking parameters retrieved from disk or from a peer.

DH_NOT_SUITABLE_GENERATOR

If thisbit is set, it indicates that the generated prime and the generator are not suitable for
use together. The parameters don't necessarily need to be thrown away and regenerated if
thisbit is set. Instead, the generator could be changed and the check retried.

DH_UNABLE_TO_CHECK_GENERATOR

If thisbit is set, a nonstandard generator is being used, so the DH_check functionis
unable to check to see that the prime and the generator are suitable for use. If you know
that you've set a nonstandard generator intentionally, it's up to you to decide whether itis
safe to ignore this bit being set or not.

Once the parameters have been generated, they can be transmitted to the peer. The details of how
the datais sent depend on the medium that is being used for the exchange. To transmit the
parameters over a TCP connection, the BIGNUM functionsBN_bn2bin and BN_bin2bn are
obvious candidates.

The party that generates the parameters callsDH_generate_parameters to obtain aDH object.
The party that is receiving the parameters must also obtain aDH object. Thisis easily done by
calling the function DH_new, which will allocate and initialize a new DH object. The parameters
that are received from the peer can then be directly assigned to the DH object's p and g data
members, using the appropriate BIGNUM functions.

When we're done with a DH object, we must be sure to destroy it by calling the function DH_free,

and passing the pointer returned by either DH_generate_parameters or DH_new asthe only
argument.

8.2.3 Computing Shared Secrets

188

Now that parameters have been generated and received by the two peers, each peer must generate
akey pair and exchange their public keys. Remember that the private key must not be shared at al.
Oncethisis done, each peer can independently compute the shared secret, and the algorithm will
have done its job. With authenticated Diffie-Hellman, the public/private key pairs can persist
beyond usage for a single key-agreement. In these cases, we must be wary of a specia class of
attack against Diffie-Hellman, which is discussed at the end of this section.

OpenSSL provides the function DH_generate_key for generating public and private keys. It
requires as its only argument a DH object that has the parameters, p and g, filled in. If the keys are
generated successfully, the return from the function will be nonzero. If an error occurs, the return
will be zero.

Once the keys have been generated successfully, each peer must exchange their public key with
the other peer. The details of how to exchange the value of the public key varies depending on the
medium that is being used, but in atypical casein which the communication is taking place over
an established TCP connection, the functions BN_bn2bin and BN_bin2bn will once again work
for the exchange of the DH object's pub_key data member.

With the parameters and public key now exchanged, each party in the exchange can use his own
private key and the peer's public key to compute the shared secret using the function
DH_compute_key.

int DH_compute_key(unsigned char *secret, BIGNUM *pub_key, DH *dh);
secret

A buffer that will be used to hold the shared secret. It must be allocated by the caller and
should be big enough to hold the secret. The number of bytes required to hold the secret
can be determined with acall to DH_si ze, passing the DH object as the only argument.

pub_key
The peer's public key.
dh
The DH object that contains the parameters and the caller's private key.

After the shared secret is computed, the DH object is no longer needed unless more secrets will be
generated and exchanged. It can be safely destroyed using the DH_free function.

In certain cases, Diffie-Hellman can be subject to atype of attack known as a small-subgroup
attack. This attack resultsin areduction of the computational complexity of brute-forcing the
peer's private key value. Essentially, a small-subgroup attack can result in the victim's private key
being discovered. There are several different methods of protecting Diffie-Hellman against this
type of attack. The simplest method is to use ephemeral keying. If both parties stick to ephemeral
keying and use a separate method of authentication, small-subgroup attacks are thwarted. This
isn't always feasible, however, mostly due to computational expense. If static keyswill be used,
two simple mathematical checks can be performed on the public key received from a peer to
ensure these attacks aren't possible. If the key passes both tests, it's safe to use. Thefirst test
verifies that the supplied key is greater than 1 and less than the value of the p parameter. The
second test computes y9mod p, inwhichy isthe key to test and q is another large prime. If the
result of this operation is 1, the key is safe; otherwise, it is not. The q parameter is not generated
by OpenSSL even though there is a placeholder for it in the DH structure. An agorithm for
generating g can be found in RFC 2631. If you're interested in the other methods or more detailed
information on the attack, we recommend that you read RFC 2785.

139

8.2.4 Practical Applications

When we began our discussion of Diffie-Hellman, we mentioned that it provides key agreement
and authentication. Use of the authentication features of this protocol is not very common; thus,
pairing Diffie-Hellman with another algorithm for authentication is often done. The threat is that
mistakenly leaving out authentication can lead to susceptibility to man-in-the-middle attacks. To
execute such an attack, the attacker sits in between two hosts that are trying to communicate and
intercepts al of the messages. For example, suppose that Alice and Bob plan to use Diffie-
Hellman to make a shared secret. Charlie could intercept all messages from Alice to Bob and all
messages from Bob to Alice. From this position, Charlie can agree upon a key with Aliceand a
different key with Bob. When the attacker receives a message from Alice, he decrypts it with the
key he negotiated with her and reads the message. He can then encrypt the message using the key
he negotiated with Bob and passit along to him. Alice and Bob will believe that they're
communicating securely. They'll be completely unaware that Charlie is eavesdropping and worse,
possibly even altering their messages, inserting forged messages, or not passing the messages
along at all.

To alleviate this problem, Diffie-Hellman should always be used with some method of
authentication, most commonly from ancther algorithm. This is accomplished by authenticating
the messages containing public values for the Diffie-Hellman agreement. Using signatures, each
party would exchange their public keys to use for signing before the conversation begins, and then
sign the public value before sending it. The details will be explained in the following section.

8.2 Diffie-Hellman

The Diffie-Hellman algorithm was the first public key algorithm ever invented. Introduced in
1976 by Whitfield Diffie and Martin Hellman, it is a simple algorithm that allows two partiesto
agree upon a key using an unsecured channel. In other words, it alows a shared secret to be
created. The process is sometimes referred to as key exchange, but with Diffie-Hellman, it is more
accurately called key agreement.

The primary use of Diffie-Hellman is shared-secret negotiation. The algorithm itself can be made
to provide for authentication, but OpenSSL doesn't include any high level interfaces for using
these features, so they must be implemented by the application if they're desired. For this reason,
most OpenSSL applications that use this algorithm will aso use ancther for authentication. For
our purposes, we will discuss Diffie-Hellman mainly from the perspective of key agreement.
Interested readers should refer to RFC 2631 for more information on using it for authentication.

Diffie-Hellman guarantees a shared secret will be created that is suitable to use as the key to a
symmetric algorithm. Failing to provide authentication through some other means, either with
authenticated extensions to the implementation or through use of another algorithm such as DSA,
leaves the protocol susceptible to man-in-the-middle attacks. Welll discuss the details of this type
of attack with regard to Diffie-Hellman toward the end of this section.

8.2.1 The Basics

The low-level interface to Diffie-Hellman provided by OpenSSL consists of a structure of the type
DH and a set of functions that operate on that structure. The DH structure and functions are made
accessible by including the openssl/dh.h header file. The DH structure itself contains many data
members that are of little or no interest to us, but four members are important, as shown in the
following abbreviated DH structure definition:

typedef struct dh_st

190

BIGNUM *p;

BIGNUM *g;

BIGNUM *pub_key;

BIGNUM *priv_key;
} DH;

The p and g members, known as Diffie-Hellman parameters, are public values that must be shared
between the two parties using the algorithm to create a shared secret. Because they're public
values, no harm will come from a potential attacker discovering them, which means that they can
be agreed upon beforehand or exchanged over an insecure medium. Typically, one side of the
conversation generates the parameters and shares them with the peer.

The p member is a prime number that is randomly generated. For temporary keys, it istypically at
least 512 bits in length, whereas persistent keys should more appropriately be at least 1,024 bits.
These sizes correspond to the notion of ephemeral and static keys presented in Chapter 5. The
prime that will be used for p is generated such that (p-1)/2 isaso prime. Such a prime is known
as asafe or strong prime . The g member, also known as the generator, is usually a small number
greater than one. OpenSSL functions best when this number is either two or five. A value of two is
sometimes used for performance reasons, but keep in mind that faster key generation also means
that an attacker can break the algorithm faster. In general, we recommend that a value of five be
used.

Using the two public parameters, p and g, each pair chooses arandom large integer for the
priv_key member. A valuefor the pub_key member is computed from the priv_key member
and shared with the peer. It isimportant that only the value of the pub_key member be shared.
The value of the priv_key member should never be shared.

Using the values of priv_key and the peer's pub_key, each peer can independently compute the
shared secret. The shared secret is suitable for use as the key for a symmetric cipher. The entire
exchange between the peers can be done over an insecure medium. Even if someone captures the
parameter and key exchange, the attacker will not be able to determine the shared secret.

8.2.2 Generating and Exchanging Parameters

Diffie-Hellman requires that both parties involved in the key exchange use the same parameters to
generate public keys. This means the parameters either need to be agreed upon and exchanged
before the conversation begins, or the parameters must be generated and exchanged as part of the
key exchange. Either way, the parameters must first be generated by one party and given to the
other, or perhaps generated by athird party and given to both. For the purposes of this discussion,
we will assume that the generation of the parameters will be done as part of the key exchange
process, athough thisis often not desirable because it can take a significant amount of timeto
generate the parameters.

The participantsin the key agreement must first agree which party will be responsible for
generating the parameters that they'll both use. In a client/server scenario, the parameters are
usually generated by the server. Often, the server will generate the parameters when it starts up or
retrieve them from afile that contains already generated parameters, and use the same parameters
for each client that connects. It is also common for both the client and server to have a copy of the
parameters built into the respective applications.

OpenSSL provides the function DH_generate_parameters, which will create anew DH
object that isinitialized with fresh values for p and g. The generation of the parameters generates
avalue only for p. The value of g is specified by the caller and is not chosen randomly by
OpenSSL. The value of g should be a small number greater than one, usually either two or five.

191

DH *DH_generate_parameters(int prime_len, int generator,

void (*callback)(int, int, void *), void
*cb_arg);
prime_len

The size of the prime to be generated, specified in terms of hits.
generator

The value to be used for g. In general, either DH_GENERATOR_2 or DH_GENERATOR_5
should be used for this argument.

cal lback

A pointer to afunction that will be called during the prime generation process to report
the status of the prime generation. The callback is the same as the callback used by
BN_generate_prime, which we discussed in Chapter 4. In fact,
DH_generate_parameters usesBN_generate prime, anditis
BN_generate_prime that actually makes the cals to the callback function. This
argument may be specified as NULL if no callbacks are desired.

cb_arg

A pointer to application-specific data. OpenSSL does not use this value for anything itself.
It is used only when passed as an argument to the specified callback function.

Using the generation function aone can be dangerous. While the generation function does have
validity checks for the prime that it generates, it could generate a prime that is not suitable for use
with the algorithm. For this reason, the function DH_check should always be used to ensure that
the generated primeis suitable.

int DH_check(DH *dh, int *codes);
dh

The DH object containing the parameters we wish to check.
codes

Aninteger that will be treated as a bit mask by DH_check and will contain the results of
the check when the function returns successfully.

If the function encounters an error unrelated to the validity of the generated prime, the return will
be zero; otherwise, it will be nonzero. When the function returns successfully, the codes
argument will contain a bit mask that indicates whether the parameters are suitable for use or not.
If none of the bitsis set, the parameters should be considered suitable for use. If any of the
following bits are set, the parameters may not be suitable for use. In most cases, the parameters
should be thrown away, and new ones should be generated.

DH_CHECK_P_NOT_PRIME

If thisbit is set, it indicates that the generated prime is not actually a prime number.
Ordinarily, this bit should never be set when the parameters are generated using
DH_generate_parameters, but it could very well be set when checking parameters
retrieved from disk or from a peer.

192

DH_CHECK_P_NOT_SAFE_PRIME

If thishit is set, it indicates that the generated primeis not safe. That is, (p-1)/2 isnot
also a prime number. Aswith DH_CHECK_P_NOT_PRIME, this bit should never be set
when the parameters were generated using DH_generate_parameters, but it could
very well be set when checking parameters retrieved from disk or from a peer.

DH_NOT_SUITABLE_GENERATOR

If thisbit is set, it indicates that the generated prime and the generator are not suitable for
use together. The parameters don't necessarily need to be thrown away and regenerated if
thisbit is set. Instead, the generator could be changed and the check retried.

DH_UNABLE_TO_CHECK_GENERATOR

If thisbit is set, a nonstandard generator is being used, so the DH_check function is
unable to check to see that the prime and the generator are suitable for use. If you know
that you've set a nonstandard generator intentionally, it's up to you to decide whether it is
safe to ignore this bit being set or not.

Once the parameters have been generated, they can be transmitted to the peer. The details of how
the datais sent depend on the medium that is being used for the exchange. To transmit the
parameters over a TCP connection, the BIGNUM functionsBN_bn2bin and BN_bin2bn are
obvious candidates.

The party that generates the parameters callsDH_generate_parameters to obtain aDH object.
The party that is receiving the parameters must also obtain aDH object. Thisis easily done by
calling the function DH_new, which will allocate and initialize a new DH object. The parameters
that are received from the peer can then be directly assigned to the DH object's p and g data
members, using the appropriate BIGNUM functions.

When we're done with a DH object, we must be sure to destroy it by calling the function DH_free,
and passing the pointer returned by either DH_generate_parameters or DH_new asthe only
argument.

8.2.3 Computing Shared Secrets

Now that parameters have been generated and received by the two peers, each peer must generate
akey pair and exchange their public keys. Remember that the private key must not be shared at al.
Oncethisis done, each peer can independently compute the shared secret, and the algorithm will
have done its job. With authenticated Diffie-Hellman, the public/private key pairs can persist
beyond usage for a single key-agreement. In these cases, we must be wary of a specia class of
attack against Diffie-Hellman, which is discussed at the end of this section.

OpenSSL provides the function DH_generate_key for generating public and private keys. It
requires as its only argument a DH object that has the parameters, p and g, filled in. If the keys are
generated successfully, the return from the function will be nonzero. If an error occurs, the return
will be zero.

Once the keys have been generated successfully, each peer must exchange their public key with
the other peer. The details of how to exchange the value of the public key varies depending on the
medium that is being used, but in atypical casein which the communication is taking place over
an established TCP connection, the functions BN_bn2bin and BN_bin2bn will once again work
for the exchange of the DH object's pub_key data member.

193

With the parameters and public key now exchanged, each party in the exchange can use his own
private key and the peer's public key to compute the shared secret using the function
DH_compute_key.

int DH_compute_key(unsigned char *secret, BIGNUM *pub_key, DH *dh);
secret

A buffer that will be used to hold the shared secret. It must be allocated by the caller and
should be big enough to hold the secret. The number of bytes required to hold the secret
can be determined with a call to DH_si ze, passing the DH object as the only argument.

pub_key
The peer's public key.
dh
The DH object that contains the parameters and the caller's private key.

After the shared secret is computed, the DH object is no longer needed unless more secrets will be
generated and exchanged. It can be safely destroyed using the DH_free function.

In certain cases, Diffie-Hellman can be subject to atype of attack known as a small-subgroup
attack. This attack resultsin areduction of the computational complexity of brute-forcing the
peer's private key value. Essentialy, a small-subgroup attack can result in the victim's private key
being discovered. There are several different methods of protecting Diffie-Hellman against this
type of attack. The simplest method is to use ephemeral keying. If both parties stick to ephemeral
keying and use a separate method of authentication, small-subgroup attacks are thwarted. This
isn't always feasible, however, mostly due to computational expense. If static keyswill be used,
two simple mathematical checks can be performed on the public key received from a peer to
ensure these attacks aren't possible. If the key passes both tests, it's safe to use. The first test
verifies that the supplied key is greater than 1 and less than the value of the p parameter. The
second test computes y9mod p, inwhichy isthe key to test and q is another large prime. If the
result of this operation is 1, the key is safe; otherwise, it is not. The g parameter is not generated
by OpenSSL even though there is a placeholder for it in the DH structure. An agorithm for
generating g can be found in RFC 2631. If you're interested in the other methods or more detailed
information on the attack, we recommend that you read RFC 2785.

8.2.4 Practical Applications

When we began our discussion of Diffie-Hellman, we mentioned that it provides key agreement
and authentication. Use of the authentication features of this protocol is not very common; thus,
pairing Diffie-Hellman with another algorithm for authentication is often done. The threat is that
mistakenly leaving out authentication can lead to susceptibility to man-in-the-middle attacks. To
execute such an attack, the attacker sits in between two hosts that are trying to communicate and
intercepts al of the messages. For example, suppose that Alice and Bob plan to use Diffie-
Hellman to make a shared secret. Charlie could intercept all messages from Alice to Bob and all
messages from Bob to Alice. From this position, Charlie can agree upon a key with Aliceand a
different key with Bob. When the attacker receives a message from Alice, he decrypts it with the
key he negotiated with her and reads the message. He can then encrypt the message using the key
he negotiated with Bob and passit along to him. Alice and Bob will believe that they're
communicating securely. They'll be completely unaware that Charlie is eavesdropping and worse,
possibly even altering their messages, inserting forged messages, or not passing the messages
along at all.

194

To aleviate this praoblem, Diffie-Hellman should always be used with some method of
authentication, most commonly from another algorithm. This is accomplished by authenticating
the messages containing public values for the Diffie-Hellman agreement. Using signatures, each
party would exchange their public keys to use for signing before the conversation begins, and then
sign the public value before sending it. The details will be explained in the following section.

8.3 Digital Signature Algorithm (DSA)

The DSA agorithm was developed by the National Institute for Standards and Testing (NIST) and
the National Security Agency (NSA). It wasfirst proposed in 1991 and stirred up a significant
amount of controversy. Finaly, in 1994, it became a standard. Asits name implies, the DSA
algorithm is useful for computing digital signatures, but that is the only thing for which it can be
used. It is not capable of providing key agreement or encryption without extension.

Using a private key, the user can compute a signature for an arbitrary piece of data. Anyone
possessing the public key that corresponds to the private key used to compute a signature can then
verify that signature. The algorithm works in conjunction with the Secure Hash Algorithm (SHA).
Essentialy, the hash of the data to be signed is computed, and the hash is actually signed, rather
than the data itself. The public key that corresponds to the private key used to compute a digital
signature can then be used to obtain the hash of the data from the signature. This hash is compared
with the hash computed by the party verifying the signature. If they match, the datais considered
authentic. If they don't match, the datais not identical to the data that was originally signed.

A digital signature is useful for verifying the integrity of data, ensuring that it has not been
corrupted or tampered with. It also provides non-repudiation since only one person should have
access to the private key used to compute a signature. The utility of adigital signature when
combined with a key exchange algorithm such as Diffie-Hellman is easy to see. If the two parties
performing a key exchange trust that the public key actually belongs to the party with which
they're communicating, adigital signature can be used to prevent a man-in-the-middle attack.

8.3.1 The Basics

Similar to the low-level interface to Diffie-Hellman, the low-leve interface to DSA provided by
OpenSSL consists of aDSA structure and a set of functions that operate on that structure. The DSA
structure and functions are made accessible by including the openssl/dsa.h header file. The DSA
structure itself contains many data members that are of little or no interest to us, but five members
are important, as shown in the following abbreviated DSA structure definition:

typedef struct dsa_st

{
BIGNUM *p;
BIGNUM *q;
BIGNUM *g;
BIGNUM *pub_key;
BIGNUM *priv_key;
} DSA;

The p, g, and g members, known as DSA parameters, are public values that must be generated
before akey pair can be generated. Because they're public values, no harm will come if a potential
attacker discovers them. The same parameters can be safely used to generate multiple keys. In fact,
RFC 2459 specifies a mechanism in which DSA parameters for a certificate can be inherited from
the certificate of the issuer. Using parameter inheritance not only reduces the size of certificates, it
also enforces the sharing of parameters.

195

The p member is a prime number that is randomly generated. Initially, the proposed standard fixed
the length of the prime at 512 bits. Due to much criticism, thiswas later changed to alow arange
between 512 and 1,024 bits. The length of the prime must be a multiple of 64 bits, however.
OpenSSL does not enforce the 1,024-bit upper bound, but it's not a good ideato use a prime larger
than 1,024 bits—many programs may not be able to use the keys that result from such alarge
prime. The g member isa prime factor of p-1. The value of g must also be exactly 160 bitsin
length. The g member is the result of a mathematical expression involving arandomly chosen
integer, aswell asp and q.

Using the three public parameters (p, g, and g), the public and private keys can be computed.
Public parameters used to compute the keys are required to generate or verify adigital signature.
The parameters must therefore be exchanged along with the public key in order for the public key
to be useful. Of course, the private key should never be distributed.

8.3.2 Generating Parameters and Keys

Like Diffie-Hellman, DSA requires generation of parameters before keys can be generated. Once a
set of parameters is generated, many keys can be created from it. This does not mean that only
people with keys created from the same parameters can interoperate; it ssmply means that in order
to do so, al of the parameter values must be included as part of the public key.

The interface for generating DSA parametersis similar to the interface for generating Diffie-
Hellman parameters. The function DSA_generate_parameters will create anew DSA object
that isinitialized with fresh values for p, g, and g. Generation of DSA parametersis more
complex than Diffie-Hellman parameter generation, although it is typically much faster, especially
for large key lengths.

DSA * DSA_generate_parameters(int bits, unsigned char *seed, int
seed_len,
int *counter_ret, unsigned long *h_ret,
void (*callback)(int, int, void *),
void *cb_arg);
bits

The size of the prime to be generated, specified in terms of bits. Remember that the
maximum allowed by the standard is 1,024 bits.

seed

An optional buffer containing data that gives the function a starting point to begin looking
for primes. This argument can be specified as NULL, and generally should be.

seed_len

The number of bytes contained in the seed buffer. If the seed buffer is specified asNULL,
this argument must be specified as 0.

counter_ret
An optional argument that will receive the number of iterations the function went through
to find primes that satisfy the requirements for p and g. This argument may be specified
asNULL.

h_ret

196

An optional argument that will receive the number of iterations the function went through
to find avalue for h, which is the random number used to calculate g. This argument may
be specified asNULL.

cal lback

A pointer to afunction that will be called during the prime generation process to report
the status of the prime generation. The callback is the same as the callback used by
BN_generate_prime, which we discussed in Chapter 4. This argument may be
specified asNULL if no callbacks are desired.

cb_arg

A pointer to application-specific data. OpenSSL does not use this value for anything itself.
It is passed as an argument to the specified callback function.

Once parameters have been generated, key pairs can be generated. The function

DSA _generate_key isprovided by OpenSSL for doing just that. It requires asits only argument
aDSA object that has the parameters p, g, and g filled in. If the keys are generated successfully,
the return from the function will be nonzero. If an error occurs, the return will be zero. The
generated public and private keys are stored in the supplied DSA object's pub_key and
priv_key members, respectively.

Once the keys are computed, they can be used for creating digital signatures and verifying them.
The DSA abject containing the parameters and keys must remain in memory to perform these
operations, of course, but when the DSA object is no longer needed, it should be destroyed by
calling DSA_free and passing the DSA object asits only argument.

8.3.3 Signing and Verifying

Digital signatures must be computed over a message digest of the data that will be signed. The
DSA standard dictates that the message digest algorithm used for thisis SHA 1, which has output
of the same size asthe DSA g parameter. Thisis no coincidence. In fact, the DSA algorithm
cannot be used to compute a signature for data that is larger than its q parameter.

OpenSSL provides alow-level interface for computing signatures that does allow you to use DSA
to sign arbitrary data. By this, we mean that OpenSSL does not enforce the requirement to use
SHA 1 as the message digest to sign, or even to sign a message digest at all! We strongly
recommend against using the low-level interface for signing and verifying in favor of using the
EV P interface, which we describe later in this chapter. However, we will briefly cover the three
low-level functions for creating and verifying DSA signatures.

Computing a digital signature can be a processor-intensive operation. For this reason, OpenSSL
provides afunction that allows for the pre-computation of the portions of a signature that do not
actually require the data to be signed.

int DSA sign_setup(DSA *dsa, BN_CTX *ctx, BIGNUM **kinvp, BIGNUM

**rp);
dsa

The DSA object containing the parameters and private key that will be used for signing.

ctx

197

An optional BIGNUM context that will be used in the pre-computation. If thisargument is
specified asNULL, atemporary context will be created and used internally.

kinvp

Receives a dynamically allocated B 1GNUM that will hold the pre-computed kinv value.
This value can then be placed into the DSA object's kinv member so that it will be used
when signing.

rp

Receives a dynamically allocated B1GNUM that will hold the pre-computed r value. This
value can then be placed into the DSA object's r member so that it will be used when
signing.

Care must be taken when pre-computing the kinv and r values for signing. Both values must be
placed in the DSA object. If only oneis placed in the object, the memory used by the other will be
leaked. Additionally, the values cannot be reused. They will be destroyed by the signing function.
It may seem tempting to save a copy of the pre-computed values and reuse them for signing
multiple pieces of data, but you must not. An integral part of a DSA signature is a 160-bit
(actualy, the same size as the q parameter, but that should always be 160 bits) random number
known as k. If the same value for k is used more than once, it is possible for an attacker to
discover the private key.

The function DSA_sign is provided for actually computing adigital signature using the DSA
algorithm. If pre-computation of kinv and r has not been done, the function will perform the
computation itself.

int DSA sign(int type, const unsigned char *dgst, int len,
unsigned char *sigret, unsigned int *siglen, DSA *dsa);

type
Ignored for DSA signing. The argument is present only for consistency with the RSA
signing function.

dgst
The buffer of datathat will be signed, which should aways be an SHA1 hash.

len
The number of bytesin the data buffer for signing. It should always be the length of the
message digest, but can never be larger than the size of the g parameter, which isfixed at
160 bits or 20 bytes.

sigret
A buffer that will receive the signature. It must be large enough to hold the signature. The
minimum size for the buffer can be determined with acall to DSA_size, passing the DSA
object that is being used for signing as the only argument.

siglen

198

Receives the number of bytes of the sigret buffer that were filled with the signature.
This argument cannot be NULL.

dsa
The DSA abject to use to sign the contents of the data buffer.

The function DSA_verify isused to verify signatures and is similar to the function used to create
them.

int DSA verify(int type, const unsigned char *dgst, int len,
unsigned char *sigbuf, int siglen, DSA *dsa);

type
Ignored for DSA verification. The argument is present only for consistency with the RSA
verification function.
dgst
The message digest of the data. This digest should be computed on the data prior to
calling thisfunction. Thisis used to compare with the digest in the signature.
len
The number of bytesin the digest buffer.
sigbuf
The signature that will be verified.
siglen
The number of bytes contained in the signature buffer.
dsa

The DSA abject to use to verify the signature.

8.3.4 Practical Applications

DSA does not provide a mechanism for key agreement. It cannot create a shared secret for us,
whereas an algorithm such as Diffie-Hellman can. Thus, it is common to employ a protocol that
uses Diffie-Hellman and DSA to deliver two-way authentication.

First, we need to establish that the client and server each have a public/private key pair and can
exchange public keys offline, prior to beginning secure communications. At the same time, we
need to assume they agree upon parameters for Diffie-Hellman key agreement. Overal, these
assumptions are not egregious. A protocol might begin with each party computing public and
private Diffie-Hellman keys. At this point, instead of sending that unauthenticated data to the
opposite end, each party will sign the message containing the public value with their own private
DSA key. After thisis done, they can send the signed messages.

The value of that signature isthat it assures both parties that the public keys actually came from
their respective peer because only the server has the server's private key, and only the client has

the client's private key. If both parties can verify the signature on the public key they've received,
they can be sure that there is no man-in-the-middle. What we've just described is known as two-
way authentication, because each party independently verifies the other.

8.4 RSA

Invented in 1977, RSA was the first public key algorithm capable of both digitally signing and
encrypting data. Despite the fact that it was patented, it became the de facto public key algorithm.
Almost any company that used public key cryptography in their products licensed the technol ogy.
It was patented only in the United States, and the patent expired on September 20, 2000.

Like other public key algorithms, RSA employs a public and private key pair. Although the
mathematics behind the algorithm are easy to understand, we won't discuss them here. Many other
texts explain the algorithm in detail. For our purposes, it is sufficient to say that the algorithm's
strength lies in the infeasibility of factoring extremely big numbers, and after 25 years of extensive
cryptanalysis, it remains unbroken.

8.4.1 The Basics

Just like the low-level interfaces to Diffie-Hellman and DSA, the low-level interface to RSA
provided by OpenSSL consists of an RSA structure and a set of functions that operate on that
structure. The RSA structure and functions are made accessible by including the openssl/rsa.h
header file. The RSA structure itself contains many data membersthat are of little or no interest to
us, but five members are important, as shown in the following abbreviated RSA structure
definition:

typedef struct rsa_st

{
BIGNUM *p;
BIGNUM *q;
BIGNUM *n;
BIGNUM *e;
BIGNUM *d;
} RSA;

The p and g members are both randomly chosen large prime numbers. These two numbers are
multiplied together to obtain n, which is known as the public modulus. References to the strength
of RSA actually refer to the bit length of the public modulus. Once the private key has been
computed, p and g may be discarded, but they should never be disclosed. However, keeping the
valuesfor p and g around isa good idea; having them available increases the efficiency with
which private key operations are performed.

The e member, also known as the public exponent, should be a randomly chosen integer such that
itand (p-1) (g-1) arerelatively prime. Two numbers are relatively prime if they share no
factors other than one; they may or may not actually be prime. The public exponent isusually a
small number, and in practice, is usually either 3 or 65,537 (also referred to as Fermat's F4
number). Using e, p, and g, the value of d is computed.

Together, the n and e members are the public key, and the d member is the private key.

8.4.2 Generating Keys

200

The RSA agorithm does not require parameters to generate keys, which makes key generation a
much simpler affair. OpenSSL provides a single function to create a new RSA key pair, which
will create a new RSA object that isinitialized with afresh key pair.

RSA *RSA_generate_key(int num, unsigned long e,

void (*callback)(int, int, void *), void
*cb_arg);
num

Specifies the number of bits in the public modulus. The minimum this should be to ensure
proper security is 1,024 bits, though we recommend 2,048 hits.

The value to use for the public exponent. OpenSSL does not attempt to generate this
value randomly, but instead requires you to specify it. Y ou may specify any number you
like, but we recommend that you use one of the two constants, RSA_3 or RSA_F4.

cal lback

A pointer to afunction that will be called during the prime generation process to report
the status of the prime generation. The callback is the same as the callback used by
BN_generate_prime, which we discussed in Chapter 4. This argument may be
specified asNULL if no callbacks are desired.

cb_arg

A pointer to application-specific data. OpenSSL does not use this value for anything itself.
It is used only when passed as an argument to the specified callback function.

Once keys are generated, it isagood ideato call RSA_check_key to verify that the keys
generated by RSA _generate_key are actually usable. The function requires an RSA object asits
only argument. The RSA object should be completely filled in, including valuesfor itsp, g, n, e,
and d members. If the return value from the function is 0, it indicates that there is a problem with
the keys, and that they should be regenerated. If the return value from the function is 1, it indicates
that all tests passed, and that the keys are suitable for use. If the return value from the function is -
1, an error occurred in performing the tests.

When the RSA key is no longer needed, it should be freed by calling RSA_free and passing the
RSA object asits only argument.

8.4.3 Data Encryption, Key Agreement, and Key Transport

Now that we've explored key setup, we can look at the different methods of using those keys. The
RSA algorithm allows for secrecy because it can encrypt data. Data encrypted with a public key
can be decrypted only by an entity possessing the corresponding private key.

Before looking at the specifics of these operations, we must first discuss blinding . Any RSA
operation involving a private key is susceptible to timing attacks. Given an RSA operation as a
black box that we feed data into and collect results from, an attacker can discern information about
our key material by measuring the amount of time it takes the various operations to complete.
Blinding is essentially a change in the implementation that removes any correlation between the
amount of time taken for an operation and the private key value.

201

The function RSA_blinding_on enables blinding for the RSA object passed into it as the first
argument. This means that any operation on the RSA object involving the private key will be
guarded from timing attacks. The second argument is an optional BN_CTX object, which may be
specified asNULL. Likewise, the function RSA_blinding_off disables blinding for the RSA
object passed into it. If you ever design a system that allows arbitrary operations on a private key,
such as any system that automatically signs data, enabling blinding is important for the saf ety of
the private key.

With RSA, it is most common to perform encryption with a public key and decryption with the
corresponding private key. The functionsRSA_public_encrypt and

RSA private_decrypt provide the means to perform these operations. It is also possible to
perform encryption with a private key and decryption with the corresponding public key. Two
functions, RSA_private_encrypt and RSA_public_decrypt, are provided by OpenSSL.
They're intended for those who wish to implement signing at avery low level. In general, they
should be avoided. Each of the four functions returns the number of bytes, including padding, that
were encrypted or decrypted, or -1 if an error occurs.

int RSA public_encrypt(int flen, unsigned char *from, unsigned char

*to,
RSA *rsa, int padding);
flen
Specifies the number of bytes in the buffer to be encrypted.
from
A buffer containing the data to be encrypted.
to
A buffer that will be used to hold the encrypted data. It should be large enough to hold the
largest possible amount of encrypted data, which can be determined by calling
RSA_size and passing the RSA object that is being used to encrypt as its only argument.
rsa
The RSA object that contains the public key to use to perform the encryption.
padding

Specifies which of the built-in padding types supported by OpenSSL should be used when
padding is necessary.

int RSA private decrypt(int flen, unsigned char *from, unsigned char
*to,

RSA *rsa, int padding);
flen

Specifies the number of bytes of datain the buffer to be decrypted.
from
A buffer containing the data to be decrypted.

to

202

A buffer that will be used to hold the decrypted data. It should be large enough to hold the
largest possible amount of decrypted data, which can be determined by calling
RSA_size and passing the RSA object that is being used to decrypt as its only argument.

rsa

The RSA object that contains the private key to use to perform the decryption.
padding

Specifies which of the built-in padding types supported by OpenSSL was used when the

data was encrypted. The padding for decryption must be the same as the padding used for
encryption.

The encryption performed by RSA requires that the data to be encrypted be appropriately formed.
If the data to be encrypted does not fit the requirements, it must be padded. OpenSSL supports
several types of padding for RSA encryption:

RSA_PKCS1_PADDING

If thistype of padding is used, the length of the data to be encrypted must be smaller than
RSA size(rsa)-11. Thisisan older method of padding that has since been replaced
by RSA_PKCS1_OAEP_PADDING. It should be used only for compatibility with older
applications.

RSA_PKCS1_OAEP_PADDING

If thistype of padding is used, the length of the data to be encrypted must be smaller than
RSA_size(rsa)-41. Thistype of padding is the recommended method for al new
applications.

RSA_SSLV23_PADDING

This type of padding is an SSL-specific modification to the RSA_PKCS1_PADDING type.
Under normal circumstances, this type of padding israrely used.

RSA_NO_PADDING

This disables automatic padding by the encryption function, and assumes that the caller
will perform the padding. It requires that the data to be encrypted is exactly
RSA size(rsa) hytes.

8.4.4 Signing and Verifying

Aswith DSA, RSA computes signatures over a chunk of data by first cryptographically hashing
the data to obtain adigest value. This digest and the signer's private key are then used as input to
the signing process. Verification can be performed by executing the same hash and using this
digest value along with the signature value and the signing party's public key.

int RSA _sign(int type, unsigned char *m, unsigned int m_len,

unsigned char *sigret, unsigned int *siglen, RSA *rsa)
type

203

The message digest algorithm that obtains the cryptographic hash of the datato be signed.
The algorithm is specified using NID_shal for SHAL, NID_ripemd160 for RipeMD-
160, or NI1D_md5 for MD5.

m
A buffer containing the data to be signed.

m_len
The number of bytesin the data buffer that will be considered in the signature.

sigret
A buffer that will receive the signature. It must be big enough to hold the largest possible
signature, which can be determined with acall to RSA_si ze, passing the RSA object
being used to sign asits only argument.

siglen
Receives the number of bytes that were written to the signature buffer. This argument
must not be NULL.

rsa

The RSA object containing the private key to use to sign the data.

Y ou will notice that the signature of the function isidentical to the DSA signing function;
however, the arguments are interpreted differently. The sameistrue for the signature verification
function.

int RSA verify(int type, unsigned char *m, unsigned int m_len,
unsigned char *sigbuf, unsigned int siglen, RSA *rsa);

type
The message digest algorithm used to obtain the cryptographic hash of the data that will
be verified. The agorithm specified must be the same that was used to compute the
signature that will be verified.
m
A buffer containing the data that was signed and isto be verified.
m_len
Specifies the number of bytes contained in the data buffer that will be considered.
sigbuf
A buffer containing the signature to be verified.
siglen

Specifies the number of bytes contained in the signature buffer.

204

rsa

The RSA abject containing the public key to use to verify the signature.

8.4.5 Practical Applications

It may be tempting to consider implementing a system in which we rely solely on RSA for secrecy.
Thisisactually not agood ideafor avariety of reasons, but most importantly because RSA isvery
slow compared to symmetric ciphers. Additionally, because we can encrypt only small chunks of
data a atime with RSA keys aone, the best use for RSA's data encryption capabilities isfor key
exchange. There are several ways that RSA can be used in this manner.

One-way authenticating key transport

The client chooses a random session key, encrypts it with the server's public key, and
sends the encrypted data to the server. The server decrypts the message and recovers the
session key. Aswith Diffie-Hellman, this shared secret can then be used with a symmetric
cipher. This protocol is slightly better than Diffie-Hellman, though, because there is one-
way authentication. The client has authenticated the server since no other party could
have recovered the session key. This feature allows a party that knows someone's public
key to compose an encrypted message for that person without any direct communication
at the time of composition.

Two-way authenticating key transport

Essentialy, the client takes the same steps as in the protocol above, but before sending the
message to the server, it signs the message. Thisway, the server can verify the signature
using the client's public key, thus authenticating the client, and recover a session key. The
client has authenticated the server because no other party could recover that session key.

Two-way authenticating key agreement

Both the client and the server choose random data to use as key material, encrypt it with
the opposite party's public key, sign the message with their own private key, and send the
data to the opposite party. Because both parties have signed their messages, each one can
authenticate the other. Additionally, each party has their own secret random number and
the other party's number. Each party can then combine the two numbers in some well-
known way, generally by XOR or by hashing the concatenation of the data, to obtain the
shared secret.

While we've scratched the surface of the theory involved in designing secure protocols, we advise
against trying to design your own, because doing it correctly and securely is very hard. Using a
well-known and verifiably secure protocol such as SSL or TLSis highly recommended for al but
academic situations.

8.5 The EVP Public Key Interface

In Chapters 6 and 7, we discussed OpenSSL's EV P interface, which is a high-level layer of
abstraction that can be used with message digests and symmetric ciphers. It probably won't
surprise you to learn that the interface can also be used with two of the public key agorithms that
we've discussed in this chapter, DSA and RSA. Two sets of functions are provided for digital

205

signatures and data encryption. They work very much like the functions that we've discussed in
previous chapters.

The two new sets of EV P functions require the use of an EVP_PKEY object, used to hold the
public or private key that isrequired. An EVP_PKEY object is therefore simply a container that
can hold either aDSA or an RSA object. Actually, an EVP_PKEY object can also hold aDH object,
but since Diffie-Hellman can be used only for key agreement, the EVP interface cannot actually
make use of aDH object. With thisin mind, we will limit our discussion to DSA and RSA keys.

An EVP_PKEY object is created by calling the EVP_PKEY_new function, which will return either
anew EVP_PKEY abject or NULL if an error occurred. Conversely, an EVP_PKEY object is
destroyed by calling the EVP_PKEY_free function, passing the EVP_PKEY object to be
destroyed as its only argument. When an EVP_PKEY object isfirst created, it is an empty
container. Obvioudly, thisis not very useful.

Two functions, EVP_PKEY_assign_DSA and EVP_PKEY_assign_RSA, are used to populate
the EVP_PKEY abject with either aDSA object or an RSA object. Each function requires exactly
two arguments. Thefirst isthe EVP_PKEY object to assign to, and the second is the key object to
be assigned. Once you assign a key object to an EVP_PKEY object, that object becomes "owned"
by the EVP_PKEY object. In other words, the EVP_PKEY object takes responsibility for destroying
the key object. Y ou should never attempt to destroy a key object once it has been assigned to an
EVP_PKEY object. An EVP_PKEY object can hold only a single object at atime; if you assign it
multiple objects, the last one you assign to it is the one that it will contain, and all of the previous
assignments will be destroyed.

Alternatively, either EVP_PKEY_setl DSA or EVP_PKEY_setl_ RSA can be used to populate
the EVP_PKEY object with either aDSA object or an RSA object. The functions signatures are
identical to EVP_PKEY_assign_DSA and EVP_PKEY_assign_RSA. The difference between
the two is that these two functions do not cause the EVP_PKEY object to assume ownership of the
assigned key object. Instead, the key object's reference count isincremented when it is assigned,
and decremented when it would otherwise be destroyed.

It is aso possible to obtain a pointer to the key object contained by an EVP_PKEY object. If you
know the type of key aobject the EVP_PKEY object contains, you can use the appropriate function
for the key type, either EVP_PKEY_getl DSA or EVP_PKEY_getl RSA. Thesetwo functions
increment the reference count on the key object that is returned, so you must be sureto call either
DSA_free or RSA_free as appropriate when you're done with the object. If you don't know the
type of key object the EVP_PKEY object contains, the function EVP_PKEY_type will return
either EVP_PKEY_DSA or EVP_PKEY_RSA.

8.5.1 Signing and Verifying

The EVP interface provides a means to create and verify digital signatures using either DSA or
RSA keys. Creating adigital signature requires a private key, while verifying one requires the
public key that corresponds to the private key used to create the signature. When adigital
signature is created for a piece of data, that same datais required to verify the signature.

Thefirst step in creating adigital signature using the EVP interfaceisto initialize an
EVP_MD_CTX object, discussed in Chapter 6. An EVP_MD_CTX object can be alocated
dynamically using mal loc or new, or it can be allocated statically as either aglobal or alocal
variable. In either case, EVP_SignlInit must be called to initialize the object.

int EVP_Signlnit(EVP_MD_CTX *ctx, const EVP_MD *type);
ctx

206

The EVP_MD_CTX to beinitialized.
type

The message digest to use to compute the hash, which is actually signed instead of the
dataitself. The message digest is specified the same as the message digest is specifiedin a
call to EVP_DigestlInit. If youre using an RSA key for signing, you may choose from
EVP_md2, EVP_md4, EVP_md5, EVP_shal, EVP_mdc2, and EVP_ripemd160. If
you're using a DSA key for signing, you must use EVP_dss1.

The"engine" release and Version 0.9.7 of OpenSSL deprecate the EVP_SigniInit function.
Instead, EVP_SignlInit_ex should be used, which adds a third argument. The additional
argument is a pointer to an engine object that has been initialized. It may also be specified as
NULL, which causes the default software implementation to be used.

Once a context has been initialized, the data to be signed must be fed into it. Thisis done by
calling EVP_SignUpdate as many times as necessary to feed in al the data. The function works
identically to EVP_DigestUpdate and, infact, is actually implemented as a preprocessor macro
that simply callsEVP_DigestUpdate.

int EVP_SignUpdate(EVP_MD _CTX *ctx, const void *buf, unsigned int

len);

ctx
Specifies the context that isbeing used. It should beinitialized using EVP_SignlInit or
EVP_Signlnit_ex.

buf
A buffer that contains the data to be signed. For each call to EVP_SignUpdate for the
same context, the data from this buffer is concatenated with the data specified in previous
cals.

len

Specifies the number of bytes of data contained in the data buffer.

Once al of the datato be signed has been added into the context, the signature can be computed.
Thisisdoneby calling EVP_SignFinal. Once EVP_SignFinal has been caled, the context is
no longer valid, and must bereinitialized with EVP_SignlInit or EVP_Signlnit_ex beforeit
can be used to create another signature. Note that this does not mean that a dynamically allocated
context object has been freed. OpenSSL has no way of knowing whether the context object was
dynamically allocated or not, so it is up to the caller to free that memory as appropriate.

int EVP_SignFinal (EVP_MD_CTX *ctx, unsigned char *sig, unsigned int
*siglen,
EVP_PKEY *pkey);
ctx
Theinitialized context that contains the data to be signed.

sig

207

A buffer that will receive the signature. This buffer must be large enough to hold the
largest possible signature. The function EVP_PKEY_siize can be used to find out how
large the buffer must be. It requires a single argument, which isthe EVP_PKEY object that
will be used to compute the signature.

siglen

Receives the number of bytes written into the signature buffer. This value must not be
NULL, evenif you're not interested in the information. Normally, this value is the same as
the return from EVP_PKEY_size.

pkey

The EVP_PKEY object that will be used to compute the signature. It must contain either a
DSA or an RSA private key.

EVP_SignFinal will return zero if an error occurred in computing the signature, and nonzero if
the signature computed successfully.

Verifying asignature is as simple as computing one. The set of functions to verify a signature
match the functions to compute a signature, save for their names. Before a signature can be
verified, a context must be initialized by calling EVP_Verifylnit. The"engine" release and
Version 0.9.7 of OpenSSL deprecate EVP_Verifylnitinfavor of EVP_Verifylnit_ex,
which requires athird argument that is an engine object or NULL to use the default software
implementation of the chosen message digest algorithm.

int EVP_Verifylnit(EVP_MD_CTX *ctx, const EVP_MD *type);
ctx

The context object that will beinitialized.
type

The message digest algorithm to use. The message digest used for verification must be the
same that was used for creating the signature that will be verified.

With aninitialized context, EVP_VerifyUpdate should be called as many times as necessary to
supply the context with all of the data that was purportedly used to create the signature. The data
for verifying a signature should be the same data used to create the signature. If the signature and
the data do not match, the verification will fail. This, of course, is the whole point of adigital
signature—to verify that the dataisintact and has not been modified in any way.

int EVP_VerifyUpdate(EVP_MD CTX *ctx, const void *buf, unsigned int
len);
ctx

The context object that was initialized with EVP_Verifylnitor
EVP_Verifylnit_ex.

buf
A buffer that contains the data to be verified.

len

208

Specifies the number of bytes contained in the data buffer.

Once dl of the data has been passed into the context along with EVP_VerifyUpdate,
EVP_VerifyFinal must be called to perform the actual verification of the signature. Its
signature matches that of EVP_SignFinal, but its arguments and return value are interpreted
differently.

int EVP_VerifyFinal(EVP_MD_CTX *ctx, unsigned char *sigbuf,
unsigned int siglen, EVP_PKEY *pkey);
ctx

Theinitialized context that contains the data to be signed.
sigbuf

A buffer containing the signature to be verified.
siglen

Specifies the number of bytes contained in the signature buffer.
pkey

The EVP_PKEY object that will be used to verify the signature. It must contain either a
DSA or an RSA public key. The key should match the private key that was used to create
the signature.

EVP_VerifyFinal will return -1 if an error occursin verifying the signature. If the signature
does not match the data, the return value will be 0, and if the signature is valid, the return value
will be 1.

8.5.2 Encrypting and Decrypting

The EVP interface also provides an interface for enveloping data using RSA keys. Data
enveloping is the process of encrypting a chunk of datawith RSA, typically for securely sending it
to arecipient. Initially, it may seem that enveloping is equivalent to using RSA to encrypt all of
our data, but thisis not correct. Because public key algorithms are inappropriate for encrypting
large amounts of data, enveloping requires the sender to generate arandom key, also called a
session key, and encrypt that key using the public key of the intended recipient. The actual datais
then encrypted with a symmetric cipher using the session key. Incorrectly implementing this
process often causes bugs or vulnerabilities in programs. To avoid this, OpenSSL provides
featuresin the EVP interface referred to as the "envelope" encryption/decryption interface that
handles al of the subtleties correctly.

One of the features offered by the EVP interface for data encryption is the ability to encrypt the
same data using several public keys. A single session key is generated and encrypted using each
public key that is supplied. The recipients can then use their respective private keys to decrypt the
session key, and thus decrypt the data using the appropriate symmetric cipher. The support for this
feature iswholly contained by the context initialization function, which means the interface for
encrypting for multiple recipientsis the same as encrypting for a single recipient.

The act of encrypting data using a public key through the EVP interface is called sealing. A set of
functions, EVP_Seal Init, EVP_SealUpdate, and EVP_SealFinal, are provided to encrypt
an arbitrary amount of data. Each of these functions requires an EVP_CIPHER_CTX object to

maintain state. This object can be allocated either dynamically or statically and must be initialized

S
D

prior to use. Initialization of the context object is achieved by calling EVP_Seal Init. Unlikethe
other EV P context initialization functions that we've discussed, EVP_Seal Init has not been
deprecated in the "engine" release or Version 0.9.7 of OpenSSL.

int EVP_Seal Init(EVP_CIPHER_CTX *ctx, EVP_CIPHER *type,
unsigned char **ek, int *ekl, unsigned char *iv,

EVP_PKEY **pubk, int npubk);
ctx

The context to be initiaized.

type
The symmetric cipher used to perform the actual encryption. A large number of
symmetric ciphers and variations are supported by OpenSSL ; we don't list all of the

options here. Chapter 6 discusses the supported ciphersin detail and provides a
comprehensive list of suitable options for this argument.

ek

An array of buffers. There must be as many elements allocated for the array asthere are
public keys specified for encryption. Each element in the array is a buffer that must be
large enough to hold the encrypted session key. The size required for each buffer can be
determined by calling EVP_PKEY_size, passing the EVP_PKEY object for each buffer
asits only argument.

ekl

An array that will receive the actual encrypted key length for each public key. Again,
there must be as many elements all ocated for the array as there are public keys specified
for encryption.

A buffer that contains the initialization vector to use. If not specified asNULL, the
initialization vector buffer should contain at least as many bytes as defined by the
constant EVP_MAX_IV_LENGTH. Not all ciphers require an initialization vector. For such
ciphers, this argument can be specified asNULL.

pubk

An array of public keysto use to encrypt the randomly generated session key. Each
element in the array should be an EVP_PKEY object that contains an RSA public key.

npubk

Specifies the number of public keys contained in the pubk array. It also determines the
size requirements for the ek and ek arrays.

Example 8-1 demonstrates how to call EVP_Seal Init.

Example 8-1. Calling EVP_Seallnit

ek = (unsigned char **)malloc(sizeof(unsigned char *) * npubk);

210

ekl = (int *)malloc(sizeof(int) * npubk);
pubk = (EVP_PKEY **)malloc(sizeof(EVP_PKEY *) * npubk);

for (i = 0; 1 < npubk; 1i++)

{

pubk[i] = EVP_PKEY_new();

EVP_PKEY_setl RSA(pubk[i], rsakey[i]);

ek[i] = (unsigned char *)malloc(EVP_PKEY_size(pubk[i]));
}

EVP_Seallnit(ctx, type, ek, ekl, iv, pubk, npubk);

Onceinitialization has been performed, the remainder of the sealing processis very much like
encrypting with a symmetric cipher, as described in Chapter 6. In fact, it isidentical, with the
exception of the names of the functions that are used. The initialization function takes care of
generating the session key and encrypting it using the public key of each recipient. It also prepares
the context to perform the encryption of the actual data using the selected symmetric cipher.

int EVP_SealUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl,
unsigned char *in, int inl);

ctx
The context previoudly initialized by EVP_Seal Init.
out
A buffer that will receive the encrypted data. Refer to Chapter 6 for the details of how to
compute the size of this buffer.
outl
Receives the number of bytes written to the encrypted data buffer.
in

A buffer that contains the data to be encrypted.

Specifies the number of bytes contained in the unencrypted data buffer.
After the data to be encrypted has been fed into EVP_SealUpdate, EVP_SealFinish must be
called to finish the job. It will perform any necessary padding and write any remaining encrypted
datainto its output buffer. Once EVP_SealFinish hasbeen caled, EVP_Seal Init must be
called again before the context can be reused.

int EVP_SealFinal (EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl);
ctx

The context previoudly initialized by EVP_Seal Init. Used by EVP_SealUpdate to
encrypt data.

out

A buffer that will receive any final encrypted data.

211

outl
Receives the number of bytes written to the encrypted data buffer.

When the seal process is complete, the encrypted session key, initialization vector (if any), and
encrypted data must all be sent to the recipient in order for the recipient to decrypt the data
successfully. The recipient can then use the EVP interface to unseal or open (decrypt) the data.

The function EVP_OpenInit initializes a context for decryption. Like EVP_Seal Init, it has
not been deprecated by the "engine” release or Version 0.9.7 of OpenSSL.

int EVP_Openlnit(EVP_CIPHER_CTX *ctx, EVP_CIPHER *type, unsigned char
*ek,
int ekl, unsigned char *iv, EVP_PKEY *pkey);

ctx
The context object that will beinitialized.
type
The symmetric cipher to use to decrypt the data. It should be the same cipher that was
used to encrypt the data.
ek
A buffer containing the public key-encrypted session key.
ekl
Specifies the number of bytes contained in the encrypted session key buffer.
iv
A buffer containing the initialization vector that was used with the symmetric cipher to
encrypt the data.
pkey

An EVP_PKEY object that contains an RSA private key that will be used to decrypt the
session key.

Initializing the context decrypts the session key and prepares the context for decrypting the data
using the specified symmetric cipher. The rest of the processisidentical to decrypting data that
has been encrypted with a symmetric cipher, i.e., the functions EVP_OpenUpdate and
EVP_OpenFinal areidentical to the functionsEVP_DecryptUpdate and
EVP_DecryptFinal inevery way, except for their names.

int EVP_OpenUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl,
unsigned char *in, int inl);
ctx

Theinitialized context that will be used to decrypt the data.

out

212

Specifies a buffer to which decrypted data will be written. It must be as large as the input
buffer.

outl

Receives the number of bytes written to the decrypted data buffer.

Specifies a buffer from which encrypted data will be decrypted.

Specifies the number of bytes contained in the encrypted data buffer.

Once al of the datato be decrypted has been fed into EVP_OpenUpdate, EVP_OpenFinal
should be called to compl ete the job. Remember from our discussion of ciphersin Chapter 6 that
when ablock cipher is being used, the final block of decrypted datawill not be written to the
output buffer until EVP_DecryptFinal iscaled (or, in this case, EVP_OpenFinal). Once
EVP_OpenFinal iscaled, the context cannot be reused until EVP_OpenlInitiscaled again.

int EVP_OpenFinal (EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl);
ctx

Specifies the context to finalize decryption for.
out

Specifies a buffer to which decrypted data will be written.
outl

Receives the number of bytes written to the decrypted data buffer.

8.6 Encoding and Decoding Objects

Generating key pairs and keeping them in memory all of the timeisn't very useful. It's often
desirable to generate akey pair and saveit to afile. Conversely, if akey pair is saved in afile, it
also needs to be readable from the file. One solution to the problem is simply to write the data
members from the various objects that we've discussed to aformat of our own design. Doing this
will certainly work, but it has the major drawback of not being compatible with any other software
with which we may want to use our keys.

Asluck would have it, OpenSSL supports two standard formats for storing and exchanging key
pairs. Thefirst is binary form known as DER(Distinguished Encoding Rules). Thistype of fileis
suitable for usein binary files or for transfer over a network connection, but is not ideal for all
situations, particularly text-based communications such as email. The second format that
OpenSSL supportsis known as PEM (Privacy Enhanced Mail), which is defined in RFCs 1421,
1422, 1423, and 1424. PEM data is base64-encoded and provides the ability to encrypt the data
before encoding it.

213

Without delving into the details of the DER and PEM encodings, we need to know some of the
properties of each. The biggest difference, as we've stated above, isthat DER is abinary encoding
and PEM istext-based. Due partialy to this fact, afile may contain only a single DER-encoded
object, but can contain many PEM abjects. In general, if we need to write data to disk, we should
use PEM; however, many third-party applications accept objects only in the DER encoding. For
objects stored in files, the command-line utility allows for encoding conversion for most common
object types.

8.6.1 Writing and Reading DER-Encoded Objects

OpenSSL provides functions for many types of objects that write the DER representation of the
object into a buffer. Each of the functions has a similar signature; the OpenSSL object as the first
argument and a buffer as the second. The functions return the number of bytes written to the
buffer or, if the buffer is specified as NULL, the number of bytes that would have been written to
the buffer is returned. In addition, if a buffer is specified, it is advanced to the byte after the last
byte written in order to facilitate writing multiple DER objects to the same buffer.

int i2d_OBJNAME(OBJTYPE *obj, unsigned char **pp);

You'l note that the second parameter is specified as a pointer to the buffer. Thisis done so that the
pointer can be advanced after the datais written to it. Example 8-2 demonstrates how these
functions can be used by writing an RSA public key into a dynamically allocated buffer. The
function returns the buffer that was allocated to hold the DER-encoded key and stores the length
of the buffer in the second argument.

Example 8-2. DER-encoding an RSA public key

unsigned char *DER_encode RSA public(RSA *rsa, int *len)
{

unsigned char *buf, *next;

*len = 12d_RSAPublicKey(rsa, NULL);

buf = next = (unsigned char *)malloc(*len);
i12d_RSAPublicKey(rsa, &next);

return buf;

}

Likewise, afunction is provided for each type of object that reads the DER representation of the
object from a buffer and creates the appropriate object in memory. Again, each of the functions
has a similar signature. The first argument is an object to populate with the data obtained from the
buffer, which is specified as the second argument. The third argument specifies the number of
bytes contained in the buffer that should be used for constructing the object.

OBJTYPE *d2i_OBJINAME(OBJTYPE **obj, unsigned char **pp, long length);

If thefirst argument is specified asNULL, a new object of the appropriate type is created and
populated with the data recovered from the buffer. If it is specified as a pointer to NULL, a new
object of the appropriate type is created and populated in the same manner, but the argument is
updated to receive the newly created object. Finally, if a pointer to an existing object is specified,
the existing object is populated with the data recovered from the buffer. In all cases, the return
value of the function is the object that was populated, or NULL if an error occurred in recovering
the data. Example 8-3 demonstrates DER-decoding an RSA public key.

Example 8-3. DER-decoding an RSA public key

RSA *DER_decode RSA public(unsigned char *buf, long len)

214

RSA *rsa;

rsa = d2i_RSAPublicKey(NULL, &buf, len);
return rsa;

}

Thetwo functionsd2i_PublicKey and d2i_PrivateKey have adifferent signature from the
others. The first argument to these two functions is an integer that specifies the type of key (DH,
DSA, or RSA), whichis encoded in the buffer. One of the constants EVP_PKEY_DH,
EVP_PKEY_DSA, or EVP_PKEY_RSA must be specified to indicate the type of key to expect. The
rest of the arguments to these two functions are the same, except they are shifted to make room for
the argument that specifies the type of key. The function d2i_AutoPrivateKey isprovided to
allow OpenSSL to attempt to guess the type of private key that is stored in the buffer. Table 8-1
lists some DER-encoding functions.

Table 8-1. Functions for reading and writing DER encodings of public key objects
. OpenSSL Function towritethe DER Function to read the DER
Type of object : . .
obj ect type representation representation

Diffie-Hellman DH i2d_DHparams d2i_DHparams
parameters

DSA parameters |DSA i2d_DSAparams d2i_DSAparams

DSA public key [DSA i2d_DSAPublicKey d2i_DSAPublicKey

DSA private key [DSA i2d_DSAPrivateKey d2i_DSAPrivateKey
IRSA public key [RSA i2d_RSAPublicKey d2i_RSAPublicKey

RSA private key |RSA i2d_RSAPrivateKey d2i_RSAPrivateKey
EVP PKEY levp pkey |i2d_Publickey d2i_PublicKey
public key

EVP—PKEY EVP_PKEY i2d_PrivateKey d2i_PrivateKey
private key

EVP_PKEY 1oy pkey IN/A d2i_AutoPrivateKey
private key

The two classes of functions above are useful for reading and writing structures to flat memory,

but they still require us to write them to or read them from either afile or BIO. To help with this
task, OpenSSL provides functions and macros that handle writing to files and streams. Each of the
function names listed in Table 8-1 can be used as a base for building a new name to read or write
DER encodings to or from afile or BIO. By appending _bio or _fp to the names of the functions,
names for functions for writing to or reading from a BIO or file can be made. For example, the
function i2d_DSAparams_bio will write the DER representation of DSA parameters to the
specified BIO. The definitions for the BIO and file interface functions are in the header file
openssl/x509.h.

There are three exceptions to thisrule. The first isthat thereis no BIO or file equivaent function
for i2d_PublicKey or d2i_PublicKey. The second exception is that there is no equivalently
named function for the d2i_AutoPrivateKey function. The third exception is that
d2i_PrivateKey_bioandd2i_PrivateKey_ fp both behave asthough they were named
d2i_AutoPrivateKey bioandd2i_AutoPrivateKey fp.

For the functions that write DER representationsto aBIO or afile, the first argument is either a
B10 or FILE object, depending on the function that is used. The second argument is the object
that will be DER-encoded and written to the BIO or file. The return value from these functionsis
zero if an error occurs; otherwise, it is nonzero to indicate success.

215

The functions that read DER representations also requireaB 10 or FILE object astheir first
argument, depending on which function is used. The second argument is a pointer to an object of
the type that is being read, which istreated just the same as the first argument to the base functions.
That is, when NULL or a pointer to NULL is specified, a new object of the appropriatetypeis
created; otherwise, the specified object is populated. The return value from these functionsis

NULL if an error occurs; otherwise, the return is the object that was populated. Example 8-4
demonstrates.

Example 8-4. Reading and writing DER-encoded objects using the BIO and file
functions

BIO *bio = BIO _new(BIO_s memory());
RSA *rsa = RSA generate_key(1024, RSA F4, NULL, NULL);
i2d_RSAPrivateKey bio(bio, rsa);

FILE *fp = fopen(“'rsakey.der™, "rb');
RSA *rsa = NULL;
d2i_RSAPrivateKey fp(fp, &rsa);

8.6.2 Writing and Reading PEM-Encoded Objects

The same objects that can be read and written in DER format can aso be read and written in PEM
format. The interface to the PEM format is somewhat different from the DER interface. To begin
with, it supports writing to and reading from aBIO or afile; it does not support memory buffers
like the DER interface does. As it turns out, thisisn't much of alimitation since you can just use a
memory BIO. All of the function declarations can be found in the header file openssl/pem.h.

The functions for writing public keys and parameters al share the same basic signature. The
functions for writing to aBIO require aB 10 object as the first argument and the object type asthe
second argument. The functions for writing to afile require aF 1 LE object asthe first argument
and the object type as the second argument. Each of the functions, regardless of whether they're
writing to aB 10 object or aFILE object, return zero if an error occurs and nonzero if the
operation was successful.

The functions for writing private keys are a bit more complex because the PEM format allows
them to be encrypted before they're encoded and written out. Each function requiresaB10 or
FILE object to write to, the object to be written, a password callback function, and symmetric
cipher information.

int PEM_write OBINAME(FILE *fp, OBJTYPE *obj, const EVP_CIPHER *enc,
unsigned char *kstr, int klen, pem_password_ch
callback,
void *cb_arg);
fp

Thefileto write to.

obj

The object that contains the data to be written. The type of this object can be DSA,
EVP_PKEY, or RSA.

enc

216

The optional cipher to use to encrypt the key data. This can be any symmetric cipher
object supported by OpenSSL. Refer to Chapter 6 for acomprehensive list of the
available options. If thisis specified as NULL, the key data is written unencrypted, and the
remaining arguments are ignored.

kstr
An optional buffer that contains the password or passphrase to use for encryption. If this
is specified as non-NULL, the password callback function isignored, and the contents of
this buffer are used.

klen
Specifies the number of bytes contained in the kstr buffer.

callback
A callback function to obtain the password or passphrase for encrypting the key data. Its
signature is described below.

cb_arg

Application-specific data that is passed to the callback function. If the callback function
and the kstr buffer are specified asNULL, thisisinterpreted as a NULL-terminated, C-
style string that is used as the password or passphrase to encrypt the key data. If itisalso
specified as NULL, the default password callback function is used. The default password
callback function prompts the user to enter the password or passphrase.

The functions that are used to write to a BIO object have the same signature, except that the FILE
object isreplaced with aB10 object. The return values from functions that write private keys are
the same as the values from functions that write public keys and parameters: zero if an error
occurs, nonzero otherwise. The password callback function, if oneis used, has the following
signature:

typedef int (*pem_password_cb)(char *buf, int len, int rwflag, void

*cb_arg);
buf

A buffer that the password or passphrase will be written into.

len
The size of the password buffer.

rwflag
Indicates whether the password or passphrase will be used to encrypt or decrypt the PEM
data. When writing PEM data, this argument will be nonzero. When reading PEM data,
this argument will be zero.

cb_arg

Application-specific. It is passed from the function that caused the password callback
function to be called.

217

The functions for reading public keys, private keys, and parameters al share asimilar signature.
Each requiresaBI10 or aFILE object to read from, an object to populate with the data that was
read, and a password callback function.

OBJTYPE *PEM_read_ OBJINAME(FILE *fp, OBJTYPE **obj, pem_password_cb
callback,

void *cb_arg);
fp

Thefileto read from.

obj

The object to populate with the data that isread. If it is specified as NULL, a new object of
the appropriate type is created and populated. If it is specified as a pointer to NULL, a new
object of the appropriate type is also created and populated. In addition, it receives a
pointer to the newly created object.

cal lback

A callback function to obtain the password or passphrase if oneis required. A password
or passphrase is required only if the PEM data being read is encrypted. Normally, only
private keys are encrypted. The callback function may be specified asNULL.

cb_arg

Application-specific data that is passed to the callback function. If the callback is
specified as NULL, this argument is interpreted as a NULL-terminated, C-style string
containing the password or passphrase to use. If both the callback and this argument are
specified as NULL, the default password callback function is used.

The functions that are used to read from a BIO have the same signature, except that the FILE
object isreplaced with aB10 object. The return value from the reading functionsis aways a
pointer to the object that was populated with the data that was read. If an error occurs reading the
PEM data, NULL isreturned. See Table 8-2.

Table 8-2. Functions for reading and writing PEM encodings of public key objects

Type of OgsneitSL Function towritethe PEM Function to read the PEM
object t)}pe representation representation
Diffie- PEM_write DHparams PEM_read_DHparams
Hellman |DH
parameters PEM_write_bio_DHparams PEM_read_bio_DHparams
PEM_write DSAparams PEM_read_DSAparams
Da?:meters DSA
P PEM_write_bio_DSAparams PEM_read_bio_DSAparams
PEM_write DSA PUBKEY PEM_read DSA PUBKEY
DSA - - - - - -
ublickey 0"
P & PEM_write _bio DSA PUBKEY |PEM_read_bio DSA PUBKEY
PEM_write_DSAPrivateKey PEM_read_DSAPrivateKey
DSA - - - -
rivate k DSA
P & PEM_write bio_DSAPrivateKey|PEM_read_bio_DSAPrivateKey

218

PEM_write_RSA_PUBKEY

PEM_read_RSA_PUBKEY

RSA
ublickey |7
P & PEM write_bio RSA PUBKEY |PEM read bio RSA PUBKEY
PEM_write RSAPrivateKey PEM_read_ RSAPrivateKey
RSA
rivate k RSA
P & PEM_write bio_RSAPrivateKey|PEM_read_bio_RSAPrivateKey
EVP_PKEY PEM_write_ PUBKEY PEM_read_PUBKEY
ublic k EVP_PKEY
P & PEM_write_bio_PUBKEY PEM_read_bio_PUBKEY
EVP_PKEY PEM_write_ PrivateKey PEM_read_PrivateKey
. EVP_PKEY
private key -

PEM write bio_PrivateKey

PEM_read_bio_PrivateKey

Ykaﬂigﬁf”

Chapter 9. OpenSSL in Other Languages

So far, we've discussed OpenSSL in the context of the C programming language, but you don't
have to use C to use OpenSSL! Language bindings are available for many different languages,
including Java, Perl, PHP, Python, and others. Unfortunately, none of the non-C language
bindings that we've come across are as complete as the C API; nonetheless, it isimportant to
discuss at least afew of the more popular and best-supported language bindings that are available.

The first section of this chapter is adiscussion of Net::SSLeay, the most popular and complete
module that iswidely available for Perl. Be careful not to confuse Net::SSLeay with
Crypt::SSLeay. The latter package is intended only to add support for HTTPS to the LWP package
(apopular WWW interface library for Perl) and does not provide the additional interfaces to
OpenSSL that Net::SSLeay does. The second section of this chapter is a discussion of M2Crypto,
the most popular and complete suite of modules that is widely available for Python. The third
section of this chapter is a brief discussion of the experimental OpenSSL extensions available in
PHP 4.0.4 and newer versions.

For the purposes of these discussions, we assume that you have a familiarity with the language
that is being discussed and its accompanying tools. It is not our intent to guide you through the
installation of the modules or the common usage of the language. The specific purpose of this
chapter is to demonstrate how to use the modules and get you started with OpenSSL in your own
programs.

9.1 Net::SSLeay for Perl

Net::SSLeay is the most complete OpenSSL module available for Perl. It iswritten and
maintained by Sampo Kellomaki (sampo@symlabs.com) and can be found on the Web at
http://www.symlabs.com/Net_SSL eay. Asisthe case with most Perl modules, it is also available
from CPAN. Unfortunately, itsinstallation is not as straightforward as one might hope, so take
care in reading the accompanying installation instructions for guidance.

As its name suggests, the module has its roots in the old SSLeay library originally developed by
Eric Y oung, which provides the foundation upon which OpenSSL has been built. SSLeay evolved
into OpenSSL several years ago, and Net:: SSLeay hasn't supported old versions of SSLeay since
early 1999. At the time of thiswriting, the latest version of Net::SSLeay isVersion 1.13 and
requires OpenSSL 0.9.6¢ or later.

The module comes with afair number of scripts that serve as examples to demonstrate how to use
the module's basic functionality. It provides Perl bindings for many of the low-level OpenSSL
library functions. Many convenience functions that are intended for use at alow level are also
included. The module also contains several high-level functions that you can use to perform
common tasks involving OpenSSL, such as obtaining a file securely from the Web or securely
posting datato a CGlI script.

A limited amount of documentation is aso included with the module. A quick-reference file that
contains alist of the functions that are exported is included, along with asimple one-line
description of each. The main Perl module file, SSLeay.pm, also contains some documentation in
perldoc format of the functions the module adds to the OpenSSL bindings. Aside from the quick-
reference file, no additional documentation is provided for the OpenSSL bindings. In fact, the
author refers you to the OpenSSL documentation and source code for more information.

220

mailto:sampo@symlabs.com
http://www.symlabs.com/Net_SSLeay

9.1.1 Net::SSLeay Variables

Net::SSLeay exports several global variables that are useful for controlling the behavior of the
modules. Some of them are useful only for debugging your programs, but most of them provide
finer control over the behavior of OpenSSL itself or some of the utility functions that are provided
by the module.

$linux_debug

This variable should be set only when the module is being used on aLinux system. If itis
set to a nonzero value, process information from /proc/pid/stat will be displayed for each
read and write.

$trace

This variable sets the trace level that is used by the high-level utility functions. Itis
intended primarily for debugging, so it should generally be set to zero in production
programs (the zero guarantees silence). Valid values for thisvariable are O for silence, 1
for only errorsto be reported, 2 for cipher information to be reported, 3 to report progress,
and 4 to display everything, including the data that is both sent and received.

$slowly

Thisvariable is used with the sscat utility function. It controls the number of seconds
that sslcat will deep after sending data and before closing the sending side of the
connection. It defaults to zero, which means that sslcat will not sleep at all, but some
servers may require adelay; otherwise, they won't be able to read all of the data that was
sent.

$ssl_version

This variable sets the version of the SSL protocol that is used by the high-level utility
functions. By defaullt, it is set to 0, which indicates that the version should be guessed as
SSLv2, SSLv3, or TLSv1. Valid values for thisvariable are 2 for SSLv2, 3 for SSLv3, 10
for TLSv1, and O to guess SSLv2, SSLv3, or TLSv1.

$random_device

This variable contains the name of afile that will be used to seed OpenSSL's PRNG. The
default setting for this variable is /dev/urandom, but not all operating systems have such a
device. If your system does not have such a device, you should consider using a third-
party program that can provide entropy, such as EGADS. Y ou can optionally use
/dev/random if your system has it; however, that device can block if not enough
randomness is available. See Chapter 4 for a discussion on the importance of properly
seeding the PRNG.

$how_random

This variable specifies, in bits, how much entropy should be collected from the source
specified by $random_device. The default value is 512 hits. If you change this, be sure
that you collect enough entropy, but also be careful that you do not collect too much,
especially if you're using /dev/random as your entropy source, because it could block until
more becomes available.

221

9.1.2 Net::SSLeay Error Handling

In addition to providing Perl bindings for many of OpenSSL's error handling functions, three
utility functions are provded by Net::SSL eay to handle error conditions:

print_errs($msg)

This function returns a string containing alist of all of the OpenSSL errors that occurred
since the OpenSSL function ERR_get_error() waslast caled. A newline character
separates each error in the returned string, and each error is prefaced with the message
string that you specify as an argument. Additionaly, if the $trace variableisany
nonzero value, the errors will be printed to stderr viaPerl'swarn function.

die if _ssl _error($msg)

This function will cause your program to terminate immediately by calling di e with the
message that you pass as an argument if an OpenSSL error has occurred. The function
simply calsprint_errs to determineif any errors have occurred. If print_errs
returns any errors, the program is terminated.

die_now($msg)

Thisfunction will cause your program to terminate immediately by calling die with the
message that you pass as an argument. Before calling die, print_errs iscaled so that
any errorswill be printed to stderr if the $trace global variable is set to any nonzero
value.

9.1.3 Net::SSLeay Utility Functions

Net::SSL eay provides many high-level utility functions that simplify the use of OpenSSL. They're
mostly wrappers around the low-level OpenSSL functions for which the module also provides
bindings. Several of the functions also provide a wrapper around the HTTPS protocol.

make_headers(@headers)

This function converts an associative array into a string formatted for sending directly to
an HTTP server. The array's keys should be the header identifier, and the values should
be the value to be associated with each header identifier. Essentialy, this function
combines each key/value pair with acolon and joins al of the pairs with carriage returns
and linefeeds. The return value from this function is the resulting string.

make_form(@data)

This function converts an associative array into a string formatted for sending form data
to a CGl script. The array's keys should be the field name, and the values should be the
value to be associated with each field name. The values are encoded according to the
rules governing special and reserved charactersin URLs. Essentially, this function
combines each key/value pair with an equal sign and joins al of the pairswith an
ampersand. The return value from this function is the resulting string.

get_https($site, $port, $path, $headers, $content, $mime_type,
$crt_path, $key path)head_https($site, $port, $path, $headers,
$content, $mime_type, $crt_path, $key path)post_https($site,
$port, $path, S$headers, $content, $mime_type, $crt_path,

222

$key path)put_https($site, $port, $path, $headers, $content,
$mime_type, $crt_path, $key path)

These four functions are similar, so we'll describe them together. They take the same
arguments and perform the HTTP request that is signified by their names. Not al of the
arguments are appropriate for al of the functions, and in many cases empty values can be
specified without any adverse effects. All of the functions establish a secure connection
using SSL with the HTTPS protocol. Y ou should not pass a URL to the functions, but
instead pass the separate components that make up a URL as arguments, individually.
These functions will build the URL for you, establish the connection, perform the
requested operation with the data you've provided, and return the data from the server to
your program. It'simportant to realize that these functions perform no real certificate
verification, so the only protection they're providing is against passive eavesdropping
attacks.

Thefirst argument, $si te, should contain the hostname or 1P address of the host you
wish to contact. The second argument, $port, should be the port to connect to. For the
HTTPS protocol, the default port is 443. The third argument, $path, should be the path
to the page as well as any variables you wish to pass as part of the URL. Essentidly, this
isthe remainder of the URL.

The fourth argument, $headers, should contain any additional headers that you wish to
send with your request. Y ou can use the function make headers to build a string of
header information from an associative array. By default, Net::SSLeay will include the
standard Host and Accept headers, so you do not need to include them yourself. The
fifth argument, $content, isuseful only for the put_https and post_https
functions. Use it to specify the data to send to the server. In the case of the post_https,
you can use the function make_form to build a string of datafrom an associative array to
send to the server. The sixth argument, $mime_type, is used to specify the MIME type
of the data contained in the $content argument. If you do not specify a MIME type,
application/x-www-Fform-urlencoded isused by default.

Thefinal two arguments, $crt_path and $key_path, are optionally used to specify
the path and filename to the client certificate and RSA private key to be used in
establishing the connection. Remember that if you request a private key to be used in the
transaction, the passphrase for the key will be requested from the console by OpenSSL if
it is encrypted. The certificate and key files must be in PEM format, which also means
that they may both be contained in the samefile.

All four functions will return an array containing the results of the transaction. If an error
occurs, the returned array will have only two elements. The first element will be undeT,
and the second element will be a string representation of the error that occurred. If the
transaction is successful, the array will have three elements. The elements will be (in this
order): the data that makes up the page, the response code from the server, and the
headers returned from the server. The headers will be returned in the form of an
associative array.

sslcat($host, $port, $content, $crt_path, $key path)

This function establishes an SSL-secured connection to another host, sends it some data,
waits for aresponse, and returns the remote host's response to your program. Thefirst two
arguments, $host and $port, specify the hosthame or |P address and the port number to
connect to. The third argument, $content, specifies the data that you wish to send to the
remote host.

223

The fourth and fifth arguments, $crt_path and $key_path, optionally specify the
path and filename to the client certificate and RSA private key to be used in establishing
the SSL connection. Remember that if you specify a key to be used, the passphrase for the
key will be prompted for on the console if the key is encrypted.

The return value from this function will be the data returned by the remote host or undef
if an error occurred. If you call the function to request an array as areturn, the first
element of the array will be the data that was received from the remote host, and the
second element will be a string containing error information if an error occurred.

randomize($seed_file, $seed_string, $egd path)

Thisisaconvenience function used to seed OpenSSL's PRNG. The first argument is the
name of afileto be used as aseed file. The second argument isa string to be used as a
seed. The third argument is the name of a Unix domain socket that is bound to a server
that speaks the EGD protocol for gathering entropy. If the argument is undefined, the
environment variable EGD_PATH will be consulted for the name of the socket to use.
Additionally, if you've specified arandom device with the $Srandom_device variable
and it exists, the information will be passed on to OpenSSL viaRAND_load_file. This
function has no return value.

set_cert_and_key($ctx, $cert_file, $key File)

Thisis a convenience function for specifying the certificate and key to use for an SSL
context. All three arguments are required. Note that if the RSA key specified by
$key_file isencrypted, OpenSSL will prompt you on the console for the passphrase.
Thisfunction returns 0 if an error has occurred; otherwise, the return is nonzero.

ssl_read_all($ssl, $howmuch)

This function reads $howmuch bytes from SSL connection specified by $ssl. The
function will not return until the specified number of bytes has been read or EOF is
encountered, whichever happens first. The return from this function will be the data that
was received. If you call the function requesting an array return, the first element of the
array will be the data received, and the second element will be the string representation of
any errors that occurred.

ssl_read_CRLF($ssl, $max)

This function reads data from the SSL connection specified by $ss1 until a carriage
return and linefeed are received or the number of bytes equals $max if it is specified. The
carriage return and linefeed characters will be included in the received dataif they're read
before the maximum byte limit is reached. The return from this function will be the data
that was received.

ssl_read_until($ssl, $delimiter, $max)

This function reads data from the SSL connection specified by $ss1 until the specified
delimiter is received or the number of bytes equals $max if it is specified. If no delimiter
is specified, $/ or alinefeed character will be used, depending on whether $/ is defined
or not. If the delimiter is encountered, it will beincluded in the datathat is returned. The
return from this function will be the data that was received.

ssl_write_all($ssl, $data)

224

This function writes the data specified by $data to the SSL connection specified by
$ssl. The function will not return until al of the data has been written. The data to be
written may be passed as areference. The return from this function will be the number of
bytes that were written. If you call the function requesting an array return, the first
element of the array will be the number of bytes written, and the second element will be
the string representation of any errors that occurred.

ssl_write_CRLF($ssl, $data)

Thisfunction is asimple wrapper around ssl_write_all that makes an additional call
tossl_write_all towrite both a carriage return and alinefeed after your data. The
return from this function is the total number of bytes written. Remember that this byte
count will include the carriage return and linefeed characters.

9.1.4 Net::SSLeay Low-Level Bindings

The Net::SSLeay module does not provide bindings for all of the functions that OpenSSL exports
as part of its public API; however, it does provide a sizable subset of them. Certainly, the most
commonly used functions have bindings, and the author has added bindings for arandom
splattering of other functions as needed. We don't provide a complete list of all of the bindings that
are supported. There is acomplete list contained in the Net::SSLeay package. If thereis afunction
that ismissing, you should consider adding it yourself or contacting the author of Net::SSL eay.

In general, the Perl bindings for OpenSSL match the C functions for which they provide bindings.
That is, both the arguments and the return values are the same. As you would expect, there are
some differences. The most significant difference is that the names of the Perl bindings are not
prefixed with SSL_ asthe OpenSSL C functions are. Instead, you should prefix the names with
Net::SSLeay: : to get the function or constant that you want. If the function name does not start
with SSL__inthe OpenSSL C library, the name isthe samein Perl.

There are two notable exceptions to the rule that Perl bindings take the same arguments as
OpenSSL C functions. Both read and write as exported by Net::SSLeay provide bindings to
SSL_read and SSL_write; however, the Perl bindings are more intelligent about the data types
that are passed through them. For example, wr i te automatically figures out the number of bytes
that need to be written.

For the most part, callbacks are not implemented in Net::SSLeay. Only one callback is
implemented, and it does not come without a potentially severe restriction. The one callback that
isimplemented is the verify callback, which is used for verifying certificates. Therestriction is
that there can be only one callback across all SSL contexts, sessions, and connections. For most
client applications, this restriction will probably never be encountered, but for server applications,
the potential severity of the restriction increases significantly.

Onefina point to consider isthat Net::SSLeay is not thread-aware. Given that threading is still
experimental in Perl, it's not so surprising that Net::SSLeay isn't thread-aware. As Perl moves
closer to fully supporting threading, thiswill become more of an issue, but for now it is something
to keep in the back of your mind while designing and implementing your SSL-enabled
applicationsin Perl using Net::SSL eay.

9.2 M2Crypto for Python

225

Although there are several solutions available for Python, M2Crypto is the most popular, the most
complete, and not surprisingly, the most mature. It is written and maintained by Ng Pheng Siong
(ngps@postl.com) and can be found on the Web at http://www.postl.com/home/ngps/m2. It
requires SWIG, which can be found on the Web at http://swig.sourceforge.net. At the time of
writing, the latest version of M2Crypto is Version 0.06 and requires OpenSSL 0.9.6 or later and
SWIG 1.3.6. It's been tested and known to work on Unix and Windows with Python Versions
15.2,2.0,and 2.1.

Although it is the most mature Python solution available, M2Crypto is barely a year old.
Unfortunately, it is sorely lacking in documentation. Luckily, included in the distribution isa
sizable collection of examples aswell as a suite of unit test scripts that also serve as excellent
examples of how to use the modules. M2Crypto contains not only alarge set of low-level bindings
to the OpenSSL C library functions, but a set of high-level classes that provide afar cleaner
interface to SSL as well.

9.2.1 Low-Level Bindings

A significant number of the OpenSSL C library functions are directly bound. Many others are still
available, although wrapped with a dightly different name, and their arguments may have changed
dlightly. These wrappers typically make the functions easier to use from Python and do alittle
extrawork "under the hood" that may be necessary for everything to work properly for Python.

Y ou can make the low-level bindings to OpenSSL available in your program with t he following
Statement:

from M2Crypto import m2

All of the low-level functions are named entirely in lowercase, and the OpenSSL C functions are
normally named in a combination of uppercase and lowercase. For example, the OpenSSL C
function named SSL_CTX_new would becomem2.ssl_ctx_new in Python. We will not
include a complete list of the low-level bindings in this chapter; however, the M2Crypto package
contains one.

We don't recommend that you use the low-level bindings in your own programs, at least not
without also using the high-level classes. The primary reason for thisis that many of the SSL
subsystems require some additional setup calls from Python to make them work properly. For
example, to use the BIO functionality, you need to call m2 _bio_init, aninterna M2Crypto
function, properly. If you're using the high-level classes, such calls are made for you, and you can
generally feel freeto extend the classes if you need to.

9.2.2 High-Level Classes

M 2Crypto contains a reasonably complete set of high-level classes that you can use in your
programs. Use of the high-level classesis encouraged over the low-level bindings for a couple of
reasons. The primary reason that we cited in the earlier section on the low-level interface is a good
one. As M2Crypto evolves and matures, it's possible that itsinternals will change, breaking your
programs in the process. Another reason is because Python is primarily an object-oriented
language, and the low-level interface is not object-oriented at all. A third reason is that OpenSSL's
C library functions are often cumbersome to use. The high-level classes provide a much cleaner,
easier-to-use interface to OpenSSL's functionality.

There are several submodules, al of which can beimported from the M2Crypto module to access
the various groupings of functions that all make up the OpenSSL C API. Several of them are still
worksin progress, but the most commonly used SSL functionality is available.

9.2.2.1 M2Crypto.SSL

226

mailto:ngps@post1.com
http://www.post1.com/home/ngps/m2
http://swig.sourceforge.net/

from M2Crypto import SSL

The SSL module contains several classes that provide the most basic interface to the OpenSSL C
library. Included among them are Context, Connection, Session, SSLServer,
ForkingSSLServer, and ThreadingSSLServer. Thefirst, Context, isawrapper around
the C interface's SSL_CTX object. All of OpenSSL's connection-oriented services require a
context on which to operate.

When a context is created, the version of the protocol that it will support must be supplied. Y ou
cannot change a context's protocol once it has been created. The Context class's constructor
takes an optional parameter that specifies the protocol to use. The protocol can be sslv2, sslv3,
tlsvl, or sslv23. If you do not specify a protocol, the default is ss1v23, which indicates that
SSLv2, SSLv3, or TLSv1 should be negotiated during the initial handshake. Aswe mentioned in
Chapter 1, you should avoid supporting v2 in your applications.

Once a context object has been created, it can be used to establish an SSL connection. The class
contains many methods that allow you to set and query the various attributes a context may have
that are supported by OpenSSL itself. Operations include assigning a certificate and private key,
loading CA certificates, and specifying criteriato determine whether a peer's certificate is
acceptable or not.

The Connection class combines OpenSSL with sockets to provide an al-in-one object for
establishing both client and server connections, as well as transferring data bi-directionally over
the connection. This classislittle more than a convenience object, since it does all of the tedious
work of setting up a socket and establishing an SSL connection for you. All that you need to do is
create aContext and set it up to meet your needs. For example, to establish a connection using
TLSv1 for the protocol, your code might look alittle something like this:

from M2Crypto import SSL

ctx = SSL.Context("tlsvli®)
conn = SSL.Connection(ctx)
conn.connect(("127.0.0.1", "443%))

The Session classis not one that you would typically create yourself. There are two ways to get
aSession object. Thefirst isfrom an existing Connection object by calling its
get_session method. The second is by loading a saved session from afile via

SSL. load_session. Once you have aSession object, you can dump it to afile using its
write_bio method.

The last three classes, SSLServer, ForkingSSLServer, and ThreadingSSLServer, are
SSL versions of the Python TCPServer classfound in the SocketServer module. They all work
in the same manner, except the constructor for each class requires an additional argument that is a
Context object. You are of course required to create the Context object and set it up to meet
your needs.

9.2.2.2 M2Crypto.BIO

from M2Crypto import BIO

The BIO module provides interface classes to OpenSSL's BIO functions. The BIO classitself isan
abstract class that provides the basic functionality of the other four classes that are built on top of
it: MemoryBuffer, File, 10Buffer, and CipherStream. TheBI0 classitself is not intended
to be instantiated. If you do, it'll be mostly useless, capable of doing little more than throwing
exceptions when you try to useit.

227

There isn't much to be said for these four classes that we didn't already cover in Chapter 4. BIO is
simply an 1/O abstraction, and these four classes provide four different types of 1/0. The
MemoryBuffer class provides awrapper around the OpenSSL B10_s_mem type, whichisanin-
memory 1/0O stream. The Fi le class provides awrapper around the OpenSSL BIO_s_fp type,
whichisadisk file. The 10Buffer class provides awrapper around the OpenSSL

BI10_f buffer type anditistypicaly used only internally by aConnection object's

makefi le method. It essentially provides awrapper around any other type of BIO.

Finally, the CipherStream class provides awrapper around the OpenSSL B10_f_cipher type,
which is perhaps the most interesting of all four BIO wrappers that are supported by M2Crypto. It
wraps around any other type of BIO of your choosing, encrypting data as it is written, and
decrypting dataasit is read. Some additional setup work is required to use this class, but al that is
actually involved is setting the cipher to be used.

9.2.2.3 M2Crypto.EVP
from M2Crypto import EVP

The EVP module provides an interface to OpenSSL's EVP interface. Additionally, it provides an

interface to OpenSSL's HMAC interface, which is not technically a part of the EVP interface. As
we discussed in Chapters 6, 7, and 8, EVP is ahigh-level interface to message digests, symmetric
ciphers, and public key algorithms. It provides a mechanism for computing cryptographic hashes,
data encryption, and digital signatures.

TheMessageDigest class provides the interface for computing cryptographic hashes. Its
constructor requires an argument that is the string name of the algorithm to use. The available
algorithms and their string names are listed in Chapter 7. Once aMessageDigest object is
instantiated, its update method can be called as many times as necessary to supply it with the
datato be hashed. A call to the final method computes the hash and returnsit. Example 9-1
demonstrates.

Example 9-1. Computing the cryptographic hash of data

from M2Crypto import EVP

def hash(data, alg = "shal”"):
md = EVP._MessageDigest(alg)
md . update(data)
return md.final()

The HMAC class provides one of two interfaces for the OpenSSL HMA C support. The constructor
accepts two arguments, the second of which isoptional. The first argument is the key to use, and
the second optional argument is the string name of the message digest algorithm to use. The
available algorithms and their string names are listed in Chapter 7. If no message digest algorithm
is specified, SHA1 is used. Once an HMAC object isinstantiated, its update method can be called
as many times as necessary to supply it with the datato be MAC'd. A cal to the fFinal method
computes the MAC and returnsit. The hmac function provides the other interface and issimply a
wrapper around the OpenSSL hmac function. It accepts three arguments, the third of whichis
optional. Thefirst argument is the key to use, and the second is the data to be MAC'd. The third
and optional argument is the message digest algorithm to use. Again, SHA1 isthe default if oneis
not specified. The return from the function is the computed HMAC.

The Cipher class provides the interface to data encryption using a symmetric cipher. The class's

interface is the same as the MessageDigest and HMAC classes. OnceaCipher objectis
constructed, the update method is used to supply it with the data to be encrypted or decrypted,

228

and the Final method completes the operation, returning the encrypted or decrypted data. The
constructor requires four arguments, and accepts an additional four optional arguments.

class Cipher:
def _ _init_ _(self, alg, key, iv, op, key as_bytes = 0,

d = "md5",

salt = , 1 = 1):

alg

The symmetric cipher to use. It is specified using the string name of the desired cipher.
Chapter 6 lists the available ciphers and their string names.

key

The key to use to encrypt or decrypt the data.
iv

Theinitialization vector to use to encrypt or decrypt the data.
op

Aninteger that specifies whether encryption or decryption of the data should be
performed. If op is specified as 1, encryption is performed. If it is specified as 0,
decryption is performed.

key as bytes
Specifies how to interpret the specified key. If it is specified as a nonzero value, the key is

interpreted as a password or passphrase. in this case, an initialization vector is computed,
and the iv argument is filled with the initialization vector that was used.

Specifies the message digest algorithm that will be used to compute the key if
key as_bytes is specified as nonzero. The default isto use MD5.

salt

Specifies the salt that will be used to compute the key if key_as_bytes is specified as
nonzero.

Specifies the number of iterations that will be performed to obtain the final key. In other
words, it specifies the number of times the key data will be hashed.

Example 9-2 illustrates symmetric ciphers.
Example 9-2. Encrypting and decrypting with a symmetric cipher

from M2Crypto import EVP

def encrypt(password, data, alg):
cipher = EVP_Cipher(alg, password, None, 1, 1, "shal®)

cipher.update(data)
return cipher.final()

def decrypt(password, data, alg):
cipher = EVP.Cipher(alg, password, None, O, 1, "shal®)
cipher.update(data)
return cipher.final()

password = "any password will do*

plaintext = "Hello, world!"

ciphertext = encrypt(password, plaintext, "bf-chc®)

print "Decrypted message text: %s" % decrypt(password, ciphertext,
"bf-cbc*)

The EVP module also provides a PKey class that isintended to be awrapper around the OpenSSL
EVPinterface for digital signatures and data encryption; however, it isincomplete, providing only
limited support for creating digital signatures. No mechanism exists for verifying digital

signatures or data encryption in this class. The digital signature support is aso nonfunctional. The
classis essentially useless in its current form, and so we will not discussit in any more depth here.

9.2.2.4 Miscellaneous crypto

from M2Crypto import DH, DSA, RSA, RC4

The DH, DSA, and RSA modules provide access to the three supported low-level, public key
cryptographic algorithms known by the same names. The RC4 modul e provides direct access to
the symmetric cipher by the same name. It's curious that RC4 is the only symmetric cipher that is
supported directly with aclass of its own, particularly since the EVP interface is exposed. We
recommend that you avoid using it in favor of the EVP module's Cipher class.

The DH module provides a class by the same name that is generally instantiated by using one of
the four functions provided by the module. The function DH. gen_params can be used to create a
new DH object with randomly generated parameters. The functionsDH. load_params and

DH. load_params_bio can be used to create a DH object created from parameters stored in a
file. DH. load_params accepts afilename from which the parameters will be loaded, and

DH. load_params_bio acceptsaB 10 object from which the parameters will be loaded. Finaly,
DH.set_params alowsyou to create a DH object and specify the parameters yourself.

The DSA module provides a class by the same name that is generally instantiated by one of
several module functions. The function DSA.gen_params can be used to create a new DSA
object with randomly generated parameters. DSA. load_params and DSA. load_params_bio
create a DSA object from afileor aB10 object. DSA. load_key and DSA. load_key bio
create a DSA abject loaded from afile or BI0 object containing a PEM representation of a private
key. Thereis no mechanism to load public DSA keys.

The RSA module provides two classes: RSA and RSA_pub. The classes should be instantiated
using one of the modul€e's functions. RSA . gen_key returns an RSA object after generating a new
key pair. RSA. load_key and RSA . load_key_bio both create an RSA aobject from a private
key stored in PEM format from afile or BIO object. RSA. load_pub_key and
RSA.load_pub_key bio create an RSA_ pub object from a public key stored in PEM
representation from afile or B10 object. Finally, RSA_new_pub_key will instantiate an

RSA_ pub object from the public exponent and composite of the primes that make up a private key.

The RC4 module provides an RC4 class as an interface to the RC4 symmetric cipher algorithm.
This classisintended to be instantiated directly. It can be instantiated with or without a key, and

230

the key can be changed with acall to its set_key method. Calling the update method with data
to be encrypted will return the encrypted data.

9.2.3 Python Module Extensions

In addition to providing the low-level OpenSSL bindings and an object-oriented approach to
OpenSSL in the high-level classes, M2Crypto aso includes extensions to three of the modules that
are part of Python itself. The extensions are what you might expect: SSL extensionsto httplib,
urllib,and xmlrpclib. Theextensionsto httplib and urllib simply support HTTPS. The
extensionsto xmlrpclib add an SSL_Transport class.

9.2.3.1 Extensions to httplib: httpslib

Tousethehttplib extensions, you'll need to import the M2Crypto.httpslib module

from M2Crypto import httpslib

Y ou don't need to import from httplib aswell. M2Crypto's httpslib exportsall of httplib
in addition to its own extensions. The httpl ib interface changed drastically in Version 2.0 of
Python. httpslib accountsfor this and provides different extensions depending on the version
of Python that you're using.

If you're using aversion of Python earlier than 2.0, asingle new class called HTTPS will be added.
Thisclassisasubclass of HTTP from httplib. The only detail that you need to concern yourself
with ispassing in an existing SSL context object to the constructor. For example, to connect to the
local host on the default HTTPS port 443 using SSLv3, your code might look like this:

from M2Crypto import SSL, httpslib

context = SSL.Context("sslv3®)
https = httpslib_HTTPS(context, ®"127.0.0.1:443%)

If you're using Version 2.0 of Python or later, two new classes called HTTPSConnection and
HTTPS will be added. HTTPSConnection isasubclass of HTTPConnection, and HTTPS isa
subclass of HTTP. They both work similarly to their parent classes, but expect some extra
information in their constructorsin order to utilize SSL. All of the extra arguments are optional
keyword arguments:

key_fTile
Specifies the path and filename of an RSA private key file to be used in establishing the
connection.

cert_file

Specifies the path and filename of a certificate file to be used in establishing the
connection.

ssl_context

Specifies an existing SSL context object. If it is omitted, a context will be created using
the ssv23 protocol.

231

The HTTPSConnection class accepts all three keyword arguments. The HTTPS class will
recognize only ssl_context, silently ignoring the others. The code to connect to the local host
on the default HTTPS port 443 using SSLv3 might look like this:

from M2Crypto import SSL, httpslib

context = SSL.Context("sslv3®)
https = httpslib.HTTPSConnection("127.0.0.1:443", ssl_context =
context)

It's important to realize that these functions do not perform any real certificate verification, so the
only real protection they're providing is against passive eavesdropping attacks.

9.2.3.2 Extensions to urllib: m2urllib

Tousetheurllib extensions, you'll need to import the M2Crypto.m2urllib module

from M2Crypto import m2urllib

Y ou don't need to import ur I Lib itself aswell. Them2ur1ib module re-exportsall of urllib
along with its own extensions. Unlike httplib, theinterface for url l'ib isthe samefor al
currently supported versions of Python. The only addition isan open_https method added to
theurl lib.URLopener class. It works just the same as the existing open method does, taking
the same arguments and returning the same values.

The open_https function does not take any additional arguments; it is responsible for creating
the SSL context to be used, and you can't set up certificate or private key information either. The
default protocol version that the SSL context is created with is controlled by the
DEFAULT_PROTOCOL variable. By default, it is set to ss1v3, but you can changeit to any of the
other supported values for creating an SSL context. For example, if you wanted either v2 or v3 to
work, you might do the following:

from M2Crypto import m2urllib

m2url1ib.DEFAULT PROTOCOL = "sslv23*
connection =
m2urllib_URLopener() .open_https(“https://www.somesite.com®)

9.2.3.3 Extensions to xmlrpclib: m2xmlrpclib

Thexmlrpclib moduleisnew in Python 2.2. If you're using an older version of Python, you can
find this module from athird party. To use the xmlrpclib extensions, you'll need to import the
M2Crypto.m2xmlrpclib module:

from M2Crypto import m2xmlrpclib

Y ou don't need to import xmlrpclib aswell. Them2xmlrpcl ib module re-exports all of
xmlrpclib aong with its own extensions. The only addition that them2xmlrpclib module
makesisaclass named SSL_Transport. The classs constructor accepts a single optional
argument that isan SSL context object. If you don't specify, one will be created that uses the
sslv23 protocol.

232

9.3 OpenSSL Support in PHP

PHP is ascripting language that is used primarily, if not exclusively, on the Web. It is normally
HTML-embedded, although it is also capable of running as a CGI script. It boasts an extensive
library of functions that provide interfaces to awide variety of common external libraries and
services, such as LDAP and MySQL. PHP-4.04pl 1 introduced experimental support for OpenSSL.
At the time of this writing, the current version of PHP is4.1.1, and OpenSSL support is still
considered experimental. Current versions of PHP require OpenSSL Version 0.9.5 or later.

Since PHP's support for OpenSSL is considered experimental, anything relating to the
implementation could still change, including the function names, parameters, and return values.
The support for OpenSSL in PHP is more limited than Perl or Python's support, but sufficient
functionality does exist to make it moderately useful. Support for encryption, signing, SSMIME,
key generation, and X.509 certificate manipulation isincluded.

PHP's OpenSSL functions are high-level abstractions from the OpenSSL API. Unlike Perl or
Python, none of the low-level OpenSSL API is exposed directly. While this simplifies the usage of
OpenSSL greatly, it also restrictsits capabilities. As newer versions of PHP have been released,
new OpenSSL functionality has been introduced. We recommend that you use the latest version of
PHP available to you if you wish to make use of its OpenSSL functionality.

9.3.1 General Functions

The PHP OpenSSL extension provides four functions required for the more specific functionality
offered by the extension. These functions provide a mechanism for error reporting as well as
private and public key management. In particular, many of the more specific functions require a
public or private key, which are often supplied as a key resource. Key resources can be obtained
from any one of the sources listed below, but in all cases the key data obtained from an external
source must be PEM-encoded because PHP provides no support for reading DER-encoded data:

e Theresourceretreived from aprior call to either openssl_get_publickey or
openssl_get privatekey

An X.509 resource for public keys

A string that specifies afilename to read the key from

A string that contains the key data

An array that contains the key as a string representing a filename or containing the key
data and the passphrase required to decrypt the key

InVersion 4.0.5 or later of PHP, any of the inputsto openssl_get_privatekey,
openssl_get_publickey, or openssl_x509 read, which return key or certificate
resources, can be used as the key or certificate resource to the function requiring the key or
certificate resource. The earlier versions of the OpenSSL extension required the use of the three
aforementioned functions, but versions that are more recent do not. If you'll be using the same key
or certificate more than once, it is generally agood idea to use the functions to obtain a resource
rather than obtaining it each time you need to use it.

mixed openssl_error_string(void)

This function pops the most recent error from OpenSSL's error stack and returns a string
representation of the error. If the stack is empty, the return from this function will be false.
The string returned will be an English representation of the error as returned from the
OpenSSL function ERR_error_string. Note that OpenSSL pushes errors onto a stack,
and that this function pops only one error from that stack. Call this function repeatedly
until it returns false in order to get al of the available error information when an error
occurs.

233

resource openssl_get privatekey(mixed key [, string passphrase])

Thisfunction creates akey resource for a private key. The first argument, key, can be
one of three representations of a public key: a string beginning with "file://" that contains
the name of the file containing the private key data, a string that contains the private key
data, or an array that contains the key information. If an array is used, the first element
should be either a string that contains the name of the file containing the key data, or the
key data. The second element should be the passphrase to decrypt the key. The optional
argument, passphrase, should be a string containing the passphrase required to decrypt
the key if oneis necessary.

The return from this function is false if an error occurs; openssl_error_string
should be used to obtain error information. If the key is successfully loaded and decrypted,
the return will be a PHP resource for the key. When you're done using the key resource,
you should use openssl_free_key toreleaseit.

resource openssl_get publickey(mixed certificate)

This function creates akey resource for a public key. The first argument, key, can be one
of three representations of a certificate from which the public key will be extracted: a
certificate resource, a string beginning with "file://" that contains the name of the file
containing the certificate data, or a string that contains the certificate data.

The return from this function is false if an error occurs; openssl_error_string
should be used to obtain error information. If the key is successfully extracted from the
certificate, the return will be a PHP resource for the key. When you're done using the key
resource, you should use openssl_free_key to releaseit.

void openssl_free_ key(resource key)

This function releases a key resource that was previously obtained from either
openssl_get_privatekey or openssl_get_publickey. You should call this
function to free any internal resources that are associated with a PHP key resource when
you are through using it.

9.3.2 Certificate Functions

The PHP OpenSSL extension provides alimited number of functions useful for manipulating
X.509 certificates. The functions allow you to create and free a certificate resource, verify that a
certificate has permission to perform a specific function, and obtain information about the
certificate. All certificate datathat is provided to PHP must be PEM-encoded.

resource openssl x509 read(mixed certificate)

This function creates a certificate resource from X.509 certificate data. The certificate
data may be supplied as one of two representations: a string beginning with “file://" that
contains the name of the file containing the certificate data, or a string containing the
certificate data.

The return from this function is false if an error occurs; openssl_error_string
should be used to obtain error information. If the certificate is successfully loaded, the
return will be a PHP resource for the certificate. When you're done using the certificate
resource, you should use openssl_x509 free toreleaseit.

234

void openssl_x509 free(resource certificate)

This function releases a certificate resource that was previously obtained from
openssl_x509_read. You should call thisfunction to free any internal resources that
are associated with a PHP certificate resource when you are through using it.

bool openssl_x509 checkpurpose(mixed certificate, iInt purpose,
array cainfo [, string untrusted_file])

This function determines whether a certificate may be used to perform a specific function.
Thefirst argument, certificate, isacertificate resource obtained from
openssl_x509_ read. Table 9-1 lists the valid values for the second argument,
purpose. Note that only one constant may be used at a time—the argument is not a bit
mask. The third argument, cainfo, isalist of trusted certificate files or directories to be
used in the verification of the certificate. If present, the optional argument,
untrusted_file, isthe name of the file containing any certificates of intermediate
CAsrequired to verify the certificate. The extra certificates will not be trusted.

Table 9-1. Possible purpose values for openssl_x509 checkpurpose

Constant Description

X509 PURPOSE_SSL_CLIENT May the certificate be used for the client in an SSL session?

}XSOQ_PURPOSE_SSL_SERVER \May the certificate be used for the server in an SSL session?

}X509_PURPOSE_NS_SSL_SERVER \May the certificate be used for a Netscape SSL server?

X509 PURPOSE_SMIME_SIGN May the certificate be used for SMIME signing?

X509_PURPOSE_SMIME_ENCRYPT|May the certificate be used for SIMIME encrypting?

May the certificate be used to sign a certificate revocation

X509_PURPOSE_CRL_SIGN list (CRL)?

X509 PURPOSE_ANY May the certificate be used for any and al purposes?

The cainfo array should contain alist of files that will be used to verify the certificate.
Directories may also be included in the list. Files should contain one or more certificates,
and directories should contain certificates that would be accepted by the OpenSSL
command-line tool commands that perform a similar function with the CApath option.
Certificate filesin a directory should contain one certificate per file and should be named
with the hash value of the certificate subject's name and an extension of ".0". Any
certificates made available via this function are trusted.

The return from this function will be true if the certificate may be used for the purpose
that is being checked. If it may not, the return will be false. The integer value -1 will be
returned if an error occursin the verification process; openssl_error_string should
be used to obtain error information.

array openssl_x509 parse(mixed certificate [, bool shortnames])

This function returns information about a certificate in an associative array. The keysfor
the array are currently undocumented, but easily discovered from the source code for the
extension. We've listed them here in Table 9-2; however, due to the fact that they are
undocumented, if anything in the OpenSSL extension is going to changein future
versions, these keys have a high probability. If you can avoid it, we would advise against
using this function for the time being until it stabilizes. If the second argument,
shortnames, is omitted or specified astrue, the keysin the returned array will use a
shortened name.

235

Table 9-2. Keys for the array returned by openssl_x509_parse

Key name ItDyaer Description
name string The name assigned to the certificate, if it has one. This key may not
be present.
An associative array that contains all of the fields comprising the
subject aray subj ects disti _nguished name, such ascommonName,
organizationName, etc. The shortnames argument affects the
keysin this array.
An associative array that contains al of the fields comprising the
issuer array |issuer's distinguished name. The shortnames argument affects
the keysin thisarray.
version long |The X.509 version.
serialNumber long |The certificate's serial number.
validFrom string |A string representation of the date the certificate is valid from.
validTo string |A string representation of the date the certificate is valid to.
vatidrron_tine_tong |® t4te L INGHE oo of e die e ot e v
validTo_time_t |long g .ti me_t integer representation of the date the certificate is valid
alias string gg; r¢.3|.£eaesn tas; gned to the certificate, if it has one. This key may not
Each element in this array represents a purpose that is supported by
OpenSSL. The index values of this array correspond to the
constants listed in Table 9-1. Each element of that array is another
purposes aray array containing three elements. The first two are bools. The first

indicates whether the certificate may be used for that purpose, and
the second indicates whether the certificate isa CA. Thethirdisa

string representation of the purpose name, which is affected by the
shortnames argument.

9.3.3 Encryption and Signing Functions

The OpenSSL extension provides wrappers around OpenSSL's high-level EVP suite of functions,
which can be used for data encryption aswell as for digital signing. The functions provided are
actually close mappings to the OpenSSL API functions; however, the PHP wrappers have imposed
some limitations on them, most notably by limiting the cipher for encryption and decryption to
RC4, and the digest for signing and verification to SHA 1. We hope that future versions of the
extension will remove these limitations, allowing for much more flexibility and security.

=

There is another, potentially more serious problem with the encryption
support in PHP. On systems in which the OpenSSL library cannot seed
the PRNG itself, PHP provides no meansto seed it. The problem exists
particularly on Unix systems without a/dev/urandom device. On such
systems, we do not recommend that you use the PHP interface to
OpenSSL unless there is another module loaded into the same server that
doesinitialize the OpenSSL PRNG, such asmod_ssl. Thiswarning also
holds for the SIMIME functions that are described in the next section.

int openssl_seal(string data, string sealed_data, array env_keys,

array pub_keys)

236

Thisfunction is used for encrypting data. The datais encrypted using RC4 with a
randomly generated secret key, which is then encrypted using a public key. The encrypted
datais known as sealed data, and the encrypted secret key is known as an envelope. The
recipient must have the envel ope, the sealed data, and the private key matching the public
key used to create the envel ope to decrypt the sealed data. The function conveniently
allows for multiple recipients by accepting an array of public keys.

Thefirst argument, data, specifies the data that will be sealed. The second argument,
sealed_data, receives the sealed data. The third argument, env_keys, receives the
envelopes for each public key that is specified for the fourth argument, pub_keys. The
public keys should be key resources returned by openssl_get_publickey. If an error
occurs, the return value will be false; otherwise, it will be the length of the sealed datain
bytes.

bool openssl _open(string sealed _data, string data, string env_key,
mixed key)

Thisfunction is used for decrypting data that was previously encrypted using
openssl_seal. Thefirst argument, sealed_data, isthe datato be decrypted. The
decrypted datais placed into the second argument, data. The third argument, env_key,
specifies the envel ope containing the encrypted secret key required to decrypt the sealed
datavia RC4. The fourth argument, key, isthe private key to use for decrypting the
envelope to obtain the secret key. The private key should be specified as akey resource
obtained from openssl_get privatekey.

If the sealed datais decrypted successfully, the return from this function will be true, and
the decrypted data will be placed into the second argument, data. If an error occurs, the
return will be false, and you should use openssl_error_string to obtain error
information. Note that encrypted data not created with the PHP OpenSSL extension can
also be decrypted with this function, aslong as it was encrypted using the RC4 cipher.

bool openssl_sign(string data, string signature, mixed key)

This function signs data using the SHA 1 message digest algorithm. The first argument,
data, isthe datato be signed. The second argument, signature, receives the resultant
signature. The third argument, key, is a private key resource to use to sign the data, and
should be a key resource obtained from openssl_get_privatekey. Anybody who
has the public key that matches the private key used to sign the data can then verify the
signature.

If the datais successfully signed, the signature will be placed into the second argument,
signature, and the return from the function will be true. If an error occurs, the return
will befase, and openssl_error_string should be used to obtain error information.

int openssl_verify(string data, string signature, mixed key)

Thisfunction is used for verifying the signature of a chunk of data using the SHA1
message digest algorithm. The first argument, data, isthe signed datato be verified. The
second argument, signature, isthe signature of that data. The third argument, key, is
the public key that matches the private key used to compute the signature.

If the signature is valid, the return from this function will be the integer value 1. If itis
incorrect, but no other errors occurred, the return will be the integer value O. If an error
occurs in the process of verifying the signature, the return will be the integer value -1, and
openssl_error_string should be used to obtain error information. Note that data

237

not signed with the PHP OpenSSL extension can also be verified with this function, as
long as it was signed using the SHA 1 message digest algorithm.

9.3.4 PKCS#7 (S/IMIME) Functions

The final set of functions that the PHP OpenSSL extension offersis for PKCS#7, which are
provided as structures encapsulated in MIME types defined by SSMIME. These functions provide
for encryption, decryption, signing, and signature verification using X.509 certificates. The
functions were added in PHP 4.0.6. They are not available in prior versions. These functions
require use of the OpenSSL PRNG, and the PRNG must be seeded before you can use them safely.
Unfortunately, there is no way to do thiswith PHP itself, as detailed in the warning in the previous
section.

bool openssl_pkcs7_encrypt(string infile, string outfile, mixed
certs, array headers [, long flags])

This function encrypts the data contained in the file named by the first argument, infile,
and placesit in the file named by the second argument, outFi Ie. The encryption aways
uses aweak RC2 40-hit cipher, which is alimitation of the PHP interface. SSMIMEv2
supports both RC2 40-bit and 3DES, but the PHP implementation has unfortunately
chosen to restrict the cipher to the weaker of the two. Public keysto use for encryption
are obtained from the third argument, certs. The certificates to use for encryption are
specified as an array, allowing for multiple recipients of the same message. The fourth
argument, headers, isan array of data that will be prepended to the output filein
plaintext. The array can be either indexed or associative. In the former case, each element
of the array isa single line of text to be placed in the output file. In the latter case, each
lineis composed from the key and the value, joining them with a colon and a space. The
fifth argument, Flags, isoptional and specifies options that can be used to control the
encryption process. The argument is a bit mask, so you may specify multiple constants if
they're appropriate. Table 9-3 lists the possible flag constants.

If the function is successful, the return from the function will be true. If an error occursin
the encryption process, the return will be false and openssl_error_string should be
used to obtain error information. On a successful run, the file specified by the second
argument will contain the encrypted data. The process must have write access to the file,
and it will be created if it does not exigt. If it does exist, the existing file will be truncated
before the output from this function iswritten to it.

Table 9-3. Flags: openssl_pkcs7_encrypt, openssl_pkcs7_sign,
openssl_pkcs7_verify

Constant Description

When encrypting or signing, adds a Content-type: text/plain header to the

PKCS7_TEXT output. When verifying a signature, the Content-type header is stripped.

When encrypting or signing, prevents the conversion of bare linefeeds to
PKCS7_BINARY |carriage returns and linefeeds as required by the SSMIME specification to
mark end of line.

When verifying asignature, only the certificates supplied to the function are

PKCS7_NOINTERN
- trusted, causing any included certificates to be considered untrusted.

PKCS7_NOVERIFY |Prevents the verification of the signer's certificate of a signed message.

Prevents chained verification of the signer's certificate. Causes certificatesin

PKCS7_NOCHAIN . .
CS7_Noc the signed message to be ignored.

When signing a message, prevents the signer's certificate from being included
in the outpuit.

PKCS7_NOCERTS

238

PKCS7 NOATTR W_hen signing a message, prevents attri butes such as the signing time from
- being included in the outpui.

When signing a message, this is the default if no flags are specified. It causes
PKCS7 DETACHED the.M IME type multi parft/signed to ble used. It'sagood ideato in_cl ude_this

- option because some mail relays can't handle messages signed with this
option turned off.

}PKCS?_NOS I1GS \Prevents verification of the signatures on a message

bool openssl_pkcs7_decrypt(string infile, string outfile, mixed
certificate, mixed key)

This function decrypts an encrypted message from the file named by the first argument,
infile, and writes the plaintext into the file named by the second argument, outfi le.
The decryption is done using an RC2 40-bit cipher. The third argument, certi ficate,
specifies the certificate to use, and the fourth argument, key, specifies the private key that
matches the certificate.

If the function is successful, the return value will be true. If an error occurs, the return
value will be fase, and openssl_error_string should be used to obtain error
information. The process must have write access to the output file. The file will be created
if it does not exist, or if it does exist, it will be truncated before the output from this
function iswritten to it.

bool openssl _pkcs7_sign(string infile, string outfile, mixed
certificate,mixed key, array headers [, long flags [, string
extra_certificates]])

This signs the contents of the file named by the first argument, infi le, and writes the
result to the file named by the second argument, outfi le. UnlessPKCS7_NOCERTS is
specified as part of the option Flags argument, the certificate specified by the third
argument, certificate, will beinciuded in the result. The key specified by the fourth
argument, key, should be a private key obtained from openssl_get_private, and
will be used to sign the message. The fifth argument, headers, can be either an indexed
or an associative array. The contents of the array will be prepended to the output after it
has been signed. If the array isindexed, each element of the array is treated asasingle
line to be output. If the array is associative, one line will be written for each key,
composed of the key and the value joined by a colon and a space. The sixth argument,
flags, isoptional and specifies signing options. It is abit mask and can be composed of
the constants described in Table 9-3. If the seventh argument, extra_certificates,
is present, the certificates contained in the file that it names will aso be included in the
signed result.

If the function is successful, the signed message will be written to the output file named
by the second argument, outfi le, and the return from the function will be true. If an
error occurs, the return will be false, and openssl_error_string should be used to
obtain error information. The process must have write access to the output file, and it will
be created if it does not exist. If the file does exigt, it will be truncated before the output
from this function is written to it.

bool openssl _pkcs7_verify(string infile, int flags [, string
outfile [, array cainfo [, string extra_certificates]]])

This function verifies the signature on the contents of the file named by the first argument,
infile. The second argument, flags, specifies abit mask of options that control the
verification process. Table 9-3 lists the constant definitions and their meanings. If the

third argument, outfi le, is present and not null, it specifies the name of afile that the
certificates contained in the signed message will be written to. The fourth argument,
cainfo, if present, contains alist of trusted certificates that should be used in verifying
the signature. The fifth argument, extra_certificates, if present, specifies the name
of afile that contains any untrusted certificates that should be used in verifying the
signature.

If alist of trusted certificates for verification is supplied, the array should contain the
names of files and/or directories. Files that are specified as such may contain multiple
certificates. Any directory that is specified should contain one file per certificate, and the
file should have a name composed of the certificate subject's hash value and an extension
of ".0". Symbolic links named in this manner referring to real files of any other name are
acceptable.

The return from this function istrue if the signature is valid. If the signature is not valid,
but no errors otherwise occurred, the return from the function is false. If an error occursin
the verification process, the return value will be -1, and openssl_error_string
should be used to obtain error information. If an output file is specified, the process must
have write accesstoit, and it will be created if it does not already exist. If the file does
exist, it will be truncated before the output of this function iswritten to it.

240

Chapter 10. Advanced Programming Topics

We have explained quite a bit about using the OpenSSL library. Often, tasks such as certificate
management are most easily accomplished with the command-line tool. For other tasks, such as
SSL communications, we must flex our knowledge of the API. By this point it should be clear,
though we have not explicitly stated it, that the command-line utilities al use various parts of the
OpenSSL API, some of which we have not yet discussed in any detail.

In this chapter, we tackle some of the more advanced topics of programming with OpenSSL,
including the programmatic interfaces to some features we've discussed only when using the
command-line tool. In addition, well cover the interface for reading program variables at runtime.
Using the detailsin this chapter, we will investigate how OpenSSL provides for avariety of other
tasks, such as creating S'MIME secure email, importing certificates into common web browsers,
and hooking into certificates to access public key components for more primitive cryptographic
functions.

10.1 Object Stacks

OpenSSL has alarge number of macros for dealing with stacks of typed objects. The API can
perform only asmall number of operations on a stack; however, there are alarge number of
macros to ensure type safety for objects on the stacks. For instance, if we had a stack of X509
objects and a generic push method for adding an object to the stack, nothing would prevent us
from accidentally pushing anon-X509 object onto the stack. To alleviate this problem, OpenSSL
provides type-specific macros on top of the generic operations. When manipulating stacks, the
type-specific macros should always be used instead of the generic routines. Since the actual
operations for asingle type have the same behavior as the operations for any type, we will look at
them generically. See Example 10-1.

Example 10-1. Stack manipulation functions in generic form

STACK_OF(TYPE) * sk_TYPE_new_null(void);

void sk_TYPE_free(STACK_OF(TYPE) *st);

void sk _TYPE_ pop_free(STACK_OF(TYPE) *st, void (*free_func)(TYPE *));
void sk TYPE_zero(STACK OF(TYPE) *st);

STACK_OF(TYPE) * sk_TYPE_dup(STACK_OF(TYPE) *st);

int sk_TYPE_push(STACK_OF(TYPE) *st, TYPE *val);

TYPE * sk_TYPE_pop(STACK_OF(TYPE) *st);

int sk_TYPE_unshift(STACK OF(TYPE) *st, TYPE *val);

TYPE * sk_TYPE_shiTt(STACK_OF(TYPE) *st);

int sk_TYPE_num(STACK_OF(TYPE) *st);

TYPE * sk_TYPE_value(STACK_OF(TYPE) *st, iInt i);

TYPE * sk_TYPE_set(STACK_OF(TYPE) *st, int i, TYPE *val);
TYPE * sk_TYPE_delete(STACK_OF(TYPE) *st, int i);

TYPE * sk_TYPE_delete_ptr(STACK_OF(TYPE) *st, TYPE *ptr);
int sk_TYPE_insert(STACK_OF(TYPE) *st, TYPE *val, int i);

Example 10-1 shows the prototypes for some of the generic stack functionsin OpenSSL. The type
of astack isimplemented through the macro STACK_OF. Stacks are opaque types; an application
should not check or set members directly. By replacing the TYPE placeholder used by the sample
declarationsin Example 10-1 with a specific object type, we get a good look at the prototypes of
the actual stack manipulation calls for that type.

241

- The "functions" shown in Example 10-1, like many members of the
o OpenSSL AP, are implemented via macros. Thus, it should be obvious
ul . that function pointer manipulation is not possible. In general, applications
* should use the API directly since the underlying implementation is subject
to changein future versions.

The operations on the stack should be self-explanatory; we'll cover them briefly. The
sk_TYPE_new_null function simply creates an empty stack, whilethe sk_TYPE_free
function frees a stack; the latter frees only the stack, not the objects contained in the stack. To free
astack and al its members, the sk_TYPE_pop_free function should be used; we must passin a
function pointer to the free method for this to work correctly. The last of the general manipulation
functionsare sk_TYPE_zero to empty astack and sk_TYPE_dup to copy a stack object.

There are a so the general functions sk_TYPE_push and sk_TYPE_pop that we would expect in
a stack implementation. Two that are lesslikely are sk_TYPE_unshift and sk_TYPE_shift;
the former pushes an element to the bottom of the stack, and the latter pops the bottom item off the
stack. The functions that add elements (sk_TYPE_push and sk_TYPE_unshi ft) return the
total number of elements in the stack, and the other two functions return the item that was
removed from the stack.

The last group of macros is a set of nontypical functions for a stack implementation; they add
functionality that is more commonly found in lists. Thefirst, sk_TYPE_num, returns the total
number of itemsin the stack. To retrieve an item by index number (if the bottom item is zero)
without changing the stack, we should use sk_TYPE_value. In order to set an item in the stack
explicitly, the function sk_TYPE_set will replace the ith item with the item passed to the call.
The delete functions delete a single item from the stack. The item to delete can be selected by
index or pointer value; the stack is shifted to fill the space left by the removed item. Finally,
sk_TYPE_insert addstheindicated item to the ith position in the stack and moves all theitems
above it, including the ith item before the call, up one position.

Aswell see when we move into further topics of this chapter, proper stack handling is critical for
setting up some data structures. While we'll probably put only a subset of this simple interface to
use, we now have the tools to do more complex tasks.

10.2 Configuration Files

We learned how to create a CA by first creating a configuration file to hold our parametersin
Chapter 3. The command-line tool used thisfile to perform as we had configured, such as obeying
choices for algorithms, providing default values for fields in the subject name, etc. The public API
has a suite of functions for processing and accessing values of configuration files. Thefiles
themselves simply organize and map keys to values. In general, the keys are strings, and the
values can be either integers or strings, athough all values are stored internally as strings.

The goal of the configuration file interface is to make the format of the file opague to the code that
processes it. Thisis done through NCONF objects. When such objects are created, a
CONF_METHOD structure is specified that aggregates the routines to perform the low-level file
parsing operations. OpenSSL most commonly uses the function NCONF_defaul t to get the
CONF_METHOD object. This method reads files of the format we described in Chapter 2. Because
of the flexibility afforded by specifying the underlying CONF_METHOD, the NCONF interface may
be extended in future versions of OpenSSL to include support for reading configuration files of
new formats, such as XML.

242

There are only afew functions to this simple interface, and well explore them by looking at an
example. Example 10-2 presents a small sample configuration file.

Example 10-2. A sample configuration file (testconf.cnf)

The config file

Globalvar = foo
GlobalNum = 12
[Params]

SectionName = mySection

[mySection]
myVar = bar
myNum = 7

Example 10-3 provides atest program to read the sample configuration file.
Example 10-3. Code to interact with the configuration file

#include <stdio.h>
#include <stdlib.h>
#include <openssl/conf._h>

void handle_error(const char *file, int lineno, const char *msg)
{
fprintf(stderr, "** %s:%i %s\n', file, lineno, msg);
ERR_print_errors_fp(stderr);
exit(-1);
}
#define int_error(msg) handle_error(__FILE__, _ LINE_ _, msg)

#define GLOB_VAR "GlobalVvar"
#define GLOB_NUM "GlobalNum
#define PARAMS "Params"
#define SEC_NAME "SectionName"
#define CONFFILE "'testconf.cnf"

int main(int argc, char *argv[])

{
int i;
long i_val, err = 0;
char *key, *s val;
STACK_OF(CONF_VALUE) *sec;
CONF_VALUE *item;
CONF *conf;
conf = NCONF_new(NCONF_default());
if (INCONF_load(conf, CONFFILE, &err))
{
if (err == 0)
int_error("Error opening configuration file™);
else
fprintf(stderr, "Error in %s on line %li\n", CONFFILE,
err);
int_error("Errors parsing configuration file™);
}
}

243

if (I(s_val = NCONF_get_string(conf, NULL, GLOB_VAR)))

{
fprintf(stderr, "Error finding \"%s\" in [%s]\n", GLOB_VAR,
NULL);
int_error("Error finding string"™);
}

printf('Sec: %s, Key: %s, Val: %s\n", NULL, GLOB VAR, s val);
#i1Ff (OPENSSL_VERSION_NUMBER > 0x00907000L)
if (I(err = NCONF_get_number_e(conf, NULL, GLOB_NUM, &i_val)))

{
fprintf(stderr, "Error finding \"%s\" in [%s]\n", GLOB_NUM,
NULL);
int_error("Error finding number');
}
#else
if (I(s_val = NCONF_get_string(conf, NULL, GLOB_NUM)))
{
fprintf(stderr, "Error finding \"%s\" in [%s]\n", GLOB_VAR,
NULL);
int_error("Error finding number™);
}
i_val = atoi(s_val);
#endif

printf(*'Sec: %s, Key: %s, Val: %i\n", NULL, GLOB VAR, i_val);
if (1(key = NCONF_get_string(conf, PARAMS, SEC_NAME)))

fprintf(stderr, "Error finding \"%s\" in [%s]\n", SEC_NAME,
PARAMS) ;
int_error("Error finding string™);

}
printf("'Sec: %s, Key: %s, Val: %s\n', PARAMS, SEC NAME, key);
if (I(sec = NCONF_get_section(conf, key)))

{
fprintf(stderr, "Error finding [%s]\n", key);
int_error("Error finding string™);

by

for (i = 0; 1 < sk CONF_VALUE_num(sec); i++)

{
item = sk CONF_VALUE value(sec, i);
printf(''Sec: %s, Key: %s, Val: %s\n",

item->section, item->name, item->value);

}

NCONF_free(conf);

return O;

}

In the example program, a new CONF object is created using the default method, and the fileis
loaded by the call to NCONF__load. There are aso other functions for loading the file from open
FILE or BI10 objects: NCONF_load_fp and NCONF_load_bio. Threedifferent functions are
used to probe the configuration file for values. The first one that we use isNCONF_get_string,
which returns the string of the value corresponding to the section and key values passed to it. If
either the section or the key is undefined, it returns NULL. Our sample program uses a few
preprocessor defines as shortcuts to the section and key strings:

char *NCONF_get_string(const CONF *conf, const char *section,
const char *key);

int NCONF_get number_e(const CONF *conf, const char *section,
const char *key, long *result);

STACK_OF(CONF_VALUE) *NCONF_get section(const CONF *conf,

244

const char *section);

One interesting point made in the example is the preprocessor conditionals around usage of the
function NCONF_get_number_e. Versions of OpenSSL prior to 0.9.7 have afunction,
NCONF_get_number, that takes three arguments, the same asNCONF_get_string, except that
NCONF_get_number returns an integer value instead of a string. This function should be
avoided since it does not alow for error checking. The better way to read integer values from a
configuration fileis to get the value as a string, check for an error condition by checking for a
NULL return value, and then convert the string to an integer ourselves. Of course, if the
NCONF_get_number_e function is available, it can be used safely. This function writes the
retrieved value to the last argument and returns nonzero on sUCCess.

i The function NCONF_get_number may be reimplemented in 0.9.7
as simply as amacro for NCONF_get_number_e, requiring calling
‘*. 4. applications to be changed to account for the modified interface. Because

of possible changes, it is safest to use NCONF_get_number_e.

The last NCONF function used in the example isNCONF_get_section. Thisfunction returnsa
stack of al the configuration parameters in the specified section. Our sample program iterates over
the stack and prints all the pairsthat it contains. This code actually manually accesses members of
the CONF_VALUE structure; the declaration is provided in Example 10-4.

Example 10-4. The declaration of CONF_VALUE

typedef struct
{

char *section;
char *name;
char *value;

} CONF_VALUE;

In general, the NCONF interface can provide a simple, readily available infrastructure for
customized, application-specific configuration files. Thisinterfaceis useful for other reasons, as
well. For instance, we can build a custom CA application that shares configuration files with the
command-line tool.

10.3 X.509

In the previous chapters, we discussed certificates in detail. We know how to perform all the
common operations using the command-line tool, but we haven't discussed how to do this
programmatically. Knowing thisisn't strictly necessary, since applications aside from those
implementing features similar to atypical CA will not need to do this programmatically. However,
it can be useful in those cases.

We will cover several aspects of programmeatically dealing with the X.509 family of operations.
To do thismost logically, well first look at the proper way to generate a certificate request. Well
also look at several common operations on the request itself. Once we know how to make a
request, we'll look into the functions used to create a full-fledged certificate from a certificate
request. Finally, we'll discuss how to verify a certificate chain. We've already discussed this
process for SSL connections, but here we'll focus on verification when dealing with just X509
objects.

245

10.3.1 Generating Requests

Recall that an X.509 certificate is a public key packaged with information about the certificate
owner and issuer. Thus, to make a request, we must generate a public and private key on which
well base our certificate. We'll start our discussion assuming generation of the key pair has
already been completed (see Chapter 8 for details).

An X.509 certificate request is represented by an X509 _REQ object in OpenSSL. Aswe learned in
Chapter 3, a certificate request's main component is the public half of the key pair. It also contains
asubjectName field and additional X.509 attributes. In redlity, the attributes are optional
parameters for the request, but the subject name should always be present. Aswell see, creating a
certificate is not avery difficult task.

10.3.1.1 Subject name

Before looking at an example, we need alittle more background information on subject name
mani pulation with the API. The object type X509 NAME represents a certificate name.
Specifically, a certificate request has only a subject name, while full certificates contain a subject
name and an issuer name. The purpose of the name field isto fully identify an entity, whether it is
aserver, person, corporation, etc. To this end, anamefield is composed of several entriesfor
country name, organization name, and common name, just to name afew. Again, we can think of
the fieldsin aname as key/value pairs; the key is the name of the field, and the value is its content.

In theory, there can be arbitrary fieldsin aname, but in practice, afew standard ones are expected.
In OpenSSL, fields areinternally identified through an integer value known as the NID. All of this
information rapidly becomes relevant when it comes time to build the subject name of our request.

Aswe've dready said, acertificate name is represented by an X509 _NAME object. Thisobject is
essentially a collection of X509 _NAME_ENTRY objects. Each X509 _NAME_ENTRY object
represents a single field and the corresponding value. Thus, our application needsto generate a
X509 NAME_ENTRY object for each of the fields well put in the name of the certificate request.

The processis simple. First, we look up the NID of the field we need to create. Using the NID, we
create the X509 _NAME_ENTRY object and add our data. The entry is added to the X509 NAME,
and we repeat the process until all the desired fields are entered. After the name is fully assembled,
we can add it to an X509 _REQ object.

OpenSSL provides many functions for manipulating X509 NAME and X509 NAME_ENTRY
objects that enable us to perform the subject name assembly using many different methods. For
instance, the function call X509 NAME_add_entry_ by txt automatically looks up the NID,
creates the entry, and adds it to the X509 _NAME. In the example below, we elected to show the
explicit implementation instead of demonstrating the kinds of operations that are available.

10.3.1.2 X.509 Version 3 extensions

In previous chapters, we discussed the basics of X.509 Version 3 certificate extensions. In
particular, in Chapter 5, we learned that the sub jectAltName extension is very useful for SSL.
This extension contains a field named dNSName that will hold the FQDN for the entity possessing
the certificate. Asfar as certificate requests are concerned, we should add in the extension before
sending the request to the CA for certification. Doing this programmatically is straightforward.

The X509 _EXTENSION type object represents a single extension to an X509 object. The process
of adding extensions to a request requires us to put all the requested extensionsinto a

246

STACK_OF(X509_EXTENSION) object. After the stack is created, we can add the stack to the
request, and our task is complete.

10.3.1.3 Putting it all together

Now we know how to create a certificate request: we have to create an X509 _REQ object, add a
subject name and public key to it, add all desired extensions, and sign the request with the private
key. To represent the public and private key components, we should use the generic type
EVP_PKEY and its corresponding functions. The slightly confusing part to this processis signing
the request.

With OpenSSL, message digest algorithms are represented by EVP_MD objects. We need to
specify adifferent EVP_MD object based on whether we're signing with an RSA or DSA key, but
the public key agorithm isn't known when we do the signing, since we must use the abstract
EVP_PKEY interface. We can probe the internals of an EVP_PKEY object to find out the
underlying algorithm, but doing so isn't very clean since it requires directly accessing members of
the structure. Unfortunately, thisis the only solution to the problem. The example below shows
how the EVP_PKEY_type function can be used in conjunction with a member of the type
EVP_PKEY to perform thistask.

We're ready to create a request now that we know the theory behind it. The code appearsin
Example 10-5.

Example 10-5. A program to generate a certificate request

#include <stdio.h>

#include <stdlib.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
#include <openssl/err._h>
#include <openssl/pem.h>

void handle_error(const char *file, int lineno, const char *msg)

fprintf(stderr, "** %s:%i %s\n", Ffile, lineno, msQg);
ERR_print_errors_fp(stderr);
exit(-1);

}

#define int_error(msg) handle_error(__FILE__, _ LINE_ _, msg)

#define PKEY_FILE "privkey.pem"
#define REQ_FILE "newreq.pem"’
#define ENTRY_COUNT 6

struct entry

{
char *key;
char *value;

}:

struct entry entries[ENTRY_COUNT] =

{
{ "countryName', "ys 1.
{ "'stateOrProvinceName", VA" }.
{ "localityName", "Fairfax" }.
{ "organizationName", “"Zork.org" 1,
{ "organizationalUnitName', "Server Division" },
{ "commonName', "Server 36, Engineering” 3},

247

3

int main(int argc, char *argv[])

{

int i;
X509 _REQ *req;
X509_NAME *subj ;
EVP_PKEY *pkey;
EVP_MD *digest;
FILE *fp;

OpenSSL_add_all_algorithms();
ERR_load_crypto_strings();
seed_prngQ);

/* Tirst read in the private key */
if (1(fp = fopen(PKEY_FILE, "'r')))
int_error("Error reading private key file™);
if (I(pkey = PEM_read_PrivateKey(fp, NULL, NULL, "secret')))
int_error("Error reading private key in file");
fclose(fp);

/* create a new request and add the key to it */
if (I(req = X509 _REQ new()))

int_error(""Failed to create X509 REQ object™);
X509 REQ set pubkey(req, pkey);

/* assign the subject name */
if (I(subj = X509 NAME_new()))
int_error(""Failed to create X509 NAME object™);

for (i = 0; 1 < ENTRY_COUNT; 1i++)
{
int nid;
X509_NAME_ENTRY *ent;
if ((nid = OBJ_txt2nid(entries[i].key)) == NID _undef)
fprintf(stderr, "Error finding NID for %s\n",
entries[i]-key);
int_error("Error on lookup™);
}

if (I(ent = X509 NAME_ENTRY_create_by NID(NULL, nid,
MBSTRING_ASC,

DM

entries[i].value, -

int_error("Error creating Name entry from NID™);
if (X509 NAME_add_entry(subj, ent, -1, 0) != 1)
int_error("Error adding entry to Name™);

}

if (X509 REQ set _subject name(req, subj) = 1)
int_error("Error adding subject to request');

/* add an extension for the FQDN we wish to have */

{

X509_EXTENSION *ext;

STACK_OF(X509_EXTENSION) *extlist;

char *name = "'subjectAltName";

char *value = "DNS:splat.zork.org";

extlist = sk X509 EXTENSION_new null();

248

iT (I(ext = X509V3_EXT_conf(NULL, NULL, name, value)))
int_error("Error creating subjectAltName extension™);

sk_X509_EXTENSION_push(extlist, ext);

it (1X509 REQ add extensions(req, extlist))
int_error("Error adding subjectAltName to the request'™);
sk_X509_EXTENSION_pop_free(extlist, X509 EXTENSION_free);

}

/* pick the correct digest and sign the request */
if (EVP_PKEY_type(pkey->type) == EVP_PKEY_DSA)
digest = EVP_dss1();
else if (EVP_PKEY_type(pkey->type) == EVP_PKEY_RSA)
digest = EVP_shal();
else
int_error("Error checking public key for a valid digest');
if (1(X509_REQ sign(req, pkey, digest)))
int_error("Error signing request');

/* write the completed request */

ifT (1(fp = fopen(REQ_FILE, "w')))
int_error("Error writing to request file');

if (PEM_write_ X509 REQ(fp, req) !'= 1)
int_error("Error while writing request™);

fclose(fp);

EVP_PKEY_free(pkey);
X509 REQ free(req);
return O;

}

Using the appropriate PEM call, we read in our private key. Recall that a public key is a subset of
the information in a private key, so we need not read in anything more than the private key. Using
the function X509 _REQ_set_pubkey, we add the public key portion of the private key to the
request:

int OBJ_txt2nid(const char *field);
X509 NAME_ENTRY *X509 NAME_ENTRY_ create by NID(X509 NAME_ENTRY **ne,
int nid,

int type, unsigned
char *value,

int len);
int X509 NAME_add_entry(X509 NAME *name, X509 _NAME_ENTRY *ne,

int loc, int set);

Using aloop, we read from our global array containing the fields and values, and add to our
subject name. The function OBJ_txt2nid performs alookup of the built-in field definitions.
This function returns the integer NID value. After abtaining the NID, we use the

X509 NAME_ENTRY_ create by NID function to create the X509 NAME_ENTRY object
properly. The third argument to this function must specify the type of character encoding;
common specifications are MBSTRING_ASC for ASCII and MBSTRING_UTF8 for UTF8 encoding.
The last argument is the length of the value of the field we are setting. By passing in a-1 for this
argument, the datais interpreted as a C-style, NULL-terminated string. The length of the dataiis
determined by searching the datafor aNULL terminator. The last call used intheloopis
X509_NAME_add_entry. This call adds the entry to the subject name. The third argument
specifies the position at which we want to place the data. In essence, the X509 _NAME is a stack of
X509_NAME_ENTRY objects. Thus, there is an ordering to the fields in a name. Specifying -1 for
this argument adds the new field after any other fields already in the X509_NAME. Alternatively,

249

we could have passed in the return from X509 _NAME_entry_count, but using -1 is better
because it ensures that the field is added to the end of the list. The last argument to

X509 _NAME_add_entry specifies the operation to be performed on the item already in the
location indicated by the third argument. For instance, if the X509 _NAME object contained three
fields, and we made a call to this function specifying 1 for the third argument and O for the last
argument, the field in the middie would be replaced by the new data. Using -1 for the last
argument will cause the new data to be appended to the previous data, while using 1 would cause
it to be prepended.

After the subject name s fully built, we add it to the certificate request. Then we build and add our
extension for the sub jectAltName. This can be easily done through the X509V3_EXT_conf
function:

X509 EXTENSION *X509V3_EXT_conf(LHASH *conf, X509V3_CTX *ctx,

char *name, char *value);
int X509 _REQ add_extensions(X509_REQ *req, STACK_OF(X509 EXTENSION)
*exts);

The first two parametersto X509 _EXT_conf aren't important for creating the simple extension
we need. This function returns NULL on error and the built object otherwise. We revisit this
function in more detail when we discuss creating certificates below. After the X509_EXTENSION
object iscreated, it is added to the stack. The stack is then added to the request through the
function X509 _REQ add_extensions. Thisfunction will return 1 on success.

Next, we perform the check for the key type to determine the correct EVP_MD object to passto
X509_REQ_sign. Thischeck involves using EVP_PKEY_type to trandlate the member of the
EVP_PKEY object to something we can test. If the key is RSA, weuse EVP_shal; if itisDSA,
we use EVP_dssl. In either case, SHA1 is the algorithm used in the signing process.

Using what we've learned about parsing configuration files, this example could easily be extended
to read the field names and values from an OpenSSL configuration file instead of the hardcoded
information that we provided in the example. Doing this would allow the program to interact with
the same configuration files as the command-line tools.

10.3.2 Making Certificates

We aready know that creating a certificate requires a certificate request, a CA certificate, and a
CA private key to match the CA certificate. However, we haven't discussed much beyond passing
these elements into the command-line tool to produce afinished certificate. Programmatically, this
process requires the programmer to perform several steps. We can break down the process into
four essential steps.

1. Verify the certificate request and check its contents (sub jectName and
subjectAltName in this example) to decide if we wish to certify the datawith our CA's
certificate.

2. Create anew certificate and set al the necessary fields, such as public key, subject and
issuer names, expiration date, etc.

3. Add applicable extensions to the certificate, including the requested subjectAltName.

4. Sign the certificate with the CA's private key.

Step 1 is perhaps the most important. To verify the request, we first check that the enclosed
signature is valid; this helps to ensure the request was not modified after it was submitted for
signing. More importantly, we need to determine if we actually want to certify the datain the
request. Recall that signing arequest into a certificate means that the CA has verified the identity
of the requestor. This leaves the obligation of determining identity up to the application and,

250

ultimately, the user of the application. It isn't agood ideato automatically sign any certificate
presented. For instance, an attacker could create a request with the identity information for another
user, submit it through the "normal" channels, and automatically be granted unauthorized
privileges. For this reason, the application must prompt the user with all the information in the
request and then ask whether it appears to be correct because the user is in the unique position to
make that determination. For instance, we must somehow verify that the presenter of the request
does indeed possess the FQDN in the dNSName of the request. Finally, theinformation in a
request should not be altered in any way. In other words, if the CA does not authorize any part of
the request, the whole request should be refused rather than changing the unacceptable portions.

In the second step, we create the certificate and assign all of its properties. These are generally
some CA standard parameters for a new certificate. For example, the CA should determine the
default certificate version to use and the default expiration time. In addition to the standard
settings, we need to assign a subject name and an issuer name to the newly created certificate. The
subject name for the certificate should be taken directly from the subject name of the certificate
request, which we determined was valid in the previous step. For the issuer name, the CA
certificate's subject name should be used. Lastly, the public key from the request must be added
into the certificate.

One very important step in programmatically creating a certificate is the addition of certificate
extensions; in step 3, we handle this process. As we discussed in Chapter 3, the use of X.509v3
certificates is nearly ubiquitous. As such, we need to add the relevant v3 fields. An important part
of doing this correctly is knowing which extensions we actually want to give the certificate. For
instance, we must determine if we wish to grant the new certificate the ability to act asa CA. In
the example below, we simply use the default extensions for the OpenSSL command-line
application and save the subjectAltName, which has been added.

The last step of creating a certificate is signing it with the CA private key. This process will
prevent changes to any of the data we've placed in the certificate at this point; thus, it should be
done last. A sample program that performs all of the actions described in this section appearsin

Example 10-6.
Example 10-6. Creating a certificate from a request and CA credentials

#include <stdio.h>

#include <stdlib.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
#include <openssl/err.h>
#include <openssl/pem.h>

void handle_error(const char *file, int lineno, const char *msg)

fprintf(stderr, "** %s:%i %s\n", file, lineno, msg);
ERR_print_errors_fp(stderr);

exit(-1);
3
#define int_error(msg) handle_error(__FILE_ , _ LINE_ _, msg)
/* these are defintions to make the example simpler */
#define CA_FILE "CA_pem"
#define CA_KEY "CAkey .pem"
#define REQ_FILE "newreq.pem"
#define CERT_FILE "newcert.pem"

#define DAYS TILL_EXPIRE 365
#define EXPIRE_SECS (60*60*24*DAYS_TILL_EXPIRE)

#define EXT_COUNT 5

struct entry

{

251

char *key;
char *value;

};
struct entry ext_ent[EXT_COUNT] =

{ "basicConstraints", "CA:FALSE" %},
{ "nsComment", "\""OpenSSL Generated Certificate\"" },
{ "subjectKeyldentifier'", "hash" },
{ "authorityKeyldentifier"”, "keyid, issuer:always" },
{ "keyUsage",
onrepudiation,digitalSignature,keyEncipherment" }

};

int main(int argc, char *argv[])

{
int i, subjAltName_pos;
long serial = 1;
EVP_PKEY *pkey, *CApkey;
const EVP_MD *digest;
X509 *cert, *CAcert;
X509 _REQ *req;
X509 NAME *name;
X509V3_CTX ctx;
X509 EXTENSION *subjAltName;
STACK_OF(X509_EXTENSION) *req_exts;
FILE *fp;
BIO *out;

OpenSSL_add_all_algorithms();
ERR_load_crypto_strings();
seed_prng(Q);

/* open stdout */
if (!(out = BIO_new_fp(stdout, BIO_NOCLOSE)))
int_error("Error creating stdout BI0O"™);

/* read in the request */
it (1(fp = fopen(REQ_FILE, *r')))
int_error("Error reading request file");
it (1(req = PEM_read_X509_REQ(fp, NULL, NULL, NULL)))
int_error("Error reading request in file');
fclose(fp);

/* verify signature on the request */
ifT (1(pkey = X509_REQ_get_pubkey(req)))
int_error("Error getting public key from request');
if (X509 _REQ verify(req, pkey) I= 1)
int_error("Error verifying signature on certificate");

/* read in the CA certificate */
it (1(fp = fopen(CA_FILE, "'r')))
int_error("Error reading CA certificate file");
if (1(CAcert = PEM_read_X509(fp, NULL, NULL, NULL)))
int_error("Error reading CA certificate in file");
fclose(fp);

/* read in the CA private key */
ifT (I(fp = fopen(CA_KEY, "r')))
int_error("Error reading CA private key file');
if (1(CApkey = PEM_read_PrivateKey(fp, NULL, NULL, "password'™)))
int_error("Error reading CA private key in file");
fclose(fp);

/* print out the subject name and subject alt name extension */
if (!(name = X509 _REQ_get_subject_name(req)))

int_error("Error getting subject name from request');
X509 _NAME_print(out, name, 0);

252

fputc("\n", stdout);
if (1(reg_exts = X509 _REQ_get_extensions(req)))

int_error("Error getting the request"s extensions');
subjAltName_pos = X509v3_get ext by NID(req_exts,

0OBJ_sn2nid('subjectAltName™), -1);

subjAltName = X509v3_get_ext(req_exts, subjAltName pos);
X509V3_EXT_print(out, subjAltName, 0, 0);
fputc(*\n", stdout);

/* WE SHOULD NOW ASK WHETHER TO CONTINUE OR NOT */

/* create new certificate */
if (I(cert = X509 _new()))
int_error("Error creating X509 object');

/* set version number for the certificate (X509v3) and the serial number

it (X509 _set _version(cert, 2L) 1= 1)
int_error("Error settin certificate version™);
ASN1_INTEGER_set(X509_get_serialNumber(cert), serial++);

/* set issuer and subject name of the cert from the req and the CA */
if (I1(name = X509_REQ_get_subject_name(req)))
int_error("Error getting subject name from request');
if (X509 _set_subject name(cert, name) I= 1)
int_error("Error setting subject name of certificate');
if (I(name = X509 _get_subject_name(CAcert)))
int_error("Error getting subject name from CA certificate);
if (X509 _set_issuer_name(cert, name) != 1)
int_error("Error setting issuer name of certificate");

/* set public key in the certificate */
if (X509 _set pubkey(cert, pkey) 1= 1)
int_error("Error setting public key of the certificate);

/* set duration for the certificate */

ifT (1(X509_gmtime_adj (X509 _get_notBefore(cert), 0)))
int_error("Error setting beginning time of the certificate");

ifT (1(X509_gmtime_adj (X509 _get_notAfter(cert), EXPIRE_SECS)))
int_error("Error setting ending time of the certificate™);

/* add x509v3 extensions as specified */
X509V3_set_ctx(&ctx, CAcert, cert, NULL, NULL, 0);
for (i = 0; i < EXT_COUNT; i++)
{

X509_EXTENSION *ext;

if (1(ext = X509V3_EXT_conf(NULL, &ctx,
ext_ent[i]-key, ext_ent[i].value)))

fprintf(stderr, "Error on \"%s = %s\'"\n",
ext_ent[i]-key, ext_ent[i].value);
int_error("Error creating X509 extension object');
}
if (1X509_add_ext(cert, ext, -1))
fprintf(stderr, "Error on \"%s = %s\'"\n",
ext_ent[i]-key, ext_ent[i].value);
int_error("Error adding X509 extension to certificate');

}
X509 _EXTENSION_free(ext);
}

/* add the subjectAltName in the request to the cert */
if (1X509_add_ext(cert, subjAltName, -1))
int_error("Error adding subjectAltName to certificate);

/* sign the certificate with the CA private key */

253

if (EVP_PKEY_type(CApkey->type) == EVP_PKEY_DSA)
digest = EVP_dssl1();
else if (EVP_PKEY_type(CApkey->type) == EVP_PKEY_RSA)
digest = EVP_shal();
else
int_error("Error checking CA private key for a valid digest™);
it (1 (X509 _sign(cert, CApkey, digest)))
int_error("Error signing certificate™);

/* write the completed certificate */
it (1(fp = fopen(CERT_FILE, "w')))

int_error("Error writing to certificate file");
if (PEM_write_X509(fp, cert) I= 1)

int_error("Error while writing certificate");
fclose(fp);

return O;

}

At the beginning of this program, we read the request and verify its signature using

X509 _REQ veriTfy. Likein Example 10-5, we use the shortcut for specifying the password to
the deserialization routine for the private key; real-world implementations normally prompt the
user for thisin an application-specific way.

Onceweveread in al the data for creating the certificate, we print the important data from the
certificate request, namely the subjectName and the subjectAltName. The subjectName is
retrieved using the function X509 REQ_get_subject_name and printed with

X509 NAME_print. Thelast parameter of the print function controls whether the short name of
thefield or the OID is printed: O for the short name, 1 for the OID.

Extracting the sub jectAltName extension is more complex than getting the sub jectName.
First, we must extract the stack of all the extensionsin the request. With this stack, we use
X509v3_get_ext by NID to get the integer indicating the position of the subjectAltName
field. We can use thisinteger with the function X509v3_get_ext to get the actua
X509_EXTENSION object. Thisabject is then printed with X509V3_EXT_print. Thethird
parameter to this call isidentical to the last parameter of the X509 NAME_print cal. The last
parameter is the number of spacesto be indented before printing the data. After printing this
crucial information, the application should query the CA administrator to determine if thisdatais
correct and not a masquerading attempt.

After this process, we create an empty certificate and set the version of the new certificate. Since
the version numbers start at 1, and the internal representation of versions starts at 0, using 2 in the
call to X509_set_version redly indicates Version 3 of X.509. Certificates must also bear a
serial number assigned from the CA at the time of signing. To do this, we use asimple ASN.1
family function call 2

M AsN.1 (Abstract Syntax Notation 1) is a language that is used to describe data structures. For
our purposes, this definition is sufficient. A complete discussion of ASN.1 is beyond the scope of
this book

When signing certificates in applications, it is the application's responsibility to track serial
numbers and assign them uniquely. Setting the subject and issuer names is performed as described
above. After setting the names, we use X509_set_pubkey to assign the certificate the same
public key we obtained from the request. Setting the certificate expiration time is performed by
setting the notBefore and notAfter attributes. We use the X509 _gmtime_adj function to
set the starting time retrieved by calling X509_get_notBefore to 0. This setsthe start time to
the current time and date. By setting the notAfter parameter in asimilar fashion, we specify the
number of seconds for the lifetime of the certificate.

254

We use a previously unseen function, X509V3_set_ctx, to prepare a context for creating the
extensions to the certificate:

void X509V3 set ctx(X509V3 CTX *ctx, X509 *issuer, X509 *subject,
X509 REQ *req, X509 CRL *crl, int flags);

Thisversatile function is called with several NULLSs since we don't need to add extensions to any
X509_REQ or X509_CRL objects. Additionally, we don't need any flags, so a0 isused for the last
argument. ThisX509V3_CTX object is used by the X509V3_EXT_conf to alow for some of the
more complex extensions we wish to add. For example, the subjectKeyldentifier extension
is computed as a hash of part of the data in the certificate, and the X509V3_CTX object provides
the routine access to this certificate (we added it to the context earlier).

We then loop through the array of extension data to create and add extensions to the new
certificate. Unlike the process of adding extensions to a certificate request, we don't need to add
the extensions to a stack before adding them to an X509 object. As we mentioned earlier, the
extensions we add are the defaults for the OpenSSL command-line utility. After theloop is
completed, we add the sub jectAl tName extension that we extracted from the request
previously.

The last task we perform before writing our new certificate isto sign it. Thisiscritical, since an
unsigned certificate is essentially useless. The function X509_sign performsthisfor us. Asin
Example 10-5, we must perform a check to determine the type of the private key so that we can
decide on a correct EVP_MD object to use as the hash algorithm.

We now have a complete, valid certificate. Thisisabig step. Using what we've learned, we are
armed with enough knowledge to implement a minimal CA. Before leaving the topic of
programming with X.509, however, one important topic remains to be discussed: certificate
verification.

10.3.3 X.509 Certificate Checking

In Chapter 5, we discussed SSL server certificate verification extensively. Here, well discuss the
layer just below SSL that performs certificate verification. Specifically, we'll discuss how
OpenSSL's SSL functionality verifies a certificate against CRLs and other certificatesin the
certificate hierarchy. To do this, we'l require functions from the X.509 package. The SSL protocol
implementation handles much of what we're about to discuss here for us; even so, some setup
work is required on our part, particularly if we wish to include CRLs in the verification process,
which we amost certainly do.

Knowing how to programmatically perform the verification of a certificate chain gives us valuable
insight that we might not ordinarily have into what is actually involved in properly verifying a
certificate. It also provides us with the information necessary to verify certificates on our own
when we're not using the SSL protocol. Before delving into the verification process, however, it's
helpful to understand the purpose of some of the objects that are involved.

In general, a certificate can be validated only against a collection of other certificate materidl, i.e.,
CA certificates and CRLs. OpenSSL uses the object type X509 __STORE to represent a collection
of certificates and certificate revocation lists to serve this purpose. Additionally, OpenSSL uses
the type X509 _STORE_CTX to hold the data used during an actual verification. Thisdistinctionis
important; our implementations will look somewhat incongruous with respect to the context-
object relationship we've seen with other OpenSSL packages. For certificate verification, we will
create an X509 _STORE first and populate it with all the available certificate and revocation list
information. When it'stime to verify a peer certificate, we will use the store to create an

X509 STORE_CTX to perform the actual verification.

255

Along with the certificate stores and the associated contexts, the X509_LOOKUP_METHOD object
is also important. Objects of thistype represent a general method of finding certificates or CRLs.
For instance, the X509 LOOKUP_ Fi le function returns a method to find certificate-related
objects within asingle file, and the X509 _LOOKUP_hash_dir function returns a method to find
objects within a properly set up OpenSSL CA directory. X509 LOOKUP_METHOD objects are
important for creating X509 L OOKUP objects. These objects aggregate the collection of
certificates accessible through the underlying method. For instance, if we have a certificate
directory, we can create an X509 _LOOKUP from an X509 _STORE and the return value of
X509_LOOKUP_hash_dir; this X509_LOOKUP object can then be assigned to a directory, and
our X509_STORE will have accessto all of the certificates and CRLSs that the lookup aggregates.

To review: an X509 _STORE holds X509 LOOKUP objects built on X509_LOOKUP_METHODS.
Thisis how the store gains access to certificate and CRL data. The store can then be used to create
an X509_STORE_CTX to perform a verification operation.

Knowing the relationships between some of these objects, we can begin to see the general form of
what our code will have to do to verify a peer certificate. However, afew other important
subtleties about correctly verifying a certificate have not yet been discussed. These can be made
clear by analyzing Example 10-7, which demonstrates the whole process of validating a peer
certificate.

Example 10-7. Verifying a client certificate

#include <stdio.h>

#include <stdlib._h>

#include <openssl/x509 vfy.h>
#include <openssl/err_h>
#include <openssl/pem_h>

void handle_error(const char *file, int lineno, const char *msg)

{
fprintf(stderr, "** %s:%i %s\n', file, lineno, msg);
ERR_print_errors_fp(stderr);
exit(-1);

}

#define int_error(msg) handle_error(__FILE__, _ LINE_ _, msg)

/* these are defintions to make the example simpler */

#define CA_FILE "CAfile.pem”
#define CA DIR "/etc/ssl”
#define CRL_FILE "CRLFile.pem”

#define CLIENT_CERT 'cert.pem"

int verify callback(int ok, X509 STORE_CTX *stor)

{
iT(1ok)
fprintf(stderr, "Error: %s\n",
X509 verify_cert_error_string(stor->error));
return ok;
}
int main(int argc, char *argv[])
{
X509 *cert;
X509_STORE *store;

X509 _LOOKUP *lookup;
X509 _STORE_CTX *verify_ctx;
FILE *fp;

256

OpenSSL_add_all_algorithms();
ERR_load_crypto_strings();
seed_prngQ);

/* first read the client certificate */
if (1(fp = fopen(CLIENT_CERT, "r')))
int_error("Error reading client certificate file™);
if (!(cert = PEM_read_X509(fp, NULL, NULL, NULL)))
int_error("Error reading client certificate in file");
fclose(fp);

/* create the cert store and set the verify callback */
if (I(store = X509_STORE_new()))

int_error("Error creating X509 STORE CTX object™);
X509 STORE_set_verify cb func(store, verify_callback);

/* load the CA certificates and CRLs */

if (X509 STORE_ load_locations(store, CA_FILE, CA DIR) I= 1)
int_error("Error loading the CA file or directory™);

if (X509 STORE_set _default_paths(store) = 1)
int_error("Error loading the system-wide CA certificates™);

if (I(lookup = X509 STORE_add_lookup(store, X509 LOOKUP_file())))
int_error("Error creating X509 LOOKUP object™);

it (X509 _load_crl_file(lookup, CRL_FILE, X509 FILETYPE_PEM) != 1)
int_error("Error reading the CRL file™);

/* enabling verification against CRLs is not possible
in prior versions */
#iT (OPENSSL_VERSION_NUMBER > 0x00907000L)
/* set the flags of the store so that CRLs are consulted */
X509 STORE_set_flags(store, X509 V_FLAG CRL_CHECK |
X509_V_FLAG_CRL_CHECK_ALL);
#endif

/* create a verification context and initialize it */
if (I(verify_ctx = X509 STORE_CTX new()))
int_error("Error creating X509 STORE_CTX object™);
/* X509 STORE _CTX init did not return an error condition
in prior versions */
#iT (OPENSSL_VERSION_NUMBER > 0x00907000L)
if (X509 STORE_CTX_init(verify ctx, store, cert, NULL) != 1)
int_error("Error initializing verification context™);
#else
X509 STORE_CTX_init(verify ctx, store, cert, NULL);
#endif

/* verify the certificate */
if (X509 verify_cert(verify ctx) 1= 1)
int_error("Error verifying the certificate");
else
printf("'Certificate verified correctly!\n');

return 0O;

}

After reading in the peer certificate, we create our certificate store as expected. We also assign a
verification callback function. The form and purpose of this callback isidentical to the verification
callback for SSL connections we saw in Chapter 5.

257

The following two function calls should also ook familiar; we've already examined their mirrored
functionsfor SSL_CTX objects. They behave just like the SSL-specific versions. To load the CRL
file, however, we use the method described at the beginning of this section. The function
X509_STORE_add_lookup will create the lookup object we need when we pass it the correct
lookup method, given by X509 LOOKUP_fi le. After we've created the lookup (it's already
added to the store), we need only assign the lookup the file from which to read. Thisis done by the
call to X509 load crl_file. Infact, thecal to X509 STORE_load_ locations could
have been removed and done with lookups instead. For instance, the conditional clause using the
function could be replaced by the following:

iT (Y(lookup = X509 STORE_add_lookup(store, X509 LOOKUP_file())))
fprintf(stderr, "Error creating X509 LOOKUP object\n');

if (X509_LOOKUP_load_file(lookup, CA_FILE, X509 FILETYPE_PEM) != 1)
fprintf(stderr, "Error reading the CA file\n™);

it (Y(lookup = X509 STORE_add_lookup(store, X509 LOOKUP_ hash_dir())))
fprintf(stderr, "Error creating X509 LOOKUP object\n');

ifT (X509_LOOKUP_add_dir(lookup, CA_DIR, X509 FILETYPE_PEM) != 1)
fprintf(stderr, "Error reading the CRL file\n');

This code snippet simply follows the paradigm laid out above; we create alookup and then set the
lookup in an appropriate location. Using this expanded code can be useful in applicationsin which
we want to do a more specific type of loading of the store, such as an application that has several
CA files, each of which may contain more than one certificate.

Setting the flags for the certificate store is very important. By setting flags in the store, they are
automatically copied to the store contexts created from it. Thus, setting the flag

X509 _V_FLAG_CRL_CHECK instructs the contexts to check client certificates for possible
revocation. Thisflag will cause only the last item, the identity certificate itself, to be checked; the
chain is not checked for possible revocation. To check the entire chain, we must also specify
X509 V_FLAG_CRL_CHECK_ALL. Asnoted in the code, this capability is not availablein
versions of OpenSSL prior to Version 0.9.7.

After setting the flags, our store is adequately set up, and we are ready to begin the rather smple
process of verifying the actual certificate. We create an X509_STORE_CTX, initialize it, and then
call the verify function to determine the result. Looking at the initialization function in more detail
is helpful, however.

int X509 STORE_CTX_init(X509_STORE_CTX *ctx, X509 STORE *store,
X509 *x509, STACK_OF(X509) *chain);

The last argument to this function optionally allows us to passin the complete peer certificate
chain for verification. Thisis often necessary, since the verifying party may not have a complete
list of certificates that includes the identity certificate. This problem arises most commonly when
CAssign other CAs, asin the example SSL applicationsin Chapter 5. By passing the entire peer
chain, we can attempt to verify the whole chain and have fewer errors because valid issuer
certificates could not be found. Of course, in some applications—namely those that want only
directly signed, authorized clients—thisis inappropriate and should be left asNULL. In versions
prior to 0.9.7, this function does not return an integer error code.

At the end of the main function, we can check the return value of X509 verify cert and
determineif the verification succeeded. Aswe would expect, our callback is used during this
function call (it was passed on from the store to the store context).

258

10.4 PKCS#7 and S/IMIME

PKCSH#7 defines a standard format for data that has had cryptography applied to it. Like most
standards, using this format will guarantee alevel of interoperability with both existing and future
applications. The standard itself is based on other PKCS standards for performing cryptographic
operations. It isimportant to note that PK CS#7 specifies only a data format, not the choice of any
specific agorithms.

Perhaps the most important trait of PKCS#7 isthat it is the basis for Secure Multipurpose Internet
Mail Extensions (SSMIME). SIMIME is a specification for sending secure email. Built on top of
PKCS#7 and the former MIME standard, SSMIME allows us to email messages that can assure
secrecy, integrity, authentication, and non-repudiation.

Using S'MIME, we can sign, verify, encrypt, and decrypt messages. Thisis very useful when
developing mail applications, but it can also be used by programs that need to transmit data over a
text-based medium, such as an instant-messaging implementation. Aswell see, programming with
OpenSSL's PKCS#7 and SIMIME packages requires us to use much of our knowledge of the other
packages.

A common misconception is that PKCS#7 and S'IMIME are one in the same. In fact, they are not.
S/MIME merely defines a specific encoding for PK CS#7 data. Using the SSMIME standard as
implemented by OpenSSL, we can create applications that securely interact with other SMIME-
compliant applications, since the data encoding is standardized. It is also important to note here
that OpenSSL's support for PKCS#7 and SIMIME is limited. Only SSMIMEV2 and PKCS#7 v1.5
are supported.

10.4.1 Signing and Verifying

The concept of signing and verifying is familiar by this point. Conceptually, to sign a message, we
will need the sender's private key and the message to sign; the verification operation will require
the sender's public key and the signed message. With SMIME, the implementation is rather
simple.

The signing process is opague to the calling application. We simply provide al of the information
with one function call to PKCS7_sign, and we get back a PKCS7 object. From there, we can use
SMIME_write_ PKCS7 to output the SSMIME armored message. Likewise, with verification, we
obtain a PKCS7 object using SMIME_read_PKCS7 and perform the verification by calling the
PKCS_verify function.

While the calls to the actual PKCS#7 and SIMIME family of functions are simple, we must
perform some nontrivial setup for al of the arguments to these functions. In Example 10-8 below,
our implementation focuses on that critical setup. Before we get ahead of ourselves, we should
first look at these four functionsin more detail.

PKCS7 *PKCS7_sign(X509 *signcert, EVP_PKEY *pkey, STACK_ OF(X509)
*certs,
BIO *data, int flags);

Thefirst argument to PKCS7_sign isthe certificate with which well sign the message.
The second argument is the corresponding private key to the certificate. The third
argument allows us to add other certificates to the SIMIME message. Thisis most useful
when we have along certificate chain and we wish to aid the receiving party's verification
process. The fourth argument accepts aB 10 object from which the message will be read.
The last argument, Flags, allows usto set properties of the resulting PKCS7 abject. Its
potential values are discussed at the end of this section.

Ul
e}

int SMIME_write PKCS7(BIO *bio, PKCS7 *p7, BIO *data, int flags);

The SMIME_write PKCS7 function will writethe PKCS7 object in the SMIME
encoding. The datais written to the BI10 object passed in as the first argument. The object
to write isthe second. The other B10 object, the third argument, is the same object we
used when calling PKCS7_sign. This alows the rest of the message data to be read and
signed before writing the signature. The last argument is a set of flags of the same type as
the signing function; they will be |eft for later discussion.

The verification processis, in essence, areverse of the signing process. First, wereadin a
PKCS7 object, and then we call PKCS7_verify.

PKCS7 *SMIME_read_PKCS7(BIO *bio, BIO **bcont);

This function simply reads an S'MIME-encoded PKCS7 object from the B10 passed in as
the first argument. The second argument is used to pass the caller back apointer to aBI10
that is opened for reading on the data in the PKCS7 object. This passed-back B10 will be
important for our verification process.

int PKCS7_verify(PKCS7 *p7, STACK OF(X509) *certs, X509 STORE *store,
BIO *indata, BIO *out, int flags);

To verify aPKCS7 object, pass the object as the first argument to the PKCS7_verify.
The second argument specifies a chain of certificates that we can use to verify the
signature. The validity of these certificates is checked against the X509 _STORE specified
asthe third argument. This store must be set up fully before attempting to verify an
S/MIME message. The setup isidentical to that of Example 10-7. The B10 object that is
passed as the fourth argument is the same object we retrieved from our call to
SMIME_read_PKCS7. Asthe function PKCS7_ver i fy processes the data read from
thisBIO, it writes the recovered message to the B10 used as the fifth argument. The flags
are discussed below.

Now, using all we know about processing other types of OpenSSL objects and what we've just
learned about PKCS#7 and SMIME, we will dissect asmall utility that can sign and verify text

messages. The code appears in Example 10-8.
Example 10-8. A signing and verifying utility

#include <stdio.h>

#include <stdlib.h>
#include <openssl/crypto.h>
#include <openssl/err_h>
#include <openssl/pem.h>
#include <openssl/rand.h>

/*
* This code appearing before the main function is all for X509 STORE
setup.
*/
/* these are defintions to make the example simpler */
#define CA_FILE "CAfile.pem”
#define CA DIR "/etc/ssl”
#define CRL_FILE "CRLFile.pem”

int verify_callback(int ok, X509 STORE_CTX *stor)

260

}

it (Tok)
fprintf(stderr, "Error: %s\n",
X509 verify_cert_error_string(stor->error));
return ok;

X509 STORE *create_store(void)

X509 _STORE *store;
X509_LOOKUP *lookup;

/* create the cert store and set the verify callback */
if (I(store = X509_STORE_new()))

fprintf(stderr, "Error creating X509 STORE CTX object\n');
goto err;

}
X509 STORE_set_verify cb_func(store, verify_callback);

/* load the CA certificates and CRLs */
if (X509 STORE load locations(store, CA FILE, CA DIR) I= 1)

fprintf(stderr, "Error loading the CA file or directory\n);

goto err;
}
if (X509 _STORE_set_default_paths(store) 1= 1)
{

fprintf(stderr, "Error loading the system-wide CA

certificates\n');

err:

s
int

{

goto err;
}
if (I(lookup = X509 STORE_add_lookup(store, X509 LOOKUP_file())))

fprintf(stderr, "Error creating X509 LOOKUP object\n™);
goto err;

3
if (X509 _load_crl_file(lookup, CRL_FILE, X509 FILETYPE_PEM) != 1)

fprintf(stderr, "Error reading the CRL file\n™);
goto err;

}

/* set the flags of the store so that CRLs are consulted */

X509 STORE_set_flags(store, X509 V_FLAG CRL_CHECK |
X509_V_FLAG_CRL_CHECK_ALL);

return store;

return NULL;

main(int argc, char *argv[])
int sign;

X509 *cert;
EVP_PKEY *pkey;
STACK_OF(X509) *chain = NULL;
X509_STORE *store;

PKCS7 *pkcs7;

261

FILE *fp;
BIO *in, *out, *pkcs7_bio;

OpenSSL_add_all_algorithms();
ERR_load _crypto_strings(Q);
seed prngQ);

--argc, ++argv;
if (argc < 2)

{
fprintf(stderr, "Usage: sv (sign|verify) [privkey.pem]
cert.pem ...\n");

goto err;

}

if (Istrcmp(*argv, ''sign'™))
sign = 1;

else if (Istrcmp(*argv, "verify'™))
sign = 0;

else

{

fprintf(stderr, "Usage: sv (sign|verify) [privkey.pem]
cert.pem ...\n");
goto err;
}

--argc, ++argv;

/* setup the BIO objects for stdin and stdout */
if (1(in = BIO_new_fp(stdin, BIO_NOCLOSE)) |I
I'(out = BI0_new_fp(stdout, BIO _NOCLOSE)))

fprintf(stderr, "Error creating BIO objects\n');
goto err;

}
if (sign)
{
/* read the signer private key */
if (1(fp = fopen(*argv, "r')) |I
I'(pkey = PEM_read_PrivateKey(fp, NULL, NULL, NULL)))

fprintf(stderr, "Error reading signer private key in
%s\n', *argv);

goto err;
b
fclose(fp);
--argc, ++argv;
3
else
{
/* create the cert store and set the verify callback */
if (I(store = create_store()))
fprintf(stderr, "Error setting up X509 STORE object\n');
3

/* read the signer certificate */
if (I(fp = fopen(*argv, "r')) ||
I(cert = PEM_read_X509(fp, NULL, NULL, NULL)))

ERR_print_errors_fp(stderr);

fprintf(stderr, "Error reading signer certificate in %s\n",
*argv);

262

goto err;

}
fclose(fp);
--argc, ++argv;

if (argc)

chain = sk X509 new_null();
while (argc)
{

X509 *tmp;

if (1(fp = fopen(*argv, "r')) |I
1(tmp = PEM_read X509(fp, NULL, NULL, NULL)))

fprintf(stderr, "Error reading chain certificate in %s\n",
*argv);
goto err;

sk_X509_push(chain, tmp);
fclose(fp);
--argc, ++argv;

}

if (sign)

{
if (I(pkcs7 = PKCS7_sign(cert, pkey, chain, in, 0)))
{

fprintf(stderr, "Error making the PKCS#7 object\n™);
goto err;

if (SMIME write PKCS7(out, pkcs7, in, 0) I= 1)
{

fprintf(stderr, "Error writing the S/MIME data\n');
goto err;

}

else /* verify */
if (I(pkcs7 = SMIME_read_PKCS7(in, &pkcs7_bio)))
{

fprintf(stderr, "Error reading PKCS#7 object\n");
goto err;

if (PKCS7_verify(pkcs7, chain, store, pkcs7_bio, out, 0) != 1)

fprintf(stderr, "Error writing PKCS#7 object\n");
goto err;

}

else
fprintf(stdout, "Certifiate and Signature verified!\n");

}

return O;
err:

return -1;
3

There should be no surprisesin this code; it isalogical extension of what we already know about
the various methods of processing private keys, certificates, and PK CS#7 objects.

263

This program is called with the first argument as either "sign” or "verify". If signing mode is used,
we will expect the next argument to be the private key, the following argument to be the
corresponding certificate, and the rest can be chain certificates that we'll add to the message. In
verification mode, the third argument is expected to be the certificate, and the rest are extra
certificates to check the signature.

We use the function create_store to represent the setup process for the certificate store
abstractly. We read in the appropriate number of arguments based on the mode and add all the rest
to a certificate stack. Finally, we either sign and emit the SSMIME message or read the SSMIME
message and emit the original, verified message.

10.4.2 Encrypting and Decrypting

Again, we're familiar with the general process; we need a peer's public key to encrypt and our own
private key to decrypt. The functions for reading and writing the PK CS#7 objectsin the SSMIME
encoding are unchanged, but we do have the new functions PKCS7_encrypt and
PKCS7_decrypt. Before delving into the details of these two new functions, we should go back
and think of the envelope interface we saw in Chapter 8. Thisinterface allowed usto encrypt
messages for other users with simple function calls and public key components, but in reality, the
majority of the encryption was done using a symmetric cipher. These PKCS#7 functions do the
same thing. They generate arandom key and encrypt the data with it. Then the random key, or
session key, is encrypted using the recipient's public key and included with the message. Asan
extension, PKCS#7 alows us to send a single encrypted message to multiple users by simply
encrypting the session key with each of the recipient's public keys and including all of that data
with the message. The example below will allow usto do this.

PKCS7 *PKCS7_encrypt(STACK_OF(X509) *certs, BIO *in, const EVP_CIPHER
*cipher,
int flags);

The first argument is a collection of public keys for the recipients. Each public key will be
used to encrypt the message's session key separately. The second argument specifies the

B 10 from which the message to encrypt will be read. The third argument specifies the
symmetric algorithm to use, and the last are the flags, discussed below.

int PKCS7_decrypt(PKCS7 *p7, EVP_PKEY *pkey, X509 *cert, BIO *data,
int flags);

The decryption function is equally simple. The PKCS7 object is passed in first; it isthe
product of acall to SMIME_read_PKCS7. The next two arguments are accounted for by
the private key to perform the decryption and the corresponding certificate. The B10
object is used by the PKCS7_decrypt to write out the decrypted data. Again, the flags
are discussed below.

We will look at another small utility, just as we did for signing and verifying, to make clear the
kind of setup we need to do before calling these functions. Example 10-9 has that code.

Example 10-9. A utility to encrypt and decrypt SIMIME messages

#include <stdio.h>

#include <stdlib_h>
#include <openssl/crypto.h>
#include <openssl/err._h>
#include <openssl/pem.h>
#include <openssl/rand.h>

264

int main(int argc, char *argv[])

{

int encrypt;

PKCS7 *pkcs7;

const EVP_CIPHER *cipher;

STACK_OF(X509) *certs;

X509 *cert;

EVP_PKEY *pkey;

FILE *fp;

BIO *pkcs7_bio, *in, *out;

OpenSSL_add_all_algorithms();

ERR_load_crypto_strings();

seed_prngQ);

--argc, ++argv;

if (argc < 2)

{

fprintf(stderr, "Usage: ed (encrypt]decrypt) [privkey.pem]

cert.pem "

-\n");
goto err;

}

if (Istrcmp(*argv, “encrypt'™))
encrypt = 1;

else if(Istrcmp(*argv, "decrypt'™))
encrypt = 0;

else

fprintf(stderr, "Usage: ed (encrypt]decrypt) [privkey.pem]
cert.pem "
o-\n");
goto err;

}

--argc, ++argv;

/* setup the BIO objects for stdin and stdout */
if (1(in = BIO_new_fp(stdin, BIO_NOCLOSE)) |1
I'(out = BI0_new_fp(stdout, BIO _NOCLOSE)))

fprintf(stderr, "Error creating BIO objects\n');
goto err;

}
if (encrypt)
{
/* choose cipher and read in all certificates as encryption
targets */
cipher = EVP_des _ede3 cbhc();
certs = sk X509 new_null();
while (argc)
{
X509 *tmp;

if (I(fp = fopen(*argv, "r')) |I
I'(tmp = PEM_read X509(fp, NULL, NULL, NULL)))
{

fprintf(stderr, "Error reading encryption certificate

in %s\n",
*argv);

265

goto err;
sk_X509_push(certs, tmp);
fclose(fp);
--argc, ++argv;
}
if (I(pkcs7 = PKCS7_encrypt(certs, in, cipher, 0)))
{
ERR_print_errors_fp(stderr);
fprintf(stderr, "Error making the PKCS#7 object\n™);
goto err;
if (SMIME write PKCS7(out, pkcs7, in, 0) I= 1)

fprintf(stderr, "Error writing the S/MIME data\n');

goto err;
}
}
else
if (1 (fp = fopen(*argv, "r')) |I
I'(pkey = PEM_read_PrivateKey(fp, NULL, NULL, NULL)))
fprintf(stderr, "Error reading private key in %s\n",
*argv);
goto err;
}
fclose(fp);
--argc, ++argv;
it (I(fp = fopen(*argv, "r'")) ||
I'(cert = PEM_read_X509(fp, NULL, NULL, NULL)))
{
fprintf(stderr, "Error reading decryption certificate in
%s\n"",
*argv);
goto err;
}
fclose(fp);
--argc, ++argv;
if (argc)
fprintf(stderr, "Warning: excess parameters specified. "
"Ignoring...\n");
if (I(pkcs7 = SMIME_read PKCS7(in, &pkcs7 _bio)))
{
fprintf(stderr, "Error reading PKCS#7 object\n™);
goto err;
if (PKCS7_decrypt(pkcs7, pkey, cert, out, 0) = 1)
{
fprintf(stderr, "Error decrypting PKCS#7 object\n™);
goto err;
}
}
return O;
err:
return -1;
}

266

This program is similar to the one in Example 10-8. When in encryption mode, it expects all the
arguments after the word "encrypt” to be certificate files for the recipients. In decryption mode,
the argument after "decrypt" must be the private key filename. The following argument should be
the corresponding certificate; al further arguments are ignored, and awarning is emitted.

Analyzing this program, we can see severa similarities to the previous example. When encrypting,
we create the recipient stack, create the PKCS7 object with it and the message, and then write the
product out. Decryption requires us to get the private key and certificate before performing the
PKCS#7 and SSMIME operations.

10.4.3 Combined Operations

Often, we will want to both sign and encrypt an SMIME message. Asit turns out, we can do this
easily using the two utilities we've created. First, we sign the message, and then we encrypt it for
the recipients. Take the following example. Assume we have a proper root certificate in the file
CAfile.pem and a CRL in the file CRLfile.pem. We will further assume that we have two users: foo
with certificate in foocert.pem and private key in fookey.pem, and bar with certificate and key files
named similarly. Using the following command, foo can prepare his message for bar.

$ cat msg.txt | ./sv sign fookey.pem foocert.pem \
> | ./ed encrypt barcert.pem > msg.smime

This command line reads the original message from the file msg.txt and begins by signing it with
foo's private key. After this, the message is encrypted with the public key in the certificate of the
recipient, i.e., bar's certificate. We could easily add more certificate filesto this part of the
command line if we wish to send the message to multiple targets.

Upon receiving this SMIME message, bar would execute the following command.

$ cat msg.smime | ./ed decrypt barkey.pem barcert.pem \
> | ./sv verify foocert.pem

This command will use bar's private key first to decrypt the message. At this point, the verify
routine uses foo's certificate to verify the signature, and the message is displayed.

Of course, thisis an elementary example, but it gives us some idea of how S/MIME messages can
be nested. Thisisthe simplest way of sending a signed and encrypted message.

10.4.4 PKCS#7 Flags

We delayed our discussion of the PK CS#7 flags until we had shown area implementation using
the functions. In addition, we're now in a better position to understand the flags since we are more
aware of the capabilities of PKCS#7 and S'MIME. The flags are al bit-valued and can be
combined through the logical OR operation. Each of these PKCS7__. . . flagshave SMIME_ . . .
aliases aswell. We will limit our discussion to the more common and useful flags.

PKCS7_NOINTERN

The verification process will not use the certificates embedded in the object for signature
verification, i.e., the peer's certificate must be known beforehand for successful
verification.

PKCS7_NOVERIFY

267

When verifying a PKCS#7 object, do not try to verify the signer's certificate. The
signature will still be checked.

PKCS7_NOCERTS

The signing process will not add any extra certificates to the generated object.
PKCS7_DETACHED

Do not include the signer's certificate in the generated object when signing data.
PKCS7_NOSIGS

Do not verify the signature on the PK CS#7 object.

Some of these flags are dangerous, since they undermine security. We should strictly limit usage
of the flags to applications running for testing or academic purposes.

10.5 PKCS#12

The PKCS#12 standard specifies aformat for secure transportation of user identity information.
This can be any sort of information, including certificates, passwords, and even private keys. The
purpose for this standard isto alow user credentials to be portable while remaining secure.

The PKCS#12 standard allows for many different levels of security ranging from the use of a
hardware security token to simpler password-based protection. For our purposes, we need only
discuss a small subset of the features. The reason PKCS#12 isimportant to us is that many
applications, namely common web browsers, use PK CS#12-formatted credentials.

For instance, if we develop an SSL-enabled web server, we want to be able to alow user
authentication viaclient certificates. Using PKCS#12, we can generate the client credentials using
OpenSSL and then import the data into a third-party web browser. This allows the browsing
application to present the certificate to our SSL server and thus properly authenticate. The primary
benefit of knowing how to perform this task is simple—we gain interoperability. We will limit our
discussion of PKCS#12 to simply performing this task.

10.5.1 Wrapping Information into a PKCS#12 Object

This processis rather simple. It requires only one function call. The function takes all of the data
presented and creates a password-protected PKCS12 object. With the created PKCS12 object, we
can safely transport the datato a PK CS#12-compliant application. The application can then import
the data, provided the password under which it was protected is supplied.

PKCS12 *PKCS12_create(char *pass, char *name, EVP_PKEY *pkey, X509
*cert,
STACK_OF(X509) *ca, int nid _key, int nid_cert,
int iter, Int mac_iter, int keytype);

The PKCS12_create function takes many arguments, but only the first five are
important; the rest can be safely left as 0. The first argument is the password to use in
protecting the data. The second argument specifies a general name to identify the created

268

set of credentials. The following three arguments are the main parts of the object, the
private key, the certificate, and the certificate's CA chain.

This function returns a properly formed PKCS12 object on success and NULL if an error
occurs. To use this function successfully, we need only use the knowledge we already
have to read in the data programmatically and then make this call. Once we've created the
PKCS12 object, we will write it out to afile, in the most common case. The convention
for PKCS#12 objectsisto write them in DER format; thus, i2d_PKCS12_fp should be
used.

int i2d_PKCS12_fp(FILE *fp, PKCS12 *p12);

Once we have thefile, we can useit to import our credentials into any application that
supports PKCS#12 objects. As afina note, we should use this method of exporting
credentials only for user/client information. If we wanted to do something ssimpler, like
add a CA certificate to a browser, we should just use i2d_X509_fp to writethe single
X509 object.

10.5.2 Importing Objects from PKCS#12 Data

Ancther common feature, the last we'll discuss on the topic of PKCS#12, is building applications
that can import user identity information via PKCS#12. For al of the reasons mentioned, itisa
good ideato build this support into applications in which it's appropriate. Again, OpenSSL
provides one simple function call to serve our needs.

Thefirst issueisreading the PKCS#12 filein from disk. The function d2i_PKCS12_fp performs
this task.

PKCS12 *d2i_PKCS12_fp(FILE *fp, PKCS12 **p12);

We can simply use aNULL for the second argument, and a newly allocated and popul ated
PKCS12 object isreturned, as long as no errors are encountered in the file. Once we have
this object, we can call PKCS12_parse to unwrap all of the identity objects that are
encoded in it.

int PKCS12_parse(PKCS12 *pl2, const char *pass, EVP_PKEY **pkey, X509
**cert,
STACK_OF(X509) **ca);

The second argument must be the same passphrase under which the file was protected.
The last arguments are all used to pass back pointers to the indicated objects: the private
key, the certificate, and the certificate chain file. After this call is completed, the PKCS12
object can be freed, and we can use the unwrapped objects normally.

In the end, PKCS#12 provides a solid foundation to safely write and read user credentials and, at
the same time, affords a degree of interoperability for user identity information.

Lo

N
|9)

Appendix A. Command-Line Reference

This Appendix isareference for all of the commands supported by the OpenSSL command-line
tool. We've made an effort to provide complete documentation for each of the commands based on
the information contained in the OpenSSL documentation and the source code.

asnlparse

The asnlparse command isadiagnostic utility that parses ASN.1 structures. It can aso be used
to extract data from ASN.1-formatted data.

Options
-inform PEM|DER

Specify the format of the input data, which may be either DER or PEM. The default is
PEM.

-in filename
Specify the name of afile to read for input. The default isto read from stdin.
-out filename

Specify the name of afile to write output to. The default isto writeto stdout.

-noout
Cause all output except for error messages to be suppressed.
-offset number
Specify the byte offset of the input data to start parsing at.
-length number
Specify the number of bytes to include in the parse.
-i
Cause the output to be indented for readability.
-oid filename
Specify the name of afile containing extra OID definitions. See Section below for more
information on the format of thisfile.
-strpar se offset

270

Cause the content octets starting at the specified byte offset to be parsed. This option may
be specified multiple times.

-dump
Cause unknown data to be displayed in hexadecimal form.
-dlimit number

Specify the maximum number of bytes of unknown data to be displayed. The default isto
display al of it.

Notes

Datain the ASN.1 format is composed of objects, some with an assigned object identifier (OID).
An object identifier is a sequence of numbersthat is normally represented by separating each
number in the sequence with a period. Because object identifiers are often composed of many
numbers, they can be difficult to remember. For this reason, object identifiers are given names.
OpenSSL defines many object identifiersinternally and displays them with their names, but if an
unknown object identifier is encountered, it is represented by this command in its numerical form.
The oid option allows you to specify the name of afile that additional OID definitions will be
read from so that they may be displayed using their names when they're encountered by this
command.

The format of afile containing object identifier definitions is quite simple. Each OID definition
appears on its own line and consists of three columns. The first column is the numerical
representation of the OID. The second column is a short name of the OID, which should be a
single word composed of only upper- and lowercase letters. The third column is along name of
the OID, which may contain multiple words and characters other than letters. The long nameisthe
name that will be displayed by the asnlparse command.

The ca command is a basic certification authority that can be used to issue X.509 certificates and
certificate revocation lists.

Options

-config filename
Specify the name of afile to be used as a configuration file. If omitted, the system-wide
default configuration file is used. Use of this option overrides the OPENSSL_CONF
environment variable.

-verbose

Cause more information to be displayed than normal.

-name section

271

Specify the name of a section in the configuration file being used that contains the default
settings for the CA. The default isto use the section specified by the defaul t_ca key in
the ca section of the configuration file.

-in filename

Specify the name of afile containing a certificate request to be signed by the CA, causing
a certificate to be created.

-ss _cert filename

Specify the name of afile containing a self-signed certificate to be signed by the CA.
-spkac filename

Specify the name of afile containing a Netscape Signed Public Key and Challenge.
-infiles

If this option is present, it must be the last option on the command line. Each argument
after it is assumed to be afile containing a certificate request to be signed by the CA, and
certificates will be created for each one.

-out filename

Specify the name of afile to write the certificate or certificates created by the CA to. The
default isto write certificates to stdout. If the gencr 1 option is used, this option
specifies the name of the file to which the generated certificate revocation list will be
written.

-outdir directory
Specify the directory where certificates will be written. Each certificate that is issued will

be written with afilename composed of the certificates serial number in hexadecimal and
an extension of ".pem". This option overrides the configuration file'snew_certs_dir

key.

-cert filename

Specify the name of the file containing the CA's certificate. This option overrides the
configuration file's certificate key.

-keyfile filename

Specify the name of the file containing the CA's private key. This option overrides the
configuration file's private_key key.

-key password

Specify the password that is required to decrypt the CA's private key. This option does
not conform to the guidelines outlined in Chapter 2 for passwords and passphrases. Use of
this option is not recommended. The passin option should be used instead.

-passin password

272

Specify the password or passphrase that is required to decrypt the CA's private key. The
password or passphrase specified with this option follows the guidelines outlined in

Chapter 2.

-notext
Cause the text form of a certificate to be excluded from the output file.

-startdate date
Specify the start date on which the issued certificate or certificates will be valid. If this
option is omitted, the default is to use the current system time. This option overrides the
configuration file's defaul t_startdate key.

-enddate date
Specify the end date on which the issued certificate or certificates will be valid. If this
option is omitted, the default is to use the start date plus the number of days specified
with the days option. Use of this option will override the days option if both are used.
This option overrides the configuration file'sdefaul t_enddate key.

-days number
Specify the number of days for which issued certificates will be valid. This option
overrides the configuration files defaul t_days key.

-md digest
Specify the message digest algorithm to use. The default isto use MD5, but valid options
include MD5, SHA1, and MDC2. This option overrides the configuration file's
default_md key.

-policy section
Specify the name of a section in the configuration file being used that contains a policy
definition to be used. This option overrides the configuration file's policy key.

-msie_hack
Specify this option if you need to issue certificates that will work with very old versions
of the Internet Explorer certificate enrollment control "certenr3". Avoid using this option
unless you know that you absolutely need it.

-preserveDN
Cause the order and components of the distinguished name from a certificate request to be
preserved in the issued certificate. Ordinarily, the certificate will be created using only the
components from the policy that isin use by the CA.

-batch

Cause verification prompts to be suppressed, allowing the command to do its work
without any human intervention.

273

-extensions section

Specify the name of a section in the configuration file being used that contains the
extensions to be added to certificates that are issued. If no extension section is used, an
X.509v1 format certificate will be issued; otherwise, an X.509v3 certificate will be issued.
This option overrides the configuration file's x509 _extensions key.

-gencrl
Cause a certificate revocation list to be generated.

-crldays number
Specify the number of days before the next certificate revocation list will be generated.
This option is used to compute the date that is used to fill in the nextUpdate field. This
option overrides the configuration filesdefaul t_crl_days key.

-crlhours number
Specify the number of hours before the next certificate revocation list will be generated.
This option computes the date that is used to fill in the nextUpdate field. This option
may be used in combination with the cr Idays option. This option overrides the
configuration file'sdefaul t_crl_hours key.

-revoke filename
Specify the name of afile containing a certificate that will be revoked.

-crlexts section

Specify the name of a section in the configuration file being used that contains the
extensions to be added to the certificate revocation list that isissued. If no extension
section isused, avl CRL is created; otherwise, av2 CRL is created. This option
overrides the configuration filescrl_extensions key.

Configuration Options
oid_file

Specify the name of afile that contains object identifier definitions. The format of thisfile
is one definition per line, each line consisting of three columns. The first columnisthe
numerical representation of the OID. The second column isthe OID's short name, which
should be a single word composed of only upper- and lowercase letters. The third column
isthe OID's long name, which may be composed of multiple words and characters other
than letters.

oid_section

Specify the name of a section that contains object identifier definitions. Key namesin the
section should be the OID's short name, and the corresponding value should be the OID's
numerical representation. Long names are the same as short names for OIDs that are
defined in this manner.

new_certs dir

274

Specify the directory where issued certificates will be stored. This is the same as the
outdir command-line option.

certificate

Specify the name of afile containing the CA's certificate. Thisisthe same asthe cert
command-line option.

private key

Specify the name of afile containing the CA's private key. Thisisthe same asthe
keyfi le command-line option.

RANDFILE

Specify the name of afile that will be used to seed the PRNG. On Unix systems, the
filename may be the name of an EGD socket.

default_days

Specify the number of days for which issued certificates will be valid. Thisisthe same as
the days command-line option.

default_startdate

Specify the default starting date for which issued certificates will be valid. Thisisthe
same as the startdate command-line option.

default_enddate

Specify the default ending date for which issued certificates will be valid. Thisisthe
same as the enddate command-line option.

default_crl_days

Specify the default number of days until a new certificate revocation list is generated.
Thisis the same as the cr 1days command-line option.

default_crl_hours

Specify the default number of hours until anew certificate revocation list is generated.
Thisisthe same as the cr lhours command-line option.

default md

Specify the default message digest to be used for signing certificates and certificate
revocation lists. Thisisthe same as the md command-line option.

database

Specify the name of afile that will be used to keep track of certificates that are issued by
the CA. This setting is mandatory and has no corresponding command-line option.

275

serialfile

Specify the name of afile that will be used to keep track of the next serial number that
will be assigned to a certificate when it isissued. This setting is mandatory and has no
corresponding command-line option.

x509_extensions

Specify the name of a section in the configuration file that contains the set of extensions
to be included in certificates that are issued by the CA. Thisisthe same asthe
extensions command-line option.

crl_extensions

Specify the name of a section in the configuration file that contains the set of extensions
to be included in certificate revocation lists that are issued by the CA. Thisisthe same as
the crlexts command-line option.

preserve

If thisis set to yes, the order and components of the distinguished name contained in a
certificate request will be preserved in the issued certificate. Thisisthe same asthe
preserveDN command-line option.

msie_hack

If thisis set to yes, certificates that are issued will work with very old versions of the
Internet Explorer certificate enrollment control "certenr3". Avoid using this option unless
you know that you absolutely need it.

policy

Specify the name of a section in the configuration file that defines the policy for this CA.
This option is the same as the po I i cy command-line option.

Notes

For the options that require a date as a parameter or configuration file keys that require adate as a
value, the date should be specified in the same format as an ASN.1 UTC Time structure, which is
YYMMDDHHMMSSZ, in which Z isthe actual capital letter Z.

The use of aconfiguration file is strongly encouraged. In fact, unless the settings in the system-
wide default configuration file are acceptable, a configuration file is required because there are
mandatory configuration options that have no equivalent command-line options.

Each key in apolicy definition section should be named for the short name of each object
identifier present in a distinguished name. The value for each key should be match, supplied,
or optional. OlDsthat are marked asmatch must be present in the certificate request and must
match the same OID in the CA's distinguished name. OIDs that are marked as supp I ied must be
present in the certificate request, and OIDs that are marked as optional may or may not be
present in the certificate request.

276

The ca command is intended to be an example certification authority. It has several limitations
that make it unsuitable for use in a production environment. This command is discussed in detail

in Chapter 3.

ciphers

The ciphers command is used to obtain alist of the ciphers that are supported for the different
versions of the SSL protocaol. It is primarily useful as atest tool to determine the appropriate
cipher lists for the version of the protocol that you wish to use. The command's output isalist,
separated by colons, of the supported cipher strings matching the criteria specified by the
command's options.

Options
-s8l2

Include only the ciphers that are supported by SSLv2.

-ssi3
Include only the ciphers that are supported by SSLv3.
-tlsl
Include only the ciphers that are supported by TLSv1.
-v
Produce amore verbose list of cipher strings that includes the protocol version, key
exchange, authentication, encryption, and MAC algorithms.
Notes

By default, cipher strings for all of the supported protocol versions are included. Only one of the
version options may be specified at atime. Additional arguments on the command line are
interpreted either as ciphers to be added to the list or as modifiersto refine the list.

crl

The crl command is used to examine and verify the validity of certificate revocation lists. The
command can be used to display the contents of a CRL in human-readable form. It can also be
used to convert CRLs between DER and PEM formats.

Options

-in filename

277

Specify the name of the file containing a CRL to be examined or verified. If thisoption is
omitted, stdin isused.

-inform DER|PEM

Specify the format of the CRL that will be examined or verified. Possible formats are
DER or PEM. If this option is omitted, PEM is the default format.

-out filename

Specify the name of afile to which the command's output will be written. If thisoptionis
omitted, stdout is used.

-outform DER|PEM

Specify the format of the CRL that will be written out by the command. If this optionis
omitted, the default is PEM.

-text

Cause a human-readabl e text representation of the CRL to be written to the output
destination.

-noout

Suppress the output of the CRL in DER or PEM format. By default, the input CRL isaso
output, except when the CRL's signature is being verified.

-hash

Cause a hash of the CRL'sissuer name to be written to the output destination. The hash
can be used to look up CRLsin adirectory by issuer name in which the standard filename
for each CRL isthe hash of the issuer's name and an extension of ".0".

-issuer

Cause the CRL issuer's name to be written to the output destination.
-lastupdate

Cause the CRL's lastUpdate field to be written to the output destination.
-nextupdate

Cause the CRL's nextUpdate field to be written to the output destination.
-fingerprint

Cause afingerprint of the CRL to be written to the output destination. The fingerprintisa
hash of the CRL computed using a message digest algorithm. By default, MD5 is used.

-CAfile filename

Verify the CRL's signature using the certificate contained in the specified file.

278

-CApath directory

Verify the CRL's signature using the certificates contained in the specified directory.
Each certificate file in the directory should be named with the hash of the issuer's name
and an extension of ".0".

Notes

When computing a fingerprint of a CRL, the default message digest that is used is MD5. Any
other message digest algorithm supported by OpenSSL can aso be used by specifying the name of
the algorithm to use as an option. The message digest names are the same as those used by the
dgst command.

crl2pkes7

The crl2pkcs7 command is used to combine certificates and an optional certificate revocation
list into a single PK CS#7 structure.

Options
-in filename

Specify the name of afile from which to read a CRL for inclusion in the resulting
PKCSH7 structure. If this option is omitted, the CRL will be read from stdin.

-inform DER|PEM

Specify the format of the CRL that will be read. Valid formats are either DER or PEM. If
this option is not specified, the default is PEM.

-out filename

Specify the name of afile to write the resulting PK CS#7 structure to. If thisoptionis
omitted, output is written to stdout.

-outform DER|PEM

Specify the format of the PK CS#7 that will be written. Valid formats are either DER or
PEM. If this option is not specified, the default is PEM.

-certfile filename

Specify the name of afile containing one or more certificates in PEM format. This option
may be specified multiple times to include multiple certificates from multiple files.

-nocrl

Do not include a CRL in the resulting PK CS#7 structure. If this option is specified, the
in and inform options are ignored, and no CRL isread from stdin.

279

Notes

The PKCSH7 structure that is created is not signed. It will contain only the certificates and CRL
that are specified for inclusion. The PKCS#7 structure that results from this command can be used
to send certificates and CRLs to Netscape as part of the certificate enrollment process. To do so,
the PKCS#7 structure that is created must be DER-encoded and sent as MIME type
application/x-x509-user-cert. The header and footer lines can be removed from the
PEM output from this command to send user certificates and CRLs to Microsoft Internet Explorer
using the " Xenroll" control.

dgst

The dgst command is used to compute the hash of ablock of data using a message digest
algorithm. It can also be used to sign data and verify signatures.

Options
-dssl, -md2, -md4, -md5, -mdc2, -rmd160, -sha, -shal

Specify the message digest algorithm to use. If this option is omitted, the default isto use
MDS5.

-out filename

Specify the name of afile to write the results from the command to. If thisoption is
omitted, stdout isused.

-hex
Cause the output to be written in hexadecimal format. When computing a hash, thisisthe
defaullt.
-C
Cause the hexadecimal output to be grouped by two digits, each group separated by a
colon. This option isignored if the output format is not hexadecimal.
-binary
Cause the output to be written in binary format. When signing, this is the default.
-rand filename
Specify the name of afile or filesto use to seed the pseudorandom number generator.
This option uses the format described in Chapter 2.
-sign filename

280

Sign the contents of the specified file. The hash value of the data computed using the
specified message digest algorithm is actually the only data that is signed.

-verify filename

Verify asignature using the public key contained in the specified file.
-prverify filename

Verify asignature using the private key contained in the specified file.
-signature

Specify the name of afile containing the signature to be verified. This option isignored
unless used with the verify or prverify options.

Notes

Any arguments remaining on the command line after the last option are interpreted as the names
of files, for which hashes will be computed, signed, or verified. When asignature isto be
generated or verified, only one file should be used at atime. If aDSA key is used for signing or
verification, the DSS1 message digest must be used, and the PRNG must be seeded.

dhparam

The dhparam command is used to generate Diffie-Hellman parameters. It can also be used to
examine previously generated parameters.

Options

-in filename
Specify the name of afile from which parameters should be read. If no fileis specified,
stdin isused—unless new parameters will be generated, in which case no input is
required.

-inform DER|PEM

Specify the format, DER or PEM, of the input data. If this option is omitted, the default
format is PEM.

-out filename

Specify the name of afile to which the generated parameters will be written. If nofileis
specified, stdout is used.

-outform DER|PEM

281

Specify the format, DER or PEM, of the output data. If this option is omitted, the default
format is PEM.

-rand filename

Specify the name of afile or filesto use to seed the pseudorandom number generator.
This option uses the format described in Chapter 2.

-dsaparam

When this option is specified, the input data is expected to be DSA parameters. The
parameters are converted to Diffie-Hellman parameters.

-2,-5
Specify the generator to use, either 2 or 5. If this option is omitted, a generator of 2 isthe
default. If this option is present, input files are ignored and new parameters are generated.
-noout
Cause output of the DSA parametersin DER or PEM format to be suppressed. This
option is useful when viewing previously generated parameters.
-text
Cause a human-readabl e representation of the input parameters to be written to the output
destination.
-C
Cause a C code representation of the input parameters to be written to the output
destination.
Notes

The length of the primes to generate is specified as the last argument to the command. If alength
is not specified, a default of 512 bitsis used.

dsa

The dsa command is used modify DSA private keys or examine their contents. The command
may be used to remove encryption from a private key, add it to a private key, or change the
encryption that is used on a private key. The command can also be used to compute a public key
from a private key.

Options

-in filename

282

Specify the name of afile fromwhich aDSA private key will beread. If nofileis
specified, stdin isused.

-inform DER|PEM

Specify the format, DER or PEM, of the key that is read as input. If this option is omitted,
the default format is PEM.

-out filename

Specify the name of afile to which the output from this command will be written. If this
option is omitted, stdout will be used.

-outform DER|PEM

Specify the format, DER or PEM, of the key that is written. If this option is omitted, the
default format is PEM.

-pubin

Cause the input key to be interpreted as a public key.
-pubout

Cause the output key to be interpreted as a public key.
-passin password

Specify the password to use to decrypt the input key. This option follows the password
and passphrase guidelines outlined in Chapter 2.

-passout password

Specify the password to use to encrypt the output key. This option follows the password
and passphrase guidelines outlined in Chapter 2.

-des, -des3, -idea

Specify the cipher to use to encrypt the private key. If this option is omitted, the private
key that iswritten out by this command will not be encrypted.

-noout

Cause the output of the key in DER or PEM format to be suppressed.

Cause the input key, public or private, to be output in a human-readable form.

-modulus

Cause the modulus of the public key to be written to the output destination.

283

dsaparam

The dsaparam command is used to generate new DSA parameters. It can also be used to
examine previously generated parameters.

Options
-in filename

Specify the name of afile from which existing DSA parameters will be read. If nofileis
specified, stdin isused.

-inform DER|PEM

Specify the format, DER or PEM, of the parameters that are read as input. If this option is
omitted, the default format is PEM.

-out filename

Specify the name of afile to which the output from this command will be written. If this
option is omitted, stdout will be used.

-outform DER|PEM

Specify the format, DER or PEM, of the parameters that are generated. If thisoption is
omitted, PEM isthe default.

-rand filename

Specify the name of afile or filesto be used to seed the PRNG. This option follows the
format outlined in Chapter 2.

-genkey

Cause aprivate key to be generated using the generated parameters or the parameters read
from the input source. The private key will not be encrypted.

-noout
Cause the output of the parametersin DER or PEM format to be suppressed.
-text

Cause the parameters to be output in a human-readable form.

Cause the parameters to be output in C code form.

284

Notes

The length of the parameters to be generated is specified as the last argument to the command. I
the length is specified, the input source isignored, and new parameters are generated.

The enc command is used to perform encryption or decryption using symmetric ciphers. The
command can also be used to perform base64 encoding.

Options
-in filename

Specify the name of the file to be used asinput. If this option is omitted, stdin is used.
-out filename

Specify the name of the file to be used as output. If this option is omitted, stdout is used.
-pass password

Specify the password to be used for encryption or decryption. The password is used to
generate an initialization vector (iv) and akey to be used by the cipher. This option
follows the guidelines for passwords and passphrases outlined in Chapter 2.

-e
Cause the input to be encrypted. Thisis the default operation to be performed.
-d
Cause the input to be decrypted.
-salt
Cause a salt to be used in the key derivation routines. This option should always be used
unless you need backward compatibility with versions of OpenSSL older than 0.9.5.
-nosalt
If this option is specified, no salt will be used in the key derivation routines. Thisisthe
default.
-a

Cause the data to be base64-encoded after it is encrypted, or base64-decoded beforeit is
decrypted.

285

Cause the base64 encoding to be produced on a single line when it is being encoded and
expected on asingle line when it is being decoded. This option isignored unless the a
option is specified.

P
Cause the derived key and initialization vector to be outpuit.

-P
Cause the derived key and initialization vector to be output. No encryption or decryption
is performed when this option is specified.

-k password
Specify the password from which the key and initialization vector should be derived. This
option isfor backwards compatibility only, and the use of the pass option is preferred.

-kfile filename
Specify the name of afile containing the password from which the key and initialization
vector should be derived. Only thefirst line of the fileisread. Thisoption isfor
backwards compatibility only, and the use of the pass option is preferred.

-K key
Specify the key to use in hexadecimal form. If this option is used aong with a password
option, then only the initiaization vector is derived from the password, and thiskey is
used. If no password is specified, the initialization vector must also be specified.

-iv vector
Specify the initialization vector to use in hexadecimal form.

-Ssalt
Specify the salt to use in hexadecimal form.

-bufsize number
Specify the size of the buffersto use for I/0.

Notes

The name of the cipher to use should be specified either as an option or asthe name of the
command instead of enc. A large number of ciphers are supported by this command. Additionally,
base64 encoding is also supported. Note that base64 is an encoding, not a cipher. The ciphers are
summarized in Table A-1.

Table A-1. Ciphers supported by the enc command
Cipher name \ Description

286

Ibase64 Base64 encoding

bf, bf-cbc, bf-cfb, bf-ech, bf-ofb 128-hit Blowfish
cast, cast-cbc, castb-cbc, cast5-cfg, cast5-ech, cast5-ofb CASTS

des, des-cbc, des-ofb, des-ech DES

des-ede, des-ede-cbc, des-ede-cfb, des-ede-ofb Two-key triple DES
des-ede3, des-ede3-chc, des3, des-ede3-cfh, des-ede3-ofb Three-key triple DES
desx DESX

idea, idea-cbc, idea-cfb, idea-ecb, idea-ofb IDEA

rc2, rc2-cbc, rc2-cfg, rc2-ech, rc2-ofb 128-bit RC2
rc2-64-cbc 64-bit RC2
rc2-40-chc 40-hit RC2

rc4 128-hit RC4

rc4-64 64-bit RC4

rc4-40 40-bit RC4

rc5, rch-cbc, res-cfb, res-ech, rcb-ofb 128-bit RC5 with 12 rounds

errstr

The errstr command will convert a 32-bit integer error code into a human-readable error

message.
Option

-stats

Cause statistical information about the error tables to be displayed on stdout.

Notes

Each argument on the command lineisinterpreted as a 32-bit integer error code to be converted
into a human-readable error message. The error code should be specified in hexadecimal form.

gendsa

The gendsa command is used for generating DSA keys from DSA parameters.

Options

-des, -des3, -idea

Specify the cipher to use to encrypt the generated key. If none of these optionsis

specified, the key will not be encrypted.

287

-rand filename

Specify the name of afile or filesto use to seed the PRNG. The parameter for this option
follows the guidelines outlined in Chapter 2.

Notes

The parameters to use for generation of the private key should be contained in afilein PEM
format. The name of the file to read the parameters from should be specified as the last argument
on the command line without any option. No option is available with this command to specify a
password, so one must be entered when the command prompts for it.

genrsa

The genrsa command is used for generating RSA keys.
Options
-out filename

Specify the name of the file to write the generated key to. If this option is omitted, the key
will be written to stdout.

-rand filename

Specify the name of afile or filesto use to seed the PRNG. The parameter for this option
follows the guidelines outlined in Chapter 2.

-passout password

Specify the password or passphrase to use to encrypt the generated key. The parameter for
this option follows the guidelines for passwords and passphrases outlined in Chapter 2.

-des, -des3, -idea

Specify the cipher to use to encrypt the generated key. If none of these optionsis
specified, the key will not be encrypted.

-F4,-3

Specify the public exponent to be used by the generated key. If F4 is specified, 65537 will
be used; otherwise, 3 will be used. If neither of these optionsis specified, the default is
65537.

Notes

The length of the key to generate is specified as the last argument on the command line. If no
length is specified, a default length of 512 bits will be used.

288

nseq

The nseq command is used to create or examine a Netscape certificate sequence.
Options
-in filename

Specify the name of the file from which a Netscape certificate sequence or X.509
certificates will be read. If this option is omitted, stdin will be used.

-out filename

Specify the name of the file to which a Netscape certificate sequence or X.509 certificates
will be written. If this option is omitted, stdout will be used.

-toseq

Cause the input file to be treated as X.509 certificates rather than as the default of a
Netscape certificate sequence. The output will be a Netscape certificate sequence created
from the X.509 certificates.

Notes

By default, this command will take afile containing an arbitrary number of X.509 certificates and
produce a Netscape certificate sequence. Use of the toseq option reverses the process.

passwd

The passwd command is used to compute common password hashes that are typically used for
system passwords on various Unix systems.

Options
-1
Use BSD's MD5-based algorithm.
-aprl
Use an Apache variant of the aprl algorithm.

-quiet

289

(s>

Suppress warning messages when passwords are truncated.
-salt salt

Specify the salt to use.
-in filename

Specify the name of afile from which plaintext passwords should be read. Each line
contains one password, and a hash will be computed for each.

-stdin

Cause passwords to be read from stdin without prompting or suppressing echo.
-table

Cause both the plaintext password and the generated hash to be output in tabular form.
Notes

By default, the standard Unix crypt hash will be used, which limits the length of plaintext
passwords to eight characters. The other two supported hash algorithms have no limit on password
length.

pkcs7

The pkcs7 command is used to examine PKCSH7-formatted files. It can also be used to convert
them from DER to PEM format, and vice versa.

Options
-in filename

Specify the name of afile containing a PK CS#7 structure. If this option is omitted, a
PKCSH#7 structureisread from stdin.

-inform DER|PEM

Specify the format, DER or PEM, of the input PKCS#7 structure. If this option is omitted,
PEM isthe default format.

-out filename

Specify the name of the file to which output from the command will be written. If this
option is omitted, stdout will be used.

-outform DER|PEM

290

Specify the format, DER or PEM, of the PK CS#7 structure that iswritten by the
command. If this option is omitted, the default format of PEM will be used.

-noout

Cause output of a PKCSH#7 structure to be suppressed.
-text

Cause a human-readabl e representation of the input PK CS#7 structure to be output.
-print_certs

Cause any certificates or certificate revocation lists contained in the PK CS#7 structure to
be output.

Notes

This command is not capable of printing out the various fields that can be contained in a PK CS#7
structure. Only PKCS#7 v1.5 structures as defined by RFC2315 are understood.

pkcs3

The pkcs8 command is used to create, examine, and manipulate PK CS#8-formatted files.
Options
-in filename

Specify the name of afile from which either a PKCS#8 structure or a private key will be
read. If this option is omitted, stdin will be used.

-inform DER|PEM

Specify the format of the input data, either DER or PEM. If this option is omitted, PEM is
the default format.

-out filename

Specify the name of afile to which the output from the command will be written. If this
option is omitted, stdout will be used.

-outform DER|PEM

Specify the format of the output data, either DER or PEM. If this option is omitted, PEM
isthe default format.

-passin password

291

Specify the password to decrypt the input PK CS#8 structure or private key. This option
follows the guidelines outlined in Chapter 2.

-passout password

Specify the password to encrypt the output PK CS#8 structure or private key. This option
follows the guidelines outlined in Chapter 2.

-topk8
If this option is specified, a private key, either DSA or RSA, will be the expected input

data, and the output will be a PK CS#8 structure. Otherwise, a PK CS#8 structure will be
the expected input, and a private key will be the output.

-nocrypt

Cause the PK CS#8 structure that is output from this command to be unencrypted. If the
input is a PK CS#8 key, it will be expected to be unencrypted.

-nooct

Cause the RSA private key output from this command to be written in a broken format
that is required by some software. This option isignored if the private key is not RSA or
the input datais a PK CS#8 structure.

-embed

Cause the DSA private key output from this command to be written in a broken format
that is required by some software. This option isignored if the private key is not DSA or
the input datais a PK CS#8 structure. With this option, the DSA parameters used to
generate the private key are embedded in the output's PrivateKey structure.

-nsdb
Cause the DSA private key output from this command to be written in a broken format

that is required by Netscape private key databases. This option isignored if the private
key isnot DSA or the input datais a PKCSH8 structure.

-v1 algorithm
Specify the PKCSH5 v1.5 or PKCS#12 algorithm to use for encryption in the PKCS#8
structure that is output. Valid algorithms are PBE-MD2-DES, PBE-MD5-DES, PBE-
SHA1-RC2-64, PBE-MD2-RC2-64, PBE-MD5-RC2-64, PBE-SHA1-DES, PBE-

SHA1-RC4-128, PBE-SHA1-RC4-40, PBE-SHA1-3DES, PBE-SHA1-2DES, PBE-
SHA1-RC2-128, and PBE-SHA1-RC2-40.

-v2 algorithm

Specify the PKCSH#5 v2.0 algorithm to use for encryption in the PK CS#8 structure that is
output. Valid algorithms are des, des3, and rc2. The recommended algorithm is 3DES.

292

pkcsl2

The pkcs12 command is used to create, examine, and manipulate PK CS#12-formatted files.
Options
-in filename

Specify the name of afile from which a PKCS#12 structure in PEM format will be read.
If this option is omitted, stdin will be used.

-out filename

Specify the name of afile that will be used to write a PKCS#12 structure in PEM format.
If this option is omitted, stdout will be used.

-password password, -passin password
Specify the password or passphrase that is required to decrypt the input PK CS#12

structure. This option follows the guidelines for passwords and passphrases outlined in
Chapter 2.

-passout password
Specify the password or passphrase that will be used to encrypt the output PKCS#12

structure. This option follows the guidelines for passwords and passphrases outlined in
Chapter 2.

-des, -des3, -idea

Specify the cipher that will be used to encrypt the output PK CS#12 structure. If this
option is omitted, the default is to use 3DES.

-nodes
Cause the output PK CS#12 structure to be unencrypted.
-noout

Cause the output of a PKCS#12 structure to be suppressed. This option is useful when
extracting the various structures that are contained by a PK CS#12 structure.

-Clcerts

Cause only the client certificates contained in the input PK CS#12 structure to be outpuit.
-cacerts

Cause only the CA certificates contained in the input PK CS#12 structure to be outpuit.

-nocerts

293

Suppress the output of any certificates, whether they are client or CA certificates.
-nokeys

Suppress the output of any private keys.
-info

Cause a human-readable form of the PKCS#12 structure to be output, which includes
information such as the algorithms used.

-nomacver
Inhibit the verification of the PKCS#12 structure's MAC integrity when reading it in.
-twopass

Cause separate prompts for the integrity and encryption passwords. Normally, these two
passwords are the same, and most software using PKCS#12 structures expect them to be,
so this option may render PK CS#12 structures that are created unreadable by some
software. Use of this option is hot recommended.

-export

Cause a PKCS#12 object to be created instead of examined or manipulated. When this
option is specified, no PKCS#12 object isread as input. Instead, the input datais expected
to be a combination of private keys and certificates. At least one certificate and matching
private key must be present in the input data.

-inkey filename

Specify the name of afile from which a private key will be read. If this option is specified,
the input data read from either stdin or the file specified with the in option is not
required to contain akey.

-certfile filename

Specify the name of afile containing additional certificates that will be included in the
output PK CS#12 structure.

-CAfile filename

Specify the name of afile containing additional certificates that will be included in the
output PKCS#12 structure.

-CApath directory

Specify the name of adirectory containing certificates that will be included in the output
PKCS#12 structure. Thefilesin the directory are expected to be named by each certificate
issuer's hash and an extension of ".0".

-hame name

294

Specify the "friendly name” for the primary certificate and private key contained in the
PKCS#12 structure. This "friendly name" is ordinarily used for display purposesin
programs that use the PK CS#12 structure.

-Cahame name

-chain

-descert

-keypbe

Specify the "friendly name” for any extra certificates contained in the PK CS#12 structure.
This option may be specified once for each additional certificate that will be contained in
the PK CS#12 structure. The names should be specified in the order that certificates are
included. It should be noted that not all software uses these names. Some use only the
primary certificate's "friendly name."

Cause the entire certificate chain of the primary certificate to be included in the output
PKCS#12 structure. If this option is not specified, the CAfi le and CApath options are
ignored. If not all of the certificates in the chain are available, it is considered afatal error,
and no PKCS#12 structure will result.

Cause the primary certificate to be encrypted using 3DES instead of 40-bit RC2, whichis
the default. Note that some old export grade software will not be able to read the
PKCS#12 structure if the certificate is this strongly encrypted.

algorithm
Specify the algorithm to use to encrypt the private key. Any PKCS#5 v1.5 or PKCS#12

algorithm is valid, but we recommend that you use only PKCS#12 agorithms. The
pkcs8 command reference lists the algorithms that may be used.

-certpbe algorithm

-keyex

-keysig

Specify the algorithm to use to encrypt the primary certificate. Any PKCS#5 v1.5 or
PKCS#12 algorithm is valid, but we recommend that you use only PKCS#12 agorithms.
The pkcs8 command reference lists the algorithms that may be used.

Mark the private key to be usable for exchange purposes only. By default, the key may be
used for either exchange or signing. This option is mutually exclusive with the keysig
option.

Mark the private key to be usable for signing purposes only. By default, the key may be
used for exchange or signing. This option is mutually exclusive with the keyex option.

-noiter, -nomaciter

-maciter

Cause the MAC and key algorithms not to use iteration counts.

295

Thisoption is normally enabled by default, but is present for backwards compatibility. It
causes the MAC and key algorithms to use iteration counts, thus strengthening the
protection on the PKCS#12 structure.

-rand filename

Specify the name of afile or filesto be used to seed the PRNG. This parameter for this
option follows the guidelines outlined in Chapter 2.

rand

The rand command is used to obtain random output from the OpenSSL PRNG.
Options
-out filename

Specify the name of afile to which output from this command will be written. If this
option is omitted, stdout will be used.

-rand filename

Specify the name of afile or files that will be used to seed the PRNG. This option follows
the guidelines outlined in Chapter 2.

-base64
Cause the output generated from this command to be base64-encoded.
Notes

The number of random bytes to be produced must be specified as the last argument on the
command line.

reg

The req command is used to create, examine, and manipul ate PK CS#10-formatted certificate
requests. It can also be used to create self-signed certificates suitable for use in setting up aroot
certification authority.

Options

-config filename

296

Specify the name of afile to use as a configuration file. If this option is omitted, the
system-wide default configuration file is used. Use of this option overrides the
OPENSSL_ CONF environment variable.

-in filename

Specify the name of afile from which a certificate request will be read. If thisoption is
omitted, stdin isused.

-inform DER|PEM

Specify the format of the input certificate request, either DER or PEM. If thisoptionis
omitted, PEM is the default format.

-out filename

Specify the name of afile to which the resulting self-signed certificate or certificate
request will be written. If this option is omitted, stdout will be used.

-outform DER|PEM

Specify the format, DER or PEM, which will be used to write the self-signed certificate or
certificate request. If this option is omitted, PEM is the default.

-passin password

Specify the password or passphrase that will be used to decrypt the private key
corresponding to the input certificate or certificate request. This option follows the
guidelines outlined in Chapter 2 for passwords and passphrases.

-passout password

Specify the password or passphrase that will be used to encrypt the private key that may
be generated with the certificate or certificate request. This option follows the guidelines
outlined in Chapter 2 for passwords and passphrases.

-rand filename

Specify the name of afile or files that will be used to seed the PRNG. This option follows
the guidelines outlined in Chapter 2.

-noout

Cause output of a certificate or certificate request to be suppressed. This option is useful
when examining a certificate request.

-text
Cause a human-readable representation of the input certificate request to be outpui.
-modulus

Cause the modulus of the public key contained in the request to be output.

297

-verify
Verify the signature on the certificate request.
-new

Cause anew certificate request to be generated. When this option is used, no datais read
from either stdin or the file specified with the in option. If the key optionis not also
specified, anew RSA key pair will be generated.

-newkey rsa:length, -newkey dsa:filename

Cause anew certificate request to be generated with a new key pair. For an RSA key pair,
the length of the primes must be specified. For aDSA key pair, the name of afile
containing the DSA parameters must be specified. The parameters are expected to bein
PEM format.

-key filename
Specify the name of afile containing the private key to usein the certificate request.
-keyform DER|PEM

Specify the format, DER or PEM, of the private key specified using the key option. If
this option is omitted, the default is PEM.

-keyout filename

Specify the name of afile to which the private key that was used will be written.
-nodes

If anew key pair is generated, this option causes the output private key to be unencrypted.
-md2, -md5, -mdc2, -shal

Specify the message digest algorithm to use to sign the certificate request. If thisoption is
omitted, the default is MD5. These options are ignored when aDSA key is being used
because DSS1 must always be used with DSA keys.

-x509
Cause a self-signed certificate to be output instead of a certificate request. The resulting
self-signed certificate is suitable for use with aroot certification authority.

-days number

When a self-signed certificate is being generated, this option specifies the number of days
for which the certificate will be valid.

-extensions section
Specify the name of a configuration file section containing the extensions to be included

in aself-signed certificate.

298

-regexts section

Specify the name of a configuration file section containing the extensions to be included
in a certificate request.

-asnl-kludge

Cause empty attribute sets to be omitted from the resulting certificate request. This
invalid format is required by some CA software. Use of this option is not recommended
unless you know that you need it.

-newhdr

Cause the word "new" to be added to the PEM header and footer lines when a certificate
request is being generated. Most software does not require this.

Configuration Options
RANDFILE

Specify the name of afile that will be used to seed the PRNG for private key generation.
This setting is overridden by the rand command-line option.

input_password

Specify the password to use for the private key that is used asinput. Thissetting is
overridden by the passin command-line option.

output_password

Specify the password to use for encrypting a generated private key. This setting is
overridden by the passout command-line option.

default_bits

When an RSA key is generated, this setting specifies the default key length. It can be
overridden using the newkey command-line option.

default_keyfile

Specify the name of afile that will be used to write a generated private key. This setting is
overridden by the keyout command-line option.

encrypt_key, encrypt_rsa_key

Setting the value for this key to no will cause any generated private key to be
unencrypted. This setting is equivalent to specifying the nodes command-line option.

default md
Specify the default message digest algorithm to use for signing certificates and certificate

requests. This setting is overridden by the md2, md5, mdc2, or shal command-line
options.

oid_file

Specify the name of afile containing object identifier definitions. The file should contain
one definition per line, with each line consisting of three columns. The first column is the
numerical representation of the OID. The second column is the OID's short name, and the
third column isthe OID's long name. The short name should be a single word and
composed of only upper- and lowercase letters.

oid_section

Specify the name of a configuration file section that contains object identifier definitions.
In this section, each key should be the short name of the OID, and the corresponding
value should be the OID's numerical representation. When OIDs are defined this way, the
short and long names are the same.

string_mask

This setting is used to mask out certain string types for certain fields. The default setting
is normally appropriate and shouldn't need to be changed.

req_extensions
Specify the name of a configuration file section that contains the extensions to be
included in a certificate request. This setting is overridden by the regexts command-
line option.

x509 extensions
Specify the name of a configuration file section that contains the extensions to be
included in a self-signed certificate. This setting is overridden by the extensions
command-line option.

prompt
Setting the value for this key to no will cause all prompting for distinguished name
information to be suppressed. It also causes the section specified by the
distinguished_name key to be interpreted differently.

attributes

Specify the name of a section containing any attributes that should be included in a
generated certificate request.

distinguished_name

Specify the name of a section containing the fields to be included in a generated
certificate request.

Notes

The sections named by the attributes and distinguished_name keysin the configuration
file can follow one of two possible formats, depending on the setting of the prompt key. If
prompting is disabled, each key in the section should be the name of afield to be included in the

300

certificate request, and the corresponding value should be the value for each field. Thisisthe
simplest format for these sections.

If prompting is enabled, four keys are required for each field that will be included in the generated
certificate request. Each key uses the name of the field as a base. The key using the name of the
field doneisthe prompt that is displayed to the user. For the other three keys, default, min,
and _max are appended to the field name, and the corresponding values are the default value for
the field in the generated certificate request, the minimum length of datathat can be entered by the
user, and the maximum length of data that can be entered by the user.

Some fields can appear more than once in a distinguished name, but the format described does not
allow for more than one field of the same name. To allow for this situation, any characters up to
and including a period at the beginning of afield name are ignored, thus allowing for multiple
definitions for afield in the configuration file, but including only the proper field namein the
generated certificate request. For example, 1.organizationName and
2_organizationName are separate definitions in a configuration file, but in the generated
certificate request, two fields named organi zationName will be included.

rsa

The rsa command is used modify RSA private keys or examine their contents. The command
may be used to remove encryption from a private key, add it to a private key, or change the
encryption that is used on a private key. The command can also be used to compute a public key
from a private key.

Options
-in filename

Specify the name of afile from which an RSA private key will beread. If nofileis
specified, stdin isused.

-inform DER|NET|PEM

Specify the format—DER, NET, or PEM—of the key that isread asinput. If thisoption is
omitted, the default format is PEM.

-out filename

Specify the name of afile to which the output from this command will be written. If this
option is omitted, stdout will be used.

-outform DER|NET|PEM

Specify the format—DER, NET or PEM—of the key that is written. If thisoptionis
omitted, the default format is PEM.

-pubin

Cause the input key to be interpreted as a public key.

301

-pubout
Cause the output key to be interpreted as a public key.
-passin password

Specify the password to use to decrypt the input key. This option follows the password
and passphrase guidelines outlined in Chapter 2.

-passout password

Specify the password to use to encrypt the output key. This option follows the password
and passphrase guidelines outlined in Chapter 2.

-des, -des3, -idea

Specify the cipher to use to encrypt the private key. If this option is omitted, the private
key that iswritten out by this command will not be encrypted.

-noout

Cause the output of the key in DER or PEM format to be suppressed.

Cause the input key, public or private, to be output in a human-readable form.
-modulus

Cause the modulus of the public key to be written to the output destination.
-check

Specify this option to check the consistency of an RSA private key.
-sgckey

Cause amodified form of the NET format used by some versions of Microsoft 11S and old
Netscape servers to be used for the output key. Thisformat is not very secure, so it should
be used only if necessary.

Notes

When producing private keys using the sgckey option, the passout option is currently ignored.
The command will not read some forms of an unmodified NET format private key because they
contain additional data. To use these keys with this command, try editing the key with a binary
editor and removing al of the datain the file prior to the byte sequence 0x30, 0x82. Do not
remove this byte sequence; it should be included in the resulting file.

rsautl

302

The rsautl command is used to utilize RSA keysfor encryption and signing. It can be used to
encrypt and decrypt data, as well as sign and verify signatures.

Options
-in filename

Specify the name of afile from which datawill be read. If this option is omitted, stdin
will be used.

-inkey filename

Specify the name of afile containing the public or private key to use. By default, thefile
should contain a private key unlessthe pubiin or certin option is specified.

-pubin
Indicate that the file specified by the inkey option contains a public key.

-certin
Indicate that the file specified by the i nkey option contains a certificate, which contains
apublic key.

-out filename
Specify the name of afile to which datawill be written. If this option is omitted, stdout
will be used.

-hexdump
Cause the output data to be output in a hexdump format.

-asnlparse
Cause the output data to be ASN.1-parsed and output in the same format as the one that
the asnlparse command emits.

-sign
Cause the input data to be signed and the output to be the result. Signing requires a
private key. Note that because signing uses the RSA agorithm directly, only small pieces
of data can be signed.

-verify
Cause the input data to be interpreted as a signature and verified. The output is the
original input data that was signed. Verifying requires the public key matching the private
key that was used to sign the data.

-encrypt

303

Cause the input data to be encrypted. Encryption requires a public key.
-decrypt

Cause the input data to be decrypted. Decryption requires that the private key match the
public key that was used to encrypt the data.

-pkcs, -oaep, -sdl, -raw

Specify the type of padding to use: PKCS#1 v1.5, PKCS#1 OAEP, SSLv2-compatible, or
no padding at all. The default is to use PKCS#1 v1.5 padding.

s client

Thes client commandisabasic SSL client that can be used to connect to an SSL-enabled
server. It provides functionality not unlike the standard Telnet program, although it does not
support the telnet protocol. The command is useful primarily as a diagnostic tool when building
and setting up SSL-enabled servers.

Options
-connect host: port

Specify the host and port that should be used to establish a connection. Separate the host
and port with a colon. The host may be an IP address or a hostname. The port may be a
number or a service name. If this option is omitted, "127.0.0.1:443" is used.

-cert filename

Specify the name of afile that contains the certificate to use for the connection. Most
servers do not require a client certificate, but if the server requests one, this certificate will
be used.

-key filename

Specify the name of afile that contains the private key matching the certificate to use for
the connection. If this option is not specified and a certificate is requested, the command
will expect to find the private key in the same file as the certificate.

-verify depth

Specify the maximum certificate chain depth. Use of this option enables verification of
the server's certificate and causes verification to fail if more than the specified number of
certificatesisin the chain. Even if verification of the server's certificate fails, the
connection will be allowed to proceed.

-CAfile filename
Specify the name of afile containing one or more trusted certificates that will be used to

verify the server's certificate if the veri fy option is specified.

304

-CApath directory

Specify the name of adirectory containing trusted certificates that will be used to verify
the server's certificate if the ver iy option is specified. Each file should contain only
one certificate, and the files should be named with the certificate issuer name's hash and
an extension of ".0".

-reconnect

Cause five connections to be made to the server using the same session ID. Thisoption is
adiagnostic tool to ensure that session caching isworking properly on the server.

-pause
Cause a one-second pause between each read and write operation.
-showcerts

Cause every certificate in the server certificate's chain to be displayed rather than just the
server's certificate.

-prexit

Cause session information to be printed when the connection is terminated. Information
will be displayed even if the connection fails. If the connection fails, some of the output
from this command may not be accurate.

-State
Cause SSL session states to be printed.
-debug
Cause extensive debugging information, including a hexdump of all traffic, to be printed.
-nbio_test
Cause tests of non-blocking 1/O to be run.
-nbio
Cause non-blocking 1/0 to be enabled.
-crif

Cause trandation of bare linefeeds to be translated in carriage return and linefeed
seguences, which is required by some servers.

-ign_eof
Prevent the connection from being shut down when end of file isreached on stdin.

-quiet

305

Cause printing of session and certificate information to be suppressed. This option also
enablesthe ign_eof option.

-s812, -s913, -tlsl, -no_sdl2, -no_sd13, -no_tlsl

Specify the version or versions of the SSL protocol that should be used to attempt a
connection with the server. By default, all protocols are enabled.

-bugs
Enable workarounds for several known bugsin various server implementations of SSL
and TLS.

-cipher list
Specify alist of ciphers that the client will indicate to the server that it supports. Normally,
the server chooses the first cipher on the list, so you should arrange ciphersin order of
preference if you supply more than a single cipher.

-rand filename
Specify the name of afile or files that will be used to seed the PRNG. This option follows
the guidelines outlined in Chapter 2.

Notes

When a connection is established, any data received from the server is displayed on stdout, and
any dataread from stdin is sent to the server. If neither quiet nor ign_eof are specified, the
client operates in interactive mode, which means that the session will be renegotiated if aline
begins with the capital letter R, or the connection will be shut down if aline begins with the
capital letter Q.

S server

Thes_server command is abasic SSL-enabled server that can be used as a diagnostic tool
when building, setting up, and debugging SSL clients.

Options
-accept port

Specify the port on which to listen for connections. If this option is not specified, the
default of 4433 is used.

-context 1D
Specify any string that will be used as the SSL context ID.

-cert filename

306

Specify the name of afile containing the certificate to use. If this option is not specified,
the command will look for afile called server.pemin the directory from which the
command-line tool was started.

-key filename

Specify the name of afile containing the private key to use. The private key must match
the certificate that is being used. If this option is not specified, the command will expect
to find the private key in the same file as the certificate.

-dcert filename

Specify the name of afile containing an additional certificate that the server can use. This
isuseful for providing both RSA and DSA keys for connecting clients. There is no default
if this option is not specified.

-dkey filename

Specify the name of afile containing the private key that matches the certificate specified
with the dcert option. If the dcert option is specified without this one, the key should
be in the same file as the certificate.

-nocert

Cause no certificate to be used. Use of this option severely restricts the ciphers that are
available for use. This means that only anonymous Diffie-Hellman ciphers may be used.
Operating a server without a certificate provides very little actual security.

-dhparam filename

Specify the name of afile containing Diffie-Hellman parameters. The parameters will be
used by the ephemeral DH ciphers to generate keys. If this option is not specified, the
command will attempt to find Diffie-Hellman parameters in the same file as the server's
certificate.

-no_dhe

Disable the use of the ephemeral DH ciphers. No Diffie-Hellman parameters will be
searched for if this option is specified.

-no_tmp_rsa
Disable the use of ciphers that require the use of temporary RSA keys.
-verify depth

Cause the server to request a certificate from the client and perform verification on it. The
connection will be allowed to proceed if the client does not provide a certificate. The
client's certificate chain will not be alowed to be more than the specified depth.

-Verify depth

307

Cause the server to demand a certificate from the client and perform verification on it.
The connection will not be allowed to proceed if the client does not provide a certificate.
The client's certificate chain will not be allowed to be more than the specified depth.

-CAfile filename

Specify the name of afile containing trusted certificates that will be used to verify the
client's certificate if oneisreceived when it's requested.

-CApath directory

Specify the name of adirectory containing trusted certificates that will be used to verify
the client's certificate if oneis received when it's requested. Each file in the directory
should contain only one certificate, and the files should be named with the certificate
issuer name's hash and an extension of ".0".

-state
Cause SSL session states to be printed.
-debug
Cause extensive debugging information, including a hexdump of all traffic, to be printed.
-nbio_test
Cause tests of non-blocking 1/0 to be run.
-nbio
Cause non-blocking 1/0 to be enabled.
-crif
Cause trandation of bare linefeeds to be translated in carriage return and linefeed
sequences, asis required by some servers.
-quiet

Cause printing of session and certificate information to be suppressed.

-s812, -s913, -tlsl, -no_sd2, -no_sds13, -no_tlsl

-bugs

-hack

Specify the version or versions of the SSL protocol that should be supported by the server.
By default, all protocols are enabled.

Enable workarounds for several known bugsin various server implementations of SSL
and TLS.

Enable an additional workaround required by some early versions of Netscape.

308

-cipher list
Specify alist of ciphers that the server will indicate to the client that it supports. Normally,
the server chooses the cipher to use based on the order received from the client, so the
ordering of the ciphers specified with this option isignored.

-rand filename

Specify the name of afile or files that will be used to seed the PRNG. This option follows
the guidelines outlined in Chapter 2.

Cause an HTML-formatted status message to be sent to the client when it connects.
“WWW

Cause the server to emulate asimple HT TP server. Requested pages will be resolved
relative to the directory from which the server was started.

Notes

When a connection is established with a client and neither the www nor the WVW options are
specified, the server runsin interactive mode, displays all data received from the client, and sends
all datareceived from stdin to the client. In addition, certain commands are recognized as input
from stdin, as enumerated in Table A-2. The commands are recognized only when they are
entered at the start of aline.

Table A-2. Commands recognized by the server
\Command\ Function performed by the server
\q \Termi nates the current connection, but continues to accept new connections.
Q Terminates the server.
r Renegotiates the SSL session.
R Renegotiates the SSL session and requests a client certificate.
p Sends plaintext to t_he unde_rlyi ng TCP connection, which is a protocol violation and
should cause the client to disconnect.
S Displays session cache status information.
s time

Thes_time command can be used to connect to SSL-enabled servers and measure the
performance of the OpenSSL library's implementation of the SSL protocol.

Options

-cipher cipher

Specify the cipher to use. Use the ciphers command to abtain alist of acceptable
ciphers.

-time seconds

Specify the maximum number of seconds to collect timing information. If thisoptionis
omitted, the default is 30 seconds.

-nbio
Run the timing test using non-blocking 1/0.
-ssl2
Run the timing test using SSLv2 only.
-ssl3
Run the timing test using SSLv3 only.
-bugs
Enable SSL bug compatibility.
-new
Run the timing test for new connections only.
-reuse
Run the timing test for connection reuse.
-verify depth
Enable verification of peer certificates up to the specified depth.
-cert filename
Specify the name of afile containing the certificate to use. The certificate is expected to
bein PEM format.
-key filename

Specify the name of afile containing the private key to use. The key is expected to be in
PEM format.

-CAfile filename

Specify the name of afile containing one or more trusted certificates in PEM format that
will be used to verify the peer certificate.

-CApath directory

310

Specify the name of adirectory containing trusted certificates that will be used to verify
the peer certificate. Each file in the directory should be named with the certificate issuer
name's hash value and an extension of ".0". Only one certificate should be present in each
file.

-connect host: port

Specify the host and port that should be used to establish a connection. Separate the host
and port with a colon. The host may be an IP address or a hostname. The port may be a
number or a service name.

-WwWw url
Specify a URL from which datawill be obtained. This option does not replace the

connect option. The address contained in the URL is not used to make the connection.
It isonly passed to the server inan HTTP 1.0 GET request.

sess id

The sess_id command is a diagnostic tool that can be used to display SSL session information
in human-readable form.

Options
-in filename

Specify the name of afile containing session information. If this option is omitted, stdin
will be used.

-inform DER|PEM

Specify the format—DER or PEM—of the input session information. If this optionis
omitted, the default format is PEM.

-out filename

Specify the name of afile to which output from this command will be written. If this
option is omitted, stdout will be used.

-outform DER|PEM

Specify the format—DER or PEM—of the output session information. If thisoptionis
omitted, the default format is PEM.

-noout

Cause the output of session output in DER or PEM format to be suppressed.

311

Cause a human-readabl e representation of the session information to be output.
-cert

Cause the certificate contained in the session information to be output, if one is present.
-context 1D

Specify the session ID that will be used in the output session information. The ID may be
specified as any string of characters.

smime

The smime command is used to encrypt, decrypt, sign, and verify SIMIME format messages. It
supports versions of SIMIME up to v2 and can be used to SSMIME-enable mail readers that do not
natively support it.

Options
-in filename

Specify the name of afile from which datawill be read. If this option is omitted, stdin
will be used by default.

-inform DER|PEM|SMIME

Specify the format of the input data. If this option is omitted, the default isto use SMIME.
Thisoption isignored if datais being encrypted or signed.

-out filename

Specify the name of afile to which datawill be written. If this option is omitted, stdout
will be used by default.

-outform DER|PEM|SMIME

Specify the format of the output data. If this option is omitted, the default isto use SMIME.
Thisoption isignored if datais being decrypted or verified.

-encrypt

Cause the input data to be encrypted.
-decrypt

Cause the input data to be decrypted.

-sign

312

Cause the input data to be signed.
-verify

Cause the input data to be verified.
-pk7out

Cause the input data to be written out as a PEM-encoded PK CSH7 structure.
-content filename

Specify the name of afile containing the detached content. This option is valid only when
verifying data.

-text

Cause plaintext MIME headers to be added to the output if the input dataiis being
encrypted or signed. Cause plaintext MIME headers to be stripped from the input if the
input data is being decrypted or verified.

-CAfile filename
Specify the name of afile containing trusted certificates for use in verifying.
-CApath directory

Specify the name of a directory containing trusted certificates for use in verifying. Each
file in the directory should contain a single certificate and be named with the certificate
issuer name's hash and an extension of ".0".

-nointern

When verifying data, cause any certificates included in the data to be considered
untrusted.

-noverify
Do not verify the signer's certificate of a signed message.
-nochain
Do not perform chain verification of the signer's certificate or certificates.
-nosigs
Do not attempt to verify the signatures on the input data.
-nocerts
Do not include certificates in the signed data when signing.

-noattr

313

Do not include attributes like the time the data was signed in the output when signing.
-binary
Do not perform canonical trandation.
-nodetach
Use opaque signing when signing data. Using this option requires that any mail agents
encountering this message must be S'MIME-enabled. If this option is not specified,
cleartext signing with the MIME type multipart/signed is used.

-certfile filename

Specify the name of afile containing one or more certificates. When signing, these
certificates will be included in the signed data. When verifying, these certificates will be
searched for the signer's certificate.

-signer filename

Specify the name of afile that the signer's certificate will be written to when verifying a
signature. When signing, thisfile should contain the signer's certificate.

-recip filename

Specify the name of afile that contains the recipient's certificate. The certificate must
match one of the recipients of the data.

-inkey filename

Specify the name of afile containing the private key to use when signing or decrypting
data. The private key must match the public key contained in the certificate. If this option
is omitted, the private key must be included in the certificate file specified with the
recip or signer options.

-passin password

Specify the password or passphrase required to decrypt the private key when signing or
decrypting data. This option follows the guidelines outlined in Chapter 2 for passwords
and passphrases.

-rand filename

Specify the name of afile or files that will be used to seed the PRNG. This option follows
the guidelines outlined in Chapter 2.

-to recipient

Specify the address of the recipient. If thisis specified, it isincluded as part of the headers
written outside the encrypted or signed data.

-from sender

314

Specify the address of the sender. If thisis specified, it isincluded as part of the headers
written outside the encrypted or signed data.

-subject subject

Specify the subject of the message. If thisis specified, it isincluded as part of the headers
written outside the encrypted or signed data.

Notes

When encrypting a message, files containing the certificates of the recipientsin PEM format are
also required on the command line. The filenames should be included after all other options are
specified in free form.

When sending SIMIME messages using this command, it isimportant that no blank line be
inserted between the message's headers and the output from this command. Some mail programs
add a blank space, so care must be taken to avoid that.

This command allows only a single signer per message when signing. When verifying a signed
message, the command does support multiple signers. Some S'MIME clients do not deal well with
messages that have multiple signers. It is possible to sign an already signed message to achieve a
similar effect.

The command sets the exit code (or errorlevel on Windows) according to the status of the
command's requested operation. Exit codes are as follows:

0

The operation was completed successfully.
1

An error occurred when parsing the command's options.
2

One of the input files could not be read.
3

An error occurred creating the PK CS#7 file or when reading the MIME message.
4

An error occurred decrypting or verifying the message.
5

The message was verified correctly, but an error occurred when attempting to write out
the signer's certificate or certificates.

315

Speed

The speed command can be used to measure the performance of OpenSSL's crypto library. It
performs benchmark tests on the ciphers supported by OpenSSL and reports on their speed.

Notes
The arguments for this command are the algorithms that will be tested. If no arguments are
specified, all agorithms are tested. Valid algorithms are md2, mdc2, md5, hmac, shal, rmd160,

idea-cbc, rc2-cbc, rcs5-cbce, bf-cbc, des-cbc, des-ede3, rc4, rsab512, rsal024,
rsa2048, rsa4096, dsa512, dsal024, dsa2048, idea, rc2, des, rsa, and blowfish.

spkac

The spkac command is used to create, examine, and manipul ate Netscape-signed public keys and
challenge (SPKAC) formatted files.

Options
-in filename

Specify the name of afile from which datawill be read. If this option is omitted, stdin
isused by default.

-out filename

Specify the name of afile to which datawill be written. If this option is omitted, stdout
is used by defaullt.

-passin password

Specify the password or passphrase that will be used to decrypt the private key if oneis
required. This option follows the guidelines for passwords and passphrases in Chapter 2.

-key filename

Specify the name of afile containing a private key to use when creating an SPKAC file. If
this option is specified, the in, noout, spksect, and veri fy options are ignored.

-challenge string
Specify achallenge string to be included in an SPKAC file that is created.

-spkac name

316

Specify an aternative name for the variable containing the SPKAC. If thisoption is
omitted, the default is to use the name "SPKAC". This option affects both generated and
input SPKAC files.

-spksect section

Specify an aternative name for the section containing the SPKAC. If thisoptionis
omitted, the default is to use the default section.

-noout

Cause the output of an SPKAC file to be suppressed.
-pubkey

Cause the public key of an SPKAC to be output.
-verify

Verify the signature on the supplied SPKAC.

verify

The verify command is used to verify the validity of X.509 certificates. It performs an
exhaustive check on a certificate, including validation of each certificate in achain of certificates.

Options
-CAfile filename

Specify the name of afile containing one or more trusted certificates.
-CApath directory

Specify the name of a directory containing trusted certificates. There should be one
certificate per file in the directory, and each file should be named by the certificate i ssuer
name's hash and an extension of ".0".

-untrusted filename
Specify the name of afile containing one or more untrusted certificates.

-purpose purpose
Specify the purpose for the certificate being verified. If this option is omitted, no chain
verification of certificatesis performed. Valid purposesare sslclient, sslserver,

nssslserver, smimesign, and smimeencrypt.

-issuer_checks

317

Cause diagnostic messages relating to searches for issuer certificates to be printed.
-verbose

Cause extrainformation about the operations that are being performed to be printed.
Notes

An argument consisting only of adash (-) is considered a marker that means each argument that
follows is the name of afile containing a certificate to be verified. It may be omitted, but is useful
when afilename begins with a dash. Each argument that is not an option or parameter to an option
isinterpreted as the name of afile containing a certificate to be verified.

version

The version command displays information about the version of OpenSSL that isinstalled.
Options
-a

Include al version information in the output. Specifying this option is equivalent to
specifying al of the other available options.

-b
Output the date when OpenSSL was built.

-C
Output the compilation flags that were used to build OpenSSL. These flags are compiler-
specific flags.

-0
Output the compile-time options that were used to build OpenSSL. These are OpenSSL -
specific option flags that control the built-in features.

-p
Output the platform for which OpenSSL was built.

-v

Output the OpenSSL version.

318

x509

The x509 command is used to create, examine, and manipulate X.509 certificates. It is a complex
command that accepts a large number of options. We've broken the options up into separate
sections based on their function.

General Options
-in filename

Specify the name of afile from which datawill be read. The expected data varies
depending on the type of operation being performed, but usually an X.509 certificateis
expected. If this option is omitted, stdin isused by default.

-inform DER|PEM|NET

Specify the format of the input data. If this option is omitted, the default is normally PEM,
but may vary depending on the operation being performed.

-out filename

Specify the name of afile to which datawill be written. Output is normally an X.509
certificate. If this option is omitted, stdout is used by default.

-outform DER|PEM|NET

Specify the format of the output data. If this option is omitted, the default is normally
PEM, but may vary depending on the operation being performed.

-md2, -md4, -md5, -mdc2, -sha, -shal, -rmd160, -dssl

Specify the message digest to use for signing. If this option is omitted, the default isto
use MD5 for certificates and certificate requests containing RSA keys. For certificates
and certificate requests containing DSA keys, DSS1 is always used, regardless of which
algorithm is specified on the command line.

Display Options
-noout

Cause output of the certificate in encoded form to be suppressed.

Output a human-readabl e representation of the certificate.
-modulus
Output the value of the modulus of the public key contained in the certificate.

-serial

Output the certificate's serial number.
-hash

Output the hash of the certificate issuer's name. Thisvalueis used by any command that
accepts a CApath option to name the certificates in the directory specified by the option.

-subject

Output the certificate's subject name.
-issuer

Output the certificate's issuer name.
-nameopt option

Specify how the subject or issuer names are displayed. This option may be specified more
than once. See the section below for alist of valid options and what they mean.

-email
Output the certificate's email address or addresses if any are present.
-startdate
Output the certificate's start date.
-enddate
Output the certificate's end date.
-dates
Output the certificate's start and end dates.
-checkend seconds

Check whether the certificate will expire within the number of seconds specified asa
parameter to this option.

-pubkey
Output the certificate's public key in PEM format.
-fingerprint

Output the certificate's fingerprint, which is the digest of a DER-encoded form of the
whole certificate.

Output a C code representation of the certificate.

320

Trust Options

Thetrust options described in this section are experimental and subject to change in future
releases of OpenSSL. The information presented hereis current for Version 0.9.6 of OpenSSL.

-trustout

Cause atrusted certificate to be output. Either atrusted or untrusted certificate is accepted
as input to the command, but only untrusted certificates are normally output. If any trust
settings are modified on a certificate, atrusted certificate is automatically output,
regardless of whether this option is specified.

-alias

Output the certificate's alias. Technically, thisisadisplay option, but it islisted as a trust
option because a certificate's alias is a trust setting.

-setalias alias
Specify the alias for the certificate. Allows a certificate to be referred to by its aias.
-purpose

Cause a series of tests to be performed on the certificate's extensions. The results of the
test are output.

-clrtrust
Cause all permitted or trusted uses of the certificate to be cleared.

-clrregject
Cause all prohibited or rejected uses of the certificate to be cleared.

-addtrust OID
Add a permitted or trusted use to the certificate. Any object identifier's short name may be
used as a parameter for this option. OpenSSL itself uses only cl ientAuth,
serverAuth, and emai IProtection.

-addreject OID

Add a prohibited or rejected use to the certificate. Any object identifier's short name may
be used as a parameter for this option.

Signing Options

The X509 command is capable of signing certificate requests, thus creating certificates. The
command can be used to create self-signed certificates and to behave like amini-CA.

_r‘eq

321

Cause the input data to be treated as a certificate request. This option is required with
many of the other options described in this section.

-signkey filename
Specify the name of afile containing the private key that will be used to create a self-
signed certificate. If the input datais a certificate, itsissuer name will be set to its subject
name, and the public key that it contains will be replaced with the public key that matches
the private key specified by this option. The certificate's start date will be set to the
current date, and its end date will be computed using the days option. If the input datais

a certificate request, a self-signed certificate is created using the specified private key and
the subject name contained in the request.

-keyform DER|PEM

Specify the format of the key that is specified with the signkey option. If thisoptionis
omitted, PEM is the default.

-passin password

Specify the password required to decrypt the private key specified with the signkey or
CAkey options. This option follows the guidelines for passwords or passphrases outlined

in Chapter 2.

-days number
Specify the number of days to make a certificate valid. The default is 30 days.
-CA filename

Specify the name of afile containing a certificate that will be used for signing. This
certificate's subject nameis used as the issuer name for the resulting certificate, and the
certificate is signed using the private key that matches this certificate. Thisoption is
normally used with the req option, but may be used with an existing self-signed
certificate as well.

-CAform DER|PEM

Specify the format—DER or PEM—of the certificate specified with the CA option. If this
option is omitted, PEM isthe default.

-CAkey filename

Specify the name of afile containing the private key that matches the certificate specified
with the CA option. If this option is omitted, the private key is expected to be in the same
file asthe certificate.

-CAkeyform DER|PEM

Specify the format—DER or PEM—of the private key specified with the CAkey option.
If this option is omitted, PEM is the default.

-CAserial filename

322

Specify the name of afile containing the certificate's serial number information. Thisfile
uses the same format as the serial-number file for the ca command, whichisasingle line
containing an even number of hexadecimal digits representing the next serial number to
use. If this option is omitted, the filename specified with the CA command is used with its
extension stripped and replaced with .srl.

-CAcreateserial filename

Specify the name of afile containing the certificate's serial number information. If thefile
doesn't exigt, it will be created using the number 02" as the next serial number to issue.

-extfile filename

Specify the name of afile containing extensions that should be included in the new
certificate. Thisfileis essentially a configuration file, although the configuration file's
only use with this command is for certificate extensions.

-extensions section

Specify the name of the section to use from the file specified with the extFi I e option
that contains the extensions to include in the new certificate.

-clrext

Cause all extensions present in a certificate to be removed. This option should be used
when anew certificate is being created from another existing certificate, using either the
signkey or the CA options.

-x509toreq

Convert a certificate into a certificate request. The signkey option should be used in
combination with this option to specify the name of the file containing the private key that
matches the certificate.

Name Options

The nameopt display option accepts a variety of optionsthat control how the issuer and subject
names of a certificate are displayed. The option may be specified multiple times to specify
multiple options. Each of the supported option keywords is enumerated in this section. Any of the
options can be optionally preceded with a dash (-) to turn that option off.

compat
The default format. It is equivalent to specifying no nameopt options at all.

RFC2253
Cause names to be displayed in aformat compatible with RFC 2253. It is equivalent to
specifying the optionsesc_2253, esc_ctrl, esc_msb, utf8, dump_nostr,

dump_unknown, dump_der, sep_comma_plus, dn_rev, and sname.

oneline

323

A single-line format that is more readable than the RFC 2253 format. It is equivalent to
specifying the optionsesc_2253, esc_ctrl, esc_msb, utf8, dump_nostr,
dump_der, use_quote, sep_comma_plus_spc, spc_eq, and sname.

multiline

A multiline format that is equivalent to specifying the optionsesc_ctrl, esc_msb,
sep_multiline, spc_eq, and Iname.

esc_2253

Cause special characters required by RFC 2253 to be escaped. The charactersthat are
escaped are comma (,), plus (+), double quotes ("), less than (<), greater than (>), and
semi-colon (;). In addition, a hash mark (#), a space at the beginning of astring, or a
space at the end of a string are also escaped.

esc_ctrl

Cause control characters to be escaped. Escaped characters have an ASCII value less than
a space (0x20) or equa to the delete character (OX7F).

esc msb
Cause characters that have their most significant bit (M SB) set to be escaped.
use_quote

Cause some characters to be escaped by surrounding the entire string with double-quotes

characters.
utf8
Cause all stringsto be converted to the UTF8 character encoding.
no_type
Cause multibyte characters to be uninterpreted. In other words, each byte of a multibyte
character istreated asif it was a character of its own.
show_type
Cause the ASN.1 type of the string to be prepended to the output.
dump_der
Cause any fields that need to be hexdumped to be dumped using the DER encoding of the
field. If this option is not used, just the content octets will be displayed.
dump_nostr
Cause noncharacter string types to be displayed. If this option is not used, noncharacter
string types will be displayed as though each content octet was a single character.
dump_all

324

Cause all fields to be displayed.
dump_unknown

Cause any field that has an OID unknown to OpenSSL to be displayed. Without this
option, unknown fields are not included in the output.

sep_comma._plus, sep_comma._plus_space, sep_semi_plus_space, sep_multiline

Specify how fields will be separated in the output.
dn_rev

Cause the fields to be displayed in the reverse order that they are present in the name.
nofname

Cause the field name to be suppressed.
sname

Cause the field name to be displayed using the field object identifier's short name.
Iname

Cause the field name to be displayed using the field object identifier's long name.
oid

Cause the field name to be displayed using the field object identifier's numerical
representation.

Spc_eq

Cause spaces to be placed around the equals sign (=) that is used to separate the field
name from its value.

325

Colophon

Our look isthe result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.

The animals on the cover of Network Security with OpenSSL are seals and sea lions. Seals and sea
lions are related; both are marine mammals bel onging to the order Pinnipedia. Sealions, along
with fur seals, are members of the eared seal family. Eared sedls, astheir name implies, have
external ears on either side of the head. These ears are covered by small flaps. All other seals, or
true seals, lack external ears, having only small, wrinkled openings where their ears would
otherwise be. Another principle difference between eared seals and true seals is the functionality
of their rear flippers. Eared seals can turn their rear flippers forward to move about on land. True
seals cannot, and can move on land only by rolling, sliding, or wriggling from place to place.
Despite the awkwardness of both seals and sealions on land, both swim very gracefully using
undulating motions of their front flippers. Fish and squid are the main staples of the seal and sea
lion diet. These mammals can dive to great depths—up to 2,000 feet in some species—in search of
food.

Seals and sealions have long been hunted for their blubber and their fur. There are eighteen living
species of seal and four major species of sealion in existence. Some species are endangered or
threatened. All are currently protected.

Colleen Gorman was the production editor and the copyeditor for Network Security with OpenS3L..
Matt Hutchinson, Linley Dolby, and Jane Ellin provided quality control. Sue Willing, Sarah
Sherman, and Phil Dangler provided production support. John Bickelhaupt wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman.
The cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby
produced the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted into FrameMaker 5.5.6 with a
format conversion tool created by Erik Ray, Jason Mclntosh, Neil Walls, and Mike Sierra that
uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe
Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed. Theillustrations
that appear in the book were produced by Robert Romano and Jessamyn Read using Macromedia
FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing.
This colophon was written by Clairemarie Fisher O'Leary.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools
written and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

326

	sample.pdf
	sterling.com
	Welcome to Sterling Software

	Network Security with OpenSSL.pdf
	Table of Content
	Dedication

	Preface
	About This Book
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments

	Chapter 1. Introduction
	1.1 Cryptography for the Rest of Us
	1.1.1 Goals of Cryptography
	1.1.2 Cryptographic Algorithms
	1.1.2.1 Symmetric key encryption
	Figure 1-1. Symmetric key cryptography
	1.1.2.2 Public key encryption
	Figure 1-2. Public key cryptography
	1.1.2.3 Cryptographic hash functions and Message Authentication Codes
	1.1.2.4 Digital signatures

	1.2 Overview of SSL
	
	Figure 1-3. An overview of direct communication in SSL
	Figure 1-4. A man-in-the-middle attack

	1.3 Problems with SSL
	1.3.1 Efficiency
	1.3.1.1 Cryptographic acceleration hardware
	1.3.1.2 Load balancing

	1.3.2 Keys in the Clear
	1.3.3 Bad Server Credentials
	1.3.4 Certificate Validation
	1.3.5 Poor Entropy
	1.3.6 Insecure Cryptography

	1.4 What SSL Doesn't Do Well
	1.4.1 Other Transport Layer Protocols
	1.4.2 Non-Repudiation
	1.4.3 Protection Against Software Flaws
	1.4.4 General-Purpose Data Security

	1.5 OpenSSL Basics
	
	Example 1-1. Building and installing OpenSSL on a Unix system

	1.6 Securing Third-Party Software
	1.6.1 Server-Side Proxies
	Figure 1-5. Stunnel proxies
	Figure 1-6. Load balancing with Stunnel for cryptographic acceleration

	1.6.2 Client-Side Proxies

	Chapter 2. Command-Line Interface
	2.1 The Basics
	2.1.1 Configuration Files
	Example 2-1. An excerpt from the default OpenSSL configuration file

	2.2 Message Digest Algorithms
	2.2.1 Examples

	2.3 Symmetric Ciphers
	2.3.1 Examples

	2.4 Public Key Cryptography
	2.4.1 Diffie-Hellman
	2.4.1.1 Examples

	2.4.2 Digital Signature Algorithm
	2.4.2.1 Examples

	2.4.3 RSA
	2.4.3.1 Examples

	2.5 S/MIME
	2.5.1 Examples

	2.6 Passwords and Passphrases
	2.7 Seeding the Pseudorandom Number Generator

	Chapter 3. Public Key Infrastructure (PKI)
	3.1 Certificates
	3.1.1 Certification Authorities
	3.1.1.1 Private Certification Authorities
	3.1.1.2 Public Certification Authorities

	3.1.2 Certificate Hierarchies
	3.1.3 Certificate Extensions
	Table 3-1. Common bit settings for the keyUsage extension
	Table 3-2. Purposes defined for the extKeyUsage extension

	3.1.4 Certificate Revocation Lists
	3.1.5 Online Certificate Status Protocol

	3.2 Obtaining a Certificate
	3.2.1 Personal Certificates
	3.2.2 Code-Signing Certificates
	3.2.3 Web Site Certificates

	3.3 Setting Up a Certification Authority
	3.3.1 Creating an Environment for Your Certification Authority
	Example 3-1. Creating the CA's environment

	3.3.2 Building an OpenSSL Configuration File
	Example 3-2. A simple CA configuration definition
	Example 3-3. Telling OpenSSL where to find our configuration file

	3.3.3 Creating a Self-Signed Root Certificate
	Example 3-4. Configuration file additions for generating a self-signed root certificate
	Example 3-5. Output from generating a self-signed root certificate
	the command output shown is incorrect (it shows a 1024 bit CA key, but given the
	example and the configuration file, the key would in fact be 2048 bits)

	3.3.4 Issuing Certificates
	Example 3-6. Generating a certificate request
	Example 3-7. The resulting certificate request
	Example 3-8. Issuing a certificate from a certificate request

	3.3.5 Revoking Certificates
	Example 3-9. Revoking a certificate
	Example 3-10. A certificate revocation list

	Chapter 4. Support Infrastructure
	4.1 Multithread Support
	4.1.1 Static Locking Callbacks
	Example 4-1. Static locking callbacks for WIN32 and POSIX threads systems

	4.1.2 Dynamic Locking Callbacks
	Example 4-2. E xtensions to the library to support the dynamic locking mechanism

	4.2 Internal Error Handling
	4.2.1 Manipulating Error Queues
	Example 4-3. Accessing error information on the error queue

	4.2.2 Human-Readable Error Messages
	4.2.3 Threading and Practical Applications

	4.3 Abstract Input/Output
	4.3.1 Source/Sink BIOs
	4.3.1.1 Memory sources/sinks
	Example 4-4. Creating a memory BIO
	4.3.1.2 File sources/sinks
	Example 4-5. Creating a file BIO
	4.3.1.3 Socket sources/sinks
	Example 4-6. Creating a socket BIO
	4.3.1.4 BIO pairs
	Example 4-7. Creating BIO pairs

	4.3.2 Filter BIOs
	Example 4-8. Assembling and using a BIO chain

	4.4 Random Number Generation
	4.4.1 Seeding the PRNG
	Example 4-9. Using RAND_load_file() and RAND_write_file()
	Example 4-10. Seeding OpenSSL's PRNG with /dev/random

	4.4.2 Using an Alternate Entropy Source
	Example 4-11. Seeding OpenSSL's PRNG with EGADS
	Example 4-12. Seeding OpenSSL's PRNG via an EGD socket

	4.5 Arbitrary Precision Math
	4.5.1 The Basics
	Example 4-13. Creating, initializing, and destroying BIGNUMs
	Example 4-14. The wrong way and the right way to copy a BIGNUM
	Example 4-15. Converting between BIGNUM and binary representations

	4.5.2 Mathematical Operations
	Table 4-1. Arithmetic functions for BIGNUMs

	4.5.3 Generating Prime Numbers
	Example 4-16. Generating a pseudorandom prime number with BN_generate_prime()

	4.6 Using Engines
	
	Example 4-17. Enabling use of a hardware engine
	Table 4-2. Supported hardware and software engines
	Table 4-3. Flags for ENGINE_set_default

	Chapter 5. SSL/TLS Programming
	5.1 Programming with SSL
	5.1.1 The Application(s) to Secure
	Example 5-1. common.h
	Example 5-2. common.c
	Example 5-3. client.c
	Example 5-4. The server application

	5.1.2 Step 1: SSL Version Selection and Certificate Preparation
	5.1.2.1 Background
	Table 5-1. Functions to retrieve pointers to SSL_METHOD objects
	5.1.2.2 Certificate preparation
	5.1.2.3 Our example extended
	Example 5-5. client1.c
	Example 5-6. server1.c

	5.1.3 Step 2: Peer Authentication
	5.1.3.1 Background
	5.1.3.2 Incorporating trusted certificates
	5.1.3.3 Certificate verification
	Example 5-7. A verify callback (implemented in common.c and prototyped in common.h)
	5.1.3.4 Incorporating certificate revocation lists
	5.1.3.5 Post-connection assertions
	Example 5-8. A function to do post-connection assertions (implemented in common.c and prototyped in common.h)
	5.1.3.6 Further extension of the examples
	Example 5-9. client2.c
	Example 5-10. server2.c

	5.1.4 Step 3: SSL Options and Cipher Suites
	5.1.4.1 Setting SSL options
	5.1.4.2 Ephemeral keying
	5.1.4.3 Cipher suite selection
	5.1.4.4 The final product
	Example 5-11. client3.c
	Example 5-12. server3.c
	5.1.4.5 Beyond the example

	5.2 Advanced Programming with SSL
	5.2.1 SSL Session Caching
	5.2.1.1 Client-side SSL sessions
	Example 5-13. Pseudocode for client-side caching
	5.2.1.2 Server-side SSL sessions
	5.2.1.3 An on-disk, session caching framework
	Example 5-14. A framework for external session caching

	5.2.2 I/O on SSL Connections
	5.2.2.1 Reading and writing functions
	Table 5-2. Return values of SSL_read and SSL_write
	Table 5-3. Some common return values of SSL_get_error
	Example 5-15. A sample I/O call template
	5.2.2.2 Blocking I/O
	5.2.2.3 Non-blocking I/O
	Example 5-16. A sample non-blocking I/O loop

	5.2.3 SSL Renegotiations
	5.2.3.1 Implementing renegotiations
	Example 5-17. Code fragment to force a renegotiation from a server
	Example 5-18. Code to cause forced renegotiation in order to request stronger client authentication and distinguish the sessions
	5.2.3.2 Renegotiations in 0.9.7
	5.2.3.3 Further notes

	Chapter 6. Symmetric Cryptography
	6.1 Concepts in Symmetric Cryptography
	6.1.1 Block Ciphers and Stream Ciphers
	6.1.2 Basic Block Cipher Modes

	6.2 Encrypting with the EVP API
	6.2.1 Available Ciphers
	6.2.1.1 AES
	Table 6-1. Referencing the AES cipher (OpenSSL 0.9.7 only)
	6.2.1.2 Blowfish
	Table 6-2. Referencing the Blowfish cipher
	6.2.1.3 CAST5
	Table 6-3. Referencing the CAST5 cipher
	6.2.1.4 DES
	Table 6-4. Referencing standard DES
	6.2.1.5 DESX
	Table 6-5. Referencing DESX
	6.2.1.6 Triple DES
	Table 6-6. Referencing 3DES
	6.2.1.7 IDEA
	Table 6-7. Referencing IDEA
	6.2.1.8 RC2?
	Table 6-8. Referencing RC2
	6.2.1.9 RC4?
	Table 6-9. Referencing RC4
	6.2.1.10 RC5?
	Table 6-10. Referencing RC5

	6.2.2 Initializing Symmetric Ciphers
	Example 6-1. Preparing to use Blowfish in CBC mode for encryption
	Example 6-2. Preparing to use Blowfish in CBC mode for decryption

	6.2.3 Specifying Key Length and Other Options
	6.2.4 Encryption
	Example 6-3. Encrypting plaintext 100 bytes at a time
	Example 6-4. Performing incremental encryption

	6.2.5 Decryption
	Example 6-5. Decrypting ciphertext
	Example 6-6. Using the example encryption and decryption functions

	6.2.6 Handling UDP Traffic with Counter Mode
	Example 6-7. Encryption and decryption using counter mode

	6.3 General Recommendations

	Chapter 7. Hashes and MACs
	7.1 Overview of Hashes and MACs
	7.2 Hashing with the EVP API
	
	Table 7-1. Message digests and the EVP interface
	Example 7-1. Computing a hash value using the EVP API
	Example 7-2. Printing the hexadecimal representation of a hash value
	Example 7-3. Computing SHA1 hashes of files

	7.3 Using MACs
	
	Example 7-4. Computing a MAC with the HMAC function
	Example 7-5. A binary comparison function
	Example 7-6. Computing a MAC using HMAC_Init, HMAC_Update, and HMAC_Final

	7.3.1 Other MACs
	7.3.1.1 CBC-MAC
	Example 7-7. cbcmac.h
	Example 7-8. cbcmac.c
	7.3.1.2 XCBC-MAC
	Example 7-9. xcbcmac.h
	Example 7-10. xcbcmac.c
	7.3.1.3 XOR-MAC
	7.3.1.4 UMAC

	7.4 Secure HTTP Cookies
	
	Example 7-11. Encrypting data for storage in a cookie
	Example 7-12. Decrypting data stored in a cookie

	Chapter 8. Public Key Algorithms
	8.1 When to Use Public Key Cryptography
	8.2 Diffie-Hellman
	8.2.1 The Basics
	8.2.2 Generating and Exchanging Parameters
	8.2.3 Computing Shared Secrets
	8.2.4 Practical Applications

	8.2 Diffie-Hellman
	8.2.1 The Basics
	8.2.2 Generating and Exchanging Parameters
	8.2.3 Computing Shared Secrets
	8.2.4 Practical Applications

	8.3 Digital Signature Algorithm (DSA)
	8.3.1 The Basics
	8.3.2 Generating Parameters and Keys
	8.3.3 Signing and Verifying
	8.3.4 Practical Applications

	8.4 RSA
	8.4.1 The Basics
	8.4.2 Generating Keys
	8.4.3 Data Encryption, Key Agreement, and Key Transport
	8.4.4 Signing and Verifying
	8.4.5 Practical Applications

	8.5 The EVP Public Key Interface
	8.5.1 Signing and Verifying
	8.5.2 Encrypting and Decrypting
	Example 8-1. Calling EVP_SealInit

	8.6 Encoding and Decoding Objects
	8.6.1 Writing and Reading DER-Encoded Objects
	Example 8-2. DER-encoding an RSA public key
	Example 8-3. DER-decoding an RSA public key
	Table 8-1. Functions for reading and writing DER encodings of public key objects
	Example 8-4. Reading and writing DER-encoded objects using the BIO and file functions

	8.6.2 Writing and Reading PEM-Encoded Objects
	Table 8-2. Functions for reading and writing PEM encodings of public key objects

	Chapter 9. OpenSSL in Other Languages
	9.1 Net::SSLeay for Perl
	9.1.1 Net::SSLeay Variables
	9.1.2 Net::SSLeay Error Handling
	9.1.3 Net::SSLeay Utility Functions
	9.1.4 Net::SSLeay Low-Level Bindings

	9.2 M2Crypto for Python
	9.2.1 Low-Level Bindings
	9.2.2 High-Level Classes
	9.2.2.1 M2Crypto.SSL
	9.2.2.2 M2Crypto.BIO
	9.2.2.3 M2Crypto.EVP
	Example 9-1. Computing the cryptographic hash of data
	Example 9-2. Encrypting and decrypting with a symmetric cipher
	9.2.2.4 Miscellaneous crypto

	9.2.3 Python Module Extensions
	9.2.3.1 Extensions to httplib: httpslib
	9.2.3.2 Extensions to urllib: m2urllib
	9.2.3.3 Extensions to xmlrpclib: m2xmlrpclib

	9.3 OpenSSL Support in PHP
	9.3.1 General Functions
	9.3.2 Certificate Functions
	Table 9-1. Possible purpose values for openssl_x509_checkpurpose
	Table 9-2. Keys for the array returned by openssl_x509_parse

	9.3.3 Encryption and Signing Functions
	9.3.4 PKCS#7 (S/MIME) Functions
	Table 9-3. Flags: openssl_pkcs7_encrypt, openssl_pkcs7_sign, openssl_pkcs7_verify

	Chapter 10. Advanced Programming Topics
	10.1 Object Stacks
	
	Example 10-1. Stack manipulation functions in generic form

	10.2 Configuration Files
	
	Example 10-2. A sample configuration file (testconf.cnf)
	Example 10-3. Code to interact with the configuration file
	Example 10-4. The declaration of CONF_VALUE

	10.3 X.509
	10.3.1 Generating Requests
	10.3.1.1 Subject name
	10.3.1.2 X.509 Version 3 extensions
	10.3.1.3 Putting it all together
	Example 10-5. A program to generate a certificate request

	10.3.2 Making Certificates
	Example 10-6. Creating a certificate from a request and CA credentials

	10.3.3 X.509 Certificate Checking
	Example 10-7. Verifying a client certificate

	10.4 PKCS#7 and S/MIME
	10.4.1 Signing and Verifying
	Example 10-8. A signing and verifying utility

	10.4.2 Encrypting and Decrypting
	Example 10-9. A utility to encrypt and decrypt S/MIME messages

	10.4.3 Combined Operations
	10.4.4 PKCS#7 Flags

	10.5 PKCS#12
	10.5.1 Wrapping Information into a PKCS#12 Object
	10.5.2 Importing Objects from PKCS#12 Data

	Appendix A. Command-Line Reference
	
	Options
	Notes
	Options
	Configuration Options
	Notes
	Options
	Notes
	Options
	Notes
	Options
	Notes
	Options
	Notes
	Options
	Notes
	Options
	Options
	Notes
	Options
	Notes
	Table A-1. Ciphers supported by the enc command

	Option
	Notes
	Options
	Notes
	Options
	Notes
	Options
	Notes
	Options
	Notes
	Options
	Notes
	Options
	Options
	Options
	Notes
	Options
	Configuration Options
	Notes
	Options
	Notes
	Options
	Options
	Notes
	Options
	Notes
	Table A-2. Commands recognized by the server

	Options
	Options
	Options
	Notes
	Notes
	Options
	Options
	Notes
	Options
	General Options
	Display Options
	Trust Options
	Signing Options
	Name Options

	Colophon

