

Access Database Design & Programming, 3rd Edition

Steven Roman
Publisher: O’Reilly
Third Edition January 2002
ISBN: 0-596-00273-4, 448 pages

When using GUI-based software, we often focus so much on the interface
that we forget about the general concepts required to use the software
effectively. Access Database Design & Programming takes you behind the
details of the interface, focusing on the general knowledge necessary for
Access power users or developers to create effective database applications.
The main sections of this book include: database design, queries, and
programming.

Copyright .. 5
Full Description .. 6
Steven Roman ... 7
O’Reilly Books ... 7
O’Reilly Articles... 7

Preface... 8
Preface to the Third Edition.. 8
Preface to the Second Edition... 8
The Book’s Audience ... 11
The Sample Code.. 11
Organization of This Book.. 11
Conventions in This Book .. 14
Obtaining Updated Information.. 15
Request for Comments.. 15
Acknowledgments... 16

Part I: Database Design... 17
Chapter 1. Introduction ... 18

1.1 Database Design.. 18
1.2 Database Programming... 24

Chapter 2. The Entity-Relationship Model of a Database .. 25
2.1 What Is a Database?.. 25
2.2 Entities and Their Attributes... 25
2.3 Keys and Superkeys.. 29
2.4 Relationships Between Entities... 30

Chapter 3. Implementing Entity-Relationship Models: Relational Databases 32
3.1 Implementing Entities... 32
3.2 A Short Glossary... 34
3.3 Implementing the Relationships in a Relational Database 36
3.4 The LIBRARY Relational Database... 40
3.5 Index Files... 44
3.6 NULL Values.. 46

Chapter 4. Database Design Principles... 48
4.1 Redundancy... 48
4.2 Normal Forms ... 50
4.3 First Normal Form .. 50
4.4 Functional Dependencies .. 51
4.5 Second Normal Form.. 52
4.6 Third Normal Form... 53
4.7 Boyce-Codd Normal Form ... 55
4.8 Normalization ... 56

Part II: Database Queries .. 62
Chapter 5. Query Languages and the Relational Algebra... 63

5.1 Query Languages .. 64
5.2 Relational Algebra and Relational Calculus ... 65
5.3 Details of the Relational Algebra.. 67

6. Access Structured Query Language (SQL)... 91
6.1 Introduction to Access SQL.. 91
6.2 Access Query Design.. 91
6.3 Access Query Types ... 92
6.4 Why Use SQL? ... 94
6.5 Access SQL... 95
6.6 The DDL Component of Access SQL .. 96
6.7 The DML Component of Access SQL.. 100

Part III: Database Architecture ... 123
7. Database System Architecture .. 124

7.1 Why Program? .. 124
7.2 Database Systems.. 125
7.3 Database Management Systems.. 127
7.4 The Jet DBMS... 127
7.5 Data Definition Languages ... 129
7.6 Data Manipulation Languages .. 130
7.7 Host Languages... 131
7.8 The Client/Server Architecture ... 132

Part IV: Visual Basic for Applications ... 134
Chapter 8. The Visual Basic Editor, Part I.. 135

8.1 The Project Window ... 136
8.2 The Properties Window .. 138
8.3 The Code Window .. 138
8.4 The Immediate Window ... 140
8.5 Arranging Windows.. 141

Chapter 9. The Visual Basic Editor, Part II .. 143
9.1 Navigating the IDE ... 143
9.2 Getting Help.. 144
9.3 Creating a Procedure... 144
9.4 Run Mode, Break Mode, and Design Mode ... 145
9.5 Errors... 146
9.6 Debugging... 149

Chapter 10. Variables, Data Types, and Constants... 152
10.1 Comments ... 152
10.2 Line Continuation ... 152
10.3 Constants... 152
10.4 Variables and Data Types ... 155
10.5 VBA Operators ... 170

Chapter 11. Functions and Subroutines .. 171
11.1 Calling Functions .. 171
11.2 Calling Subroutines... 172
11.3 Parameters and Arguments ... 173
11.4 Exiting a Procedure... 177
11.5 Public and Private Procedures .. 177
11.6 Fully Qualified Procedure Names... 178

Chapter 12. Built-in Functions and Statements .. 179
12.1 The MsgBox Function .. 180
12.2 The InputBox Function... 181
12.3 VBA String Functions... 182
12.4 Miscellaneous Functions and Statements ... 187
12.5 Handling Errors in Code ... 190

Chapter 13. Control Statements .. 198
13.1 The If ...Then Statement ... 198
13.2 The For Loop .. 198
13.3 The Exit For Statement ... 199
13.4 The For Each Loop ... 200
13.5 The Do Loop ... 201
13.6 The Select Case Statement.. 202
13.7 A Final Note on VBA ... 203

Part V: Data Access Objects ... 206
Chapter 14. Programming DAO: Overview ... 207

14.1 Objects .. 207
14.2 The DAO Object Model.. 213
14.3 The Microsoft Access Object Model .. 215
14.4 Referencing Objects.. 216
14.5 Collections Are Objects Too... 221
14.6 The Properties Collection ... 226
14.7 Closing DAO Objects ... 231
14.8 A Look at the DAO Objects.. 232
14.9 The CurrentDb Function ... 240
Running exaCurrentDb2 ... 244

Chapter 15. Programming DAO: Data Definition Language 247
15.1 Creating a Database .. 247
15.2 Opening a Database .. 248
15.3 Creating a Table and Its Fields ... 249
15.4 Creating an Index.. 252
15.5 Creating a Relation ... 254
15.6 Creating a QueryDef ... 256

Chapter 16. Programming DAO: Data Manipulation Language 260
16.1 Recordset Objects ... 260
16.2 Opening a Recordset ... 261
16.3 Moving Through a Recordset ... 262
16.4 Finding Records in a Recordset .. 266
16.5 Editing Data Using a Recordset.. 268

Part VI: ActiveX Data Objects ... 273
17. ADO and OLE DB.. 274

17.1 What Is ADO?... 274
17.2 Installing ADO.. 275
17.3 ADO and OLE DB.. 276
17.4 The ADO Object Model.. 279
17.5 Finding OLE DB Providers .. 314
17.6 A Closer Look at Connection Strings ... 319
17.7 An Example: Using ADO over the Web... 332

Chapter 18. ADOX: Jet Data Definition in ADO... 337
18.1 The ADOX Object Model... 337

Part VII: Programming Problems ... 345
Chapter 19. Some Common Data Manipulation Problems... 346

19.1 Running Sums... 346
19.2 Overlapping Intervals I ... 349
19.3 Overlapping Intervals II .. 350
19.4 Making Assignments with Default ... 353
19.5 Time to Completion I.. 355
19.6 Time to Completion II .. 356
19.7 Time to Completion III—A MaxMin Problem... 358
19.8 Vertical to Horizontal ... 361
19.9 A Matching Problem... 363
19.10 Equality of Sets ... 364

Part VIII: Appendixes ... 367
Appendix A. DAO 3.0/3.5 Collections, Properties, and Methods.............................. 368

A.1 DAO Classes .. 369
A.2 A Collection Object ... 369
A.3 Connection Object (DAO 3.5 Only) .. 370
A.4 Container Object .. 371
A.5 Database Object ... 371
A.6 DBEngine Object ... 372
A.7 Document Object ... 374
A.8 Error Object.. 374
A.9 Field Object.. 374
A.10 Group Object.. 375
A.11 Index Object... 376
A.12 Parameter Object.. 376
A.13 Property Object .. 376
A.14 QueryDef Object .. 377
A.15 Recordset Object .. 378

A.16 Relation Object .. 380
A.17 TableDef Object... 380
A.18 User Object .. 381
A.19 Workspace Object .. 381

Appendix B. The Quotient: An Additional Operation of the Relational Algebra 383
B.1 Step 1.. 384
B.2 Step 2.. 384
B.3 Step 3.. 385

Appendix C. Open Database Connectivity (ODBC) .. 386
C.1 Introduction .. 386
C.2 The ODBC Driver Manager... 387
C.3 The ODBC Driver .. 388
C.4 Data Sources... 389
C.5 Getting ODBC Driver Help.. 397
C.6 Getting ODBC Information Using Visual Basic.. 397

Appendix D. Obtaining or Creating the Sample Database ... 406
D.1 Creating the Database .. 407
D.2 Creating the BOOKS Table ... 408
D.3 Creating the AUTHORS Table .. 409
D.4 Creating the PUBLISHERS Table... 410
D.5 Creating the BOOK/AUTHOR Table.. 411
D.6 Backing Up the Database... 412
D.7 Entering and Running the Sample Programs ... 413

Appendix E. Suggestions for Further Reading ... 415
Colophon... 416

Copyright

Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 1005 Gravenstein Highway
North, Sebastopol, CA 95472.

O’Reilly & Associates books may be purchased for educational, business,
or sales promotional use. Online editions are also available for most titles
(http://safari.oreilly.com). For more information contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
are registered trademarks of O’Reilly & Associates, Inc. ActiveX,
Microsoft, Visual Basic, Windows, and Windows NT are registered
trademarks of Microsoft Corporation. Many of the designations used by

manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly &
Associates, Inc. was aware of a trademark claim, the designations have
been printed in caps or initial caps. The association between the image of a
tamandua and the topic of Access database design and programming is a
trademark of O’Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the
publisher and the author assume no responsibility for errors or omissions,
or for damages resulting from the use of the information contained herein.

Full Description

Access Database Design & Programming takes you behind the details of the Access
interface, focusing on the general knowledge necessary for Access power users or
developers to create effective database applications.

When using software products with graphical interfaces, we frequently focus so much on
the interface that we forget about the general concepts that allow us to understand and use
the software effectively. In particular, this book focuses on three areas:

• Database design. The book provides an enjoyable, informative overview of
database design that carefully shows you how to normalize tables to eliminate
redundancy without losing data.

• Queries. The book examines multi-table queries (i.e.,various types of joins) and
shows how to implement them indirectly by using the Access interface or directly
by using Access SQL.

• Programming. The book examines the VBA integrated development environment
(IDE). It then goes on to provide an excellent introduction to Data Access Objects
(DAO), ActiveX Data Objects (ADO), and ADO Extensions for Data Definition
and Security (ADOX). These sections serve as a handy introduction and primer
for basic database operations,such as modifying a table under program control,
dynamically adding and deleting a record, and repositioning a record pointer. The
concluding chapter focuses on common programming problems, such as
computing running sums and comparing two sets.

Unlike other Access books that take the long, detailed approach to every topic of
concern to Access programmers, Access Database Design & Programming
instead focuses on the core concepts, enabling programmers to develop solid,
effective database applications. This book also serves as a “second course” in
Access that provides a relatively experienced Access user who is new to
programming with the frequently overlooked techniques necessary to develop
successfully in the Microsoft Access environment. Anyone interested in learning
Access in depth, rather than just scraping the surface, will enjoy and benefit
immensely from reading this book.

Steven Roman

Steven Roman is a professor emeritus of mathematics at the California State University,
Fullerton. His previous books with O’Reilly include Access Database Design and
Programming, Writing Excel Macros, and Win32 API Programming with Visual Basic.

O’Reilly Books

• Access Database Design & Programming, June 1997
• Access Database Design & Programming, 2nd Edition,

July 1999
• Access Database Design & Programming, 3rd Edition,

January 2002
• Developing Visual Basic Add-ins, December 1998
• Learning Word Programming, October 1998
• VB .NET Language in a Nutshell, August 2001
• Win32 API Programming with Visual Basic, November

1999
• Writing Excel Macros, May 1999
• Writing Word Macros, October 1999

O’Reilly Articles

• Access Design and Programming Tips
February 2002

• Pulling Stock Quotes into Microsoft Excel
December 2001

• VB .NET Language in a Nutshell: What’s New and
Different in VB .NET
October 2001

Preface
Preface to the Third Edition

As with the second edition, let me begin by thanking all of those readers who have helped
to make this book so successful.

The third edition of the book includes two new chapters; the first of which is Chapter 18.
With the sad and, in my opinion, highly unfortunate demise of DAO at Microsoft’s
hands, it seemed necessary to bring the book up to speed on that aspect of ADO that
gives the programmer most of the functionality of the Data Definition Language (DDL)
portion of DAO.

ADOX is an acronym for ADO Extensions for Data Definition and Security. When
making comparisons between ADO and DAO, proponents of DAO will point out that
ADO does not include features for data definition—that is, features that can be used to
create and alter databases and their components (tables, columns, indexes, etc.). This is
precisely the purpose of ADOX. (Our concern here is with ADOX as it relates to Jet.)

Unfortunately, ADOX is not a complete substitute for DAO’s data-definition features.
For example, query creation in ADOX has a serious wrinkle. Namely, a query created
using ADOX will not appear in the Access user interface! I elaborate on this in Chapter
18.

The other new chapter for the third edition is Chapter 19. In this chapter, I present a
number of problems that are commonly encountered when dealing with data, along with
their solutions couched in terms of SQL. I hope that this chapter will provide some good
food for thought, as well as useful examples for your own applications.

Preface to the Second Edition

Let me begin by thanking all of those readers who have helped to make the first edition
of this book so very successful. Also, my sincere thanks go to the many readers who have
written some very flattering reviews of the first edition on amazon.com and on O’Reilly’s
own web site. Keep them coming.

With the recent release of Office 2000, and in view of the many suggestions I have
received concerning the first edition of the book, it seemed like an appropriate time to do
a second edition. I hope that readers will find the second edition of the book to be even
more useful than the first edition.

Actually, Access has undergone only relatively minor changes in its latest release, at least
with respect to the subject matter of this book. Changes for the Second Edition are:

• A discussion (Chapter 8 and Chapter 9 of Access’ new VBA Integrated
Development Environment. At last Access shares the same IDE as Word, Excel,
and PowerPoint!)

• In response to reader requests, I have significantly expanded the discussion of the
VBA language itself, which now occupies Chapter 10, Chapter 11, Chapter 12,
and Chapter 13.

• Chapter 17, which is new for this edition, provides a fairly complete discussion of
ActiveX Data Objects (ADO). This is also accompanied by an appendix on Open
Database Connectivity (ODBC), which is still intimately connected with ADO.

As you may know, ADO is a successor to DAO (Data Access Objects) and is
intended to eventually replace DAO, although I suspect that this will take
considerable time. While the DAO model is the programming interface for the Jet
database engine, ADO has a much more ambitious goal—it is a programming
model for a universal data access interface called OLE DB. Simply put, OLE DB
is a technology to connect to any type of data—traditional database data,
spreadsheet data, web-based data, text data, email, and so on.

Frankly, while the ADO object model is smaller than that of DAO, the
documentation is much less complete. As a result, ADO seems far more confusing
than DAO, especially when it comes to issues such as how to create the infamous
connection strings. Accordingly, I have spent considerable time discussing this
and other difficult issues, illustrating how to use ADO to connect to Jet databases,
Excel spreadsheets, and text files.

I should also mention that while the Access object model has undergone significant
changes, as you can see by looking at Figure 14-7, the DAO object model has changed
only in one respect. In particular, DAO has been upgraded from Version 3.5 to Version
3.6. Here is what Microsoft itself says about this new release:

DAO 3.6 has been updated to use the Microsoft® Jet 4.0 database engine.
This includes enabling all interfaces for Unicode. Data is now provided in
unicode (internationally enabled) format rather than ANSI. No other new
features were implemented.

Thus, DAO 3.6 does not include any new objects, properties, or methods.

This book appears to cover two separate topics—database design and database
programming. It does. It would be misleading to claim that database design and database
programming are intimately related. So why are they in the same book?

The answer is that while these two subjects are not related, in the sense that knowledge of
one leads directly to knowledge of the other, they are definitely linked, by the simple fact
that a power database user needs to know something about both of these subjects to
effectively create, use, and maintain a database.

In fact, it might be said that creating and maintaining a database application in Microsoft
Access is done in three broad steps—designing the database, creating the basic graphical
interface (i.e., setting up the tables, queries, forms, and reports), and then getting the
application to perform in the desired way.

The second of these three steps is fairly straightforward, for it is mostly a matter of
becoming familiar with the relatively easy-to-use Access graphical interface. Help is
available for this through Access’ online help system, as well as through the dozens of
overblown 1,000-plus-page tomes devoted to Microsoft Access. Unfortunately, none of
the books that I have seen does any real justice to the other two steps. Hence this book.

To be a bit more specific, the book has two goals:

• To discuss the basic concepts of relational database theory and design
• To discuss how to extract the full power of Microsoft Access, through

programming in the Access Structured Query Language (SQL) and the Data
Access Object (DAO) component of the Microsoft Jet database engine

To accomplish the first goal, I describe the how and why of creating an efficient database
system, explaining such concepts as:

• Entities and entity classes
• Keys, superkeys, and primary keys
• One-to-one, one-to-many, and many-to-many relationships
• Referential integrity
• Joins of various types (inner joins, outer joins, equi-joins, semi-joins, -joins, and

so on)
• Operations of the relational algebra (selection, projection, join, union,

intersection, and so on)
• Normal forms and their importance

Of course, once you have a basic understanding of how to create an effective relational
database, you will want to take full advantage of that database, which can only be done
through programming. In addition, many of the programming techniques I discuss in this
book can be used to create and maintain a database from within other applications, such
as Microsoft Visual Basic, Microsoft Excel, and Microsoft Word.

I should hasten to add that this book is not a traditional cookbook for learning Microsoft
Access. For instance, I do not discuss forms and reports, nor do I discuss such issues as
database security, database replication, and multiuser issues. This is why I’ve been able
to keep the book to a (hopefully) readable few hundred pages.

This book is for Access users at all levels. Most of it applies equally well to Access 2.0,
Access 7.0, Access 8.0, Access 9.0 (which is a component of Microsoft Office 2000), and
Access 2002 (which is included with Office XP). I will assume that you have a passing

acquaintance with the Access development environment, however. For instance, I assume
that you already know how to create a table or a query.

Throughout the book, I will use a specific modest-sized example to illustrate the concepts
discussed. The example consists of a database called LIBRARY that is designed to hold
data about the books in a certain library. Of course, the amount of data used will be kept
artificially small—just enough to illustrate the concepts.

The Book’s Audience

Most books on Microsoft Access focus primarily on the Access interface and its
components, giving little attention to the more important issue of database design. After
all, once the database application is complete, the interface components play only a small
role, whereas the design continues to affect the usefulness of the application.

In attempting to restore the focus on database design, this book aspires to be a kind of
“second course” in Microsoft Access—a book for Access users who have mastered the
basics of the interface, are familiar with such things as creating tables and designing
queries, and now want to move beyond the interface to create programmable Access
applications. This book provides a firm foundation on which you can begin to build your
database-application development skills.

At the same time that this book is intended primarily as an introduction to Access for
aspiring database-application developers, it also is of interest to more experienced Access
programmers. For the most part, such topics as normal forms or the details of the
relational algebra are almost exclusively the preserve of the academic world. By
introducing these topics to the mainstream Access audience, Access Database Design and
Programming offers a concise, succinct, readable guide that experienced Access
developers can turn to whenever some of the details of database design or SQL
statements escape them.

The Sample Code

To follow along with the sample code, you will need to set a reference in the Visual Basic
Editor to the DAO object model and the ADO and ADOX object models. Once in the VB
Editor, go to the Tools menu, choose References, and select the references entitled:

• Microsoft DAO 3.XX Object Model
• Microsoft ActiveX Data Objects 2.X Library
• Microsoft ADO Ext. 2.5 for DLL and Security

Organization of This Book

Access Database Design and Programming consists of 19 chapters that are divided into
six parts. In addition, there are five appendixes.

Part I

The first part of the book focuses on designing a database—that is, on the process of
decomposing data into multiple tables.

Chapter 1 examines the problems involved in using a flat database—a single table that
holds all of an application’s data—and makes a case for using instead a relational-
database design consisting of multiple tables. But because relational-database
applications divide data into multiple tables, it is necessary to reconstitute that data in
ways that are useful—that is, to piece data back together from their multiple tables.
Hence, there is a need for query languages and programming, which are in many ways an
integral part of designing a database.

Chapter 2 introduces some of the basic concepts of relational-database management, such
as entities, entity classes, keys, superkeys, and one-to-many and many-to-many
relationships.

Chapter 3 shows how these general concepts and principles are applied in designing a
real-world database. In particular, the chapter shows how to decompose a sample flat
database into a well-designed relational database.

Chapter 4 continues the discussion begun in Chapter 3 by focusing on the major problem
of database design, that of eliminating data redundancy without losing the essential
relationships between items of data. The chapter introduces the notion of functional
dependencies and examines each of the major forms for database normalization.

Once a database is properly normalized or its data is broken up into discrete tables, it
must, almost paradoxically, be pieced back together again to be of any value at all. The
next part of the book focuses on the query languages that are responsible for doing this.

Part II

Chapter 5 introduces procedural query languages based on the relational algebra and
nonprocedural query languages based on the relational calculus, then focuses on the
major operations—like unions, intersections, and inner and outer joins—that are available
using the relational algebra.

Chapter 6 shows how the relational algebra is implemented in Microsoft Access, both in
the Access Query Design window and in Access SQL. Interestingly, the Access Query
Design window is really a frontend that constructs Access SQL statements, which
ordinarily are hidden from the user or developer. However, it does not offer a complete
replacement for Access SQL—a number of operations can only be performed using SQL
statements, and not through the Access graphical interface. This makes a basic
knowledge of Access SQL important.

While SQL is a critical tool for getting at data in relational database management systems
and returning recordsets that offer various views of their data, it is also an unfriendly tool.
The Access Query Design window, for example, was developed primarily to hide the
implementation of Access SQL from both the user and the programmer. But Access SQL,
and the graphical query facilities that hide it, do not form an integrated environment on
which the database programmer can rely to shield the user from the details of an
application’s implementation. Instead, creating this integrated application environment is
the responsibility of a programming language (Visual Basic for Applications or VBA)
and an interface between the programming language and the database engine (DAO).
Parts IV and V examine these two tools for application development.

Part III

Part III consists of a single chapter, Chapter 7, that describes the role of programming in
database-application development and introduces the major tools and concepts needed to
create an Access application.

Part IV

When programming in Access VBA, you use the VBA integrated development
environment (or IDE) to write Access VBA code. The former topic is covered in Chapter
8, and Chapter 9, while the following three chapters are devoted to the latter. In
particular, separate chapters are devoted to VBA variables, data types, and constants
(Chapter 10), to VBA functions and subroutines (Chapter 11), to VBA statements and
intrinsic functions (Chapter 12), and to statements that alter the flow of program
execution (Chapter 13).

Part V

Chapter 14 introduces Data Access Objects, or DAO. DAO provides the interface
between Visual Basic for Applications and the Jet database engine used by Access. The
chapter provides an overview of working with objects in VBA before examining the
DAO object model and the Microsoft Access object model.

Chapter 15 focuses on the subset of DAO that is used to define basic database objects.
The chapter discusses operations such as creating tables, indexes, and query definitions
under program control.

Chapter 16 focuses on working with recordset objects and on practical record-oriented
operations. The chapter discusses such topics as recordset navigation, finding records,
and editing data.

Part VI

Chapter 17 explores ActiveX Data Objects, Microsoft’s newest technology for data
access, which offers the promise of a single programmatic interface to data in any format

and in any location. The chapter examines when and why you might want to use ADO
and shows you how to take advantage of it in your code.

Chapter 18 discusses the role of ADOX in various data-definition operations, such as
creating a Jet database and creating and altering Jet database tables.

Part VII

Chapter 19 presents a number of problems commonly encountered when dealing with
data, along with their solutions.

Part VIII

Appendix A is intended as a quick reference guide to DAO 3.0 (which is included with
Access for Office 95) and DAO 3.5 (which is included with Access for Office 97).

Appendix B examines an additional, little-used query operation that was not discussed in
Chapter 5.

Appendix C examines how to use ODBC to connect to a data source.

Appendix D contains instructions for either downloading a copy of the sample files from
the book or creating them yourself.

Appendix E lists some of the major works that provide in-depth discussion of the issues
of relational database design and normalization.

Conventions in This Book

Throughout this book, we’ve used the following typographic conventions:

UPPERCASE

Indicates a database name (e.g., LIBRARY) or the name of a table within a
database (e.g., BOOKS). Keywords in SQL statements (e.g., SELECT) also
appear in uppercase, as well as types of data (e.g., LONG), commands (e.g.,
CREATE VALUE), options (e.g., HAVING), etc.

Constant width

Indicates a language construct such as a language statement, a constant, or an
expression. Lines of code also appear in constant width, as do function and
method prototypes in body text.

Constant width italic

Indicates parameter and variable names in body text. In syntax statements or
prototypes, constant width italic indicates replaceable parameters.

Italic

Is used in normal text to introduce a new term, to represent menu options, and to
indicate object names (e.g., QueryDef), collection names, the names of entity
classes (e.g., the Books entity class), and VBA keywords.

Obtaining Updated Information

The sample tables in the LIBRARY database, as well as the sample programs presented
in the book, are available online and can be freely downloaded. Alternately, if you don’t
have access to the Internet by either a web browser or a file transfer protocol (FTP)
client, and if you don’t use an email system that allows you to send and receive email
from the Internet, you can create the database file and its tables yourself. For details, see
Appendix D.

Updates to the material contained in the book, along with other Access-related
developments, are available from the O’Reilly web site,
http://www.oreilly.com/catalog/accessdata3/. Simply follow the links to the Windows
section.

Request for Comments

Please address comments and questions concerning this book to the publisher:

O’Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/accessdata3/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:

http://www.oreilly.com

Acknowledgments

My thanks to Ron Petrusha, editor at O’Reilly & Associates, for making many useful
suggestions that improved this book.

Also thanks to the production staff at O’Reilly & Associates, including Jeffrey Holcomb,
the production editor, Edie Freedman for the cover design, David Futato for interior
design, Mihaela Maier for Tools support, Rob Romano and Jessamyn Read for the
illustrations, Rachel Wheeler, Matt Hutchinson, and Claire Cloutier for quality and sanity
control, and Brenda Miller for the index.

Part I: Database Design

Chapter 1. Introduction
1.1 Database Design

As mentioned in the Preface, one purpose of this book is to explain the basic concepts of
modern relational-database theory and show how these concepts are realized in Microsoft
Access. Allow me to amplify on this rather lofty goal.

To take a very simple view, which will do nicely for the purposes of this introductory
discussion, a database is just a collection of related data. A database management
system, or DBMS, is a system that is designed for two main purposes:

• To add, delete, and update the data in the database
• To provide various ways to view (on screen or in print) the data in the database

If the data is simple and there is not very much of it, then a database can consist of a
single table. In fact, a simple database can easily be maintained even with a word
processor!

To illustrate, suppose you want to set up a database for the books in a library. Purely for
the sake of illustration, suppose the library contains 14 books. The same discussion
would apply to a library of perhaps a few hundred books. Table 1-1 shows the
LIBRARY_FLAT database in the form of a single table.

Table 1-1. The LIBRARY_FLAT sample database
ISBN Title AuID[1] AuName AuPhone PubID[1] PubName PubPhone Price

1-1111-
1111-1 C++ 4 Roman 444-444-

4444 1 Big House 123-456-
7890 $29.95

0-99-
999999-9 Emma 1 Austen 111-111-

1111 1 Big House 123-456-
7890 $20.00

0-91-
335678-7

Faerie
Queene 7 Spenser 777-777-

7777 1 Big House 123-456-
7890 $15.00

0-91-
045678-5 Hamlet 5 Shakespeare 555-555-

5555 2 Alpha Press 999-999-
9999 $20.00

0-103-
45678-9 Iliad 3 Homer 333-333-

3333 1 Big House 123-456-
7890 $25.00

0-12-
345678-9 Jane Eyre 1 Austen 111-111-

1111 3 Small
House

714-000-
0000 $49.00

0-99-
777777-7 King Lear 5 Shakespeare 555-555-

5555 2 Alpha Press 999-999-
9999 $49.00

0-555-
55555-9 Macbeth 5 Shakespeare 555-555-

5555 2 Alpha Press 999-999-
9999 $12.00

[1] Columns labeled AuID and PubID are included for identitification purposes, i.e., to identify an author or a publisher uniquely. In any case,
their presence or absence will not affect the current discussion.

0-11-
345678-9 Moby-Dick 2 Melville 222-222-

2222 3 Small
House

714-000-
0000 $49.00

0-12-
333433-3 On Liberty 8 Mill 888-888-

8888 1 Big House 123-456-
7890 $25.00

0-321-
32132-1 Balloon 13 Sleepy 321-321-

1111 3 Small
House

714-000-
0000 $34.00

0-321-
32132-1 Balloon 11 Snoopy 321-321-

2222 3 Small
House

714-000-
0000 $34.00

0-321-
32132-1 Balloon 12 Grumpy 321-321-

0000 3 Small
House

714-000-
0000 $34.00

0-55-
123456-9 Main Street 10 Jones 123-333-

3333 3 Small
House

714-000-
0000 $22.95

0-55-
123456-9 Main Street 9 Smith 123-222-

2222 3 Small
House

714-000-
0000 $22.95

0-123-
45678-0 Ulysses 6 Joyce 666-666-

6666 2 Alpha Press 999-999-
9999 $34.00

1-22-
233700-0 Visual Basic 4 Roman 444-444-

4444 1 Big House 123-456-
7890 $25.00

LIBRARY_FLAT (Table 1-1) was created using Microsoft Word. For such a simple
database, Word has enough power to fulfill the two goals mentioned earlier. Certainly,
adding, deleting, and editing the table presents no particular problems (provided we know
how to manage tables in Word). In addition, if we want to sort the data by author, for
example, we can just select the table and choose Sort from the Table menu in Microsoft
Word. Extracting a portion of the data in the table (i.e., creating a view) can be done by
making a copy of the table and then deleting appropriate rows and/or columns.

1.1.1 Why Use a Relational-Database Design?

Thus, maintaining a simple, so-called flat database consisting of a single table does not
require much knowledge of database theory. On the other hand, most databases worth
maintaining are quite a bit more complicated than that. Real-life databases often have
hundreds of thousands or even millions of records, with data that is very intricately
related. This is where using a full-fledged relational-database program becomes essential.
Consider, for example, the Library of Congress, which has over 16 million books in its
collection. For reasons that will become apparent soon, a single table simply will not do
for this database!

1.1.1.1 Redundancy

Using a single table to maintain a database leads to problems of unnecessary repetition of
data, that is, redundancy. Some repetition of data is always necessary, as we will see, but
the idea is to remove as much unnecessary repetition as possible.

The redundancy in the LIBRARY_FLAT table (Table 1-1) is obvious. For instance, the
name and phone number of Big House publishers is repeated six times in the table, and
Shakespeare’s phone number is repeated thrice.

In an effort to remove as much redundancy as possible from a database, a database
designer must split the data into multiple tables. Here is one possibility for the
LIBRARY_FLAT example, which splits the original database into four separate tables.

• A BOOKS table, shown in Table 1-2, in which each book has its own record
• An AUTHORS table, shown in Table 1-3, in which each author has his own

record
• A PUBLISHERS table, shown in Table 1-4, in which each publisher has its own

record
• BOOK/AUTHOR table, shown in Table 1-5, the purpose of which we will

explain a bit later

Table 1-2. The BOOKS table from the LIBRARY_FLAT database
ISBN Title PubID Price

0-555-55555-9 Macbeth 2 $12.00
0-91-335678-7 Faerie Queene 1 $15.00
0-99-999999-9 Emma 1 $20.00
0-91-045678-5 Hamlet 2 $20.00
0-55-123456-9 Main Street 3 $22.95
1-22-233700-0 Visual Basic 1 $25.00
0-12-333433-3 On Liberty 1 $25.00
0-103-45678-9 Iliad 1 $25.00
1-1111-1111-1 C++ 1 $29.95
0-321-32132-1 Balloon 3 $34.00
0-123-45678-0 Ulysses 2 $34.00
0-99-777777-7 King Lear 2 $49.00
0-12-345678-9 Jane Eyre 3 $49.00
0-11-345678-9 Moby-Dick 3 $49.00

Table 1-3. The AUTHORS table from the LIBRARY_FLAT database
AuID AuName AuPhone

1 Austen 111-111-1111
12 Grumpy 321-321-0000
3 Homer 333-333-3333
10 Jones 123-333-3333
6 Joyce 666-666-6666
2 Melville 222-222-2222
8 Mill 888-888-8888
4 Roman 444-444-4444
5 Shakespeare 555-555-5555
13 Sleepy 321-321-1111
9 Smith 123-222-2222
11 Snoopy 321-321-2222
7 Spenser 777-777-7777

Table 1-4. The PUBLISHERS table from the LIBRARY_FLAT database
PubID PubName PubPhone

1 Big House 123-456-7890
2 Alpha Press 999-999-9999
3 Small House 714-000-0000

Table 1-5. The BOOK/AUTHOR table from the LIBRARY_FLAT database
ISBN AuID

0-103-45678-9 3
0-11-345678-9 2
0-12-333433-3 8
0-12-345678-9 1
0-123-45678-0 6
0-321-32132-1 11
0-321-32132-1 12
0-321-32132-1 13
0-55-123456-9 9
0-55-123456-9 10
0-555-55555-9 5
0-91-045678-5 5
0-91-335678-7 7
0-99-777777-7 5
0-99-999999-9 1
1-1111-1111-1 4
1-22-233700-0 4

Note that now the name and phone number of Big House appears only once in the
database (in the PUBLISHERS table), as does Shakespeare’s phone number (in the
AUTHORS table).

Of course, there is still some duplicated data in the database. For instance, the PubID
information appears in more than one place in these tables. As mentioned earlier, we
cannot eliminate all duplicate data and still maintain the relationships between the data.

To get a feel for the reduction in duplicate data achieved by the four-table approach,
imagine (as is reasonable) that the database also includes the address of each publisher.
Then Table 1-1 would need a new column containing 14 addresses—many of which are
duplicates. On the other hand, the four-table database needs only one new column in the
PUBLISHERS table, adding a total of three distinct addresses.

To drive the difference home, consider the 16-million-book database of the Library of
Congress. Suppose the database contains books from 10,000 different publishers. A
publisher’s address column in a flat-database design would contain 16 million addresses,
whereas a multitable approach would require only 10,000 addresses. Now, if the average
address is 50 characters long, then the multitable approach would save:

(16,000,000 - 10,000) x 50 = 799 million characters

Assuming that each character takes 2 bytes (in the Unicode that is used internally by
Microsoft Access), the single-table approach wastes about 160 gigabytes of space just for
the address field!

Indeed, the issue of redundancy alone is quite enough to convince a database designer to
avoid the flat-database approach. However, there are several other problems with flat
databases, which we now discuss.

1.1.1.2 Multiple-value problems

It is clear that some books in our database are authored by multiple authors. This leaves
us with three choices in a single-table flat database:

• We can accommodate multiple authors with multiple rows—one for each author,
as in the LIBRARY_FLAT table (Table 1-1) for the books Balloon and Main
Street.

• We can accommodate multiple authors with multiple columns in a single row—
one for each author.

• We can include all authors’ names in one column of the table.

The problem with the multiple-row choice is that all of the data about a book must be
repeated as many times as there are authors of the book—an obvious case of redundancy.
The multiple-column approach presents the problem of guessing how many Author
columns we will ever need and creates a lot of wasted space (empty fields) for books with
only one author. It also creates major programming headaches.

The third choice is to include all authors’ names in one cell, which can lead to trouble of
its own. For example, it becomes more difficult to search the database for a single author.
Worse yet, how can we create an alphabetical list of the authors in the table?

1.1.1.3 Update anomalies

In order to update, say, a publisher’s phone number in the LIBRARY_FLAT database
(Table 1-1), it is necessary to make changes in every row containing that number. If we
miss a row, we have produced a so-called update anomaly , resulting in an unreliable
table.

1.1.1.4 Insertion anomalies

Difficulties will arise if we wish to insert a new publisher in the LIBRARY_FLAT
database (Table 1-1), but we do not yet have information about any of that publisher’s
books. We could add a new row to the existing table and place NULL values in all but
the three publisher-related columns, but this may lead to trouble. (A NULL is a value
intended to indicate a missing or unknown value for a field.) For instance, adding several
such publishers means that the ISBN column, which should contain unique data, will

contain several NULL values. This general problem is referred to as an insertion
anomaly.

1.1.1.5 Deletion anomalies

In contrast to the preceding problem, if we delete all book entries for a given publisher,
for instance, then we will also lose all information about that publisher. This is a deletion
anomaly .

1.1.2 Complications of Relational-Database Design

This list of potential problems should be enough to convince us that the idea of using a
single-table database is generally not smart. Good database design dictates that the data
be divided into several tables and that relationships be established between these tables.
Because a table describes a “relation,” such a database is called a relational database. On
the other hand, relational databases do have their complications. Here are a few
examples.

1.1.2.1 Avoiding data loss

One complication in designing a relational database is figuring out how to split the data
into multiple tables so as not to lose any information. For instance, if we had left out the
BOOK/AUTHOR table (Table 1-5) in our previous example, there would be no way to
determine the author of each book. In fact, the sole purpose of the BOOK/AUTHOR
table is so that we do not lose the book/author relationship!

1.1.2.2 Maintaining relational integrity

We must be careful to maintain the integrity of the various relationships between tables
when changes are made. For instance, if we decide to remove a publisher from the
database, it is not enough just to remove that publisher from the PUBLISHERS table, for
this would leave dangling references to that publisher in the BOOKS table.

1.1.2.3 Creating views

When the data is spread throughout several tables, it becomes more difficult to create
various views of the data. For instance, we might want to see a list of all publishers that
publish books priced under $10.00. This requires gathering data from more than one
table. The point is that, by breaking data into separate tables, we must often go to the
trouble of piecing the data back together in order to get a comprehensive view of the
data!

1.1.3 Summary

It is clear that to avoid redundancy problems and various unpleasant anomalies, a
database needs to contain multiple tables with relationships defined between these tables.
On the other hand, this raises some issues, such as how to design the tables in the

database without losing any data, and how to piece together the data from multiple tables
to create various views of that data. The main goal of the first part of this book is to
explore these fundamental issues.

1.2 Database Programming

The motivation for learning database programming is quite simple—power. If you want
to have as much control over your databases as possible, you will need to do some
programming. In fact, even some simple things require programming. For instance, there
is no way to retrieve the list of fields of a given table using the Access graphical
interface—you can only get this list through programming. (You can view such a list in
the table-design mode of the table, but you cannot get access to this list in order to, for
example, present the end-user with the list and ask if she wishes to make any changes to
it.)

In addition, programming may be the only way to access and manipulate a database from
within another application. For instance, if you are working in Microsoft Excel, you can
create and manipulate an Access database with as much power as with Access itself, but
only through programming! The reason is that Excel does not have the capability to
render graphical representations of database objects. Instead you can create the database
within Access and then manipulate it programmatically from within Excel.

It is also worth mentioning that programming can give you a great sense of satisfaction.
There is nothing more pleasing than watching a program that you have written step
through the rows of a table and make certain changes that you have requested. It is often
easier to write a program to perform an action such as this than to remember how to
perform the same action using the graphical interface. In short, programming is not only
empowering, but it also sometimes provides the simplest route to a particular end.

And let us not forget that programming can be just plain fun!

Chapter 2. The Entity-Relationship Model of a
Database
Let us begin our discussion of database design by looking at an informal database model
called the entity-relationship model . This model of a relational database provides a
useful perspective, especially for the purposes of the initial database design.

I will illustrate the general principles of this model with the LIBRARY database example,
which I will carry through the entire book. This example database is designed to hold
data about the books in a certain library. The amount of data we will use will be kept
artificially small—just enough to illustrate the concepts. (In fact, at this point, you may
want to take a look at the example database. For details on downloading it from the
Internet, or on using Microsoft Access to create it yourself, see Appendix D.) In the next
chapter, we will actually implement the entity-relationship (E/R) model for our
LIBRARY database.

2.1 What Is a Database?

A database may be defined as a collection of persistent data. The term persistent is
somewhat vague, but is intended to imply that the data has a more-or-less independent
existence or that it is semipermanent. For instance, data stored on paper in a filing
cabinet, or stored magnetically on a hard disk, CD-ROM, or computer tape is persistent,
whereas data stored in a computer’s memory is generally not considered to be persistent.
(The term permanent is a bit too strong, since very little in life is truly permanent.)

Of course, this is a very general concept. Most real-life databases consist of data that
exist for a specific purpose and are thus persistent.

2.2 Entities and Their Attributes

The purpose of a database is to store information about certain types of objects. In
database language, these objects are called entities. For example, the entities of the
LIBRARY database include books, authors, and publishers.

It is very important at the outset to make a distinction between the entities that are
contained in a database at a given time and the world of all possible entities that the
database might contain. The reason this is important is that the contents of a database are
constantly changing and we must make decisions based not just on what is contained in a
database at a given time, but on what might be contained in the database in the future.

For example, at a given time, our LIBRARY database might contain 14 book entities.
However, as time goes on, new books may be added to the database, and old books may
be removed. Thus, the entities in the database are constantly changing. If, for example,
based on the fact that the 14 books currently in the database have different titles, we
decide to use the title to identify each book uniquely, we may be in for some trouble

when, later on, a different book arrives at the library with the same title as a previous
book.

The world of all possible entities of a specific type that a database might contain is
referred to as an entity class. We will use italics to denote entity classes. Thus, for
instance, the world of all possible books is the Books entity class, and the world of all
possible authors is the Authors entity class.

We emphasize that an entity class is just an abstract description of something, whereas an
entity is a concrete example of that description. The entity classes in our very modest
LIBRARY example database are (at least so far):

• Books
• Authors
• Publishers

The set of entities of a given entity class that are in the database at a given time is called
an entity set. To clarify the difference between entity set and entity class with an
example, consider the BOOKS table in the LIBRARY database, which is shown in Table
2-1.

Table 2-1. The BOOKS table from the LIBRARY database
ISBN Title Price

0-12-333433-3 On Liberty $25.00
0-103-45678-9 Iliad $25.00
0-91-335678-7 Faerie Queene $15.00
0-99-999999-9 Emma $20.00
1-22-233700-0 Visual Basic $25.00
1-1111-1111-1 C++ $29.95
0-91-045678-5 Hamlet $20.00
0-555-55555-9 Macbeth $12.00
0-99-777777-7 King Lear $49.00
0-123-45678-0 Ulysses $34.00
0-12-345678-9 Jane Eyre $49.00
0-11-345678-9 Moby-Dick $49.00
0-321-32132-1 Balloon $34.00
0-55-123456-9 Main Street $22.95

The entities are books, the entity class is the set of all possible books, and the entity set
(at this moment) is the specific set of 14 books listed in the BOOKS table. As mentioned,
the entity set will change as new books (book entities) are added to the table or old ones
are removed. However, the entity class does not change.

Incidentally, if you are familiar with object-oriented programming concepts, you will
recognize the concept of a class. In object-oriented circles, we would refer to an entity
class simply as a class and an entity as an object.

The entities of an entity class possess certain properties, which are called attributes. We
usually refer to these attributes as attributes of the entity class itself. It is up to the
database designer to determine which attributes to include for each entity class. It is these
attributes that will correspond to the fields in the tables of the database.

The attributes of an entity class serve three main purposes:

• Attributes are used to include information that we want in the database. For
instance, we want the title of each book to be included in the database, so we
include a Title attribute for the Books entity class.

• Attributes are used to help uniquely identify individual entities within an entity
class. For instance, we may wish to include a publisher’s ID-number attribute for
the Publishers entity class, to uniquely identify each publisher. If combinations of
other attributes (such as the publisher’s name and publisher’s address) will serve
this purpose, the inclusion of an identifying attribute is not strictly necessary, but
it can still be more efficient to include such an attribute, since often we can create
a much shorter identifying attribute. For instance, a combination of title, author,
publisher, and copyright date would make a very awkward and inefficient
identifying attribute for the Books entity class—much more so than the ISBN
attribute.

• Attributes are used to describe relationships between the entities in different
entity classes. We will discuss this subject in more detail later.

For now, let us list the attributes for the LIBRARY database that we need to supply
information about each entity and to identify each entity uniquely. I will deal with the
issue of describing relationships later. Remember that this example is kept deliberately
small—in real life we would no doubt include many other attributes.

The attributes of the entity classes in the LIBRARY database are:

Books attributes

Title
ISBN
Price

Authors attributes

AuName
AuPhone
AuID

Publishers attributes

PubName
PubPhone

PubID

Let us make a few remarks about these attributes.

• From these attributes alone, there is no direct way to tell who is the author of a
given book, since there is no author-related attribute in the Books entity class. A
similar statement applies to determining the publisher of a book. Thus, we will
need to add more attributes in order to describe these relationships.

• The ISBN (International Standard Book Number) of a book serves to identify the
book uniquely, since no two books have the same ISBN (at least in theory). On
the other hand, the Title alone does not uniquely identify the book, since many
books have the same title. In fact, the sole purpose of ISBNs (here and in the real
world) is to identify books uniquely. Put another way, the ISBN is a quintessential
identifying attribute!

• We may reasonably assume that no two publishers in the world have the same
name and the same phone number. Hence, these two attributes together uniquely
identify the publisher. Nevertheless, we have included a publisher’s ID attribute
to make this identification more convenient.

Let us emphasize that an entity class is a description, not a set. For instance, the entity
class Books is a description of the attributes of the entities that we identify as books. A
Books entity is the “database version” of a book. It is not a physical book, but rather a
book as defined by the values of its attributes. For instance, the following is a Books
entity:

Title = Gone With the Wind
ISBN = 0-12-345678-9
Price = $24.00

Now, there is certainly more than one physical copy in existence of the book Gone With
the Wind, with this ISBN and price, but that is not relevant to our discussion. As far as
the database is concerned, there is only one Books entity defined by:

Title = Gone With the Wind
ISBN = 0-12-345678-9
Price = $24.00

If we need to model multiple copies of physical books in our database (as a real library
would do), then we must add another attribute to the Books entity class, perhaps called
CopyNumber. Even still, a book entity is just a set of attribute values.

These matters emphasize the point that it is up to the database designer to ensure that the
set of attributes for an entity uniquely identify the entity from among all other entities
that may appear in the database (now and forever, if possible!). For instance, if the Books
entity class included only the Title and Price attributes, there would certainly be cause to
worry that someday we might want to include two books with the same title and price.
While this is allowed in some database-application programs, it can lead to great

confusion and is definitely not recommended. Moreover, it is forbidden by definition in a
true relational database. In other words, no two entities can agree on all of their attributes.
(This is allowed in Microsoft Access, however.)

2.3 Keys and Superkeys

A set of attributes that uniquely identifies any entity from among all possible entities in
the entity class that may appear in the database is called a superkey for the entity class.
Thus, the set {ISBN} is a superkey for the Books entity class, and the sets {PubID} and
{PubName, PubPhone} are both superkeys for the Publishers entity class.

Note that there is a bit of subjectivity in this definition of superkey, since it depends
ultimately on our decision about which entities may ever appear in the database, and this
is probably something of which we cannot be absolutely certain. Consider, for instance,
the Books entity class. There is no law that says all books must have an ISBN (and many
books do not). Also, there is no law that says that two books cannot have the same ISBN.
(The ISBN is assigned, at least in part, by the publisher of the book.) Thus, the set
{ISBN} is a superkey only if we are willing to accept the fact that all books that the
library purchases have distinct ISBNs or that the librarian will assign a uniqueersatz
ISBN to any books that do not have a real ISBN.

It is important to emphasize that the concept of a superkey applies to entity classes, and
not entity sets. Although we can define a superkey for an entity set, this is of limited use,
since what may serve to identify the entities uniquely in a particular entity set may fail to
do so if we add new entities to the set. To illustrate, the Title attribute does serve to
identify each of the 14 books uniquely in the BOOKS table. Thus, {Title} is a superkey
for the entity set described by the BOOKS table. However, {Title} is not a superkey for
the Books entity class, since there are many distinct books with the same title.

We have remarked that {ISBN} is a superkey for the Books entity class. Of course, so is
{Title, ISBN}, but it is wasteful and inefficient to include the Title attribute purely for the
sake of identification.

Indeed, one of the difficulties with superkeys is that they may contain more attributes
than is absolutely necessary to indentify any entity uniquely. It is more desirable to work
with superkeys that do not have this property. A superkey is called a key when it has the
property that no proper subset of it is also a superkey. Thus, if we remove an attribute
from a key, the resulting set is no longer a superkey. Put more succinctly, a key is a
minimal superkey. Sometimes keys are called candidate keys, since it is usually the case
that we want to select one particular key to use as an identifier. This particular choice is
referred to as the primary key . The primary keys in the LIBRARY database are ISBN,
AuID, and PubID.

I should remark that a key may contain more than one attribute, and different keys may
have different numbers of attributes. For instance, it is reasonable to assume that both

{SocialSecurityNumber} and {FullName, FullAddress, DateofBirth} are keys for a US
Citizens entity class.

2.4 Relationships Between Entities

If we are going to model a database as a collection of entity sets (tables), then we also
need to describe the relationships between these entity sets. For instance, an author
relationship exists between a book and the authors who wrote that book. We might call
this relationship WrittenBy. Thus, Hamlet is WrittenBy Shakespeare.

It is possible to draw a diagram, called an entity-relationship diagram, or E/R diagram,to
illustrate the entity classes in a database model, along with their attributes and
relationships. Figure 2-1 shows the LIBRARY E/R diagram, with an additional entity
class called Contributors (a contributor may be someone who contributes to or writes
only a very small portion of a book, and thus may not be accorded all of the rights of an
author, such as a royalty).

Figure 2-1. The LIBRARY entity-relationship diagram

Note that each entity class is denoted by a rectangle, and each attribute by an ellipse. The
relations are denoted by diamonds. We have included the Contributors entity class in this
model merely to illustrate a special type of relationship. In particular, since a contributor
is considered an author, there is an IsA relationship between the two entity classes.

The model represented by an E/R diagram is sometimes referred to as a semantic model
since it describes much of the meaning of the database.

2.4.1 Types of Relationships

Referring to Figure 2-1, the symbols 1 and represent the type of relationship between
the corresponding entity classes. (The symbol is read “many.”) Relationships can be
classified into three types. For instance, the relationship between Books and Authors is
many-to-many, meaning that a book may have many authors and an author may write
many books. On the other hand, the relationship from Publishers to Books is one-to-
many, meaning that one publisher may publish many books, but a book is published by at
most one publisher (or so we will assume).

One-to-one relationships, where each entity on each side is related to at most one entity
on the other side of the relationship, are fairly rare in database design. For instance,
consider the Contributors-Authors relationship, which is one-to-one. We could replace
the Contributors class by a contributor attribute of the Authors class, thus eliminating the
need for a separate class and a separate relationship. On the other hand, if the
Contributors class had several attributes that are not shared by the Authors class, then a
separate class may be appropriate.

In Chapter 3 we will actually implement the full E/R model for our LIBRARY database.

Chapter 3. Implementing Entity-Relationship
Models: Relational Databases
An E/R model of a database is an abstract model, visualized through an E/R dia-gram.
For this to be useful, we must translate the abstract model into a concrete one. That is, we
must describe each aspect of the model in the concrete terms that a database program can
manipulate. In short, we must implement the E/R model. This requires implementing
several things:

• The entities
• The entity classes
• The entity sets
• The relationships between the entity classes

The result of this implementation is a relational database.

As we will see, implementing the relationships usually involves some changes to the
entity classes, perhaps by adding new attributes to existing entity classes or by adding
new entity classes.

3.1 Implementing Entities

As discussed in the previous chapter, an entity is implemented (or described in concrete
terms) simply by giving the values of its attributes. Thus, the following is an
implementation of a Books entity:

Title = Gone With the Wind
ISBN = 0-12-345678-9
Price = $24.00

3.1.1 Implementing Entity Classes—Table Schemes

Since the entities in an entity class are implemented by giving their attribute values, it
makes sense to implement an entity class by the set of attribute names. For instance, the
Books entity class can be identified with the set:

{ISBN,Title,Price}

(We will add the PubID attribute name later, when we implement the relationships.)

Since attribute names are usually used as column headings for a table, a set of attribute
names is called a table scheme. Thus, entity classes are implemented as table schemes.
For convenience, we use notation such as:

Books(ISBN,Title,Price)

which shows not only the name of the entity class, but also the names of the attributes in
the table scheme for this class. You can also think of a table scheme as the column
headings row (the top row) of any table that is formed using that table scheme. (I will
present an example of this shortly.)

We have defined the concepts of a superkey and a key for entity classes. These concepts
apply equally well to table schemes, so we may say that the attributes {A,B} form a key
for a table scheme, meaning that they form a key for the entity class implemented by that
table scheme.

3.1.2 Implementing Entity Sets—Tables

In a relational database, each entity set is modeled by a table. For example, consider the
BOOKS table shown in Table 3-1, and note the following:

• The first row of the table is the table scheme for the Books entity class.
• Each of the other rows of the table implements a Books entity.
• The set of all rows of the table, except the first row, implements the entity set

itself.

Table 3-1. The BOOKS table from the LIBRARY database
ISBN Title Price

0-12-333433-3 On Liberty $25.00
0-103-45678-9 Iliad $25.00
0-91-335678-7 Faerie Queene $15.00
0-99-999999-9 Emma $20.00
1-22-233700-0 Visual Basic $25.00
1-1111-1111-1 C++ $29.95
0-91-045678-5 Hamlet $20.00
0-555-55555-9 Macbeth $12.00
0-99-777777-7 King Lear $49.00
0-123-45678-0 Ulysses $34.00
0-12-345678-9 Jane Eyre $49.00
0-11-345678-9 Moby-Dick $49.00
0-321-32132-1 Balloon $34.00
0-55-123456-9 Main Street $22.95

More formally, a table T is a rectangular array of elements with the following properties:

• The top of each column is labeled with a distinct attribute name Ai. The label Ai
is also called the column heading.

• The elements of the i th column of the table T come from a single set Di, called
the domain for the i th column. Thus, the domain is the set of all possible values
for the attribute. For instance, for the BOOKS table in Table 3-1, the domain D1 is
the set of all possible ISBNs, and the domain D2 is the set of all possible book
titles.

• No two rows of the table are identical.

Let us make some remarks about the concept of a table:

• A table may (but is not required to) have a name, such as BOOKS, which is
intended to convey the meaning of the table as a whole.

• The number of rows of the table is called the size of the table, and the number of
columns is called the degree of the table. For example, the BOOKS table shown
in Table 3-1 has size 14 and degree 3. The attribute names are ISBN, Title, and
Price.

• As mentioned earlier, to emphasize the attributes of a table, it is common to
denote a table by writing T(A1,...,An); for example, we denote the BOOKS table
by:

BOOKS(ISBN,Title,Price)

• The order of the rows of a table is not important, and so two tables that differ only
in the order of their rows are thought of as being the same table. Similarly, the
order of the columns of a table is not important as long as the headings are
thought of as part of their respective columns. In other words, we may feel free to
reorder the columns of a table, as long as we keep the headings with their
respective columns.

• Finally, there is no requirement that the domains of different columns be different.
(For example, it is possible for two columns in a single table to use the domain of
integers.) However, there is a requirement that the attribute names of different
columns be different. Think of the potential confusion that would otherwise
ensue, in view of the fact that we may rearrange the columns of a table!

Now that we have defined the concept of a table, we can say that it is common to define a
relational database as a finite collection of tables. However, this definition belies the fact
that the tables also model the relationships between the entity classes, as we will see.

3.2 A Short Glossary

To help keep the various database terms clear, let us collect their definitions in one place:

Entity

An object about which the database is designed to store information. Example: a
book; that is, an ISBN, a title, and a price, as in:

0-12-333433-3, On Liberty, $25.00

Attribute

A property that (partially or completely) describes an entity. Example: title.

Entity class

An abstract group of entities, with a common description. Example: the entity
class Books, representing all books in the universe.

Entity set

The set of entities from a given entity class that are currently in the database.
Example: the following set of 14 books:

0-12-333433-3, On Liberty, $25.00
0-103-45678-9, Iliad, $25.00
0-91-335678-7, Faerie Queene, $15.00
0-99-999999-9, Emma, $20.00
1-22-233700-0, Visual Basic, $25.00
1-1111-1111-1, C++, $29.95
0-91-045678-5, Hamlet, $20.00
0-555-55555-9, Macbeth, $12.00
0-99-777777-7, King Lear, $49.00
0-123-45678-0, Ulysses, $34.00
0-12-345678-9, Jane Eyre, $49.00
0-11-345678-9, Moby-Dick, $49.00
0-321-32132-1, Balloon, $34.00
0-55-123456-9, Main Street, $22.95

Superkey

A set of attributes for an entity class that serves to identify an entity uniquely
from among all possible entities in that entity class. Example: the set {Title,
ISBN} for the Books entity class.

Key

A minimal superkey; that is, a key with the property that, if we remove an
attribute, the resulting set is no longer a superkey. Example: the set {ISBN} for
the Books entity class.

Table

A rectangular array of attribute values whose columns hold the attribute values for
a given attribute and whose rows hold the attribute values for a given entity.
Tables are used to implement entity sets. Example: the BOOKS table shown
earlier in Table 3-1.

Table scheme

The set of all attribute names for an entity class. Example:

{ISBN,Title,Price}

Since this is the table scheme for the entity class Books, we can use the notation
Books (ISBN,Title,Price).

Relational database

A finite collection of tables that provides an implementation of an E/R database
model.

3.3 Implementing the Relationships in a Relational Database

Now let us discuss how we might implement the relationships in an E/R database model.
For convenience, we repeat the E/R diagram for the LIBRARY database in Figure 3-1.

Figure 3-1. The LIBRARY entity-relationship diagram

3.3.1 Implementing a One-to-Many Relationship—Foreign Keys

Implementing a one-to-many relationship, such as the PublisherOf relationship, is fairly
easy. To illustrate, since {PubID} is a key for the Publishers entity class, we simply add
this attribute to the Books entity class. Thus, the Books entity class becomes:

Books(ISBN,Title,PubID,Price)

The Books table scheme is now:

{ISBN,Title,PubID,Price}

and the BOOKS table now appears as shown in Table 3-2 (sorted by PubID).

Table 3-2. The BOOKS table sorted by PubID
ISBN Title PubID Price

0-12-333433-3 On Liberty 1 $25.00
0-103-45678-9 Iliad 1 $25.00
0-91-335678-7 Faerie Queene 1 $15.00
0-99-999999-9 Emma 1 $20.00
1-22-233700-0 Visual Basic 1 $25.00
1-1111-1111-1 C++ 1 $29.95
0-91-045678-5 Hamlet 2 $20.00
0-555-55555-9 Macbeth 2 $12.00
0-99-777777-7 King Lear 2 $49.00
0-123-45678-0 Ulysses 2 $34.00
0-12-345678-9 Jane Eyre 3 $49.00
0-11-345678-9 Moby-Dick 3 $49.00
0-321-32132-1 Balloon 3 $34.00
0-55-123456-9 Main Street 3 $22.95

The PubID attribute in the Books entity class is referred to as a foreign key, because it is a
key for a foreign entity class—that is, for the Publishers entity class.

Note that the value of the foreign key PubID in the BOOKS table provides a reference to
the corresponding value in PUBLISHERS. Moreover, since {PubID} is a key for the
Publishers entity class, there is at most one row of PUBLISHERS that contains a given
value. Thus, for each book entity, we can look up the PubID value in the PUBLISHERS
table to get the name of the publisher of that book. In this way, we have implemented the
one-to-many PublisherOf relationship.

The idea just described is pictured in more general terms in Figure 3-2. Suppose that
there is a one-to-many relationship between the entity classes (or, equivalently, table
schemes) S and T. Figure 3-2 shows two tables S and T based on these table schemes.
Suppose also that {A2} is a key for table scheme S (the one side of the relationship).
Then we add this attribute to the table scheme T (and hence to table T). In this way, for
any row of the table T, we can identify the unique row in table S to which it is related.

The attribute set {A2} in table S is a key for the table scheme S. For this reason, the
attribute set {A2} is also called a foreign key for the table scheme T. More generally, a
set of attributes of a table scheme T is aforeign key for T if it is a key for some other table
scheme S. Note that a foreign key for T is not a key for T—it is a key for another table
scheme. Thus, the attribute set {PubID} is a key for Publishers, but a foreign key for
Books.

As with our example, a foreign key provides a reference to the entity class (table scheme)
for which it is a key. The table scheme T is called the referencing table scheme, and the

table scheme S is called the referenced table scheme. The key that is being referenced in
the referenced table scheme is called the referenced key .

Figure 3-2. A one-to-many relationship shown in tables S and T

Note that adding a foreign key to a table scheme does create some duplicate values in the
database, but we must expect to add some additional information to the database in order
to describe the relationships.

3.3.2 Implementing a One-to-One Relationship

Of course, the procedure of introducing a foreign key into a table scheme works equally
well for one-to-one relationships as for one-to-many relationships. For instance, we only
need to rename the ConID attribute to AuID to make ConID into a foreign key that will
implement the Authors-Contributors IsA relationship.

3.3.3 Implementing a Many-to-Many Relationship—New Entity Classes

The implementation of a many-to-many relationship is a bit more involved. For instance,
consider the WrittenBy relationship between Books and Authors.

At first glance, we might think of just adding foreign keys to each table scheme, thinking
of the relationship as two distinct one-to-many relationships. However, this approach is
not good, since it requires duplicating table rows. For example, if we add the ISBN key to
the Authors table scheme and the AuID key to the Books table scheme, then each book
that is written by two authors must be represented by two rows in the BOOKS table, so
we can have two AuIDs. To be specific, since the book Main Street is written by Smith
and Jones, we would need two rows in the BOOKS table:

TITLE: Main Street, ISBN 0-55-123456-9, Price: $22.95 AuID: Smith
TITLE: Main Street, ISBN 0-55-123456-9, Price: $22.95 AuID: Jones

It is clear that this approach will bloat the database with redundant information.

The proper approach to implementing a many-to-many relationship is to add a new table
scheme to the database in order to break the relationship into two one-to-many
relationships. In our case, we add a Book/Author table scheme, whose attributes consist
precisely of the foreign keys ISBN and AuID:

Book/Author(ISBN,AuID)

To get a pictorial view of this procedure, Figure 3-3 shows the corresponding E/R
diagram. Note that it is not customary to include this as a portion of the original E/R
diagram, since it belongs more to the implementation of the design than to the design
itself.

Figure 3-3. A many-to-many relationship in the BOOK/AUTHOR table

3.3.4 Referential Integrity

There are a few important considerations that we must discuss with regard to using
foreign keys to implement relationships. First, of course, is the fact that each value of the
foreign key must have a matching value in the referenced key. Otherwise, we would have
a so-called dangling reference. For instance, if the PubID key in a BOOKS table did not
match a value of the PubID key in the PUBLISHERS table, we would have a book whose
publisher did not exist in the database—that is, a dangling reference to a nonexistent
publisher.

The requirement that each value in the foreign key be a value in the referenced key is
called the referential constraint , and the problem of ensuring that there are no dangling
references is referred to as the problem of ensuring referential integrity.

There are several ways in which referential integrity might be compromised. First, we
could add a value to the foreign key that is not in the referenced key. This would happen,
for instance, if we added a new book entity to the BOOKS table, whose publisher is not
listed in the PUBLISHERS table. Such an action will be rejected by a database
application that has been instructed to protect referential integrity. More subtle ways to
affect referential integrity are to change or delete a value in the referenced key—the one
that is being referenced by the foreign key. This would happen, for instance, if we deleted

a publisher from the PUBLISHERS table, but that publisher had at least one book listed
in the BOOKS table.

Of course, the database program can simply disallow such a change or deletion, but there
is sometimes a preferable alternative, as discussed next.

3.3.5 Cascading Updates and Cascading Deletions

Many database programs allow the option of performing cascading updates , which
simply means that, if a value in the referenced key is changed, then all matching entries
in the foreign key are automatically changed to match the new value. For instance, if
cascading updates are enabled, then changing a publisher’s PubID in a PUBLISHERS
table, say from 100 to 101, would automatically cause all values of 100 in the PubID
foreign key of the referencing table BOOKS to change to 101. In short, cascading updates
keep everything “in sync.”

Similarly, enabling cascading deletions means that if a value in the referenced table is
deleted by deleting the corresponding row in the referenced table, then all rows in the
referencing table that refer to that deleted key value will also be deleted. For instance, if
we delete a publisher from a PUBLISHERS table, all book entries referring to that
publisher (through its PubID) will be deleted from the BOOKS table automatically. Thus,
cascading deletions also preserve referential integrity, at the cost of performing perhaps
massive deletions in other tables. Thus, cascading deletions should be used with
circumspection.

As you may know, Microsoft Access allows the user to enable or disable both cascading
updates and cascading deletions. We will see just how to do this in Access later.

3.4 The LIBRARY Relational Database

We can now complete the implementation of the LIBRARY relational database (without
the Contributors entity class) in Microsoft Access. If you open the LIBRARY database in
Microsoft Access, you will see four tables:

• AUTHORS
• BOOK/AUTHOR
• BOOKS
• PUBLISHERS

(The LIBRARY_FLAT table is not used in the relational database.)

These four tables correspond to the following four entity classes (or table schemes):

• Authors (AuID, AuName, AuPhone)
• Book/Author (ISBN, AuID)
• Books (ISBN, Title, PubID, Price)

• Publishers (PubID, PubName, PubPhone)

The actual tables are shown in Tables Table 3-3 through Table 3-6.

Table 3-3. The AUTHORS table from the Access LIBRARY database
AuID AuName AuPhone

1 Austen 111-111-1111
10 Jones 123-333-3333
11 Snoopy 321-321-2222
12 Grumpy 321-321-0000
13 Sleepy 321-321-1111
2 Melville 222-222-2222
3 Homer 333-333-3333
4 Roman 444-444-4444
5 Shakespeare 555-555-5555
6 Joyce 666-666-6666
7 Spenser 777-777-7777
8 Mill 888-888-8888
9 Smith 123-222-2222

Table 3-4. The BOOK/AUTHOR table from the LIBRARY database
ISBN AuID

0-103-45678-9 3
0-11-345678-9 2
0-12-333433-3 8
0-12-345678-9 1
0-123-45678-0 6
0-321-32132-1 11
0-321-32132-1 12
0-321-32132-1 13
0-55-123456-9 9
0-55-123456-9 10
0-555-55555-9 5
0-91-045678-5 5
0-91-335678-7 7
0-99-777777-7 5
0-99-999999-9 1
1-1111-1111-1 4
1-22-233700-0 4

Table 3-5. The BOOKS table from the LIBRARY database
ISBN Title PubID Price

0-12-333433-3 On Liberty 1 $25.00
0-103-45678-9 Iliad 1 $25.00
0-91-335678-7 Faerie Queene 1 $15.00
0-99-999999-9 Emma 1 $20.00

1-22-233700-0 Visual Basic 1 $25.00
1-1111-1111-1 C++ 1 $29.95
0-91-045678-5 Hamlet 2 $20.00
0-555-55555-9 Macbeth 2 $12.00
0-99-777777-7 King Lear 2 $49.00
0-123-45678-0 Ulysses 2 $34.00
0-12-345678-9 Jane Eyre 3 $49.00
0-11-345678-9 Moby-Dick 3 $49.00
0-321-32132-1 Balloon 3 $34.00
0-55-123456-9 Main Street 3 $22.95

Table 3-6. The PUBLISHERS Table from the LIBRARY Database
PubID PubName PubPhone

1 Big House 123-456-7890
2 Alpha Press 999-999-9999
3 Small House 714-000-0000

Notice that we have included the necessary foreign key {PubID} in the BOOKS table in
Table 3-5, to implement the PublisherOf relationship, which is one-to-many. Also, we
have included the BOOK/AUTHOR table (Table 3-4) to implement the WrittenBy
relationship, which is many-to-many.

Even though all relationships are established through foreign keys, we must tell Access
that these foreign keys are being used to implement the relationships. Here are the steps.

3.4.1 Setting Up the Relationships in Access

1. Just to illustrate a point, make the following small change in the BOOKS table:
Open the table and change the PubID field for Hamlet to 4. Note that there is no
publisher with PubID 4 and so we have created a dangling reference. Then close
the BOOKS window.

2. Now choose Relationships from the Tools menu. You should get a window
showing the table schemes in the database, similar to that in Figure 3-4.
Relationships are denoted by lines between these table schemes. As you can see,
there are as yet no relationships. Note that the primary key attributes appear in
boldface.

Figure 3-4. The Relationships view of the BOOKS table

3. To set the relationship between PUBLISHERS and BOOKS, place the mouse
pointer over the PubID attribute name in the PUBLISHERS table scheme, hold
down the left mouse button, and drag the name to the PubID attribute name in the
BOOKS table scheme. You should get a window similar to Figure 3-5.

Figure 3-5. Relationship between the PUBLISHERS and BOOKS tables

4. This window shows the relationship between PUBLISHERS and BOOKS, listing
the key {PubID} in PUBLISHERS and the foreign key {PubID} in BOOKS. (We
did not need to call the foreign key PubID, but it makes sense to do so, since it
reminds us of the purpose of the attribute.)

5. Now check the Enforce Referential Integrity box, and click the Create button.
You should get the message in Figure 3-6. The problem is, of course, the dangling
reference that we created by changing the PubID field in the BOOKS table to
refer to a nonexistent publisher.

Figure 3-6. Error message due to dangling reference

6. Click the OK button, reopen the BOOKS table, and fix the offending entry
(change the PubID field for Hamlet back to 2). Then close the BOOKS table, and
re-establish the relationship between PUBLISHERS and BOOKS. This time,

check the Enforce Referential Integrity checkbox, as well as the Cascade Update
Related Fields checkbox. Do not check Cascade Delete Related Fields.

7. Next, drag the ISBN attribute name from the BOOKS table scheme to the ISBN
attribute name in the BOOK/AUTHOR table scheme. Again check the Enforce
Referential Integrity and Cascade Update Related Fields checkboxes.

8. Finally, drag the AuID attribute name from the AUTHORS table scheme to the
AuID attribute name in the BOOK/AUTHOR table scheme. Check the Enforce
Referential Integrity and Cascade Update Related Fields checkboxes. You should
now see the lines indicating these relationships, as shown in Figure 3-7. Note the
small 1s and s, indicating the one side and many side of each relationship.

Figure 3-7. Relationships view showing various table relationships

9. To test the enforcement of referential integrity, try the following experiment: open
the BOOKS and PUBLISHERS tables, and arrange them so that you can see both
tables at the same time. Now change the value of PubID for Small House in the
PUBLISHERS table from 3 to 4. As soon as you move the cursor out of the Small
House row (which makes the change permanent), the corresponding PubID values
in BOOKS should change automatically! When you are done, restore the PubID
value in PUBLISHERS back to 3.

3.5 Index Files

When a table is stored on disk, it is often referred to as a file. In this case, each row of the
table is referred to as a record , and each column is referred to as a field. (These terms are
often used for any table.)

Since disk access is typically slow, an important goal is to reduce the amount of disk
accesses necessary to retrieve the desired data from a file. Sequential searching of the
data, record-by-record, to find the desired information may require a large number of disk
accesses and is very inefficient.

The purpose of an index file is to provide direct (also called random) access to data in a
database file.

Figure 3-8 illustrates the concept of an index file. For illustration purposes, we have
changed the Publishers data, to include a city column. The file on the left is the index file
and indexes the Publishers datafile by the City field, which is therefore called theindexed

field. The city file is called an index for the PUBLISHERS table. (The index file is not a
table in the same sense as the PUBLISHERS table is a table. That is to say, we cannot
directly access the index file—instead we use it indirectly.) The index file contains the
cities for each publisher, along with a pointer to the corresponding data record in the
Publishers file.

Figure 3-8. Index file between City and Publisher

An index file can be used in a variety of ways. For instance, to find all publishers located
in Kansas City, Access can first search the alphabetical list of cities in the index file.
Since the list is alphabetical, Access knows that the Kansas City entries are all together,
and so once it reaches the first entry after Kansas City, it can stop fcthe search. In other
words, Access does not need to search the entire index file. (In addition, there are very
efficient search algorithms for ordered tables.) Once the Kansas City entries are found in
the index file, the pointers can be used to go directly to the Kansas City publishers in the
indexed file.

Also, since the index provides a sorted view of the data in the original table, it can be
used to efficiently retrieve a range of records. For instance, if the Books data were
indexed on price, we could efficiently retrieve all books in the price range between
$20.00 and $30.00.

A table can be indexed on more than one column; that is to say, a table can have more
than one index file. Also, a table can be indexed on a combination of two or more
columns. For instance, if the PUBLISHERS table also included a State column, we could
index the table on a combination of City and State, as shown in Figure 3-9.

Figure 3-9. Index file between City, State, and Publisher

An index on a primary key is referred to as a primary index. Note that Microsoft Access
automatically creates an index on a primary key. An index on any other column or
columns is called a secondary index. An index based on a key (not necessarily the
primary key) is called a unique index , since the indexed column contains unique values.

3.5.1 Example

To view the indexes for a given table in Microsoft Access, open the table in design view,
and then choose Indexes from the View menu. For the BOOKS table, you should see a
window similar to Figure 3-10 (without the PubTitle entry).

Figure 3-10. Index view of the BOOKS table

To add an index based on more than one attribute, you enter the multiple attributes on
successive rows of the Indexes dialog box. We have done this in Figure 3-10, adding an
index called PubTitle based on the PubID and the Title attributes. This index indexes the
BOOKS entities first by PubID and then by Title (within each PubID).

3.6 NULL Values

The question of NULLs can be very confusing to the database user, so let us set down the
basic principles. Generally speaking, a NULL is a special value that is used for two
reasons:

• To indicate that a value is missing or unknown
• To indicate that a value is not applicable in the current context

For instance, consider an author’s table:

AUTHORS(AuID,AuName,AuPhone)

If a particular author’s phone number is unknown, it is appropriate for that value to be
NULL. This is not to say that the author does not have a phone number, but simply that
we have no information about the number—it may or may not exist. If we knew that the
person had no phone number, then the information would no longer be unknown. In this
case, the appropriate value of the AuPhone attribute would be the empty string, or
perhaps the string no phone, but not a NULL. Thus, the appropriateness of allowing
NULL values for an attribute depends upon the context.

The issue of whether NULLs should appear in a key needs some discussion. The purpose
of a key is to provide a means for uniquely identifying entities, and so it would seem that
keys and NULLs are incompatible. However, it is impractical to never allow NULLs in
any keys. For instance, for the Publishers entity, this would mean not allowing a
PubPhone to be NULL, since {PubName,PubPhone} is a key. On the other hand, the so-
called entity integrity rule says that NULLs are not allowed in a primary key.

As a final remark, the presence of a NULL as a foreign key value does not violate
referential integrity. That is, referential integrity requires that every non-NULL value in a
foreign key must have a match in the referenced key.

Chapter 4. Database Design Principles
In Chapter 1 I tried to present a convincing case for why most databases should be
modeled as relational databases, rather than single-table flat databases. I tried to make it
clear why I split the single LIBRARY_FLAT table into four separate tables: AUTHORS,
BOOKS, PUBLISHERS, and BOOK/AUTHOR.

However, for large real-life databases, it is not always clear how to split the data into
multiple tables. As I mentioned in Chapter 1, the goal is to minimize redundancy, without
losing any information.

The problem of effective database design is a complex one. Most people consider it an art
rather than a science. This means that intuition plays a major role in good design.
Nonetheless, there is a considerable theory of database design, and it can be quite
complicated. My goal in this chapter is to touch upon the general ideas, without
becoming involved in the details. Hopefully, this discussion will provide a helpful guide
to the intuition needed for database design.

4.1 Redundancy

As we saw in Chapter 1, redundant data tends to inflate the size of a database, which can
be a very serious problem for medium to large databases. Moreover, redundancy can lead
to several types of anomalies, as discussed earlier. To understand the problems that can
arise from redundancy, we need to take a closer look at what redundancy means.

Let us begin by observing that the attributes of a table scheme can be classified into three
groups:

• Attributes used strictly for identification purposes
• Attributes used strictly for informational purposes
• Attributes used for both identification and informational purposes

For example, consider the table scheme:

{PubID,PubName,PubPhone,YearFounded}

In this scheme, PubID is used strictly for identification purposes. It carries no
informational content. On the other hand, YearFounded is strictly for informational
purposes in this context. It gives the year that the publishing company was founded, but
is not required for identification purposes.

Consider also the table scheme:

{Title,PubID,AuID,PageCount,CopyrightDate}

In this case, if we assume that there is only one book of a given title published by a given
publisher and written by a given author, then {Title,PubID,AuID} is a key. Hence, each
of these attributes is used (at least in part) for identification. However, Title is also an
informational attribute.

I should hasten to add that these classifications are somewhat subjective and depend upon
the assumptions made about the entity class. Nevertheless, this classification does
provide a useful intuitive framework.

We can at least pin down the strictly informational attributes a bit more precisely by
making the following observation. The sign that an attribute is being used (at least in
part) for identification purposes is that it is part of some key. Thus, an attribute that is not
part of any key is being used, in that table scheme, strictly for informational purposes. Let
us call such an attribute a strictly informational attribute.

Now consider Table 4-1. In this case, both Title and PubName are strictly informational,
since {ISBN} is the only key, and neither Title nor PubName is part of that key.
However, the values of Title are not redundant (the fact that they are the same does not
mean that they are not both required), whereas the values of PubName are redundant.

Table 4-1. A table with two informational attributes
ISBN Title PubID PubName

1-1111-1111-1 C++ 1 Big House
0-91-335678-7 Faerie Queene 1 Big House
1-011-22222-0 C++ 2 ABC Press

The reason that Title is not redundant is that there is no way to eliminate any of these
titles. Each book entity must have its title listed somewhere in the database—one title per
ISBN. Thus, the two titles C++ must both appear somewhere in the database.

On the other hand, PubName is redundant, as can easily be seen from the fact that the
same PubName is listed twice without adding any new information to the database. To
look at this another way, consider the table with two cells blank in Table 4-2. Can you fill
in the title field for the last row? Not unless you call the publisher to get the title for that
ISBN. In other words, some information is missing. On the other hand, you can fill in the
blank PubName field.

Table 4-2. A table with blank cells to illustrate attribute dependency
ISBN Title PubID PubName

1-1111-1111-1 Macbeth 1 Big House
2-2222-2222-2 Hamlet 1
5-555-55555-5 2 ABC Press

The issue here is quite simple. The Title attribute depends only upon the ISBN attribute,
and {ISBN} is a key. In other words, Title depends only upon a key. However, PubName

depends completely upon PubID, which is not a key for this table scheme. (Of course,
PubName also depends on the key {ISBN}, but that is not relevant.)

Thus, we have seen a case where redundancy results from the fact that one attribute
depends upon another attribute that is not a key. Armed with this observation, we can
move ahead.

4.2 Normal Forms

Those who make a study of database design have identified a number of special forms,
properties, or constraints that a table scheme may possess, in order to achieve certain
desired goals, such as minimizing redundancy. These forms are called normal forms.
There are six commonly recognized normal forms, with the inspired names:

• First normal form (1NF)
• Second normal form (2NF)
• Third normal form (3NF)
• Boyce Codd normal form (BCNF)
• Fourth-normal form (4NF)
• Fifth normal form (5NF)

We will consider the first four of these normal forms, but only informally. Each of these
normal forms is stronger than its predecessors. Thus, for instance, a table scheme that is
in third normal form is also in second normal form. While it is generally desirable for the
table schemes in a database to have a high degree of normalization, as we will see in this
chapter, the situation is not as simple as it may seem.

For instance, requiring that all table schemes be in BCNF may cause some loss of
information about the various relationships between the table schemes. In general, it is
possible to manipulate the data to achieve third normal form for all table schemes, but
this may turn out to be far more work than it is worth.

The plain fact is that forcing all table schemes to be in a particular normal form may
require some compromises. Each individual situation (database) must be examined on its
own merit. It is impossible to make general rules that apply in all situations.

The process of changing a database design to produce table schemes in normal form is
called normalization.

4.3 First Normal Form

First normal form is very simple. A table scheme is said to be in first normal formif the
attribute values are indivisible. To illustrate, we considered in Chapter 1 the question of
including all the authors of a book in a single attribute, called Authors. Here is an
example entity:

ISBN = 0-55-123456-9
Title = Main Street
Authors = Jones, H. and Smith, K.
Publisher = Small House

Since the table scheme in this case allows more than one author name for the Authors
attribute, the scheme is not in first normal form. Indeed, one of the obvious problems
with the Authors attribute is that it is impossible to sort the data by individual author
name. It is also more difficult to, for instance, prepare a mailing label for each author, and
so on.

Attributes that allow only indivisible values are said to be scalar attributes or atomic
attributes. By contrast, an attribute whose values can be, for example, a list of items
(such as a list of authors) is said to be a structured attribute . Thus, a table scheme is in
first normal form if all of its attributes are atomic. Good database design almost always
requires that all attributes be atomic, so that the table scheme is in first normal form.

In general, making the adjustments necessary to ensure first normal form is not hard, and
it is a good general rule that table schemes should be put in first normal form. However,
as with the other normal forms (and even more so the higher up we go) each situation
must be considered on its own merits. For instance, a single field might be designed to
hold a street address, such as “1333 Bessemer Street.” Whether the house number and the
street name should be separated into distinct attributes is a matter of context. Put another
way, whether a street address is atomic depends upon the context. If there is reason to
manipulate the street numbers apart from the street names, then they should certainly
constitute their own attribute. Otherwise, perhaps not.

4.4 Functional Dependencies

Before we can discuss the other normal forms, we need to discuss the concept of
functional dependency , which is used to define these normal forms. This concept is quite
simple, and we have actually been using it for some time now. As an example, we have
remarked that, for the Publishers table scheme, the PubName attribute depends
completely on the PubID attribute. (More properly, we should say that the value of the
PubName attribute depends completely on the value of the PubID attribute, but the earlier
shorthand is convenient.) Thus, we can say that the functional dependency from PubID to
PubName, written:

PubID PubName

holds for the Publishers table scheme. This can be read “PubID determines PubName” or
“PubName depends on PubID.”

More generally, suppose that {A1,...,Ak} are attributes of a table scheme and that
{B1,...,Bn} are also attributes of the same table scheme. We do not require that the Bs be
different from the As. Then the attributes B1,...,Bn depend on the attributes A1,...,Ak,
written:

{A1,...,Ak} {B1,...,Bn}

if the values of A1,...,Ak completely determine the values of B1,...,Bn. Our main interest is
when there is only one attribute on the right:

{A1,...,Ak} {B}

For instance, it is probably safe to say that:

{PubName,PubPhone} {PubID}

which is just another way of saying that there is only one publisher with a given name
and phone number (including area code).

It is very important to understand that a functional dependency means that the attributes
on the left completely determine the attributes on the right for now and for all time to
come, no matter what additional data may be added to the database. Thus, just as the
concept of a key relates to entity classes (table schemes) rather than individual entity sets
(tables), so does functional dependency. Every table scheme has its set of associated
functional dependencies, which are based on the meaning of the attributes.

Recall that a superkey is a set of attributes that uniquely determines an entity. Put another
way, a superkey is a set of attributes upon which all other attributes of the table scheme
are functionally dependent.

Some functional dependencies are obvious. For instance, an attribute functionally
depends upon itself. Also, any set of attributes functionally determines any subset of
these attributes, as in:

{A,B,C} {A,B}

This just says that if we know the values of A, B, and C, then we know the value of A
and B! Such functional dependencies are not at all interesting, and are called trivial
dependencies . All other dependencies are called nontrivial.

4.5 Second Normal Form

Intuitively, a table scheme T is in second normal form if all of the strictly informational
attributes (attributes that do not belong to any key) are attributes of the entities in the
table scheme, and not of some other class of entities. In other words, the informational
attributes provide information specifically about the entities in this entity class and not
about some other entities.

Let us illustrate with an example. Consider a simplified table scheme designed to store
house addresses. One possibility is:

{City,Street,HouseNumber,HouseColor,CityPopulation}

The CityPopulation attribute is out of place here because it is an attribute of cities, not
house addresses. More specifically, CityPopulation is strictly an informational attribute
(not for identification of houses), but it gives information about cities, not house
addresses. Thus, this table scheme is not in second normal form.

We can be a little bit more formal about the meaning of second normal form as follows.
Referring to the previous example, we have the dependency:

{City} {CityPopulation}

where CityPopulation does not belong to any key, and where City is a proper subset of a
key, namely, the key {City, Street, HouseNumber}. (By proper subset, we mean a subset
that is not the whole set.)

A table scheme is in 2NF if it is not possible to have a dependency of the form:

{A1,...,Ak} {B}

where B does not belong to any key (is strictly informational) and {A1,...,Ak} is a
propersubset of some key, and thus does not identify the entities of this entity class, but
rather identifies the entities of some other entity class.

Let us consider another example of a table scheme that is not in second normal form.

Consider the following table scheme, and assume for the purposes of illustration that,
while there may be many books with the same title, no two of them have the same
publisher and author:

{Title,PubID,AuID,Price,AuAddress}

Thus, {Title, PubID, AuID} is the only key. Now, AuAddress does not belong to any
key, but it depends upon {AuID}, which is a proper subset of the key, in symbols:

{AuID} {AuAddress}

Hence, this table scheme is not in second normal form. In fact, AuAddress is not a piece
of information about the entities modeled in the table scheme (i.e., books), but rather
about authors. Of course, we could remove the AuAddress attribute to bring the table
scheme into second normal form. (If each publisher charged a single price for all of its
books, then Price would also cause a violation of second normal form, but this is not the
case, of course.)

4.6 Third Normal Form

Second normal form is good, but we can do better. We have seen that if a table scheme is
in second normal form, then no strictly informational attribute depends on a proper subset
of a key. However, there is another undesirable possibility. Let us illustrate with an
example.

Consider the following table scheme and assume, for the purposes of illustration, that no
two books with the same title have the same publisher:

{Title,PubID,PageCount,Price}

The only key for this table scheme is {Title,PubID}. Both PageCount and Price are
informational attributes only.

Now, let us assume that each publisher decides the price of its books based solely on the
page count. First, we observe that this table is in second normal form. To see this,
consider the proper subsets of the key. These are:

{Title} and {PubID}

But none of the dependencies:

{Title} {PageCount}
{Title} {Price}
{PubID} {PageCount}
{PubID} {Price}

hold for this table scheme. After all, knowing the title does not determine the book, since
there may be many books of the same title, published by different publishers. Hence, the
table is in second normal form.

It is also not correct to say that:

{PageCount} {Price}

holds, because different publishers may use different price schemes based on page count.
In other words, one publisher may price books over 1,000 pages at one price, whereas
another may price books over 1,000 pages at a different price. However, it is true that:

{PubID,PageCount} {Price}

holds. In other words, here we have an informational attribute (Price) that depends not on
a proper subset of a key, but on a proper subset of a key (PubID) together with another
informational attribute (PageCount).

This is bad, since it may produce redundancy. For instance, consider Table 4-3. Note that
the price attribute is redundant. After all, we could fill in the Price value for the third row
if it were blank, because we know that PubID 2 charges $34.95 for 500-page books.

Table 4-3. Redundant data in a table
Title PubID PageCount Price

Moby-Dick 1 500 29.95
Giant 2 500 34.95
Moby-Dick 2 500 34.95

We can summarize the problem with the dependency:

{PubID,PageCount} {Price}

by saying that the attribute Price depends upon a set of attributes:

{PubID,PageCount}

that is not a key, not a superkey, and not a proper subset of a key. It is a mix containing
one attribute from the key {Title,PubID} and one attribute that is not in any key.

With this example in mind, we can now define third normal form. A table scheme is in
third normal form if it is not possible to have a dependency of the form:

{A1,...,Ak} {B}

where B does not belong to any key (is strictly informational) and {A1,...,Ak} is not a
superkey. In other words, third normal form does not permit any strictly informational
attribute to depend upon anything other than a superkey. Of course, superkeys determine
all attributes, including strictly informational attributes, and so all attributes depend on
any superkey. The point is that, with third normal form, strictly informational attributes
depend only on superkeys.

4.7 Boyce-Codd Normal Form

It is possible to find table schemes that are in third normal form, but still have
redundancy. Here is an example.

Consider the table scheme {City,StreetName,ZipCode}, with dependencies:

{City,StreetName} {ZipCode}

and:

{ZipCode} {City}

(Although in real life, a zip code may be shared by two different cities, we will assume
otherwise for the purposes of illustration.) This table scheme is in third normal form. To
see this, observe that the keys are {City,StreetName} and {ZipCode,StreetName}. Hence,
no attribute is strictly informational, and there is nothing to violate third normal form.

On the other hand, consider Table 4-4. We can fill in the blank city name because
{ZipCode} {City}.

Table 4-4. A table with dependencies
City StreetName ZipCode

Los Angeles Hollywood Blvd 95000
 Vine St 95000

The problem here is with the dependency:

{ZipCode} {City}

which does not violate third normal form because, as we have mentioned, {City} is not
strictly informational.

The previous example gives us the idea to strengthen the condition in the definition of
third normal form by dropping the requirement that B be strictly informational. Thus, we
can define our last, and strongest, normal form. A table scheme is in Boyce-Codd normal
form if it is not possible to have a dependency of the form:

{A1,...,Ak} {B}

where {A1,...,Ak} is not a superkey. In other words, BCNF form does not permit any
attribute to depend upon anything other than a superkey.

As mentioned earlier, all attributes must depend on any superkey by the very definition of
superkey. Thus, BCNF is the strongest possible restriction of this type—it says that an
attribute is not allowed to depend on anything other than a superkey.

4.8 Normalization

As mentioned earlier, the process of changing a database design to produce table schemes
in normal form is called normalization.

As a very simple example, the table scheme:

{ISBN,Title,Authors}

is not even in first normal form, because the Authors attribute might contain more than
one author and is therefore not atomic. By trading in this table scheme for the two
schemes:

{ISBN,Title,AuID}

and:

{AuID,AuName}

we have normalized the database into first normal form.

Here is another example involving the higher normal forms. Recall from an earlier
example that the table scheme {City,StreetName,ZipCode}, with dependencies:

{City,StreetName} {ZipCode}

and:

{ZipCode} {City}

is in third normal form. However, Table 4-5 shows that there is still some redundancy in
the table scheme. The table scheme is not in BCNF. In fact, this was the example we used
to motivate our definition of BCNF. (The example violates BCNF.)

Table 4-5. A table with redundant data
City StreetName ZipCode

Los Angeles Hollywood Blvd 95000
 Vine St 95000

However, we can split this table scheme into two schemes:

{ZipCode,City}

and:

{ZipCode,StreetName}

In this case, Table 4-5 gets split into two tables, Tables Table 4-6 and Table 4-7, and the
redundancy is gone!

Table 4-6. First table derived from Table 4-5 to eliminate redundancy
ZipCode City

95000 Los Angeles
Table 4-7. Second table derived from Table 4-5 to eliminate redundancy

ZipCode StreetName
95000 Hollywood Blvd
95000 Vine St

Generally speaking, the design of a database may begin with an E/R diagram. This
diagram can be implemented according to the principles discussed in Chapter 3. The
result may very well be a perfectly satisfactory database design. However, if some of the
table schemes have redundancies, it may be desirable to split them into smaller table
schemes that satisfy a higher normal form, as in the previous example.

4.8.1 Decomposition

Although the decomposition of a table scheme into smaller (hopefully normalized) table
schemes is desirable from an efficiency point of view (in order to reduce redundancy and
avoid various anomalies), it does carry with it some risk, which primarily comes in two
forms:

• The possible loss of information
• The possible loss of dependencies

The following example illustrates the first problem—loss of information. Consider the
table scheme:

{AuID,AuName,PubID}

The only dependency in this table scheme is:

{AuID} {AuName}

We could decompose this table scheme into the two schemes:

{AuID,AuName}

and:

{AuName,PubID}

Now consider Table 4-8, which has two different authors with the same name. The
decomposition gives the two tables shown in Tables Table 4-9 and Table 4-10.

Table 4-8. A table with two identical author names
AuID AuName PubID

A1 John Smith P1
A2 John Smith P2

Table 4-9. Partial decomposition of Table 4-8
AuID AuName

A1 John Smith
A2 John Smith

Table 4-10. Partial decomposition of Table 4-8
AuName PubID

John Smith P1
John Smith P2

Unfortunately, if we were to ask Microsoft Access to show us the data for all authors
named John Smith, we would get the table shown in Table 4-11, which is not the table we
started with! Information has been lost, in the sense that we no longer know that both
John Smiths together have published only two books, each author with a different
publisher. (It may look as though we have more information, since the table is bigger, but
in reality we have lost information.)

Table 4-11. An incorrect reconstruction of Table 4-8
AuID AuName PubID

A1 John Smith P1
A1 John Smith P2
A2 John Smith P1
A2 John Smith P2

The second problem I mentioned in connection with the decomposition of a table scheme
is loss of dependencies. The issue is this: during the life of the database, we will be
making changes (updates, insertions, and deletions) to the separate tables in the
decomposition. Of course, we must be careful to preserve the functional dependencies
that are inherited from the original table scheme. However, this does not necessarily
guarantee that all of the original dependencies will be preserved!

Here is a simple example to illustrate the problem. Consider the table scheme:

{ISBN,PageCount,Price}

with dependencies:

{ISBN} {PageCount}
{PageCount} {Price}

Consider the decomposition into the table schemes:

{ISBN,PageCount}

and:

{ISBN,Price}

Note that the key {ISBN} is in both schemes in the decomposition.

Unfortunately, the decomposition has caused us to lose the dependency
{PageCount} {Price}, in the sense that these two attributes are not in the same table
scheme of the decomposition. To illustrate, consider Table 4-12, which has two different

books with the same page count and price. The decomposition of this table into two
tables is shown in Tables Table 4-13 and Table 4-14.

Table 4-12. Table example to show further decomposition
ISBN PageCount Price

0-111-11111-1 500 $39.95
0-111-22222-2 500 $39.95

Table 4-13. Partial decomposition of Table 4-12
ISBN PageCount

0-111-11111-1 500
0-111-22222-2 500

Table 4-14. Partial decomposition of Table 4-12
ISBN Price

0-111-11111-1 $39.95
0-111-22222-2 $39.95

Now here is the problem. Looking at the second table, we have no indication that the
original scheme required that PageCount determine Price. Hence, we might change the
price of the second book to $12.50, as we’ve done in Table 4-15.

Table 4-15. Decomposition example changing price
ISBN Price

0-111-11111-1 $39.95
0-111-22222-2 $12.50

But putting the tables back together for a look at all of the data gives us Table 4-16,
which reveals a violation of the requirement that PageCount determine Price. In fact,
somebody at the publishing company is going to be very unhappy that the company is
now selling a 500-page book below cost!

Table 4-16. Looking at data by combining Table 4-12 through Table 4-15
ISBN PageCount Price

0-111-11111-1 500 $39.95
0-111-22222-2 500 $12.50

By contrast, consider the decomposition of the original table scheme into:

{ISBN,PubPhone}

and:

{PubPhone,PubName}

Here, no dependency is lost, so we can update each separate table without fear.

The previous two examples illustrate the pitfalls in decomposing a table scheme into
smaller schemes. If a decomposition does not cause any information to be lost, it is called
a lossless decomposition. A decomposition that does not cause any dependencies to be
lost is called a dependency-preserving decomposition.

Now it is possible to show that any table scheme can be decomposed, in a lossless way,
into a collection of smaller schemes that are in the very nice BCNF form. However, we
cannot guarantee that the decomposition will preserve dependencies. On the other hand,
any table scheme can be decomposed—in a lossless way that also preserves
dependencies—into a collection of smaller schemes that are in the almost-as-nice third
normal form.

However, before you get too excited, I must hasten to add that the algorithms given do
not always produce desirable results. They can, in fact, create decompositions that are
less intuitive than we might do just using our intuition. Nevertheless, they can be relied
upon to produce the required decomposition, if we can’t do it ourselves.

I should conclude by saying that there is no law that says that a database is always more
useful or efficient if the tables have a high degree of normalization. These issues are more
subjective than objective and must be dealt with, as a design issue, on an ad hoc basis. In
fact, it appears that the best procedure for good database design is to mix eight parts
intuition and experience with two parts theory. Hopefully, discussion of normalization
has given you a general feel of the issues involved and will provide a good jumping-off
place if you decide to study these somewhat complicated issues in greater depth. (See
Appendix E for some books for further study.)

Part II: Database Queries

Chapter 5. Query Languages and the Relational
Algebra
In the first part of this book, I have tried to make a convincing argument that good
database design is important to the efficient use of a database. As you have seen, this
generally involves breaking the data up into separate pieces (tables). Of course, this
implies that we need methods for piecing the data back together again in various forms.

After all, one of the main functions of a database program is to allow the user to view the
data in a variety of ways. When data is stored in multiple tables, it is necessary to piece
the data back together to provide these various views. For instance, we might want to see
a list of all publishers that publish books priced under $10.00. This requires gathering
data from more than one table. The point is that, by breaking data into separate tables, we
must often go to the trouble of piecing the data back together in order to get a
comprehensive view of the data.

Thus, we can state the following important maxim:

As a direct consequence of good database design, we often need to use
methods for piecing data from several tables into a single coherent form.

Many database applications provide the user with relatively easy ways to create
comprehensive views of data from many tables. For instance, Microsoft Access provides
a graphical interface to create queries for that purpose. Our goal in this chapter is to
understand how a database application such as Access goes about providing this service.

The short answer to this is the following:

1. The user of a database application, such as Access, asks the application to provide
a specific view of the data by creating a query.

2. The database application then converts this query into a statement in its query
language, which in the case of Microsoft Access is Access Structured Query
Language, or Access SQL. (This is a special form of standard SQL.)

3. Finally, a special component of Access (known as the Jet Query Engine, which
we will discuss again in Chapter 7) executes the SQL statement to produce the
desired view of the data.

In view of this answer, it is time to turn away from a discussion of database-design issues
and turn toward a discussion of issues that will lead us toward database programming
and, in particular, programming in query languages such as Access SQL.

I will now outline my plan for this and the next chapter. In this chapter, I will discuss the
underlying methods involved in piecing together data from separate tables. In short, I will
discuss methods for making new tables from existing tables. This will give us a clear
understanding as to the general tasks that must be provided by a query language.

In the next chapter, I will take a look at Access SQL itself. You will see that SQL is
much more than just a simple query language, for not only is it capable of manipulating
the components of an existing database (into various views), but it is also capable of
creating those components in the first place.

5.1 Query Languages

A query can be thought of as a request of the database, the response to which is a new
table, which I will refer to as a result table . For instance, referring to the LIBRARY
database, we might request the titles and prices of all books published by Big House that
cost over $20.00. The result table in this case is shown in Table 5-1.

Table 5-1. Books published by Big House costing over $20.00
Title Price PubName

On Liberty $25.00 Big House
Iliad $25.00 Big House
Visual Basic $25.00 Big House
C++ $29.95 Big House

It is probably not necessary to emphasize the importance of queries, for what good is a
database if we have no way to extract the data in meaningful forms?

Special languages that are are used to formulate queries—in other words, that are
designed to create new tables from old ones—are known as query languages. (There does
not seem to be agreement on the precise meaning of the term query language, so I have
decided to use it in a manner that seems most consistent with the term query.)

There are two fundamental approaches to query languages: one is based on algebraic
expressions, and the other is based on logical expressions. In both cases, an expression is
formed that refers to existing tables, constants (i.e., values from the domains of tables),
and operators of various types. How the expression is used to create the return table
depends on the approach, as you will see.

Before proceeding, let us discuss a bit more terminology. A table whose data is actually
stored in the database is called a base table . Base-table data is generally stored in a
format that does not actually resemble a table—but the point is that the data is stored. A
table that is not stored, such as the result table of a query, is called a derived table . It is
generally possible to save (i.e., store) a result table, which then would become a base
table of the database. In Microsoft Access, this is done by creating a so-called make-table
query .

Finally, a view is a query expression that has been given a name and is stored in the
database. For example, the expression:

all titles where (PubName = Big House) and (Price > $20.00)

is a view. Note that it is the expression that is the view, not the corresponding result table
(as might be implied by the name view).

Whenever the expression (or view) is executed, it creates a result table. Therefore, a view
is often referred to as a virtual table . Again, it is important not to confuse a view with the
result table that is obtained by executing the expression. The virtue of a virtual table (or
view) is that an expression generally takes up far less room in storage than the
corresponding result table. Moreover, the data in a result table is redundant, since the data
is already in the base tables, even though not in the same logical structure.

5.2 Relational Algebra and Relational Calculus

The most common algebraic query language is called the relational algebra. This
language is procedural, in the sense that its expressions actually describe an explicit
procedure for returning the results. Languages that use logic fall under the heading of the
relational calculus (there is more than one such language in common use). These
languages are nonprocedural , since their expressions represent statements that describe
conditions that must be met for a row to be in the result table, without showing how to
actually obtain those rows.

Let us illustrate these ideas with an example. Consider the following request, written in
plain English:

Get the names and phone numbers for publishers who publish books
costing under $20.00.

For reference, let us repeat the relevant tables for this request. The BOOKS table appears
in Table 5-2, while the PUBLISHERS table is shown in Table 5-3.

Table 5-2. The BOOKS table from the LIBRARY database
ISBN Title PubID Price

0-555-55555-9 Macbeth 2 $12.00
0-91-335678-7 Faerie Queene 1 $15.00
0-99-999999-9 Emma 1 $20.00
0-91-045678-5 Hamlet 2 $20.00
0-55-123456-9 Main Street 3 $22.95
1-22-233700-0 Visual Basic 1 $25.00
0-12-333433-3 On Liberty 1 $25.00
0-103-45678-9 Iliad 1 $25.00
1-1111-1111-1 C++ 1 $29.95
0-321-32132-1 Balloon 3 $34.00
0-123-45678-0 Ulysses 2 $34.00
0-99-777777-7 King Lear 2 $49.00
0-12-345678-9 Jane Eyre 3 $49.00
0-11-345678-9 Moby-Dick 3 $49.00

Table 5-3. The PUBLISHERS table from the LIBRARY database
PubID PubName PubPhone

1 Big House 123-456-7890
2 Alpha Press 999-999-9999
3 Small House 714-000-0000

Here is a procedure for executing this request. Don’t worry if some of the terms do not
make sense to you now; I will explain them later.

1. Join the BOOKS and PUBLISHERS tables, on the PubID attribute.
2. Select those rows (of the join) with Price attribute less than $20.00.
3. Project onto the columns PubName and PubPhone.

In the relational algebra, this would be translated into the following expression:

projPubName,PubPhone(selPrice<20.00(BOOKS join PUBLISHERS))

The result table is shown in Table 5-4.

Table 5-4. Publishers with books under $20.00
PubName PubPhone

Big House 123-456-7890
Alpha Press 999-999-9999

In a relational calculus, the corresponding expression might appear as:

{(x,y) | PUBLISHERS(z,x,y) and BOOKS(a,b,z,c) and c < $20.00}

where the bar | is read “such that,” and the entire expression is read:

The set of all pairs (x,y) such that (z,x,y) is a row in the PUBLISHERS
table, (a,b,z,c) is a row in the BOOKS table, and c < $20.00.

Note that the variable z appears twice, and it must be the same for each appearance. This
is precisely what provides the link between the BOOKS and PUBLISHERS tables. In
other words, the row PUBLISHERS(z,x,y) in the PUBLISHERS table and the row
BOOKS(a,b,z,c) in the BOOKS table have an attribute value in common (represented by
the common letter z). This attribute, which is the first attribute in PUBLISHERS and the
third attribute in BOOKS, is PubID.

As you can see from the previous example, the relational calculus is generally more
complex (and perhaps less intuitive) than the relational algebra, and I will not discuss it
further in this book, beyond making the following comments. First, it is important to at
least be aware of the existence of the relational calculus, since there are commercially
available applications, such as IBM’s Query-by-Example, that use the relational calculus.
Second, most relational calculus-based languages have exactly the same expressive

power as the relational algebra. In other words, we get no more or less by using a
relational calculus than we do by using the relational algebra.

5.3 Details of the Relational Algebra

We are now ready to discuss the details of the relational algebra. The operations that are
part of the relational algebra are described in this section. You should find most of these
operations intuitive.

Before beginning, however, I should say a word about how Microsoft Access implements
the operations of the relational algebra. Most of these operations can be implemented in
Microsoft Access by creating a query. This is most easily done in Access’s Query Design
mode, which provides the graphical environment shown in Figure 5-1.

Figure 5-1. The Access Query Design window

The user can add table schemes from the database to the upper portion of the Query
Design window. From there, various attributes can be moved to the design grid. Note that
the second row of the grid shows the table from whence the attribute comes, just in case
two tables have attributes of the same name (which happens often).

The grid has options for sorting and for determining whether to display a particular
attribute in the result table. It also has room for criteria used to filter out data from the
query.

Note also that we do not need to include the PubID field from both tables in the lower
portion of the design window. Microsoft Access takes care of forming the appropriate
join based on the information in the upper portion of the window.

Microsoft Access translates the final query design into a statement in the query language
known as structured query language, or SQL. We will discuss the details of Access SQL
(which differs somewhat from standard SQL) in Chapter 6, where the knowledge you

gain here will prove very useful. I should also mention that Access SQL is more powerful
than the Access Query Design interface, so some operations must be written directly in
SQL. Fortunately, Access allows the user to write SQL statements.

Let us recall some notation used earlier in the book. In order to emphasize the attributes
of a table (or table scheme), we use the notation T(A1,...,An). As an example, the BOOKS
table can be written:

BOOKS(ISBN,Title,PubID,Price)

and the Books table scheme can be written:

Books(ISBN,Title,PubID,Price)

5.3.1 Renaming

Renaming refers simply to changing the name of an attribute of a table. If a table T has an
attribute named A, we will denote the table resulting from the operation of renaming A to
B by:

renA B(T)

For Table 5-5:

Table 5-5. The BOOKS table with original fields
ISBN Title Price PubID

0-103-45678-9 The Firm $24.95 1
0-11-345678-9 Moby-Dick $49.00 2
0-12-333433-3 War and Peace $25.00 1

the result of performing:

is shown in Table 5-6.

Table 5-6. The BOOKS table with renamed fields
BookID Title Cost PubID

0-103-45678-9 The Firm $24.95 1
0-11-345678-9 Moby-Dick $49.00 2
0-12-333433-3 War and Peace $25.00 1

5.3.2 Union

If S and T are tables with the same attributes, then we may form the union S T, which
is just the table obtained by including all of the rows from both S and T. Here is an
example.

A1 A2
a b
c d
e f

A1 A2
g h
i j

A1 A2
a b
c d
e f
g h
i j

Note that if S and T do not have the same attributes, but do have the same degree —that
is, the same number of columns—then we can first rename the attributes of one table to
match the other and then take their union. Of course, this will not always make sense,
since it may result in combining attribute values from different domains into one column.

Let us consider an example of how to take a union in Microsoft Access. Unions can be
formed in one of two ways in Microsoft Access. The first is straightforward:

1. First, we need some expendable tables to use in this example. We can create these
tables by copying the BOOKS table as follows. Highlight the BOOKS table in the
Database Window, and choose Copy from the Edit menu. Then choose Paste from
the Edit menu. You will get the dialog box in Figure 5-2.

Figure 5-2. The Access Paste Table As dialog box

Type the table name Union1, and click OK. Choose Paste a second time to create
a table named Union2. Open Union1, and delete the last seven rows from the
table. (Just highlight the rows and hit the Delete key.) Open Union2, and delete
the first seven rows of the table. Thus, Union1 will consist of the first half of the
BOOKS, table and Union2 will consist of the second half of BOOKS.

2. The simplest way to take the union is to use the same Copy...Paste procedure that
we used in Step 1. To illustrate, highlight Union2, and choose Copy from the Edit
menu. Then choose Paste, and enter the table name Union1. Select the Append
Data to Existing Table option. If you then click OK, the rows of the copied table
(Union2) will be appended to the rows of the table Union1. In other words,
Union1 will now contain the union of the original Union1 table and the Union2
table, which in this case is the complete contents of BOOKS. This is expressed in
symbols as:

NewUnion1 = OriginalUnion1 Union2

Open Union1 to verify that it now has 14 rows. Then delete the last seven rows
again to restore Union1 to its original condition.

Another way to create a union is to use an Append Query as follows:

1. From the Query tab in the Database window, choose the New button. Select
Design View, and then add Union2 to the design window. Select Append from the
Query menu to get the dialog box in Figure 5-3.

Figure 5-3. The Access Append dialog box

2. Click OK to get the window shown in Figure 5-4. Drag the asterisk (*) in the table
scheme for Union2 to the first cell in the Field row of the design grid. This will
fill in the first column of the design grid as shown in Figure 5-4. Run the query
(choose Run from the Query menu). You will get a warning that you are about to
append seven rows and that the process cannot be undone. Click OK, and then
open the Union1 table to verify that it now has 14 rows.

Figure 5-4. The Access Append Query window

5.3.3 Intersection

The intersection S T of two tables S and T with the same attributes is the table formed
by keeping only those rows that appear in both tables. Here is an example:

A1 A2
a b
c d
e f

A1 A2
c d
i j
e f

A1 A2
c d
e f

We will see an example of how to form an intersection in Microsoft Access when we
discuss differences, in the next section.

5.3.4 Difference

The difference S - T of two tables S and T with the same attributes is the table consisting
of all rows of S that do not appear in T, as shown in the following tables:

A1 A2
a b
c d
e f

g h
A1 A2

c d
i j
e f

A1 A2
a b
g h

Let us consider an example of how to take an intersection or difference in Microsoft
Access.

1. First, we need some expendable tables. As in the first step of the example for
creating a union, use the Copy and Paste features to create two tables named
Diff1 and Diff2 that are exact copies of BOOKS. Open Diff1, and remove the last
four rows. Open Diff2, and remove the first four rows. Thus, Diff1 contains the
first ten books from BOOKS, and Diff2 contains the last ten books from BOOKS.

2. Now switch to the Query tab, and start a new query. Add both Diff1 and Diff2 to
the query. You may notice a connecting line between the two ISBN attributes. If
there is no such line, drag one ISBN name to the other to create a line. Now right
click on the line and choose Join Properties from the pop-up menu. This should
produce the dialog box shown in Figure 5-5. Select option 2, which will include
all records (rows) from Diff1 and all rows of Diff2 that have a matching ISBN in
Diff1. This is a so-called left outer join. We will discuss this in more detail later in
this section. Click OK.

Figure 5-5. The Access Join Properties dialog box

3. Drag the asterisk (*) from Diff1 to the design grid, and then drag ISBN from
Diff2 to the second column of the design grid. The design window should now
appear as in Figure 5-6.

Figure 5-6. The Access Select Query design window showing a join between two
properties

4. Now run the query. You should get a table as shown in Figure 5-7. This table
contains the ten rows from Diff1, with an extra column that gives the matching
ISBN from Diff2, if there is one. Otherwise, the column contains a NULL. We
can see that the six rows that have a matching ISBN in column Diff2.ISBN form
the intersection of the two tables. Also, the four rows that do not have a matching
ISBN form the difference Diff1 - Diff2. Hence, we only need to add a simple
criterion to the query to obtain either the intersection or the difference.

Figure 5-7. The Access Select Query window showing the intersection of two
tables

5. To get the intersection Diff1 Diff2, return to the design view of the query, and
add the words Is Not Null under the Criteria row in the Diff2.ISBN column. Run
the query.

6. To get the difference Diff1 - Diff2, return to the design view of the query, and add
the words Is Null under the Criteria row in the Diff2.ISBN column. Run the
query.

5.3.5 Cartesian Product

To define the Cartesian product of tables, we need to adjust the way we write attribute
names, just in case both tables have an attribute of the same name. If a table T has an
attribute named A, the fully qualified attribute name (or just qualified attribute name) is
T.A. Thus, we may write BOOKS.ISBN or AUTHORS.AuID.

If S(A1,...,An) and T(B1,...,Bm) are tables, then the Cartesian product S x T of S and T is
the table whose attribute set contains the fully qualified attribute names of all attributes
from S and T:

{S.A1,...,S.An,T.B1,...,T.Bm}

The rows of S x T are formed by combining each row s of S with each rowtof T, to form
a new rowst. An example will help make this clear:

A1 A2
a b
c d
e f

B1 B2 B3
g h i
j k l

S.A1 S.A2 T.B1 T.B2 T.B3
a b g h i
a b j k l
c d g h i
c d j k l
e f g h i
e f j k l

Notice that if S has k rows and T has j rows, then the Cartesian product has kj rows.
Hence, the Cartesian product of two tables can be very large.

To form a Cartesian product of two tables in Microsoft Access, proceed as follows:

1. Create the two tables S and T in the previous example.
2. Create a new query, and add the tables S and T. Make certain that there are no

lines joining the two table schemes. (If there are, right click on the lines, and
choose Delete from the pop-up menu.)

3. Drag the asterisks from each table scheme to the design grid. You should now
have a design window as shown in Figure 5-8. Run the query to get the Cartesian
product.

Figure 5-8. The Access Query window illustrating a Cartesian product of two tables

5.3.6 Projection

Projection is a very simple concept. Intuitively, a projection of a table onto a subset of its
attributes (columns) is the table formed by throwing away all other columns.

More formally, let T(A1,...An) be a table, where A = {A1,...,An} is the attribute set. If B is
a subset of A, then the projection of T onto B is just the table obtained from T by keeping
only those columns headed by the attribute names in B. We denote this table by projB (T).

As an example, for the table:

ISBN Title Price PubID
0-103-45678-9 The Firm $24.95 1
0-11-345678-9 Moby-Dick $49.00 2
0-12-333433-3 War and Peace $25.00 1

the projection projISBN,Price(BOOKS) is:

ISBN Price
0-103-45678-9 $24.95
0-11-345678-9 $49.00
0-12-333433-3 $25.00

Note that, if the projection produces two identical rows, the duplicate rows must be
removed, since a table is not allowed to have duplicate rows. (This rule of relational
databases is not enforced by all commercial database products. In particular, it is not
enforced by Microsoft Access. That is, some products allow identical rows in a table. By
definition, these products are not true relational databases—but that is not necessarily a
flaw.)

The Query Design window in Microsoft Access was tailor-made for creating projections.
Just add the table to the design window, and drag the desired attribute names to the
design grid. Run the query to get the projection. Figure 5-9 shows the Query Design
window for computing the projection of Books onto the attributes ISBN and Price.

Figure 5-9. Creating a projection using the BOOKS table

5.3.7 Selection

Just as the operation of projection selects only a subset of the columns of a table, so the
operation of selection selects a subset of the rows of a table. The first step in defining the
operation of selection is to define a selection condition or selection criterion to be any
legally formed expression that involves:

• Constants (i.e., members of any attribute domain)
• Attribute names
• Arithmetic comparison relations (=, , <, , >,)
• Logical operators (and, or, not)

For example, the following are selection conditions:

• Price > $10.00
• Price $50.00 and AuName = “Bronte”
• (Price $50.00 and AuName = “Bronte”) or (not AuName = “Austen”)

If condition is a selection condition, then the result table obtained by applying the
corresponding selection operation to a table T is denoted by:

selcondition(T)

or sometimes by:

T where condition

and is the table obtained from T by keeping only those rows that satisfy the selection
condition.

For example, see Table 5-7.

Table 5-7. The BOOKS table in the LIBRARY databse
ISBN Title PubID Price

0-103-45678-9 Iliad 1 $25.00
0-11-345678-9 Moby-Dick 3 $49.00
0-12-333433-3 On Liberty 1 $25.00
0-12-345678-9 Jane Eyre 3 $49.00
0-123-45678-0 Ulysses 2 $34.00
0-321-32132-1 Balloon 3 $34.00
0-55-123456-9 Main Street 3 $22.95
0-555-55555-9 Macbeth 2 $12.00
0-91-045678-5 Hamlet 2 $20.00
0-91-335678-7 Faerie Queene 1 $15.00
0-99-777777-7 King Lear 2 $49.00
0-99-999999-9 Emma 1 $20.00
1-1111-1111-1 C++ 1 $29.95
1-22-233700-0 Visual Basic 1 $25.00

The table is shown in Table 5-8:

Table 5-8. The resulting table
ISBN Title PubID Price

0-12-345678-9 Jane Eyre 3 $49.00
0-11-345678-9 Moby-Dick 3 $49.00
0-99-777777-7 King Lear 2 $49.00
0-123-45678-0 Ulysses 2 $34.00
1-1111-1111-1 C++ 1 $29.95
0-321-32132-1 Balloon 3 $34.00

Some authors refer to selection as restriction, which does seem to be a more appropriate
term and has the advantage that it is not confused with the SQL SELECT statement,
which is much more general than just selection. However, it is less common than the term
selection, so we will use this term.

The Query Design window in Microsoft Access was also tailor-made for creating
selections. We just use the Criteria rows to apply the desired restrictions. For example,
Figure 5-10 shows the design window for the selection:

from the previous example.

Figure 5-10. Creating a selection in the Query Design window

You will probably agree that the operations we have covered so far are pretty
straightforward—union, intersection, difference, and Cartesian product are basic set-
theoretic operations. Selecting rows and columns are clearly valuable table operations.

Actually, the six operations of renaming, union, difference, Cartesian product, projection,
and selection are enough to form the complete relational algebra by combining these
operations with constants and attribute names to create relational-algebra expressions.

However, it is very convenient to define some additional operations on tables, even
though they can theoretically be expressed in terms of the six operations previously
mentioned. So let us proceed.

5.3.8 Joins

The various types of joins are among the most important and useful of the relational-
algebra operations. Loosely speaking, joining two tables involves combining the rows of
two tables based on comparing the values in selected columns.

5.3.8.1 Equi-join

In an equi-join, rows are combined if there are equal attribute values in certain selected
columns from each table.

To be specific, let S and T be tables, and suppose that {C1,...,Ck} are selected attributes of
S and {D1,...,Dk} are selected attributes of T. Each table may have additional attributes as
well. Note that we select the same number of attributes from each table.

The equi-join of S and T on columns {C1,...,Ck} and {D1,...,Dk} is the table formed by
combining a row of S with a row of T, provided that corresponding columns have equal
value—that is, provided that:

S.C1 = T.D1,S.C2, ...,S.Ck = T.Dk

As an example, consider the tables:

A1 A2
1 4
4 5
6 3

B1 B2 B3
2 3 4
6 7 3
1 1 4

To form the equi-join:

S equi-joinA2 = B3T

we combine rows for which:

S.A2 = T.B3

This gives:

S.A1 S.A2 T.B1 T.B2 T.B3
1 4 2 3 4
1 4 1 1 4
6 3 6 7 3

Notice that the equi-join can be expressed in terms of the Cartesian product and the
selection operation as follows:

This simply says that, to form the equi-join, we take the Cartesian product S x T of S and
T (i.e., the set of all combinations of rows from S and T) and then select only those rows
for which:

S.C1 T.D1,S.C2 = T.D2, ...,S.Ck = T.D2, ...,S.Ck = T.Dk

5.3.8.2 Natural join

The natural join (nat-join) is a variation on the equi-join, based on the equality of
allcommon attributes in two tables.

To be specific, suppose that S and T are tables and that the set of all common attributes
between these tables is {C1,...,Cn}. Thus, each table may have additional attributes, but no
further attributes in common. The natural join of S and T, which we denote by:

S nat-join T

is formed in two steps:

1. Form the equi-join on the common attributes {C1,...,Cn}.
2. Remove the second set of common columns from the table.

Consider these tables:

A1 A2 A3 A4
a b c d
e f g h
i j k l
m n o p

B1 A2 A4 B4
a b c d
c j l f
f b d g
x y z h
s j l j

In this case, the set of common attributes is {A2,A4}. The corresponding columns are
shaded for easier identification.

The equi-join on A2 and A4 is:

S.A1 S.A2 S.A3 S.A4 T.B1 T.A2 T.A4 T.B4
a b c d f b d g
i j k l c j l f
i j k l s j l j

Deleting the second set of common columns (the columns that come from T, as shaded in
the previous table) gives:

S.A1 S.A2 S.A3 S.A4 T.B1 T.B4
a b c d f g

i j k l c f
i j k l s j

The importance of the natural join comes from the fact that, when there is a one-to-many
relationship from S to T, we can arrange it—by renaming, if necessary—so that the only
common attributes are the key of S and the foreign key in T. In this case, the natural join
S nat-join T is simply the table obtained by matching rows that are related through the
one-to-many relationship.

For example, consider the following BOOKS and PUBLISHERS tables in Tables Table
5-9 and Table 5-10, respectively.

Table 5-9. The BOOKS table
ISBN Title Price PubID

0-103-45678-9 The Firm $24.95 1
0-11-345678-9 Moby-Dick $49.00 2
0-12-333433-3 War and Peace $25.00 1
0-12-345678-9 Jane Eyre $34.00 1
0-26-888888-8 Persuasion $13.00 3
0-555-55555-9 Emma $12.00 3
0-91-045678-5 The Chamber $20.00 3
0-91-335678-7 Partners $15.00 1
0-99-777777-7 Triple Play $44.00 3
0-99-999999-9 Mansfield Park $18.00 1

Table 5-10. The PUBLISHERS table
PubID PubName PubPhone

1 Big House 212-000-1212
2 Little House 213-111-1212
3 Medium House 614-222-1212

Then PUBLISHERS nat-join BOOKS is the table formed by taking each PUBLISHERS
row and adjoining each BOOKS row with a matching PubID, as shown in Table 5-11.

Table 5-11. The PUBLISHERS nat-join BOOKS table
PubID PubName PubPhone ISBN Title Price

1 Big House 212-000-1212 0-103-45678-9 The Firm $24.95
1 Big House 212-000-1212 0-12-333433-3 War and Peace $25.00
1 Big House 212-000-1212 0-12-345678-9 Jane Eyre $34.00
1 Big House 212-000-1212 0-91-335678-7 Partners $15.00
1 Big House 212-000-1212 0-99-999999-9 Mansfield Park $18.00
2 Little House 213-111-1212 0-11-345678-9 Moby-Dick $49.00
3 Medium House 614-222-1212 0-26-888888-8 Persuasion $13.00
3 Medium House 614-222-1212 0-555-55555-9 Emma $12.00
3 Medium House 614-222-1212 0-91-045678-5 The Chamber $20.00
3 Medium House 614-222-1212 0-99-777777-7 Triple Play $44.00

5.3.8.3 -Join

The -join (read theta join, since is the Greek letter theta) is similar to the equi-join and
is used when we need to make a comparison other than equality between column values.
In fact, the -join can use any of these arithmetic comparison relations:

=, , <, , >,

Let S and T be tables, and suppose that {C1,...,Ck} are selected attributes of S and
{D1,...,Dk} are selected attributes of T. Each table may have additional attributes as well.
Note that we select the same number of attributes from each table. Let 1,..., k be
comparison relations. Then the -join of tables S and T on columns C1,...,Ck and D1,...,Dk
is:

Thus, to form the -join, we take the Cartesian product S x T of S and T and then select
those rows for which the value in column C1 stands in relation 1 to the value in column
D1 and similarly for each of the other columns.

As an example, consider these tables:

A1 A2
1 2
4 5
6 3

B1 B2 B3
2 3 4
6 7 3

To form the -join:

we keep only those rows of the Cartesian product of the two tables for which the value in
column A2 is the value in column B3:

S.A1 S.A2 T.B1 T.B2 T.B3
1 2 2 3 4
1 2 6 7 3
6 3 2 3 4
6 3 6 7 3

Notice that a -join, where all relations i are equality (=), is precisely the equi-join.

5.3.9 Outer Joins

The natural join, equi-join, and -join are referred to as inner joins. Each inner join has a
corresponding left outer join and right outer join, which are formed by first taking the
corresponding inner join and then including some additional rows.

In particular, for the left outer join, if s is a row of S that was not used in the inner join,
we include the row s, filled out to the proper size with NULL values. An example may
help to clarify this concept.

In an earlier example, we saw that the natural join of the tables:

A1 A2 A3 A4
a b c d
e f g h
i j k l
m n o p

B1 A2 A4 B4
a b c d
c j l f
f b d g
x y z h
s j l j

is:

A1 A2 A3 A4 B1 B4
a b c d f g
i j k l c f
i j k l s j

The corresponding left outer join is the same as the nat-join, but with a few extra rows:

A1 A2 A3 A4 B1 B4
a b c d f g
i j k l c f
i j k l s j
e f g j NULL NULL
m n o p NULL NULL

In particular, the left outer join also contains the two rows of S that were not involved in
the natural join, with NULL values used to fill out the rows. The right outer join is
defined similarly, where the rows of T are included, with NULL values in place of the S
values.

One of the simplest uses for an outer join is to help see what is not part of an inner join!
For instance, the previous table shows us instantly that the second and fourth rows:

e f g h
m n o p

of table S are not involved in the natural join S nat-join T. Put another way, the values:

and:

are not present in any rows of table T.

5.3.10 Implementing Joins in Microsoft Access

Now let us consider how to implement the various types of joins in Microsoft Access.
The Access Query Design window makes it easy to create equi-joins. Of course, a natural
join is easily created from an appropriate equi-join by using a projection. Let us illustrate
this statement with an example.

Begin by creating the following two simple tables, S and T, shown in Table 5-12 and
Table 5-13.

Table 5-12. The S table
A1 A2

a b
c d
e f

Table 5-13. The T table
B1 B2 B3

g h i
j k l
c d x
c d y
c y z

Let us create the equi-join:

Open the Query Design window (by asking for a new query), and add these two tables.
To establish the associations:

S.A1 = T.B1

and

S.A2 = T.B2

drag the attribute name A1 to B1, and drag the attribute name A2 to B2. This should create
the lines shown in Figure 5-11. Drag the two asterisks down to the first two columns of
the design grid, as in Figure 5-11. (Access provides the asterisk as a quick way to drag all
of the fields to the design grid. It is the same as dragging each field separately with one
exception—changes to the underlying table design are reflected in the asterisk. In other
words, if new fields are added to the underlying table, they will be included automatically
in the query.)

Figure 5-11. Establishing associations in the Access Query Design window

Now all we need to do is run the query. The result is shown in Table 5-14.

Table 5-14. An equi-join of tables S and T
A1 A2 B1 B2 B3

c d c d y
c d c d x

In other words, Microsoft Access uses the relationships defined graphically in the upper
portion of the window to create an equi-join.

The Access Query Design window does not allow us to create a -join that does not use
equality. However, we can easily create such a join from an equi-join by altering the
corresponding SQL statement. We will discuss SQL in detail in Chapter 6. For now, let
us modify the previous example to illustrate the technique.

From the design view for the query in the previous example, select SQL from the View
menu. You should see the window shown in Figure 5-12.

Figure 5-12. The SQL statement generated from Figure 5-11

This is the SQL statement that Access created from our query design for the previous
example. Now, edit the two equal signs by changing each of them to <= (less than or
equal to). Note that, for text, the less-than-or-equal-to sign refers to alphabetical order.

Now run the query. The result table should appear as shown in Table 5-15.

Table 5-15. Result table from a -join
A1 A2 B1 B2 B3

a b g h i
a b j k l
a b c d x
a b c d y
a b c y z
c d g h i
c d j k l
c d c d x
c d c d y
c d c y z
e f g h i
e f j k l

Notice that for each row of the table, A1 precedes or equals B1 in alphabetical order, and
A2 precedes or equals B2.

Finally, observe that if we try to return to the design view of this query, Access issues the
message in Figure 5-13, because the design view cannot create -joins that are not based
strictly on equality.

To create an outer join, return the SQL statement of the previous example back to its
original form (with equal signs), and then return to design view. Click the right mouse
button on one of the connecting lines between the table schemes, and choose Join
Properties from the pop-up menu. This should produce the dialog box shown in Figure 5-
14.

Figure 5-13. Access error for attempting to create unequal -joins

Figure 5-14. The Access dialog box for joining properties

Select option 2, which will produce a left outer join. (Option 1 creates an inner join,
option 2 creates a left outer join, and option 3 creates a right outer join.) Do the same for
the other connecting line. Take a peek at the SQL statement, which should appear as in
Figure 5-15.

Figure 5-15. The SQL statement illustrating a left outer join

Now you can run the query, which should produce the result table in Table 5-16, where
the empty cells contain the NULL value.

Table 5-16. A left outer join
A1 A2 B1 B2 B3

a b
c d c d y
c d c d x
e f

Of course, a right outer join is created similarly, by choosing option 3 in Figure 5-14.

5.3.11 Semi-Joins

A semi-join is formed from an inner join (or -join) by projecting onto one of the tables
that participated in the join. In other words, we first form the join:

and then just keep the columns that came from S or from T. Thus, the formula for the left
semi-join is:

Similarly, the formula for the right semi-join is:

The concept of a semi-join occurs in relation to the DISTINCTROW keyword of the
SELECT clause in Access SQL, which we will discuss in Chapter 6. For now, let us
consider an example of the semi-join, which should indicate why semi-joins are useful.

Imagine that we add a new publisher to the PUBLISHERS table (Another Press in Table
5-17), but do not add any books for this publisher to the BOOKS table. Consider the
inner join of the tables PUBLISHERS and BOOKS:

PUBLISHERS joinPUBLISHERS.PubID = BOOKS.PubID BOOKS
Table 5-17. The PUBLISHERS (new) table

PubID PubName PubPhone
1 Big House 123-456-7890
2 Alpha Press 999-999-9999
3 Small House 714-000-0000
4 Another Press 111-222-3333

For the LIBRARY database, the result table resulting from this join is shown in Table 5-
18.

Table 5-18. Result table from an inner join
PUBLISHERS.PubID Pub-Name PubPhone ISBN Title BOOKS.PubID Price

3 Small
House

714-000-
0000

0-12-345678-
9 Jane Eyre 3 $49.00

3 Small
House

714-000-
0000

0-11-345678-
9 Moby-Dick 3 $49.00

3 Small
House

714-000-
0000

0-321-32132-
1 Balloon 3 $34.00

3 Small
House

714-000-
0000

0-55-123456-
9 Main Street 3 $22.95

1 Big House 123-456-
7890

0-12-333433-
3 On Liberty 1 $25.00

1 Big House 123-456-
7890

0-103-45678-
9 Iliad 1 $25.00

1 Big House 123-456-
7890

0-91-335678-
7

Faerie
Queene 1 $15.00

1 Big House 123-456-
7890

0-99-999999-
9 Emma 1 $20.00

1 Big House 123-456-
7890

1-22-233700-
0 Visual Basic 1 $25.00

1 Big House 123-456-
7890

1-1111-1111-
1 C++ 1 $29.95

2 Alpha Press 999-999-
9999

0-91-045678-
5 Hamlet 2 $20.00

2 Alpha Press 999-999-
9999

0-555-55555-
9 Macbeth 2 $12.00

2 Alpha Press 999-999-
9999

0-99-777777-
7 King Lear 2 $49.00

2 Alpha Press 999-999-
9999

0-123-45678-
0 Ulysses 2 $34.00

If we now project onto the PUBLISHERS table, we get the left semi-join:

PUBLISHERS left-semi-joinPUBLISHERS.PubID = BOOKS.PubID BOOKS

for which the result table is shown in Table 5-19.

Table 5-19. Result table from a semi-join
PubID PubName PubPhone

3 Small House 714-000-0000
1 Big House 123-456-7890
2 Alpha Press 999-999-9999

This is the set of all publishers that have book entries in the BOOKS database.

5.3.12 Other Relational Algebra Operations

There is one more operation in relational algebra that occurs from time to time, called the
quotient. However, since this operation is less common, and a bit involved, we will cover
it in Appendix B. (You may turn to that appendix after finishing this chapter, if you are
interested.)

5.3.13 Optimization

Let us conclude this discussion with a brief remark about optimization . As we have
discussed, statements in the relational algebra are procedural; that is, they describe a

procedure for carrying out the operations. However, this procedure is often not very
efficient.

Let us illustrate with an extreme example. Consider the two table schemes:

{ISBN,Title,Price} and {ISBN,PageCount}

If S is a table based on the first scheme and T is a table based on the second scheme, then
the natural join is:

According to this formula, the join is carried out in the following steps:

1. Form the Cartesian product.
2. Take the appropriate selection.
3. Take the appropriate projection.

Now imagine two tables S and T, where S has 10,000 rows and T has 10,000 rows.
Assume also that the tables have only one common attribute, for which no values are the
same in both tables. In this case, according to the definition of natural join, the join is
actually the empty table.

However, according to the procedure described, the first step in computing this join is to
compute the product S x T, which has 10,000 x 10,000 = 100,000,000 rows—that is, one
hundred million rows! Obviously, this is not the best procedure for computing the join!

Fortunately, database programs that use a procedural language have optimization routines
to avoid problems such as this. Such a routine looks at the task it is requested to perform
and tries to find an alternative procedure that will produce the same output with less
computation. Thus, from a practical standpoint, procedural languages sometimes behave
similarly to nonprocedural ones.

6. Access Structured Query Language (SQL)
6.1 Introduction to Access SQL

As we have said, Microsoft Access uses a form of query language referred to as
Structured Query Language, or SQL. (I prefer to pronounce SQL by saying each letter
separately, rather than saying “sequel.” Accordingly, I will write “an SQL statement”
rather than “a SQL statement.”)

SQL is the most common database query language in use today. It is actually more than
just a query language, as I have defined the term in the previous chapter. It is a complete
database management system (DBMS) language, in that it has the capability not only to
manipulate the components of a database, but also to create them in the first place. In
particular, SQL has the following components:

1. A data definition language (DDL)component, to allow the definition (creation) of
database components, such as tables.

2. A data manipulation language (DML) component, to allow manipulation of
database components.

3. A data control language (DCL) component, to provide internal security for a
database.

We will discuss the first two components of SQL in some detail in this chapter.

SQL (also known as SEQUEL) was developed by IBM in San Jose, California. The
current version of SQL is called SQL-92. However, Microsoft Access, like all other
commercial products that support SQL, does not implement the complete SQL-92
standard and in fact adds some additional features of its own to the language. Since this
book uses Microsoft Access, we will discuss the Access version of SQL.

6.2 Access Query Design

In Microsoft Access, queries can be defined in several different ways, but they all come
down to an SQL statement in the end. The Query Wizard helps create a query by asking
the user to respond to a series of questions. This approach is the most user friendly, but
also the least powerful. Access also provides a Query Design window with two different
views. The Design View is shown in Figure 6-1.

Query Design View displays table schemes, along with their relationships, and allows the
user to select columns to return (projection) and specify criteria for the returned data
(selection). Figure 6-1 shows a query definition that joins the BOOKS and
PUBLISHERS table and returns the Title, Publisher, and Price of all books whose price is
over $25.00.

Figure 6-1. The Access Query Design View

The Query Design window also has an SQL View. Switching to this view shows the SQL
statement that corresponds to the Design View query. Figure 6-2 shows the
corresponding SQL statement for the query in Figure 6-1.

Figure 6-2. The Access SQL View of Figure 6-1

In addition to using the Design View, users can enter SQL statements directly into the
SQL View window. In fact, some constructions, such as directly creating the union of
two tables in a third table, cannot be accomplished using Design View and therefore must
be entered in SQL View. However, such constructs are rare, and it is often possible to
complete a project without the need to enter SQL statements directly.

6.3 Access Query Types

Access supports a variety of query types. Here is a list, along with a brief description of
each:

Select query

These queries return data from one or more tables and display the results in a
result table. The table is (usually) updatable, which means that we can change the
data in the table, and the changes will be reflected in the underlying tables. Select
queries can also be used to group rows and calculate sums, counts, averages, and
other types of totals for these groups.

Action queries

These are queries that take some form of action. The action queries are:

Make-table query

A query that is designed to create a new table with data from existing tables.

Delete query

A query that is used to delete rows from a given table or tables.

Append query

A query that is used to append additional rows to the bottom of an existing table.

Update query

A query that is used to make changes to one or more rows in a table.

SQL queries

These are queries that must be entered in SQL View. The SQL queries are:

Union query

A query that creates the union of two or more tables.

Pass-through query

A query that passes the uninterpreted SQL statement through to an external
database server. (We will not discuss these queries in this book.)

Data-definition query

Queries that use the DDL component of SQL, such as CREATE TABLE or
CREATE INDEX.

Crosstab query

This is a special type of select query that displays values in a spreadsheet format,
with both row and column headings. For instance, we might wish to know how
many books are published by each publisher at each price. This is most
conveniently pictured as a crosstab query, as shown in Table 6-1.

Parameter query

For select or crosstab queries, we may choose to let the user supply certain data at
runtime by filling in a dialog box. This can be done in both Design View and SQL
View. When the query asks for information from the user, it is referred to as a
parameterized query, or parameter query.

Table 6-1. A CROSSTAB Query
Price Total Big House Medium House Small House

$12.00 1 1
$13.00 3 2 1
$15.00 1 1
$18.00 1 1
$20.00 6 1 5
$25.00 2 2
$34.00 5 1 4
$44.00 1 1
$49.00 6 1 4 1
$99.00 1 1

Finally, I mention that Access allows a select or action query to contain another select
query. This is done by nesting SQL SELECT statements, as we will see. The internal
query is called a subquery of the external query. Access allows multiple levels of
subqueries.

6.4 Why Use SQL?

As you look through the syntax of the SQL statements in this chapter, you may be struck
by the fact that SQL is not a particularly pleasant language. Moreover, as I have said,
many features of SQL can be accessed through the Access Query Design Window. So
why program in SQL at all?

Here are some reasons:

• There are some important features of SQL that cannot be reached through the
Query Design Window. For instance, there is no way to create a union query, a
subquery, or an SQL pass-through query (which is a query that passes through
Access to an external database server, such as Microsoft SQL Server) using the
Query Design Window.

• You cannot use the DDL component of SQL from within the Query Design
Window. To use this component, you must write SQL statements directly.

• SQL can be used from within other applications, such as Microsoft Excel, Word,
and Visual Basic, to run the Access SQL engine.

• SQL is an industry-standard language for querying databases, and as such it is
useful outside of the Microsoft Access environment.

Despite these important reasons, we suggest that, on first reading, you go lightly over the
SQL commands to get a flavor for how they work. Then you can use this chapter as a
reference whenever you actually need to write SQL statements yourself. Fortunately,
SQL has relatively few actual commands, which makes it easy to get an overall picture of
the language. (For instance, SQL is single-statement oriented. It does not have control
structures such as For...Next... loops, nor conditional statements such as If...Then...
statements.)

We should also mention that using the Query Design Window itself is a good way to
learn SQL, for you can create a query in the Design Window and then switch to SQL
View to see the corresponding SQL statement, obligingly created by Microsoft Access.

6.5 Access SQL

SQL is a nonprocedural language, meaning, as we have seen, that expressions in SQL
state what needs to be done, but not how it should be done. This frees the programmer to
concentrate on the logic of the SQL program. The Access Query Engine takes care of
optimization.

One way to experiment with SQL is to enter a query using Design View and then switch
to SQL View to see how Access resolves the query into SQL. It is also worth mentioning
that the Help system has complete details on the syntax and options of each SQL
statement.

Incidentally, reading the definition of SQL statements can be tiresome. You may wish to
just skim over the syntax of each statement and go directly to the examples. The main
goal here is to get a reasonable feel for SQL statements and what they can do. You can
then look up the correct syntax for the relevant statement when needed (as I do).

6.5.1 Syntax Conventions

In looking at the SQL commands, we need to establish a consistent syntax. I will employ
the following conventions:

• Uppercase words are SQL keywords and should be typed in as written.
• Words in constant width italic are intended to be replaced with something else.

For instance, in the statement:

CREATE TABLE TableName

we must replace TableNamewith the name of a table.

• An item in square brackets [] is optional.
• Braces ({}) are used to (hopefully) clarify the syntax. They are never to be

included in the statement proper.
• Parentheses should be typed as shown.

• The symbol ::= means “defined as” and the symbol | means “or.” For instance, the
line:

TableElement ::= ColumnDefinition | TableConstraint

means that a table element is defined as either a column definition or a table
constraint.

• The syntax item, ... means that you can repeat item as often as desired,
separated by commas. For instance, in the line:

CREATE TABLE TableName (TableElement, ...)

you may repeat the TableElement as many times as desired but at least once,
since it is not enclosed in square brackets, so it is not optional. (The parentheses
must be included.) If a group of items may be repeated, then we use curly braces
to enclose those items (for easier reading). For instance, the following expression
means that you may repeat the clause ColName [ASC|DESC]:

{ColName [ASC|DESC]}, ...

6.5.1.1 Notes

• You may break the lines in an SQL statement at any point, which is useful for
improving readability.

• Each SQL statement should end with a semicolon (although Access SQL does not
require this).

• If a table name (or other name) contains a character that SQL regards as illegal,
then the name must be enclosed in square brackets. For instance, the forward
slash character is illegal in SQL and so the table name BOOK/AUTHOR is also
illegal. Thus, it must be enclosed in square brackets: [BOOK/AUTHOR]. This
should not be confused with the use of square brackets to denote optional items in
SQL syntax descriptions.

6.6 The DDL Component of Access SQL

We begin by looking at the data definition commands in Access SQL. These commands
do not have a counterpart in Query Design View (although, of course, you can perform
these functions through the Access graphical environment). Access SQL supports these
four DDL commands:

• CREATE TABLE
• ALTER TABLE
• DROP TABLE
• CREATE INDEX

I should mention now that there is some duplication of features in the DDL commands.
For instance, you can add an index to a table using either the ALTER TABLE command
or the CREATE INDEX command.

6.6.1 The CREATE TABLE Statement

The CREATE TABLE command has the following syntax:

CREATE TABLE TableName
 (ColumnDefinition,...
 [,Multi-ColumnConstraint,...]);

In words, the parameters to the CREATE TABLE statement are a table name, followed
by one or more column definitions, followed by one or more (optional) multicolumn
constraints. Note that the parentheses are also part of the syntax.

6.6.1.1 Column definition

A column definition is defined as follows:

ColumnDefinition ::= ColumnName
 DataType[(Size)]
 [Single-ColumnConstraint]

In words, a ColumnDefinition is a ColumnName, followed by a DataType (with size if
appropriate), followed by a Single-ColumnConstraint.

There are several data types available in Access SQL. For comparison, the list in Table 6-
2 includes the corresponding selection in the Access Table Design window. (We have not
included all synonyms for the data types.) Note that the SQL type INTEGER corresponds
with the Access data type Long. Note also that the Size option affects only TEXT
columns, indicating the length of the field. (If it is omitted, the text length defaults to
255.)

Table 6-2. Access SQL data types
SQL data type Table Design field type

BOOLEAN, LOGICAL, or YES/NO Yes/No
BYTE or INTEGER1 Number, Field Size = Byte
COUNTER or AUTOINCREMENT AutoNumber, Field Size = Long Integer
CURRENCY or MONEY Currency
DATETIME, DATE, or TIME Date/Time
SHORT, INTEGER2, or SMALLINT Number, Field Size = Integer
LONG, INT, INTEGER, or INTEGER4 Number, Field Size = Long
SINGLE, FLOAT4, or REAL Number, Field Size = Single
DOUBLE, FLOAT, FLOAT8, NUMBER, or NUMERIC Number, Field Size = Double
TEXT, ALPHANUMERIC, CHAR, CHARACTER, or
STRING Text

LONGTEXT, LONGCHAR, MEMO, or NOTE Memo
LONGBINARY, GENERAL, or OLEOBJECT (OLE) Object

GUID AutoNumber, Field Size = Replication
ID

6.6.1.2 Constraints

Constraint clauses can be used to:

• Designate a primary key
• Designate a foreign key, thus establishing a relationship between two tables
• Force a column to contain only unique values

(In SQL-92, these clauses have two other uses: to disallow NULLs and to restrict
allowable values to a specified range.)

There are two types of constraint clauses in a CREATE TABLE command. The single-
column constraint is used (as indicated in the syntax) within a column definition. Its
syntax is:

Single-ColumnConstraint ::=
CONSTRAINT
 IndexName
 [PRIMARY KEY |
 UNIQUE |
 REFERENCES ReferencedTable [(ReferencedColumn,...)]]

The first option designates the column as a primary key and creates an index file of the
name IndexName on that column. The second option designates the column as a
(candidate) key and creates a unique index file on that key, by the name IndexName. The
third option designates the column as a foreign key that references the
ReferencedColumn,... column(s) of the ReferencedTable. The
ReferencedColumn,... clause is optional if the referenced table has a primary key,
since that key will be the referenced key.

For multicolumn constraints, the CONSTRAINT clause must appear after all column
definitions and has the syntax:

Multi-ColumnConstraint ::=
CONSTRAINT
 IndexName
 [PRIMARY KEY (ColumnName,...) |
 UNIQUE (ColumnName,...) |
 FOREIGN KEY (ReferencingColumn,...)
 REFERENCES ReferencedTable [(ReferencedColumn,...)]]

Here are some examples.

Create the Publishers table scheme:

CREATE TABLE PUBLISHERS
(PubID TEXT(10) CONSTRAINT PrimaryKeyName PRIMARY KEY,
PubName TEXT(100),
PubPhone TEXT(20));

Create the Books table scheme, and link to Publishers using PubID as foreign key:

CREATE TABLE BOOKS
(ISBN TEXT(13) CONSTRAINT PrimaryKeyName PRIMARY KEY,
TITLE TEXT(100),
PRICE MONEY,
PubID TEXT(10) CONSTRAINT Test FOREIGN KEY (PubID) REFERENCES
 Publishers
(PubID));

6.6.1.3 Notes

• The CREATE TABLE statement does not provide a way to create an index with
nonunique values. This can be done using the CREATE INDEX statement,
however.

• In specifying a foreign key, the CREATE TABLE statement does enable
referential integrity rules, but does not allow the option of enabling cascading
updates or deletes. (This is one place where Access SQL is weaker than SQL-92,
which has a FOREIGN KEY clause that allows the programmer to specify ON
UPDATE CASCADE and/or ON DELETE CASCADE.)

6.6.2 The ALTER TABLE Statement

The ALTER TABLE command is used to:

• Add a new column to a table
• Delete a column from a table
• Add or delete single- or multiple-column index

The syntax for the ALTER TABLE command is:

ALTER TABLE
 TableName
 ADD COLUMN ColName ColType[(size)] [Single-ColumnConstraint] |
 DROP COLUMN ColName |
 ADD CONSTRAINT Multi-ColumnConstraint |
 DROP CONSTRAINT MultiColumnIndexName;

As you can see, the Single- and Multi-Column Constraint clauses (as defined earlier) can
be used here to add or delete (DROP) an index.

6.6.2.1 Notes

• New columns are added at the beginning of the table, immediately following any
primary key columns.

• You cannot delete a column that is part of an index. The index must first be
removed using a DROP CONSTRAINT statement (or DROP INDEX).

6.6.3 The CREATE INDEX Statement

The CREATE INDEX command has the following syntax:

CREATE [UNIQUE] INDEX IndexName
ON TableName ({ColName [ASC|DESC]},...])
[WITH {PRIMARY | DISALLOW NULL | IGNORE NULL}]

where ASC stands for ascending and DESC for descending. Note that:

• The UNIQUE keyword prevents duplicate values in the index.
• WITH PRIMARY designates the primary key and creates a primary index file. In

this case, the UNIQUE keyword is redundant.
• WITH DISALLOW NULL disallows NULL values in the key.
• WITH IGNORE NULL allows NULL values in the key, but does not include

them in the index file. (Hence, they will be skipped in any searches that use the
index.)

6.6.3.1 Note

The CREATE INDEX command is specific to Access SQL and is not part of the SQL-92
standard.

6.6.4 The DROP Statement

The syntax for the DROP statement, which is used for deleting tables and indexes, is:

DROP TABLE TableName | DROP INDEX IndexName ON TableName

6.6.4.1 Note

A table must be closed before it can be deleted or an index can be removed from it.

6.7 The DML Component of Access SQL

We now turn to the DML component of SQL. The commands we will consider are:

• SELECT
• UNION
• UPDATE
• DELETE
• INSERT INTO
• SELECT INTO
• TRANSFORM

• PARAMETER

Before getting to these statements, however, we must discuss a few relevant points.

6.7.1 Updatable Queries

In many situations, a query is updatable , meaning that we may edit the values in the
result table, and the changes are automatically reflected in the underlying tables. The
details of when this is permitted are fairly involved, but they are completely detailed in
the Access Help facility. (This information is not easy to find, however. You can locate it
by entering “updatable query” in the Access Answer Wizard and choosing Determine
when I can update data from a query.)

6.7.2 Joins

Let’s begin with a brief discussion of how Access SQL denotes joins. Note that a join
clause is not an SQL statement by itself, but must be placed within an SQL statement.

6.7.2.1 Inner joins

The INNER JOIN clause in Access SQL actually denotes a -join on one or more
columns. (See the discussion of joins in Chapter 5.) In particular, the syntax is:

Table1 INNER JOIN Table2 ON Table1.Column1 1 Table2.Column1 [{AND|OR
ON Table1.Column2 2 Table2.Column2},...]

where each is one of =, <, >, <=, >=, <> (not equal to).

6.7.2.2 Outer joins

The syntax for an outer join clause is:

Table1 {LEFT [OUTER]} | {RIGHT [OUTER]} JOIN Table2 ON Table1.Column1

1 Table2.Column1 [{AND|OR ON Table1.Column2 2 Table2.Column2},...]

where is one of =, <, >, <=, >=, or < >. Note that the word OUTER is optional.

6.7.2.3 Nested joins

JOIN statements can be nested. Here is an example that joins the BOOKS, AUTHORS,
PUBLISHERS, and BOOK/AUTHOR tables and then selects the Title, AuName, and
PubName columns. I have indented some lines in the hope of increasing readability. (I
will describe the SELECT statement soon.)

SELECT Title, AuName, PubName
FROM
AUTHORS INNER JOIN
 (PUBLISHERS INNER JOIN

 (BOOKS INNER JOIN [BOOK/AUTHOR]
 ON BOOKS.ISBN=[BOOK/AUTHOR].ISBN)
 ON PUBLISHERS.PubID = BOOKS.PubID)
ON AUTHORS.AuID = [BOOK/AUTHOR].AuID;

To see how this was constructed, it helps to look at the relationships between the tables
involved. Figure 6-3 shows a portion of the relationships window in Access.

Figure 6-3. A portion of the Relationships window in Access

One way to create the previous join statement is to work from the inside out. We first join
BOOKS and BOOK/AUTHOR by the statement:

(BOOKS INNER JOIN [BOOK/AUTHOR]
 ON BOOKS.ISBN=[BOOK/AUTHOR].ISBN)

We then join this to PUBLISHERS on the PubID column:

(PUBLISHERS INNER JOIN
 (BOOKS INNER JOIN [BOOK/AUTHOR]
 ON BOOKS.ISBN=[BOOK/AUTHOR].ISBN)
ON PUBLISHERS.PubID = BOOKS.PubID)

and finally we join this to AUTHORS on the AuID column.

6.7.2.4 Self-joins

A table can be joined to itself, resulting in a self-join. In order to do this, SQL requires
the use of the AS AliasName syntax. For instance, we can write:

BOOKS INNER JOIN BOOKS AS BOOKS2 ON ...

The least confusing way to think of this statement is as though Access creates a second
copy of the BOOKS table and calls it BOOKS2. We can now refer to the columns of
BOOKS as BOOKS.ColumnName or BOOKS2.ColumnName.

6.7.2.5 Notes

• An outer join may be nested inside an inner join, but an inner join may not be
nested inside an outer join.

• We may use Access expressions, which involve functions (such as Left$, Len,
Trim$, and Instr) in SQL statements (even though the “official” syntax does not
describe this).

• In Access, we can define relationships between tables. However, these
relationships have no effect on SQL statements. Thus, an INNER JOIN statement
does not require that a relationship already exist between the participating tables.
Relationships are used in Design View, however, and translate into INNER JOIN
statements. For example, if we add BOOKS and PUBLISHERS to the Query
Design View window, move Title and PubName to the Design grid, and then
view the SQL equivalent, we will see an INNER JOIN clause in the SQL
statement.

6.7.3 The SELECT Statement

The SELECT statement is the workhorse of SQL commands (as you can tell by the
length of our discussion on this statement). The statement returns a table and can perform
both of the relational algebra operations selection and projection. The syntax of the
SELECT statement is:

SELECT [predicate] ReturnColumnDescription,...
FROM TableExpression
[WHERE RowCondition]
[GROUP BY GroupByCriteria]
[HAVING GroupCriteria]
[ORDER BY OrderByCriteria]

Let us describe the various components of this statement. We note immediately that the
keyword SELECT is in some ways unfortunate, since it denotes the relational algebra
operation of projection, not selection. It is the WHERE clause that performs selection.

6.7.3.1 Predicate

The predicate is used to describe how to handle duplicate return rows. It can have one of
the following values: ALL, DISTINCT, DISTINCTROW, or TOP.

The default option ALL returns all qualifying rows, including duplicates. If there is more
than one qualifying row with the same values in all of the columns that arerequested in
the ReturnColumnDescription, then the option DISTINCT returns only the first such row.
The:

TOP number

or:

TOP percent PERCENT

option returns the top number (or percent) of rows in the sort order determined by the
ORDER BY clause.

The DISTINCTROW option can be a bit confusing, so let us see if we can straighten it
out. The Access Help system says that the DISTINCTROW option “Omits data based on

entire duplicate records, not just duplicate fields.” It doesn’t say how this is done.
Microsoft Technet is a bit less vague:

In contrast, DISTINCTROW is unique to Microsoft Access. It causes a
query to return unique records, not unique values. For example, if 10
customers are named Jones, a query based on the SQL statement
“SELECT DISTINCTROW Name FROM Customers” returns all 10
records with Jones in the Name field. The major reason for adding the
DISTINCTROW reserved word to Microsoft Access SQL is to support
updatable semi-joins, such as one-to-many joins in which the output fields
all come from the table on the “one” side. DISTINCTROW is specified by
default in Microsoft Access queries and is ignored in queries in which it
has no effect. You should not delete the DISTINCTROW reserved word
from the SQL dialog box.

The intended purpose of DISTINCTROW is simple. DISTINCTROW applies only when
the FROM clause involves more than one table. Consider this statement:

SELECT ALL PubName
FROM PUBLISHERS INNER JOIN BOOKS
ON PUBLISHERS.PubID = BOOKS.PubID;

Since there are many books published by the same publisher, the result table tblALL
shown in Table 6-3 has many duplicate publisher names.

Table 6-3. The tblALL table
PubName

Small House
Small House
Small House
Small House
Big House
Big House
Big House
Big House
Big House
Big House
Alpha Press
Alpha Press
Alpha Press
Alpha Press

To remove duplicate publisher names, we can include the DISTINCT keyword. Thus, the
statement

SELECT DISTINCT PubName

FROM PUBLISHERS INNER JOIN BOOKS
ON PUBLISHERS.PubID = BOOKS.PubID;

produces the table tblDISTINCT that is shown in Table 6-4.

Table 6-4. The tblDISTINCT table
PubName

Alpha Press
Big House
Small House

Now consider what happens if the PUBLISHERS table is changed by adding a new
publisher with the same name as an existing publisher (but a different PubID and phone),
as we have done in Table 6-5. The previous DISTINCT statement will give the same
result table as before, thus leaving out the new publisher.

Table 6-5. The PUBLISHERS (altered) table
PubID PubName PubPhone

1 Big House 123-456-7890
2 Alpha Press 999-999-9999
3 Small House 714-000-0000
4 Small House 555-123-1111

What is called for is a selection criterion that will return both publisher names simply
because they come from different rows of the PUBLISHERS table. This is the purpose of
DISTINCTROW. Thus, the statement:

SELECT DISTINCTROW PubName
FROM PUBLISHERS INNER JOIN BOOKS
ON PUBLISHERS.PubID = BOOKS.PubID;

produces the result table tblDISTINCTROW shown in Table 6-6 (note that we also had to
add a book to the BOOKS table, with PubID 4).

Table 6-6. The tblDISTINCTROW table
PubName

Small House
Big House
Alpha Press
Small House

We can now describe how DISTINCTROW works. Consider the following SQL
skeleton:

SELECT DISTINCTROW ColumnsRequested
FROM TablesClause

Here ColumnsRequested is a list of columns requested by the statement, and
TablesClause is a join of tables. Let us refer to a table mentioned in TablesClause as a
return table if at least one of its columns is mentioned in ColumnsRequested. Thus, in
the statement:

SELECT DISTINCTROW PubName
FROM PUBLISHERS INNER JOIN BOOKS
ON PUBLISHERS.PubID = BOOKS.PubID;

PUBLISHERS is a return table, but BOOKS is not. Here is how DISTINCTROW works:

1. Form the join(s) described in TablesClause.
2. Project the resulting table onto all of the columns from all return tables (not just

the columns requested). Put another way, remove all columns that are not part of a
return table.

3. Remove all duplicate rows, where two rows are considered duplicates if they are
composed of the same rows from each result table. It is not the values that are
compared, but the actual rows. It is necessary to add this because two different
rows may have identical values in an Access table.

Let us illustrate with a simple example.

Consider the following tables, named Temp1, Temp2, and Temp3, respectively:

A1 A2
a1 x
a2 link
a3 link

B1 B2 B3
b1 y z
b2 link link2

C1 C2 C3
c1 t link2
c2 v link2
c3 a x

The statement:

SELECT *
FROM
(Temp1 INNER JOIN Temp2 ON Temp1.A2 = Temp2.B2)
INNER JOIN Temp3 ON Temp2.B3 = Temp3.C3;

gives the result table tblALL:

A1 A2 B1 B2 B3 C1 C2 C3
a3 link b2 link link2 c2 v link2
a3 link b2 link link2 c1 t link2
a2 link b2 link link2 c2 v link2
a2 link b2 link link2 c1 t link2

Now let us add the DISTINCTROW keyword and select a single column from just tblA:

SELECT DISTINCTROW A1
FROM
(Temp1 INNER JOIN Temp2 ON Temp1.A2 = Temp2.B2)
INNER JOIN Temp3 ON Temp2.B3 = Temp3.C3;

Now we consider the projection onto the rows of the only return table (tblA):

A1 A2
a3 link
a3 link
a2 link
a2 link

It is clear that the first two rows of this table are the same row of tblA, so they produce
only one row in the final result table. The same holds for the last two rows. Hence, the
result table is:

A1
a2
a3

Let us now change this by requesting a column from tblC, thus making it a return table as
well:

SELECT DISTINCTROW A1,C1
FROM
(Temp1 INNER JOIN Temp2 ON Temp1.A2 = Temp2.B2)
INNER JOIN Temp3 ON Temp2.B3 = Temp3.C3;

The projection onto return table rows is now:

A1 A2 C1 C2 C3
a3 link c2 v link2
a3 link c1 t link2
a2 link c2 v link2
a2 link c1 t link2

These row “pairs” are all distinct. In fact:

• Row 1 comes from row 3 of tblA and row 2 of tblC.
• Row 2 comes from row 3 of tblA and row 1 of tblC.
• Row 3 comes from row 2 of tblA and row 2 of tblC.
• Row 4 comes from row 2 of tblA and row 1 of tblC.

It follows that the return table includes all rows:

A1 C1
a2 c1
a2 c2
a3 c1
a3 c2

Finally, consider what happens if we change the third row of tblA to:

A1 A2
a1 x
a2 link
a2 link

Running the first DISTINCTROW statement:

SELECT DISTINCTROW A1
FROM
(Temp1 INNER JOIN Temp2 ON Temp1.A2 = Temp2.B2)
INNER JOIN Temp3 ON Temp2.B3 = Temp3.C3;

gives:

A1
a2
a2

Comparing this to the previous result table DISTINCTROW, A1 emphasizes the fact that,
even though the second and third rows of tblNewA are identical in values, they are
different rows, so they both contribute to the final result table. If we were to replace the
DISTINCTROW keyword with the word DISTINCT, then the result table would have
only one row, since then it is the values in each row that form the basis for comparison.

Of course, this would not be an issue if all tables had a key, since then the values in a row
would determine the row. You may now see why I recommended against having two
different rows with the same column values, even though Access permits this possibility
(but true relational databases do not).

Notice what happens if all tables mentioned in the TablesClause are return tables. This
would happen, for instance, if there is only one table in TablesClause. In this case, the

projection does nothing; since each row of the TablesClause result table must come from
a distinct combination of rows of the result tables, we deduce that DISTINCTROW has
exactly the same effect as ALL. To put it another way, DISTINCTROW is ignored.

It is useful to compare DISTINCTROW and DISTINCT. We can see that the only
difference is that a DISTINCT statement will return distinct values, rather than values
from distinct rows. However, these will be the same if the requested columns from each
return table uniquely identify their rows.

Let us illustrate with the PUBLISHERS example. Suppose we return a key (PubID) for
PUBLISHERS, as in the statement:

SELECT DISTINCTROW PubID, PubName
FROM PUBLISHERS INNER JOIN BOOKS
ON PUBLISHERS.PubID = BOOKS.PubID;

Then the result table will return all PUBLISHERS rows that have at least one book in the
BOOKS table, as Table 6-7 shows.

Table 6-7. Publishers with at least one book in BOOKS
PubID PubName

3 Small House
1 Big House
2 Alpha Press
4 Small House

This is, in fact, the semi-join:

PUBLISHERS semi-joinPUBLISHERS.PubID=BOOKS.PubIDBOOKS

Recall that the semi-join is the projection of the join onto one of the tables (in this case,
the PUBLISHERS table). Thus, as Microsoft itself says, the purpose of the
DISTINCTROW option is to return an updatable semi-join.

Of course, the same statement with DISTINCT in place of DISTINCTROW will return
the same result table. However, there is one big difference. Since DISTINCT statements
can completely hide the origin of the returned values, it would be a disaster if Access
allowed such a result table to be updatable—and indeed it does not. For instance, recall
the table tblDISTINCT discussed earlier and shown in Table 6-8.

Table 6-8. The tblDISTINCT table
PubName

Alpha Press
Big House
Small House

Changing the name of Small House in this result table would be disastrous, since we
would not know which Small House was being affected!

On the other hand, the result table of the DISTINCTROW statement has a
“representative” from each row of the PUBLISHERS table, as Table 6-9 shows. Hence,
while it still may not be a good idea to change this particular table, since we cannot tell
which Small House is which, it would be reasonable to make a change to both names, for
instance.

Table 6-9. The tblDISTINCTROW table
PubName

Small House
Big House
Alpha Press
Small House

More generally, Access does not permit updating of the result table of a DISTINCT
statement, but it does permit updating of the result table for a DISTINCTROW statement.

Finally, we mention that Microsoft Access includes the DISTINCTROW keyword by
default when you create a query using the Access Query Design Window.

6.7.3.2 ReturnColumnDescription

The ReturnColumnDescription describes the columns, or combination of columns, to
return. It can be any of the following:

• * (indicating all columns)
• The name of a column
• An expression involving column names, enclosed in brackets, along with strings

and string operators; for example, [PubID] & "-" & [Title]

(Note that, according to the syntax of the SELECT statement, ReturnColumnDescription
can be repeated as many times as desired.)

When two returned columns (from different tables) have the same name, it is necessary to
qualify the column names using the table names. For instance, to qualify the PubID
column name, we write BOOKS.PubID and PUBLISHERS.PubID. We can also write
BOOKS.* to indicate all columns of the BOOKS table.

Finally, each ReturnColumnDescription can end with:

[AS AliasName]

to give the return column a (new) name. For example, the following statement:

SELECT DISTINCTROW
[ISBN] & " from " & [PubName] AS [ISBN from PubName]
FROM PUBLISHERS INNER JOIN BOOKS ON PUBLISHERS.PubID = BOOKS.PubID;

returns a single-column result table ISBN-PUB, as shown in Table 6-10.

Table 6-10. The ISBN-PUB table
ISBN from PubName

0-12-345678-9 from Small House
0-11-345678-9 from Small House
0-321-32132-1 from Small House
0-55-123456-9 from Small House
0-12-333433-3 from Big House
0-103-45678-9 from Big House
0-91-335678-7 from Big House
0-99-999999-9 from Big House
1-22-233700-0 from Big House
1-1111-1111-1 from Big House
0-91-045678-5 from Alpha Press
0-555-55555-9 from Alpha Press
0-99-777777-7 from Alpha Press
0-123-45678-0 from Alpha Press

Not only does the AS AliasName option allow us to name a compound column, it also
allows us to rename duplicate column names without having to qualify the names.

6.7.3.3 FROM TableExpression

The FROM clause specifies the tables (or queries) from which the SELECT statement is
to take its rows. The expression TableExpression can be a single table name, several table
names separated by commas, or a join clause. The TableExpression may also include the
AS AliasName syntax for table-name aliases.

When tables are separated by commas in the FROM clause, a Cartesian product is
formed. For example, the statement:

SELECT *
FROM AUTHORS, PUBLISHERS;

will produce the Cartesian product of the two tables.

6.7.3.4 WHERE RowCondition

The RowCondition is any Access expression that specifies which rows are included in the
result table. Expressions can involve column names, constants, arithmetic (=, <, >, <=,
>=, < >, BETWEEN) and logical (AND, OR, XOR, NOT, IMP) relations, as well as
functions. Here are some examples:

• WHERE Title LIKE “F*”
• WHERE Len(Trim(Title)) > 10
• WHERE Instr(Title, “Wind”) > 0 AND Len(Trim(Title)) > 10
• WHERE DateSold = #5/21/96#

Note that dates are enclosed in number signs (#) and the strings are enclosed in quotation
marks (“ “).

6.7.3.5 GROUP BY GroupByCriteria

The GROUP BY option allows records to be grouped together for the purpose of
computing the value of an aggregate function (Avg, Count, Min, Max, Sum, First, Last,
StDev, StDevP, Var, and VarP). It is equivalent to creating a so-called totals query. The
GroupByCriteria can contain the names of up to 10 columns. The order of the column
names determines the grouping levels, from highest to lowest.

For example, the following statement lists each publisher by name, along with the
minimum price of each publisher’s books in the BOOKS table:

SELECT PUBLISHERS.PubName, MIN(Price) AS [Minimum Price]
FROM PUBLISHERS INNER JOIN BOOKS
ON PUBLISHERS.PubID = BOOKS.PubID
GROUP BY PUBLISHERS.PubName;

The result table appears in Table 6-11.

Table 6-11. Each publisher’s least expensive book
PubName Minimum Price

Alpha Press $12.00
Big House $15.00
Small House $22.95

6.7.3.6 HAVING GroupCriteria

The HAVING option is used in conjunction with the GROUP BY option and allows us to
specify a criterion, in terms of aggregate functions, for deciding which data to display.

For example, the following command is the same as the previous one, with the additional
HAVING option that restricts the return table to those publishers whose minimum price
is less than $20.00:

SELECT PUBLISHERS.PubName, MIN(Price) AS [Minimum Price]
FROM PUBLISHERS INNER JOIN BOOKS
ON PUBLISHERS.PubID = BOOKS.PubID
GROUP BY PUBLISHERS.PubName
HAVING MIN(Price)<20.00;

The result table is shown in Table 6-12.

Table 6-12. Each publisher’s cheapest book under $20.00
PubName Minimum Price

Alpha Press $12.00
Big House $15.00

Note that the WHERE clause restricts which rows participate in the grouping and hence
contribute to the value of the aggregate functions, whereas the HAVING clause affects
only which values are displayed.

6.7.3.7 ORDER BY OrderByCriteria

The ORDER BY option describes the order in which to return the rows in the return
table. The OrderByCriteria has the form:

OrderByCriteria ::= {ColumnName [ASC | DESC]},...

In other words, it is just a list of columns to use in the ordering. Rows are sorted first by
the first column listed, then rows with identical values in the first column are sorted by
the values in the second column, and so on.

6.7.4 The UNION Statement

The UNION statement is used to create the union of two or more tables. The syntax is:

[TABLE] Query
{UNION [ALL] [TABLE] Query},...

where Query is either a SELECT statement, the name of a stored query, or the name of a
stored table preceded by the TABLE keyword. The ALL option forces Access to include
all records. Without this option, Access does not include duplicate rows. The use of ALL
increases performance as well and is thus recommended even when there are no duplicate
rows.

6.7.4.1 Example

The following statement takes the union of all rows of BOOKS and those rows of
NEWBOOKS that have Price > $25.00, sorting the result table by Title:

TABLE BOOKS
UNION ALL
SELECT * FROM NEWBOOKS WHERE Price > 25.00
ORDER BY Title;

6.7.4.2 Notes

• All queries in a UNION operation must return the same number of fields.
However, the fields do not need to have the same size or data type.

• Columns are combined in the union by their order in the query clauses, not by
their names.

• Aliases may be used in the first SELECT statement (if there is one) to change the
names of returned columns.

• An ORDER BY clause can be used at the end of the last Query to order the
returned data. Use the column names from the first Query.

• GROUP BY and/or HAVING clauses can be used in each query argument to
group the returned data.

• The result table of a UNION is not updatable.
• UNION is not part of SQL-92.

6.7.5 The UPDATE Statement

The UPDATE statement is equivalent to an Update query and is used for updating data in
a table or tables. The syntax is:

UPDATE TableName | QueryName
SET NewValueExpression,...
WHERE Criteria;

The WHERE clause is used to restrict updating to qualifying rows.

6.7.5.1 Example

The following example updates the Price column in the BOOKS table with new prices
from a table called NEWPRICES that has an ISBN and a Price column:

UPDATE
BOOKS INNER JOIN NEWPRICES ON BOOKS.ISBN = NEWPRICES.ISBN
SET BOOKS.Price = NEWPRICES.Price
WHERE BOOKS.Price <> NEWPRICES.Price;

Note that UPDATE does not produce a result table. To determine which rows will be
updated, first run a corresponding SELECT query, as in:

SELECT * FROM
BOOKS INNER JOIN NEWPRICES ON BOOKS.ISBN = NEWPRICES.ISBN
WHERE BOOKS.Price <> NEWPRICES.Price

6.7.6 The DELETE Statement

The DELETE statement is equivalent to a Delete query and is used to delete rows from a
table. Here is the syntax:

DELETE
FROM TableName
WHERE Criteria

Criteria is used to determine which rows to delete.

This command can be used to delete all data from a table, but it will not delete the
structure of the table. Use DROP for that purpose.

You can use DELETE to remove records from tables that have a one-to-many
relationship. If cascading delete is enabled when you delete a row from the one side of
the relationship, all matching rows are deleted from the many side. The action of the
DELETE statement is not reversable. Always make backups before deleting! You can run
a SELECT operation before DELETE to see which rows will be affected by the DELETE
operation.

6.7.7 The INSERT INTO Statement

The INSERT INTO statement is designed to insert new rows into a table. This can be
done by specifying the values of a new row using this syntax:

INSERT INTO Target [(FieldName,...)]
VALUES (Value1,...)

If you do not specify the FieldName (s), then you must include values for each field in
the table.

Let’s look at several examples of the INSERT INTO statement. The following statement
inserts a new row into the BOOKS table:

INSERT INTO BOOKS
VALUES ("1-000-00000-0", "SQL is Fun",1,25.00);

The following statement inserts a new row into the BOOKS table. The Price and PubID
columns have NULL values.

INSERT INTO BOOKS (ISBN,Title)
VALUES ("1-1111-1111-1","Gone Fishing");

To insert multiple rows, use this syntax:

INSERT INTO Target [(FieldName,...)]
SELECT FieldName,...
FROM TableExpression

In both syntaxes, Target is the name of the table or query into which rows are to be
inserted. In the case of a query, that query must be updatable and all updates will be
reflected in the underlying tables. TableExpression is the name of the table from which
records are inserted, the name of a saved query, or a SELECT statement.

Assume that NEWBOOKS is a table with three fields: ISBN, PubID, and Price. The
following statement inserts rows from BOOKS into NEWBOOKS. It inserts only those
books with Price > $20.00.

INSERT INTO NEWBOOKS
SELECT ISBN, PubID, Price
FROM BOOKS
WHERE Price>20;

6.7.7.1 Note

Text field values must be enclosed in quotation marks.

6.7.8 The SELECT...INTO Statement

The SELECT... INTO statement is equivalent to a MakeTable query. It makes a new
table and inserts data from other tables. The syntax is:

SELECT FieldName,...
INTO NewTableName
FROM Source
WHERE RowCondition
ORDER BY OrderCondition

FieldName is the name of the field to be copied into the new table. Source is the name of
the table from which data is taken. This can also be the name of a query or a join
statement.

For example, the following statement creates a new table called EXPENSIVEBOOKS
and includes books from the BOOKS table that cost more than $45.00:

SELECT Title, ISBN
INTO EXPENSIVEBOOKS
FROM BOOKS
WHERE Price>45
ORDER BY Title;

6.7.8.1 Notes

• This statement is unique to Access SQL.
• This statement does not create indexes in the new table.

6.7.9 TRANSFORM

The TRANSFORM statement (which is not part of SQL-92) is designed to create
crosstab queries. The basic syntax is:

TRANSFORM AggregateFunction
SelectStatement
PIVOT ColumnHeadingsColumn [IN (Value,...)]

The AggregateFunction is one of Access’ aggregate functions (Avg, Count, Min, Max,
Sum, First, Last, StDev, StDevP, Var, and VarP). The ColumnHeadingsColumn is the

column that is pivoted to give the column headings in the crosstab result table. The
Values in the IN clause option specify fixed column headings.

The SelectStatement is a SELECT statement that uses the GROUP BY clause, with
some modifications. In particular, the select statement must have at least two GROUP
BY columns and no HAVING clause.

As an example, suppose we wish to display the total number of books from each
publisher by price. The SELECT statement:

SELECT PubName, Price, COUNT(Title) AS Total
FROM PUBLISHERS INNER JOIN BOOKS
 ON PUBLISHERS.PubID=BOOKS.PubID
GROUP BY PubName, Price;

whose result table is shown in Table 6-13, doesn’t really give the information in the
desired form. For instance, it is difficult to tell how many books cost $20.00. (Remember,
this small table is just for illustration.)

Table 6-13. Book prices by publisher
PubName Price Total

Big House $15.00 1
Big House $20.00 1
Big House $25.00 2
Big House $49.00 1
Medium House $12.00 2
Medium House $20.00 1
Medium House $34.00 1
Medium House $49.00 1
Small House $49.00 1

We can transform this into a crosstab query in two steps:

1. Add a TRANSFORM clause at the top, and move the aggregate function whose
value is to be computed to that clause.

2. Add a PIVOT line at the bottom, and move the column whose values will form
the column headings to that clause. Also, delete the reference to this column in the
SELECT clause.

This gives:

TRANSFORM COUNT(Title)
SELECT Price
FROM PUBLISHERS INNER JOIN BOOKS
 ON PUBLISHERS.PubID=BOOKS.PubID
GROUP BY Price
PIVOT PubName;

with the result table shown in Table 6-14.

Table 6-14. A cross-tabulation of book prices by publisher
Price Big House Medium House Small House

$12.00 2
$15.00 1
$20.00 1 1
$25.00 2
$34.00 1
$49.00 1 1 1

We can group the rows by the values in more than one column. For example, suppose
that the BOOKS table also had a DISCOUNT column that gave the discount from the
regular price of the book (as a percentage). Then by including the DISCOUNT column in
the SELECT and GROUP BY clauses, we get:

TRANSFORM COUNT(Title)
SELECT Price, Discount
FROM PUBLISHERS INNER JOIN BOOKS
 ON PUBLISHERS.PubID=BOOKS.PubID
GROUP BY Price, Discount
PIVOT PubName;

for which the result table is shown in Table 6-15.

Table 6-15. Book prices and discount by publisher
Price Discount Big House Medium House Small House

$12.00 30% 2
$15.00 20% 1
$20.00 20% 1
$20.00 30% 1
$25.00 10% 1
$25.00 20% 1
$34.00 10% 1
$49.00 10% 1
$49.00 30% 1 1

In this case, each row represents a unique price/discount pair.

A crosstab can also include additional row aggregates by adding additional aggregate
functions to the SELECT clause, as follows:

TRANSFORM COUNT(Title)
SELECT Price, COUNT(Price) AS Count, SUM(Price) AS Sum
FROM PUBLISHERS INNER JOIN BOOKS
 ON PUBLISHERS.PubID=BOOKS.PubID
GROUP BY Price
PIVOT PubName;

which gives the result table shown in Table 6-16.

Table 6-16. Aggregating results in a crosstab table
Price Count Sum Big House Medium House Small House

$12.00 2 $24.00 2
$15.00 1 $15.00 1
$20.00 2 $40.00 1 1
$25.00 2 $50.00 2
$34.00 1 $34.00 1
$49.00 3 $147.00 1 1 1

Finally, by including fixed column names, we can reorder or omit columns from the
crosstab result table. For instance, the next statement is just like the previous one except
for the PIVOT clause:

TRANSFORM COUNT(Title)
SELECT Price, COUNT(Price) AS Count, SUM(Price) AS Sum
FROM PUBLISHERS INNER JOIN BOOKS
 ON PUBLISHERS.PubID=BOOKS.PubID
GROUP BY Price
PIVOT PubName IN ("Small House", "Medium House");

The result table is shown in Table 6-17. Note that the order of the columns has changed
and Big House is not shown.

Table 6-17. Omitting columns from a crosstab table
Price Count Sum Small House Medium House

$12.00 2 $24.00 2
$15.00 1 $15.00
$20.00 2 $40.00 1
$25.00 2 $50.00
$34.00 1 $34.00 1
$49.00 3 $147.00 1 1

6.7.10 Subqueries

SQL permits the use of SELECT statements within the following:

• Other SELECT statements
• SELECT... INTO statements
• INSERT... INTO statements
• DELETE statements
• UPDATE statements

The internal SELECT statement is referred to as a subquery and is generally used in the
WHERE clause of the main query.

The syntax of a subquery takes three possible forms, described as follows.

6.7.10.1 Syntax 1

Comparison [ANY | SOME | ALL] (SQLStatement)

where Comparison is an expression followed by a comparison relation that compares the
expression with the return value(s) of the subquery. This syntax is used to compare a
value against the values obtained from another query.

For example, the following statement returns all titles and prices of books from the
BOOKS table, whose prices are greater than the maximum price of all books in the table
BOOKS2:

SELECT Title, Price
FROM BOOKS
WHERE Price > (SELECT Max(Price) FROM BOOKS2);

Note that since the subquery returns only one value, we do not need to use any of the
keywords ANY, SOME, or ALL.

The following statement selects all BOOKS titles and prices for books that are more
expensive than ALL of the books published by Big House:

SELECT Title, Price
FROM BOOKS
WHERE Price > ALL
 (SELECT Price
 FROM PUBLISHERS INNER JOIN BOOKS ON PUBLISHERS.PubID =
 BOOKS.PubID
 WHERE PubName = "Big House");

Note that ANY and SOME have the same meaning and return all choices that make the
comparison true for at least one value returned by the subquery. For example, if we were
to replace ALL by SOME in the previous example, the return table would consist of all
book titles and prices for books that are more expensive than the cheapest book published
by Big House.

6.7.10.2 Syntax 2

Expression [NOT] IN (SQLStatement)

This syntax is used to look up a column value in the result table of another query.

For example, the following statement returns all book titles from BOOKS that do not
appear in the table BOOKS2:

SELECT Title
FROM BOOKS

WHERE Title NOT IN (SELECT Title FROM BOOKS2);

6.7.10.3 Syntax 3

[NOT] EXISTS (SQLStatement)

This syntax is used to check whether an item exists (is returned) in the subquery.

For example, the following statement selects all publishers that do not have books in the
BOOKS table:

SELECT PubName
FROM PUBLISHERS
WHERE NOT EXISTS
 (SELECT * FROM BOOKS WHERE BOOKS.PubID =
 PUBLISHERS.PubID);

Notice that the PUBLISHERS table is referenced in the subquery. This causes Access to
evaluate the subquery once for each value of PUBLISHERS.PubID in the PUBLISHERS
table.

6.7.10.4 Notes

• When using Syntax 1 or 2, the subquery must return a single column, or an error
will occur.

• The SELECT statement that constitutes the subquery follows the same format and
rules as any other SELECT statement. However, it must be enclosed in
parentheses.

6.7.11 Parameters

Access SQL allows the use of parameters to obtain information from the user when the
query is run. The PARAMETERS line must be the first line in the statement and has the
syntax:

PARAMETERS Name DataType,...

An example will illustrate the technique.

The following statement will prompt the user for a portion of the title of a book and
return all books from BOOKS with that string in the title. Note the semicolon at the end
of the PARAMETERS line.

PARAMETERS [Enter portion of title] TEXT;
SELECT *
FROM BOOKS
WHERE Instr(Title, [Enter portion of title]) > 0;

The function Instr(Text1, Text2) returns the first location of the text string Text2
within the text string Text1. Note that Name is repeated in the WHERE clause and will be
filled in by the value that the user enters as a result of Name appearing in the
PARAMETERS clause.

Part III: Database Architecture

7. Database System Architecture
7.1 Why Program?

There is no doubt that SQL is a powerful language—as far as it goes. However, it is a
somewhat unfriendly language, and it lacks the sophisticated control structures of a more
traditional language, such as For...Next... loops and If...Then... statements.

This is not really a problem, since SQL is designed for a very specific purpose related to
database-component creation and manipulation. SQL is not designed to provide an
overall programming environment for Microsoft Access itself. This role is played by
Visual Basic for Applications (VBA).

VBA is the macro or scripting language for all of the major Microsoft Office products:
Microsoft Access, Excel, PowerPoint, and Word (starting with Word 97). It is a very
powerful programming language that gives the programmer access to the full features of
these applications, as well as the means to make the applications work together.

One of the major components of VBA is its support for Data Access Objects model,
(DAO). DAO is the programming-language interface for the Jet database management
system (DBMS) that underlies Microsoft Access. It provides a more-or-less object-
oriented data definition language (DDL) and data manipulation language (DML), thereby
allowing the VBA programmer to define the structure of a database and manipulate its
data.

Of course, it is natural to wonder why you would want to use DAO, and VBA in general,
rather than using the built-in graphical interface of Microsoft Access. The answer is
simple. While the graphical interface is very easy to use and is quite adequate for many
purposes, it is simply not as powerful as the programming languages. The database
creator gains more power and flexibility over the database by directly manipulating the
basic objects of the database (such as the tables, queries, relationships, indexes, and so
on) through programming.

As a simple example, there is no way to get a list of the fields of a given table (i.e, the
table’s table scheme) using the Access graphical interface. However, this is a simple
matter using programming techniques. The following short program:

Sub Example()
 Dim db As DATABASE
 Dim tdf As TableDef
 Dim fld As Field

 Set db = CurrentDb
 Set tdf = db.TableDefs("BOOKS")
 For Each fld In tdf.Fields
 Debug.Print fld.Name
 Next

End Sub

displays the following list of fields for the BOOKS table in the Debug window:

ISBN
Title
PubID
Price

This is a good place to discuss the relationship between DAO and SQL. The fact is that
DAO both uses SQL and overlaps SQL. That is, there are many commands in DAO that
can accept an SQL statement as an argument. For instance, the following VBA code
opens a recordset (discussed later in the book) using an SQL statement to define the
records in the recordset:

' Get current database
Set dbs = CurrentDb()

' Write SQL statement
strSelect = "Select * FROM Books WHERE Price=10"

' Open recordset using SQL statement
Set rsCheap = dbs.OpenRecordset(strSelect)

On the other hand, DAO overlaps SQL in the sense that many actions can be performed
using either language. For instance, a table can be created using either the SQL statement
CREATE TABLE or the DAO method CreateTable. The choice is up to the programmer.

Our main goal in the remaining portion of this book is to discuss the DAO model. Before
doing so, however, we need to set the stage by discussing the overall architecture of a
database management system, and of the Jet DBMS in particular, so we can put DAO in
its proper context. We will do so in this chapter and also take a quick peek at DAO
programming. In Part IV, I will present a brief introduction to programming in VBA.
Then I will turn to DAO itself in the following chapters of the book. Finally, I’ll conclude
by examining ActiveX Data Objects (ADO), Microsoft’s recent technology for universal
data access.

7.2 Database Systems

A database system is often pictured as a three-level structure, as shown in Figure 7-1.

At the lowest level of the structure is the physical database, which consists of the raw
data existing on a physical object, such as a hard disk. At this level, the data has no
logical meaning, as related to the database. However, the data does have a very definite
physical structure to allow efficient access. In other words, the data is more than just a
string of bits.

Figure 7-1. The three-level structure of a database system

In fact, there are a variety of structures in which the data might be stored, including hash
tables, balanced trees, linked lists, nested records, and so on, and the choice of data
structure is not a simple one. However, I will not pursue a discussion of the physical
database in this book. Suffice it to say that, at the physical level, the data is viewed as a
structured collection of bits, and the sole purpose of the structure is to provide efficient
access to the data. The physical level of a database is often referred to as the internal
level.

The conceptual database is a conceptual view of the database as a whole. It gives the
data a logical structure. For instance, in a relational database system, the data is viewed
as a collection of tables, with column headings describing the attributes of the
corresponding entity class. Moreover, tables are related to one another through certain
columns.

The conceptual model is intended to model the entire database. However, individual users
may be interested in views of only specific portions of the data. For instance, in the
LIBRARY database, a student using the library’s online database catalog is probably not
interested in the price of the book, but is interested in where it is located on the shelves.
Thus, a single database, such as LIBRARY, may need different views for the student than
for the librarian.

The highest level in the three-tier structure consists of the individual views of the data
that may be held by users of the database. Views are also referred to as subschemes, and
this level of the tier is also referred to as the external level.

As another example, we can think of the Microsoft Visual Basic programming language
as providing an external view of the Jet database management system that is geared
toward database programmers. We can think of Microsoft Access as providing an

external view that is geared, not just to programmers, but also to high-level users of
varying degrees of sophistication. After all, a user does not need to know anything about
database programming to create a database in Microsoft Access, although he does need to
have a familiarity with the conceptual level of a relational database.

Thinking of a database system as a three-tier structure has distinct advantages. One
advantage is that it allows for a certain level of independence that permits the individual
tiers to be changed or replaced without affecting the other tiers. For instance, if the
database is moved to a new computer system that stores the data in hash tables rather than
balanced trees, this should not affect the conceptual model of the data, nor the views of
users of the database. Also, if we switch from the Visual Basic view of the database to
the Access view, we can still use the same conceptual database model. Put more bluntly,
a database table in Visual Basic is still a database table in Microsoft Access.

7.3 Database Management Systems

A DBMS is a software system that is responsible for managing all aspects of a database,
at all levels. In particular, a DBMS should provide the following features, and perhaps
more:

• A mechanism for defining the structure of a database, in the form of a data
definition language, or DDL.

• A mechanism for data manipulation, including data access, sorting, searching, and
filtering. This takes the form of a data manipulation language, or DML.

• Interaction with a high-level host language or host application, allowing
programmers to write database applications designed for specific purposes. The
host language can be a standard programming language, such as C or Visual
Basic, or a database application language, such as Microsoft Access.

• Efficient and correct multiuser access to the data.
• Effective data security.
• Robustness—that is, the ability to recover from system failures without data loss.
• A data dictionary, or data catalog. This is a database (in its own right) that

provides a list of the definitions of all objects in the main database. For instance, it
should include information on all entities in the database, along with their
attributes and indexes. This “data about data” is sometimes referred to as
metadata. The data dictionary should be accessible to the user of the database, so
that she can obtain this metadata.

7.4 The Jet DBMS

As the title of the book suggests, our primary interest is in the DBMS that underlies
Microsoft Access (and also Visual Basic). Accordingly, we will take our examples from
this DBMS, called the Jet DBMS or the Jet Database Engine. The relationship between
the Jet DBMS and other database-related programs, including Microsoft Access and
Visual Basic, can be pictured as in Figure 7-2.

Figure 7-2. The relationships and structure of the Jet Database Engine (DBMS)

Microsoft’s application-level products Visual Basic, Access, and Excel play host to VBA,
which is the underlying programming language (also called scripting or macro language)
for these applications. (Microsoft Word Version 7 does not use VBA—it uses a similar
language called Word Basic. However, as of Microsoft Word 97, Word does use VBA.)
As expected, each of these applications integrates VBA into its environment in a specific
way, since each application has a different purpose.

In turn, Visual Basic for Applications is the host language for the Jet DBMS. The Jet
DBMS contains the DAO component, which is the programming-language interface for
the Jet DBMS. The DAO provides a more-or-less object-oriented DDL and DML,
thereby allowing the VBA programmer to define the structure of a database and
manipulate its data.

The Jet Database Engine is a collection of components, generally in the form of dynamic
link libraries (DLLs), designed to provide specific functions within the Jet DBMS. (A
DLL is essentially a collection of functions for performing various tasks.) The Jet Query
Engine handles the translation of database queries into Access SQL, and the subsequent
compilation, optimization, and execution of these queries. In short, it handles queries.
The Internal ISAM component is responsible for storing and retrieving data from the

physical database file. ISAM stands for Indexed Sequential Access Method and is the
method by which data is stored in a Jet database file. The Replication Engine allows
exact duplicates of a database to coexist on multiple systems, with periodic
synchronization.

The host languages for the Jet DBMS, such as Visual Basic and Access, are used by
database programmers to create database applications for specific purposes. For instance,
we might create a Library database application, which a library can use to maintain
information about its books, or an Order Entry database application for a small business.

Incidentally, the Jet DBMS is also capable of interfacing with non-Access-formatted
databases, such as those with format Xbase (dBase), Paradox, Btrieve, Excel, and
delimited text formats. It can also interface with open database connectivity (ODBC is
discussed in Appendix C) to access server database applications across networks.

Let us take a closer look at the components of the Jet DBMS. We will study these
components in much greater detail in separate chapters of the book.

7.5 Data Definition Languages

We have already mentioned that a DBMS needs to provide a method for defining new
databases. This is done by providing a data definition language (DDL) to the
programmer. A DDL is not a procedural language; that is, its instructions do not actually
perform operations. Rather, a DDL is a definitional language.

7.5.1 The Jet Data Definition Language

Example 7-1 illustrates the use of the Jet data definition language. The code will run in
Visual Basic or in an Access code module, so feel free to key it in and try it yourself.
(Use a new database in Access, since some of this code will conflict with the LIBRARY
database that we have been working with in earlier chapters.) The purpose is to create a
new database called LIBRARY, along with a table called BOOKS, containing two fields,
ISBN and TITLE, and one index. (Don’t worry if some portions of this code don’t make
sense to you at this point.) Note that Access uses a space followed by an underscore
character (_) to indicate that the next line is a continuation of the current line.

Example 7-1. Use of the Jet data definition language

' Data Definition Language example

' Declare variables of the required types
Dim ws As Workspace
Dim dbLibrary As Database
Dim tblBooks As TableDef
Dim fldBooks As Field
Dim idxBooks As Index

' Use the default workspace, called Workspaces(0)

Set ws = DBEngine.Workspaces(0)

' Create a new database named LIBRARY
' in the default Workspace
Set dbLibrary = _
ws.CreateDatabase"d:\dao\library.mdb", _
dbLangGeneral)

' Create a new table called BOOKS
Set tblBooks = dbLibrary.CreateTableDef("BOOKS")

' Define ISBN field and append to the
' table's Fields collection
Set fldBooks = tblBooks.CreateField("ISBN", dbText)
fldBooks.Size = 13
tblBooks.Fields.Append fldBooks

' Define Title field and append to the
' table's Fields collection
Set fldBooks = tblBooks.CreateField("Title", dbText)
fldBooks.Size = 100
tblBooks.Fields.Append fldBooks

' Add the table to the db's Tables collection
dbLibrary.TableDefs.Append tblBooks

' Create an index
Set idxBooks = tblBooks.CreateIndex("ISBNIdx")
idxBooks.Unique = False

' Indices need their own fields
Set fldBooks = idxBooks.CreateField("ISBN")

' Append to the proper collections
idxBooks.Fields.Append fldBooks
tblBooks.Indexes.Append idxBooks

As you can see, the clue that we are dealing with a DDL are the commands
CreateDatabase, CreateTableDef, CreateField, and CreateIndex (in boldface for
easier identification). You can also see from this code that the Jet DBMS uses the
collections to hold the properties of an object. For instance, the fields that we create for a
table must be appended to the Fields collection for that table. This has the advantage that
we don’t need to keep a separate reference to each field—the collection does that for us.
This approach is typical of object-oriented programming.

7.6 Data Manipulation Languages

A DBMS must also provide a language designed to manipulate the data in a database.
This language is called a database manipulation language, or DML. To the database
programmer, however, the distinction between a DDL and a DML may be just a logical
one, defined more by the purpose of the language than the syntax.

7.6.1 The Jet Data Manipulation Language

Example 7-2 is Jet DML code to add two records to the BOOKS table, set the index, and
display the records.

Example 7-2. Jet DML code altering the BOOKS table

' Data Manipulation Language example

Dim rsBooks As Recordset

' Open the database
Set dbLibrary = DBEngine.OpenDatabase("d:\dao\library.mdb")

' Create a recordset for the BOOKS table
Set rsBooks = dbLibrary.OpenRecordset("BOOKS")

' Add two records
rsBooks.AddNew
rsBooks!ISBN = "0-99-345678-0"
rsBooks!Title = "DB Programming is Fun"
rsBooks.Update
rsBooks.AddNew
rsBooks!ISBN = "0-78-654321-0"
rsBooks!Title = "DB Programming isn't Fun"
rsBooks.Update

' Set index
rsBooks.Index = "ISBNIdx"

' Show the records
rsBooks.MoveFirst
MsgBox "ISBN: " & rsBooks!ISBN & " TI: " & rsBooks!Title
rsBooks.MoveNext
MsgBox "ISBN: " & rsBooks!ISBN & " TI: " & rsBooks!Title

As you can see even from this small example, the DML is designed to perform a variety
of actions, such as:

• Moving through the data in the database
• Adding data to the database
• Editing or updating data in the database
• Deleting data from the database
• Querying the data and returning those portions of the data that satisfy the query

7.7 Host Languages

Data is seldom manipulated without some intended purpose. For instance, consider a
LIBRARY database consisting of information about the books in a library. If a student
wishes to access this data, it is probably with the intention of finding a certain book, for
which the student has some information, such as the title. On the other hand, if a librarian

wishes to access the information, it may be for other purposes, such as determining when
the book was added to the library or how much it cost. These issues probably don’t
interest the student.

The point here is that a DBMS should supply an interface with a high-level language with
which programmers can program the database to provide specific services—that is, with
which programmers can create database applications. Thus, when a student logs onto a
library’s computer to search for a book, he may be accessing a different database
application than the librarian might access. The language that is used for database
application programming is the hostlanguage for the DBMS. As mentioned earlier, a host
language may be a traditional programming language, such as C or COBOL, or it may be
an application-level language, such as Microsoft Access or Visual Basic, as it is for the
Jet DBMS.

In fact, the Jet DBMS is so tightly integrated into both of these applications that it is hard
to tell where one leaves off and the other begins. Put another way, it sometimes seems as
though Microsoft Access is the Jet DBMS, whereas it is more accurate to say that Access
and Visual Basic are front ends, or host applications, for the Jet DBMS.

7.8 The Client/Server Architecture

The client/server model of a database system is really very simple, but its meaning has
evolved somewhat through popular usage. The client/server model is shown in Figure 7-
3.

Figure 7-3. The client/server mode example

The server in a client/server model is simply the DBMS, whereas the client is the
database application serviced by the DBMS. (We could also think of Visual Basic and
Access as clients of the Jet DBMS server.)

The basic client/server model says nothing about the location of the various components.
However, since the components are distinct, it is common to find them on different
computers. The two most common configurations are illustrated in Figures Figure 7-4
and Figure 7-5. The distributed client/server model (Figure 7-4), wherein the client is on
one computer and the server and database are on another, is so popular that it is usually
simply referred to as the client/server model. The remote database model (Figure 7-5)
refers to the case in which the client and server are on the same computer, but the
database is on a remote computer.

Figure 7-4. The distributed client/server model example

Figure 7-5. The remote database example

Part IV: Visual Basic for Applications

Chapter 8. The Visual Basic Editor, Part I
The first step in becoming an Access VBA/DAO programmer is to become familiar with
the environment in which Access programming is done. Each of the main Office
applications has a programming environment referred to as its Integrated Development
Environment or IDE. Microsoft also refers to this programming environment as the
Visual Basic Editor.

My plan in this chapter and the next is to describe the major components of the Access
IDE. I realize that you are probably anxious to get to some actual programming, but it is
necessary to gain some familiarity with the IDE before you can use it. Nevertheless, you
may want to read quickly through this chapter and the next and then refer back to them as
needed.

Until the release of Office 2000, not all of the Office Suite applications used the same
IDE. In Office 97, Word, Excel, and PowerPoint use the full VBA IDE, whereas Access
97 uses a simple code module environment. However, with the appearance of Access 9
for Office 2000, all four of the Office applications use the same IDE, as show in Figure
8-1. To start the Access IDE, simply choose Visual Basic Editor from the Macros
submenu of the Tools menu, or hit Alt+F11.

Let us take a look at some of the components of this IDE.

Figure 8-1. The Access VBA IDE

8.1 The Project Window

The window in the upper-left corner of the client area (below the toolbar) is called the
Project Explorer. Figure 8-2 shows a close-up of this window.

Figure 8-2. The Project Explorer

Note that the Project Explorer has a tree-like structure, similar to the Windows Explorer’s
folders pane (the left-hand pane). Each entry in the Project Explorer is called a node. The
top nodes, of which there are two in Figure 8-2, represent the currently open Access VBA
projects (hence the name Project Explorer). The view of each project can be expanded or
contracted by clicking on the small boxes (just as with Windows Explorer).

As you know, Access is a single document interface (SDI) program, meaning that you
can only open one database for each session of Access. Each Access session has its own
IDE as well. Hence, the project window for a given instance of the IDE will contain only
one user project. However, as you can see in Figure 8-2, Access may add another project
to the project window. The ACWZMAIN project in Figure 8-2 was added when I
invoked the Access wizard to create a table, for instance. If you try to access any of the
code in the ACWZMAIN project, you will be rewarded with a “Project Unviewable”
error message.

8.1.1 Project Names

Each project has a name, which the programmer can choose. The default name for a
project is the name of the database. The top node for each project is labeled:

ProjectName (DatabaseName)

where ProjectName is the name of the project and DatabaseName is the name of the
Access database. The name of the project can be changed using the Properties window,
which I will discuss a bit later.

8.1.2 Project Contents

At the level immediately below the top (project) level, as Figure 8-2 shows, there are
nodes named:

Microsoft Access Class Objects
Modules
Class Modules

Under the Microsoft Access Class Objects node, there is a node for each Access form in
the database that contains some code (just creating a form does not add a node to the
Projects window). The form nodes provide access to the code module “behind” the form,
where we can write code to implement events, such as clicking on a command button.

In fact, Access forms have two components—a user-interface component (the form’s
background and any controls on the form) and a code component. By right-clicking on a
form node, we can choose to view the object itself or the code component for that object.
I will not discuss creating Access forms in this book, however.

8.1.2.1 Standard modules

Under the Modules node, there is a node for each standard module in the project. By
double-clicking on the node for a standard module, Access will display the code window
for that module. A standard module is a code module that contains general procedures.
VBA allows two kinds of procedures: functions and subroutines. The only difference
between a function and a subroutine is that a function returns a value, whereas a
subroutine does not. I will discuss functions and subroutines in Chapter 11.

These procedures may be intended to be run by the user (in response to a button click, for
instance), or they may be support programs that are intended to be run by code from
within other procedures (in the same or other modules).

8.1.2.2 Class modules

Under the Classes node, there is a node for each class module in the project. By double-
clicking on a class module node, Access will display the code window for the
corresponding class module.

Class modules are code modules that contain code related to custom objects. The Access
object model contains built-in objects representing such objects as forms and reports. It is
also possible to create custom objects and endow them with various properties. To do so,
we would place the appropriate code within a class module.

However, since creating custom objects is beyond the scope of this book, we will not be
using class modules. (For an introduction to object-oriented programming using VB,
allow me to suggest my book, Concepts of Object-Oriented Programming with Visual
Basic, published by Springer-Verlag, New York.)

8.2 The Properties Window

The Properties window (see Figure 8-1) displays the properties of an object and allows us
to change them.

When a standard module is selected in the Project window, the only property that appears
in the Properties window is the module’s name. However, when a form is selected in the
Projects window, many of the object’s properties appear in the Properties window, as
shown in Figure 8-3.

The Properties window can be used to change some of the properties of the object while
no code is running, that is, at design time. (Note that while most properties can be
changed either at design time or runtime, some properties can only be changed at design
time and some can only be changed at runtime. Runtime properties generally do not
appear in the Properties window.)

Figure 8-3. The Properties window

8.3 The Code Window

The Code window displays the code that is associated with the selected item in the
Projects window. To view this code, select the item in the Projects window, and either
choose Code from the View menu or hit the F7function key. For objects with only a code

component (that is, standard or class modules), you can just double-click on the item in
the Projects window.

8.3.1 Procedure and Full-Module Views

Generally, a code module contains more than one procedure. The IDE offers the choice
between viewing one procedure at a time (called procedure view) or all procedures at
one time (called full-module view), with a horizontal line separating the procedures. Each
view has its advantages and disadvantages, and you will probably want to use both views
at different times. Unfortunately, Microsoft has not supplied a menu choice for selecting
the view. (I’ve complained about this in my other books as well, but Microsoft does not
seem to be listening to me. Strange.) To change views, click on the small buttons in the
lower-left corner of the Code window. (The default view can be set using the Editor tab
of the Options dialog box.)

Incidentally, the default font for the module window is Courier, which has a rather thin
looking appearance and may be somewhat difficult to read. You may want to change the
font to FixedSys (on the Editor Format tab of the Options dialog box, under the Tools
menu), which is much more readable.

8.3.2 The Object and Procedure Listboxes

At the top of the Code window there are two drop-down listboxes (see Figure 8-1). The
Object box contains a list of the objects that are associated with the current project, and
the Procedure box contains a list of all of the procedures associated with the object
selected in the Object box. The precise contents of these boxes vary depending on the
type of object selected in the Project Explorer.

When a standard module is selected in the Project window, the Object box contains only
the entry (General), because there are no objects in a standard module with which to
associate code (or any objects at all). In this case, the Procedure listbox contains a list of
the current procedures in that module.

When a form is selected, the Objects listbox contains a list of each control on the form, as
well as entries for page and form headers and footers, the detail section of the form, and
so on. As Figure 8-4 shows, when we select an object, such as a command button, in the
Objects listbox, the Procedures listbox contains a list of procedures for that object. When
you selecting a procedure, Access will automatically place the cursor in the appropriate
location in the code window, so we can start entering code.

For example, if we choose the Click event in the Procedures box, Access will create the
following code shell for this event, and place the cursor within this procedure:

Private Sub cmdPushMe_Click()

End Sub

Figure 8-4. The events for a Workbook object

8.4 The Immediate Window

The Immediate window (see Figure 8-1) has two main functions. First, we can send
output to this window using the command Debug.Print. For instance, the code shown in
Figure 8-5 produces the result shown in the Immediate window (there were four records
in the recordset when I executed this code). (We will see how to execute the code in a
procedure shortly.) This provides a nice way to experiment with different code snippets.

The other main function of the Immediate window is to execute commands. We can enter
a line of code directly in the Immediate window. Hitting the Enter key at the end of the
line asks Access to execute that line of code. Note that this only works for single physical
lines of code, but you can place more than one logical line of code on the same physical
line by separating the logical lines with colons, as in:

For i = 1 To 10: Debug.Print i: Next i

Figure 8-5. The Immediate window

The Immediate window is an extremely valuable tool for debugging a program, and you
will probably use it often (as I do).

8.5 Arranging Windows

If you need more space for writing code, you can close the Properties window, the
Project window, and the Immediate window. On the other hand, if you are fortunate
enough to have a large monitor, then you can split your screen as shown in Figure 8-6 in
order to see the Access VBA IDE and the corresponding Access database at the same
time. In some cases (but not all), you can trace through each line of your code and watch
the results in the database! (You can toggle between Access and the IDE using the
Alt+F11 function key combination.)

Figure 8-6. A split-screen approach

8.5.1 Docking

Many of the windows in the IDE (including the Project, Properties, and Immediate
windows) can be in one of two states: docked or floating. This state can be set using the
Docking tab on the Options dialog box, which is shown in Figure 8-7.

A docked window is attached, or anchored, to an edge of another window or an edge of
the main VBA window’s client area. When a dockable window is moved, it snaps to an
anchored position. A floating window can be placed anywhere on the screen.

Figure 8-7. The Docking options

Chapter 9. The Visual Basic Editor, Part II
In this chapter, we conclude our discussion of the Visual Basic Editor. Again, I remind
the reader that she may want to read quickly through this chapter and refer to it later as
needed.

9.1 Navigating the IDE

If you prefer the keyboard to the mouse (as I do), then you may want to use keyboard
shortcuts. Here are some tips.

9.1.1 General Navigation

The following keyboard shortcuts are used for navigating the IDE:

F7 Go to the Code window.
F4 Go to the Properties window.
Ctrl-R Go to the Project window.
Ctrl-G Go to the Immediate window.
Alt+F11 Toggle between Access and VB IDE.

9.1.1.1 Navigating the code window at design time

Within the code window, the following keystrokes are very useful:

F1 Help on the item under the cursor.

Shift+F2
Go to the definition of the item under the cursor. (If the cursor is over a call to a
function or subroutine, hitting Shift+F2 sends you to the definition of that
procedure.)

Control+
Shift+F2 Return to the last position where editing took place.

9.1.1.2 Tracing code

The following keystrokes are useful when tracing through code (discussed later):

F8 Step into
Shift+F8 Step over
Ctrl+Shift+F8 Step out
Ctrl+F8 Run to cursor
F5 Run
Ctrl+Break Break
Shift+F9 Quick watch
F9 Toggle breakpoint

Ctrl+Shift+F9 Clear all breakpoints

9.1.1.3 Bookmarks

It is also possible to insert bookmarks within code. A bookmark marks a location to
which we can return easily. To insert a bookmark, or to move to the next or previous
bookmark, use the Bookmarks submenu of the Edit menu. The presence of a bookmark is
indicated by a small blue square in the left margin of the code.

9.2 Getting Help

The simplest way to get help on any particular item is to place the cursor on that item and
hit the F1 key. This works not only for VBA language keywords but also for portions of
the VBA IDE.

Note that Microsoft provides multiple help files for Access, the VBA language, and the
Access object model. While this is quite reasonable, occasionally the help system gets a
bit confused and refuses to display the correct help file when I strike the F1 key.

Note also that a standard installation of Microsoft Office does not install the VBA help
files for the various applications. Thus, you may need to run the Office setup program
and install Access VBA help by selecting that option in the appropriate setup dialog box.
(Do not confuse Access help with Access VBA help.)

9.3 Creating a Procedure

There are two ways to create a new procedure (that is, a subroutine or a function) within a
code module. First, after selecting the correct project in the Project Explorer, we can
select the Procedure option from the Insert menu. This will produce the dialog box
shown in Figure 9-1. Just type in the name of the procedure, and select Sub or Function
(the Property choice is used with custom objects in a class module). We will discuss the
issue of Public versus Private procedures and static variables later in this chapter.

A simpler alternative is to begin typing:

Sub SubName

or:

Function FunctionName

in any code window (following the current End Sub or End Function statement, or in the
general declarations section). As soon as the Enter key is struck, Access will move the
line of code to a new location and thereby create a new subroutine. (It will even add the
appropriate ending—End Sub or End Function.)

Figure 9-1. The Add Procedure dialog box

9.4 Run Mode, Break Mode, and Design Mode

The VBA IDE can be in any one of three modes: run mode , break mode, or design mode.
When the IDE is in design mode, we can write code.

Run mode occurs when a procedure is running. To run (or execute) a procedure, just
place the cursor anywhere within the procedure code, and hit the F5 key (or select Run
from the Run menu). If for some reason a running procedure seems to be hanging, we can
usually stop the procedure by hitting Ctrl+Break (hold down the Control key and hit the
Break key).

Break mode is entered when a running procedure stops because of either an error in the
code or a deliberate act on our part (described a bit later). In particular, if an error occurs,
Access will stop execution and display an error dialog box, an example of which is
shown in Figure 9-2.

Figure 9-2. An error message

Error dialog boxes offer a few options: end the procedure, get help (such as it may be)
with the problem, or enter break mode to debug the code. In the latter case, Access will

stop execution of the procedure at the offending code and highlight that code in yellow.
We will discuss the process of debugging code a bit later.

Aside from encountering an error, there are several ways we can deliberately enter break
mode for debugging purposes:

• Hit the Ctrl+Break keys, and choose Debug from the resulting dialog box.
• Include a Stop statement in the code, which causes Access to enter break mode.
• Insert a breakpoint on an existing line of executable code. This is done by placing

the cursor on that line and hitting the F9 function key (or using the Toggle
Breakpoint option on the Debug menu). Access will place a red dot in the left
margin in front of that line and stop execution when it reaches the line. You may
enter more than one breakpoint in a procedure. This is generally preferred over
using the Stop statement, because breakpoints are automatically removed when
we close down the Visual Basic Editor; therefore, we don’t need to remember to
remove them, as we do with Stop statements.

• Set a watch statement that causes Access to enter break mode if a certain
condition becomes true. We will discuss watch expressions a bit later.

To exit from break mode, choose Reset from the Run menu.

Note that the caption in the title bar of the VBA IDE indicates which mode is currently
active. The caption contains the word “[running]” when in run mode and “[break]” when
in break mode.

9.5 Errors

In computer jargon, an error is referred to as a bug. In case you are interested in the origin
of this word, the story goes that when operating the first large-scale digital computer,
called the Mark I, an error was traced to a moth that had found its way into the hardware.
Incidentally, the Mark I (circa 1944) had 750,000 parts, was 51 feet long, and weighed
over 5 tons. How about putting that on your desktop? It also executed about one
instruction every 6 seconds, as compared to over 200 million instructions per second for a
Pentium!

Errors can be grouped into three types based on when they occur — design time, compile
time, or runtime.

9.5.1 Design-Time and Compile-Time Errors

As the name implies, a design-time error occurs during the writing of code. Perhaps the
nicest feature of the Visual Basic Editor is that it can be instructed to watch as we type
code and stop us when we make a syntax error. This automatic syntax checking can be
enabled or disabled in the Options dialog box shown in Figure 9-3, but I strongly suggest
that you keep it enabled.

Figure 9-3. The Options dialog box

Notice also that there are other settings related to the design-time environment, such as
how far to indent code in response to the Tab key. We will discuss some of these other
settings a bit later.

Illustrating automatic syntax checking, Figure 9-4 shows what happens when we
deliberately enter the syntactically incorrect statement x == 5 and then attempt to move to
another line. Note that Microsoft refers to this type of error as a compile error in the
dialog box, and perhaps we should as well. However, it seems more descriptive to call it
a design-time error or just a syntax error.

Figure 9-4. A syntax error message

Before a program can be executed, it must be compiled—or translated into a language
that the computer can understand. The compilation process occurs automatically when we
request that a program be executed. We can also specifically request compilation by

choosing the Compile Project item under the Debug menu. If Access encounters an error
while compiling code, it displays a compile-error message.

9.5.2 Runtime Errors

An error that occurs while a program is running is called a runtime error . Figure 9-2
illustrates a runtime error message that occurred in response to the line:

Set rs = CurrentDb.OpenRecordset("Namesx")

because no table named Namesx exists.

9.5.3 Logical Errors

There is one more type of error that we should discuss, since it is the most insidious type
of all. A logical error can be defined as the production of an unexpected and incorrect
result. As far as Access is concerned, there is no error, because Access has no way of
knowing what we intend. (Thus, a logical error is not a runtime error in the traditional
sense, even though it does occur at runtime.)

To illustrate, the following code purports to compute the average of some numbers:

Dim x(3) As Integer
Dim Ave As Single
x(0) = 1
x(1) = 3
x(2) = 8
x(3) = 5
Ave = (x(0) + x(1) + x(2) + x(3)) / 3
MsgBox "Average is: " & Ave

The result is the message box shown in Figure 9-5. Unfortunately, it is incorrect. The
penultimate line in the preceding program should be:

Ave = (x(0) + x(1) + x(2) + x(3)) / 4

Note the 4 in the denominator, since there are 4 numbers to average. The correct average
is 4.25. Of course, Access will not complain because it has no way of knowing whether
we really want to divide by 3.

Figure 9-5. The result of a logical error

Precisely because Access cannot warn us about logical errors, they are the most
dangerous, because we think that everything is correct.

9.6 Debugging

Invariably, you will encounter errors in your code. Design-time and compile-time errors
are relatively easy to deal with because Access helps us out with error messages and by
indicating the offending code. Logical errors are much more difficult to detect and fix.
This is where debugging plays a major role. The Access IDE provides some very
powerful ways to find bugs.

Debugging can be quite involved, and we could include a whole chapter on the subject.
There are even special software applications designed to assist in complex debugging
tasks. However, for most purposes, a few simple techniques are sufficient. In particular,
Access makes it easy to trace through a program, executing one line at a time, watching
the effect of each line as it is executed.

Let us discuss some of the tools that Access provides for debugging code.

9.6.1 Tracing

The process of executing code one line at a time is referred to as tracing or code stepping.
Access provides three options related to tracing: stepping into, stepping over, and
stepping out of. The difference between these methods refers to handling calls to other
procedures.

To illustrate the difference, consider the code shown in Example 9-1. In ProcedureA, the
first line of code adds a new record to a recordset denoted by rs. The second line calls
ProcedureB, and the third line updates the recordset. ProcedureB sets the value of the
LastName and FirstName fields for the current record. Don’t worry about the exact
syntax of this code. The important thing to notice is that the second line of ProcedureA
calls ProcedureB.

Example 9-1. Sample code for tracing methods

Sub ProcedureA()
 rs.AddNew ' Add a new record
 Call ProcedureB
 rs.Update ' Update recordset
End Sub

Sub ProcedureB()
 rs!LastName = "Smith"
 rs!FirstName = "John"
End Sub

9.6.1.1 Step Into (F8 or choose Step Into from the Debug menu)

Step Into executes code one statement (or instruction) at a time. If the statement being
executed calls another procedure, stepping into that statement simply transfers control to
the first line in the called procedure. For instance, with reference to the previous code,
stepping into the line:

Call ProcedureB

in ProcedureA transfers control to the first line of ProcedureB:

rs!LastName = "Smith"

Further tracing proceeds in ProcedureB. Once all of the lines of ProcedureB have been
traced, control returns to ProcedureA at the line immediately following the call to
ProcedureB, that is, at the line:

rs.Update

Step Into has another important use. If we choose Step Into while still in design mode—
that is, before any code is running—execution begins, but break mode is entered before
the first line of code is actually executed. This is the proper way to begin tracing a
program.

9.6.1.2 Step Over (Shift+F8 or choose Step Over from the Debug menu)

Step Over is similar to Step Into, except that if the current statement being traced is a call
to another procedure, the entire called procedure is executed without stopping (rather
than tracing through the called procedure). Thus, for instance, stepping over the line:

Call ProcedureB

in the previous procedure executes ProcedureB and stops at the next line:

rs.Update

in ProcedureA. This is useful if we are certain that ProcedureB is not the cause of the
problem and we don’t want to trace through that procedure line by line.

9.6.1.3 Step Out (Ctrl+Shift+F8 or choose Step Out from the Debug menu)

Step Out is intended to be used within a called procedure (such as ProcedureB). Step Out
executes the remaining lines of the called procedure and returns to the calling procedure
(such as ProcedureA). This is useful if we are in the middle of a called procedure, and we
decide that we don’t need to trace any more of that procedure but want to return to the
calling procedure. (If you trace into a called procedure by mistake, just do a Step Out to
return to the calling procedure.)

9.6.1.4 Run to Cursor (Ctrl+F8 or choose Run To Cursor from the Debug menu)

If the Visual Basic Editor is in break mode, we may want to execute several lines of code
at one time. This can be done using the Run To Cursor feature. Simply place the cursor
on the statement immediately following the last line you want to execute and then
execute.

9.6.1.5 Set Next Statement (Ctrl+F9 or choose Set Next Statement from the Debug menu)

We can also change the flow of execution while in break mode by placing the cursor on
the next statement that we want to execute and selecting Set Next Statement from the
Debug menu. This will set the selected statement as the next statement to execute, but not
execute it until we continue tracing.

9.6.1.6 Breaking out of Debug mode

When we no longer need to trace our code, we have two choices. To return to design
mode, we can choose Reset from the Run menu (there is no hotkey for this). To have
Access finish executing the current program, we can hit F5 or choose Run from the Run
menu.

Chapter 10. Variables, Data Types, and Constants
In the next few chapters, we will discuss the basics of the VBA programming language,
which underlies all of the Microsoft Office programming environments. During our
discussion, we will consider many short coding examples. I hope that you will take the
time to key in some of these examples and experiment with them.

10.1 Comments

We have already discussed the fact that comments are important. Any text that follows an
apostrophe is considered a comment and is ignored by Access. For example, the first line
in the following code is a comment, as is everything following the apostrophe on the third
line:

' Declare a recordset variable
Dim rs As Recordset
Set rs = CurrentDb.OpenRecordset("Names") ' Get recordset for Names

When debugging code, it is often useful to comment out lines of code temporarily so they
will not execute. The lines can subsequently be uncommented to restore them to active
duty. The CommentBlock and UncommentBlock buttons, which can be found on the Edit
toolbar, will place or remove comment marks from each currently selected line of code
and are very useful for commenting out several lines of code in one step. (Unfortunately,
there are no keyboard shortcuts for these commands, but they can be added to a menu and
given menu accelerator keys.)

10.2 Line Continuation

The very nature of Access VBA syntax often leads to long lines of code, which can be
difficult to read, especially if we need to scroll horizontally to see the entire line. For this
reason, Microsoft recently introduced a line-continuation character into VBA. This
character is the underscore, which must be preceded by a space and cannot be followed
by any other characters (including comments). For example, the following code:

Set rs = CurrentDb.OpenRecordset("Names", _
 dbOpenForwardOnly)

is treated as one line by Access.

It is important to note that a line-continuation character cannot be inserted in the middle
of a literal string constant, which is enclosed in quotation marks.

10.3 Constants

The VBA language has two types of constants. A literal constant (also called a constant
or literal) is a specific value, such as a number, date, or text string, that does not change

and is used exactly as written. Note that string constants are enclosed in double quotation
marks, as in "Donna Smith", and date constants are enclosed between number signs, as in
#1/1/96#.

For instance, the following code stores a date in the variable called dt:

Dim dt As Date
dt = #1/2/97#

A symbolic constant (also sometimes referred to simply as a constant) is a name for a
literal constant. To define or declare a symbolic constant in a program, we use the Const
keyword, as in:

Const InvoicePath = "d:\Invoices\"

In this case, Access will replace every instance of InvoicePath in our code with the
string "d:\Invoices\". Thus, InvoicePath is a constant, since it never changes value,
but it is not a literal constant, since it is not used as written.

The virtue of using symbolic constants is that, if we decide later to change
"d:\Invoices\" to "d:\OldInvoices\", we only need to change the definition of
InvoicePath to:

Const InvoicePath = "d:\OldInvoices\"

rather than searching through the entire program for every occurrence of the phrase
"d:\Invoices\".

Note that it is generally good programming practice to declare any symbolic constants at
the beginning of the procedure in which they are used (or in the Declarations section of a
code module). This improves readability and makes housekeeping simpler.

In addition to the symbolic constants that you can define using the Const statement, VBA
has a large number of built-in symbolic constants (about 700), whose names begin with
the lowercase letters vb. Access VBA adds several hundred additional symbolic constants
that begin with the letters ac.

Among the most commonly used VBA constants are vbCrLf, which is equivalent to a
carriage return followed by a line feed, and vbTab, which is equivalent to the tab
character.

10.3.1 Enums

Microsoft has introduced a structure into VBA to categorize the plethora of symbolic
constants. This structure is called an enum , which is short for enumeration. For instance,
the built-in enum for the constant values that can be returned when the user dismisses a
message box (by clicking on a button) is:

Enum VbMsgBoxResult
 vbOK = 1
 vbCancel = 2
 vbAbort = 3
 vbRetry = 4
 vbIgnore = 5
 vbYes = 6
 vbNo = 7
End Enum

When the user hits the OK button on a dialog box (assuming it has one), VBA returns the
value vbOK. Certainly, it is a lot easier to remember that VBA will return the symbolic
constant vbOK than to remember that it will return the constant 1. (We will discuss how to
get and use this return value later.)

VBA also defines some symbolic constants that are used to set the types of buttons that
will appear on a message box. These are contained in the following enum (which
includes some additional constants not shown):

Enum VbMsgBoxStyle
 vbOKOnly = 0
 vbOKCancel = 1
 vbAbortRetryIgnore = 2
 vbYesNoCancel = 3
 vbYesNo = 4
 vbRetryCancel = 5
End Enum

To illustrate, consider the following code:

If MsgBox("Proceed?", vbOKCancel) = vbOK Then
 ' place code to execute when user hits OK button
Else
 ' place code to execute when user hits any other button
End If

In the first line, the code MsgBox("Proceed?", vbOKCancel) causes Access to display a
message box with an OK button and a Cancel button and the message “Proceed?”, as
shown in Figure 10-1.

Figure 10-1. Example message box

If the user clicks the OK button, Access returns the constant value vbOK; otherwise, it
returns the value vbCancel. Thus, the If statement in the first line distinguishs between

the two responses. (We will discuss the If statement in detail in Chapter 13. Here we are
interested in the role of symbolic constants.)

In case you are not yet convinced of the value of symbolic constants, consider the
following enum for color constants:

Enum ColorConstants
 vbBlack = 0
 vbBlue = 16711680
 vbMagenta = 16711935
 vbCyan = 16776960
 vbWhite = 16777215
 vbRed = 255
 vbGreen = 65280
 vbYellow = 65535
End Enum

Which would you rather type:

ATextBox.ForeColor = vbBlue

or:

ATextBox.ForeColor = 16711680

Need I say more?

10.4 Variables and Data Types

A variable can be thought of as a memory location that can hold values of a specific type.
The value in a variable may change during the life of the program—hence the name
variable.

In VBA, each variable has a specific data type, which indicates which type of data it may
hold. For instance, a variable that holds text strings has a String data type and is called a
string variable. A variable that holds integers (whole numbers) has an Integer data type
and is called an integer variable. For reference, Table 10-1 shows the complete set of
VBA data types, along with the amount of memory that they consume and their range of
values. We will discuss a few of the more commonly used data types in a moment.

Table 10-1. VBA data types
Type Size in memory Range of values

Byte 1 byte 0 to 255
Boolean 2 bytes True or False
Integer 2 bytes -32,768 to 32,767
Long (long
integer) 4 bytes -2,147,483,648 to 2,147,483,647

Single (single- 4 bytes Approximately -3.4E38 to 3.4E38

precision real)
Double (double-
precision real) 8 bytes Approximately -1.8E308 to 4.9E324

Currency (scaled
integer) 8 bytes Approximately -922,337,203,685,477.5808 to

922,337,203,685,477.5807
Date 8 bytes 1/1/100 to 12/31/9999
Object 4 bytes Any Object reference

String Variable length: 10 bytes + string
length; Fixed length: string length

Variable length: <= about 2 billion (65,400 for Win
3.1) Fixed length: up to 65,400

Variant
16 bytes for numbers

22 bytes + string length

Number: same as Double

String: same as String
User-defined Varies

10.4.1 Variable Declaration

To declare a variable means to define its data type. Variables are declared with the Dim
keyword (or with the keywords Private and Public, which we will discuss later in this
chapter). Here are some examples:

Dim Name As String
Dim Holiday As Date
Dim Age As Integer
Dim Height As Single
Dim Money As Currency
Dim db as Database
Dim rs as Recordset

The general syntax of a variable declaration is:

Dim VariableName As DataType

If a particular variable is used without first being declared, or if it is declared without a
data type mentioned, as in Dim Age, then VBA will treat the variable as having type
Variant. As we can see from Table 10-1, this is generally a waste of memory, since
variants require more memory than most other types of variables.

For instance, an integer variable requires 2 bytes, whereas a variant that holds the same
integer requires 16 bytes, which is a waste of 14 bytes. It is common to have hundreds or
even thousands of variables in a complex program, and so the memory waste could be
significant. For this reason, it is a good idea to declare all variables.

Perhaps more importantly, much more overhead is involved in maintaining a Variant than
its corresponding String or Integer, for example. This in turn means that using Variants
typically results in worse performance than using an equivalent set of explicit data types.

We can place more than one declaration on a line to save space. For instance, the line:

Dim Age As Integer, Name As String, Money As Currency

declares three variables. Note, however, that a declaration such as:

Dim Age, Height, Weight As Integer

is legal, but Age and Height are declared as Variants, not Integers. In other words, we
must specify the type for each variable explicitly.

It is also possible to tell VBA the type of the variable by appending a special character to
the variable name. In particular, VBA allows the type-declaration suffixes shown in
Table 10-2. (I personally dislike these suffixes, but they do save space.)

Table 10-2. Type-declaration suffixes
Suffix Type

% integer
& long
! single
double
@ currency
$ string

For instance, the line:

Dim Name$

declares a variable called Name$ of type String. We can then write:

Name$ = "Donna"

Finally, let us note that although Access allows variable and constant declarations to be
placed anywhere within a procedure (before the item is used, that is), it is generally good
programming practice to place all such declarations at the beginning of the procedure.
This improves code readability and makes housekeeping much simpler.

10.4.2 The Importance of Explicit Variable Declaration

I have said that using the Variant data type generally wastes memory and often results in
poorer performance, and that all variables are assumed to be variants unless you specify
otherwise. There is an additional, even more important reason to declare all variables
explicitly. This has to do with making typing errors, which we all do from time to time.
In particular, if we accidentally misspell a variable name, VBA will think we mean to
create a new variable!

10.4.2.1 Option Explicit

To avoid this problem, we need a way to make Access refuse to run a program if it
contains any variables that we have not explicitly declared. This is done simply by
placing the line:

Option Explicit

in the Declarations section of each code module. Since it is easy to forget to do this, VBA
provides an option called Require Variable Declaration in its Options dialog box. When
this option is selected, VBA automatically inserts the Option Explicit line for us.
Therefore, I strongly recommend that you enable this option.

Now let us briefly discuss some of the data types in Table 10-1.

10.4.3 Numeric Data Types

The numeric data types include Integer, Long, Single, Double, and Currency. A long is
also sometimes referred to as a long integer.

10.4.4 Boolean Data Type

A Boolean variable is a variable that takes on one of two values: True or False. This is a
very useful data type that was only recently introduced into VBA. Prior to its
introduction, VBA recognized 0 as False and any nonzero value as True, and you may
still see this usage in older code.

10.4.5 String Data Type

A string is a sequence of characters. (An empty string has no characters, however.) A
string may contain ordinary text characters (letters, digits, and punctuation), as well as
special control characters such as vbCrLf (carriage return/line feed characters) or vbTab
(tab character). As we have seen, a string constant is enclosed within quotation marks. An
empty string is denoted by a pair of adjacent quotation marks, as in:

EmptyString = ""

There are two types of string variables in VBA: fixed-length and variable-length. A
fixed-length string variable is declared as follows:

Dim FixedStringVarName As String * StringLen

where StringLen specifies the number of characters reserved for the string. For instance,
the following statement declares a fixed-length string of length 10 characters:

Dim sName As String * 10

Observe that the following code, which concatenates two strings:

Dim s As String * 10
s = "test"
Debug.Print s & "/"

produces the output:

test /

This shows that the content of a fixed-length string is padded with spaces in order to
reach the correct length.

A variable-length string variable is a variable that can hold strings of varying lengths (at
different times, of course). Variable-length string variables are declared simply as:

Dim VariableStringVarName as String

As an example, the code:

Dim s As String
s = "test"
Debug.Print s & "/"
s = "another test"
Debug.Print s & "/"

produces the output:

test/
another test/

Variable-length string variables are used much more often than fixed-length strings,
although the latter have some very specific and important uses (which I will not go into in
this book).

10.4.6 Date Data Type

Variables of the Date data type require 8 bytes of storage and are actually stored as
decimal (floating-point) numbers that represent dates ranging from January 1, 100 to
December 31, 9999 (no year 2000 problem here) and times from 0:00:00 to 23:59:59.

As discussed earlier, literal dates are enclosed within number signs, but when assigning a
date to a date variable, we can also use valid dates in string format. For example, the
following are all valid date/time assignments:

Dim dt As Date
dt = #1/2/98#
dt = "January 12, 2001"
dt = #1/1/95#

dt = #12:50:00 PM#
dt = #1/13/76 12:50:00 PM#

VBA has a large number of functions that can manipulate dates and times. If you need to
manipulate dates or times in your programs, you should probably spend some time with
the Access VBA help file. (Start by looking under “Date Data Type.”)

10.4.7 Variant Data Type

The Variant data type provides a catch-all data type that is capable of holding data of any
other type except fixed-length string data and user-defined types. I have already noted the
virtues and vices of the Variant data type and discussed why variants should generally be
avoided.

10.4.8 Access Object Data Types

Access VBA/DAO has a number of additional data types that fall under the general
category of Object data type. Here is a sampling:

Some Access objects

Form
Module
Report
Control
Section

Some DAO objects

Workspace
Database
Recordset
Field
Error
User

Thus, we can declare variables such as:

Dim fm As Form
Dim ws As Workspace
Dim db As Database
Dim rs As Recordset
Dim fld As Field

I devote much of this book to studying the objects in the DAO object model, for it is
through these objects that we can manipulate Access databases programmatically. (I will
briefly describe the Access object model as well, but not go into its details, for its primary

use is to manipulate Access forms and reports, not actual data. In fact, the Access object
model does not even have a Table object!)

10.4.8.1 The generic As Object declaration

It is also possible to declare any Access object using the generic-object data type Object,
as in the following example:

Dim rs As Object

While you may see this declaration from time to time, it is much less efficient than a
specific object declaration, such as:

Dim rs As Recordset

This is because Access cannot tell what type of object the variable rs refers to until the
program is running, so it must use some execution time to make this determination. This
is referred to as late binding and can make programs run significantly more slowly.

10.4.8.2 The Set statement

Declaring object variables is done in the same way as declaring nonobject variables. For
instance, here are two variable declarations:

Dim int As Integer ' nonobject (standard) variable declaration
Dim db As Database ' object variable declaration

On the other hand, when it comes to assigning a value to variables, the syntax differs for
object and nonobject variables. In particular, we must use the Set keyword when
assigning a value to an object variable. For example, the following line assigns the
current Access database to the variable db :

Set db = CurrentDb

10.4.9 Arrays

An array variable is a collection of variables that use the same name, but are
distinguished by an index value. For instance, to store 10 fields objects in variables, we
could declare an array variable as follows:

Dim MyFields(1 To 10) As Field

The array variable is MyFields. It has size 10. The lower bound of the array is 1, and the
upper bound is 10. Each of the variables:

MyFields(1), MyFields(2),..., MyFields(10)

are Field variables. Note that if we omit the first index in the declaration, as in:

Dim MyFields(10) As Field

then VBA will automatically set the first index to 0, so the size of the array will be 11.

The virtue of declaring array variables is clear, since it would be very unpleasant to have
to declare 10 separate variables. In addition, as we will see, there are ways to work
collectively with all of the elements in an array, using a few simple programming
constructs. For instance, the following code sets all 10 Field types to Integer:

For i = 1 To 10
 MyFields(i).Type = dbInteger
Next i

10.4.9.1 The dimension of an array

The MyFields array defined in the previous example has dimension one. We can also
define arrays of more than one dimension. For instance, the array:

Dim Stats(1 To 10, 1 To 100) As Integer

is a two-dimensional array whose first index ranges from 1 to 10 and whose second index
ranges from 1 to 100. Thus, the array has size 10 x 100 = 1000.

10.4.9.2 Dynamic arrays

When an array is declared, as in:

Dim FileName(1 To 10) As String

the upper and lower bounds are both specified, and so the size of the array is fixed.
However, there are many situations in which we do not know at declaration time how
large an array we may need. For this reason, VBA provides dynamic arrays and the
ReDim statement.

A dynamic array is declared with empty parentheses, as in:

Dim FileName() as String

Dynamic arrays can be sized (or resized) using the ReDim statement, as in:

ReDim FileName(1 to 10)

This same array can later be resized again, as in:

ReDim FileName(1 to 100)

Note that resizing an array will destroy its contents unless we use the Preserve keyword,
as in:

ReDim Preserve FileName(1 to 200)

However, when Preserve is used, we can only change the upper bound of the array (and
only the last dimension in a multidimensional array).

10.4.9.3 The UBound function

The UBound function is used to return the current upper bound of an array. This is very
useful in determining when an array needs redimensioning. To illustrate, suppose we
want to collect an unknown number of filenames in an array named FileName. If the next
file number is iNextFile, the following code checks to see if the upper bound is less
than iNextFile and if so, it increases the upper bound of the array by 10, preserving its
current contents, to make room for the next filename:

If UBound(FileName) < iNextFile Then
 ReDim Preserve FileName(UBound(FileName) + 10)
End If

Note that redimensioning takes time, so it is wise to add some “working room” at the top
to cut down on the number of times the array must be redimensioned. This is why we
added 10 to the upper bound in this example, rather than just 1. (There is a tradeoff here
between the extra time it takes to redimension and the extra space that may be wasted if
we do not use the entire redimensioned array.)

10.4.10 Variable Naming Conventions

VBA programs can get very complicated, and we can use all the help we can get in trying
to make them as readable as possible. In addition, as time goes on, the ideas behind the
program begin to fade, and we must rely on the code itself to refresh our memory. This is
why adding copious comments to a program is so important.

Another way to make programs more readable is to use a consistent naming convention
for constants, variables, procedure names, and other items. In general, a name should
have two properties. First, it should remind the reader of the purpose or function of the
item. For instance, suppose we want to assign Field variables to some fields in an Access
table. The code:

Dim fld1 As Field, fld2 as Field
Set fld1 = Fields("Sales")
Set fld2 = Fields("Transactions")

is perfectly legal, but 1,000 lines of code and 6 months later, will we remember which
field is fld1 and which is fld2? Since we went to the trouble of naming the fields in a
descriptive manner, we should do the same with the fld variables, as in:

Dim fldSales As Field, fldTrans as Field
Set fldSales = Fields("Sales")
Set fldTrans = Fields("Transactions")

Of course, there are exceptions to all rules, but in general, it is better to choose
descriptive names for variables (as well as other items that require naming, such as
constants, procedures, controls, forms, and code modules).

Second, a variable name should reflect something about the properties of the variable,
such as its data type. Many programmers use a convention in which the first few
characters of a variable’s name indicate the data type of the variable. This is sometimes
referred to as a Hungarian naming convention, after the Hungarian programmer Charles
Simonyi, who is credited with its invention.

Table 10-3 and Table 10-4 describe the naming convention that we will generally use for
nonobject and object variables, respectively. Of course, you are free to make changes for
your own personal use, but you should at least try to be reasonably consistent. These
prefixes are intended to remind us of the data type, but it is not easy to do this perfectly
using only a couple of characters, and the longer the prefix, the less likely it is that we
will use it! (Note the c prefix for integers or longs. This is a commonly used prefix when
the variable is intended to count something.)

Table 10-3. Naming convention for nonobject variables
Variable Prefix

Boolean bool, b, or f
Byte b, byt, or bt
Currency cur
Date d or dte
Double d or dbl
Integer i, c, or int
Long l, c, or lng
Single s or sng
String s or str
User-defined type typ, u, or ut
Variant v or var

Table 10-4. Naming convention for some object variables
Variable Prefix

Database db
Workspace ws
Recordset rs
TableDef tdef
Field fld
Index idx
QueryDef qdef

In addition to a data type, every variable has a scope and a lifetime. Some programmers
advocate including a hint as to the scope of a variable in the prefix, using g for global and
m for module level. For example, the variable giSize is a global variable of type Integer.

I will discuss the scope and lifetime of a variable next (but I will not generally include
scope prefixes in variable names).

10.4.11 Variable Scope

Variables and constants have a scope, which indicates where in the program the variable
or constant is recognized (or visible to the code). The scope of a variable or constant can
be either procedure-level (also called local), module-level private, or module-level
public. The rules may seem a bit involved at first, but they do make sense.

10.4.11.1 Procedure-level (local) variables

A local or procedure-level variable or constant is a variable or constant that is declared
within a procedure, as is the case with the variable LocalVar and the constant
LocalConstant in Figure 10-2. A local variable or constant is not visible outside of the
procedure. Thus, for instance, if we try to run ProcedureB in Figure 10-2, we will get the
error message, “Variable not defined,” and the name LocalVar will be highlighted.

Figure 10-2. Examples of variable scope

One of the advantages of local variables is that we can use the same name in different
procedures without conflict, since each variable is visible only in its own procedure.

10.4.11.2 Module-level variables

A module-level variable (or constant) is one that is declared in the declarations section of
a code module. Module-level variables and constants come in two flavors: private and
public.

Simply put, a module-level public variable (or constant) is available to all procedures in
all of the modules in the project, not just the module in which it is declared, whereas a
module-level private variable (or constant) is available only to the procedures in the
module in which it was declared.

Public variables and constants are declared using the Public keyword, as in:

Public APubInt As Integer
Public Const APubConst = 7

Private variables and constants are declared using the Private keyword, as in:

Private APrivateInt As Integer
Private Const APrivateConst = 7

The Dim keyword, when used at the module level, has the same scope as Private, but is
not as clear, so it should be avoided.

Public variables are also referred to as global variables, but this descriptive term is not de
rigueur.

10.4.12 Variable Lifetime

Variables also have a lifetime. The difference between lifetime and scope is quite simple:
lifetime refers to how long (or when) the variable is valid (that is, retains a value),
whereas scope refers to where the variable is accessible or visible.

To illustrate the difference, consider the following procedure:

Sub ProcedureA()
 Dim LocalVar As Integer
 LocalVar = 0
 Call ProcedureB
 LocalVar = 1
End Sub

Note that LocalVar is a local variable. When the line:

Call ProcedureB

is executed, execution switches to ProcedureB. While the lines of ProcedureB are being
executed, the variable LocalVar is out of scope, since it is local to ProcedureA. But it is
still valid. In other words, the variable still exists and has a value, but it is simply not
accessible to the code in ProcedureB. In fact, ProcedureB could also have a local
variable named LocalVar, which would have nothing to do with the variable of the same
name in ProcedureA.

Once ProcedureB has completed, execution continues in ProcedureA with the line:

LocalVar = 1

which is a valid instruction, since the variable LocalVar is back in scope.

Thus, the lifetime of the local variable LocalVar extends from the moment that
ProcedureA is entered to the moment that it is terminated. This includes the period during
which ProcedureB is executed as a result of the call to this procedure, even though during
that period, LocalVar is out of scope.

Incidentally, you may notice that the Microsoft help files occasionally get the notions of
scope and visibility mixed up a bit. The creators of the files seem to understand the
difference, but they don’t always use the terms correctly.

10.4.12.1 Static variables

To repeat, a variable may go in and out of scope and yet remain valid during that time—
that is, retain a value during that time. However, once the lifetime of a variable expires,
the variable is destroyed, and its value is lost. It is the lifetime that determines the
existence of a variable; its scope determines its visibility.

Thus, consider the following procedures:

Sub ProcedureA()
 Call ProcedureB
 Call ProcedureB
 Call ProcedureB
 Call ProcedureB
 Call ProcedureB
End Sub
Sub ProcedureB()
 Dim x As Integer
 x = 5
 . . .
End Sub

When ProcedureA is executed, it simply calls ProcedureB five times. Each time
ProcedureB is called, the local variable x is created anew and destroyed at the end of that
call. Thus, x is created and destroyed five times.

Normally, this is just want we want. However, there are times when we would like the
lifetime of a local variable to persist longer than the lifetime of the procedure in which it
is declared. As an example, we may want a procedure to do something special the first
time it is called, but not subsequent times.

A static variable is a local variable whose lifetime is the lifetime of the entire module,
not just the procedure in which it was declared. In fact, a static variable retains its value
as long as the document or template containing the code module is active (even if no code
is running). Thus, a static variable has the scope of a local variable, but the lifetime of a
module-level variable. C’est tout dire !

For instance, the procedure in Example 10-1 uses a static variable to execute some code
only the first time the procedure is called, other code only after the first time, and still
other code every time the procedure is run.

Example 10-1. Using a static variable

Sub StaticExample()

' Declare static Boolean variable
Static NotFirstTime As Boolean

' If first time, then run special code
If NotFirstTime = False Then

 ' Code here that runs only the first time procedure is called

 ' No longer the first time
 NotFirstTime = True

Else

 ' Not the first time
 ' Code here will run if not first time

End If

 ' Code here will always run (unless procedure is exited beforehand)

End Sub

The If statement checks to see if the value of NotFirstTime is False, as it will be the
first time the procedure is called. During this first call, the line:

NotFirstTime = True

will execute, so that in subsequent calls to this procedure, the If condition:

If NotFirstTime = False

will be False, and the alternate code will execute.

Static variables are not used very often, but they can be quite useful at times.

It may have occurred to you that we could accomplish the same effect by using a module-
level private variable to keep a record of whether the procedure has been called, instead
of a static local variable. However, it is considered better programming style to use the
most restrictive scope possible, which, in this case, is a local variable with an “extended”
lifetime. This helps prevent accidental alteration of the variable in other portions of the
code. (Remember that this code may be part of a much larger code module, with a lot of
things going on. It is better to hide the NotFirstTime variable from this other code.)

10.4.13 Variable Initialization

When a procedure begins execution, all of its local variables are automatically initialized,
that is, given initial values. In general, however, it is not good programming practice to
rely on this initialization, since it makes the program less readable and somewhat more
prone to logical errors. Thus, it is a good idea to initialize all local variables explicitly, as
in the following example:

Sub Example()

Dim x As Integer
Dim s As String

x = 0 ' Initialize x to 0
s = "" ' Initialize s to empty string

' more code here . . .

End Sub

Note, however, that static variables cannot be initialized, since that defeats their purpose!
Thus, it is important to know the following rules that VBA uses for variable initialization
(note also that they are intuitive):

• Numeric variables (Integer, Long, Single, Double, and Currency) are initialized to
zero.

• A variable-length string is initialized to a zero-length (empty) string.
• A fixed-length string is filled with the character represented by the ASCII

character code 0, or Chr (0).
• Variant variables are initialized to Empty.
• Object variables are initialized to Nothing.

The Nothing keyword actually has several related uses in Access VBA. It is used to
release an object variable, as in:

Set rs = Nothing

and to determine if an object variable references a valid object, as in:

If rs Is Nothing

It is also sometimes used as a return value for some functions, generally to indicate that
some operation has failed. Finally, it is used to initialize object variables.

10.5 VBA Operators

VBA uses a handful of simple operators and relations, the most common of which are
shown in Table 10-5.

Table 10-5. VBA operators and relations
Type Name Symbol

Arithmetic operators Addition +
 Subtraction -
 Multiplication *
 Division /
 Division with Integer result \
 Exponentiation ^
 Modulo Mod

String operator Concatenation &

Logical operators AND AND
 OR OR
 NOT NOT

Comparison relations Equal =
 Less than <
 Greater than >
 Less than or equal to <=
 Greater than or equal to >=
 Not equal to <>

The Mod operator returns the remainder after division. For example:

8 Mod 3

returns 2, since the remainder after dividing 8 by 3 is 2.

To illustrate string concatenation, the expression:

"To be or " & "not to be"

is equivalent to:

"To be or not to be"

Chapter 11. Functions and Subroutines
VBA allows two kinds of procedures: functions and subroutines. The only difference
between a function and a subroutine is that a function returns a value, whereas a
subroutine does not.

11.1 Calling Functions

A function declaration has the form:

[Public or Private] Function FunctionName(Param1 As DataType1, _
 Param2 As DataType2,...) As ReturnType

Note that we must declare the data types not only of each parameter to the function, but
also of the return type. Otherwise, VBA declares these items as variants.

I will discuss the optional keywords Public and Private later in this chapter, but you
can probably guess that they are used here to indicate the scope of the function, just as
they are used in variable declarations. For example, the AddOne function in Example 11-
1 adds 1 to the original value.

Example 11-1. The AddOne function

Public Function AddOne(Value As Integer) As Integer
 AddOne = Value + 1
End Function

To use the return value of a function, we just place the call to the function within the
expression, in the location where we want the value. For instance, the code:

MsgBox "Adding 1 to 5 gives: " & AddOne(5)

produces the message box in Figure 11-1, where the expression AddOne(5) is replaced by
the return value of AddOne, which in this case is 6.

Figure 11-1. The message dialog box displayed by Example 11-1

Note that, in general, any parameters to a function must be enclosed in parentheses within
the function call.

In order to return a value from a function, we must assign the function’s name to the
return value somewhere within the body of the function. Example 11-2 shows a slightly
more complicated example of a function.

Example 11-2. Assigning a function’s return value

Function ReturnCount() As Variant

' Return count of records in recordset

If rs Is Nothing Then
 ReturnCount = "No recordset"
Else
 ReturnCount = rs.RecordCount
End If

End Function

This function returns a count of the number of records in the recordset referenced by the
variable rs. However, if rs does not currently reference a recordset, then the function
returns the words "No recordset".

Note that since the return value may be a number or a string, we declare the return type as
Variant. Note also that ReturnCount is assigned twice within the body of the function. Its
value, and hence the value of the function, is set differently depending upon the value
returned by the If statement.

11.2 Calling Subroutines

A subroutine declaration has the form:

[Public or Private] Sub SubroutineName(Param1 As DataType1, _
 Param2 As DataType2,...)

This is similar to the function declaration, with the notable absence of the As ReturnType
portion. (Note also the word Sub in place of Function.)

Since subroutines do not return a value, they cannot be used within an expression. To call
a subroutine named SubroutineA, we can write either:

Call SubroutineA(parameters, . . .)

or simply:

SubroutineA parameters, . . .

Note that any parameters must be enclosed in parentheses when using the Call keyword,
but not otherwise.

11.3 Parameters and Arguments

Consider the following very simple subroutine, which does nothing more than display a
message box declaring a person’s name:

Sub DisplayName(sName As String)
 MsgBox "My name is " & sName
End Sub

To call this subroutine, we would write, for example:

DisplayName "Wolfgang"

or:

Call DisplayName("Wolfgang")

The variable sName in the procedure declaration:

Sub DisplayName(sName As String)

is called a parameter of the procedure. The call to the procedure should contain a string
variable or a literal string that is represented by the variable sName in this procedure (but
see the discussion of optional arguments in the next section). The value used in place of
the parameter when we make the procedure call is called an argument. Thus, in the
previous example, the argument is the string “Wolfgang.”

Note that many programmers fail to make a distinction between parameters and
arguments, using the names interchangeably. However, since a parameter is like a
variable and an argument is like a value of that variable, failing to make this distinction is
like failing to distinguish between a variable and its value!

11.3.1 Optional Arguments

In VBA, the arguments to a procedure may be specified as optional, using the Optional
keyword. (It makes no sense to say that a parameter is optional; it is the value that is
optional.)

For instance, the definition of the OpenRecordset method is:

Set recordset = object.OpenRecordset(source, type, options, lockedits)

where type , options , and lockedits are optional. Thus, for instance, each of the
following lines of code are legal:

Dim rs As Recordset
Set rs = CurrentDb.OpenRecordset("Names")
Set rs = CurrentDb.OpenRecordset("Names", dbOpenForwardOnly)

Set rs = CurrentDb.OpenRecordset("Names", dbOpenForwardOnly,
dbReadOnly)
Set rs = CurrentDb.OpenRecordset("Names", dbOpenForwardOnly, _
 dbReadOnly, dbOptimistic)

To define a function with optional arguments, we just include the keyword Optional in
the parameter declaration, as in Example 11-3.

Example 11-3. Using an optional argument

Sub ChangeFieldType(sFieldName As String, _
 Optional NewSize As Variant)

' Change type to integer
rs!Fields(sFieldName).Type = dbInteger

' If size supplied, use it. Else use 25.
If Not IsMissing(NewSize) Then
 rs!Fields(sFieldName).Size = CInt(NewSize)
Else
 rs!Fields(sFieldName).Size = 25
End If

End Sub

The second parameter is declared with the Optional keyword. Because of this, we may
call the procedure with or without an argument for this parameter, as in:

ChangeFieldType("Age", 10)

and:

ChangeFieldType("Age")

Note that the IsMissing function is used in the body of the procedure to test whether the
argument is present. If the argument is present, then the font size is changed. Note also
that we declared the NewSize parameter as type Variant because IsMissing works only
with parameters of type Variant. (Other types of variables are given default values, which
precludes the possibility of them going missing.) Thus, we converted the Variant to type
Integer using the CInt function.

Note that a procedure may have any number of optional arguments, but they must all
come at the end of the parameter list.

11.3.2 Named Arguments

Normally, the arguments to a function are matched to the parameters by their position in
the function call. For instance, in the function call:

Set rs = CurrentDb.OpenRecordset("Objects", dbOpenForwardOnly)

Access can tell that the argument dbOpenForwardOnly is the value for the second
parameter (Type) of the function. Such arguments are called positional arguments.

Many built-in VBA/DAO functions also allow named arguments. For example, the
OpenRecordset function can be called as follows:

Set rs = CurrentDb.OpenRecordset(Name:="Objects", _
 Type:=dbOpenForwardOnly)

Here, each argument has the form:

ParameterName:=Argument

There are three main advantages to named arguments:

• Named arguments can improve readability and clarity.
• Blank spaces (separated by commas) are required for missing optional arguments

when using a positional declaration, but not when using named arguments.
• The order in which named arguments are listed is immaterial, which, of course, is

not the case for positional arguments. For instance, the previous function call
could be written:

• Set rs = CurrentDb.OpenRecordset(Type:=dbOpenForwardOnly, _
 Name:="Objects")

Named arguments can improve readability quite a bit, and they are highly recommended.
However, they can require considerably more space, so for the short examples in this
book, I usually will not use them.

11.3.3 ByRef Versus ByVal Parameters

Parameters come in two flavors: ByRef and ByVal. Many programmers do not have a
clear understanding of these concepts, but they are very important and not that difficult to
understand.

To explain the difference, I present the two procedures in Example 11-4. ProcedureA
simply sets the value of the module-level variable x to 5, displays that value, calls the
procedure AddOne with the argument x, and then displays the value of x again.

Example 11-4. Testing the ByVal and ByRef keywords

Sub ProcedureA()
 x = 5 ' Set x to 5
 MsgBox x ' Display x
 Call AddOne(x) ' Call AddOne
 MsgBox x ' Display x again
End Sub

Sub AddOne(ByRef i As Integer)
 i = i + 1

End Sub

Note the presence of the ByRef keyword in the AddOne procedure declaration. This
keyword tells VBA to pass a reference to the variable x to the AddOne procedure.
Therefore, the AddOne procedure, in effect, replaces its parameter i by the variable x. As
a result, the line:

i = i + 1

effectively becomes:

x = x + 1

So, after AddOne is called, the variable x has the value 6.

On the other hand, suppose we change the AddOne procedure, replacing the keyword
ByRef with the keyword ByVal:

Sub AddOne(ByVal i As Integer)
 i = i + 1
End Sub

In this case, VBA does not pass a reference to the variable x, but rather it passes its value.
Hence, the variable i in AddOne simply takes on the value 5. Adding 1 to that value
gives 6. Thus, i equals 6, but the value of the argument x is not affected! Hence, both
message boxes will display the value 5 for x.

ByRef and ByVal both have their uses. When we want to change the value of a variable,
we must declare the corresponding parameter as ByRef so that the called procedure has
access to the actual variable itself. This is the case in the previous example. Otherwise,
the AddOne procedure does absolutely nothing, since the local variable i is incremented,
but it is destroyed immediately afterwards, when the procedure ends.

On the other hand, when we pass an argument for informational purposes only, and we
do not want the argument to be altered, it should be passed by value, using the ByVal
keyword. In this way, the called procedure gets only the value of the argument.

There is one downside to passing arguments by value: it can take a lot of memory (and
time). When passing a string variable that contains a large string by value, the entire
string must be duplicated.

Thus, we can summarize by saying that if we want the procedure to modify an argument,
the argument must be passed by reference. If not, the argument should be passed by value
unless this will produce an unacceptable decrease in performance, or unless we are very
sure that it will not get changed by accident.

It is important to note that VBA defaults to ByRef if we do not specify otherwise. This
means that the values of arguments are subject to change by the called procedure, unless
we explicitly include the keyword ByVal. Caveat scriptor !

11.4 Exiting a Procedure

VBA provides the Exit Sub and Exit Function statements, should we wish to exit from
a procedure before the procedure would terminate naturally. For instance, if the value of a
parameter is not suitable, we may want to issue a warning to the user and exit, as
Example 11-5 shows.

Example 11-5. Using the Exit Sub statement

Sub DisplayName(sName As String)
 If sName = "" then
 Msgbox "Please enter a name."
 Exit Sub
 End If
 MsgBox "Name entered is " & sName
End Sub

While we are on the subject of exiting, we should comment on the use of the End
statement, which will terminate a procedure. Simply put, you should almost never use the
End statement in VBA programming, since it produces a rather abrupt termination of a
program. (I never like to say never.) Here is a partial list of what happens when the End
statement is executed:

• Code execution stops abruptly, without invoking the Unload, QueryUnload, or
Terminate event of any forms in the application, which means that forms are not
given the opportunity to prevent the program from terminating or from
performing any necessary cleanup.

• All module-level variables and all static local variables are reset. (Nonstatic local
variables go out of scope, as expected.) Objects created from class modules are
destroyed.

• Files opened using the Open statement are closed.

While there may be some rather specialized situations in which this behavior is desirable,
you will no doubt recognize such a situation if and when it arises. In the meantime, it is
probably best to simply avoid using the End statement.

11.5 Public and Private Procedures

Just as variables and constants have a scope, so do procedures. We can declare a
procedure using the Public or Private keyword, as in:

Public Function AddOne(i As Integer) As Integer

or:

Private Function AddOne(i As Integer) As Integer

The difference is simple: a Private procedure can only be called from within the module
in which it is defined, whereas a Public procedure can be called from within any module
in the project.

Note that if the Public or Private keyword is omitted from a procedure declaration,
then the procedure is considered to be Public.

11.6 Fully Qualified Procedure Names

When we call a public procedure that lies in another code module, there is a potential
problem with ambiguity, for there may be more than one public procedure with the same
name in another module. VBA will execute the first one it finds, and this may not be the
one we had in mind!

The solution is to use a qualified procedure name, which has the form:

ModuleName.ProcedureName

For instance, if a public procedure named AddOne lies in a module named Utilities, then
we can call this procedure using the syntax:

Utilities.AddOne

Chapter 12. Built-in Functions and Statements
VBA has a large number of built-in functions and statements. For possible reference,
Table 12-1 shows the VBA functions, and Table 12-2 shows the statements. We will take
a look at a few of the more commonly used functions and statements in this chapter and
the next.

Table 12-1. VBA functions
Abs CreateObject Error InputB Len PPmt StrComp
Array CSng Exp InputBox LenB PV StrConv
Asc CStr FileAttr InStr LoadPicture QBColor String
AscB CurDir FileDateTime InStrB Loc Rate Switch
AscW Cvar FileLen Int LOF RGB SYD
Atn CVDate Fix Ipmt Log Right Tab
CBool CVErr Format IRR Ltrim RightB Tan
CByte Date FreeFile IsArray Mid Rnd Time
CCur DateAdd FV IsDate MidB RTrim Timer
CDate DateDiff GetAllSettings IsEmpty Minute Second TimeSerial
CDbl DatePart GetAttr IsError MIRR Seek TimeValue
CDec DateSerial GetAutoServerSettings IsMissing Month Sgn Trim
Choose DateValue GetObject IsNull MsgBox Shell TypeName
Chr Day GetSetting IsNumeric Now Sin UBound
ChrB DDB Hex IsObject Nper SLN UCase
ChrW Dir Hour Lbound NPV Space Val
CInt DoEvents Iif Lcase Oct Spc VarType
CLng Environ IMEStatus Left Partition Sqr Weekday
Command EOF Input LeftB Pmt Str Year
Cos

Table 12-2. VBA statements
AppActivate DefDec Error Kill Open Randomize Set
Beep DefInt Event Let Option Base ReDim SetAttr
Call DefLng Exit Line Input # Option Compare Rem Static
ChDir DefObj FileCopy Load Option Explicit Reset Stop
ChDrive DefSng For Each...Next Lock Option Private Resume Sub
Close DefStr For...Next LSet Print # Return Time
Const DefVar Function Mid Private RmDir Type
Date DeleteSetting Get MidB Property Get RSet Unload
Declare Dim GoSub...Return MkDir Property Let SavePicture Unlock
DefBool Do...Loop GoTo Name Property Set SaveSetting While...Wend
DefByte End If...Then...Else On Error Public Seek Width #
DefCur Enum Implements On...GoSub Put Select Case With
DefDate Erase Input # On...GoTo RaiseEvent SendKeys Write #
DefDbl

To help simplify the exposition, we will follow Microsoft’s lead and use square brackets
to indicate optional parameters. Thus, for instance, the second parameter in the following
procedure is optional:

Sub ChangeFieldType(sFieldName, [NewSize])

Note that we have also omitted the data type declarations, which will be discussed
separately.

12.1 The MsgBox Function

We have been using the MsgBox function unofficially for some time now. Let us
introduce it officially. The MsgBox function is used to display a message and wait for the
user to respond by pushing a button. The most commonly used syntax is:

MsgBox(prompt [, buttons] [, title])

(This is not the function’s complete syntax. There are some additional optional
parameters related to help contexts that you can look up in the help documentation.)

prompt is a String parameter containing the message to be displayed in the dialog box.
Note that a multiline message can be created by interspersing the vbCrLf constant within
the message.

buttons is a Long parameter giving the sum of values that specify various properties of
the message box. These properties are the number and type of buttons to display, the icon
style to use, the identity of the default button, and the modality of the message box. (A
system modal dialog box remains on top of all currently open windows and captures the
input focus systemwide, whereas an application modal dialog box remains on top of the
application’s windows only and captures the application’s focus.) The various values of
buttons that we can sum are shown in Table 12-3. (They are officially defined in the
VbMsgBoxStyle enum.)

Table 12-3. The MsgBox buttons argument values
Purpose Constant Value Description

Button types vbOKOnly 0 Display OK button only
 vbOKCancel 1 Display OK and Cancel buttons
 vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons
 vbYesNoCancel 3 Display Yes, No, and Cancel buttons
 vbYesNo 4 Display Yes and No buttons
 vbRetryCancel 5 Display Retry and Cancel buttons
Icon types vbCritical 16 Display Critical Message icon
 vbQuestion 32 Display Warning Query icon
 vbExclamation 48 Display Warning Message icon
 vbInformation 64 Display Information Message icon
Default button vbDefaultButton1 0 First button is default

 vbDefaultButton2 256 Second button is default
 vbDefaultButton3 512 Third button is default
 vbDefaultButton4 768 Fourth button is default
Modality vbApplicationModal 0 Application modal message box
 vbSystemModal 4096 System modal message box

For instance, the code:

MsgBox "Proceed?", vbQuestion + vbYesNo

displays the message box shown in Figure 12-1, which includes a question-mark icon and
two command buttons, labeled Yes and No.

Figure 12-1. A MsgBox dialog box

The title parameter is a string expression that is displayed in the title bar of the dialog
box. If we omit this argument, then Microsoft Access will be displayed, as in Figure 12-1.

The MsgBox function returns a number indicating which button was selected. These
return values are given in Table 12-4. (They are officially defined in the
VbMsgBoxResult enum.)

Table 12-4. MsgBox return values
Constant Value Description

vbOK 1 OK button pressed
vbCancel 2 Cancel button pressed
vbAbort 3 Abort button pressed
vbRetry 4 Retry button pressed
vbIgnore 5 Ignore button pressed
vbYes 6 Yes button pressed
vbNo 7 No button pressed

12.2 The InputBox Function

The InputBox function is designed to get input from the user. The most commonly used
(but not complete) syntax is:

InputBox(prompt [, title] [, default])

where prompt is the message in the input box, title is the title for the input box, and
default is the default value that is displayed in the text box. For instance, the code:

sName = InputBox("Enter your name.", "Name", "Albert")

produces the dialog box in Figure 12-2.

Figure 12-2. An InputBox dialog box

The InputBox function returns the string that the user enters into the text box. Thus, in our
example, the string variable sName will contain this string.

Note that if we want a number from the user, we can still use the InputBox function and
simply convert the returned string (such as "12.55") to a number (12.55) using the Val
function, discussed later in the chapter.

12.3 VBA String Functions

Here are a handful of useful functions that apply to strings (both constants and variables):

The Len function

The Len function returns the length of a string, that is, the number of characters in
the string. Thus, the code:

Len("January Invoice")

returns the number 15.

The UCase and LCase functions

These functions return an all-uppercase or all-lowercase version of the string
argument. The syntax is:

UCase(string)
LCase(string)

For instance:

MsgBox UCase("Donna")

will display the string DONNA.

The Left , Right , and Mid functions

These functions return a portion of a string. In particular:

Left(string, number)

returns the leftmost number characters in string, and:

Right(string, number)

returns the rightmost number characters in string. For instance:

MsgBox Right("Donna Smith", 5)

displays the string Smith.

The syntax for Mid is:

Mid(string, start, length)

This function returns the first length number of characters of string, starting at
character number start. For instance:

Mid("Library.xls",9,3)

returns the string xls. If the length parameter is missing, as in:

Mid("Library.xls",9)

the function will return the rest of the string, starting at start.

The InStr function

The syntax for this very useful function is:

InStr(Start, StringToSearch, StringToFind)

The return value is the position, starting at Start, of the first occurrence of
StringToFind within StringToSearch. If Start is missing, then the function
starts searching at the beginning of StringToSearch. For instance:

MsgBox InStr(1, "Donna Smith", "Smith")

displays the number 7, because "Smith" begins at the seventh position in the
string "Donna Smith".

The Str and Val functions

The Str function converts a number to a string. For instance:

Str(123)

returns the string 123. Conversely, the Val function converts a string that
represents a number into a number (so that we can do arithmetic with it, for
instance). For example:

Val("4.5")

returns the number 4.5 and:

Val("1234 Main Street")

returns the number 1234. Note, however, that Val does not recognize dollar signs
or commas. Thus:

Val($12.00)

returns 0, not 12.00.

The type-conversion functions

The Str and Val functions have been replaced by the more modern type-
conversion functions: CBool, CByte, CCur, CDate, CDbl, CDec, CInt, CLng,
CSng, CVar, and CStr. For instance, the function CStr converts its argument to a
string, as in:

CStr(123)

One advantage of the newer type-conversion functions over the older Str and Val
functions is that the new functions are international-aware. For instance, the CCur
function converts an expression to currency format, taking into account the
particular decimal separators, thousands separators, and other currency options
that are determined by the locale setting of the computer upon which the function
is being used.

The Trim , LTrim, and RTrim functions

The LTrim function removes leading spaces from a string. Similarly, RTrim
removes trailing spaces, and Trim removes both leading and trailing spaces. Thus:

Trim(" extra ")

returns the string extra.

The String and Space functions

The String function provides a way to create a string quickly that consists of a
single character repeated a number of times. For instance:

sText = String(25, "B")

sets sText to a string consisting of 25 Bs. Also, the Space function returns a string
consisting of a given number of spaces. For instance:

sText = Space(25)

sets sText to a string consisting of 25 spaces.

The Like operator and StrCmp function

The Like operator is very useful for comparing two strings. Of course, we can use
the equal sign:

string1 = string2

which is true when the two strings are identical. However, Like will also make a
case-insensitive comparison or allow the use of pattern matching.

The expression:

string Like pattern

returns True if string fits pattern and returns False otherwise. (Actually, the
expression can also return Null.) We will describe pattern in a moment.

The type of string comparison that the Like operator uses depends upon the
setting of the Option Compare statement. There are two possibilities:

Option Compare Binary
Option Compare Text

one of which should be placed in the Declarations section of a module (in the
same place as Option Explicit). Note that the default is Option Compare
Binary.

Under Option Compare Binary, string comparison is in the order given by the
ANSI character code, as shown here:

A < B < . . . < Z < a < b < . . . < z < À < . . . < Ø < à < . . .
< ø

Under Option Compare Text, string comparison is based on a case-insensitive
sort order (determined by your PC’s locale setting). This gives a sort order as
shown here:

A = a < À = à < B = b < . . . < Z = z < Ø = ø

By the way, the last item in the Text sort order is the left bracket ([) character,
with ANSI value 91. This is useful to know if you want to place an item last in
alphabetical order—just surround it by square brackets.

The pattern-matching features of the Like operator allow the use of wildcard
characters, character lists, or character ranges. For example:

?

Matches any single character

*

Matches zero or more characters

Matches any single digit (0-9)

[charlist]

Matches any single character in charlist

[!charlist]

Matches any single character not in charlist

For more details, check the VBA help file.

The StrComp function also compares two strings. Its syntax is:

StrComp(string1, string2 [, compare])

and it returns a value indicating whether string1 is equal to, greater than, or less
than string2. For more details, check the VBA help file.

12.4 Miscellaneous Functions and Statements

We’ll conclude our discussion of Access VBA functions and statements by examining a
hodgepodge of language constructs that perform such tasks as evaluating objects or
variables, evaluating an expression, and altering program flow based on an expression’s
values.

12.4.1 The Is Functions

VBA has several Is functions that return Boolean values indicating whether a certain
condition holds. We have already discussed the IsMissing function in connection with
optional arguments. Here are some additional Is functions.

12.4.1.1 The IsDate function

This function indicates whether an expression can be converted to a date. For instance,
the code:

Dim x As String
x = "1/1/45"
Debug.Print IsDate(x)

will print True to the Immediate window.

12.4.1.2 The IsEmpty function

This function indicates whether a variable has been initialized. For example, the code:

Dim x As Variant
If IsEmpty(x) Then . . .

tests whether the variable x is empty.

12.4.1.3 The IsNull function

This function is used to test whether a variable or field is Null (that is, contains no data).
Note that code such as:

If var = Null Then

will always return False because most expressions that involve Null automatically
return Null. The proper way to determine if the variable var is Null is to write:

If IsNull(var) Then

Here is a typical scenario:

Dim rs As Recordset

Dim s As String
Set rs = CurrentDb.OpenRecordset("Names")
rs.MoveFirst
If Not IsNull(rs!LastName) Then
 s = rs!LastName
 . . .
End If

12.4.1.4 The IsNumeric function

This function indicates whether an expression can be evaluated as a number. For
instance, consider the code:

Dim s As String
s = "123"
If IsNumeric(s) Then Debug.Print "Number"

This will print the word “Number.” However, if we change the second line to:

s = "123 Main St"

then the Debug.Print statement will not execute.

12.4.2 The Immediate If Function

The Immediate If function has the syntax:

IIf(Expression, TruePart, FalsePart)

If Expression is True, then the function returns TruePart. If Expression is False, the
function returns FalsePart. For instance, consider the following code:

Dim rs As Recordset
Dim s As String

Set rs = CurrentDb.OpenRecordset("Names")
rs.MoveFirst

If Not IsNull(rs!LastName) Then
 s = rs!LastName)
End If

This code fills a string variable with a field value. We must make a distinction between a
Null and non-Null field value because the code:

s = rs!Lastname

will produce the error “Invalid use of Null” if we try to assign a Null value to a string
variable.

It is very important to note that the Immediate If function always evaluates both
TruePart and FalsePart, even though it returns only one of them. Hence, we must be
careful about undesirable side effects. For example, the following code will produce a
“Division by Zero” error because even though the IIf function returns 1/x only when x is
not equal to 0, the expression 1/x is evaluated in all cases, including when x = 0:

x = 0
y = IIf(x = 0, x ^ 2, 1 / x)

12.4.3 The Switch Function

The syntax of the Switch function is:

Switch(expr1, value1, expr2, value2, ... , exprn, valuen)

where exprn and valuen are expressions. Note that there need only be one expression-
value pair, but the function is more meaningful if there are at least two such pairs.

The Switch function evaluates each expression exprn. When it encounters the first True
expression, it returns the corresponding value. As with the IIf function, Switch always
evaluates all of the expressions. If none of the expressions is True, the function returns
Null. This can be tested with the IsNull function.

The procedure in Example 12-1 displays the type of file based on its extension: Access
database, text, or dbase database.

Example 12-1. The Switch function

Sub ShowFileType(FileExt As String)

Dim FileType As Variant

FileType = Switch(FileExt = "mdb", "Database", _
 FileExt = "txt", "Text", _
 FileExt = "dbf", "dBase")

' Display result
If Not IsNull(FileType) Then
 MsgBox FileType
Else
 MsgBox "Unrecognized type"
End If

End Sub

There is one subtlety in this code. Since the Switch function can return a Null value, we
cannot assign the return value to a String variable, as we might first try to do:

Dim FileType As String

FileType = Switch(FileExt = "mdb", "Database", _
 FileExt = "txt", "Text", _
 FileExt = "dbf", "dBase")

This will produce an error if FileExt is not "mdb", “txt", or “dbf”, in which case we
will get the very annoying error message, “Invalid use of Null.” The solution is to declare
FileType as a Variant, which can hold any data type, including no data type, which is
indicated by the Null keyword. (This issue can be avoided by using a Select Case
statement, discussed in Chapter 13.)

12.4.4 The Beep Statement

This simple statement, whose syntax is:

Beep

sounds a single tone through the computer’s speakers. It can be useful (when used with
restraint) if we want to get the user’s attention. However, there is a caveat: the results are
dependent upon the computer’s hardware, and so the statement may not produce a sound
at all! Thus, if you use this statement in your code, be sure to warn the user.

12.5 Handling Errors in Code

I discussed the various types of errors in Chapter 9, but I have scrupulously avoided the
question of how to handle runtime errors in code. Indeed, VBA provides several tools for
handling errors (On Error, Resume, the Err object, and so on), and we could include an
entire chapter on the subject in this book.

Proper error handling is extremely important. Indeed, if you are, or intend to become, a
professional application developer, then you should familiarize yourself with error-
handling procedures.

On the other hand, if your intention is to produce Access VBA code for your own
personal use, then the reasons for adding error-handling routines are somewhat mitigated.
When an error occurs within one of your own programs, VBA will stop execution,
display an error message, and highlight the offending code. This should enable you to
debug the application and fix the problem. (It would be unreasonable to expect another
user of your program to debug your code, however.)

Let us undertake a brief discussion of the highlights of error handling. (For more details,
may I suggest my book Concepts of Object-Oriented Programming in Visual Basic,
published by Springer-Verlag. It has a detailed chapter on error handling.)

12.5.1 The On Error Goto Label Statement

The On Error statement tells VBA what to do when a runtime error occurs. The most
common form of the statement is:

On Error GoTo label

where label is a label. For instance, consider the following code:

Sub RecordCt()

On Error GoTo ERR_EXAMPLE

Dim rs As Recordset
Set rs = CurrentDb.OpenRecordset("Name")

MsgBox rs.RecordCount

Exit Sub

ERR_EXAMPLE:
 MsgBox "Error " & Err.Number & " - " & Err.Description, vbCritical
 Exit Sub

End Sub

The purpose of this procedure is simply to display the number of rows in a table.
However, the database does not happen to have a table called Name. Hence, when VBA
encounters the line:

Set rs = CurrentDb.OpenRecordset("Name")

a runtime error will occur.

To deal with this possibility in a friendly manner, we add some error checking. The line:

On Error GoTo ERR_EXAMPLE

tells VBA to move execution to the label ERR_EXAMPLE if an error does occur. The code
following this label is called the error-handling code. If an error should occur, the next
line executed is the MsgBox line, in which case the dialog box in Figure 12-3 will be
displayed. This message gives a description of the error, obtained from the error object,
which we discuss in the next section.

Figure 12-3. An error dialog box

It is important to note the:

Exit Sub

line just before the ERR_EXAMPLE label. Without this statement, the error-handling code
will always be executed, even when there is no error! Omitting this line is a common
mistake. Note also that labels always end with a colon.

The process of adding error-handling code to a procedure is sometimes referred to as
error-trapping.

12.5.2 Handling Errors in the Calling Procedure

Consider the following version of the RecordCt function:

Function RecordCt(TableName As String) As Integer

On Error GoTo ERR_EXAMPLE

Dim rs As Recordset

Set rs = CurrentDb.OpenRecordset(TableName)
RecordCt = rs.RecordCount
rs.Close

Exit Function

ERR_EXAMPLE:
 RecordCt = -1 ' Indicates error
 rs.Close

Exit Function

End Function

In this case, if there is an error, the function will simply return the value -1, rather than
displaying a message box. This behavior is better than that of the previous version,
because in this case the calling procedure can decide what to do.

Here is a procedure that calls RecordCt:

Sub Main()

On Error GoTo Err_Main

Dim rc As Long
rc = RecordCt("Object")

If rc = -1 Then
 ' code here to handle error
Else
 ' code here for no error
End If
Exit Sub

Err_Main:
 MsgBox "Error " & Err.Number & " - " & Err.Description, vbCritical

 Exit Sub

End Sub

Note that a return value of -1 is not perceived by VBA as an error at all, so we need to
handle the error using code such as:

If rc = -1 Then

12.5.3 The Calls Stack

What happens if we do not trap errors in a procedure?

If the procedure was not called by another procedure, but rather was called directly by the
user, or if the procedure is an event procedure—that is, code that executes in response to
a user manipulating a control on a form (for instance, clicking on a command button)—
then VBA just displays an error message and halts the program.

However, if the procedure in which the error occurred was called by another procedure,
then VBA passes the error to the calling procedure, just as though the calling procedure
had caused the error.

To illustrate this, consider the following procedures:

Function RecordCt2(TableName As String) As Integer
Dim rs As Recordset
Set rs = CurrentDb.OpenRecordset(TableName)
RecordCt2 = rs.RecordCount
rs.Close
End Function

' -----

Sub Main2()

On Error GoTo Err_Main

Dim rc As Long
rc = RecordCt2("Objects")

' More code here

Exit Sub

Err_Main:
 MsgBox "Error " & Err.Number & " - " & Err.Description, vbCritical
 Exit Sub

End Sub

The RecordCt2 function has no error-trapping code. If Main2 calls RecordCt2 with a bad
table name, the error in RecordCt2 will be passed to Main2, whose error-trapping code
will execute. Thus, we will get an error message from Main2. (This may be just fine.)

More generally, if ProcedureA calls ProcedureB, which calls ProcedureC, and so on,
then an error in any one procedure will be passed up the call stack (list of procedures in
reverse order of execution) until a procedure with error-handling code is encountered. If
none is encountered, then VBA will issue its own error message and terminate the
program.

Incidentally, you can view the call stack while in break mode by choosing Call Stack
from the View menu.

12.5.4 The Error Object

The error object, denoted by Err, belongs to the VBA object model. The most important
properties of this object are:

Number

The VBA error number

Source

The name of the current VBA project

Description

A description of the error

Thus, for instance, the line:

MsgBox "Error " & Err.Number & " - " & Err.Description, vbCritical

displays the error number and its description.

The Err object has a Clear method:

Err.Clear

that will clear all of the properties of the Err object, setting its Number property to 0
(which indicates the absence of an error).

12.5.5 The On Error GoTo 0 Statement

The statement:

On Error GoTo 0

turns off any previous On Error GoTo label statements. Any error occurring
subsequently will be handled by VBA in its own inimitable way.

12.5.6 The On Error Resume Next Statement

The syntax:

On Error Resume Next

tells VBA to continue executing the code immediately following the line that caused the
error. There are two important uses for this form of On Error. The first is to cause VBA
to ignore an error. For instance, the code:

Sub example()

On Error Resume Next
MsgBox rs.RecordCount

End Sub

will report the record count when rs is a valid recordset and do nothing otherwise.

Another important use for the On Error Resume Next syntax is for in-line error checking,
where we check for errors immediately following the line that may have caused an error.
For instance, another way to handle errors in the RecordCount property is as follows:

Sub example()

On Error Resume Next

MsgBox rs.RecordCount

If Err.Number <> 0 Then
 ' code to handle error here
End If
End Sub

12.5.7 The Resume Statement

It is also possible to include the Resume statement in the error-handling portion of the
code. This will cause VBA to resume execution at the line that follows the one that
caused the error. Thus, the previous code is equivalent to the following:

Sub example()

On Error GoTo ERR_EXAMPLE
MsgBox rs.RecordCount

' An error will cause execution to resume here after
' displaying an error message

Exit Sub
ERR_EXAMPLE:
 MsgBox Err.Description, vbCritical
 Resume Next

End Sub

There are three variations on the Resume statement:

• Resume
• Resume Next
• Resume ALabel

The first version will cause VBA to resume with the line that caused the error. This is
useful if your error-handling code actually repairs the error condition and you want the
line that caused the original error to be executed again.

To illustrate, if the procedure in Example 12-2 encounters an error, it branches to an error
handler. This handler checks for error number 3078, which is the “Can’t find table” error.
If this is the error, then the procedure displays a dialog box asking for a new table name.
If the user enters a new name, the Resume statement is executed, and so the line:

Set rs = CurrentDb.OpenRecordset(TableName)

is repeated. Note that it is vital to give the user a way out, however. This is done by
letting the user leave the dialog box blank. (Incidentally, I got the correct error number
3078 by simulating the error and reading the resulting error-message dialog box.)

Example 12-2. Error handling with the Resume statement

Function RecordCt3(TableName As String) As Integer

On Error GoTo ERR_EXAMPLE

Dim rs As Recordset

Set rs = CurrentDb.OpenRecordset(TableName)

RecordCt = rs.RecordCount

rs.Close
Exit Function

ERR_EXAMPLE:
 If Err.Number = 3078 Then
 ' Can't find table
 sTable = InputBox("Can't find table " & sTable & _
 ". Please enter table name again or leave blank to
end.")

 If sTable = "" Then
 rs.Close
 TableName = sTable
 Exit Function
 Else
 Resume
 End If
 Else
 ' Unknown error
 MsgBox "Error " & Err.Number & " - " & Err.Description,
vbCritical
 rs.Close
 Exit Function
 End If

End Function

The third variation:

Resume ALabel

causes VBA to resume execution at the line labeled ALabel .

Chapter 13. Control Statements
I conclude our discussion of the VBA language with the main VBA control statements,
which are statements that affect the flow of control (or flow of execution) in a program.

13.1 The If ...Then Statement

The If...Then statement is used for conditional control. The syntax is:

If Condition Then
 ' statements go here . . .
ElseIf AnotherCondition Then
 ' more statements go here . . .
Else
 ' more statements go here . . .
End If

Note that we may include more than one ElseIf part, and that both the ElseIf part(s)
and the Else part are optional. We can also squeeze all parts of this statement onto a
single line, which is generally only a good idea when the ElseIf and Else parts are not
required.

To illustrate, the following code checks to see if the FirstName field is null. If so, it
replaces the Null value with a question mark. If not, it capitalizes the first name.

rs.Edit

If IsNull(rs!FirstName) Then
 rs!FirstName = "?"
Else
 rs!FirstName = UCase(rs!FirstName)
End If

rs.Update

13.2 The For Loop

The For...Next statement provides a method for repeatedly looping through a block of
code (that is, one or more lines of code). This loop is naturally referred to as a For loop.
The basic syntax is:

For counter = start To end

 ' block of code goes here . . .

Next counter

The first time that the block of code is executed, the variable counter (called the loop
variable for the For loop) is given the value start. Each subsequent time that the block

of code is executed, the loop variable counter is incremented by 1. When counter
exceeds the value end, the block of code is no longer executed. Thus, the code block is
executed a total of end - start + 1 times, each time with a different value of counter.

Note that we can omit the word counter in the last line of a For loop (replacing Next
counter with just Next). This may cause the For loop to execute a bit more quickly, but
it also detracts a bit from readability.

To illustrate, the following code prints the names of the fields in the Objects table:

Sub PrintFields()

Dim i As Integer
Dim rs As Recordset
Set rs = CurrentDb.OpenRecordset("Objects")

For i = 0 To rs.Fields.Count - 1
 Debug.Print rs.Fields(i).Name
Next

rs.Close

End Sub

Note that the limits of the For statement are 0 to rs.Fields.Count - 1 because the fields
are indexed starting at 0 (rather than 1). We will discuss this issue in more detail when we
talk about DAO programming.

For loops are often used to initialize an array. For instance, the code:

For i = 0 To 10
 iArray(i) = 0
Next i

assigns a value of 0 to each of the 11 variables iArray (0) through iArray (10).

Note that the loop variable counter will usually appear within the block of code, as it
does in this array-initialization example, but this is not a requirement. However, if it does
appear, we need to be very careful not to change its value, since that will certainly mess
up the For loop. (VBA automatically increments the loop variable each time through the
loop, so we should leave it alone.)

13.3 The Exit For Statement

VBA provides the Exit For statement to exit a For loop prematurely. For instance, the
code in Example 13-1 finds the first field whose type is Integer.

Example 13-1. Finding the First Integer field

Sub FindFirstIntegerField()

Dim i As Integer
Dim rs As Recordset
Set rs = CurrentDb.OpenRecordset("Objects")

For i = 0 To rs.Fields.Count - 1
 If rs.Fields(i).Type = dbInteger Then Exit For
Next

If i < rs.Fields.Count Then
 ' First Integer field found
Else
 ' No such field exists
End If

rs.Close

End Sub

We can also control the step size and direction for the counter in a For loop using the
Step keyword. For instance, in the following code, the counter i is incremented by 2
each time the block of code is executed:

For i = 1 to 10 Step 2
 ' code block goes here
Next i

The following loop counts down from 10 to 1 in increments of -1. This can be useful
when we want to examine a collection (such as the cells in a row or column) from the
bottom up.

For i = 10 to 1 Step -1
 ' code block goes here
Next i

13.4 The For Each Loop

The For Each loop is a variation on the For loop that was designed to iterate through a
collection of objects (as well as through elements in an array) and is generally much more
efficient than using the traditional For loop. The general syntax is:

For Each ObjectVar In CollectionName

 ' block of code goes here . . .

Next ObjectVar

where ObjectVar is a variable of the same object type as the objects within the
collection. The code block will execute once for each object in the collection.

The following version of PrintFields uses a For Each loop. It is more elegant than the
previous version (and more efficient as well):

Sub PrintFields2()

Dim fld As Field
Dim rs As Recordset
Set rs = CurrentDb.OpenRecordset("Objects")

For Each fld In rs.Fields
 Debug.Print fld.Name
Next

rs.Close

End Sub

Thus, when iterating through a collection of objects, we have two choices:

For Each object in Collection
 ' code block here
Next object

or:

For i = 1 to Collection.Count
 ' code block here
Next i

It is important to keep in mind that the For Each loop can be much faster than the For
loop when dealing with collections of objects.

13.5 The Do Loop

The Do loop has several variations. To describe these variations, we use the notation:

{While | Until}

to represent either the word While or the word Until, but not both. With this in mind,
here are the possible syntaxes for the Do loop:

Do {While | Until} condition

 ' code block here

Loop

or:

Do

 ' code block here

Loop {While | Until} condition

Actually, there is a fifth possibility, because we can dispense with condition completely
and write:

Do

 ' code block here

Loop

The Do loop is used quite often in DAO programming to iterate through a recordset. Here
is a typical example that prints all values of a particular field in a recordset:

Sub DoExample()

Dim rs As Recordset
Set rs = CurrentDb.OpenRecordset("Objects")

rs.MoveFirst

Do While Not rs.EOF
 Debug.Print rs!Name
 rs.MoveNext
Loop

rs.Close

End Sub

We will discuss the EOF property, as well as the MoveFirst and MoveNext methods,
when we discuss Recordset objects later in the book.

Just as the For loop has an Exit For statement for terminating the loop, a Do loop has an
Exit Do statement for exiting the Do loop.

13.6 The Select Case Statement

As we have seen, the If...Then... construct is used to perform different tasks based on
different possibilities. An alternative construct that is often more readable is the Select
Case statement, whose syntax is:

Select Case testexpression
 Case value1
 ' statements to execute if testexpression = value1
 Case value2
 ' statements to execute if testexpression = value2

 . . .

 Case Else
 ' statements to execute otherwise
End Select

Note that the Case Else part is optional. To illustrate, the following code is the Select
Case version of Example 12-1 in Chapter 12 (see the discussion of the Section 12.4.3)
that displays the type of a file based on its extension. I think you will agree that this is a
bit more readable than the previous version:

Sub ShowFileType(FileExt As String)

Dim FileType As Variant

Select Case FileExt
 Case "mdb"
 FileType = "Database"
 Case "txt"
 FileType = "text"
 Case "dbf"
 FileType = "dBase"
 Case Else
 FileType = "unknown"
End Select

' Display result
MsgBox FileType

End Sub

Note that VBA allows us to place more than one condition in the same Case statement
(separated by commas). This is useful when more than one case produces the same result.

13.7 A Final Note on VBA

There is a lot more to the VBA language than we have covered here. In fact, the
Microsoft VBA reference manual is about 300 pages long. However, we have covered
the main points needed to begin Access VBA/DAO programming. (For a reference on the
VBA language, you might want to check out the book VB & VBA in a Nutshell, by Paul
Lomax, also published by O’Reilly.)

Actually, many Access VBA programming tasks require only a small portion of VBA’s
features, and you will probably find yourself wrestling much more with DAO’s object
model than with the VBA language itself.

I conclude our discussion of the VBA language per se with a brief outline of topics for
further study, which you can do using the VBA help files .

13.7.1 File-Related Functions

VBA has a large number of functions related to file and directory housekeeping. Table
13-1 contains a selection of them.

Table 13-1. Some VBA file and directory functions
Function Description

Dir Find a file with a certain name.
FileLen Get the length of a file.
FileTimeDate Get the date stamp of a file.
FileCopy Copy a file.
Kill Delete a file.
Name Rename a file or directory.
RmDir Delete a directory.
MkDir Make a new directory.

In addition to the file-related functions in Table 13-1, there may be times when it is
useful to create new text files to store data. VBA provides a number of functions for this
purpose, headed by the Open statement, whose (simplified) syntax is:

Open pathname For mode As [#]filenumber

Once a file has been opened, we can read or write to it.

13.7.2 Date- and Time-Related Functions

VBA has a large number of functions related to manipulating dates and times. Table 13-2
contains a selection.

Table 13-2. Some date- and time-related functions
Function Description

Date, Now, Time Get the current date or time.
DateAdd, DateDiff, DatePart Perform date calculations.
DateSerial, DateValue Return a date.
TimeSerial, TimeValue Return a time.
Date, Time Set the date or time.
Timer Time a process.

13.7.3 The Format Function

The Format function is used to format strings, numbers, and dates. Table 13-3 gives a
few examples.

Table 13-3. Format function examples
Expression Return value[1]

Format(Date, “Long Date”) Thursday, April 30, 1998
Format(Time, “Long Time”) 5:03:47 PM
Format(Date, “mm/dd/yy hh:mm:ss AMPM”) 04/30/98 12:00:00 AM
Format(1234.5, “$##,##0.00”) $1,234.50
Format(“HELLO”, “<“) “hello”

[1] The exact format of the return value is governed by certain system settings.

Part V: Data Access Objects

Chapter 14. Programming DAO: Overview
We have seen that Access SQL provides a way to create and manipulate database objects,
such as tables and queries, through its DDL and DML components. In addition, users can
enter SQL statements directly into the Access SQL View window.

On the other hand, Microsoft Access allows us to program the Jet database engine
directly, through its programming interface, which is known as Data Access Objects, or
DAO. This gives the user far more control over a database.

DAO is a complicated structure, and I won’t discuss all of its aspects. Our focus in this
book will be on gaining a general understanding of the following concepts and
components:

• The organization of DAO, which is at least partly object-oriented
• The DDL component of DAO
• The DML component of DAO

I will certainly not cover all aspects of the DDL and DML components. My main goal is
to prepare you so that you can get whatever additional information you need from
Microsoft Access’ extensive online help for the DAO model or from similar hardcopy
reference manuals.

14.1 Objects

Before discussing the various components of the DAO model, we must discuss the
concept of an object. In the parlance of object-orientation, an object is something that is
identified by its properties and its methods(or actions).

As we will see (and as the name implies) DAO is full of objects. For example, each saved
table in an Access database is an object, called a TableDefobject. (Actually, it is the
definition of the table, rather than its data, that is an object of type TableDef.) Some of the
properties of TableDef objects are Name, RecordCount, DateCreated, and LastUpdated.

An object’s methods can be thought of as procedures or functions that act on the object.
For instance, one of the methods of a TableDef object is CreateField, which, as the
name implies, is used to create a new field for the TableDef object. Another method is
OpenRecordset, which creates a Recordset object that can be used to manipulate the data
in the table. (A more object-oriented view of methods is that they are messages sent to
the object, saying, in effect, perform the following action.)

14.1.1 Object Variables

In order to access the properties or invoke the methods of an object, we need to first
define an object variable to reference that object.

VBA and DAO offer a wide variety of object data types . There is a slight difference in
syntax when declaring and setting an object variable, as opposed to a standard variable.
For instance, here is an example using the Database object type. Note that the full
pathname of the LIBRARY database on my PC is d:\dbase\library.mdb:

Dim dbLibrary as Database
Set dbLibrary = "d:\dbase\library.mdb"

In general, the syntax is:

Dim objectVariable as ObjectDataType
Set objectVariable = ObjectName

Note that the only difference between setting object variables and setting standard
variables is the keyword Set. However, this minor syntactic difference belies a much
more significant difference between standard variables and object variables.

In particular, a standard variable can be thought of as a name for a location in the
computer’s memory that holds the data. For instance, in the code:

Dim intVar As Integer
intVar = 123

the variable intVar is a 4-byte memory location that holds the integer value 123. Figure
14-1 illustrates the variable intVar. (Actually, the 4-byte memory location holds the
value 123 in binary format, but that is not relevant to our discussion.)

Figure 14-1. An example of the intVar variable

Of course, if we were to write:

Dim intVar As Integer
Dim intVar2 As Integer
intvar = 123
intVar2 = intVar
intVar2 = 567

we would not expect the last line of code to have any effect upon the value of the variable
intVar, which should still be 123.

On the other hand, an object variable is not the name of a memory location that holds the
object’s “value,” whatever that means. Rather, an object variable holds the address of the
area of memory that holds the object. Put another way, the object variable holds a
reference to, or points to, the object. It is therefore called a pointer variable. The idea is

pictured in Figure 14-2, where rsBooks and rsBooks2 are object variables, both pointing
to an object of type Recordset.

Figure 14-2. An example of a pointer variable

To illustrate this further, consider the code in Example 14-1.

Example 14-1. An object variable example

Sub exaObjectVar()

'Declare some object variables
Dim dbLib As DATABASE
Dim rsBooks As Recordset
Dim rsBooks2 As Recordset

'Set dbLib to the current database (i.e. LIBRARY)
Set dbLib = CurrentDb

'Open a recordset object for the BOOKS table
Set rsBooks = dbLib.OpenRecordset("BOOKS")

'Two object variables will refer to the same object
Set rsBooks2 = rsBooks

'Use a property of this object
MsgBox "BOOKS record count: " & rsBooks.RecordCount

'Destroy the object using rsBooks2 reference
rsBooks2.Close

'Now rsBooks has nothing to refer to, so we get error
MsgBox "BOOKS record count: " & rsBooks.RecordCount

End Sub

First, we declare two object variables of type Recordset (we will discuss this type in
detail later). The line:

Set rsBooks = dbLib.OpenRecordset("BOOKS")

sets rsBooks to point to (or refer to) a Recordset object created from the BOOKS table.
Note again that, unlike standard variables, setting an object variable requires the use of
the keyword Set. The line:

Set rsBooks2 = rsBooks

sets rsBooks2 to point to the same Recordset object as rsBooks, as shown in Figure 14-
2.

Next, the line:

MsgBox "BOOKS record count: " & rsBooks.RecordCount

displays the message box in Figure 14-3, showing that there are 14 books in the
recordset.

Figure 14-3. The message box from the exaObjectVar() example

To illustrate the fact that both variables point to the same object, the line:

rsBooks2.Close

uses the pointer rsBooks2 to destroy (or close) the Recordset object. Then, when the line:

MsgBox "BOOKS record count: " & rsBooks.RecordCount

is executed, the Recordset object that both variables referred to is gone, and so the
expression rsBooks.RecordCount causes an “Object invalid or no longer set” error, as
shown in Figure 14-4.

Figure 14-4. Error message from the exaObjectvar() example

The moral of this example is that it is important to remember that object variables refer to
objects and that more than one variable can refer to the same object. Despite this, it is
customary to use the misleading statement “the objVar object” when we really should be
saying “the object referred to by objVar.”

14.1.2 Object-Variable Naming Conventions

Tables Table 14-1 and Table 14-2 describe the naming convention for both standard and
object variables that we will (try to) use in this book. (Table 14-1 is a repeat of Table 10-
3.) We will explain the various object types as we proceed through this chapter.

Table 14-1. Standard-variable naming for VBA
Variable Prefix

Boolean bool, b, or f
Byte b, byt, or bt
Currency cur
Date dt or dte
Double d or dbl
Integer i, c, or int
Long l, c, or lng
Single s or sng
String str
User-defined type typ, u, or ut
Variant v or var

Table 14-2. Object-variable naming for VBA
Variable Prefix

Container con
Database db
Document doc
Dynaset dyn
Error err
Field fld
Form frm
Index idx
Object obj
Parameter prm
Property prp
QueryDef qdf
Recordset rs
Relation rel
Report rpt
Snapshot snp
Table tbl
TableDef tdf or tbl
User usr
Workspace ws

14.1.3 Referencing the Properties and Methods of an Object

The general syntax for referring to an object’s properties and methods is very simple.
Suppose that objVar is a variable that refers to an object. If AProperty is a property of
this object, then we can access this property using the syntax:

objVar.AProperty

If AMethod is a method for this object, then we can invoke that method with the syntax:

objVar.AMethod(any required parameters)

To illustrate, consider the code in Example 14-2.

Example 14-2. A property and method example

Sub exaPropertyMethod()

Dim dbLib As DATABASE
Dim qdfExpensive As QueryDef

' Get current database (LIBRARY)
Set dbLib = CurrentDb

' Show Name property
MsgBox dbLib.Name

' Invoke the CreateQueryDef method to create a query
Set qdfExpensive = dbLib.CreateQueryDef("Expensive",_
"SELECT * FROM BOOKS WHERE Price > 20")

End Sub

The line:

Set dbLib = CurrentDb

sets the object variable of type Database to point to the current database, that is, the
LIBRARY database. The line:

MsgBox dbLib.Name

displays the value of the Name property of dbLib. The line:

Set qdfExpensive = dbLib.CreateQueryDef("Expensive",_
"SELECT * FROM BOOKS WHERE Price > 20")

invokes the CreateQueryDefmethod to create a new query named Expensive and defined
by the SQL statement:

SELECT * FROM BOOKS WHERE Price > 20

Note that the code:

dbLib.CreateQueryDef("Expensive","SELECT * FROM BOOKS WHERE Price >
20")

invokes the method, which returns the QueryDef object, which is then pointed to by the
object variable qdfExpensive. If you run this program, you will notice a new entry in the
Query tab of the Database window. (If the query Expensive is already in the database,

delete it before running this program. Also, you may need to switch away from and then
return to the Query tab to refresh the list.)

14.2 The DAO Object Model

As the name Data Access Objects suggests, the DAO is, at least in part, an object-
oriented environment. In particular, the DAO is implemented as a hierarchy of collections
of objects. Figure 14-5 shows the DAO Object Model, describing the collections and
their objects.

Figure 14-5. The DAO object model

Each of the shaded boxes represents a collection of objects. (Thus DBEngine is the only
noncollection.) The name of the objects contained within a given collection is just the
singular of the collection name. For instance, the TableDefs collection holds TableDef
objects, and the Documents collection holds Document objects. DBEngine is the only
standalone object—not contained in any collection.

There is a potential point of confusion about the DAO object hierarchy in Figure 14-5
that we should address. Consider, for example, the relationship between the Databases
and Workspaces collections. It would be incorrect to say, as one might infer from the
diagram, that the Databases collection is contained in the Workspaces collection. Indeed,
the line from Workspaces to Databases means that each Workspace object has (or as
Microsoft would say, “contains”) a Databases collection.

Perhaps the best way to view the situation is to say that each object in the DAO hierarchy
has three things associated with it: collections , methods, and properties. For instance, a
Workspace object has the following items associated with it:

Collections

Databases
Groups
Users
Properties (not shown in Figure 14-5)

Methods

BeginTrans
Close
CommitTrans
CreateDatabase
CreateGroup
CreateUser
OpenDatabase
Rollback

Properties

IsolateODBCTrans
Name
UserName

Let us pause for a brief aside. In an object-oriented environment such as C++, or even
Visual Basic, a collection is also considered an object. Moreover, the value of one
object’s property can be another object (these are so-called object properties). Hence, in
such an object-oriented environment, we would probably think of the collections
associated with an object as just additional properties of that object. However, Microsoft
chose not to express this explicitly in the DAO.

Figure 14-6 shows a more detailed example of the object-collection relationship. The
Containers collection in this case contains three Container objects, each of which has
(the same) properties and methods. Each object also “contains” a Documents collection,
which contains some Document objects.

Thus, according to this model, there may be more than one Documents collection. Indeed,
there is one Documents collection for every Container object. Similarly, there is one
Databases collection for each Workspace object and one TableDefs collection for each
Database object.

Figure 14-6. A detailed example of the object-collection relationship

14.3 The Microsoft Access Object Model

You may have noticed that there are no collections in the DAO object model
corresponding to Access forms or reports. The fact is that DAO is not the whole object
story. Microsoft Access defines its own collections of objects, as shown in Figure 14-7.

Figure 14-7. The Microsoft Access object model

Access defines the Forms collection to hold all currently open forms. (Note the words
“currently open.”) Similarly, the Reports collection holds all currently open reports. The
Application, DoCmd, and Screen objects are not contained in a collection. The Modules
collection holds all open code modules.

The References collection holds all Reference objects. A Reference object is a reference
to another application’s type library, which is a file containing information on the objects
that the application exposes through Automation. It is through Automation objects that an
application can share some of its features with other applications. However, we will not
go further into this subject in this book. (Allow me to recommend my book Concepts of
Object-Oriented Programming with Visual Basic, published by Springer-Verlag, for
more information on OLE Automation geared toward the Visual Basic programmer.)

As you can see in Figure 14-7, Microsoft has added several new objects to the object
model for Access 9 for Office 2000. (In fact, there are a few more objects not shown in
the figure.) Several of these objects relate to the Internet. The CodeData and
CurrentData objects have child collections containing all tables and all queries (whether
open or not). The CodeProject and CurrentProject objects have child collections
containing all forms, reports, modules, macros, and DataAccessPages (whether open or
not).

We will not discuss the Access object model in general in this book, since it belongs
more to issues related to the Access user interface (forms and reports) than to database
manipulation.

On the other hand, we will discuss some aspects of the Access object model. For
instance, the line:

Set db = CurrentDb

sets the variable db to point to the currently open database. The function CurrentDb,
which we will discuss in more detail later, is not a DAO function—you will not find it in
the DAO reference manual. It is a part of the Access object model: it is a method of the
Application object, to be precise. Thus, the Access object model and DAO both provide
supporting objects and instructions for database management.

14.4 Referencing Objects

The first step in understanding the objects in the DAO and Microsoft Access object
hierarchies is to understand how to refer to an object in the hierarchy. In particular, we
can refer to an object by the name of ObjectName that belongs to a collection named
CollectionName, by any of the following syntaxes:

• CollectionName!ObjectName, or CollectionName![ObjectName] when
ObjectName has illegal characters, such as spaces.

• CollectionName("ObjectName").

• CollectionName(StringVar), where StringVar holds the string ObjectName.
• CollectionName(Index), where Index is the index number of the object in the

collection. Indexes start with 0 and go up to one less than the number of objects in
the collection. (As we will see, the number of elements in a collection is denoted
by CollectionName.Count.)

For instance, the TableDef object named BOOKS in the TableDefs collection is denoted
by:

TableDefs!BOOKS

or:

TableDefs("BOOKS")

or:

Dim strBooks as String
strBooks = "BOOKS"
TableDefs(strBooks)

or, if BOOKS happens to be the first TableDef object in the TableDefs collection:

TableDefs(0)

The exclamation point (!) used in the first syntax is called the bang operator .

14.4.1 Fully Qualified Object Names

There is a problem with these names. For instance, to which object does Fields(0) refer?
There are several Fields collections in the DAO hierarchy, as can be seen from Figure 14-
5. Let us refer to the names described in the previous syntax as semiqualified names. To
avoid the problem that a semiqualified name may not be unique, we must use the fully
qualified object name, which is formed by tracing the entire hierarchy from the top
(DBEngine) to the desired object. For instance, the fully qualified name for BOOKS is:

DBEngine.Workspaces(0).Databases![d:\dbase\library.mdb].TableDefs!BOOKS

Let us examine this name. It is composed of four separate semiqualified object names,
separated by periods. These periods are referred to as dot operators :

DBEngine.
Workspaces(0).
Databases![d:\dbase\library.mdb].
TableDefs!BOOKS

Perhaps the easiest way to make sense of this name is to start from the bottom. The
semiqualified name of the object we are interested in is:

TableDefs!BOOKS

This object is contained in the TableDefs collection for the Database object named:

Databases![d:\dbase\library.mdb]

This object is, in turn, contained in the Databases collection of the default Workspace
object (more on this later), which is:

Workspaces(0)

which, in turn, is contained in the DBEngine object. Separating each of these object
names by the dot operator gives the fully qualified object name.

In general, the syntax for a semiqualified object name is:

Collection!Object

and for a fully qualified object name, it is:

DBEngine.Collection1!Object1. · · · .CollectionN!ObjectN

There seems to be much confusion over when to use the bang operator (!) and when to
use the dot operator (.). Perhaps the following will help:

• The bang operator is used to separate an object’s name from the name of the
collection of which it is a member. In other words, bang signifies a member of a
collection. It therefore appears in semiqualified object names.

• The dot operator is used to separate each semiqualified object name in a fully
qualified object name. In other words, it signifies the next step in the hierarchy.

• The dot operator is also used to denote a property or method of an object.

This naming convention is really not as confusing as it may look at first, if you remember
the previous three maxims. However, if you want confusing, stay tuned for default
collections.

14.4.2 Using Object Variables to Your Advantage

As you can see, a fully qualified object name can be quite lengthy. This problem is
compounded by the fact that it may be necessary to refer to the same object many times
in a program. There are two common ways to deal with this issue.

One way is to use object variables. Consider the code in Example 14-3 to display the
RecordCount property of the BOOKS table.

Example 14-3. An object variable example

Sub exaObjVar()

Dim ws As Workspace
Dim dbLib As DATABASE
Dim tdfBooks As TableDef

Set ws = DBEngine.Workspaces(0)
Set dbLib = ws.Databases![d:\dbase\library.mdb]
Set tdfBooks = dbLib.TableDefs!BOOKS

MsgBox tdfBooks.RecordCount

End Sub

By defining three object variables, ws, dbLib, and tdfBooks, we were able to avoid
writing the fully qualified name of BOOKS (on a single line, that is). Also, the line:

MsgBox tdfBooks.RecordCount

is much easier to read. (It reads: “Message me the record count of TableDef tdfBooks.”)

The use of object variables in this way has several advantages and is highly
recommended. First, it tends to make the lines of code shorter and more readable.
Second, we can refer to the object variable tdfBooks many times without having to write
the fully qualified object name each time. As a result, the program will run somewhat
faster, since VBA does not have to resolve the object name by climbing down the object
hierarchy more than once.

14.4.3 Default Collections

There is another method that can be used for shortening fully qualified object names. In
particular, each object has a default collection , which can be used as follows. Consider a
portion of a fully qualified name:

Collection1!Object1.Collection2!Object2

If Collection2 is the default collection of Object1, then this name may be shortened to:

Collection1!Object1!Object2

where we have omitted the default collection name Collection2, as well as the preceding
dot.

For instance, the default collection of DBEngine is Workspaces. Hence:

DBEngine.Workspaces!MyWorkspace

can be shortened to:

DBEngine!MyWorkspace

and the phrase:

DBEngine.Workspaces(0)

can be shortened to:

DBEngine(0)

Also, since the default collection for a Workspace object is Databases, the phrase:

DBEngine.Workspaces(0).Databases(0)

can be shortened to:

DBEngine(0)(0)

Table 14-3 shows the default collections in the DAO and Access object model.

Table 14-3. DAO and Access object default collections
Object Default collection

DBEngine Workspaces
Workspace Databases
Database TableDefs
TableDef Fields
Recordset Fields
QueryDef Parameters
Index Fields
Relation Fields
Container Documents
User Groups
Group Users
Forms Controls
Reports Controls

The use of default collections can save space. However, it does very little for readability
(to say the least) and is probably best left to programmers with so much experience that
they hardly read the names anyway! To emphasize the point, each of the lines in Example
14-4 displays the RecordCount property of the BOOKS table. Note that the full name of
the database library file on my computer is d:\dbase\library.mdb.

Example 14-4. A default collections example

Sub exaDefaultCollections()

MsgBox DBEngine.Workspaces(0).Databases![d:\dbase\library.mdb]. _
TableDefs!BOOKS.RecordCount

MsgBox _
DBEngine(0).Databases![d:\dbase\library.mdb].TableDefs!BOOKS.RecordCoun
t

MsgBox DBEngine(0)![d:\dbase\library.mdb].TableDefs!BOOKS.RecordCount

MsgBox DBEngine(0)![d:\dbase\library.mdb]!BOOKS.RecordCount

MsgBox DBEngine(0)(0)!BOOKS.RecordCount

End Sub

14.5 Collections Are Objects Too

In a true object-centric environment, everything is an object. While Access, VBA, and
DAO may not go this far, it is true that collections are objects, and so they have their own
properties and methods.

In the Access environment, collections can be divided into three types:

Microsoft Access collections

Which are part of the Access object hierarchy

DAO collections

Which are part of the DAO hierarchy

User-defined collections

Which are VBA objects of type Collection

Note that only user-defined collections are of type Collection, which is a VBA data type,
not a DAO data type. The properties and methods of collections are not very complicated,
so let us list them here.

14.5.1 Properties and Methods of Access Collections

The Access collections Forms, Reports, and Controls have no methods and only one
property, Count, which reports the number of objects in the collection. Thus, the line:

Forms.Count

reports the number of opened forms in the current database. (When we discuss Container
objects, we’ll see that there is a way to get the number of saved forms as well.)

14.5.2 Properties and Methods of DAO Collections

DAO collections fall into two categories with respect to their properties and methods. All
DAO collections have a single property: Count. All DAO collections also have the
Refresh method, which we will discuss a bit later. In addition, some of the collections
have the Append and corresponding Delete methods, while others do not.

Collections that have Append and Delete methods:

Workspaces
TableDefs
QueryDefs
Groups
Users
Relations
Fields
Indexes
Properties (explained later)

Collections that do not have Append and Delete methods:

Databases
Errors
Recordsets
Containers
Documents
Parameters

Evidently, some collections do not have Append or Delete methods because DAO does
not want the user to append or delete objects from these collections. This is reasonable
because DAO takes care of collection housekeeping automatically for these collections.
For example, DAO automatically appends new databases to the Databases collection
whenever they are created using the CreateDatabase method. However, it does not do
so for new TableDef or QueryDef objects, for instance.

Note that Microsoft Access will do the housekeeping chores for you when objects are
created and saved using the Access interface.

14.5.3 Properties and Methods of User-Defined Collections

User-defined Collection objects have one property: Count. They have three methods: Add
, Remove, and Item. Add and Remove perform as advertised by their names, and we will
see an example shortly. The Item method is used to identify the items in the collection,
since they may or may not have names.

A single user-defined collection can contain objects of various types, including other
collections. Here is an example to illustrate the Add method.

In Example 14-5, we create two collections: colParent and colChild. We then place
colChild inside colParent, along with the BOOKS TableDef object. Thus, the colParent
collection contains two objects of very different types—one Collection object and one
TableDef object. (While this example is not of much practical value, it does illustrate the
point.)

Example 14-5. A collections example

Sub exaCollections()

' Declare two variables of type collection
Dim colParent As New Collection
Dim colChild As New Collection

Dim tdfBooks As TableDef
Dim objVar As Object

Set tdfBooks = DBEngine(0)(0).TableDefs!Books

' Use Add method of collection object
' to add objects to colParent collection
colParent.Add colChild
colParent.Add tdfBooks

' Display size of collection
MsgBox "Size of Parent collection " & colParent.Count

' Iterate through collection. Note use of
' TypeOf statement
For Each objVar In colParent
 If TypeOf objVar Is Collection Then
 MsgBox "Collection"
 ElseIf TypeOf objVar Is TableDef Then
 MsgBox objVar.Name
 End If
Next

End Sub

In Example 14-5, we used the Add method of the Collection object to add items to the
collection and the Count property of the Collection object, which returns the size of the
collection. Note also the use of the TypeOf statement to determine the type of each object
in the collection.

Now let us consider the Item method, which returns a specific object from a collection.
The general syntax is:

Collection.Item(index)

where index is an index into the collection. Note that DAO collections begin with index
0 and go to index Collection.Count - 1.

To illustrate the Item method, in place of the code:

For Each tbl In db.TableDefs
 strTbls = strTbls & vbCrLf & tbl.Name
Next tbl

we could have written:

For i = 0 To db.TableDefs.Count - 1

 strTbls = strTbls & vbCrLf & _
db.TableDefs.Item(i).Name

Next i

We should remark that an object’s ordinal position in a collection is never guaranteed and
can sometimes change without warning. Thus, for example, it is unwise to rely on the fact
that the object that is Item(0) at some time will always be Item(0).

Incidentally, one of the drawbacks of collections that contain different types of objects, as
in the previous example, is that we can seldom do the same thing to all of the objects in
the collection. For this reason, creating collections containing different types of objects is
generally not very useful.

14.5.4 Say It Again

It is worth re-emphasizing that the collections in the DAO hierarchy are not contained in
their parent collections (as is the case for the user-defined collections in the previous
example). For example, the TableDefs collection contains only TableDef objects (table
definitions). It does not contain the Fields collection. Rather, each TableDef object
contains a Fields collection. We can confirm this with the code in Example 14-6, which
displays the size of the TableDefs collection for the LIBRARY database as 14 and then
displays the names of each of its 14 objects, showing that there is nothing but TableDef
objects in the TableDefs collection.

Example 14-6. A TableDef example

Sub exaCheckTableDefs()

Dim db As DATABASE
Dim tbl As TableDef
Dim strTbls As String

Set db = CurrentDb

strTbls = ""
MsgBox db.TableDefs.Count

For Each tbl In db.TableDefs
 strTbls = strTbls & vbCrLf & tbl.Name & " - " & TypeName(tbl)
Next

MsgBox strTbls

End Sub

Running the code in Example 14-6 produces two message boxes; the second is shown in
Figure 14-8, which also shows that most of the TableDefs in the database are system-
table definitions, created by Microsoft Access for its own use. (Just in case some
additional tables get added to the LIBRARY database after this book goes to print, you
may find a different list of tables when you run this example.) Figure 14-8 also illustrates
the use of the function TypeName.

Figure 14-8. A list of TableDefs generated by exaCheckTableDefs()

14.5.5 Refreshing Certain Collections

There are times when the Microsoft Jet engine does not have the latest information on the
contents of a collection. For example, this can happen in a multiuser environment, when
one user makes a change to a collection. It can also happen when a host environment,
such as Microsoft Access, makes a change to the environment. To see this, try the
following simple experiment.

Enter the following code:

Sub temp()

Dim db As DATABASE
Set db = DBEngine(0)(0)

' db.TableDefs.Refresh
MsgBox "Table count: " & db.TableDefs.Count

End Sub

Run the procedure. You should get a message that there are 13 tables in the TableDefs
collection. Now use Microsoft Access to create a new table, and save the table. Then

rerun the previous code. It will still report that there are 13 tables! Now remove the
comment mark on the line:

' db.TableDefs.Refresh

and rerun the code. You should now get an accurate table count.

The point here is that the Jet engine does not keep track of the machinations of its host
application—Microsoft Access. Hence, to be certain that a collection is up to date, you
may need to use the Refresh method.

14.6 The Properties Collection

One item that has been left out of the diagram of the DAO object model shown earlier in
Figure 14-5 (and is done so in most DAO diagrams) is the Properties collection. This is
because every DAO object has a Properties collection, so it would clutter up the diagram
considerably without adding much information. Figure 14-9 shows a Properties
collection.

Figure 14-9. An Access properties collection diagram

The purpose of the Properties collections is simple. Properties are objects too, and so
they are contained in collections, just like all other objects of the DAO (except
DBEngine). Thus, the Properties collection of an object contains the Property objects
(better known simply as properties) for the object.

The fact that the properties of an object are themselves objects and thus reside in a
collection, implies that we may access these properties in several different ways. For
example, the RecordCount property of the BOOKS TableDef object can be referred to in
any of the following ways (among others):

TableDefs!BOOKS.Properties!RecordCount
TableDefs("BOOKS").Properties("RecordCount")

or just:

TableDefs!BOOKS.RecordCount

Of course, the latter form is the simplest and most commonly used. Note that the
Properties collection is never the default collection for any object. Hence, for example,
the syntax:

TableDefs!BOOKS!RecordCount

(which differs from the previous only by a bang) will cause VBA to look for the
RecordCount object in the default Fields collection for the BOOKS TableDef object. Of
course, it will not find such an object and so the error message “Item not found in this
collection” will result.

14.6.1 The Virtues of Properties Collections

There are several virtues to the existence of Properties collections. One is that it is
possible to iterate through all of the properties of an object, using the For Eachsyntax
discussed earlier, for instance, without even knowing the names of the properties.

For example, the following simple code:

Dim db As DATABASE
Dim prp As Property
Set db = CurrentDb

For Each prp In db.TableDefs!BOOKS.Properties
 Debug.Print prp.Name
Next prp

produces the following list of all properties of the BOOKS object:

Name
Updatable
DateCreated
LastUpdated
Connect
Attributes
SourceTableName
RecordCount
ValidationRule
ValidationText
ConflictTable
OrderByOn
OrderBy

Another virtue of Properties collections is that they allow for the creation (and storage)
of new properties. We discuss this next.

14.6.2 Types of Properties

In general, the properties of an object can be classified into three groups, depending upon
their origin:

• Built-in properties
• Application-defined properties
• User-defined properties

The Jet database engine defines built-in properties for its objects. For instance, a
TableDef object has a built-in Name property. In addition, Microsoft Access (and other
applications that may be using the Jet engine) can create application-defined properties.
For example, if you create a table in Microsoft Access and fill in the Description field in
the View...Properties dialog box, Access creates a Description property for the table and
appends it to the Properties collection for that TableDef object. Finally, as we will see
later, the user can create his own properties.

It is important to note that an application-defined property is created only if the user
assigns a value to that property. For example, if you do not specifically type a description
in the Description field, as discussed earlier, then Access will not create a Description
property. In other words, Access does not create a blank Description property. If you then
use this property in your code, an error will result. Thus, when you write programs that
refer to either application-defined or user-defined properties, it is important to check for
errors, in case the referenced property does not exist.

Of course, each Property object, being an object, has its own properties, but you will be
glad to hear that these properties do not have Property objects. (Where would this end?)

We should also mention that properties can be classified as read/write, read-only, or
write-only. A read/write property can be both read and written to (i.e., changed), whereas
a read-only property can be read but not changed, and a write-only property can be
changed but not read. When an object is first created, its read/write properties can be set.
However, in many cases, once the object is appended to a collection, some of these
properties may become read-only and can therefore no longer be changed.

The properties of a Property object are described as follows. A Property object has no
methods.

14.6.2.1 Property: Inherited

For the built-in Property objects, this value is always 0 (False). For user-defined
properties, this value is true if the property exists because it was inherited from another
object. For instance, any Recordset object that is created from a QueryDef object inherits
the QueryDef ‘s properties.

14.6.2.2 Property: Name

The usual Name property, which in this case is the name of the property represented by
this Property object.

14.6.2.3 Property: Type

This value gives the data type of the object. Note that the Type property is read/write
until the Property object is appended to a Properties collection, after which it becomes
read-only. The value of the Type property is an integer. VBA provides built-in constants

so that we do not need to remember integer values. Table 14-4 gives these values, along
with their numerical values, which are returned in code such as MsgBox Property.Type.

Table 14-4. Constants for the Type property in VBA
Data type Constant Numerical value

Boolean dbBoolean 1
Byte dbByte 2
Integer dbInteger 3
Long dbLong 4
Currency dbCurrency 5
Single dbSingle 6
Double dbDouble 7
Date/Time dbDate 8
Text dbText 10
Long Binary (OLE Object) dbLongBinary 11
Memo dbMemo 12
GUID dbGUID 15

14.6.2.4 Property: Value

Finally, we get to the main property of a Property object—its value, which can be any
value commensurate with the assigned Type property of the Property object.

Let us consider another example of how to use the Properties collection. The code in
Example 14-7 will display the entire contents of the Properties collection for the BOOKS
TableDef object in the LIBRARY database.

Example 14-7. A Properties collection example

Sub exaProperties()

Dim db As DATABASE
Dim tbl As TableDef
Dim prp As Property
Dim str As String

Set db = CurrentDb
Set tbl = db!BOOKS

str = ""
For Each prp In tbl.Properties

 str = str & prp.Name
 str = str & " = " & prp.Value
 str = str & " (" & prp.Type & ") "
 str = str & prp.Inherited & vbCrLf

Next prp

MsgBox "BOOKS has " & tbl.Properties.Count _

& " properties: " & vbCrLf & str

End Sub

Running this procedure gives the window shown in Figure 14-10, where each line has the
form Name = Value (Type) Inherited.

Figure 14-10. Window generated from executing exaProperties

14.6.3 User-Defined Properties

We mentioned that a user can add user-defined properties to an object. Let us consider an
example of adding a new property to the BOOKS TableDef object.

The code in Example 14-8 adds the user-defined property named UserProperty to the
BOOKS table. It uses the CreateProperty method of the TableDef object.

Example 14-8. A user-defined properties example

Sub exaUserDefinedProperty()

' Add user-defined property to BOOKS TableDef object

Dim db As DATABASE
Dim tbl As TableDef
Dim prp As Property

Dim str As String

Set db = CurrentDb
Set tbl = db!BOOKS

' Create new property using CreateProperty method
Set prp = tbl.CreateProperty("UserProperty", dbText,"Programming DAO is
fun.")

' Append it to Properties collection
tbl.Properties.Append prp

' List all properties
str = ""
For Each prp In tbl.Properties
 str = str & prp.Name
 str = str & " = " & prp.Value
 str = str & " (" & prp.Type & ") "
 str = str & prp.Inherited & vbCrLf
Next prp

MsgBox "BOOKS has " & tbl.Properties.Count & " properties: " & vbCrLf &
str

End Sub

This procedure produces the window shown in Figure 14-11. Note the last property on
the list.

Figure 14-11. Window generated from executing exaUserDefinedProperty

14.7 Closing DAO Objects

We should make a few remarks about closing DAO objects that have been opened
programmatically. The Database, Recordset, and Workspace objects each have a Close
method. This method will remove these objects from their respective collections. This is
appropriate for the three object types mentioned previously for the following reasons:

• The Databases collection is defined to be the collection of all open database
objects.

• The Recordset objects are temporary objects, to be used only for data-
manipulation purposes.

• Attempts to close the default Workspace object are ignored, but you can close
other Workspace objects.

Note that objects of types other than the three mentioned are intended to be persistent
members of their collections, stored on disk in the Access mdb file. However, they can be
removed from their respective collections by using the Delete method.

Here are some caveats to keep in mind with respect to closing objects:

• As we will see in Chapter 16, you should update (i.e., complete) all pending edits
before closing an open Recordset object.

• When a procedure that declares a Recordset or Database object is exited, the
recordset or database is closed, and any unsaved changes or pending edits are lost.

• If you close a Database object while any Recordset objects are still open, or if
you close a Workspace object while any of its Database objects are open, those
Recordset objects will be automatically closed, and any pending updates or edits
will be lost.

14.8 A Look at the DAO Objects

Now we can look briefly at each of the collections (and their objects) in the DAO Object
Model. I will discuss each object and mention a few of the more commonly used
properties and methods. A complete list of all collections, methods, and properties of
each object is given in Appendix A.

14.8.1 DBEngine Object

The DBEngine object, of which there is only one, represents the Jet database engine. This
is the only object in the DAO that is not contained in a collection. We have seen several
examples of its use, along with the fact that the default collection for the DBEngine
object is Workspaces, and so:

DBEngine.Workspaces(0)

is equivalent to:

DBEngine(0)

We have also seen that:

DBEngine(0)(0)

denotes the first database in the first (default) workspace.

The DBEngine object has methods to create a new workspace (CreateWorkspace), to
compact a database (CompactDatabase), and to repair a database (RepairDatabase),
among others.

14.8.2 Errors

From time to time, an operation may cause one or more errors to occur (or so I am told).
When this happens, the Errors collection is first emptied and then filled with one Error
object for each error that the operation caused. (Some operations may cause more than

one error.) Note that if no errors occur, the Errors collection remains as it was before the
operation.

Example 14-9, which deliberately produces an error, illustrates the use of the Errors
collection. It also demonstrates the use of three Error object properties: Number (the
VBA error number), Description (a description in words of the error), and Source (the
object or application that generated the error).

Example 14-9. An Errors collection example

Sub exaErrorsCollection()

' Note declaration of object variable of type Error
Dim dbsTest As DATABASE
Dim txtError As String
Dim errObj As Error

On Error GoTo ehTest

' A statement that produces an error
Set dbsTest = _
DBEngine.Workspaces(0).OpenDatabase("NoSuchDatabase")

Exit Sub

ehTest:

txtError = ""
' Loop through the Errors collection,
' to get the Number, Description and Source
' for each error object
For Each errObj In DBEngine.Errors
 txtError = txtError & Format$(errObj.Number)
 txtError = txtError & ": " & errObj.Description
 txtError = txtError & " (" & errObj.Source & ")"
 txtError = txtError & vbCrLf
Next

MsgBox txtError

Exit Sub

End Sub

Running this code produces the window in Figure 14-12.

Figure 14-12. Error message from executing exaErrorsCollection

14.8.3 Workspaces

There is one Workspace object for each Access user session. In a single-user
environment, there is generally only one session running. When a user starts Access with
no security options enabled, Access automatically creates a Workspace called:

DBEngine.Workspaces(0)

Since we are not concerned in this book with multiple users or with database-security
issues, we will not be creating multiple workspaces.

The values of the Name and UserName properties of the default Workspace object are
easily determined by running the following code:

Sub Test()

MsgBox "Count: " & DBEngine.Workspaces.Count
MsgBox "Name: " & DBEngine.Workspaces(0).Name
MsgBox "UserName: " & DBEngine.Workspaces(0).UserName

End Sub

This code should produce three message boxes, indicating that there is only one open
workspace, with name #Default Workspace# and username admin.

Among the methods of a Workspace object are CreateDatabase (for creating a new
database) and OpenDatabase (for opening an existing database). Another interesting
group of methods is BeginTrans, CommitTrans, and Rollback, which allow the
programmer to group several operations into one transaction. At the end of the
transaction, the programmer can commit the operations—or rollback the database to its
state prior to any of the operations in the transaction. One use for this is in updating
related tables (as in transferring money from one table to another). If the entire group of
operations is not completed successfully, then a rollback is probably desirable.

Workspace objects also have a Close method for closing opened workspaces. However,
the method is ignored when applied to the default Workspace under Microsoft Access.

14.8.4 Users

The Jet engine provides security by assigning access permissions to users of the engine.
A User object represents a user of the Jet engine. The Users collection contains all User
objects. (Of course, female users are never to be considered objects.)

14.8.5 Groups

A Group object represents a set of User objects (users) that have a common set of access
permissions. By using Group objects, a new user can be given a set of access permissions

simply by adding the corresponding User object to the appropriate Group object. The
Groups collection holds all Group objects.

14.8.6 Databases

A Database object represents a currently open database. In Microsoft Jet, you can have
multiple databases open at one time (using the OpenDatabase function, discussed in
Chapter 15). However, the Microsoft Access environment can display a graphical
interface for only one database. In the Microsoft Access environment, when a database is
opened, it is assigned to DBEngine.Workspaces(0).Databases(0).

Database objects have a variety of methods for creating new objects: CreateProperty,
CreateQueryDef, CreateTableDef, and OpenRecordset. There is also an Execute
method for running action queries or executing SQL statements on the database. As
mentioned earlier, Database objects also have a Close method.

14.8.7 TableDefs

A TableDef object represents a table definition for a saved table in the database. A
TableDef object is more than a table scheme, in that it also has a RecordCount property
that gives the number of rows in the table (and thus, in some sense, reflects the data in the
table). However, it is less than a table, in that it does not describe the actual data in the
table. The TableDefs collection contains all TableDef objects for a given database.
TableDef objects have methods for creating fields (CreateField), indexes
(CreateIndex), and opening recordsets (OpenRecordset).

14.8.8 QueryDefs

A QueryDef object represents a saved query in the database. The QueryDefs collection
contains all QueryDef objects for a given database. One of the most interesting properties
of a QueryDef object is SQL, which can be used to set or read the SQL definition of the
QueryDef object.

14.8.9 Recordsets

A Recordset object represents data from one or more tables or queries, and is used to
manipulate that data. Note that a Recordset object is temporary, in that it is not saved
with the application. In fact, recordsets are created in code using the OpenRecordset
function. The Recordsets collection contains all open Recordset objects in the current
database.

Recordset objects are the workhorses of the DAO object model, with about 15 different
methods and about 20 different properties. There are actually three types of Recordset
objects—Table-type, Dynaset, and Snapshot—used for different purposes. We will
discuss recordsets in Chapter 15.

14.8.10 Relations

A Relation object represents a relationship between certain fields in tables or queries. The
Relation object can be used to view or create relationships. The Relations collection
contains all Relation objects for a given database. We will discuss how to create a
relation in .

14.8.11 Containers

The Microsoft Jet engine provides the Containers collection as a location where a host
application, such as Microsoft Access, can store its own objects. This is done through the
use of Container objects, as shown in Figure 14-13.

Figure 14-13. Container objects diagram of the MS Jet engine

The Jet engine itself creates three Container objects:

• A Databases container object, containing information about the database
• A Tables container object, containing information about each saved table and

query
• A Relations container object, containing information about each saved

relationship

It is important not to confuse these Container objects (which are not collections, despite
their names) with the Databases, TableDefs, and Relations collections. Indeed, these
objects are at entirely different locations in the DAO object hierarchy and serve different
purposes, as we will see.

In addition to the Container objects created by the Jet engine, Microsoft Access stores its
forms, reports, macros, and modules in the Containers collection. Hence, the Containers
collection also contains:

• A Forms container object, containing information about all saved forms
• A Reports container object, containing information about all saved reports
• A Macros container object, containing information about all saved macros
• A Modules container object, containing information about all saved modules

The Forms and Reports Container objects should not be confused with the Microsoft
Access collections of the same name (in the Access object model). In particular, the
former contains information about all saved objects, whereas the latter contains
information about all open objects.

To illustrate the aforementioned difference, create and save two forms in an Access
session, and make sure that only one form is open. Then run the code in Example 14-10,
which should report that the open form count is 1 but the saved form count is 2.

Example 14-10. A Containers collection example

Sub exaFormsContainer()

Dim db As DATABASE
Dim frm As Form
Dim doc As Document

Set db = CurrentDb

Debug.Print "Opened form count: " & Forms.Count
For Each frm In Forms
 Debug.Print frm.Name
Next
Debug.Print

Debug.Print "Saved form count: " & db.Containers!Forms.Documents.Count
For Each doc In db.Containers!Forms.Documents
 Debug.Print doc.Name
Next

End Sub

Note that a user cannot create new or delete existing Container objects—they are
controlled by the Jet engine only. Put another way, there is no such thing as a user-
defined Container object. The properties of a Container object generally reflect security-
related issues, such as permission and user/group names. Container objects have no
methods.

14.8.12 Documents

We have seen that applications (including Jet and Access) store objects through the use of
Container objects. However, the Forms Container object, for example, is not of any real
interest per se. The Form objects that reside within the Forms container are of interest.
Actually, these Form objects are referred to as Document objects and are contained in the
Documents collection of the Forms container, also shown in Figure 14-6. (If you are
getting a bit confused, Figure 14-6 should help—it always helps me.)

Thus, it is the Document objects (in a Documents collection) that are the raison d’être for
the Container objects. Example 14-11 illustrates a few of the properties of a Document
object: Container, DateCreated, LastUpdated, Name, and Owner. It displays the value of
various properties of the Document objects in the Documents collection of the Tables
Container object.

Example 14-11. Properties of the Document object

Sub exaTablesDocuments()
Dim db As DATABASE
Set db = CurrentDb
Dim docs As Documents
Dim doc As Document

Set docs = db.Containers!Tables.Documents
Debug.Print "Count: " & docs.Count

For Each doc In docs

 Debug.Print "Container: " & doc.Container
 Debug.Print "DateCreated: " & doc.DateCreated
 Debug.Print "LastUpdated: " & doc.LastUpdated
 Debug.Print "Name: " & doc.Name
 Debug.Print "Owner: " & doc.Owner
 Debug.Print

Next doc

End Sub

Here is a portion of the output from executing Example 14-11:

Count: 16
Container: Tables
DateCreated: 10/22/96 3:16:44 PM
LastUpdated: 10/24/96 1:36:16 PM
Name: AUTHORS
Owner: admin

Container: Tables
DateCreated: 10/22/96 3:19:47 PM
LastUpdated: 10/24/96 1:36:16 PM
Name: BOOK/AUTHOR

Owner: admin

Container: Tables
DateCreated: 5/15/96 6:16:29 PM
LastUpdated: 5/15/96 6:16:29 PM
Name: MSysACEs
Owner: Engine

Container: Tables
DateCreated: 5/15/96 6:16:31 PM
LastUpdated: 5/15/96 6:16:31 PM
Name: MSysIMEXColumns
Owner: admin

14.8.13 Fields

The Fields collection contains Field objects, which describe the various fields in a
TableDef, QueryDef, Index, Relation, or Recordset object.

14.8.14 Parameters

The parameters of a parameter query are represented by Parameter objects, contained in
the Parameters collection for that QueryDef object. Note that Parameter objects cannot
be added to or deleted from the Parameters collection—Parameter objects represent
existing parameters. Let us consider an example.

The code in Example 14-12 creates a parameter query named ParameterQuery and
demonstrates some of the properties of a Parameter object—namely, Name, Type, and
Value.

Example 14-12. A parameter query example

Sub exaParameters()
Dim db As DATABASE
Dim qdf As QueryDef
Dim strSQL As String

Set db = CurrentDb

' Create an SQL statement with parameters
strSQL = "SELECT * FROM BOOKS WHERE _
Price > [Enter minimum price]"

' Create a new QueryDef object
Set qdf = db.CreateQueryDef("ParameterQuery", strSQL)

' Supply value for parameter
qdf.PARAMETERS![Enter minimum price] = 15

' Now query query
Debug.Print qdf.PARAMETERS![Enter minimum price].Name
Debug.Print qdf.PARAMETERS![Enter minimum price].Type
Debug.Print qdf.PARAMETERS![Enter minimum _

price].Value

End Sub

14.8.15 Indexes

An Indexes collection contains all of the saved Index objects (i.e., indexes) for a TableDef
object. We will discuss how to create an index in Chapter 15.

14.9 The CurrentDb Function

We have seen that DAO refers to the current database as:

DBEngine.Workspaces(0).Databases(0)

or, through default collections, as:

DBEngine(0)(0)

However, within Microsoft Access, there is a preferred way to refer to this database,
since, unlike DBEngine(0)(0), it is always current with respect to changes made using
the Access graphical interface. This preferred way is to use the Access function
CurrentDb. Unfortunately, there is some confusion as to precisely what this function
does.

Here is part of what the Access help system says about this function:

The CurrentDb function returns an object variable of type Database that
represents the database currently open in the Microsoft Access window.

The CurrentDb function provides a way to access the current database
from Visual Basic code without having to know the name of the database.
Once you have a variable that points to the current database, you can also
access and manipulate other objects and collections in the data access
object hierarchy.

You can use the CurrentDb function to create multiple object variables
that refer to the current database. In the following example, the variables
dbsA and dbsB both refer to the current database:

Dim dbsA As Database, dbsB As Database
Set dbsA = CurrentDb
Set dbsB = CurrentDb

This certainly makes it appear as though the object variables dbsA and dbsB point to a
single Database object, namely, the currently open database. In other words, executing
the instruction:

Set db = CurrentDb

implies that db points to the Database object known to DAO as DBEngine(0)(0).
However, the Help system goes on to say:

Note: In previous versions of Microsoft Access, you may have used the
syntax DBEngine.Workspaces(0).Databases(0), or DBEngine(0)(0) to
return a pointer to the current database. In Microsoft Access for Windows
95, you should use the CurrentDb function instead. The CurrentDb
function creates another instance of the current database, while the
DBEngine(0)(0) syntax refers to the open copy of the current database.
Using the CurrentDb function enables you to create more than one
variable of type Database that refers to the current database. Microsoft
Access still supports the DBEngine(0)(0) syntax, but you should consider
making this modification to your code in order to avoid possible conflicts
in a multiuser database.

This seems to contradict the previous statements, by indicating that each time CurrentDb
is executed, it creates a new Database object. Actually, if the current database is
considered an object, then the statement “...creates another instance of the current
database...” makes no sense, since you cannot create an instance of an object. (In object-
oriented terms, you can create an instance of a class, and such an instance is called an
object.)

In any case, each call to CurrentDb does seem to create a new object, as we can see from
the experiment in Example 14-13, which checks the Count property of the Databases
collection both before and after calling CurrentDb, showing that the count goes up.

Example 14-13. A CurrentDb function example

Sub exaCurrentDB()

Dim db, dbExtra, dbOriginal As DATABASE
Dim str As String
Dim i As Integer

Set dbOriginal = DBEngine(0)(0)

' Check the database count
MsgBox "Initial db count: " & _
DBEngine.Workspaces(0).Databases.Count

' Invoke CurrentDB
Set dbExtra = CurrentDb()

' Check the database count again
MsgBox "Count after CurrentDb run: " & _
DBEngine.Workspaces(0).Databases.Count

' Display the two database names

str = ""
For Each db In DBEngine.Workspaces(0).Databases
 str = str & vbCrLf & db.Name
Next db
MsgBox "Db Names: " & vbCrLf & str

dbExtra.Close

End Sub

If each call to CurrentDb produces a pointer to a new object, then it is natural to wonder
what happens if we change the object pointed to by one of these pointers. Does it affect
the other objects? What about DBEngine(0)(0)? Consider the code in Example 14-14,
which does the following:

• Creates two Database object variables dbOne and dbTwo and sets both equal to
CurrentDb

• Adds a new field NewField1 to the BOOKS table using dbOne
• Adds a new field NewField2 to the BOOKS table using dbTwo
• Displays the list of fields for BOOKS using dbOne
• Displays the list of fields for BOOKS using dbTwo
• Closes dbOne and dbTwo; that is, it removes their objects from the Databases

collection

Example 14-14. The dbOne and dbTwo variable example

Sub exaCurrentDb2()

Dim dbOne As Database, dbTwo As DATABASE
Dim fldNew As Field
Dim str As String

Set dbOne = CurrentDb
Set dbTwo = CurrentDb

' Get field list in BOOKS
str = "Fields before: " & vbCrLf
''MsgBox dbOne.TableDefs!Books.Fields.Count
For Each fldNew In dbOne.TableDefs!Books.Fields
 str = str & fldNew.Name & vbCrLf
Next

' Use dbOne to add a new field to BOOKS
Set fldNew = dbOne.TableDefs!Books.CreateField("NewField1", dbInteger)
dbOne.TableDefs!Books.Fields.Append fldNew

' Use dbTwo to add a new field to BOOKS
Set fldNew = dbTwo.TableDefs!Books.CreateField("NewField2", dbInteger)
dbTwo.TableDefs!Books.Fields.Append fldNew

''Stop - (see the explanation in the text)

' Refresh Fields collection using dbOne!!!

dbOne.TableDefs!BOOKS.Fields.Refresh

' Get field list now using dbOne
str = str & vbCrLf & "Fields after using dbOne: " & vbCrLf
For Each fldNew In dbOne.TableDefs!Books.Fields
 str = str & fldNew.Name & vbCrLf
Next

' Get field list now using dbTwo
str = str & vbCrLf & "Fields after using dbTwo: " & vbCrLf
For Each fldNew In dbTwo.TableDefs!Books.Fields
 str = str & fldNew.Name & vbCrLf
Next

MsgBox str

dbOne.Close
dbTwo.Close

End Sub

Running this code produces the window shown in Figure 14-14.

Figure 14-14. Message box from executing exaCurrentDb2

Thus, it appears that changing the Database object pointed to by dbTwo does in fact also
change the Database object pointed to by dbOne. However, if we do not refresh the
Fields collection using the variable dbOne, or if we refresh using the variable dbTwo
instead, we get the message box shown in Figure 14-15. Note that NewField2 is missing
from the second group.

Figure 14-15. Message box from executing exaCurrentDb2() when refreshing with dbTwo

Note also that even before the two objects dbOne and dbTwo have been closed, the
Access graphical interface has been updated to reflect the two new fields. In fact, if you
uncomment the Stop line in Example 14-14 and check the design of the BOOKS table
though Access, you will find that both new fields appear, even before the Refresh
method is called.

Running exaCurrentDb2

To examine the behavior of the procedure shown in Example 14-14, do the
following:

1. Run the program as is. Access displays the dialog in Figure 14-14.
2. Delete NewField1 and NewField2 from the BOOKS table. You can do

this by opening the table in Design view, selecting each field separately,
and choosing the Delete Row option from the Edit menu.

3. Comment out (using either the Rem statement or the ' character) the call
to the Refresh method, then run the procedure. Access displays the
dialog box in Figure 14-15.

4. Once again, delete NewField1 and NewField2 from the BOOKS table.
5. Remove the comment from the call to the Refresh method, and change

it to read dbTwo.TableDefs!Books.Fields.Refresh. When you run
the procedure, Access once again displays the dialog box shown in
Figure 14-15.

6. Once again, delete NewField1 and NewField2 from the BOOKS table.

It’s necessary to delete both NewField1 and NewField2 each time you run some
variation of this procedure, since otherwise Access will display a “Can’t define
field more than once” error message.

All of this experimenting leaves us with a feeling that there are some mysteries associated
with CurrentDb that Microsoft is not revealing (at least not readily). We can summarize
as follows:

• Invoking CurrentDb creates another member of the Databases collection.
• On the other hand, each variable set through CurrentDb seems to affect the same

database.
• Refreshing is required to keep objects created through multiple invocations of

CurrentDb current, belying the purpose of CurrentDb to some extent.
• On the other hand, the Access interface does not require refreshing—it reflects the

latest operations performed using any of the invocations of CurrentDb.

These issues notwithstanding, it makes sense to follow Microsoft’s recommendation to
use CurrentDb, since it does reflect the current state of the Access environment more
accurately than DBEngine(0)(0). Just be advised that some circumspection (refreshing)
is needed when creating more than one variable through CurrentDb.

Finally, if you do use CurrentDb, then you should use it according to Microsoft’s rules,
found in the Access 7.0 readme file acreadme.txt (but missing from the Access 8.0
readme file acread80.wri). Its text is reproduced here. Note the use of the word “once.”

Using the CurrentDb Function to Return a Reference to the Current
Database

When you write code that includes a reference to the current database, you
should declare a variable of type Database and use the CurrentDb function
once to assign to it a pointer to the current database. You should avoid
using CurrentDb to return the current database in a statement that also
returns a reference to another object, such as a Set statement. It was
possible to do this in some beta versions of Microsoft Access, but in
Microsoft Access for Windows 95, your code may not run properly. For
example, to determine the number of Document objects in the Documents
collection, you should write code such as that shown in the following two
examples:

Dim dbs As Database, con As Container
Set dbs = CurrentDb
Set con = dbs.Containers!Forms
Debug.Print con.Documents.Count

-or-

Debug.Print _
CurrentDb.Containers!Forms.Documents.Count

Code such as the following will not work:

Dim con As Container
Set con = CurrentDb.Containers!Forms
Debug.Print con.Documents.Count

Chapter 15. Programming DAO: Data Definition
Language
In the overview of DAO, I noted that Data Access Objects consists of two conceptually
distinct components: a data definition language (DDL), which allows us to create or
access some basic database system objects, like databases, table definitions, and indexes;
and a data manipulation language (DML), which allows us to perform the practical
operations of adding data (records) to our tables, deleting unwanted data, and modifying
existing data. In this chapter, I discuss the DDL aspects of DAO.

Let us begin by noting the following:

• To indicate variables of a certain type, I will write the type name followed by the
suffix Var. For example, DatabaseVardenotes a variable of type Database, and
TableDefVar denotes a variable of type TableDef.

• In describing the syntax of certain methods, I will use square brackets ([]) to
indicate optional items.

• I will generally give the full syntax of methods, but will only give details on the
more common options. Of course, full details are available through the Access
help system.

15.1 Creating a Database

Databases are created using the CreateDatabase method of a Workspace object. The
general syntax of this method is:

Set DatabaseVar = [WorkspaceVar.]CreateDatabase _
(DatabaseName, locale [, options])

where:

• DatabaseName is a string expression representing the full path and name of the
database file for the database being created. If you don’t supply a filename
extension, then the extension .mdb is automatically appended.

• locale is a string expression used to specify collating order for creating the
database. You must supply this argument, or an error will occur. For the English
language, use the built-in constant dbLangGeneral.

• options relates to specifying encryption or use of a specific version of the Jet
database engine. For more information, please see Access help.

15.1.1 Notes

• The CreateDatabase method creates a new Database object, appends the
database to the Databases collection, saves the database on disk, and then returns

an opened Database object, but the database has no structure or content at this
point.

• To duplicate a database, you can use the CompactDatabase method of a
Workspace object, specifying a different name for the compacted database.

• A database cannot be deleted programmatically through DAO. To delete a
database programatically, use the KILL statement in VBA.

Example 15-1 creates a new database named MoreBks.mdb on the directory c:/temp and
then lists the tables that are contained in the database.

Example 15-1. A CreateDatabase method example

Sub exaCreateDb()

Dim dbNew As DATABASE
Dim tbl As TableDef

Set dbNew = CreateDatabase _
("c:\temp\MoreBks", dbLangGeneral)

For Each tbl In dbNew.TableDefs
 Debug.Print tbl.Name
Next

dbNew.Close

End Sub

The program in Example 15-1 displays the following list of tables:

MSysACEs
MSysObjects
MSysQueries
MSysRelationships

These tables are created by Microsoft Access for its own use.

15.2 Opening a Database

To open an existing database, use the OpenDatabase method of a Workspace object. The
syntax is:

Set DatabaseVar = [WorkspaceVar.]OpenDatabase _
(DatabaseName[, exclusive[, read-only[, source]]])

where DatabaseName is the name of an existing database. (As indicated by the square
brackets, the other parameters are optional.) For information about the optional
parameters, see the Access help system.

It is important to remember to close a database opened through the OpenDatabase
method. This removes the database from the Databases collection.

15.3 Creating a Table and Its Fields

Tables are created using the CreateTableDef method of a Database object. The full
syntax of this method is:

Set TableDefVar = DatabaseVar.CreateTableDef _
([TableDefName[, attributes[, source[, connect]]]])

where:

• TableDefName is a string or string variable holding the name of the new TableDef
object.

• For information about the optional parameters, see the Access help system.

15.3.1 Notes

• The new TableDef object must be appended to the TableDefs collection using the
Append method. However, before appending, the table must have at least one
field.

• CreateTableDef does not check for an already used TableDefName. If
TableDefName does refer to an object already in the TableDefs collection, an
error will occur when you use the Append method, but not before.

• To remove a TableDef object from a TableDefs collection, use the Delete
method.

Fields are created for a table using the CreateField method of the TableDef object. The
syntax is:

Set FieldVar =
TableDefVar.CreateField _
([FieldName[, type [, size]]])

where:

• FieldName is a string or string variable that names the new Field object.
• type is an integer constant that determines the data type of the new Field object.

(See Table 15-1.)
• size is an integer between 1 and 255 that indicates the maximum size, in bytes,

for a text field. This argument is ignored for other types of fields.

Table 15-1. Constants for the Type property
Data type Constant Numerical value

Boolean dbBoolean 1
Byte dbByte 2

Integer dbInteger 3
Long dbLong 4
Currency dbCurrency 5
Single dbSingle 6
Double dbDouble 7
Date/Time dbDate 8
Text dbText 10
Long Binary (OLE Object) dbLongBinary 11
Memo dbMemo 12
GUID dbGUID 15

15.3.1.1 Note

To remove a field from a TableDef object, use the Delete method.

Field objects have a variety of properties, among which are:

AllowZeroLength

True if a zero-length value is valid for a text or memo field. (Setting this property
for a nontext field generates an error.)

DefaultValue

Sets or returns the default value of a Field object.

Required

True indicates that a null value is not allowed.

ValidationRule and ValidationText

Used for validation of field values. (See the following example.)

The procedure in Example 15-2 creates a new table named NewTable, creates a new field
named NewField, sets certain properties of the field and appends it to the Fields
collection, and then appends the new table to the TableDefs collection.

Example 15-2. A CreateTableDef method example

Sub exaCreateTable()

Dim db As DATABASE
Dim tblNew As TableDef
Dim fld As Field

Set db = CurrentDb

Set tblNew = db.CreateTableDef("NewTable")
Set fld = tblNew.CreateField("NewField", dbText, 100)

' Set properties of field BEFORE appending

' zero length value is OK
fld.AllowZeroLength = True
' default value is 'Unknown'
fld.DefaultValue = "Unknown"
' Null value not allowed
fld.Required = True
' Validation
fld.ValidationRule = "Like 'A*' or Like 'Unknown'"
fld.ValidationText = "Known value must begin with A"

' Append field to Fields collection
tblNew.Fields.Append fld

' Append table to TableDef collection
db.TableDefs.Append tblNew

End Sub

Setting the validation properties of a field requires setting two properties. The
ValidationRule property is a text string that describes the rule for validation, and the
ValidationText is a string that is displayed to the user when validation fails. After running
the code from Example 15-2, a new table appears in the Access Database window. (You
may need to move away from the Tables tab and then return to that tab to see the new
table.) Opening this table in Design View shows the window in Figure 15-1. Note that the
Field Properties setting reflects the properties set in our code.

Figure 15-1. Design view of table generated from running exaCreateTable

Incidentally, TableDef objects also have ValidationRule and ValidationText properties,
used to set validation rules that involve multiple fields in the table.

15.3.2 Changing the Properties of an Existing Table or Field

I have remarked that some properties that are read/write before the object is appended to
its collection become read-only after appending. One such example is the Type property
of a field. On the other hand, the Name property of a field can be changed. This is an
example of a change that can be made using DAO but not by using SQL.

15.4 Creating an Index

Indexes are created using the CreateIndex method for a TableDef object. Here is the
syntax:

Set IndexVar = TableDefVar.CreateIndex([IndexName])

Creating an index by itself does nothing. We must append one or more fields to the
Fields collection of the index in order to actually index the table. Moreover, the order in
which the fields are appended (when there is more than one field) has an effect on the
index order. This is demonstrated in Example 15-3, in which a new index called
PriceTitle is added to the BOOKS table.

Example 15-3. A CreateIndex method example

Sub exaCreateIndex()

Dim db As DATABASE
Dim tdf As TableDef
Dim idx As INDEX
Dim fld As Field

Set db = CurrentDb
Set tdf = db.TableDefs!BOOKS

' Create index by the name of PriceTitle
Set idx = tdf.CreateIndex("PriceTitle")

' Append the price and then the Title fields
' to the Fields collection of the index
Set fld = idx.CreateField("Price")
idx.Fields.Append fld
Set fld = idx.CreateField("Title")
idx.Fields.Append fld

' Append the index to the indexes collection
' for BOOKS
tdf.Indexes.Append idx

End Sub

Figure 15-2 shows the result of running the program from Example 15-3. (To view this
dialog box, open the BOOKS table in design view, and select the Indexes option from the

View menu.) The figure shows clearly why we first create two fields—Price and Title—
and append them, in that order, to the Fields collection of the index.

Figure 15-2. Indexes view of BOOKS table from running exaCreateIndex

As we discussed in an earlier chapter, an index for a table is actually a file that contains
the values of the fields that make up the index, along with a pointer to the corresponding
records in the table. Microsoft tends to blur the distinction between an index (as a file)
and the fields that contribute to the index. Thus, to say that an index is primary is to say
that the fields (actually, the attributes) that make up the index constitute a primary key.

With this in mind, some of the important index properties are:

DistinctCount

Gives the number of distinct values in the index.

IgnoreNulls

Determines whether a record with a null value in the index field (or fields) should
be included in the index.

Primary

Indicates that the index fields constitute the primary key for the table.

Required

Determines whether all of the fields in a multifield index must be filled in.

Unique

Determines whether the values in a index must be unique, thus making the index
fields a key for the table.

Note that the difference between a primary key index and a unique values index is that a
primary key is not allowed to have NULL values.

15.5 Creating a Relation

Relations are created in DAO using the CreateRelation method. The syntax is:

Set RelationVar = DatabaseVar.CreateRelation _
([RelName[, KeyTable[, ForeignTable[, Attributes]]]])

where:

• RelName is the name of the new relation.
• KeyTable is the name of the referenced table in the relation (containing the key).
• ForeignTable is the name of the referencing table in the relation (containing the

foreign key).
• Attributes is a constant, whose values are shown in Table 15-2.

Table 15-2. Attributes for a Relation object
Constant Description

dbRelationUnique Relationship is one-to-one
dbRelationDontEnforce No referential integrity

dbRelationInherited Relationship exists in a noncurrent database that contains the two attached
tables

dbRelationUpdateCascade Cascading updates enabled
dbRelationDeleteCascade Cascading deletions enabled

15.5.1 Notes

• All of the properties of a Relation object become read-only after the object is
appended to a Relations collection.

• Field objects for the referenced and referencing tables must be appended to the
Fields collection prior to appending the Relation object to the Relations
collection.

• Duplicate or invalid names will cause an error when the Append method is
invoked.

• To remove a Relation object from a collection, use the Delete method for that
collection.

Example 15-4 illustrates the use of Relation objects. In this example, we will create a
new relation in the LIBRARY database. The first step is to create a new table, using
Microsoft Access. Call the table SALESREGIONS, and add two text fields: PubID and
SalesRegions. Then add a few rows shown in Table 15-3 to the table.

Table 15-3. The SALESREGIONS table
PubID SalesRegions

1 United States
1 Europe
1 Asia
2 United States
2 Latin America

The code in Example 15-4 creates a relation between the PubID field of the
PUBLISHERS table (the primary key) and the PubID field of the SALESREGIONS table
(the foreign key).

Example 15-4. A CreateRelation method example

Sub exaRelations()

Dim db As DATABASE
Dim rel As Relation
Dim fld As Field

Set db = CurrentDb

' Create relation
Set rel = db.CreateRelation("PublisherRegions", _
"PUBLISHERS", "SALESREGIONS")

' Set referential integrity with cascading updates
rel.Attributes = dbRelationUpdateCascade

' Specify the key field in referenced table
Set fld = rel.CreateField("PubID")

' Specify foreign key field in referencing table.
fld.ForeignName = "PubID"

'Append Field object to Fields collection of
' Relation object.
rel.Fields.Append fld

' Append Relation object to Relations collection.
db.Relations.Append rel

End Sub

After running this code, make sure the Database window is active, and select Tools
Relationships from the Access menu bar. Then select Relationships Show All, and

you should see a window similar to that in Figure 15-3, showing the new relationship.

Figure 15-3. Relationships window after running exaRelations

15.6 Creating a QueryDef

Creating a QueryDef object is done using the CreateQueryDef method. The syntax is:

Set QueryDefVar = DatabaseVar.CreateQueryDef _
([QueryDefName][, SQLText])

where QueryDefName is the name of the new QueryDef object and SQLText is a string
expression that constitutes a valid Access SQL statement.

15.6.1 Notes

• If you include QueryDefName, the QueryDef is automatically saved (appended to
the appropriate QueryDefs collection) when it is created. The Name property and
the SQL property of a QueryDef can be changed at any time.

• You can create a temporary QueryDef, which is not appended to a collection, by
setting the QueryDefName property to a zero-length string (““). You cannot
change the name of a temporary QueryDef.

• If you omit the SQLText argument, you can define the QueryDef by setting its
SQL property before or after you append it to a collection.

• To remove a QueryDef object from a QueryDefs collection, use the Delete
method.

15.6.2 Running a Query

Recall from Chapter 6 that Microsoft Access supports several types of queries. In
particular, a select query returns a recordset. An action query does not return a recordset,
but rather takes action on existing data, such as making a new table, deleting rows from a
table, appending rows to a table, or updating the values in a table.

If a QueryDef object represents an action query, then we can use its Execute statement to
run the query. If the QueryDef object represents a select query, then we can open the
corresponding result table (recordset) using the OpenRecordset method on the QueryDef

object. Let us illustrate. The code in Example 15-5 creates a new select query and
displays the record count for the resulting recordset.

Example 15-5. A CreateQueryDef method example

Sub exaCreateSelect()

Dim db As DATABASE
Dim qdf As QueryDef
Dim strSQL As String
Dim rs As Recordset

Set db = CurrentDb

' Create an SQL SELECT statement
strSQL = "SELECT * FROM BOOKS WHERE Price > 20"

' Create a new QueryDef object
Set qdf = db.CreateQueryDef("NewQuery", strSQL)

' Open a recordset for this query
Set rs = qdf.OpenRecordset

' Move to end of recordset
rs.MoveLast

' Show record count
MsgBox "There are " & rs.RecordCount & " books with price exceeding
$20"

End Sub

The code in Example 15-6 creates a new action query and executes it. The effect is to
raise the price of each book in the BOOKS table by 10%.

Example 15-6. A new action query example

Sub exaCreateAction()

' Creates an action query and executes it

Dim db As DATABASE
Dim qdf As QueryDef
Dim strSQL As String

Set db = CurrentDb

' Create an SQL UPDATE statement
' to raise prices by 10%
strSQL = "UPDATE BOOKS SET Price = Price*1.1"

' Create a new QueryDef object
Set qdf = db.CreateQueryDef("PriceInc", strSQL)

qdf.Execute

End Sub

Note that once a QueryDef object exists, we may still use the OpenRecordset or Execute
methods to run the query. The Execute method can also be used on a Database object to
run an SQL statement. Here is an example that reduces the price of each book in the
BOOKS table by 10%:

Dim db As DATABASE
Set db = CurrentDb
db.Execute "UPDATE BOOKS SET Price = Price*0.9"

15.6.3 Properties of a QueryDef Object

When a QueryDef object is created or changed, Jet sets certain properties, such as
DateCreated, LastUpdated, and Type. (Note that the QueryDefs collection may need
refreshing before these properties can be read.) Some of the possible query types are
listed in Table 15-4.

Table 15-4. Possible query-type constants
Constant Query type Value

dbQSelect Select 0
dbQAction Action 240
dbQCrosstab Crosstab 16
dbQDelete Delete 32
dbQUpdate Update 48
dbQAppend Append 64
dbQMakeTable Make-table 80

The RecordsAffected property returns the number of records affected by the last
application of the Execute method. Let us illustrate.

Example 15-7 modifies the earlier action-query example to perform the action (10% price
increase) if and only if the increase will affect more than 15 books in the table. This is
done using the BeginTrans, Committrans, and Rollback properties of the current
Workspace object.

Example 15-7. A RecordsAffected property example

Sub exaCreateAction2()

Dim ws As Workspace
Dim db As DATABASE
Dim qdf As QueryDef
Dim strSQL As String

Set ws = DBEngine(0)
Set db = CurrentDb

' Create an SQL UPDATE statement
' to raise prices by 10%
strSQL = "UPDATE BOOKS SET Price = Price*1.1

' Create a new QueryDef object
Set qdf = db.CreateQueryDef("PriceInc", strSQL)

' Begin a transaction
ws.BeginTrans

' Execute the query
qdf.Execute

' Check the number of records affected and either roll back transaction
or proceed
If qdf.RecordsAffected <= 15 Then
 MsgBox qdf.RecordsAffected & " records affected " & _
 "by this query. Transaction cancelled."
 ws.Rollback
Else
 MsgBox qdf.RecordsAffected & " records affected " & _
 "by this query. Transaction completed."
 ws.CommitTrans
End If

End Sub

Chapter 16. Programming DAO: Data Manipulation
Language
In Chapter 15 we examined how to use DAO to create and access the major components
of a database, like its tables, its indexes, or its query definitions. For the most part,
though, the focus of a database application is on accessing and manipulating discrete
items of data stored in one or more records. In this chapter, we’ll continue our overview
of Data Access Objects by examining its data manipulation component, which allows you
to perform such practical maintenance operations as adding, deleting, and updating
records and accessing the records that your application is to display.

16.1 Recordset Objects

The main tool for manipulating data is the Recordset object. There are three types of
Recordset objects:

Table-type Recordset object

A representation of the records in a single table of the database. It is like a
window into the table. Thus, operations on this type of recordset directly affect
the table. I emphasize that a table-type recordset can be opened for a single table
only. It cannot be opened for a join of more than one table or for a query. A table-
type recordset can be indexed using a table index. This provides for quick
manuvering within the table, using the Seek method, which we will discuss later
in the chapter.

Dynaset-type Recordset object

A dynamic (changeable) set of records that can contain fields from one or more
tables or queries. Dynaset-type recordsets are generally updatable in both
directions. Thus, changes in the recordset are reflected in the underlying tables or
queries, and changes in the underlying tables or queries, are reflected in the
dynaset-type recordset. With a dynaset-type recordset, no data is brought into
memory. Rather, a unique key is brought into memory to reference each row of
data. Searching through a dynaset-type recordset is done with the Find method,
which is generally slower than the Seek method (which uses one of the table’s
indexes).

Snapshot-type Recordset object

A static (nonchangeable) set of records that can contain fields from one or more
tables or queries. These recordsets cannot be updated. For searching, a snapshot-
type recordset can be faster than a dynaset-type recordset.

16.2 Opening a Recordset

To create or open a recordset, Jet provides the OpenRecordset method. This method can
be used on Database, TableDef, QueryDef, or existing Recordset objects. The syntax is:

Set RecSetVar = DatabaseVar.OpenRecordset _
(source[, type[, options]])

or:

Set RecSetVar = ObjectVar.OpenRecordset _
([type[, options]])

where:

• ObjectVar points to an existing TableDef, QueryDef, or Recordset object.
• When opening a recordset based upon a database (the first syntax), source is a

string specifying the source of the records for the new recordset. The source can
be a table name, a query name, or an SQL statement that returns records. For
table-type Recordset objects, the source can only be a table name.

• If you do not specify a type, then a table-type recordset is created if possible.
Otherwise, the type value can be one of the following integer constants:

o dbOpenTable to open a table-type Recordset object
o dbOpenDynaset to open a dynaset-type Recordset object
o dbOpenSnapshot to open a snapshot-type Recordset object

• options has several possible values related to multiuser situations. It also can
take the value dbForwardOnly, which means that the recordset is a forward-only
scrolling snapshot. This type of snapshot is useful for rapid searching.

16.2.1 Note

A new Recordset object is automatically added to the Recordsets collection when you
open the object, and it is automatically removed when you close it using the Close
method.

The code in Example 16-1 opens and then closes a recordset of each type, based on the
BOOKS table. It also displays (in the debug window) the value of the RecordCount
property for these recordsets. For a dynaset- and snapshot-type recordset, the
RecordCount property is the number of records accessed. Accordingly, to determine the
total number of records in such a recordset, we need to invoke the MoveLast method,
thereby accessing all records. For a table-type recordset, the RecordCount property gives
the total number of records. (We will discuss the MoveLast method later.)

Example 16-1. An OpenRecordset method example

Sub exaRecordsets()

Dim db As DATABASE
Dim rsTable As Recordset
Dim rsDyna As Recordset
Dim rsSnap As Recordset

Set db = CurrentDb

' Open table-type recordset
Set rsTable = db.OpenRecordset("Books")
Debug.Print "TableCount: " & rsTable.RecordCount

' Open dynaset-type recordset
Set rsDyna = db.OpenRecordset("Books", dbOpenDynaset)
Debug.Print "DynaCount: " & rsDyna.RecordCount
rsDyna.MoveLast
Debug.Print "DynaCount: " & rsDyna.RecordCount

' Open snapshot-type recordset
Set rsSnap = db.OpenRecordset("Books", dbOpenSnapshot)
Debug.Print "SnapCount: " & rsSnap.RecordCount
rsSnap.MoveLast
Debug.Print "SnapCount: " & rsSnap.RecordCount

' Close all
rsTable.Close
rsDyna.Close
rsSnap.Close

End Sub

16.2.2 Default Recordset Types

If you do not specify a type in the OpenRecordset method, Jet will choose one for you
according to the following rules:

• The default Type when opening a recordset on a Database object (first syntax) or
a TableDef object (second syntax) is a table-type Recordset object.

• The default Type when opening a recordset on a QueryDef object is a dynaset-
type Recordset object. (Table-type recordsets are not available.)

• The default Type when opening a recordset on an existing table-type Recordset
object is a dynaset-type recordset. If the recordset is not table-type, then the new
recordset has the same type as the original.

16.3 Moving Through a Recordset

All recordsets have a current position (pointed to by the current record pointer) and a
current record. Normally, the current record is the record at the current position.
However, there are two exceptions. The current position can be:

• Before the first record
• After the last record

in which cases there is no current record.

To change the current position (and hence the current record), Jet provides several Move
methods:

MoveFirst

Moves to the first record.

MoveLast

Moves to the last record.

MoveNext

Moves to the next record.

MovePrevious

Moves to the previous record.

Move[n]

Moves forward or backward n positions.

In each case the syntax has the form:

RecordSetVar.MoveCommand

16.3.1 BOF and EOF

The properties BOF (Beginning of File) and EOF (End of File) are set by Jet after each
Move command. The concepts of BOF, EOF, current record, and current position can be
confusing. Perhaps the following notes will help.

16.3.1.1 Notes on the BOF and EOF properties

• BOF is True when the current position is before the first record in the recordset,
not at the first record.

• EOF is True when the current position is after the last record in the recordset, not
at the last record.

• If either of BOF or EOF is True, then there is no current record.
• If you open a recordset containing no records, then BOF and EOF are set to True.

If the recordset has some records, then Jet does a tacit MoveFirst so the first
record becomes the current record and both BOF and EOF are set to False.

• If you delete the last remaining record in a recordset, then BOF and EOF remain
False until you attempt to change the current position.

16.3.1.2 Notes on the Move methods

• If you use MovePrevious when the first record is current, the BOF property is set
to True, and there is no current record. A further MovePrevious will produce an
error, and BOF remains True.

• If you use MoveNext when the last record is current, the EOF property is set to
True, and there is no current record. A further MoveNext will produce an error,
and EOF remains True.

• If the recordset is a table-type recordset, then movement follows the current
index, which is set using the Index property of the Recordset object. If no index is
set (or if the recordset is not table-type), the order of returned records is not
predictable.

The most common use of the Move methods is to cycle through each record in a recordset.
Example 16-2 illustrates this. It creates both a table-type and a dynaset-type recordset on
BOOKS and prints (in the debug window) a list of PubIDs and Titles. Note the use of the:

Do While Not rs.EOF

statement, which is typical of this type of procedure. Also, note the presence of this line:

rsTable.MoveNext

within the Do loop. It is a common error to forget to advance the current record pointer, in
which case the PC will enter an endless loop, in this case printing the same line over and
over again!

Example 16-2. Moving through a Recordset

Sub exaRecordsetMove()

Dim db As DATABASE
Dim rsTable As Recordset
Dim rsDyna As Recordset

Set db = CurrentDb

Set rsTable = db.OpenRecordset("Books")
Debug.Print "Books indexed by PubID/Title:"

' Move through table-type recordset using PubTitle index
rsTable.INDEX = "PubTitle"
rsTable.MoveFirst
Do While Not rsTable.EOF
 Debug.Print rsTable!PubID & " / " & rsTable!Title
 rsTable.MoveNext
Loop

Debug.Print

' Move through dynaset-type recordset
Debug.Print "Dynaset-type recordset order:"
Set rsDyna = db.OpenRecordset("Books", dbOpenDynaset)
rsDyna.MoveFirst
Do While Not rsDyna.EOF
 Debug.Print rsDyna!PubID & " / " & rsDyna!Title
 rsDyna.MoveNext
Loop

rsTable.Close
rsDyna.Close

End Sub

It is worth remarking that, for a dynaset-type or snapshot-type recordset, or for a table-
type recordset for which the Index property has not been set, you cannot predict or rely
on the order of records in the recordset.

In this connection, two Recordset properties of particular use are AbsolutePosition and
PercentPosition, which give the ordinal position of the current record in a dynaset-type or
snapshot-type recordset and the percent position, respectively. Let us illustrate by
modifying Example 16-2, as shown in Example 16-3.

Example 16-3. The modified Recordset position example

Sub exaRecordsetPosition()

Dim db As DATABASE
Dim rsDyna As Recordset
Dim strMsg As String

Set db = CurrentDb

Set rsDyna = db.OpenRecordset("Books", dbOpenDynaset)

' Move through recordset and display position
rsDyna.MoveFirst
Do While Not rsDyna.EOF

 strMsg = rsDyna!PubID & " / " & rsDyna!Title
 strMsg = strMsg & " / " & _
str$(rsDyna.AbsolutePosition)
 strMsg = strMsg & " / " & _
Format$(rsDyna.PercentPosition, "##")
 Debug.Print strMsg

 rsDyna.MoveNext
Loop

rsDyna.Close

End Sub

16.4 Finding Records in a Recordset

The method used to search for a record in a recordset is different for indexed table-type
recordsets than for other recordsets.

16.4.1 Finding Records in a Table-Type Recordset

To locate a record in an indexed table-type recordset, you use the Seek method. Note that
the recordset’s Index property must be set before the Seek method can be used. The
syntax of the Seek method is:

TableTypeRecSetVar.Seek comparison, key1, key2,...

where comparison is one of the following strings:

"<"
"<="
"="
">="
">"

and key1, key2,... are values corresponding to each field in the current index.

16.4.1.1 Notes

• The Seek method searches through the specified key fields and locates the first
matching record. Once found, it makes that record current, and the NoMatch
property of the recordset is set to False. If the Seek method fails to locate a
match, the NoMatch property is set to True, and the current record is undefined.

• If comparison is equal to (=), greater than or equal to (>=), or greater than (>),
Seek starts its search at the beginning of the index. If comparison is less than (<)
or less than or equal to (<=), Seek starts its search at the end of the index and
searches backward unless there are duplicate index entries at the end. In this case,
Seek starts at an arbitrary entry among the duplicate index entries at the end of the
index.

The code in Example 16-4 uses the Seek method on the Title index of BOOKS to find the
first title that begins with the word “On.”

Example 16-4. A Seek method example

Sub exaRecordsetSeek()

Dim db As DATABASE
Dim rsTable As Recordset

Set db = CurrentDb

Set rsTable = db.OpenRecordset("Books")

' Find first book (if any) with title beginning
' with the word "On".
rsTable.INDEX = "Title"
rsTable.Seek "=", "On"
If Not rsTable.NoMatch Then
 MsgBox rsTable!Title
Else
 MsgBox "No title beginning with word 'On'."
End If

rsTable.Close

End Sub

16.4.2 Finding Records in a Dynaset-Type or Snapshot-Type Recordset

To search for a record in a dynaset-type or snapshot-type recordset, Jet provides various
Find methods:

FindFirst

Finds the first matching record in the recordset.

FindNext

Finds the next matching record, starting at the current record.

FindPrevious

Finds the previous matching record, starting at the current record.

FindLast

Finds the last matching record in the recordset.

The syntax of these methods is:

RecordsetVar.FindMethod criteria

where:

• RecordsetVar represents an existing dynaset-type or snapshot-type Recordset
object.

• criteria is a string expression, using the same syntax as a WHERE SQL clause
(but without the word WHERE).

It is important to note that, if a record matching the criteria is not located, the NoMatch
property is set to True, the current position is undetermined, and so there is no current
record. It is thus important to position the current record pointer. This is usually done by
setting a bookmark at the current record before starting the search. Then, if the search
fails, the original position can be restored using the bookmark. In fact, a bookmark is a
system-generated string that Jet can use to identify a record. Thus, by setting a bookmark
on the current record and then moving to another record, we can return to the
bookmarked record. Let us illustrate.

The code in Example 16-5 displays all book titles starting with “M” and then returns to
the current record before the search.

Example 16-5. A Find method example

Sub exaRecordsetFind()

Dim db As DATABASE
Dim rs As Recordset
Dim bmkReturnHere As Variant

Set db = CurrentDb

Set rs = db.OpenRecordset("Books", dbOpenDynaset)

' Display current title
Debug.Print "Current title: " & rs!Title

' Set bookmark at current record
bmkReturnHere = rs.Bookmark

' Find books (if any) with first letter of title
' equal to 'M'.
rs.FindFirst "Left$(Title,1) = 'M'"
Do While Not rs.NoMatch
 Debug.Print rs!Title
 rs.FindNext "Left$(Title,1) = 'M'"
Loop

' Return to original location
rs.Bookmark = bmkReturnHere
Debug.Print "Returned to: " & rs!Title

rs.Close

End Sub

16.5 Editing Data Using a Recordset

Let us now discuss the methods used to edit, add, or delete data from a table-type or
dynaset-type recordset. Snapshot-type recordsets are static, so data in such a recordset
cannot be changed. Thus, in this section, the term recordset will refer to table-type or

dynaset-type recordsets. Recall that any changes made to a recordset are reflected in the
underlying tables or queries.

16.5.1 Editing an Existing Record

Editing an existing record is done in four steps:

1. Make the record the current record.
2. Invoke the Edit method for the recordset.
3. Make the desired changes to the record.
4. Invoke the Update method for the recordset.

It is important to note that if you move the current record pointer before invoking the
Update method, any changes to the record will be lost.

The code in Example 16-6 changes all of the titles in a copy of the BOOKS table to
uppercase. Before running this code, you should use the Copy and Paste menu options
(under the Edit menu) to make a copy of BOOKS, called Books Copy. (Select BOOKS in
the Database window, choose Edit Copy, then choose Edit Paste.)

Example 16-6. Editing data with Recordset

Sub exaRecordsetEdit()

Dim db As DATABASE
Dim rs As Recordset

Set db = CurrentDb

Set rs = db.OpenRecordset("Books Copy")

rs.MoveFirst
Do While Not rs.EOF
 rs.Edit
 rs!Title = UCase$(rs!Title)
 rs.UPDATE
 rs.MoveNext
Loop

rs.Close

End Sub

To emphasize an earlier point, you might want to start over with a fresh Books Copy table
and run the previous code without the line:

rs.Update

to see that no changes are made to the table.

16.5.2 Deleting an Existing Record

Deleting the current record is done with the Delete method of the Recordset object. The
syntax is simply:

RecordSetVar.Delete

16.5.2.1 Notes

• Deletions are made without any warning or confirmation. If you want
confirmation, you must write appropriate code to do so.

• Note that immediately after a record is deleted, there is no valid current record.
The current record pointer must be moved to an existing record (usually by
invoking MoveNext).

The procedure in Example 16-7 deletes all books that have a price greater than $20.00 in
a copy of the BOOKS table, after asking for confirmation. Before running this code, you
should use the Copy and Paste commands to make a copy of BOOKS, called Books
Copy.

Example 16-7. Using the Delete method with Recordset

Sub exaRecordsetDelete()

' Demonstrates deleting records
' Deletes all books that have a price greater than
' $20.00 in a copy of the BOOKS table.
' Before running this, use Copy, Paste to make a
' copy of the BOOKS table

Dim db As DATABASE
Dim rs As Recordset
Dim DeleteCt As Integer

Set db = CurrentDb

Set rs = db.OpenRecordset("Books Copy")
DeleteCt = 0

rs.MoveFirst
Do While Not rs.EOF
 If rs!Price > 20 Then
 If MsgBox("Delete " & rs!Title & "(" & _
Format(rs!Price, "Currency") & ")?", vbYesNo) = _
vbYes Then
 rs.Delete
 DeleteCt = DeleteCt + 1
 End If
 End If
 rs.MoveNext
Loop

rs.Close

MsgBox Format$(DeleteCt) & " records deleted."

End Sub

16.5.3 Adding a New Record

Adding a new record to a recordset is done in three steps:

1. Invoke the AddNew method to create a blank record, which Jet makes the current
record.

2. Fill in the fields of the record.
3. Invoke the Update method to save the record.

The syntax of the AddNew method is simply:

RecordsetVar.AddNew

16.5.3.1 Notes

• Once the Update method is invoked, the record that was the current record prior
to invoking the AddNew method again becomes the current record. To make the
new record current, use a bookmark together with the LastModified property, as
shown in Example 16-8.

• In a table-type recordset, the new record is placed in its proper order with respect
to the current index. In a dynaset-type recordset, the new record is placed at the
end of the recordset. If the recordset has a sort order (such as might be inherited
from an underlying query), the new record can be repositioned using the Requery
method.

Example 16-8 adds a new book to the BOOKS table and makes it the current record. It
also demonstrates the With...EndWith construct.

Example 16-8. Adding a record with Recordset

Sub exaRecordsetAddNew()

Dim db As DATABASE
Dim rs As Recordset

Set db = CurrentDb

' Open recordset
Set rs = db.OpenRecordset("Books")

Debug.Print "Current title: " & rs!Title

' Use With...End With construct
With rs

 .AddNew ' Add new record
 !ISBN = "0-000" ' Set fields
 !Title = "New Book"
 !PubID = 1
 !Price = 100
 .UPDATE ' Save changes.
 .Bookmark = rs.LastModified ' Go to new record
 Debug.Print "Current title: " & rs!Title
End With

rs.Close

End Sub

Part VI: ActiveX Data Objects

17. ADO and OLE DB
17.1 What Is ADO?

In this chapter, we will discuss Microsoft’s latest database programming object model,
called ActiveX Data Objects, or ADO. This object model is a successor to DAO and is
intended to replace DAO. Of course, the arrival of ADO raises the question of whether to
redo existing DAO applications in ADO, as well as whether to write new applications in
ADO.

As to the former, I can’t see any immediate need to do so unless the application would
benefit by some new feature of ADO. One possibility is that ADO may provide superior
performance, but this is an ad hoc issue that will require experimentation in each
situation. As to the latter, this decision is somewhat of a moving target. While DAO is
more established and has proven to be reliable and stable, ADO is Microsoft’s current
wave of the future. For instance, the new VB6 DataBinding object model is just a
frontend for an OLE DB data client and is designed to use ADO. In order to keep up with
Microsoft’s latest technologies—clearly a desirable goal—we will need to get on the
ADO bandwagon. We can only hope that Microsoft will offer us other good reasons to
join this bandwagon.

Actually, ADO is the immediate successor to Remote Data Objects (RDO), which is, in
turn, the immediate successor to DAO. Since RDO did not get much first-string playing
time, we will not discuss it in this book. My plan is to discuss the terminology related to
ADO and its underlying technology, called OLE DB. Then we will look at the ADO
object model and do a few examples, such as connecting to a Jet database, an Excel
spreadsheet, and a text file. This will give you a solid foundation in ADO and OLE DB
— certainly enough to understand the documentation (such as it is) and dig more deeply
if the need arises.

It appears from the documentation that I have seen (from Microsoft and others) that most
writers feel that the most important use of ADO is to connect to an SQL Server data
provider. However, in my consulting practice, I seldom encounter SQL Server (or
perhaps I just unconsciously avoid it). Much more often, I encounter the need to connect
to an Excel spreadsheet, for instance. A great many business clients like to do database
management in Excel, probably because they are familiar with that application, since they
use it for financial analysis (which is its intended purpose). It seems that it is only the
VBA consultant, and not those who hire her, who appreciates how limited Excel is when
it comes to database management!

There seem to be three approaches to dealing with Excel “databases” (and I have used all
three):

• We can twist and coerce Excel into doing more database management than it is
intended to do. However, this creates bloated Excel workbooks with code that
runs at a snail’s pace.

• We can migrate the data from Excel into Access, where it really belongs.
• We can connect directly to an Excel spreadsheet using Open Database

Connectivity (ODBC) for programming in ADO (or DAO).

We will discuss the latter approach in this chapter. This does seem to work, but for major
data manipulation, I definitely prefer the second alternative.

17.2 Installing ADO

I should mention a word about installing ADO. ADO is installed along with Office 2000,
but not with Office 97.

To see if you have ADO installed on your system, first open an Access code module, and
then open the References dialog box, under the Tools menu. If you see an entry such as
the one highlighted in Figure 17-1, you’re all set.

Figure 17-1. Reference to the ADO object library

If, on the other hand, you have no such listing, you might want to do a file search of your
hard disk, looking for MSADOxx.DLL. If you don’t have the file, then you can download
the required software components from Microsoft’s web site. At the time of this writing,
the URL is http://www.microsoft.com/data/. (If this URL is no longer valid, try searching

for ADO or MDAC, which stands for Microsoft Data Access Components.) Note that the
small version of the software kit is over 5 MB! Enjoy.

Note also that there is considerable confusion when it comes to versions of ADO, a
situation that Microsoft does not seem to want to clarify. Version 2.0 refers to the
following items, as reported by the type library itself (or the VBA IDE References dialog
box). Note the different version numbers:

• Implementation: msado15.dll
• Object library name: msado15.dll
• Object Library Version: 2.0
• Documentation String: Microsoft ActiveX Data Objects 1.5 Library
• Help File: msado10.hlp

On the other hand, Version 2.1 of ADO refers to the following items:

• Implementation: msado15.dll
• Object library name: msado20.tlb
• Object Library Version: 2.0
• Documentation String: Microsoft ActiveX Data Objects 2.0 Library
• Help File: (none)

Thus, Version 2.1 uses the same implementation as Version 2.0, which is presumably the
same as Version 1.5! (Put another way, referring to Figure 17-1, if you highlight a
reference to ADO 2.1, you will still see a reference to the msado15.dll library!)

The type library has changed for Version 2.1 of ADO, having been extracted from within
the implementing DLL. However, this new type library does not report a help file,
although the file ado20.chm appears to be such a file. (Accordingly, the type library
contains no context-sensitive help references.)

Frankly, this situation does not seem to make much sense to me, but the bottom line is
that ADO appears to be implemented by the same file (msado15.dll) through several
“versions.”

17.3 ADO and OLE DB

As we have seen, the DAO model is the programming interface for the Jet database
engine. On the other hand, ADO has a more ambitious goal—it is the programming
model for a universal data-access interface called OLE DB. Simply put, OLE DB is a
technology that is intended to be used to connect to any type of data—traditional database
data, spreadsheet data, web-based data, text data, email data, and so on.

Technically speaking, OLE DB is a set of COM interfaces. An interface is just a
collection of functions, also called services, with a similar purpose. The term COM refers
to the Component Object Model , which is Microsoft’s model for communication

between software components. Thus, simply put, OLE DB is a set of functions or
services.

Figure 17-2 gives an overview of ADO and OLE DB from a VB programmer’s
perspective.

Figure 17-2. OLE DB and ADO

17.3.1 Data Stores

The purpose of OLE DB is to provide applications with universal data access—that is,
with a common method for accessing data in essentially any format, including traditional
database formats, text formats, spreadsheet formats, email formats, file system formats,
web-based formats, and more. OLE DB uses the term data store to refer to any data that
can be accessed through the OLE DB services. The term data source seems to be a
synonym for data store, although this term is used in different ways in other related
contexts (such as the VB6 DataBinding object model). Indeed, the term “data source” is
one of the most abused in Microsoft’s arsenal.

17.3.2 Data Providers

In order to create access to a particular type of data, a developer must write an OLE DB
data provider for that type of data store. This is usually done in a C-type development
environment such as Visual C++, but it can be done in VB as well.

The purpose of an OLE DB data provider is to expose the data in data stores of a
particular type in tabular format, with rows (records) and columns (fields). In other

words, the role of a data provider is to make data from a data store look like a table, even
if the raw format does not resemble a table. For this reason, a data provider usually has
direct access to the data in data stores of that type.

Note that some data providers may also implement more sophisticated data-retrieval and
manipulation techniques, such as SQL. However, this is not a requirement. This is in
distinction to ODBC, where an ODBC data provider must implement a form of SQL. (For
more on this, see Appendix C.)

Here is a sampling of the OLE DB data providers available at the time of this writing:

• Microsoft OLE DB Simple Provider (a JavaBeans-related interface)
• Microsoft OLE DB Provider for ODBC Drivers (for Open Database Connectivity)
• Microsoft OLE DB Provider for Oracle (for Oracle databases)
• Microsoft Jet 3.51 OLE DB Provider (for Jet databases)
• Microsoft OLE DB Provider for SQL Server (for SQL Server databases)
• Microsoft OLE DB Provider for Directory Services (provides directory services—

that is, logon, administration, and replication services—for Windows NT Server
networks)

Two of these providers are especially interesting for us: the Microsoft Jet 3.51 OLE DB
Provider and the Microsoft OLE DB Provider for ODBC Drivers. The ODBC provider is
the default data provider and can be used to connect to a variety of data sources, such as
an Excel spreadsheet or a text file, through ODBC. We will consider examples of how to
use these providers later in the chapter.

It seems as though the distinction between data provider and data store (or data source) is
often blurred. Thus, the term “data provider” may refer to a combination of both the data
store (the raw data) and the data provider (the software component that implements OLE
DB for that type of data store).

17.3.3 Data Consumers

An OLE DB data consumer is a software component that communicates with a data
provider in order to gain access to and manipulate a data store. To a data consumer, all
OLE DB data has a tabular format, with rows and columns.

17.3.4 Service Providers

In addition to the standard data providers, a developer may implement custom service
providers (see Figure 17-2), which do not have direct access to the data (in the parlance
of OLE DB, service providers do not own data). The purpose of a service provider is to
provide additional services (features) for that particular type of data store through the use
of OLE DB interfaces.

Here are some examples of OLE DB data services:

The Microsoft Data Shaping Service for OLE DB

Provides support for the construction of hierarchical (shaped) Recordset objects
from one or more data providers. A hierarchical recordset is one in which the
value in a particular field can be another Recordset object, which would then be
considered a child of the first (parent) recordset.

The Microsoft OLE DB Persistence Provider

Provides support for saving a Recordset object to a file and restoring a Recordset
object from a file.

The Microsoft OLE DB Remoting Provider

Enables a user on a local machine to invoke data providers that reside on a remote
machine.

Actually, an OLE DB service provider is both an OLE DB consumer and an OLE DB
data provider. For example, consider a heterogeneous query processor. (The term
heterogeneous refers to the fact that the query processor can process queries that
reference data in more than one data source.) When a consumer asks the query processor
to provide data from multiple OLE DB data sources, the query processor acts like a
consumer when it submits the query to multiple data providers and retrieves the data from
the data sources (through each source’s data provider), and it acts like a provider when it
returns the results of the query to the consumer that requested the data.

17.4 The ADO Object Model

OLE DB is designed for C programmers. In order to make it accessible to VB
programmers, Microsoft created the ADO object model. This model gives VB
programmers access to certain aspects of the OLE DB paradigm, by allowing the
programmer to program an object model, rather than having to use the OLE DB API
functions directly. For instance, a VB programmer can get access to a data provider by
creating a Connection object and setting its Provider property. Thus, the Connection
object represents a connection to a data store through a data provider.

The ADO object model is actually quite small, even smaller than the DAO object model.
Table 17-1 shows the complete list of ADO objects (along with corresponding collection
objects).

Table 17-1. The ADO objects
Command
Connection
Error (Errors)
Field (Fields)
Parameter (Parameters)

Property (Properties)
Recordset

The ADO object model is shown in Figure 17-3. Unlike the DAO model, which has a
single object (DBEngine) at the top of the model, the ADO object model is headed by a
triumvirate of three externally creatable objects: Command, Connection, and Recordset.
(The Parameter object is also externally creatable.)

An externally creatable object is an object that can be created directly using the VBA New
operator, as in:

Dim rs As New Recordset

or, alternatively:

Dim rs As Recordset
Set rs = New Recordset

Thus, as we will see, unlike DAO, a Recordset object can be created independently at the
“beginning” of an ADO session.

Let us emphasize that while DAO is centered around the DBEngine object, through
which almost all action begins, in ADO, as we will soon see, the “action” can begin with
any of the three main ADO objects: Connection, Command, or Recordset. If you are
accustomed to programming in DAO, this can take a bit of getting used to.

Incidentally, the tree-like view of the ADO object model shown in Figure 17-3 is from
my Object Browser software program. For more on this, please see the card at the end of
the book. You can also get more information on this object browser at my web site:
http://www.romanpress.com.

Our plan is to take a look at the Command, Connection, Field, Property, and Recordset
objects, along with their properties and methods. (We will also touch lightly upon the
Parameter object.)

It is important to emphasize that some features (objects, properties, or methods) of the
ADO object model may not be implemented (or implemented fully) by a particular data
provider. This is in contrast to the DAO object model, where the entire model is
implemented. This is important enough to bear repeating:

To a large extent, it is up to a data provider to decide which features of the ADO
object model to support.

Figure 17-3. The ADO object model

There are potentially four ways in which to determine whether a particular feature is
supported by a particular data provider:

• Check the documentation for the data provider (if you can find it).
• Use the Supports method of the Recordset object to determine whether certain

features are supported (but this only applies to the Recordset object).
• Use dynamic properties, discussed later.
• Experiment. If you get the error message shown in Figure 17-4, then you know

that the operation that caused the message is not supported!

Figure 17-4. An “operation not supported” message

Note that we will discuss most of the properties and methods in the ADO object model,
with the primary exception of those that relate to batch processing or transaction
processing.

For the record, batch processing refers to sending multiple commands at one time. When
communication between consumer and provider takes place over a network, this can save
considerable time. Transaction processing refers to the grouping of multiple operations
into a single transaction. At the end of the transaction, the programmer can commit the
operations or rollback the data source to its state prior to any of the operations in the
transaction. One use for this is in updating related tables (as in transferring money from
one table to another). If the entire group of operations is not completed successfully, then
a rollback is probably desirable.

17.4.1 The Three-Pronged Approach to Data Manipulation

As far as data manipulation is concerned (as opposed to data definition), the main
purpose of ADO is to create a recordset that provides access to the data. As is indicated
by the object model in Figure 17-3, there are three ways to obtain a Recordset object. The
three methods are:

• Create a Recordset object directly, and use its Open method, as in:
• Dim rs As ADODB.Recordset
• Set rs = New ADODB.Recordset
•

rs.Open ...

• Create a Connection object, and use its Execute method to return a recordset, as
in:

• Dim cn As ADODB.Connection
• Dim rs As ADODB.Recordset
•
• cn.Provider = ...
• cn.ConnectionString = ...
• cn.Open
•

Set rs = cn.Execute(...)

• Create a Command object:
• Dim cmd As ADODB.Command
• Dim rs As ADODB.Recordset
•
• Set cmd = New ADODB.Command
• Set cmd.ActiveConnection = ...
• cmd.CommandText = ...
•

Set rs = cmd.Execute

Note that we will tend to qualify all ADO objects with the prefix ADODB. This
will help distinguish between ADO objects and DAO objects of the same name.
In fact, the line:

Dim rs As Recordset

will be interpreted by VBA as either an ADO or a DAO recordset depending on
which of the references to the corresponding object library has higher priority in
the References dialog box (under the Tools menu). Since it is a dangerous practice
to rely on this priority (which can easily differ from system to system), it is best to
always qualify:

Dim rs1 As ADODB.Recordset
Dim rs2 As DAO.Recordset

The RecordsetExample procedure shown in Example 17-1 illustrates each of the previous
approaches to creating a recordset. Note, however, that only the first method (using the
Open method of the Recordset object) allows us to set various recordset options. The
other methods create read-only, forward-only recordsets. We will discuss this issue in
detail at the appropriate time.

Example 17-1. Three methods of creating a Recordset object

Sub RecordsetExample()

' Creating recordsets in different ways

Dim rs As ADODB.Recordset
Dim cn As ADODB.Connection

' Set up connection
Set cn = New ADODB.Connection
cn.Provider = "Microsoft Jet 3.51 OLE DB Provider"

cn.ConnectionString = "Data Source=D:\BkAccessII\AccessCode.mdb"
cn.Open

' --------------------------------
' Use rs.Open with table (or SQL)
' This is the most flexible method
' --------------------------------
Set rs = New ADODB.Recordset
rs.Open "Names", cn, adOpenDynamic, adLockReadOnly, adCmdTable

rs.MoveFirst
Debug.Print "Use rs.Open: "
Debug.Print "ActiveConnection: " & rs.ActiveConnection
Debug.Print "Source: " & rs.Source
rs.Close

' ---------------------------------------
' Use cn.Execute
' Always a read-only, forward only cursor
' ---------------------------------------
Set rs = cn.Execute("SELECT * FROM Names")

rs.MoveFirst
Debug.Print
Debug.Print "Use cn.Execute: "
Debug.Print "ActiveConnection: " & rs.ActiveConnection

Debug.Print "Source: " & rs.Source
rs.Close

' ---------------------------------------
' Use Command object
' Always a read-only, forward only cursor
' ---------------------------------------
Dim cmd As ADODB.Command
Set cmd = New ADODB.Command
Set cmd.ActiveConnection = cn
cmd.CommandText = "SELECT * FROM Names"
Set rs = cmd.Execute

rs.MoveFirst
Debug.Print
Debug.Print "Use Command object: "
Debug.Print "ActiveConnection: " & rs.ActiveConnection
Debug.Print "Source: " & rs.Source
rs.Close

cn.Close

End Sub

For future reference, let us note the output from the Debug.Print statements in Example
17-1. In each case, the ActiveConnection property of the recordset is the same. I have
broken the string into multiple lines to aid readability:

Provider=Microsoft.Jet.OLEDB.3.51;
Persist Security Info=False;
User ID=Admin;
Data Source=D:\BkAccessII\AccessCode.mdb;
Mode=Share Deny None;
Extended Properties=";
COUNTRY=0;
CP=1252;
LANGID=0x0409";
Locale Identifier=1033;
Jet OLEDB:System database="";
Jet OLEDB:Registry Path="";
Jet OLEDB:Database Password="";
Jet OLEDB:Global Partial Bulk Ops=2

As we will see when we discuss connection strings in more detail later in the chapter, this
after-the-fact approach is one of the best (read: only) ways to actually see what a
complete connection string looks like.

As for the Source property, here is the output:

Use rs.Open with table:
Source: select * from Names

Use cn.Execute:
Source: SELECT * FROM Names

Use Command object:
Source: SELECT * FROM Names

We will refer to this output when we discuss the Source property.

Let us now take a look at the various objects in the ADO object model. Our intention is
not to be comprehensive, but to cover the main objects and their main properties and
methods. After looking at the ADO model, we will look at several examples of
connecting to a variety of data sources.

17.4.2 The Connection Object

The Connection object represents a connection to a data store through a data provider.

17.4.2.1 Properties of the Connection object

The main properties of the Connection object are:

CommandTimeout

Sets the length of time to wait for a response to a command from the data source
before issuing a timeout error message.

ConnectionString

Holds the information needed to make the connection. This may include the name
of the data provider, the name of the data source, a password, and a user ID. We
will discuss connection strings at some length later in the chapter.

ConnectionTimeout

Sets the length of time to wait for a connection to be made before issuing a
timeout error message.

CursorLocation

Sets a recordset’s cursor (which is a device used to traverse the recordset and
which defines the current recordset) to reside on the client side of the connection
or on the server side. Typically, client-side cursors offer more capabilities than
server-side, but server-side cursors may be better at reflecting changes to the data
source made by other users. Ultimately, the choice of which type of cursor to use
depends on the capabilities of the data provider and on the particular needs at the
time. We will see examples of using both types of cursors later on.

DefaultDatabase

By setting a default database for a particular connection, avoids the need to
qualify each table name in an SQL statement with the database name.

Errors

Returns the Errors collection of all Error objects (if any) for the previous
command.

Mode

Specifies the access mode for the connection and can be set to any one of the
following:

adModeUnknown

Signals that permission has not yet been set or cannot be determined. This is the
default.

adModeRead

Is read-only permission.

adModeWrite

Is write-only permission.

adModeReadWrite

Is read/write permission.

adModeShareDenyRead

Prevents other users from opening the connection with read permission.

adModeShareDenyWrite

Prevents other users from opening the connection with write permission.

adModeShareExclusive

Prevents other users from opening the connection.

adModeShareDenyNone

Prevents other users from opening the connection with any permission.

Provider

Specifies the data provider. Note that the data provider can alternatively be
specified in the ConnectionString property.

State

Returns the state of the connection (read-only). The possible values are given by
the following enum:

Enum ObjectStateEnum
 adStateClosed = 0
 adStateOpen = 1
 adStateConnecting = 2
 adStateExecuting = 4
 adStateFetching = 8
End Enum

Version

Returns the ADO version number as a string.

17.4.2.2 Methods of the Connection object

The main methods of the Connection object are:

Close

Closes the connection. Its syntax is simply:

cn.Close
Execute

Executes a command. A command can be a database query, an SQL statement, a
stored procedure, or a provider-specific command in text form. We emphasize
that the form of command depends on the data provider. For instance, not all data
providers support stored procedures or even SQL statements.

Note that some commands return a recordset and some do not. Accordingly, there
are two syntaxes for the Execute method:

' Syntax for a non recordset-returning command

ConnectionObject.Execute CommandText, RecordsAffected, Options

' Syntax for a recordset-returning command
Dim rs As ADODB.Recordset

Set rs = ConnectionObject.Execute(CommandText, RecordsAffected,
Options)

We will see several examples of the use of the Execute method.
RecordsAffected is a Long parameter that we must supply. ADO will fill this
variable with the number of records that are affected by the command. The
optional Options parameter can assume a variety of values indicating how the
data provider should interpret the CommandText argument. The possible values
are:

adCmdText

CommandText is a textual definition of a command.

adCmdTable

CommandText is a table name. The rows of this table should be returned by an
SQL query created internally by ADO.

adCmdTableDirect

CommandText is a table name. The provider should return all rows from this table.

adCmdStoredProc

CommandText is the name of a stored procedure.

adCmdUnknown

The type of command in the CommandText argument is not known.

adAsyncExecute

The command should execute asynchronously. (This means that the command
will execute and then fire the ExecuteComplete event to signal that it has
completed.)

adAsyncFetch

The remaining rows after the initial quantity specified in the CacheSize property
should be fetched asynchronously.

Open

Opens a connection; that is, it creates an actual connection to the data provider. Its
syntax is:

connection.Open ConnectionString, UserID, Password, Options

where all parameters are optional. The ConnectionString parameter is the tricky
one here. We will discuss connection strings at length later in the chapter. Note
that the Connection object has a ConnectionString property that can be used to set
the connection string as well. However, the ConnectionString parameter will
override any setting of the ConnectionString property.

Microsoft warns that we should not pass UserID and password values in both the
ConnectionString property and the ConnectionString parameter of the Open
method, for this may lead to unpredictable results. (And here I thought that
computers did not produce unpredictable results.)

Note that it is important to close a connection using the Close method when the
connection is no longer required. However, closing the connection does not
remove the Connection object from memory, so its properties may still be
accessed or altered. In order to remove the Connection object from memory, we
must set the variable that references the Connection object to Nothing.

The Options parameter can assume one of the following values:

adConnectUnspecified

The default value. Opens the connection synchronously. Code execution pauses
until the connection is made.

adAsyncConnect

Opens the connection asynchronously. The ConnectComplete event is fired when
the connection is complete.

OpenSchema

Gets database information from the data provider. The simplest syntax for this
method is:

ConnectionObject.OpenSchema(QueryType)

where QueryType can be one of several constants specifying the type of
information to retrieve. The method returns a Recordset object with the requested
data.

For instance, the following code lists the tables in a Jet database:

' Get list of tables
Set rs = cn.OpenSchema(adSchemaTables)

Do While Not rs.EOF
 Debug.Print rs!TABLE_NAME & " Type: " & rs!TABLE_TYPE
 rs.MoveNext

Loop

17.4.3 The Recordset Object

A Recordset object represents a recordset. To quote the documentation, “When you use
ADO, you manipulate data almost entirely using Recordset objects.”

Recordsets are created using the Open method with code such as:

Dim rs As ADODB.Recordset

Set rs = New ADODB.Recordset

rs.CursorType = adOpenDynamic
rs.CursorLocation = adUseServer
rs.Open "SELECT * FROM Names", cn

As we have seen, a Recordset object may also be created using the Execute method of
the Connection object or the Command object.

Let us reiterate that even though the raw data in a particular data store (such as a text file
or mail store) may not have the appearance of a traditional table with rows and columns,
all ADO recordsets are structured with rows (records) and columns (fields). In fact, that is
the primary purpose of ADO—to give all forms of raw data a table-like format.

17.4.3.1 Cursors

A recordset cursor is a device that is used to traverse the records (or rows) in a recordset.
Recordsets (and their cursors) can reside on the client side of the connection or on the
server side. Although we will not discuss remote connections—that is, connections over a
network—in this introduction to ADO, the terminology is still valid. For instance, if we
connect to a local Excel spreadsheet using the OLE DB provider for ODBC, then the
dividing line between client and server is still the connection, even though both “sides” of
this connection are on the same computer.

The cursor location is set using the CursorLocation property of the Recordset object; its
value can be adUseClient or adUseServer.

ADO supports four types of cursors, determined by the CursorType property setting:

Dynamic cursor (CursorType = adOpenDynamic)

This type of cursor is automatically updated to show additions, deletions, and
edits to the recordset made by other users. It also permits all forms of movement
through the recordset that do not use bookmarks, as well as those that do use
bookmarks if the provider supports bookmarks. (Note, however, that the provider

must support bookmarks or backward cursor movement in order to use the
MovePrevious method.)

Keyset cursor (CursorType = adOpenKeyset)

This type of cursor is similar to a dynamic cursor, except that it does not show
records that have been added by other users, nor does it allow access to records
that have been deleted by other users. However, edits by other users are visible.
Keyset cursors must support bookmarks and therefore allow all forms of
movement through the recordset.

Static cursor (CursorType = adOpenStatic)

This type of cursor provides a static copy of a set of records. This is like a
snapshot DAO recordset. Static cursors are used to find data or to generate
reports. They must support bookmarks and therefore allow all forms of recordset
movement. However, additions, deletions, and edits by other users are not visible.
Note that all client-side cursors are static cursors. Even if we specify a different
type of cursor for a client-side cursor, ADO will open a static cursor instead.

Forward-only cursor (CursorType = adOpenForwardOnly)

This type of cursor behaves identically to a dynamic cursor except that it permits
only forward scrolling. This is the analog of supplying the dbForwardOnly
constant as an argument to the DAO OpenRecordset method. As with forward-
only DAO recordsets, forward-only cursors perform more efficiently when we
need to make only a single pass through the recordset.

17.4.3.2 LockType

The LockType property is a key property for recordsets. This property indicates the type
of lock that is placed on the records during editing. It can be one of the following values:

adLockReadOnly

Records are read-only. Note that this is the default value, which means that if we
want to do any editing, we must set this property to another value.

adLockPessimistic

In this case, the data provider ensures successful editing of records, usually by
locking records at the data source as soon as the Edit method is called. This is
termed pessimistic locking. It occurs on a record-by-record basis.

adLockOptimistic

In this case, the provider locks records only when the Update method is called.
This is termed optimistic locking. It occurs on a record-by-record basis.

adLockBatchOptimistic

Optimistic batch updates are required for batch update mode.

I emphasize that adLockReadOnly is the default value, which means that if we want to do
any editing, we must set this property to another value.

17.4.3.3 Properties of the Recordset object

The main properties of the Recordset object are described here:

AbsolutePage, PageCount, and PageSize

To help the user page through the data in a recordset (especially when that data is
intended to be displayed on the Web), ADO allows us to group the data into
logical pages. (The page count starts at 1, by the way.) The PageSize property is
used to specify the number of records per page (the default is 10 records per
page).

The PageCount property returns the number of pages in the recordset. If a data
provider does not support pages, it will indicate this by always returning a
PageCount value of -1.

The AbsolutePage property is used either to set the current record at the beginning
of a page or to return the page number of the current record. The return value of
AbsolutePage may be a page number or one of the following values:

adPosUnknown

Indicates that the current position is unknown, the recordset is empty, or the data
provider does not support pages.

adPosBOF

Indicates that the current record pointer is pointed at BOF (BOF is True).

adPosEOF

Indicates that the current record pointer is pointed at EOF (EOF is True).

AbsolutePosition

This property works like the corresponding DAO property; namely, it provides
the ordinal position of the current record in the recordset (the first position is
position 1). As with DAO, however, the AbsolutePosition property can change
when another record is deleted or if the recordset is refreshed. Thus, we cannot
rely on the value of AbsolutePosition to return to a given record at a later time. To
mark a record for later retrieval, we should use bookmarks.

ActiveConnection

The ActiveConnection property of a recordset returns the connection string for the
corresponding connection. If there is no active connection, it returns Nothing. For
instance, in the code:

Dim rs As New ADODB.Recordset

Debug.Print rs.ActiveConnection
Debug.Print rs.ActiveConnection Is Nothing

the second line will produce a runtime error, whereas the third line will return
True.

Thus, if the recordset rs is associated with the connection cn, then the following
values are the same:

cn.ConnectionString
rs.ActiveConnection

For an open recordset, this property is read-only (as you would expect). However,
for a closed recordset, we can set the ActiveConnection property to a valid
connection string, and ADO will open the connection for us automatically. Setting
the property to Nothing will disconnect the recordset from any provider.

Note that the ActiveConnection property can be set either to a string that specifies
the connection or to a valid Connection object variable name.

We will have much more to say about connection strings later in the chapter. For
now, we refer the reader to the RecordsetExample subroutine in Example 17-1 for
an example of the ActiveConnection property. As mentioned earlier, querying the
ActiveConnection property is one of the best ways to get the full syntax of a
connection string for a data provider. Needing to resort to this technique is a
reflection on the poor quality of the documentation for OLE DB data providers,
especially when it comes to connect strings.

BOF and EOF

As with DAO, these Boolean properties indicate whether the current record
pointer lies before the first record (BOF is True) or after the last record (EOF is
True). In either case, there is no current record.

Bookmark

Each record in an ADO recordset has a bookmark associated with it. (A bookmark
has Variant data type.) We can retrieve this bookmark and store it in a variable
with code such as:

bk = rs.Bookmark

We can then return to this record at any time by writing:

rs.Bookmark = bk

CacheSize

This specifies the number of records that will be placed in the client-side memory
buffer at one time. Put another way, it is the number of records that are fetched
from the data store at one time.

CursorLocation

As discussed earlier, this property specifies the location of the cursor: client-side
or server-side.

CursorType

As discussed earlier, this property specifies the type of cursor: dynamic, keyset,
static, or forward-only.

EditMode

Like DAO, ADO uses a temporary editing buffer for the current record. The
EditMode property indicates the current status of the data in this buffer. Its
possible values are:

adEditNone

Indicates that no editing operation is in progress.

adEditInProgress

Indicates that the data in the current record buffer has been modified but has not
yet been saved.

adEditAdd

Indicates that the AddNew method has been invoked and the new data in the
current record buffer has not yet been saved.

adEditDelete

Indicates that the current record has been deleted.

Fields

This returns the Fields collection for the given recordset. We will discuss Field
objects later in the chapter.

Filter

Filters the current recordset by restricting the records that are visible. Thus, for
instance, after executing the code:

rs.Filter = "Lastname = 'Smith' OR FirstName Like 'A*'"

the recordset referenced by rs is filtered so that we have access only to those
records that meet the filter condition. We can release the filter by writing:

rs.Filter = ""

Note that after setting a filter, the current record pointer is moved to the first
record that fits the filter criteria. Note also that Microsoft warns that it is
preferable to define and open a new recordset on the data source than to make
extensive use of filters.

LockType

This property, discussed earlier, indicates the type of lock that is placed on the
records during editing.

MaxRecords

This limits the number of records returned by a query. The default value of 0
indicates that all matching records should be returned. This property is read-only
for an open recordset.

RecordCount

This indicates the number of records in an open recordset. The property returns -1
when ADO cannot determine the number.

Note that if the recordset supports either approximate positioning or bookmarks
(as indicated, for example, by the Supports method discussed later), then the
RecordCount value is always correct regardless of whether the recordset has been
fully populated by using the MoveLast method. Thus, if neither positioning nor
bookmarks are supported, the only way to make sure that the RecordCount
property is accurate is to populate the recordset fully, which may place a
significant drain on resources because all records in the recordset will need to be
retrieved from the data source.

Source

This Variant property gives the source of the data for the recordset. It is read-only
when the recordset is open. It can be set to a valid Command object variable name,
an SQL statement, a table name, or a stored procedure call. (As always with
ADO, this depends on the level of support from the data provider.) See the
RecordsetExample subroutine in Example 17-1 for examples of the Source
property.

State

This read-only property returns the state of the recordset. The possible values are
given by the following enum :

Enum ObjectStateEnum
 adStateClosed = 0
 adStateOpen = 1
 adStateConnecting = 2
 adStateExecuting = 4
 adStateFetching = 8
End Enum

17.4.3.4 Methods of the Recordset object

The main methods of the Recordset object are described in this section.

AddNew

Adds new records to a recordset, provided that the data provider and the current
cursor type support this feature, of course. The general syntax is:

recordset.AddNew Fields, Values

where Fields is an optional single field name or an array of field names and the
optional Values is the corresponding value (for a single field) or value array (for
a field array) to assign to the fields in the new record. For instance, the code:

rs.AddNew Array(LastName, FirstName), Array("Einstein", "Albert")

adds a new record with values LastName = "Einstein" and FirstName =
"Albert".

Clone

Creates a new Recordset object that is a duplicate of the Recordset object to
which it is applied. It is important to note, however, that a cloned Recordset
object is not entirely independent of its parent. Here is what the documentation
says about cloned recordsets:

Changes made to one Recordset object are visible in all of its clones regardless of
cursor type. However, after you execute Requery on the original Recordset, the
clones will no longer be synchronized to the original.

Closing the original Recordset does not close its copies; closing a copy does not
close the original or any of the other copies.

You can only clone a Recordset object that supports bookmarks. Bookmark
values are interchangeable; that is, a bookmark reference from one Recordset
object refers to the same record in any of its clones.

Close

Closes the recordset.

Delete

Deletes one or more records. Its syntax is:

rs.Delete AffectRecords

where AffectRecords is one of the following constants:

adAffectCurrent

Deletes the current record.

adAffectGroup

Causes all records that match the current filter only to be deleted.

adAffectAll

Deletes all records.

adAffectAllChapters

Deletes all chapter records.

GetRows

Retrieves multiple records into an array. The syntax is:

array = recordset.GetRows(Rows, Start, Fields)

Rows is an optional Long parameter that specifies the number of rows to retrieve.
Its default is adGetRowsRest, indicating that the method should retrieve all of the
remaining records in the recordset. The optional Start parameter specifies the
starting row to retrieve. It should be either a bookmark or one of the values:
adBookmarkCurrent (start at the current record; this is the default),
adBookmarkFirst (start at the first record), or adBookmarkLast (start at the last
record). Finally, Fields can be a single field name (or ordinal position) or an
array of field names (or ordinal positions). If the Fields parameter is not missing,
only those fields will be returned; otherwise, all fields will be returned.

Note that the DAO version of the GetRows method has a different syntax.

Here are some things to keep in mind concerning the GetRows method:

• The first subscript in the array identifies the field, and the second identifies
the record. This is counterintuitive.

• The lower bound on the returned array is 0, whereas the upper bound is one
less than the number of records actually returned. Thus, if we specify more
rows than are returned, the upper bound provides a way to get the number
of rows actually returned. (Use the VBA UBound function to get the upper
bound, and add 1 to get the number of records returned.)

• After a call to GetRows, the current record is the next unread record, or EOF
if there are no more records. Thus, subsequent calls to GetRows can be
made without specifying the Start parameter.

Move , MoveFirst , MoveLast , MoveNext , MovePrevious

Are used to move the current record pointer.

The Move method has the syntax:

recordset.Move NumRecords, Start

where NumRecords is a Long specifying the number of records to move the
current record pointer relative to Start, which is either a bookmark or one of the
values adBookmarkCurrent, adBookmarkFirst, or adBookmarkLast.

According to the documentation, “the Move method is supported on all Recordset
objects.” Of course, exactly what this means is unclear. Does it refer to all types
of recordsets for a provider that supports the Move method, or does it mean that all
providers must support this method?

If you are experiencing performance problems with Move, you might want to
consider whether the CacheSize setting is causing too many retrievals. It may be
possible to improve performance by setting the CacheSize value to a larger
number. This is a tradeoff between performance and memory usage (as always).

Note that if the Recordset object to which we apply the Move method is forward-
only, we can still pass a NumRecords value that is less than zero, provided that the
destination is within the current set of cached records. If not, an error will occur.
On the other hand, a call to MovePrevious will generate an error even if the
resulting move lies within the currently cached group of records.

The MoveFirst, MoveLast, MoveNext, and MovePrevious methods work
similarly to those methods in DAO. Note, however, that the Recordset object
must support bookmarks or backward cursor movement in order to use the
MovePrevious method. Otherwise, the method will generate an error. On the
other hand, the MoveFirst method will work on a forward-only recordset, but it
may cause the provider to re-execute the command that retrieved the Recordset
object in the first place.

NextRecordset

Makes it possible to set up a compound command that contains several individual
commands. For instance, the statement:

SELECT * FROM table1;SELECT * FROM table2

consists of two separate SQL statements. If we execute this command using the
Execute method, ADO will execute and retrieve only the first SQL statement. To
execute the second command and get the corresponding recordset, we use the
NextRecordset method. For more on this, we refer the reader to the ADO
documentation.

Open

Opens a recordset. The full syntax is:

recordset.Open Source, ActiveConnection, CursorType, LockType,
Options

As with the Connection object, the parameters are optional and can be specified
separately using properties of the Recordset object.

The Source parameter specifies the data source. Setting this parameter will
override the setting of the Source property (if any). The parameter can be set to a
Variant that identifies a valid Command object variable name, or to an SQL
statement, a table name, or a stored procedure call (if supported by the data
provider, as usual).

Setting the ActiveConnection parameter will override the current value of the
ActiveConnection property (if any). The setting can be the name of a valid
Connection object variable or a string that describes the connection. This will
cause ADO to establish (open) the connection.

For a discussion of the CursorType and LockType parameters, see Section
17.4.3.1 and Section 17.4.3.2 in the discussion of Section 17.4.3 earlier in this
chapter. Note that if we set either of these parameters, the setting will also be
made automatically in the corresponding property value.

The Options parameter is used when Source is a string (not a Command object)
to identify the type of the Source argument. It can be one of the following values:

adCmdText

Treats the Source argument as a text string that describes a command.

adCmdTable

Treats the Source argument as a table name. ADO should generate an SQL query
to return the table rows.

adCmdTableDirect

Treats the Source argument as a table name and returns all rows.

adCmdFile

Returns a recordset from the file named by Source.

adCmdStoredProc

Treats the Source argument as the name of a stored procedure.

adCmdUnknown

The Source argument type is unknown.

These values can be combined with values that relate to asynchronous fetching of
records:

adAsyncExecute

The Source should be executed asynchronously. A FetchComplete event will fire
when the operation is complete.

adAsyncFetch

After the initial quantity specified in the Initial Fetch Size property is fetched, any
remaining rows are fetched asynchronously. If a required row has not yet been
fetched, further code execution is blocked (halted) until the requested row
becomes available.

adAsyncFetchNonBlocking

This is similar to adAsynchFetch, except that further code execution is never
blocked. If the requested row has not been fetched, the current row automatically
moves to the end of the file.

It is important to close a recordset using the Close method when the recordset is
no longer required. However, closing the recordset does not remove the Recordset
object from memory, so its properties may still be accessed or altered. In order to
remove the Recordset object from memory, we must set the recordset variable
that references the object to Nothing.

Requery

Updates the recordset by requerying the data source.

Resync

Resynchronizes the recordset with the underlying data. It differs from the
Requery method in that it does not re-execute the original query that produced the
recordset. Hence, it will cause any changes to existing records to be visible, but it
will not show any new records.

Supports

Gets information on what features are supported for recordsets of the specified
type by the data provider. The syntax is:

boolean = recordset.Supports(CursorOptions)

The return value is True if the feature described by CursorOptions is supported
and False otherwise.

Here is a list of the possible values for CursorOptions:

adAddNew

The AddNew method is supported.

adApproxPosition

The AbsolutePosition and AbsolutePage methods are supported.

adBookmark

The Bookmark property is supported.

adDelete

The Delete method is supported.

adHoldRecords

With respect to transaction processing, we can retrieve more records or change
the next retrieve position without committing all pending changes.

adMovePrevious

The MovePrevious method is supported. Also, Move and GetRows can be used to
move the current record pointer backwards without requiring the use of
bookmarks.

adResync

The Resync method is supported.

adUpdate

The Update method is supported.

adUpdateBatch

Batch updating is supported.

adSeek

The Seek method is available.

adIndex

The Index property with which to name an index is available (ADO 2.1 only).

To illustrate, the SupportsExample procedure in Example 17-2 compares static
and dynamic cursors for a Jet connection.

Example 17-2. The SupportsExample procedure

Sub SupportsExample()

' Compares support options for static and dynamic cursors

Dim rs As ADODB.Recordset
Dim cn As ADODB.Connection
Dim lRecordsAffected As Long

' Set up connection
Set cn = New ADODB.Connection
cn.Provider = "Microsoft Jet 3.51 OLE DB Provider"
cn.ConnectionString = "Data Source=D:\BkAccessII\AccessCode.mdb"
cn.Open

Set rs = New ADODB.Recordset

' ---
' Check support options for server-side static cursor
rs.CursorLocation = adUseServer
rs.Open "SELECT * FROM Names", cn, adOpenStatic, adLockOptimistic
' Get recordset support
Debug.Print
Debug.Print "Server-Side Static Recordset:"
Debug.Print "adAddNew: " & rs.Supports(adAddNew)
Debug.Print "adBookmark: " & rs.Supports(adBookmark)
Debug.Print "adDelete: " & rs.Supports(adDelete)
Debug.Print "adFind: " & rs.Supports(adFind)
Debug.Print "adUpdate: " & rs.Supports(adUpdate)
Debug.Print "adMovePrevious: " & rs.Supports(adMovePrevious)

rs.Close

' --
' Check support options for server-side dynamic cursor
rs.CursorLocation = adUseServer
rs.Open "SELECT * FROM Names", cn, adOpenDynamic,
adLockOptimistic
' Get recordset support
Debug.Print
Debug.Print "Server-Side Dynamic Recordset:"
Debug.Print "adAddNew: " & rs.Supports(adAddNew)

Debug.Print "adBookmark: " & rs.Supports(adBookmark)
Debug.Print "adDelete: " & rs.Supports(adDelete)
Debug.Print "adFind: " & rs.Supports(adFind)
Debug.Print "adUpdate: " & rs.Supports(adUpdate)
Debug.Print "adMovePrevious: " & rs.Supports(adMovePrevious)

rs.Close

cn.Close

End Sub

The output is:

Server-Side Static Recordset:
adAddNew: True
adBookmark: True
adDelete: True
adFind: True
adUpdate: True
adMovePrevious: True

Server-Side Dynamic Recordset:
adAddNew: True
adBookmark: False
adDelete: True
adFind: True
adUpdate: True
adMovePrevious: True

Thus, we can see that static cursors support bookmarks, whereas dynamic cursors
do not.

Update

Updates the current record after editing. This method can be used to set values as
well, since its general syntax is:

recordset.Update Fields, Values

where Fields is a single field name or an array of field names, and Values are
the corresponding values to assign to the fields in the record. For instance, the
code:

rs.Update Array(LastName, FirstName), Array("Einstein", "Albert")

updates the record by setting LastName = "Einstein" and FirstName = "
Albert".

17.4.4 The Command Object

A Command object represents a definition of a command that may be executed by a data
provider. We have seen an example (the RecordsetExample subroutine in Example 17-1)
of how a Command object can be used to create a recordset. The RecordsetExample
procedure also demonstrates that a Command object is not always required in order to
execute a command. However, a Command object is required when we want to execute
the same command more than once. Also, a Command object is needed to pass
parameters to a query.

17.4.4.1 Command objects and connections

The ActiveConnection property is used to specify the connection over which the
command will pass. The ActiveConnection property can be set either to a text string that
describes the connection or to a Connection object variable that refers to a valid
connection.

It is important to note that if we want to assign a single connection to multiple commands
(at different times), a Connection object variable should be used. For if we use a text
string, ADO will create a new Connection object for each command, even if the
connection string is the same.

Setting the ActiveConnection property to Nothing disassociates the Command object
from the current connection and causes the data provider to release any associated
resources on the data source. This may or may not be required, depending on the data
provider, before associating a new Connection object to the command.

17.4.4.2 Properties of the Command object

Let us discuss the main properties of the Command object.

ActiveConnection

Sets the connection over which the command will be sent. As discussed earlier, it
can be a text string (a connection string) or a Connection object variable.

CommandText

Sets (or retrieves) the actual command. This is usually an SQL statement, but it
can be any string that is recognized as a command by the data provider (such as a
stored procedure call). According to the documentation, some data providers may
alter the text of a command string. We can view any changes by examining the
value of the CommandText property.

CommandTimeout

Sets or returns the length of time to wait for the command to execute before
displaying a timeout error. The default is 30 seconds.

CommandType

Sets the type of command; it has the same values as the Options parameter in the
Open method of the Recordset object:

adCmdText

A text string that describes a command.

adCmdTable

A table name whose records are returned by generating an internal SQL query.

adCmdTableDirect

A table name whose records are returned.

adCmdFile

The name of a file containing a recordset.

adCmdStoredProc

The name of a stored procedure.

adExecuteNoRecords

CommandText is a command or stored procedure that does not return rows. This
value is always combined with either adCmdText or adCmdStoredProc.

adCmdUnknown

Unknown type.

Name

Can be used to assign a name to a command.

Parameters

Returns a Parameters collection, which contains the parameters that are required
by the command (if any). We will not discuss parameterized queries for ADO in
this book.

Prepared

If set to True, the data provider will compile the command specified in the
CommandText property, assuming that it supports this feature. This may slow
execution the first time that the command is executed. However, subsequent
executions of the same command should proceed more quickly. Note that if the
data provider does not support command compilation, it may return an error as
soon as this property is set to True, or it may simply ignore the request to prepare
the command and set the Prepared property to False.

17.4.4.3 Methods of the Command object

Let us discuss the main methods of the Command object.

CreateParameter

Creates a Parameter object. A Parameter object represents a parameter that is
associated with a parameterized query. We will not discuss parameterized queries
for ADO in this book.

Execute

Executes the command represented by the Command object. As with the Execute
method of the Connection object, there are two possible syntaxes based on
whether or not the command returns a recordset:

' Syntax for a non recordset-returning command
CommandObject.Execute RecordsAffected, Parameters, Options

' Syntax for a recordset-returning command
Dim rs As ADODB.Recordset
Set rs =
CommandObject.Execute(RecordsAffected, Parameters,
Options)

Note that all parameters are optional.

The RecordsAffected parameter is a Long that returns the number of records
affected by the command. The Parameters parameter is a Variant array of
parameters that may be required by the SQL statement (if any). The values in this
array will override any parameter values set through the Parameters property.

(The order of parameters in the array is the order in which the parameters are
passed.)

Finally, the Options parameter is equivalent to the CommandType property (and
has the same possible values).

17.4.5 The Property Object and Dynamic Properties

The ADO objects:

Recordset
Parameter
Field
Connection
Command

each have a Properties property that returns a Properties collection. This collection
contains a Property object for each dynamic property of the object.

ADO objects can have two types of properties: built-in and dynamic. Built-in properties
are the familiar properties implemented by ADO itself. These are the properties that we
have been discussing up to now. Note that the Properties collection does not contain
Property objects for built-in properties.

On the other hand, dynamic properties are defined by the data provider and are thus
specific to a particular data provider. There is one Property object in the Properties
collection for each dynamic property, and this Properties collection provides the only
method for referencing a dynamic property, as in:

Object.Properties(PropertyName)

or:

Object.Properties(PropertyIndex)

Dynamic properties have four built-in properties of their own:

Name

Identifies the property, as in the previous code.

Type

An integer that specifies the data type of the property. It can be one of the values
in Table 17-2.

Table 17-2. The values of the Type property
adEmpty = 0 adIUnknown = 13 adNumeric = 131
adSmallInt = 2 adDecimal = 14 adUserDefined = 132
adInteger = 3 adTinyInt = 16 adDBDate = 133
adSingle = 4 adUnsignedTinyInt = 17 adDBTime = 134
adDouble = 5 adUnsignedSmallInt = 18 adDBTimeStamp = 135
adCurrency = 6 adUnsignedInt = 19 adVarChar = 200
adDate = 7 adBigInt = 20 adLongVarChar = 201
adBSTR = 8 adUnsignedBigInt = 21 adVarWChar = 202
adIDispatch = 9 adGUID = 72 adLongVarWChar = 203
adError = 10 adBinary = 128 adVarBinary = 204
adBoolean = 11 adChar = 129 adLongVarBinary = 205
adVariant = 12 adWChar = 130

Note also that the Type property can be set to a disjunction (ORing) of one of the
constants in Table 17-2 and one of the following values:

adArray

Indicates that the Type value is an array of values.

adByRef

Indicates that the Type value is a pointer to a value.

adVector

Indicates that the Type value is a DBVECTOR structure, as defined by OLE DB.
This structure contains a count of elements and a pointer to data of type
DBTYPE_VECTOR. For more on this, see the ADO documentation.

For example, the value:

adInteger OR adArray

represents an array of integers.

Value

A Variant containing the value of the dynamic property.

Attributes

A Long that describes attributes of the property. It can be a sum of one or more of
the following values:

adPropNotSupported

The property is not supported by the data provider.

adPropRequired

The user must specify a value for this property before the data source is
initialized.

adPropOptional

The property is optional.

adPropRead

The property can be read.

adPropWrite

The property can be set.

To illustrate, consider the PropertiesExample procedure shown in Example 17-3.

Example 17-3. The PropertiesExample procedure

Sub PropertiesExample()

Dim rs As ADODB.Recordset
Dim cn As ADODB.Connection
Dim prop As ADODB.Property

' Set up connection
Set cn = New ADODB.Connection
cn.Provider = "Microsoft Jet 3.51 OLE DB Provider"

cn.ConnectionString = "Data Source=d:\BkAccessII\AccessCode.mdb"
cn.Open

' Open recordset
Set rs = New ADODB.Recordset
rs.Open "Names", cn, adOpenDynamic, adLockReadOnly, adCmdTable

For Each prop In rs.Properties
 Debug.Print prop.Name
Next

rs.Close
cn.Close
End Sub

This procedure prints a list of dynamic property names for a Jet recordset. The rather
impressive output is:

Preserve on Abort
Blocking Storage Objects
Use Bookmarks
Skip Deleted Bookmarks
Bookmark Type
Cache Deferred Columns
Fetch Backwards
Hold Rows
Scroll Backwards
Column Privileges
Preserve on Commit
Defer Column
Delay Storage Object Updates
Immobile Rows
Literal Bookmarks
Literal Row Identity
Maximum Open Rows
Maximum Pending Rows
Maximum Rows
Column Writable
Memory Usage
Notification Phases
Bookmarks Ordered
Others' Inserts Visible
Others' Changes Visible
Own Inserts Visible
Own Changes Visible
Quick Restart
Reentrant Events
Remove Deleted Rows
Report Multiple Changes
Row Privileges
Row Threading Model
Objects Transacted
Updatability
Strong Row Identity
IAccessor
IColumnsInfo
IColumnsRowset
IConnectionPointContainer
IRowset
IRowsetChange
IRowsetIdentity
IRowsetInfo
IRowsetLocate
IRowsetResynch
IRowsetScroll
IRowsetUpdate
ISupportErrorInfo
ILockBytes
ISequentialStream
IStorage
IStream

IRowsetIndex
Column Set Notification
Row Delete Notification
Row First Change Notification
Row Insert Notification
Row Resynchronization Notification
Rowset Release Notification
Rowset Fetch Position Change Notification
Row Undo Change Notification
Row Undo Delete Notification
Row Undo Insert Notification
Row Update Notification
Append-Only Rowset
Change Inserted Rows
Return Pending Inserts
IConvertType
Notification Granularity
Access Order
Lock Mode
Jet OLEDB:Partial Bulk Ops
Jet OLEDB:Pass Through Query Connect String
Jet OLEDB:ODBC Pass-Through Statement
Jet OLEDB:Grbit Value
Jet OLEDB:Use Grbit
Jet OLEDB:3.5 Enable IRowsetIndex
Bookmarkable

Of course, getting documentation on these properties is another matter. Let me know if
you find any.

17.4.6 The Field Object

The Field object represents a field (or column) in a recordset. The Fields property of the
Recordset object returns the Fields collection of all Field objects for that recordset.

The Field object has but two methods, AppendChunk and GetChunk, which are used with
large text or binary fields. The reader should refer to the documentation for more on these
methods.

17.4.6.1 Properties of the Field object

Here are the properties of the Field object:

ActualSize and DefinedSize

The DefinedSize property is used to set the size of a field as it is defined. The
ActualSize property returns the size of the actual data stored in that field for the
current record. Thus, for example, a String field named FirstName may have
DefinedSize 25, but if the actual data in a given record at a particular time is
"Albert", then the ActualSize property will return 6.

Attributes

The Attributes property of a Field object can be a sum of the following values.
Note that for a Field object, the Attributes property is read-only.

adFldMayDefer

The field is deferred; that is, the field values are not retrieved from the data source
when the record is retrieved. Instead, we must explicitly request the values.

adFldUpdatable

The field value is writable.

adFldUnknownUpdatable

The provider cannot determine if we can write to the field.

adFldFixed

The field contains fixed-length data.

adFldIsNullable

The field accepts Null values.

adFldMayBeNull

Null values can be read from the field.

adFldLong

The field is a long binary field. Hence, the AppendChunk and GetChunk methods
are available for this field.

adFldRowID

The field contains some type of record ID, such as a record number or unique
identifier.

adFldRowVersion

The field contains a time or date stamp used to track updates.

adFldCacheDeferred

The provider caches field values and subsequent reads are done from the cache.

Name

This is the name of the field. Note that the Name property is read-only for Field
objects.

NumericScale and Precision

The read-only NumericScale property is used to return the number of digits to the
right of the decimal place that is used to represent numeric values. The read-only
Precision property returns the total number of digits used to represent a numeric
value. Both are Byte properties.

Value, UnderlyingValue, and OriginalValue

The Value property sets or returns the value of the field for the current record.

The UnderlyingValue property returns the current field value from the database.
This value may be the result of a recent update to the recordset by another
transaction, whereas the OriginalValue property returns the original value that
was retrieved from the recordset and thus does not reflect any updates by another
transaction.

The UnderlyingValue and OriginalValue properties are read-only. To set a value,
we must use the Value property.

Type

This specifies the data type for the field. The possible values are listed earlier in
Table 17-1.

17.5 Finding OLE DB Providers

It is clearly important to be able to determine which OLE DB providers are installed on a
particular system. The Windows registry contains entries for each installed OLE DB
provider. An example is shown in Figure 17-5.

Unfortunately, Windows does not make it a simple matter to extract this registry
information using code. The ListDPs procedure shown in Example 17-4 will do the trick.
You don’t need to worry about all of the coding details related to the registry, but you
may want to change some of the code, since it currently just prints the list of data
providers to the Immediate window. Also, don’t forget to include the code in the
declarations section, also shown in Example 17-4.

Figure 17-5. Registry entry for an OLE DB provider

Example 17-4. The ListDPs procedure

' Declarations for ListDPs

Type FILETIME
 dwLowDateTime As Long
 dwHighDateTime As Long
End Type

Public Const HKEY_CLASSES_ROOT = &H80000000

Public Const ERROR_SUCCESS = 0&
Public Const KEY_QUERY_VALUE = &H1
Public Const KEY_ENUMERATE_SUB_KEYS = &H8
Public Const KEY_NOTIFY = &H10
Public Const SYNCHRONIZE = &H100000
Public Const STANDARD_RIGHTS_READ = &H20000
Public Const KEY_READ = ((STANDARD_RIGHTS_READ Or KEY_QUERY_VALUE Or _
 KEY_ENUMERATE_SUB_KEYS Or KEY_NOTIFY) And (Not SYNCHRONIZE))

Public Const REG_SZ = 1

Declare Function RegOpenKeyEx Lib "advapi32.dll" Alias _
 "RegOpenKeyExA" (ByVal hKey As Long, ByVal lpSubKey As String, _
 ByVal ulOptions As Long, ByVal samDesired As Long, _
 phkResult As Long) As Long
Declare Function RegCloseKey Lib "advapi32.dll" _
 (ByVal hKey As Long) As Long
Declare Function RegEnumKeyEx Lib "advapi32.dll" Alias _
 "RegEnumKeyExA" (ByVal hKey As Long, ByVal dwIndex As Long, _
 ByVal lpName As String, lpcbName As Long, _
 ByVal lpReserved As Long, ByVal lpClass As String, _
 lpcbClass As Long, lpftLastWriteTime As FILETIME) As Long
Declare Function RegQueryValueEx Lib "advapi32.dll" Alias _
 "RegQueryValueExA" (ByVal hKey As Long, ByVal lpValueName As
String, _
 ByVal lpReserved As Long, lpType As Long, lpData As Any, _
 lpcbData As Long) As Long
Declare Function RegQueryValueExStr Lib "advapi32.dll" Alias _
 "RegQueryValueExA" (ByVal hKey As Long, ByVal lpValueName As
String, _
 ByVal lpReserved As Long, lpType As Long, ByVal lpData As String, _

 lpcbData As Long) As Long

Private Sub ListDPs()

' Search the registry for Data Providers

Const BUF_LEN As Long = 2048

Dim lret As Long, lret2 As Long, lret3 As Long
Dim hCLSIDKey As Long, hClassKey As Long, hClassSubKey As Long

Dim lbufKeyName As Long
Dim bufKeyName As String * BUF_LEN
Dim lbufClassName As Long
Dim bufClassName As String * BUF_LEN

Dim lbufKeyName2 As Long
Dim bufKeyName2 As String * BUF_LEN
Dim lbufClassName2 As Long
Dim bufClassName2 As String * BUF_LEN

Dim lbufValue As Long
Dim bufValue As String * BUF_LEN

Dim ft As FILETIME, ft2 As FILETIME
Dim lxKey As Long, lxKey2 As Long
Dim lValueType As Long

Dim bProvider As Boolean
Dim sDPs As String
Dim sName As String

' --------------
' Open CLSID key
' --------------
lret = RegOpenKeyEx(HKEY_CLASSES_ROOT, "CLSID", 0, KEY_READ, hCLSIDKey)

If lret <> ERROR_SUCCESS Then
 MsgBox "Cannot open CLSID key", vbCritical
 Exit Sub
End If

lxKey = 0
Do
 lbufKeyName = BUF_LEN
 bufKeyName = String(BUF_LEN, Chr$(0))
 lbufClassName = BUF_LEN
 bufClassName = String(BUF_LEN, Chr$(0))
 lret = RegEnumKeyEx(hCLSIDKey, lxKey, bufKeyName, lbufKeyName, _
 0, bufClassName, lbufClassName, ft)
 lxKey = lxKey + 1
 DoEvents
 If lret = ERROR_SUCCESS Then
 ' We have a subkey of CLSID (a class key) -
 ' check its subkeys for OLE DB Provider key
 lret2 = RegOpenKeyEx(HKEY_CLASSES_ROOT, "CLSID\" & _

 Left$(bufKeyName, lbufKeyName), 0, KEY_READ, hClassKey)
 If lret2 <> ERROR_SUCCESS Then
 MsgBox "Cannot open key " & Left$(bufKeyName, lbufKeyName)
 RegCloseKey hCLSIDKey
 Exit Sub
 End If

 ' Got a class key, check its subkeys
 ' We compile the subkeys and their default values in sDPs
 ' to be discarded if the class is not a provider
 sDPs = ""
 bProvider = False
 lxKey2 = 0
 Do
 lbufKeyName2 = BUF_LEN
 bufKeyName2 = String(BUF_LEN, Chr$(0))
 lbufClassName2 = BUF_LEN
 bufClassName2 = String(BUF_LEN, Chr$(0))
 lret2 = RegEnumKeyEx(hClassKey, lxKey2, bufKeyName2, _
 lbufKeyName2, 0, bufClassName2, lbufClassName2, ft2)
 If lret2 = ERROR_SUCCESS Then
 ' Test for OLE DB Provider
 If LCase$(Left$(bufKeyName2, lbufKeyName2)) = _
 "ole db provider" Then
 bProvider = True
 Exit Do
 End If
 End If
 lxKey2 = lxKey2 + 1
 Loop While lret2 = ERROR_SUCCESS
 ' Finished looping through subkeys of the class key
 ' If a provider, display all key values
 If bProvider Then
 Debug.Print ""
 Debug.Print "***NEW PROVIDER***"
 Debug.Print "CLSID = " & Left$(bufKeyName, lbufKeyName)
 lxKey2 = 0
 Do
 lbufValue = 0 '''this causes a GPF --> BUF_LEN
 bufValue = String(BUF_LEN, Chr$(0))
 lbufKeyName2 = BUF_LEN
 bufKeyName2 = String(BUF_LEN, Chr$(0))
 lbufClassName2 = BUF_LEN
 bufClassName2 = String(BUF_LEN, Chr$(0))
 lret2 = RegEnumKeyEx(hClassKey, lxKey2, bufKeyName2, _
 lbufKeyName2, 0, bufClassName2, lbufClassName2, ft2)
 If lret2 = ERROR_SUCCESS Then
 ' Open the key and get the default value
 lret3 = RegOpenKeyEx(HKEY_CLASSES_ROOT, _
 "CLSID\" & Left$(bufKeyName, lbufKeyName) & "\" & _
 Left$(bufKeyName2, lbufKeyName2), _
 0, KEY_QUERY_VALUE, hClassSubKey)
 If lret3 = ERROR_SUCCESS Then
 sName = ""
 ' Get the length and check for string
 lret3 = RegQueryValueEx(hClassSubKey, sName, 0&, _
 lValueType, 0&, lbufValue)

 ' Check for string
 If lValueType = REG_SZ Then

 If lbufValue <> 0 Then
 lret3 = RegQueryValueExStr(hClassSubKey, sName,
_
 0&, lValueType, bufValue, lbufValue)
 End If

 If Left$(bufKeyName2, lbufKeyName2) <> _
 "ExtendedErrors" Then
 Debug.Print Left$(bufKeyName2, lbufKeyName2) &
_
 " = " & Left$(bufValue, lbufValue)
 End If
 End If ' string
 RegCloseKey hClassSubKey
 End If
 End If
 lxKey2 = lxKey2 + 1
 Loop While lret2 = ERROR_SUCCESS

 End If

 RegCloseKey hClassKey
 End If
Loop While lret = ERROR_SUCCESS

RegCloseKey hCLSIDKey

End Sub

Here is the output of ListDPs on my system:

NEW PROVIDER
CLSID = {0C7FF16C-38E3-11d0-97AB-00C04FC2AD98}
InprocServer32 = C:\Program Files\Common Files\system\ole
db\SQLOLEDB.DLL
OLE DB Provider = Microsoft OLE DB Provider for SQL Server
ProgID = SQLOLEDB.1
VersionIndependentProgID = SQLOLEDB

NEW PROVIDER
CLSID = {3449A1C8-C56C-11D0-AD72-00C04FC29863}
InprocServer32 = C:\Program Files\Common Files\system\msadc\MSADDS.DLL
OLE DB Provider = MSDataShape
ProgID = MSDataShape.1
VersionIndependentProgID = MSDataShape

NEW PROVIDER
CLSID = {c8b522cb-5cf3-11ce-ade5-00aa0044773d}
InprocServer32 = C:\Program Files\Common Files\System\OLE
DB\MSDASQL.DLL
OLE DB Provider = Microsoft OLE DB Provider for ODBC Drivers
ProgID = MSDASQL.1

VersionIndependentProgID = MSDASQL

NEW PROVIDER
CLSID = {dee35060-506b-11cf-b1aa-00aa00b8de95}
InprocServer32 = C:\Program Files\Common Files\system\ole
db\MSJTOR35.DLL
OLE DB Provider = Microsoft Jet 3.51 OLE DB Provider
ProgID = Microsoft.Jet.OLEDB.3.51
VersionIndependentProgID = Microsoft.Jet.OLEDB

NEW PROVIDER
CLSID = {dfc8bdc0-e378-11d0-9b30-0080c7e9fe95}
InprocServer32 = C:\Program Files\Common Files\system\ole
db\MSDAOSP.DLL
OLE DB Provider = Microsoft OLE DB Simple Provider
ProgID = MSDAOSP.1
VersionIndependentProgID = MSDAOSP

NEW PROVIDER
CLSID = {e8cc4cbe-fdff-11d0-b865-00a0c9081c1d}
InprocServer32 = C:\Program Files\Common Files\system\ole
db\MSDAORA.DLL
OLE DB Provider = Microsoft OLE DB Provider for Oracle
ProgID = MSDAORA.1
VersionIndependentProgID = MSDAORA

NEW PROVIDER
CLSID = {E8CCCB79-7C36-101B-AC3A-00AA0044773D}
InprocServer32 = C:\oledbsdk\bin\SAMPPROV.DLL
OLE DB Provider = Microsoft OLE DB Sample Provider
ProgID = SampProv
VersionIndependentProgID = SampProv

With reference to this output, a CLSID is a number that is intended to identify the data
provider (in this case) or any software component (in more general settings) throughout
the universe. This is why it is also referred to as a globally unique identifier (GUID). We
have no use for this value, however.

The InprocServer32 entry shows the fully qualified name of the DLL that actually
implements the data provider. For instance, the Jet provider has the filename C:\Program
Files\Common Files\system\ole db\MSJTOR35.DLL.

The OLE DB Provider entry is the name of the provider. This can be used with the
Provider property of the Connection object. The ProgID entry is the provider’s
programmatic ID, an identifying string that is friendlier than the CLSID and is supposed
to be unique as well. The ProgID can also be used as the value of the Provider property.

17.6 A Closer Look at Connection Strings

It seems fair to say that the most confusing aspect of using ADO is determining the
correct connection string required to establish a connection to an OLE DB provider.
Certainly, this is one of the first confusing aspects of ADO, if not the only one.

In the beginning, there was only one OLE DB provider—Microsoft OLE DB Provider for
ODBC Drivers. This was a good way for Microsoft to introduce OLE DB, because it
meant that any ODBC provider automatically became an OLE DB provider.

Today, the list of OLE DB providers has grown to include the following (and presumably
there are more of which I am not aware):

• Microsoft OLE DB Simple Provider (a JavaBeans-related interface)
• Microsoft OLE DB Provider for ODBC Drivers (for Open Database Connectivity)
• Microsoft OLE DB Provider for Oracle (for Oracle databases)
• Microsoft Jet 3.51 OLE DB Provider (for Jet databases)
• Microsoft OLE DB Provider for SQL Server (for SQL Server databases)
• Microsoft OLE DB Provider for Directory Services (provides directory services—

that is, logon, administration and replication services—for Windows NT Server
networks)

Aside from the ODBC provider, the SQL Server provider is used most often in examples,
so we will not do so here. On the PC side, I think that the most interesting OLE DB
providers are the Jet provider and the ODBC provider, especially since the latter can be
used to connect to such things as Excel spreadsheets and text documents. Accordingly,
we will take a look at how to set up connection strings using these two providers.

17.6.1 The Microsoft Jet 3.51 OLE DB Provider

Oddly enough, the MSDN Library (which is now the main source of documentation for
Microsoft’s development platforms) does not seem to document the Jet 3.51 OLE DB
provider—at least I couldn’t find any documentation on it. However, some
experimentation will yield sufficient details to use the provider.

You may be wondering why you would want to use this OLE DB provider to connect to a
Jet database when DAO was specifically designed for this purpose and works quite well.
This is a fair question. I suppose one answer is that we had better stay current with
Microsoft’s technology, or we may find ourselves in trouble later on. Frankly, I wish I
had a better answer at this time.

The place to start is with the results of the ListDPs procedure shown earlier for the Jet
provider:

CLSID = {dee35060-506b-11cf-b1aa-00aa00b8de95}
InprocServer32 = C:\Program Files\Common Files\system\ole
db\MSJTOR35.DLL
OLE DB Provider = Microsoft Jet 3.51 OLE DB Provider
ProgID = Microsoft.Jet.OLEDB.3.51
VersionIndependentProgID = Microsoft.Jet.OLEDB

Recall that we can use either the ProgID entry or the OLE DB Provider entry as the value
of the Provider property of the Connection object.

The AccessExample procedure in Example 17-5 illustrates a connection to a Jet database.

Example 17-5. The AccessExample procedure

Sub AccessExample()

Dim rs As ADODB.Recordset
Dim cn As ADODB.Connection

' Set up connection
Set cn = New ADODB.Connection
cn.Provider = "Microsoft Jet 3.51 OLE DB Provider"
cn.ConnectionString = "Data Source=D:\BkAccessII\AccessCode.mdb"
cn.Open

' Get full connection string after opening
Debug.Print "Full connection string: " & cn.ConnectionString

' Get list of 2s
Set rs = cn.OpenSchema(adSchemaTables)
Do While Not rs.EOF
 Debug.Print rs!TABLE_NAME & " Type: " & rs!TABLE_TYPE
 rs.MoveNext
Loop

rs.Close
cn.Close

End Sub

After declaring and creating a Connection object:

Dim cn As ADODB.Connection
Set cn = New ADODB.Connection

we set the Provider property:

cn.Provider = "Microsoft Jet 3.51 OLE DB Provider"

As for the ConnectionString property, without knowing much about the connection string
format, we try specifying just a data source:

cn.ConnectionString = "Data Source=D:\BkAccessII\AccessCode.mdb"

Then we open the connection and print the ConnectionString property:

cn.Open
Debug.Print "Full connection string: " & cn.ConnectionString

The resulting output gives us a full connection string, which in this case is:

Provider=Microsoft.Jet.OLEDB.3.51; _

Persist Security Info=False; _
User ID=Admin; _
Data Source=D:\BkAccessII\AccessCode.mdb; _
Mode=Share Deny None; _
Extended Properties=";COUNTRY=0;CP=1252;LANGID=0x0409"; _
Locale Identifier=1033; _
Jet OLEDB:System database=""; _
Jet OLEDB:Registry Path=""; _
Jet OLEDB:Database Password=""; _
Jet OLEDB:Global Partial Bulk Ops=2

Much of this connection string, such as the Persist Security Info, is obscure. Fortunately,
we don’t seem to need it. Note that the Provider parameter is the ProgID rather than the
text description that we used to set this value.

Finally, to test the connection, we also print out a list of all of the tables in the database
using the OpenSchema method of the Connection object. The result is:

MSysACEs Type: SYSTEM TABLE
MSysIMEXColumns Type: TABLE
MSysIMEXSpecs Type: TABLE
MSysModules Type: TABLE
MSysModules2 Type: TABLE
MSysObjects Type: SYSTEM TABLE
MSysQueries Type: SYSTEM TABLE
MSysRelationships Type: SYSTEM TABLE
Names Type: TABLE
Table1 Type: TABLE

17.6.2 The Microsoft OLE DB Provider for ODBC Drivers

Open Database Connectivity (ODBC) for short, is an Application Programming Interface
(API) designed for connecting to databases of various types. The term database is used
here in a very general sense to refer not only to traditional relational databases, such as
Access, FoxPro, Oracle, or SQL Server databases, but also to less traditional “databases,”
such as delimited text files or Excel worksheets.

Since ODBC is still very commonly used and will be for some time, I have included
Appendix C, which describes this technology in some detail. For now, we want to discuss
how to connect to an ODBC data source through the OLE DB provider for ODBC. To
understand the process completely and create your own connection strings, you must be
familiar with ODBC Data Source Names. These are discussed in Appendix C. However,
to modify the connection strings for the Excel files and text files that we will discuss
later, you don’t really need to know anything about DSNs beyond the following.

The term Data Source Name (DSN) refers not simply to the name of the data source, but
to a description of the data source and its accompanying driver, as well as the attributes
of a connection between the two. For instance, a DSN includes the name of the data
source, the complete path of the data source, the name of the driver, and details about the
connection to the data source, such as whether the connection is read-only. As we will

see in the Appendix C, there are various types of DSNs. A DSN is created using the
ODBC Administrator, which can be activated by clicking on the ODBC icon in the
Windows Control Panel. Appendix C discusses how to use this applet.

Again referring to the output of the ListDPs procedure described earlier, we first note that
the Provider property of the Connection object can be set to either MSDASQL (or its
version-dependent counterpart, MSDASQL.1) or the string "Microsoft Jet 3.51 OLE DB
Provider". Also, since this provider is the default, we can simply omit the Provider
property altogether.

Fortunately, there is some documentation for the Microsoft OLE DB provider for ODBC,
and, equally fortunately, it is quite clearly written, as far as it goes. Here is what the
documentation says about the connect string (this is from the Microsoft MSDN Library
CD):

Because you can omit the Provider parameter, you can therefore compose
an ADO connection string that is identical to an ODBC connection string
for the same data source, using the same parameter names (DRIVER=,
DATABASE=, DSN=, and so on), values, and syntax as you would when
composing an ODBC connection string. You can connect with or without
a predefined data source name (DSN) or FileDSN.

Syntax with a DSN or FileDSN:

“[Provider=MSDASQL;] { DSN=name | FileDSN=filename } ;
[DATABASE=database;] UID=user; PWD=password”

Syntax without a DSN (DSN-less connection):

“[Provider=MSDASQL;] DRIVER=driver; SERVER=server;
DATABASE=database; UID=user; PWD=password”

If you use a DSN or FileDSN, it must be defined through the ODBC
Administrator in the Windows Control Panel. As an alternative to setting a
DSN, you can specify the ODBC driver (DRIVER=), such as
“SQLServer,” the server name (SERVER=), and the database name
(DATABASE=).

You can also specify a user account name (UID=), and the password for
the user account (PWD=) in the ODBC-specific parameters or in the
standard ADO-defined User ID and Password parameters. If you include
both the ADO and the ODBC-specific parameters for these values, the
ADO parameters take precedence.

Although a DSN definition already specifies a database, you can specify a
DATABASE parameter in addition to a DSN to connect to a different

database. This also changes the DSN definition to include the specified
database. It is a good idea to always include the DATABASE parameter
when you use a DSN. This will ensure that you connect to the proper
database because another user may have changed the default database
parameter since you last checked the DSN definition.

This seems to be saying that when we omit the provider portion of the connection string
(which can always be supplied using the Provider property), an OLE DB connection
string is identical with an ODBC connection string. Of course, this begs the question:
“How do we compose an ODBC connection string?”

The simplest answer is to let Windows do this for us. However, the starting point for this
is a DSN that we must create, probably using the ODBC Administrator. The
GetODBCConnectString procedure in Example 17-6 will extract a connection string from
a DSN. The procedure first uses DAO (yes, DAO) to create an ODBC workspace. Then
the OpenConnection method:

Set c = ws.OpenConnection("", dbDriverPrompt, , "ODBC;")

causes Windows to display the ODBC Administrator so we can create a DSN. Once this
is done, the procedure prints the complete connection string.

Example 17-6. The GetODBCConnectString procedure

Private Sub GetODBCConnectString()

' Create an ODBC workspace and get the connect string for a DSN

Dim db As Database, ws As Workspace, rs As Recordset
Dim cn As Connection

Set ws = CreateWorkspace("NewODBC", "admin", "", dbUseODBC)

' The following causes a prompt for the DSN
Set cn = ws.OpenConnection("", dbDriverPrompt, , "ODBC;")
Debug.Print cn.Connect
cn.Close

End Sub

Actually, there are two types of ODBC connection strings—DSN and DSN-less. Here are
examples of the two types of connection strings for a connection to an Excel worksheet
and to a text file. These strings were obtained using the GetODBCConnectString
procedure:

' Excel DSN-less connection string
ODBC; _
DBQ=D:\BkAccessII\Connect.xls; _
DefaultDir=D:\bkado; _
Driver={Microsoft Excel Driver (*.xls)}; _

DriverId=790; _
FIL=excel 5.0; _
ImplicitCommitSync=Yes; _
MaxBufferSize=512; _
MaxScanRows=8; _
PageTimeout=5; _
ReadOnly=0; _
SafeTransactions=0; _
Threads=3; _
UID=admin; _
UserCommitSync=Yes;

' Excel DSN connection string
ODBC; _
DSN=ConnectExcel; _
DBQ=D:\BkAccessII\Connect.xls; _
DefaultDir=D:\bkado; _
DriverId=790; _
FIL=excel 5.0; _
MaxBufferSize=512; _
PageTimeout=5; _
UID=admin;

' Text file DSN-less connection string
ODBC; _
DefaultDir=D:\bkado; _
Driver={Microsoft Text Driver (*.txt;*.csv)}; _
DriverId=27; _
Extensions=txt,csv,tab,asc; _
FIL=text; _
ImplicitCommitSync=Yes; _
MaxBufferSize=512; _
MaxScanRows=25; _
PageTimeout=5; _
SafeTransactions=0; _
Threads=3; _
UID=admin; _
UserCommitSync=Yes;

' Text file DSN connection string
ODBC; _
DSN=ConnectText; _
DBQ=D:\bkado; _
DefaultDir=D:\bkado; _
DriverId=27; _
FIL=text; _
MaxBufferSize=512; _
PageTimeout=5; _
UID=admin; _

The main difference between the two types of connection strings is that in a DSN
connection string, the DSN file is referenced so that ODBC can get information from that
file. In a DSN-less string, all required information must be supplied directly. Thus, in
many ways DSN-less connection strings are superior since they do not require an external
DSN file.

Let me reiterate (lest you become annoyed with me) that we will discuss creating DSNs
using the ODBC Administrator in Appendix C. At this point, however, you should just
keep the following in mind:

• If you just want to connect to an Excel spreadsheet or text file, you can modify
and use the connection strings in the upcoming examples.

• If you want to create a connection string for a different ODBC provider, you can
use the GetODBCConnectString procedure to get the proper connection string,
but for this you will need to use the ODBC Administrator to create a DSN. A
discussion of how to do this is given in Appendix C, along with more details on
DSNs and ODBC in general. As we will see in the appendix, by creating a File
DSN, the GetODBCConnectString procedure will produce a DSN-less connection
string!

So let us turn to some actual examples.

17.6.2.1 Connecting to an Excel workbook

The ExcelExample procedure shown in Example 17-7 illustrates how to connect to an
Excel worksheet named MasterTable (shown in Figure 17-6) in the workbook
D:\BkAccessII\Connect.xls.

Figure 17-6. A test Excel worksheet

The procedure uses the SQL statement:

"SELECT * FROM [MasterTable$]"

to open a recordset based on this table. (I can’t tell you how long it took me to determine
that a dollar sign must be appended to the end of an Excel worksheet name.)

We set the connect string to:

' Connection string
cn.ConnectionString = _
 "DRIVER={Microsoft Excel Driver
(*.xls)};DBQ=D:\BkAccessII\Connect.xls;"

Note the DBQ parameter. Based on the documentation from Microsoft that I quoted
earlier, I first tried to use the parameter name DATABASE, but was rudely rewarded with
the message “Operation cancelled” at the line:

cn.Open

(In case you are wondering how I discovered that DBQ was the correct name, I used the
ODBC Administrator to create a DSN and inspected the DSN file with a text editor.)

The ExcelExample procedure in Example 17-7 prints the full connection string, which in
this case is:

Provider=MSDASQL.1; _
Connect Timeout=15; _
Extended Properties="DBQ=D:\BkAccessII\Connect.xls; _
 Driver={Microsoft Excel Driver (*.xls)}; _
 DriverId=790; _
 MaxBufferSize=512; _
 PageTimeout=5;"; _
Locale Identifier=1033

Next, the procedure prints the field names for the Excel worksheet, which are the entries
in the first row. (I didn’t know this until I ran this code.) It then prints the remaining rows
of the table. Note the use of the GetRows function to grab all of the records in the
recordset at once.

Finally, the procedure gathers some support information for future reference.

Example 17-7. The ExcelExample procedure

Sub ExcelExample()

Dim r As Integer, f As Integer
Dim vrecs As Variant

Dim rs As ADODB.Recordset
Dim cn As ADODB.Connection
Dim fld As ADODB.Field

' Set up connection
Set cn = New ADODB.Connection

' Set provider
' Note we can also use the ProgID: "MSDASQL.1", or nothing!
cn.Provider = "Microsoft OLE DB Provider for ODBC Drivers"

' Connection string
cn.ConnectionString = _
 "DRIVER={Microsoft Excel Driver
(*.xls)};DBQ=D:\BkAccessII\Connect.xls;"

' Open the connection

cn.Open

' Get full connection string after opening
Debug.Print "Full connection string: " & cn.ConnectionString

' Get recordset using rs.open SQL statement
Set rs = New ADODB.Recordset
rs.CursorLocation = adUseClient
rs.Open "SELECT * FROM [MasterTable$]", cn, adOpenDynamic,
adLockOptimistic

' Print the field names (from first row)
For Each fld In rs.Fields
 Debug.Print fld.Name,
Next
Debug.Print

' Get the rows all at once
vrecs = rs.GetRows(6)

For r = 0 To UBound(vrecs, 2)
 For f = 0 To UBound(vrecs, 1)
 Debug.Print vrecs(f, r),
 Next
 Debug.Print
Next

' Check support options while we are here
Debug.Print
Debug.Print "Client-Side Dynamic Recordset:"
Debug.Print "adAddNew: " & rs.Supports(adAddNew)
Debug.Print "adBookmark: " & rs.Supports(adBookmark)
Debug.Print "adDelete: " & rs.Supports(adDelete)
Debug.Print "adFind: " & rs.Supports(adFind)
Debug.Print "adUpdate: " & rs.Supports(adUpdate)
Debug.Print "adMovePrevious: " & rs.Supports(adMovePrevious)

rs.Close
cn.Close

End Sub

The output from the support information code is:

Client-Side Dynamic Recordset:
adAddNew: True
adBookmark: True
adDelete: True
adFind: True
adUpdate: True
adMovePrevious: True

This shows that ADO provides pretty good access to an Excel worksheet.

17.6.2.2 Connecting to a text file

The TextExample procedure, shown in Example 17-8, illustrates how to create a text file
and add text to it using the ODBC provider for OLE DB. (Before running this procedure,
you will probably want to change the DefaultDir value.)

Example 17-8. The TestExample procedure

Sub TextExample()

Dim rs As ADODB.Recordset
Dim cn As ADODB.Connection
Dim sCS As String
Dim sSQL As String

' Declare new connection
Set cn = New ADODB.Connection

' Form connection string
sCS = "DefaultDir=d:\bkado;"
sCS = sCS & "Driver={Microsoft Text Driver (*.txt; *.csv)};"
sCS = sCS & "DriverId=27;"
cn.ConnectionString = sCS

cn.Open

' Get full connection string after opening
Debug.Print "Full connection string: " & cn.ConnectionString

' Create a new text file and add a line
On Error Resume Next
cn.Execute "CREATE TABLE [newfile.txt] (FirstName TEXT, LastName
TEXT);"

If Err.Number <> 0 And Err.Number <> vbObjectError + 3604 Then
 MsgBox "Error: " & Err.Number & ": " & Err.Description
 Err.Clear
End If

sSQL = "INSERT INTO [newfile.txt] (FirstName, LastName) Values
('steve', 'roman');"
cn.Execute sSQL

' Open a recordset
Set rs = New ADODB.Recordset
rs.Open "SELECT * FROM NewFile.txt", cn, adOpenDynamic,
adLockOptimistic

' Check support options while we are here
Debug.Print
Debug.Print "Client-Side Dynamic Recordset:"
Debug.Print "adAddNew: " & rs.Supports(adAddNew)
Debug.Print "adBookmark: " & rs.Supports(adBookmark)
Debug.Print "adDelete: " & rs.Supports(adDelete)
Debug.Print "adFind: " & rs.Supports(adFind)

Debug.Print "adUpdate: " & rs.Supports(adUpdate)
Debug.Print "adMovePrevious: " & rs.Supports(adMovePrevious)

rs.Close
cn.Close

End Sub

In this case, there is a wrinkle in the connection-string requirements. We seem to need the
clause:

DriverId = 27;

in the connection string, even though the driver name is also given. Without the
DriverId, we get the confusing error message “Data source name not found and no
default driver specified.” As with the Excel example, to figure this out, I created a DSN
with the ODBC Administrator and inspected the resulting file. Starting with the entire
connection string based on that file, I slowly eliminated entries until I got a minimal
working connection string.

Note also that when creating a new text file, we need to deal with the possibility that the
file already exists. The line:

On Error Resume Next

tells VBA that if an error occurs, it should simply skip the line that produced the error
and execute the next line. Now consider the code that will handle an error:

If Err.Number <> 0 And Err.Number <> vbObjectError + 3604 Then
 MsgBox "Error: " & Err.Number & ": " & Err.Description
 Err.Clear
End If

If we remove the On Error Resume Next line, the second time we run the procedure, we
will get the error message in Figure 17-7.

Figure 17-7. An error message

Now, VBA uses error numbers starting with the constant vbObjectError (which equals
&H8004000) to indicate object errors. The error number in Figure 17-7 is thus:

&H8004000 + &H0e14 = vbObjectError + 3604

So, the error-handling code:

If Err.Number <> 0 And Err.Number <> vbObjectError + 3604 Then
 MsgBox "Error: " & Err.Number & ": " & Err.Description
 Exit Sub
End If

looks for errors message other than error number vbObjectError+3604. If it finds such
an error, it displays a message and exits. However, if the error is the one shown in Figure
17-7, then the procedure just ignores it. This is what we want, because the next line of
code just inserts a line in the existing file.

The full connection string for this text connection is:

Provider=MSDASQL.1; _
Connect Timeout=15; _
Extended Properties="DefaultDir=d:\bkado; _
...Driver={Microsoft Text Driver (*.txt; *.csv)}; _
...DriverId=27;MaxBufferSize=512;PageTimeout=5;"; _
Locale Identifier=1033

and the support-related output is:

Client-Side Dynamic Recordset:
adAddNew: True
adBookmark: False
adDelete: True
adFind: True
adUpdate: True
adMovePrevious: True

Thus, we even have pretty good access to a text file, but we cannot use bookmarks.

17.6.2.3 ODBC support

The documentation for the ODBC data provider does include some useful tables that
describe which features are available for various recordset types. These tables are
reproduced here as Tables 17-3 and 17-4.

Table 17-3. Availability of properties by Recordset
Property ForwardOnly Dynamic Keyset Static

AbsolutePage Not available Not available Read/write Read/write
AbsolutePosition Not available Not available Read/write Read/write
ActiveConnection Read/write Read/write Read/write Read/write
BOF Read-only Read-only Read-only Read-only
Bookmark Not available Not available Read/write Read/write
CacheSize Read/write Read/write Read/write Read/write

CursorLocation Read/write Read/write Read/write Read/write
CursorType Read/write Read/write Read/write Read/write
EditMode Read-only Read-only Read-only Read-only
EOF Read-only Read-only Read-only Read-only
Filter Read/write Read/write Read/write Read/write
LockType Read/write Read/write Read/write Read/write
MarshalOptions Read/write Read/write Read/write Read/write
MaxRecords Read/write Read/write Read/write Read/write
PageCount Not available Not available Read-only Read-only
PageSize Read/write Read/write Read/write Read/write
RecordCount Not available Not available Read-only Read-only
Source Read/write Read/write Read/write Read/write
State Read-only Read-only Read-only Read-only
Status Read-only Read-only Read-only Read-only

Table 17-4. Availability of methods by Recordset
Method ForwardOnly Dynamic Keyset Static

AddNew Yes Yes Yes Yes
CancelBatch Yes Yes Yes Yes
CancelUpdate Yes Yes Yes Yes
Clone No No Yes Yes
Close Yes Yes Yes Yes
Delete Yes Yes Yes Yes
GetRows Yes Yes Yes Yes
Move Yes Yes Yes Yes
MoveFirst Yes Yes Yes Yes
MoveLast No Yes Yes Yes
MoveNext Yes Yes Yes Yes
MovePrevious No Yes Yes Yes
NextRecordset (except Jet) Yes Yes Yes Yes
Open Yes Yes Yes Yes
Requery Yes Yes Yes Yes
Resync No No Yes Yes
Supports Yes Yes Yes Yes
Update Yes Yes Yes Yes
UpdateBatch Yes Yes Yes Yes

17.7 An Example: Using ADO over the Web

Let us conclude this chapter with a simple real-world illustration of the use of ADO.
Many web sites expose data from an underlying database. Now, it is quite easy to save an
Access table in the form of an HTML page, using Access’ Export feature. However, the
resulting data is static. To generate dynamic data in response to a user’s input, we need to
do some programming.

One of my duties is to maintain a web site called The Mathematics Online Bookshelf
(http://www.mathbookshelf.com). This site is essentially a frontend for a searchable Jet
database of several thousand high-level mathematics books. The user can fill in a search
form and click a Search button. All matching records will be returned to the user over the
Web. Let’s look at a simplified version of the ADO code used to search the database.
(Incidentally, the context of this code is an Active Server Pages (ASP) file, and the
scripting language is VBScript. However, you don’t need to know anything about these
technologies.)

Figure 17-8 shows a greatly simplified version of the search form. This version allows
user input of author, title, and publisher, and the principle is the same for more
complicated forms.

Figure 17-8. A search page

We begin by noting that in VBScript, the Like operator uses a percent sign (%) to
represent any string and an underscore (_) to denote any single character. (This is the
syntax of regular expressions.)

First, we declare some variables. Since this code is written as VBScript, variables are
declared without a type. Note that we include variables that correspond to the values of
each search-form control.

' Declare variables
Dim cn, rs, sSQL
Dim author, authorexact, title, titleexact, publisher
Dim connective
Dim cMatches

Then we assign the variables to the control’s values, as returned by the ASP Request
object.

' Gather input from search form
author = Request("txtAuthor")
authorexact = Request("optAuthor")
title = Request("txtTitle")
titleexact = Request("optTitle")
publisher = Request("lstPublishers")

Now we open an ADO connection to the database, which is called MobBooks, and
declare a recordset variable for later use.

' Open a connection to MobBooks database
Set cn = Server.CreateObject("ADODB.Connection")
Set rs = Server.CreateObject("ADODB.Recordset")

cn.Provider = "Microsoft Jet 3.51 OLE DB Provider"
cn.ConnectionString = "Data Source=" & Server.MapPath("/MobBooks.mdb")
& ";Jet OLEDB:
Database Password=""xxxxx"""
cn.Open

Now we can build an SQL statement based on the contents of the search form, as
contained in the variables.

We begin by creating a JOIN between the MobBooks and the MobPubs tables. The
reason is that the PUB field in the MobBooks table contains abbreviations for the
publisher names, but we want to display the full publisher names, which are in the
MobPubs table.

' Build SQL statement

' Start with a join between MobBooks and
' Publishers to pick up Long name of publisher
sSQL = "SELECT MobBooks.*, MobPubs.[LONG NAME] AS Publisher"
sSQL = sSQL & " FROM MobBooks INNER JOIN MobPubs ON MobBooks.PUB =
MobPubs.PUBLISHER"

connective = " WHERE "

' Publisher
If publisher <> "-All Publishers-" Then
 sSQL = sSQL & connective & "([Long Name] = '" & publisher & "')"
 connective = " AND "
End If

' Author
if author <> "" then
 if authorexact = "exact" then
 sSQL = sSQL & connective & "(AU='" & author & "')"
 else
 sSQL = sSQL & connective & "(AU Like '%" & author & "%')"
 End If
 connective = " AND "
End If

' Title
if title <> "" then
 if titleexact = "exact" then
 sSQL = sSQL & connective & "(Title='" & title & "')"
 else
 sSQL = sSQL & connective & "(Title Like '%" & title & "%')"
 End If

 connective = " AND "
End If

Next we open the recordset:

' Open recordset
rs.Open sSQL, cn

Now we can write the search results to HTML output, using the Write method of the
ASP Response object (the HTML header has already been written):

' Write search results to html output

' First write search form's control values for reference
connective = ""
Response.Write "Search Criteria
"
If title <> "" Then
 Response.Write connective & "Title:" &
title
 connective = "; "
end if
If author <> "" Then
 Response.Write connective & "Author:" &
author
 connective = "; "
End If
If publisher <> "" Then
 Response.Write connective & "Pub:" &
publisher
End If
Response.Write "
"
connective = ""

' Loop through recordset
cMatches = 0
Do While Not rs.eof

 cMatches = cMatches + 1

 Response.Write "<HR>" & cMatches & " - " &
 rs("Title") & ""
 Response.Write "
" & rs("Au")

 ' Collect bibliographic data from recordset
 bib = ""
 if rs("Date") <> "" then bib = bib & ", " & rs("Date")
 if rs("ISBN") <> "" then bib = bib & ", " & rs("ISBN")
 if rs("Pages") <> "" then bib = bib & ", " & rs("Pages") & " pp."
 if rs("Price") <> "" then bib = bib & ", $" & rs("Price")

 ' Remove leading comma and space and print it
 bib = "
" & mid(bib, 2)
 Response.write bib

 ' Write TOC

 if rs("TOC") <> "" then Response.write
 "
<i>Contents</i>: " & rs("TOC")

 rs.MoveNext
Loop

Response.Write "<HR>"

rs.close
cn.close

That’s it. As you can see, a little ADO programming is all it takes to “publish” an Access
database over the Web.

Chapter 18. ADOX: Jet Data Definition in ADO
ADOX is an acronym for ADO Extensions for Data Definition and Security. When
making comparisons between ActiveX Data Objects (ADO) and Data Access Objects
(DAO), proponents of DAO will point out that ADO does not include features for data
definition—that is, features that can be used to create and alter databases and their
components (tables, columns, indexes, etc.). This is precisely the purpose of ADOX, but
not just in the context of Jet databases. ADOX is intended to be a universal data-
definition object model. Of course, as with ADO, it requires support from OLE DB data
providers. Our concern is with ADOX in relation to Jet.

I plan to discuss the role of ADOX in various data definition operations, such as creating
a Jet database and creating and altering Jet database tables.

It is worth mentioning that ADOX is not a complete substitute for DAO’s data-definition
features. For example, query creation in ADOX has a serious wrinkle (at least for Access
2000). Namely, a query created using ADOX will not appear in the Access 2000 user
interface! We will revisit this issue later in this chapter.

18.1 The ADOX Object Model

The ADOX object model is shown in Figure 18-1. The model has 9 object pairs
(object/collection), about 75 properties, and about 50 methods—not a very large object
model as Microsoft object models go (and smaller than the ADO object model).
Unfortunately, the ADOX help documentation is among Microsoft’s worst, which is
saying a lot.

Let’s now look at some of the more common data-definition operations from the
perspective of ADOX.

18.1.1 Creating a Database

To create a Jet database, use the Create method of the Catalog object. Its syntax is:

CatObject.Create(ConnectString)

where ConnectString is a connection string that must also define the database to be
created.

The following code creates a new Jet database:

Sub CreateDatabase()

Dim cat As New Catalog

Figure 18-1. The ADOX object model

' Must use version 3.51 of data provider in order
' to create a database compatible with Access 97.
' If this is not required, can use version 4.0.
cat.Create "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=d:\temp\ADOXExample.mdb"

End Sub

Note that if the database already exists, an error will be generated. Incidentally, the
ADOX documentation says: “The Create method creates and opens a new ADO
Connection to the data source specified in ConnectString.” This seems to imply that the
data source must already exist, which is, of course, not the case.

18.1.2 Creating Tables

A Jet table in ADOX is created as follows:

1. Create a Table object.
2. Give it a name by assigning a string containing the name to the Table object’s

Name property.
3. Append some columns to the Table object’s Columns collection. Do this by

calling the Append method of the Column collection. Its syntax is:

TableObject.Columns.Append Item[, Type[, DefinedSize]]

where Item is either a Column object or the string containing the name of the
column. The remaining two parameters are optional if Item is a Column object
that contains all column information. Type is an optional Long or a member of the
DataTypeEnum enumeration (the default is adVarWChar), and DefinedSize is an
optional Long that determines the column size.

4. Append the Table object to the Catalog object’s Tables collection. Do this by
calling the Append method of the Tables collection. Its syntax is:

TablesObject.Append Item

where Item is the Table object added to the collection.

Here is a sample:

Sub CreateTable()

Dim cat As New ADOX.Catalog
Dim tbl As New ADOX.Table

' Open catalog
cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=d:\temp\ADOXExample.mdb"

' Assign table name and some columns
With tbl
 .Name = "NewTable"
 .Columns.Append "Column1", adVarWChar, 250
 .Columns.Append "Column2", adInteger
 .Columns.Append "Column3", adInteger
End With

cat.Tables.Append tbl

End Sub

To rename a column, we use the Name property of the Column object. To delete a
column, we use the Delete method of the Columns collection. Its syntax is:

ColumnsObject.Delete Item

where Item is a string containing the name of the column to delete. Here is an example:

Sub ChangeColumn()

Dim cat As New ADOX.Catalog
Dim tbl As New ADOX.Table

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _

 "Data Source=d:\temp\ADOXExample.mdb"

' Assign table name and some columns
Set tbl = cat.Tables("Newtable")

' Rename a column
tbl.Columns("Column2").Name = "Column2X"

' Delete a column
tbl.Columns.Delete "Column3"

End Sub

You may have noticed the use of the data type constant adVarWChar to create a string
column. Table 18-1 compares the field data type constants of DAO and ADOX.

Table 18-1. DAO/ADOX field data type constants
DAO data type ADOX data type

dbBinary adBinary
dbBoolean adBoolean
dbByte adUnsignedTinyInt
dbCurrency adCurrency
dbDate adDate
dbDecimal adNumeric
dbDouble adDouble
dbGUID adGUID
dbInteger adSmallInt
dbLong adInteger
dbLongBinary adLongVarBinary
dbMemo adLongVarWChar
dbSingle adSingle
dbText adVarWChar

18.1.3 The Tables Collection

Unlike DAO, the ADO Tables collection may contain objects other than Jet tables. For
example, the Tables collection contains row-returning, nonparameterized queries (which
are considered Views by ADO).

To determine the actual type of a Table object, we can use the Type property. Table 18-2
lists the possible values for the Type property (in the context of the Jet Data Provider).
Note that the Type property is read-only and returns a string.

Table 18-2. Return values of the Table object’s Type property
Type property returns Description

ACCESS TABLE A Microsoft Access system table
LINK A linked table from a non-ODBC data source
PASS-THROUGH A linked table from an ODBC data source

SYSTEM TABLE A Microsoft Jet system table
TABLE A Jet table
VIEW A row-returning, nonparameterized query

For instance, the following code:

Sub ListTables()

Dim cat As New ADOX.Catalog
Dim tbl As ADOX.Table

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=d:\temp\ADOXExample.mdb;"

For Each tbl In cat.Tables
 Debug.Print tbl.Name, tbl.Type
Next
End Sub

may produce the following output:

MSysAccessObjects ACCESS TABLE
MSysACEs SYSTEM TABLE
MSysObjects SYSTEM TABLE
MSysQueries SYSTEM TABLE
MSysRelationships SYSTEM TABLE
NewQuery VIEW
NewTable TABLE

18.1.4 Creating Indexes

The process for creating a table index is the same in ADOX as it is in DAO:

1. Create the index by creating an Index object and assigning a name to it.
2. Append columns one by one to the Index object’s Columns collection. Call the

Columns collection’s Append method; its syntax was discussed in Section 18.1.3
earlier in this chapter.

3. Append the index to the Table object’s Indexes collection. The syntax of the
Append method is:

TableObject.Indexes.Append Index[, Columns]

where Index is the Index object to be appended or a string containing the name of
the index to create, and Columns is an optional variant specifying the columns to
be indexed.

Here is an example:

Sub ADOCreateIndex()

Dim cat As New ADOX.Catalog
Dim tbl As ADOX.Table
Dim idx As New ADOX.Index

' Open the catalog
cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=d:\temp\ADOXExample.mdb;"

Set tbl = cat.Tables("Newtable")

' Create Index object and append table column to it
idx.Name = "Newindex"
idx.Columns.Append "Column1"

' Allow Null values
idx.IndexNulls = adIndexNullsAllow

' Append the Index object to the table's Indexes collection
tbl.Indexes.Append idx

End Sub

The DAO Index object has two properties that determine the behavior of Nulls within an
index: Required and IgnoreNulls. Both of these properties are False by default, implying
that Null values are allowed in the index and that an index entry is added for each row
with a Null value in the index field.

On the other hand, ADO has a single property, called IndexNulls, that governs the
behavior of Null values in indexes. By default, the IndexNullsproperty is set to
adIndexNullsDisallow, implying that Null values are not allowed in the index and that
no index entry will be added if a field contains Null. Table 18-3 compares the relevant
settings in DAO and ADOX.

Table 18-3. Comparison of constants for treating nulls

DAORequired DAO
IgnoreNulls ADOX IndexNulls Description

True False adIndexNullsDisallow Null value not allowed in index field; no index
entry added

False True adIndexNullsIgnore Null value allowed in index field; no index entry
added

False False adIndexNullsAllow Null value allowed in index field; index entry
added

18.1.5 Creating a Primary Key

In DAO, primary keys are created by setting the Primary property of the Index object to
True. In ADOX, we proceed as follows:

1. Create a Key object.
2. Set its Type property to Primary using the adKeyPrimary constant.

3. Append some columns to the Key object’s Columns collection.
4. Append the Key object to the Index object’s Keys collection.

Here is an example:

Sub ADOCreatePrimaryKey()

Dim cat As New ADOX.Catalog
Dim tbl As ADOX.Table
Dim pk As New ADOX.Key

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=d:\temp\ADOXExample.mdb;"

Set tbl = cat.Tables("Newtable")

' Create the Primary Key
pk.Name = "PrimaryKey"
pk.Type = adKeyPrimary
pk.Columns.Append "Column1"

' Append the Key object to the Keys collection of Table
tbl.Keys.Append pk

End Sub

18.1.6 Creating a Query

To create a query, we use the ADO Command object to create a new ADO command.
This can be appended to the Views (or Procedures) collection of the catalog to create a
new query. Its syntax is:

ViewsObj.Append Name, Command

where Name is a string containing the name of the object, and Command is a Command
object.

Here is an example:

Sub CreateQuery()

Dim cat As New ADOX.Catalog
Dim cd As New ADODB.Command
Dim sSQL As String

cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=d:\temp\ADOXExample.mdb;"

sSQL = "SELECT * FROM Newtable"

cd.CommandText = sSQL

cat.Views.Append "Newquery", cd

End Sub

Now, the bad news. Here is a quotation from MSDN:

Although it is possible to create and modify a stored query in an Access
database by using Microsoft ActiveX® Data Objects Extensions for Data
Definition Language and Security (ADOX), if you do so your query won’t
be visible in the Access Database window or in any other part of the
Access user interface...

The reason behind this invisibility is explained further in MSDN:

This is so because the Microsoft Jet 4.0 database engine can run in two
modes: one mode that supports the same Jet SQL commands used in
previous versions of Access, a new mode that supports new Jet SQL
commands and syntax that are more compliant with the ANSI SQL-92
standard.

Queries created with ADOX can support the new Jet SQL mode, and so
are flagged internally to identify them as using that mode, whether the
query contains the new commands or not. Access 2000 can open an
Access database only while using the mode that supports the older Jet
SQL commands and syntax. To prevent error messages and conflicts
between the new Jet SQL commands and syntax and the Access query
editing tools, Access hides queries that are flagged as containing the new
Jet SQL commands and syntax.

An interesting thing happens with Access 2002. Access 2002 does see the query,
probably because it can handle the newer Jet SQL syntax; however, the Design view of
the query does not show the output fields of the query!

18.1.7 Conclusion

I wish Microsoft would continue to support DAO. It is well understood, easy to use, does
what is necessary, seems quite stable, and is optimized for Jet.

Sony supports a variety of TVs; General Motors supports a variety of cars; General
Electric supports a variety of refrigerators; so why can’t Microsoft support two types of
data access? Imagine General Motors saying: “We make only one model of car, but it is
designed to be universal. Whether you want a convertible sports car, or a car to haul
around ten sheets of plywood, or a car to race on weekends, or a car to do off-roading,
this is the car for you.” Ridiculous.

Part VII: Programming Problems

Chapter 19. Some Common Data Manipulation
Problems
In this chapter, I discuss a number of problems that you may encounter when dealing
with data, along with possible solutions. I suggest that you try to find a solution before
reading the solution in the text. Also, I should mention that there are usually many
different ways of solving a given problem. In fact, you may very well be able to find a
more efficient solution than the one given. The main purpose of these problems and
solutions is to give you some food for thought.

Before beginning, let us note that many of the upcoming solutions involve the use of
subqueries. We discussed subqueries in Chapter 6, but let us review quickly here.

Access SQL permits the use of SELECT statements within other SELECT statements (as
well as in other statements, such as INSERT INTO statements). The internal, or nested,
SELECT statement is referred to as a subquery.

Note that you may include a nested SELECT statement within a main SELECT statement
only if the internal SELECT statement returns at most one record. To illustrate, consider
the main SQL statement:

SELECT Hour,
 (SELECT Count(Interval) FROM StartTimes WHERE (StartTime <= Hour))
 FROM Hours

Here, the internal SQL statement:

SELECT Count(Interval) FROM StartTimes WHERE (StartTime <= Hour)

returns at most a single record, because it returns a Count. Note also that the WHERE clause
in the internal SQL statement refers to the Hour field that is part of the main SQL, thus
linking the return value of the internal statement to the current record in the HOURS
table.

19.1 Running Sums

The computation of running sums is a common operation. To illustrate, consider Table
19-1, which contains the duration (in hours, say) for various events.

Table 19-1. A running sum
Event Duration

1 1
2 5
3 6
4 3

5 4
6 1
7 8
8 2

For each event, we want to compute the sum of all the durations of the events that
precede that event. This sum is a running sum.

19.1.1 Solution

One approach is to use the Cartesian product of the table with itself. In this way, we can
access all records whose Event number precedes that of a given record. For instance, for
the record with Event number 5, we need access to the records with Event numbers 1
through 4. The Cartesian product provides us with these records.

Here is the SQL statement that does the job:

SELECT Running.Event, Sum(RunningCopy.Duration) AS StartTime
FROM Running, Running AS RunningCopy
WHERE (RunningCopy.Event < Running.Event)
GROUP BY Running.Event

The FROM clause creates the Cartesian product of the table with itself. The WHERE clause
restricts the records to those for which:

RunningCopy.Event < Running.Event

that is, to the records that provide information about the records preceding each record in
Table 19-1. Finally, we GROUP BY Event and compute the sum of the durations.

The problem is that Cartesian products are very inefficient and use a lot of resources. (If
Table 19-1 has 100,000 rows, then the Cartesian product has 100,000 x 100,000 =
10,000,000,000 rows!)

A more efficient solution is to use a nested SELECT statement, that is, to use a SELECT
statement within the main SELECT statement. Recall that this is permitted in Access SQL,
provided that the internal SELECT statement returns at most one record.

In the following SQL statement, note the use of table aliases, which are needed because
we must refer to Table 19-1 in two contexts:

SELECT R1.Event,
(SELECT SUM(R2.Duration) FROM Running As R2 WHERE R2.Event < R1.Event)
 AS StartTime
FROM Running As R1

The internal SQL statement:

SELECT SUM(R2.Duration) FROM Running As R2 WHERE R2.Event < R1.Event

returns the sum of the duration for all events preceding the current event, which is
denoted by R1.Event.

Example 19-1 shows a VBA procedure to execute this SQL statement. The DoCmd
object is used in VBA to run an Access action. Thus, the line DoCmd.OpenQuery opens a
query in Access.

Example 19-1. Calculating running sums using nested SQL statements

Private Sub RunningSumSQL()

Dim db As Database
Set db = CurrentDb

Dim qry As QueryDef
Dim sSQL As String

On Error Resume Next
db.QueryDefs.Delete "temp"
On Error GoTo 0

sSQL = "SELECT R1.Event," & _
" (SELECT SUM(R2.Duration)" & _
" FROM Running As R2" & _
" WHERE R2.Event < R1.Event)" & _
" AS StartTime" & _
" FROM Running As R1"

Set qry = db.CreateQueryDef("temp", sSQL)

DoCmd.OpenQuery qry.Name

End Sub

Another approach is to use DAO, which provides a very simple solution in this case. It
creates a permanent result table, whereas the previous solution creates a select query.
Example 19-2 shows the DAO code performing the same operation. The results are
placed in Table 19-1.

Example 19-2. Calculating a running sum using DAO

Private Sub RunningSumDAO()

Dim db As Database
Dim rs As Recordset
Dim lRunningSum As Long

Set db = CurrentDb

lRunningSum = 0

Set rs = db.OpenRecordset("SELECT * FROM Running ORDER BY Event")
Do While Not rs.EOF
 rs.Edit
 rs!RunningSum = lRunningSum
 rs.Update
 lRunningSum = lRunningSum + rs!Duration
 rs.MoveNext
Loop

rs.Close

End Sub

19.2 Overlapping Intervals I

In Table 19-2, the rows denote intervals of time. The problem is determining, for each
hour of the day, the number of intervals that contain this hour.

Table 19-2. Overlap table: Rows denote time intervals
Interval StartTime EndTime

1 4:00:00 PM 7:00:00 PM
2 5:00:00 PM 9:00:00 PM
3 2:00:00 PM 6:00:00 PM
4 8:00:00 PM 11:59:00 PM
5 12:00:00 PM 4:00:00 PM

For this, we also use an HOURS table (see Table 19-3).

Table 19-3. Hours table
Hours

12:00:00 PM
1:00:00 PM
2:00:00 PM
3:00:00 PM
4:00:00 PM
5:00:00 PM
6:00:00 PM
7:00:00 PM
8:00:00 PM
9:00:00 PM
10:00:00 PM
11:00:00 PM
11:59:00 PM

19.2.1 Solution

This problem can be solved using a nested SELECT statement (that is, a subquery). Here is
the code:

Private Sub OverlappingIntervals()

Dim db As Database
Set db = CurrentDb

Dim qry As QueryDef
Dim sSQL As String

On Error Resume Next
db.QueryDefs.Delete "temp"
On Error GoTo 0

sSQL = "SELECT Hours.Hour," & _
" (SELECT Count(Interval) AS CountOfIntervals" & _
" FROM Overlap" & _
" WHERE (StartTime <= Hours.Hour) And" & _
" (Hours.Hour < EndTime))" & _
" FROM Hours"

Set qry = db.CreateQueryDef("temp", sSQL)

DoCmd.OpenQuery qry.Name

End Sub

We invite you to create a DAO solution. The problem in the next section illustrates the
overlapping intervals technique.

19.3 Overlapping Intervals II

A company employs workers and supervisors. During a typical day, each worker and
supervisor works one or more shifts, which consist of consecutive hours. Table 19-4
shows a typical day (from 12 noon to 12 midnight).

Table 19-4. Superload table: Hours worked by supervisors and workers
EmpID EmpType StartHour EndHour

1 Super 12:00:00 PM 5:59:00 PM
2 Super 6:00:00 PM 11:59:00 PM
3 Super 4:00:00 PM 8:59:00 PM
4 Worker 4:00:00 PM 6:59:00 PM
5 Worker 5:00:00 PM 8:59:00 PM
6 Worker 2:00:00 PM 5:59:00 PM
7 Worker 8:00:00 PM 11:59:00 PM
8 Worker 12:00:00 PM 3:59:00 PM

We want to compute the maximum number of workers that each supervisor must
supervise at one time.

19.3.1 Solution

This problem can be handled in a two-step process. First, we count the number of
workers in each hour. Consider the following SQL statement:

SELECT Hours.Hour,
(SELECT Count(EmpType) FROM SuperLoad
 WHERE (Starthour <= Hours.Hour) And (Hours.Hour < EndHour)
 And (EmpType='Worker')) AS CountOfWorkers
FROM Hours

This, again, uses a subquery that returns a single record giving the number of workers
that are working during a given hour.

Using this SQL statement, we make a query named qry1, so it can be used in the next
step. See Table 19-5 for the result of this query.

Table 19-5. Number of workers working at a particular hour
Hours CountOfWorkers

12:00:00 PM 1
1:00:00 PM 1
2:00:00 PM 2
3:00:00 PM 2
4:00:00 PM 2
5:00:00 PM 3
6:00:00 PM 2
7:00:00 PM 1
8:00:00 PM 2
9:00:00 PM 1
10:00:00 PM 1
11:00:00 PM 1

The next step is computing the supervisor load as the maximum number of workers in
each supervisor’s shift. Do this by using the name of the query from the previous step in
the following SQL statement:

sSQL2 = "SELECT SuperLoad.EmpID, SuperLoad.EmpType," & _
" (SELECT Max(CountOfWorkers) AS WorkerLoad" & _
" FROM [" & qry1.Name & "]" & _
" WHERE ((Hours.Hour >= StartHour) And (Hours.Hour < Endhour)))" & _
" FROM SuperLoad" & _
" WHERE SuperLoad.EmpType = 'Super'"

The results are shown in Table 19-6.

Table 19-6. Maximum number of workers per supervisor
EmpID EmpType WorkerLoad

1 Super 3
2 Super 2
3 Super 3

The complete code for this solution is in Example 19-3.

Example 19-3. Calculating the maximum number of workers per supervisor

Private Sub SupervisorLoad()

Dim db As Database
Set db = CurrentDb

Dim qry1 As QueryDef
Dim qry2 As QueryDef
Dim sSQL1 As String
Dim sSQL2 As String

On Error Resume Next
db.QueryDefs.Delete "temp1"
db.QueryDefs.Delete "temp2"
On Error GoTo 0

sSQL1 = "SELECT Hours.Hour," & _
" (SELECT Count(EmpType) FROM SuperLoad" & _
" WHERE (Starthour <= Hours.Hour) And (Hours.Hour < EndHour)" & _
" And (EmpType='Worker'))" & _
" AS CountOfWorkers" & _
" FROM Hours"

Set qry1 = db.CreateQueryDef("temp1", sSQL1)

' Uncomment to see how this step looks
'DoCmd.OpenQuery qry1.Name

sSQL2 = "SELECT SuperLoad.EmpID, SuperLoad.EmpType," & _
" (SELECT Max(CountOfWorkers) AS WorkerLoad" & _
" FROM [" & qry1.Name & "]" & _
" WHERE ((Hours.Hour >= StartHour) And (Hours.Hour < Endhour)))" & _
" FROM SuperLoad" & _
" WHERE SuperLoad.EmpType = 'Super'"

Set qry2 = db.CreateQueryDef("temp2", sSQL2)

DoCmd.OpenQuery qry2.Name

End Sub

19.4 Making Assignments with Default

Imagine a conference where your task is assigning conference rooms to attendees. Table
19-7 shows the preregistered attendees along with corresponding room numbers.

Table 19-7. Assignment table
Name Room

_default 15
_default 14
_default 13
_default 12
Bach 123
Beethoven 231
Mozart 455
Chopin 455
Elgar 231
Gluck 123
Liszt 455

Note that the table contains several default choices. If an individual is not in the table,
then you want to assign one of the default rooms to that individual. Moreover, to avoid
overcrowding, you want to assign the default room numbers randomly. How do you do
this?

19.4.1 Solution

This problem can be solved in a variety of ways, one of which provides a nice use of both
subqueries and the UNION statement. First, consider the SQL statement:

sSQL1 = "SELECT Room FROM Assignment WHERE (Name = [Enter Name])"

Recall that [Enter name] is a parameter. When the query is run, the user will be
prompted for a name, which will be substituted for [Enter name]. This statement will
return the record associated with a given name if it is in the table; otherwise, it will return
the empty recordset.

Now consider the statement:

sSQL2 = "SELECT Room FROM Assignment
 WHERE (Name = '_default') AND
 ([Enter Name] NOT IN (SELECT Name FROM Assignment))"

The clause:

[Enter Name] NOT IN (SELECT Name FROM Assignment)

returns TRUE if and only if the name entered by the user is not in the table. Hence, the
clause sSQL2 can be rewritten based on two cases, name in table:

sSQL2 = "SELECT Room FROM Assignment WHERE (Name = '_default') AND
FALSE"

and name not in table:

sSQL1 = "SELECT Room FROM Assignment WHERE (Name = '_default') AND
TRUE"

This simplifies further to name in table:

sSQL2 = "SELECT Room FROM Assignment WHERE FALSE"

and name not in table:

sSQL1 = "SELECT Room FROM Assignment WHERE (Name = '_default')"

Thus, this statement returns the empty recordset if the name is in the table and the default
records if the name is not in the table.

Now we take the union:

sSQL3 = sSQL1 & " UNION " & sSQL2

This SQL statement will return the room number for a name if the name is in the table;
otherwise, it returns the default records.

Now, all we need to do is return a random record! Note that this will work in either case,
because if the name is in the table, there is only one record, so a randomly chosen record
must be that record.

The complete code is shown in Example 19-4.

Example 19-4. Handling preregistered and default room assignments

Private Sub AssignmentWithDefault()

Dim db As Database
Set db = CurrentDb

Dim sName As String
Dim qry1 As QueryDef
Dim rs As Recordset
Dim sSQL1 As String
Dim sSQL2 As String
Dim sSQL3 As String

Dim lRandom As Long

Dim lcRecords As Long

On Error Resume Next
db.QueryDefs.Delete "temp1"
On Error GoTo 0

sSQL1 = "SELECT Room FROM Assignment" & _
" WHERE (Name = [Enter Name])"

sSQL2 = "SELECT Room FROM Assignment" & _
" WHERE (Name = '_default') AND ([Enter Name] NOT IN (SELECT Name FROM
Assignment))"

sSQL3 = sSQL1 & " UNION " & sSQL2

Set qry1 = db.CreateQueryDef("temp1", sSQL3)

sName = InputBox("Enter name")
qry1.Parameters(0) = sName

' To see the results
''DoCmd.OpenQuery qry1.Name

Set rs = qry1.OpenRecordset

' Populate and get recordcount
rs.MoveLast
lcRecords = rs.RecordCount

' Random record
Randomize Timer
' lRandom is between 0 and lcRecords-1
lRandom = Int(lcRecords * Rnd)

rs.MoveFirst
rs.Move lRandom

MsgBox "Room for " & sName & " is " & rs!Room

End Sub

19.5 Time to Completion I

Here is a simple time-to-completion problem. Table 19-8 shows the status of widget
production for your company. At various stages in the production process, the workers
enter a record into the table indicating the remaining time to completion for the widget.

Table 19-8. Widgets table: Time to completion for widgets
WidgetID TimeToCompletion

1 5
1 3
1 2
1 1

2 6
2 3
2 0
3 8
3 7
3 6
3 4
4 9
4 4
4 2
4 0

We want to identify those widgets that are not yet completed.

19.5.1 Solution

The next SQL statement does the job. Note the use of the NOT IN form of subquery,
which is discussed in Section 6.7.10 in Chapter 6.

SELECT DISTINCT WidgetID FROM Widgets As W1
WHERE 0 NOT IN
(SELECT TimeToCompletion FROM Widgets As W2
WHERE W2.WidgetID = W1.WidgetID)

19.6 Time to Completion II

Let’s make the time-to-completion problem more complicated. Imagine again that you
are keeping track of the status of widget production for your company. Each widget is
composed of four modules, each of which is assembled separately. Table 19-9 shows
some sample data.

Table 19-9. Widgets table: Time to completion of multimodule widgets
WidgetID ModuleID TimeToCompletion

1 1 0
1 2 1
1 3 2
1 4 1
2 1 1
2 2 2
2 3 3
2 4 4
3 1 0
3 2 5
3 3 4
3 4 0

4 1 0
4 2 1
4 3 1
4 4 2

We are trying to determine the widgets in which Module 1 is the only completed
module—that is, where TimeToCompletion is equal to zero for Module 1, but not for any
of the other modules in the widget. Thus, for our table, Widgets 1 and 4 qualify.

19.6.1 Solution

Consider the following SQL statement:

SELECT WidgetID
FROM Widgets AS W1
WHERE (TimeToCompletion = 0) AND
0 NOT IN
(SELECT TimeToCompletion FROM Widgets AS W2
WHERE (W2.WidgetID=W1.WidgetID) AND (W2.ModuleID <> 1))

The subquery selects, for a particular widget, all TimeToCompletions for all modules
except the first module. We can then test to see if that set of TimeToCompletions
contains a zero.

Example 19-5 shows the complete code.

Example 19-5. TimeToCompletion example

Private Sub TimeToCompletion()

Dim db As Database
Set db = CurrentDb

Dim qry1 As QueryDef
Dim sSQL1 As String

On Error Resume Next
db.QueryDefs.Delete "temp1"
On Error GoTo 0

sSQL1 = "SELECT WidgetID FROM Widgets AS W1" & _
" WHERE (TimeToCompletion = 0) AND" & _
" 0 NOT IN" & _
" (SELECT TimeToCompletion FROM Widgets AS W2" & _
" WHERE (W2.WidgetID=W1.WidgetID) AND (W2.ModuleID <> 1))"

Set qry1 = db.CreateQueryDef("temp1", sSQL1)

DoCmd.OpenQuery qry1.Name

End Sub

19.7 Time to Completion III—A MaxMin Problem

Let’s make the time-to-completion problem even more involved. Suppose each module is
composed of several parts. Periodically, the workers involved with a particular part will
make an entry into a database table, as shown in Table 19-10.

Table 19-10. Widgets table: Time to completion of a widget whose modules consist of
multiple parts

WidgetID ModuleID PartID TimeToCompletion
1 1 1 3
1 1 1 4
1 1 1 5
1 1 2 2
1 1 2 4
1 1 2 1
1 2 1 6
1 2 1 5
1 2 1 3
1 2 2 7
1 2 2 4
1 2 2 3
1 2 3 4
1 2 3 5
1 2 3 6
1 3 1 8
1 3 1 5
1 3 2 2
1 3 2 4

We want to compute the time to completion for each part, module, and widget. Note that
there may be several entries for a given part. The time to complete a given part is the
minimum of the times in these rows.

19.7.1 Solution 1

Let’s take a step-by-step approach to the solution. Later, we can present a more elegant,
but less readable, solution.

First, we create an SQL statement that returns only those rows of the table that, for each
widget/module, have the smallest part TimeToCompletion. We can do this in two steps.
The first SQL statement selects the TimeToCompletion field for all records in Widgets2
that have a given WidgetID, ModuleID, and PartID.

' Times to completion for given WidgetID/ModuleID/PartID
sSQL1 = "SELECT TimeToCompletion FROM Widgets2 AS W2" & _
" WHERE (W2.WidgetID = W1.WidgetID)" & _

" And (W2.ModuleID = W1.ModuleID)" & _
" And (W2.PartID = W1.PartID)"

The second SQL statement returns all records whose TimeToCompletion is less than or
equal to all records returned in the first SQL statement—that is, all records for the given
WidgetID, ModuleID, and PartID:

' Those records that have minimum time to completion for each part
sSQL2 = "SELECT WidgetID, ModuleID, PartID," & _
" TimeToCompletion AS TimeToFinishPart FROM Widgets2 AS W1" & _
" WHERE TimeToCompletion <= ALL (" & sSQL1 & ")"

An alternative approach is to use a single nested SELECT statement:

sSQL2 = "SELECT DISTINCT WidgetID, ModuleID, PartID," & _
" (SELECT MIN(TimeToCompletion)" & _
" FROM Widgets2 as W2 WHERE" & _
" (W2.WidgetID = W1.WidgetID) And" & _
" (W2.ModuleID = W1.ModuleID) And" & _
" (W2.PartID = W1.PartID))" & _
" AS TimeToFinishPart" & _
" FROM Widgets2 AS W1"

Running this query

Set qry1 = db.CreateQueryDef("temp1", sSQL2)
DoCmd.OpenQuery qry1.Name

will result in Table 19-11.

Table 19-11. Results table for qry1
WidgetID ModuleID PartID TimeToFinishPart

1 1 1 3
1 1 2 1
1 2 1 3
1 2 2 3
1 2 3 4
1 3 1 5
1 3 2 2

Using this query, it is simple to get the time to completion for each module:

' Time to finish each module
sSQL3 = "SELECT WidgetID, ModuleID," & _
" Max(TimeToFinishPart) AS TimeToFinishModule FROM " & qry1.Name & _
" GROUP BY WidgetID, ModuleID"

Set qry2 = db.CreateQueryDef("temp2", sSQL3)

' Show it

DoCmd.OpenQuery qry2.Name

This query results in Table 19-12.

Table 19-12. Results table for qry2
WidgetID ModuleID TimeToFinishModule

1 1 3
1 2 4
1 3 5

Finally, we can compute the time to completion for each widget:

' Time to finish each Widget
sSQL4 = "SELECT WidgetID," & _
" Max(TimeToFinishModule) AS TimeToFinishWidget FROM " & qry2.Name & _
" GROUP BY WidgetID"

Set qry3 = db.CreateQueryDef("temp3", sSQL4)

This results in Table 19-13.

Table 19-13. Results table for qry3
WidgetID TimeToFinishWidget

1 5

19.7.2 Solution 2

It is possible to get the time to completion in a single SQL statement, although I
definitely do not recommend doing so. The result may be more elegant, but it is also
harder to read. For instance, for modules, we have:

sSQL1 = "SELECT DISTINCT WidgetID, ModuleID," & _
" TimeToCompletion FROM Widgets2 AS W1" & _
" WHERE TimeToCompletion =" & _
" (SELECT MAX(TimeToCompletion) FROM Widgets2 As W2" & _
" WHERE TimeToCompletion =" & _
" (SELECT MIN(TimeToCompletion) FROM Widgets2 AS W3" & _
" WHERE (W3.WidgetID = W2.WidgetID)" & _
" And (W3.ModuleID = W2.ModuleID)" & _
" And (W3.PartID = W2.PartID)" & _
" Group BY W3.WidgetID, W3.ModuleID, W3.PartID)" & _
" AND (W2.WidgetID = W1.WidgetID) And (W2.ModuleID = W1.ModuleID)"
& _
" GROUP BY W2.WidgetID, W2.ModuleID)"

Digesting this SQL statement will probably take time, and I hope it will make you
reconsider using such a statement in your own applications.

19.8 Vertical to Horizontal

Imagine a database of personal statistics with two tables (Table 19-14 and Table 19-15).

Table 19-14. Composers table
EmpID Name

1 Beethoven
2 Chopin
3 Mozart
4 Schubert
5 Brahms
6 Liszt

Notice that Table 19-15 has one row per statistic. Thus, the data for an individual person
is arranged vertically. Notice also that some data is missing. For instance, there is no data
at all for Liszt.

Table 19-15. ComposersData table
EmpID StatType Value

1 Age 45
1 Height 63
1 Weight 150
2 Age 46
2 Height 67
3 Age 35
3 Weight 135
4 Age 44
5 Height 76

Now, we want to view the data horizontally, as in Table 19-16.

Table 19-16. Combination of Table 19-14 and Table 19-15
EmpID Name Age Height Weight

1 Beethoven 45 63 150
2 Chopin 46 67
3 Mozart 35 135
4 Schubert 44
5 Brahms 76
6 Liszt

19.8.1 Solution

One solution is given by the following SQL statement:

SELECT DISTINCT Composers.EmpID, Name,

 (SELECT Value FROM ComposerData As T2 WHERE
 (T2.StatType='Age') And (T2.EmpID=Composers.EmpID)) As Age,
 (SELECT Value FROM ComposerData As T2 WHERE
 (T2.StatType='Height') And (T2.EmpID=Composers.EmpID)) As Height,
 (SELECT Value FROM ComposerData As T2 WHERE
 (T2.StatType='Weight') And (T2.EmpID=Composers.EmpID)) As Weight
FROM (Composers INNER JOIN ComposerData
ON Composers.EmpID=ComposerData.EmpID)

Here, we have multiple SELECT subquery statements within the main SELECT clause. For
instance, the clause:

(SELECT Value FROM ComposerData As T2 WHERE
 (T2.StatType='Age') And (T2.EmpID=Composers.EmpID)) As Age,

selects the age for the person selected by the main SELECT clause.

As the number of statistics grows, this SQL statement becomes more complex. Example
19-6 shows an alternative solution using DAO that does not require adjusting when
additional statistics are added.

Example 19-6. VerticalToHorizontal example

Private Sub VerticalToHorizontal2()

Dim db As Database
Set db = CurrentDb

Dim rsEmp As Recordset
Dim rsData As Recordset
Dim rsHor As Recordset

Set rsEmp = db.OpenRecordset("Composers")
Set rsHor = db.OpenRecordset("ComposersOutput")

Do While Not rsEmp.EOF

 Set rsData = db.OpenRecordset(_
 "SELECT * FROM ComposerData WHERE EmpID = " & rsEmp!EmpID)
 rsHor.AddNew
 rsHor!EmpID = rsEmp!EmpID
 rsHor!Name = rsEmp!Name
 Do While Not rsData.EOF
 rsHor.Fields(rsData!StatType).Value = rsData!Value
 rsData.MoveNext
 Loop
 rsHor.Update

 rsEmp.MoveNext
Loop

rsEmp.Close
rsData.Close
rsHor.Close

End Sub

19.9 A Matching Problem

Table 19-17 presents programmers and their language skills. Table 19-18 specifies the
language requirements for a number of different jobs. We want to display a list of the
jobs and their respective qualified programmers.

Table 19-17. Programmers table: Programmers and their language skills
Name Language

Blaise Pascal VB
Blaise Pascal C++
Blaise Pascal Access
Blaise Pascal Excel
Gauss VB
Gauss Access
Gauss Delphi
Gauss SQL Server
Smith C++
Von Neuman VB
Von Neuman C++
Wordsworth Delphi
Wordsworth C++
Wordsworth Word

Table 19-18. ProgrammingJobs table
JobID Language

1 VB
1 Access
2 C++
3 C++
3 SQL Server
4 Delphi
5 VB
5 Pascal

19.9.1 Solution

One solution is given by the following SQL statement:

SELECT ProgrammingJobs.JobID, Programmers.Name
FROM Programmers INNER JOIN ProgrammingJobs
ON Programmers.Language = ProgrammingJobs.Language
GROUP BY ProgrammingJobs.JobID, Programmers.Name
HAVING Count(Programmers.Language)=
(SELECT Count([Language]) FROM ProgrammingJobs AS PJ
WHERE PJ.JobID=ProgrammingJobs.JobID)

We begin with an INNER JOIN of the two tables on the Language field. For each
job/programmer pair, this INNER JOIN creates a set of records of the form:

JobID X - Language 1 - ProgrammerName Y
JobID X - Language 2 - ProgrammerName Y
JobID X - Language 3 - ProgrammerName Y
. . .

where the job requires the language, and the programmer is skilled in that language.

Now, for each job/programmer pair, we need to ensure that the number of such records is
the same as the number of languages required by that job. This is accomplished by
grouping the records by job/programmer pair and then using a HAVING clause that
compares a count of those records with the count of languages for that job. The resulting
table is Table 19-19.

Table 19-19. Jobs and programmers qualified for these jobs
JobID Name

1 Blaise Pascal
1 Gauss
2 Blaise Pascal
2 Smith
2 Von Neuman
2 Wordsworth
4 Gauss
4 Wordsworth

19.10 Equality of Sets

A common problem is determining when two sets are equal, that is, when they have the
same elements. Consider Table 19-20, which shows five sets and their members. To
simplify this as much as possible, we simply number the sets and assume they contain
numbers themselves. We want to get a list of which sets are equal.

Table 19-20. Equality
Set Member

1 1
1 2
1 3
2 1
2 2
2 3
3 1
3 2
3 3
3 4

4 1
4 2
4 3
4 4
5 1
5 2
5 8

19.10.1 Solution

This problem has an elegant solution using a single SQL statement. While, in general,
SQL does not permit us to compare two sets directly, as in:

(SELECT Members FROM Equality WHERE Set=1) = (SELECT Members FROM
Equality WHERE _
 Set=2)

it will accept such clauses if the two SELECT statements return a single value.

Consider now the SQL statement:

SELECT Equality.Set, E2.Set
FROM Equality INNER JOIN Equality AS E2 ON
 (Equality.Member = E2.Member) And (Equality.Set < E2.Set)
GROUP BY Equality.Set, E2.Set
HAVING
((SELECT Count(Member) FROM Equality As E3 WHERE E3.Set=Equality.Set) =
 (SELECT Count(Member) FROM Equality As E3 WHERE E3.Set=E2.Set))
AND
(Count(Equality.Set) =
 (SELECT Count(Member) FROM Equality As E3 WHERE E3.Set=E2.Set))

The INNER JOIN is on the clause:

(Equality.Member = E2.Member) And (Equality.Set < E2.Set)

The important part of this clause is the first part. It states that we want all set pairs that
have a common member. The second part prevents returning duplicate set pairs. For
instance, if sets 1 and 2 both contain the number 3, we don’t want to return both pairs
[(1,2) and (2,1)].

To illustrate further, since the number 3 is in sets 1, 2, 3, and 4, the records returned for
the member 3 are as follows:

(1,2) (from member 3)
(1,3) (from member 3)
(1,4) (from member 3)
(2,3) (from member 3)
(2,4) (from member 3)

(3,4) (from member 3)

If it were not for the clause Equality.Set < E2.Set, we would also be getting (1,1),
(2,2), ... (4,4), as well as (2,1), (3,1), and so on.

Now we ask the question, “How many times will a given set pair appear?” A given set
pair, say (1,2), will appear as many times as there are common elements between the two
sets. That is, it will appear as many times as the size of the intersection of the two sets.

So if we GROUP BY set pair, we can examine these intersections and restrict the returns
using a HAVING clause. The HAVING clause we want says that the two sets are equal. But
two sets A and B are equal if the sizes of A, B, and the intersection of A and B are all the
same! The clause:

(SELECT Count(Member) FROM Equality As E3 WHERE E3.Set=Equality.Set) =
 (SELECT Count(Member) FROM Equality As E3 WHERE E3.Set=E2.Set)

says that, for a given set pair (Equality.Set, E2.Set) from the main SELECT clause, the
size of Equality.Set is equal to the size of E2.Set. The clause:

Count(Equality.Set) =
 (SELECT Count(Member) FROM Equality As E3 WHERE E3.Set=E2.Set)

says that the size of the intersection of Equality.Set and E2.Set is the same as the size
of E2.Set. That’s it.

Part VIII: Appendixes

Appendix A. DAO 3.0/3.5 Collections, Properties,
and Methods
Microsoft Access 97 comes with a utility known as the Object Browser, which can be
used to explore the DAO object hierarchy. Figure A-1 shows the Object Browser, which
can be invoked from an Access code module by striking the F2 function key (or from the
View menu).

Figure A-1. The Object Browser

The Object Browser can be a very useful tool, but there are times when a hardcopy
reference is also useful. Accordingly, this appendix contains information on the
collections, properties, and methods of each of the objects in the DAO 3.0 object
hierarchy (which underlies Access 95) and the DAO 3.5 (which underlies Access 97). If
nothing else, this information should help point you to the right spot in the Access Online
Help System.

In this DAO reference, a table listing the classes and collections available in DAO is
followed by tables listing the properties and methods exposed by each class, as well as
the collections that are accessible from each object. The tables also indicate whether each
item applies to DAO 3.0, DAO 3.5, or both. Finally, there is a summary description of
each item.

A.1 DAO Classes

Class name Version Description
Connection 3.5 An open ODBCDirect connection
Connections 3.5 A collection of Connection objects
Container 3.0/3.5 Storage for information about a predefined object type
Containers 3.0/3.5 A collection of Container objects
Database 3.0/3.5 An open database
Databases 3.0/3.5 A collection of Database objects
DBEngine 3.0/3.5 The Jet database engine
Document 3.0/3.5 Information about a saved, predefined object
Documents 3.0/3.5 A collection of Document objects
Error 3.0/3.5 Information about any error that occurred with a DAO object
Errors 3.0/3.5 A collection of Error objects
Field 3.0/3.5 A column that is part of a table, query, index, relation, or recordset
Fields 3.0/3.5 A collection of Field objects
Group 3.0/3.5 A group of user accounts
Groups 3.0/3.5 A collection of Group objects
Index 3.0/3.5 Object used to order values and provide efficient access to a recordset
Indexes 3.0/3.5 A collection of Index objects
Parameter 3.0/3.5 Parameter for a parameter query
Parameters 3.0/3.5 A collection of Parameter objects
Properties 3.0/3.5 A collection of Property objects
Property 3.0/3.5 A built-in or user-defined property
QueryDef 3.0/3.5 A saved query definition
QueryDefs 3.0/3.5 A collection of Querydef objects
Recordset 3.0/3.5 The representation of the records in a table or that result from a query
Recordsets 3.0/3.5 A collection of Recordset objects
Relation 3.0/3.5 A relationship between fields in tables and queries
Relations 3.0/3.5 A collection of Relation objects
TableDef 3.0/3.5 A saved table definition
TableDefs 3.0/3.5 A collection of Tabledef objects
User 3.0/3.5 A user account
Users 3.0/3.5 A collection of User objects
Workspace 3.0/3.5 A session of the Jet database engine
Workspaces 3.0/3.5 A collection of Workspace objects

A.2 A Collection Object

Each of the Collection objects listed earlier in Section A.1 supports a single method and a
single property.

A.2.1 Methods

Method Type Version Description
Refresh Sub 3.0/3.5 Updates the collection to reflect recent changes

A.2.2 Properties

Property Type Version Description
Count Integer 3.0/3.5 Number of objects in the collection (read-only)

In addition, DynaCollection objects—that is, Collection objects whose members can be
dynamically added and removed—have the two additional methods.

A.2.3 Methods

Method Parameters Returns Version Description
Append Object As Object Sub 3.0/3.5 Appends an object to the collection
Delete Name As String Sub 3.0/3.5 Deletes an object from the collection

A.3 Connection Object (DAO 3.5 Only)

A.3.1 Collections

Property Type Version Description
Database Database 3.5 Returns a Database reference to this Connection object
QueryDefs QueryDefs 3.5 A collection of QueryDef objects
Recordsets RecordSets 3.5 A collection of Recordset objects open in this connection

A.3.2 Methods

Method Parameters Returns Version Description

Cancel Sub 3.5 Cancels execution of an asynchronous
Execute or OpenRecordset method

Close Sub 3.5 Closes the Connection object and
everything it contains

CreateQueryDef [Name], [SQLText] QueryDef 3.5 Creates a new QueryDef object
Execute Query As String, [Options] Sub 3.5 Executes an SQL statement

OpenRecordSet Name As String, [Type],
[Options], [LockEdit] Recordset 3.5 Creates a new Recordset object

A.3.3 Properties

Property Type Version Description

Connect String 3.5 Information saved from the Connect argument of the OpenDatabase
method

Name String 3.5 Name of the Connection object

QueryTimeout Integer 3.5 Number of seconds before timeout occurs when executing an ODBC
query

RecordsAffected Long 3.5 Number of records affected by the last Execute method
StillExecuting Boolean 3.5 Indicates whether an asynchronous method call is still executing
Transactions Boolean 3.5 Indicates whether the DAO object supports transactions
Updatable Boolean 3.5 Indicates whether the connection allows data to be updated

A.4 Container Object

A.4.1 Collections

Property Type Version Description
Documents Documents 3.0/3.5 Collection of Document objects in the container

A.4.2 Properties

Property Type Version Description
AllPermissions Long 3.0/3.5 All permissions that apply to the current username

Inherit Boolean 3.0/3.5 Indicates whether new Document objects inherit default permissions
properties

Name String 3.0/3.5 The name of this object
Owner String 3.0/3.5 Sets or returns the owner of the object

Permissions Long 3.0/3.5 Sets or returns permissions for the user or group indicated by the
UserName property when accessing the object

UserName String 3.0/3.5 User or group to which the Permissions property applies

A.5 Database Object

A.5.1 Collections

Property Type Version Description
Connection Connection 3.5 An open ODBCDirect connection
Containers Containers 3.0/3.5 Collection of Container objects in the Database object
QueryDefs QueryDefs 3.0/3.5 Collection of QueryDef objects in the Database object
Recordsets Recordsets 3.0/3.5 Collection of Recordset objects open in Database object
Relations Relations 3.0/3.5 Collection of Relation objects in the Database object
TableDefs TableDefs 3.0/3.5 Collection of TableDef objects in the Database object

A.5.2 Methods

Method Parameters Returns Version Description

Close Sub 3.0/3.5 Closes the Database object and
everything it contains

CreateProperty [Name], [Type], [Value], [DDL] Property 3.0/3.5 Creates a new user-defined

Property object
CreateQueryDef [Name], [SQLText] QueryDef 3.0/3.5 Creates a new QueryDef object

CreateRelation [Name], [Table], [ForeignTable],
[Attributes] Relation 3.0/3.5 Creates a new Relation object

CreateTableDef [Name], [Attributes],
[SourceTableName], [Connect] TableDef 3.0/3.5 Creates a new TableDef object

Execute Query As String, [Options] Sub 3.0/3.5 Executes a query

MakeReplica PathName As String, Description
As String, [Options] Sub 3.0/3.5 Makes a new replica based on the

current replicable database

NewPassword bstrOld As String, bstrNew As
String Sub 3.0/3.5 Changes the password of an

existing database
OpenRecordset Name As String, [Type], [Options] Recordset 3.0/3.5 Creates a new Recordset object
PopulatePartial DbPathName As String Sub 3.5 Synchronizes a partial replica

Synchronize DbPathName As String,
[ExchangeType] Sub 3.0/3.5 Synchronizes the database object

A.5.3 Properties

Property Type Version Description
CollatingOrder Long 3.0/3.5 Defines the order used for sorting and comparisons

Connect String Information saved from the Connect argument of the OpenDatabase
method

DesignMasterID String 3.0/3.5 Unique identifier for a replica design master
Name String 3.0/3.5 The name of this Database object

QueryTimeout Integer 3.0/3.5 Number of seconds before timeout occurs when executing an ODBC
query

RecordsAffected Long 3.0/3.5 Number of records affected by the last Execute method
ReplicaID String 3.0/3.5 Unique identifier for a replica
Transactions Boolean 3.0/3.5 Indicates whether the Database object supports transactions
Updatable Boolean 3.0/3.5 Indicates whether the Database object can be modified
Version String 3.0/3.5 Version number of the Database object format

A.6 DBEngine Object

A.6.1 Collections

Property Type Version Description
Errors Errors 3.0./3.5 Collection of errors from the most recently failed DAO operation
Properties Properties 3.0/3.5 Collection of Property objects
Workspaces Workspaces 3.0/3.5 Collection of open Workspace objects

A.6.2 Methods

Method Parameters Returns Version Description
BeginTrans Sub 3.0/3.5 Begins a new transaction
CommitTrans Sub 3.0 Ends the transaction and

saves any changes

CommitTrans [Option as Long] Sub 3.5 Ends the transaction and
saves any changes

CompactDatabase
SrcName As String, DstName As
String, [DstConnect], [Options],
[SrcConnect]

Sub 3.0 Compacts a closed database

CompactDatabase
SrcName As String, DstName As
String, [DstLocale], [Options],
[SrcLocale]

Sub 3.5 Compacts a closed database

CreateDatabase Name As String, Connect As String,
[Option] Database 3.0 Creates a new database

CreateDatabase Name As String, Locale As String,
[Option] Database 3.5 Creates a new .mdb

database

CreateWorkspace Name As String, UserName As
String, Password As String Workspace 3.0 Creates a new Workspace

object

CreateWorkspace
Name As String, UserName As
String, Password As String,
[UseType]

Workspace 3.5 Creates a new Workspace
object

Idle [Action] Sub 3.0/3.5 Completes pending engine
tasks such as lock removal

OpenConnection Name As String, [Options],
[ReadOnly], [Connect] Connection 3.5 Opens a connection to a

database

OpenDatabase Name As String, [Exclusive],
[ReadOnly], [Connect] Database 3.0 Opens a specified database

OpenDatabase Name As String, [Options],
[ReadOnly], [Connect] Database 3.5 Opens a specified database

RegisterDatabase
Dsn As String, Driver As String,
Silent As Boolean, Attributes As
String

Sub 3.0/3.5
Enters connection
information for an ODBC
data source

RepairDatabase Name As String Sub 3.0/3.5 Repairs a corrupted
database

Rollback Sub 3.0/3.5 Rolls back any changes
since the last BeginTrans

SetOption Option As Long, Value Sub 3.5 Overrides Jet registry
settings

A.6.3 Properties

Property Type Version Description
DefaultPassword String 3.0/3.5 Password if a Workspace object is created without a password
DefaultType Long 3.5 Sets the default Workspace type
DefaultUser String 3.0/3.5 Username if a Workspace object is created without a username

IniPath String 3.0/3.5 Path and filename of the initialization file (in Jet 3.0) or the complete
Registry path (Jet 3.5) containing Jet engine settings

LoginTimeout Integer 3.0/3.5 Number of seconds allowed for logging in to an ODBC database
SystemDB String 3.0/3.5 Path to the system database
Version String 3.0/3.5 Version number of the Jet database engine

A.7 Document Object

A.7.1 Methods

Method Parameters Returns Version Description

CreateProperty [Name], [Type], [Value],
[DDL] Property 3.0/3.5 Creates a new user-defined Property

object

A.7.2 Properties

Property Type Version Description
AllPermissions Long 3.0/3.5 All permissions that apply to the current username
Container String 3.0/3.5 Name of the Container object to which this Document object belongs
DateCreated Variant 3.0/3.5 Date and time the Document object was created
LastUpdated Variant 3.0/3.5 Date and time of the most recent change to the Document object
Name String 3.0/3.5 Name of this Document object
Owner String 3.0/3.5 The owner of the object
Permissions Long 3.0/3.5 Permissions for user or group accessing the Document object
UserName String 3.0/3.5 User or group for which the Permissions property applies

A.8 Error Object

A.8.1 Properties

Property Type Version Description
Description String 3.0/3.5 Description of the error
HelpContext Long 3.0/3.5 Help context ID for a topic describing the error
HelpFile String 3.0/3.5 Path to Help file describing the error
Number Long 3.0/3.5 Error code of the most recent error
Source String 3.0/3.5 Name of the object class that generated the error

A.9 Field Object

A.9.1 Collections

Property Type Version Description
Properties Properties 3.0/3.5 Collection of Property objects

A.9.2 Methods

Method Parameters Returns Version Description
AppendChunk Val Sub 3.0/3.5 Writes long binary data to a field

CreateProperty [Name], [Type], [Value],
[DDL] Property 3.0/3.5 Creates a new user-defined Property

object
FieldSize Long 3.0 Returns the FieldSize field

GetChunk Offset As Long, Bytes As
Long Byte 3.0/3.5 Reads binary data from a field

A.9.3 Properties

Property Type Version Description
AllowZeroLength Boolean 3.0/3.5 Indicates whether a zero-length string is valid for this field
Attributes Long 3.0/3.5 Value indicating characteristics of this Field object
CollatingOrder Long 3.0/3.5 Language used for sorting and comparisons
DataUpdatable Boolean 3.0/3.5 Indicates whether the data in the field are updatable
DefaultValue String 3.0/3.5 Default value of the field for a new record
FieldSize Long 3.5 The size of a memo field or a long binary field
ForeignName String 3.0/3.5 The name of the foreign field
Name String 3.0/3.5 The name of this Field object
OrdinalPosition Integer 3.0/3.5 The relative position of this field object
OriginalValue Variant 3.5 Value stored in the database server at the start of a batch update
Required Boolean 3.0/3.5 Indicates whether the Field requires a non-Null value
Size Long 3.0/3.5 Maximum size of the field
SourceField String 3.0/3.5 Name of the original source of data for a Field object
SourceTable String 3.0/3.5 Name of the original source table
Type Integer 3.0/3.5 Data type of the field

ValidateOnSet Boolean 3.0/3.5 Determines whether validation occurs immediately (a True value) or is
delayed until an update (a False value)

ValidationRule String 3.0/3.5 Expression that must evaluate to True for a successful update
ValidationText String 3.0/3.5 Message to display if validation with ValidationRule fails
Value Variant 3.0/3.5 The Field object’s data
VisibleValue Variant 3.5 Data currently stored in the database server

A.10 Group Object

A.10.1 Collections

Property Type Version Description
Properties Properties 3.0/3.5 A collection of Property objects
Users Users 3.0/3.5 A collection of User objects

A.10.2 Methods

Method Parameters Returns Version Description
CreateUser [Name], [PID], [Password] User 3.0/3.5 Creates a new User object

A.10.3 Properties

Property Type Version Description
Name String 3.0/3.5 Name of the Group object

PID String 3.0/3.5 Personal identifier (PID) for the group or user account

A.11 Index Object

A.11.1 Collections

Property Type Version Description
Fields Fields 3.0/3.5 Collection of fields in the Index object
Properties Properties 3.0/3.5 Collection of Property objects

A.11.2 Methods

Method Parameters Returns Version Description
CreateField [Name], [Type], [Size] Field 3.0/3.5 Creates a new Field object

CreateProperty [Name], [Type], [Value],
[DDL] Property 3.0/3.5 Creates a new user-defined Property

object

A.11.3 Properties

Property Type Version Description
Clustered Boolean 3.0/3.5 Indicates whether the index is clustered
DistinctCount Long 3.0/3.5 Number of unique values in this Index object
Foreign Boolean 3.0/3.5 Indicates whether an Index object represents a foreign key
IgnoreNulls Boolean 3.0/3.5 Indicates whether Null values are stored in the index
Name String 3.0/3.5 Name of this Index object
Primary Boolean 3.0/3.5 Indicates whether this is a primary index
Required Boolean 3.0/3.5 Indicates whether the index requires a non-Null value
Unique Boolean 3.0/3.5 Indicates whether this is a unique index for a table

A.12 Parameter Object

A.12.1 Properties

Property Type Version Description
Direction Integer 3.5 Indicates whether a Parameter is for input, output, or returned values
Name String 3.0/3.5 Name of this Parameter object
Type Integer 3.0/3.5 Data type of the object
Value Variant 3.0/3.5 The object’s value

A.13 Property Object

A.13.1 Properties

Property Type Version Description

Inherited Boolean 3.0/3.5 Indicates whether a property is inherited from an underlying object
Name String 3.0/3.5 Name of the Property object
Type Integer 3.0/3.5 The Property object’s data type
Value Variant 3.0/3.5 The property value

A.14 QueryDef Object

A.14.1 Collections

Property Type Version Description
Fields Fields 3.0/3.5 Collection of fields in the QueryDef object
Parameters Parameters 3.0/3.5 Collection of Parameter objects in the QueryDef object
Properties Properties 3.0/3.5 Collection of Property objects in the QueryDef object

A.14.2 Methods

Method Parameters Returns Version Description

Cancel Sub 3.5 Cancels execution of an asynchronous
OpenRecordset method

Close Sub 3.0/3.5 Closes the open QueryDef object

CreateProperty [Name], [Type], [Value],
[DDL] Property 3.0/3.5 Creates a new user-defined Property object

Execute [Options] Sub 3.0/3.5 Execute the Querydef
OpenRecordset [Type], [Options] Recordset 3.0 Creates a new Recordset object

OpenRecordset [Type], [Options],
[LockEdit] Recordset 3.5 Creates a new Recordset object

A.14.3 Properties

Property Type Version Description
CacheSize Long 3.5 Number of records to be locally cached from an ODBC data source
Connect String 3.0/3.5 Value providing information about a data source for a QueryDef
DateCreated Variant 3.0/3.5 Date and time the QueryDef was created
LastUpdated Variant 3.0/3.5 Date and time of the most recent change to the QueryDef
MaxRecords Long 3.5 Maximum number of records to return from the query
Name String 3.0/3.5 Name of this QueryDef object

ODBCTimeout Integer 3.0/3.5 Number of seconds to wait before a timeout occurs when querying an
ODBC database

Prepare Variant 3.5 Indicates whether to prepare a temporary stored procedure from the
query

RecordsAffected Long 3.0/3.5 Number of records affected by the last Execute method
ReturnsRecords Boolean 3.0/3.5 Indicates whether an SQL pass-through query returns records
SQL String 3.0/3.5 SQL statement that defines the query
StillExecuting Boolean 3.5 Indicates whether an asynchronous method call is still executing
Type Integer 3.0/3.5 The data type of the object

Updatable Boolean 3.0/3.5 Indicates whether the query definition can be changed

A.15 Recordset Object

A.15.1 Collections

Property Type Version Description
Connection Connection 3.5 Indicates which Connection owns the Recordset
Fields Fields 3.0/3.5 Collection of fields in the Recordset object

A.15.2 Methods

Method Parameters Returns Version Description
AddNew Sub 3.0/3.5 Adds a new record to the Recordset

Cancel Sub 3.5 Cancels execution of an asynchronous Execute,
OpenRecordset, or OpenConnection method

CancelUpdate Sub 3.0/3.5 Cancels any pending AddNew or Update
statements

Clone Recordset 3.0/3.5 Creates a duplicate Recordset
Close Sub 3.0/3.5 Closes an open Recordset object

CopyQueryDef QueryDef 3.0/3.5 Returns a copy of the QueryDef that created
the Recordset

Delete Sub 3.0/3.5 Deletes a record from the Recordset
Edit Sub 3.0/3.5 Prepares a row of the Recordset for editing

FillCache [Rows],
[StartBookmark] Sub 3.0/3.5 Fills the cache for an ODBC-derived Recordset

FindFirst Criteria As String Sub 3.0/3.5 Locates the first record that satisfies the criteria
FindLast Criteria As String Sub 3.0/3.5 Locates the last record that satisfies the criteria

FindNext Criteria As String Sub 3.0/3.5 Locates the next record that satisfies the
criteria

FindPrevious Criteria As String Sub 3.0/3.5 Locates the previous record that satisfies the
criteria

GetRows [cRows] Variant 3.0/3.5 Writes multiple records into an array

Move Rows As Long,
[StartBookmark] Sub 3.0/3.5 Repositions the record pointer relative to the

current position or to a bookmark
MoveFirst Sub 3.0/3.5 Moves to the first record in the Recordset
MoveLast Sub 3.0 Moves to the last record in the Recordset
MoveLast [Options As Long] Sub 3.5 Moves to the last record in the Recordset
MoveNext Sub 3.0/3.5 Moves to the next record in the Recordset
MovePrevious Sub 3.0/3.5 Moves to the previous record in the Recordset

NextRecordset Boolean 3.5 Retrieves the next recordset in a multiquery
Recordset

OpenRecordset [Type], [Options] Recordset 3.0/3.5 Creates a new Recordset object

Requery [NewQueryDef] Sub 3.0/3.5 Re-executes the query on which the Recordset
is based

Seek Comparison As String, Sub 3.0/3.5 Locates a record in a table-type Recordset

Key1...

Update Sub 3.0/3.5 Saves changes initiated by the Edit or AddNew
methods

A.15.3 Properties

Property Type Version Description
AbsolutePosition Long 3.0/3.5 Returns or sets the relative record number of the current record

BatchCollisionCount Long 3.5 Indicates the number of rows having collisions in the last batch
update

BatchCollisions Variant 3.5 Indicates which rows had collisions in the last batch update
BatchSize Long 3.5 Determines how many updates to include in a batch

BOF Boolean 3.0/3.5 Indicates whether the current record position is before the first
record

Bookmark As Byte 3.0/3.5 Uniquely identifies a particular record in a Recordset
Bookmarkable Boolean 3.0/3.5 Indicates whether a Recordset supports bookmarks

CacheSize Long 3.0/3.5 Indicates the number of records from an ODBC data source to be
cached locally

CacheStart As Byte 3.0/3.5 Bookmarks the first record to be cached from an ODBC data
source

DateCreated Variant 3.0/3.5 Indicates the date and time when the underlying base table was
created

EditMode Integer 3.0/3.5 Indicates the state of editing for the current record
EOF Boolean 3.0/3.5 Indicates whether the current record position is after the last record
Filter String 3.0/3.5 Defines a filter to apply to a Recordset

Index String 3.0/3.5 Indicates the name of the current Index object (table-type Recordset
only)

LastModified As Byte 3.0/3.5 Bookmarks indicating the most recently added or changed record

LastUpdated Variant 3.0/3.5 Indicates the date and time of the most recent change to the
underlying base table

LockEdits Boolean 3.0/3.5 Indicates the type of locking (optimistic or pessimistic) in effect
during editing

Name String 3.0/3.5 Indicates the name of the Recordset object

NoMatch Boolean 3.0/3.5 Indicates whether the Seek or Find methods succeeded in finding a
record

PercentPosition Single 3.0/3.5 Indicates or changes the approximate location of the current record
RecordCount Long 3.0/3.5 Indicates the number of records in the Recordset object
RecordStatus Integer 3.5 Indicates the batch-update status of the current record
Restartable Boolean 3.0/3.5 Indicates whether the Recordset supports the Requery method
Sort String 3.0/3.5 Defines the sort order for records in a Recordset
StillExecuting Boolean 3.5 Indicates whether an asynchronous method call is still executing
Transactions Boolean 3.0/3.5 Indicates whether the Recordset supports transactions
Type Integer 3.0/3.5 Indicates the object’s data type
Updatable Boolean 3.0/3.5 Indicates whether records in the Recordset can be updated
UpdateOptions Long 3.5 Determines how a batch update query will be constructed
ValidationRule String 3.0/3.5 Contains an expression that must evaluate True for a successful

update
ValidationText String 3.0/3.5 Indicates the message to appear if ValidationRule fails

A.16 Relation Object

A.16.1 Collections

Property Type Version Description
Fields Fields 3.0/3.5 Collection of fields in this Relation object
Properties Properties 3.0/3.5 Collection of Property objects

A.16.2 Methods

Method Parameters Returns Version Description
CreateField [Name], [Type], [Size] Field 3.0/3.5 Creates a new Field object

A.16.3 Properties

Property Type Version Description
Attributes Long 3.0/3.5 Miscellaneous characteristics of the Relation object
ForeignTable String 3.0/3.5 Specifies the name of the foreign (referencing) table in a relationship
Name String 3.0/3.5 Name of this Relation object

PartialReplica Boolean 3.5 Indicates whether the relation provides a partial replica’s synchronizing
rules

Table String 3.0/3.5 Specifies the primary (referenced) TableDef or Querydef

A.17 TableDef Object

A.17.1 Collections

Property Type Version Description
Fields Fields 3.0/3.5 Collection of fields in this TableDef object
Indexes Indexes 3.0/3.5 Collection of indexes associated with this TableDef object
Properties Properties 3.0/3.5 Collection of Property objects

A.17.2 Methods

Method Parameters Returns Version Description
CreateField [Name], [Type], [Size] Field 3.0/3.5 Creates a new Field object
CreateIndex [Name] Index 3.0/3.5 Creates a new Index object

CreateProperty [Name], [Type], [Value],
[DDL] Property 3.0/3.5 Creates a new user-defined Property object

OpenRecordset [Type], [Options] Recordset 3.0/3.5 Creates a new Recordset object

RefreshLink Sub 3.0/3.5 Updates connection information for an
attached table

A.17.3 Properties

Property Type Version Description
Attributes Long 3.0/3.5 Miscellaneous characteristics of the TableDef object

ConflictTable String 3.0/3.5 Name of table containing records that conflicted during replica
synchronization

Connect String 3.0/3.5 Data source for the TableDef
DateCreated Variant 3.0/3.5 Date and time when the table was created
LastUpdated Variant 3.0/3.5 Date and time when the TableDef was last changed
Name String 3.0/3.5 Name of the TableDef
RecordCount Long 3.0/3.5 Number of records
ReplicaFilter Variant 3.5 Indicates which records to include in a partial replica
SourceTableName String 3.0/3.5 Name of a linked table’s original source table
Updatable Boolean 3.0/3.5 Indicates whether the TableDef definition can be changed
ValidationRule String 3.0/3.5 Expression that must evaluate to True for a successful update
ValidationText String 3.0/3.5 Message to display if ValidationRule fails

A.18 User Object

A.18.1 Collections

Property Type Version Description
Groups Groups 3.0/3.5 Collection of Group objects in a User object
Properties Properties 3.0/3.5 Collection of Property objects

A.18.2 Methods

Method Parameters Returns Version Description
CreateGroup [Name], [PID] Group 3.0/3.5 Creates a new Group object

NewPassword bstrOld As String, bstrNew As
String Sub 3.0/3.5 Changes the password of an existing user

account

A.18.3 Properties

Property Type Version Description
Name String 3.0/3.5 The name of the User object
Password String 3.0/3.5 Password for the user account
PID String 3.0/3.5 Personal identifier (PID) for a group or user account

A.19 Workspace Object

A.19.1 Collections

Property Type Version Description
Connections Connections 3.5 Collection of Connection objects

Databases Databases 3.0/3.5 Collection of open Database objects
Groups Groups Collection of Group objects in a Workspace object
Users Users 3.0/3.5 Collection of User objects for a Workspace object

A.19.2 Methods

Method Parameters Returns Version Description
BeginTrans Sub 3.0/3.5 Begins a new transaction
Close Sub 3.0/3.5 Close the Workspace object

CommitTrans Sub 3.0/3.5 Ends the transaction and saves
any changes

CreateDatabase Name As String, Connect As
String, [Option] Database 3.0/3.5 Creates a new Microsoft Jet

database (.mdb)
CreateGroup [Name], [PID] Group 3.0/3.5 Creates a new Group object
CreateUser [Name], [PID], [Password] User 3.0/3.5 Creates a new User object

OpenConnection Name As String, [Options],
[ReadOnly], [Connect] Connection 3.5 Opens a connection to a

database

OpenDatabase Name As String, [Exclusive],
[ReadOnly], [Connect] Database 3.0/3.5 Opens a database

Rollback Sub 3.0/3.5 Undoes any changes since the
last BeginTrans

A.19.3 Properties

Property Type Version Description
DefaultCursorDriver Long 3.5 Selects the ODBC cursor library
IsolateODBCTrans Integer 3.0/3.5 Indicates whether multiple transactions are isolated (ODBC only)
LoginTimeout Long 3.5 Number of seconds allowed for logging in to an ODBC database
Name String 3.0/3.5 Name of this Workspace object
UserName String 3.0/3.5 User that created the Workspace object

Appendix B. The Quotient: An Additional
Operation of the Relational Algebra
The quotient of two tables is not used often, but has a very specific use. It arises when we
wish to select those rows of a table that are sufficient to provide all possible values in
certain columns. As an example, imagine a business that makes furniture. The database
for this business has a table on the types of wood that they use, as well as on suppliers of
wood and which types they supply. Examples are shown in Table B-1 and Table B-2 (of
course, these tables would include more columns, but this is just to illustrate the point).

Table B-1. WOOD
Type

Mahogany
Red oak
Poplar
Walnut

Table B-2. SUPPLIER/TYPE
Sname Type

Jones Wood Supply mahogany
Austin Hardwoods red oak
Orange Coast mahogany
Jones Wood Supply poplar
West Lumber poplar
Jones Wood Supply walnut
Austin Hardwoods walnut
Jones Wood Supply red oak
Orange Coast walnut
West Lumber red oak
Orange Coast poplar
Orange Coast red oak
Fred’s Woods walnut

Note that there are four types of wood. Suppose we want to know which suppliers supply
all four types—a reasonable question. The answer, which is shown in Table B-3 is called
the quotient of the table SUPPLIERS/TYPE by WOOD, written SUPPLIER/TYPE ÷
WOOD.

Table B-3. SUPPLIER/TYPE WOOD
Sname

Jones Wood Supply
Orange Coast

As you can see, the quotient can certainly come up in real-life situations. The reason for
defining a specific operation for this purpose is that expressing the quotient in terms of
the other relations is a bit complex. Let’s do it to illustrate the virtue of the quotient.

The idea is actually relatively simple. We first get a table, called T, containing all rows
that are not in the SUPPLIER/TYPE table. This new table will involve only those
suppliers who have not supplied all types of wood. (If a supplier supplies all four types of
wood, then there will be four rows in the SUPPLIER/TYPE table and therefore no rows
in T.) Then we subtract this from a table containing all (participating) suppliers. Here is
the step-by-step procedure.

B.1 Step 1

Form the table:

R = [projSName(SUPPLIER/TYPE) WOOD] - SUPPLIER/TYPE

Table B-4, the table R, contains all rows of the form (SName,Type) that are not in the
SUPPLIER/TYPE table. Put another way, it is the set of “missing possibilities” in the
Cartesian product (which is the set of all possibilities).

Table B-4. R
Sname Type

Austin Hardwoods poplar
West Lumber walnut
Austin Hardwoods mahogany
West Lumber mahogany
Fred’s Woods walnut

B.2 Step 2

Form the table:

projSName(R)

That is, project the table R onto the SName column, giving the SUPPLIERS that do not
supply all types of wood, as shown in Table B-5.

Table B-5. projSName(R)
SName

Austin Hardwoods
West Lumber
Fred’s Woods

B.3 Step 3

Finally, form the table:

projSName(SUPPLIERS/TYPE) - projSName (R)

That is, subtract the table in Step 2 from the first column of the SUPPLIERS/TYPE table.
This gives the suppliers that supply all four types of wood, as Table B-6 illustrates.

Table B-6. SUPPLIER/TYPE ÷ WOOD
SName

Jones Wood Supply
Orange Coast

Appendix C. Open Database Connectivity (ODBC)
In this appendix, we take a close look at ODBC, which is a part of both DAO and ADO
and probably will be for some time to come, despite Microsoft’s desire to replace all
previous database technologies with OLE DB and ADO.

ODBC is part of DAO in the sense that DAO supports ODBC workspaces for connecting
to ODBC providers. Also, ODBC is part of OLE DB in the sense that the first OLE DB
data provider was for ODBC data sources and this is still the most flexible OLE DB
provider.

Our discussion of ODBC will be fairly detailed, but it will not be reference-like.
However, you should feel free to skim through this appendix for whatever information
suits your particular needs. If you get more deeply involved in database connectivity, you
may find that some of this information will prove useful later on.

Incidentally, all of the code examples in this chapter are available on my web site:
http://www.romanpress.com.

C.1 Introduction

Open Database Connectivity, or ODBC for short, is an Application Programming
Interface (API) for connecting to databases of various types. (An API is essentially just a
set of functions, also called services, for performing various tasks. These functions are
usually contained in one or more dynamic link libraries (DLLs).) The term database is
used here in a very general sense to refer not only to traditional relational databases, such
as Access or FoxPro databases, but also to less traditional “databases” such as delimited
text files or Excel worksheets.

Typically, the functions in the ODBC API are implemented in database-specific ODBC
drivers. In this way, an application is shielded from having to know the specifics of the
various types of databases.

Figure C-1 shows the components involved in the use of ODBC.

Figure C-1. An overview of ODBC

Since most data access is done using the SQL language, the primary ODBC-related task
for an application is to submit SQL statements to the Driver Manager, which sends the
commands to the appropriate driver and also processes any data that is returned as a
result of the SQL statements.

C.2 The ODBC Driver Manager

The purpose of the ODBC Driver Manager is to manage communication between the
application and the driver. The application communicates directly with the Driver
Manager, which in turn either processes the command or sends it on (with or without
some modification) to the driver. (It is possible for an application to communicate
directly with a driver, but this is not usual.)

Generally, the Driver Manager just passes API function calls from the application to the
correct driver. However, it does implement some API functions and also performs some
basic error checking. In particular, it is responsible for implementing the following
driver/data source information functions:

SQLDataSources

Returns information about a data source

SQLDrivers

Lists driver descriptions and attributes

SQLGetFunctions

Determines whether a given driver supports a given ODBC function

The Driver Manager is also responsible for managing the connection to and
disconnection from an ODBC driver. In particular, when an application wants to use a
particular driver, the application calls one of the following connection functions:

SQLConnect

Establishes a connection to a driver and a data source

SQLDriverConnect

Establishes a connection using a connection string

SQLDriverBrowse

Establishes a connection iteratively

Each of these functions must include information about the driver in its parameters (in
different forms, however). Using this driver information, the Driver Manager loads the
driver (if it is not already loaded) and calls the appropriate connection function
(SQLConnect, SQLDriverConnect, or SQLDriverBrowse) in the driver.

When the application is done using the driver, it calls SQLDisconnect. The Driver
Manager passes this call to the driver, which disconnects from the data source.

C.3 The ODBC Driver

An ODBC driver is a code component that implements the functions in the ODBC API.
Each driver is specific to a particular database type. Drivers expose the capabilities of the
underlying database management system (DBMS) but do not, in general, enhance its
capabilities. The main exception is that drivers for DBMSs that do not have standalone
database engines, as is the case with dBASE, Xbase, and ASCII text, for example, must
implement a database engine that supports a minimal amount of SQL.

In particular, an ODBC driver must implement the following tasks (among others):

• Connecting to and disconnecting from the data source.
• Sending data to and retrieving data from the data source.
• Checking for API function errors that are not checked by the Driver Manager.
• Submitting SQL statements to the data source for execution. For this, the driver

may need to modify the ODBC-style SQL statements to a form of SQL that the
DBMS understands.

C.3.1 Driver Types

In general, there are two types of ODBC drivers. A file-based driver accesses the
physical data in the database directly. Thus, it must process not only ODBC function
calls, but also SQL statements. Put another way, a file-based driver must also be a
database engine that can process ODBC SQL (at a minimum). For example, dBASE
drivers are file-based drivers because dBASE does not provide a standalone database
engine the driver can use.

By contrast, a DBMS-based driver accesses the physical data only through a separate
database engine. In this case the driver processes ODBC calls but passes SQL statements
to the database engine for processing. For example, Microsoft Access provides a
standalone database engine called Jet, so an Access driver can be DBMS-based. (There
are also file-based Access database drivers that communicate directly with MDB files.)

The advantage of DBMS-based drivers is that they can accept and pass along the
DBMS’s specific brand of SQL. For instance, a DBMS-based driver for Microsoft
Access can pass Access SQL statements to the Access database (Jet) engine for
processing. On the other hand, a file-based Access driver, which contains its own
proprietary database engine that accesses MDB files directly, may support only ODBC

SQL, in which case attempts to pass Access-specific SQL statements to the driver are
likely to result in errors.

C.4 Data Sources

A data source is, in general, a source of data. However, this term is one of the most
abused and inconsistently misused terms in database-related programming (at least in
Microsoft’s arsenal). For instance, when the data is contained in a text file, then the term
“data source” refers simply to the physical data in the file. Similarly, when the data is
contained in an Access database file (extension .mbd) that is being accessed by a file-
based driver, the term data source refers to the MDB file. On the other hand, when the
data are contained in an Access database file that is being accessed by a DBMS-based
driver, then the data source is considered to be the combination of the Access DBMS and
the MDB file. On the other hand, in the context of the new VB6 DataBinding object
model, the term data source refers to a source for the data binding, which is often a VB6
class module that has its DataSourceBehavior property set to vbDataSource. In this case,
the data source itself contains no data whatsoever!

Thus, just what constitutes a data source depends upon the circumstances. In fact, since a
data source is always associated with a particular driver under ODBC, we will usually
think of the pair together. This view is supported by the fact that when configuring a data
source using the ODBC Administrator, we are first required to select a driver.

The term data source is also sometimes used (unfortunately) to stand for the description
of a data source—that is, the name and path of the database, password, user name,
connection attributes, and so on. What a mess.

C.4.1 DSNs and Data Source Types

The ODBC literature uses the term Data Source Name (DSN) quite frequently.
Unfortunately, it does not refer simply to the name of the data source! Rather, it refers to
a description of the data source, the accompanying driver, and the attributes of a
connection between the two. For instance, a DSN includes the name of the data source,
the complete path of the data source, the name of the driver, and details about the
connection to the data source, such as whether or not the connection is read-only. We will
see examples of DSNs a little later. The important thing to keep in mind is that the name
DSN is quite misleading. Perhaps a better term would have been Data Connection
Description (DCD).

C.4.1.1 Machine data sources

Data sources are said to fall into two categories: machine data sources and file data
sources. Note, however, that it is really the DSNs that fall into these categories. The
difference is in where and how the DSN (and not the data source itself) is stored.

For a machine data source, the DSN is stored in the system registry of a machine under a
specific name, called the Data Source Name name (DSN name). A machine data source
can be registered under one of two registry keys:

• HKEY_LOCAL_MACHINE/SOFTWARE/ODBC/ODBC.INI
• HKEY_CURRENT_USER/SOFTWARE/ODBC/ODBC.INI

In the former case, the DSN is available to all users of the machine. In the latter case, the
DSN is available only to the user under whose name it is registered. When a DSN is
stored in the HKEY_LOCAL_MACHINE key, the data source is referred to as a system data
source, although again this term should really be applied to the DSN. When the DSN is
stored in the HKEY_CURRENT_USER key, the data source (actually DSN) is referred to as a
user data source.

Incidentally, the registry key HKEY_LOCAL_MACHINE/SOFTWARE/ODBC/ODBCINST.INI
contains information about each installed ODBC component, including drivers. This is a
good place to find the filename of a driver, should you be interested.

C.4.1.2 File data sources

For a file data source, the DSN is kept in an ordinary text file, with extension .dsn, and is
accessible to anyone with access to the file. This is so that a file data source (that is, a file
DSN) is not registered to any one user or machine. Thus, a file DSN does not have a DSN
name per se (under which it is registered). It does have a filename, of course.

Figure C-2. The ODBC Administrator

The main advantage of a file data source is that it can be copied to any machine, so that
identical data sources can be used by several machines. A file data source can also be
shared by more than one application.

C.4.2 Creating DSNs: The ODBC Administrator

DSNs are generally created by the user with a program called the ODBC Administrator.
This program is accessed by clicking on the ODBC icon in the Windows Control Panel.
The opening dialog box is shown in Figure C-2.

Once the type of DSN (User, System, or File) is chosen and the user clicks the Add
button, the dialog box in Figure C-3 is displayed, prompting the user for the name of the
driver.

Figure C-3. Choose a driver

The ODBC Administrator then calls the driver so it can display any of its dialog boxes
that request specific information required by the driver to connect to the data source.
(Thus, these dialog boxes vary from driver to driver.) After the user enters the
information, the DSN data is stored in the appropriate place (the registry or a DSN file).

C.4.3 Example DSNs

It is helpful to take a look at a few examples of DSNs created using the ODBC
Administrator.

C.4.3.1 Excel system data source

Here is an example of the registry entries for a system DSN consisting of an Excel
workbook. The DSN name is ConnectExcel:

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\ConnectExcel]

"Driver"="C:\\WINNT\\System32\\odbcjt32.dll"
"DBQ"="d:\\bkado\\connect.xls"
"DefaultDir"="d:\\bkado"
"Description"="An example Excel data source"
"DriverId"=dword:00000316
"FIL"="excel 5.0;"
"ReadOnly"=hex:00
"SafeTransactions"=dword:00000000
"UID"=""

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\ConnectExcel\Engines]

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\ConnectExcel\Engines\Excel]
"ImplicitCommitSync"="Yes"
"MaxScanRows"=dword:00000008
"Threads"=dword:00000003
"UserCommitSync"="Yes"
"FirstRowHasNames"=hex:01

As you can see, the Driver value entry holds the name of the ODBC driver for Excel. The
DBQ value entry gives the name of the Excel workbook, which is the database in this
case. Each worksheet in the workbook is a database table. (For some reason, the value of
FIL is "excel 5.0", even though the version of Excel that I used here is Excel 97.) The
Engines\Excel subkey reports, among other things, whether the Excel tables
(worksheets) use the first row for field names.

The ODBC Administrator dialog boxes that created this data source are shown in Figures
C-4 and C-5.

C.4.3.2 Excel file data source

The contents of an Excel file DSN are shown here:

[ODBC]
DRIVER=Microsoft Excel Driver (*.xls)
UID=admin
UserCommitSync=Yes
Threads=3
SafeTransactions=0
ReadOnly=0
PageTimeout=5
MaxScanRows=8
MaxBufferSize=512
ImplicitCommitSync=Yes
FIL=excel 5.0
DriverId=790
DefaultDir=D:\bkado
DBQ=D:\BkAccessII\Connect.xls

Note that this is not as extensive as the system DSN. For instance, it does not include the
FirstRowHasNames value.

Figure C-4. Creating an Excel data source, Part 1

Figure C-5. Creating an Excel data source, Part 2

C.4.3.3 Text-system data source

Here is an example for a text data source. In this case, a “table” is a text file with
extension .txt, .csv, .tab, or .asc.

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\ConnectText]
"Driver"="C:\\WINNT\\System32\\odbcjt32.dll"
"DefaultDir"="D:\\bkado"
"Description"="A text data source"
"DriverId"=dword:0000001b

"FIL"="text;"
"SafeTransactions"=dword:00000000
"UID"=""

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\ConnectText\Engines]

[HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBC.INI\ConnectText\Engines\Text]
"Extensions"="txt,csv,tab,asc"
"ImplicitCommitSync"="Yes"
"Threads"=dword:00000003
"UserCommitSync"="Yes"

Note that nowhere in the registry is there a reference to the actual table (text file) or
tables for this data source. This information is placed in a special text file called
schema.ini that is created by the ODBC Administrator. The file is placed in the directory
DefaultDir. Here are the contents of the schema.ini file, which in this case actually
describes two separate text connections:

[donna.txt]
ColNameHeader=True
Format=TabDelimited
MaxScanRows=25
CharacterSet=OEM
Col1=FIRSTNAME Char Width 255
Col2=LASTNAME Char Width 255

[textfile.csv]
ColNameHeader=False
Format=CSVDelimited
MaxScanRows=25
CharacterSet=OEM
Col1=F1 Char Width 255
Col2=F2 Char Width 255

Note that if new text “tables” are added to the connection, additional sections are created
in the schema.ini file. The ODBC dialog boxes that created the first connection are shown
in Figures C-6 and C-7.

C.4.4 Connecting to a Data Source

It is not my intention to go into the details of the ODBC API functions. However, I do
want to discuss the functions briefly that are used to establish a data-source connection,
since this will shed some light on the issues of DSNs and the infamous connection string.

The ODBC API has three functions for establishing data-source connections:
SQLConnect, SQLDriverConnect, and SQLBrowseConnect. I will briefly discuss the first
two.

\

Figure C-6. Text data-source setup

Figure C-7. Setup for the donna.txt source file

C.4.5 The SQLConnect Function

SQLConnect is the simplest connection function. The parameters to this function consist
of a DSN and optionally a user ID and password. This function is the best choice when

the DSN contains all of the information required for the connection. Note that this is not
always the case. For instance, suppose that the connection requires one password to log
on to a server and a second password to log onto a specific database on the server. The
first password can be included as an argument to SQLConnect, but the second password
must be stored in the DSN. If you don’t want to store a password in a DSN, the DSN will
not be sufficient to make the connection, and so the SQLConnect function will not be
appropriate.

Since SQLConnect does not interact with the user (unlike the other connection functions),
it is the correct choice when the programmer wants to write his own interaction code
(such as prompting the user for a user ID or passwords).

C.4.6 Connection Strings

A connection string is a text string that contains information used for establishing a data-
source connection. Note, however, that a connection string may or may not contain all of
the required information (just as a DSN may not be complete). A connection string
consists of a series of keyword/value pairs separated by semicolons. As you will see, a
connection string is used by SQLDriverConnect. Note that SQLConnect does not use a
connection string. Since DSNs serve essentially the same purpose, connection strings and
DSNs are basically just two sides of the same coin. (In fact, connection strings are built
from DSNs by ODBC.)

C.4.7 SQLDriverConnect

When the parameters to SQLConnect—a DSN, a password, and a user ID—are not
sufficient to make the desired connection, the SQLDriverConnect function may do the
job. There are two reasons to use SQLDriverConnect rather than SQLConnect. First, if a
system DSN does not contain sufficent connection information, it is much simpler to
construct a custom connection string in code than it is to alter the registry entries in a
DSN. (For a file DSN, this issue is mitigated somewhat, but it is still easier to create a
connection string in code than to open and alter a text file.) Second, SQLDriverConnect is
capable of prompting the user for connection information by displaying ODBC dialog
boxes.

To illustrate, if a driver requires two passwords (as discussed earlier), then a connection
string could contain these passwords (along with other data):

UID=SRoman;ServerPWD=SubRosa;DBPWD=Secret;

As we mentioned, if a connection string is not complete, SQLDriverConnect may prompt
the user for additional connection information. For example, if the connection string is:

DSN=ConnectToWhatever;

this might cause the driver to display a dialog box asking for the necessary user ID and
password.

In addition, if SQLDriverConnect receives an empty connection string, the Driver
Manager displays a dialog box prompting the user for the correct DSN.

C.5 Getting ODBC Driver Help

You may be able to get some limited help for an ODBC driver by starting the DSN
creation process through the ODBC Administrator and then clicking the Help button once
a driver-specific dialog box appears. This brings up the ODBC Microsoft Desktop
Database Drivers Help file. However, this information is at best sketchy and often
misleading. For instance, under the topic Section C.4.6, the help file says that a
connection string includes the following keywords:

DSN

Name of the data source

DBQ

Name of the directory

DRIVERID

An integer ID for the driver

FIL

File type

However, as you will see in the upcoming examples, the DBQ value is the name of the
directory for the Microsoft Text Driver, but not the name of the actual workbook for the
Microsoft Excel Driver! The help file also does not give any indication as to when or
whether these keywords are always required. Nevertheless, the information contained in
the help file can be very useful.

C.6 Getting ODBC Information Using Visual Basic

It is clear that in order to use ODBC effectively, the programmer may need to know what
drivers and data sources exist on a particular computer. This information is accessible
through a few ODBC API calls.

The following code includes a procedure called ListODBCSources, which prints (to the
Immediate window) a list of all data sources on a system, and ListODBCDrivers, which
prints a list of ODBC drivers on the system. This code can be placed in an Access code
module:

Const SQL_NULL_HANDLE = 0

Const SQL_HANDLE_ENV = 1
Const SQL_FETCH_NEXT = 1
Const SQL_FETCH_FIRST = 2
Const SQL_SUCCESS = 0
Const SQL_ATTR_ODBC_VERSION = 200
Const SQL_OV_ODBC2 = 2
Const SQL_IS_INTEGER = -6

Dim nRetCode As Long

Declare Function SQLDrivers Lib "odbc32.dll" (ByVal _
 EnvironmentHandle As Long, ByVal Direction As Integer, _
 ByVal DriverDescription As String, ByVal BufferLength1 As Integer,
_
 DescriptionLengthPtr As Integer, ByVal DriverAttributes As String,
_
 ByVal BufferLength2 As Integer, AttributesLengthPtr As Integer) _
 As Integer

' Note that pointers to numbers are passed as numbers by reference!
Declare Function SQLDataSources Lib "odbc32.dll" (ByVal _
 EnvironmentHandle As Long, ByVal Direction As Integer, _
 ByVal ServerName As String, ByVal BufferLength1 As Integer, _
 NameLength1Ptr As Integer, ByVal Description As String, _
 ByVal BufferLength2 As Integer, NameLength2Ptr As Integer) As
Integer

Declare Function SQLFreeHandle Lib "odbc32.dll" (ByVal _
 HandleType As Integer, ByVal Handle As Long) As Integer

Declare Function SQLAllocHandle Lib "odbc32.dll" (ByVal _
 HandleType As Integer, ByVal InputHandle As Long, _
 OutputHandlePtr As Long) As Integer

Declare Function SQLSetEnvAttr Lib "odbc32.dll" (ByVal _
 EnvironmentHandle As Long, ByVal EnvAttribute As Long, _
 ByVal ValuePtr As Long, ByVal StringLength As Long) As Integer

Declare Function SQLDisconnect Lib "odbc32.dll" (ByVal _
 ConnectionHandle As Long) As Integer

Public Function Trim0(sName As String) As String

' Keep left portion of string sName up to first 0.

Dim x As Integer
x = InStr(sName, Chr$(0))
If x > 0 Then Trim0 = Left$(sName, x - 1) Else Trim0 = sName

End Function

Private Sub ListODBCSources()

' Prints a list of ODBC data soruces/drivers on system

Dim lHEnv As Long

Dim sServerName As String * 32
Dim sDescription As String * 128
Dim nServerNameLength As Integer
Dim nDescriptionLength As Integer

' Allocate an environment handle.
nRetCode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, lHEnv)

' Set ODBC behavior
nRetCode = SQLSetEnvAttr(lHEnv, SQL_ATTR_ODBC_VERSION, _
 SQL_OV_ODBC2, SQL_IS_INTEGER)

' Put first data source name in sServerName
nRetCode = SQLDataSources(lHEnv, SQL_FETCH_FIRST, sServerName, _
 Len(sServerName), nServerNameLength, sDescription, _
 Len(sDescription), nDescriptionLength)

Debug.Print "DATA SOURCE / DRIVER"
Do While nRetCode = SQL_SUCCESS

 Debug.Print Left$(sServerName, _
 nServerNameLength) & " / " & Trim0(sDescription)

 ' Next data source
 nRetCode = SQLDataSources(lHEnv, SQL_FETCH_NEXT, _
 sServerName, Len(sServerName), nServerNameLength, _
 sDescription, Len(sDescription), nDescriptionLength)

Loop

nRetCode = SQLFreeHandle(SQL_HANDLE_ENV, lHEnv)

End Sub

' ---

Private Sub ListODBCDrivers()

' Prints a list of ODBC drivers on system

Dim lHEnv As Long
Dim sDriverDesc As String * 1024
Dim sDriverAttr As String * 1024
Dim sDriverAttributes As String
Dim nDriverDescLength As Integer
Dim nAttrLength As Integer
Dim x As Integer
Dim sAll As String

' Allocate an environment handle.
nRetCode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, lHEnv)

' Set ODBC behavior
nRetCode = SQLSetEnvAttr(lHEnv, SQL_ATTR_ODBC_VERSION, _
 SQL_OV_ODBC2, SQL_IS_INTEGER)

' Get first driver

nRetCode = SQLDrivers(lHEnv, SQL_FETCH_FIRST, sDriverDesc, _
 Len(sDriverDesc), nDriverDescLength, sDriverAttr, _
 Len(sDriverAttr), nAttrLength)

sAll = ""
Do While nRetCode = SQL_SUCCESS

 ' Replace NULL separators with colons
 sDriverAttributes = Left$(sDriverAttr, nAttrLength - 1)
 Do
 x = InStr(sDriverAttributes, Chr$(0))
 If x = 0 Then Exit Do
 sDriverAttributes = Left$(sDriverAttributes, x - 1) & _
 " : " & Mid$(sDriverAttributes, x + 1)
 Loop

 sAll = sAll & Left$(sDriverDesc, nDriverDescLength) & _
 " / " & sDriverAttributes & vbCrLf

 ' Next data source
 nRetCode = SQLDrivers(lHEnv, SQL_FETCH_NEXT, sDriverDesc, _
 Len(sDriverDesc), nDriverDescLength, sDriverAttr, _
 Len(sDriverAttr), nAttrLength)

Loop

Debug.Print "ODBC Drivers"
Debug.Print sAll

nRetCode = SQLFreeHandle(SQL_HANDLE_ENV, lHEnv)

End Sub

The output produced by running ListODBCSources on my system is:

DATA SOURCE / DRIVER
MS Access 7.0 Database / Microsoft Access Driver (*.mdb)
Visual FoxPro Tables / Microsoft Visual FoxPro Driver
Visual FoxPro Database / Microsoft Visual FoxPro Driver
MS Access 97 Database / Microsoft Access Driver (*.mdb)
OLE_DB_NWind_Jet / Microsoft Access Driver (*.mdb)
OLE_DB_NWind_SQL / SQL Server
ConnectExcel / Microsoft Excel Driver (*.xls)
ConnectAccess / Microsoft Access Driver (*.mdb)
ConnectText / Microsoft Text Driver (*.txt; *.csv)

The output of ListODBCDrivers is:

ODBC Drivers

SQL Server / UsageCount=10 : SQLLevel=1 : FileUsage=0 :
DriverODBCVer=02.50 : ConnectFunctions=YYY : APILevel=2 :
\Setup=sqlsrv32.dll : .01= : s=YYN : DSNConverted=F : CPTimeout=60 :
FileExtns=Null

Microsoft ODBC Driver for Oracle / UsageCount=3 : SQLLevel=1 :
FileUsage=0 : DriverODBCVer=02.50 : ConnectFunctions=YYY : APILevel=1

Microsoft Access Driver (*.mdb) / UsageCount=10 : APILevel=1 :
ConnectFunctions=YYN : DriverODBCVer=02.50 : FileUsage=2 :
FileExtns=*.mdb : SQLLevel=0 : s=YYN

Microsoft dBase Driver (*.dbf) / UsageCount=6 : APILevel=1 :
ConnectFunctions=YYN : DriverODBCVer=02.50 : FileUsage=1 :
FileExtns=*.dbf,*.ndx,*.mdx : SQLLevel=0 : [g= : = : ;g= : g=
xxx
Microsoft FoxPro Driver (*.dbf) / UsageCount=6 : APILevel=1 :
ConnectFunctions=YYN : DriverODBCVer=02.50 : FileUsage=1 :
FileExtns=*.dbf,*.cdx,*.idx,*.ftp : SQLLevel=0

Microsoft Excel Driver (*.xls) / UsageCount=4 : APILevel=1 :
ConnectFunctions=YYN : DriverODBCVer=02.50 : FileUsage=1 :
FileExtns=*.xls : SQLLevel=0

Microsoft Paradox Driver (*.db) / UsageCount=3 : APILevel=1 :
ConnectFunctions=YYN : DriverODBCVer=02.50 : FileUsage=1 :
FileExtns=*.db : SQLLevel=0

Microsoft Text Driver (*.txt; *.csv) / UsageCount=4 : APILevel=1 :
ConnectFunctions=YYN : DriverODBCVer=02.50 : FileUsage=1 :
FileExtns=*.,*.asc,*.csv,*.tab,*.txt,*.csv : SQLLevel=0

Microsoft ODBC for Oracle / UsageCount=2 : SQLLevel=1 : FileUsage=0 :
DriverODBCVer=02.50 : ConnectFunctions=YYY : APILevel=1 : CPTimeout=120

Microsoft Visual FoxPro Driver / UsageCount=2 : APILevel=0 :
ConnectFunctions=YYN : DriverODBCVer=02.50 : FileUsage=1 :
FileExtns=*.dbc,*.dbf : SQLLevel=0

Let us briefly describe the ODBC functions used in these procedures. You can skip this
material if it does not interest you.

C.6.1 Preliminaries

Before using the ODBC functions we are interested in, we must first get a handle to the
ODBC environment. Obtaining an environment handle is done by calling
SQLAllocHandle, whose Visual Basic declaration is:

Declare Function SQLAllocHandle Lib "odbc32.dll" (
 ByVal HandleType As Integer, _
 ByVal InputHandle As Long, _
 OutputHandlePtr As Long) As Integer

The actual call to use is:

nRetCode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, lHEnv)

The return value is an error code or 0 if no error has occured, in which case lHEnv will
receive the handle as a Long.

Once we have obtained an environment handle, we must set the environment attribute
known as ODBC behavior, using the SQLSetEnvAttr function, as follows:

' Set ODBC behavior
nRetCode = SQLSetEnvAttr(lHEnv, SQL_ATTR_ODBC_VERSION, _
 SQL_OV_ODBC2, SQL_IS_INTEGER)

Note the use of the lHEnv argument to identify the environment handle. This function call
sets the ODBC behavior to ODBC Version 2.x (SQL_OV_ODBC2). Actually, it does not
seem to matter whether we set the behavior to ODBC Version 2 or Version 3
(SQL_OV_ODBC3) as long as we set it to one of these values!

C.6.2 Getting Driver Information

To get information about the installed ODBC drivers on a system, we use the SQLDrivers
function. The declaration for this function is:

Declare Function SQLDriverConnect Lib "odbc32.dll" (_
 ByVal ConnectionHandle As Long, ByVal WindowHandle As Long, _
 ByVal InConnectionString As String, ByVal StringLength1 As Integer,
_
 ByVal OutConnectionString As String, ByVal BufferLength As Integer,
_
 StringLength2Ptr As Integer, ByVal DriverCompletion As Integer) As
Integer

The following is the complete procedure to list all drivers and their attributes in a text
box. (This procedure and the following ones are bare-bones, with no error checking. Feel
free to augment them for your own use.)

Private Sub ListODBCDrivers()

Dim lHEnv As Long
Dim sDriverDesc As String * 1024
Dim sDriverAttr As String * 1024
Dim sDriverAttributes As String
Dim nDriverDescLength As Integer
Dim nAttrLength As Integer
Dim x As Integer
Dim sAll As String

txtDrivers = ""

' Allocate an environment handle.
nRetCode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, lHEnv)

' Set ODBC behavior
nRetCode = SQLSetEnvAttr(lHEnv, SQL_ATTR_ODBC_VERSION, _
 SQL_OV_ODBC2, SQL_IS_INTEGER)

' Get first driver
nRetCode = SQLDrivers(lHEnv, SQL_FETCH_FIRST, sDriverDesc, _
 Len(sDriverDesc), nDriverDescLength, sDriverAttr, _
 Len(sDriverAttr), nAttrLength)

sAll = ""
Do While nRetCode = SQL_SUCCESS

 ' Replace NULL separators between atributes with colons
 sDriverAttributes = Left$(sDriverAttr, nAttrLength - 1)
 Do
 x = InStr(sDriverAttributes, Chr$(0))
 If x = 0 Then Exit Do
 sDriverAttributes = Left$(sDriverAttributes, x - 1) _
 & " : " & Mid$(sDriverAttributes, x + 1)
 Loop

 ' Save it
 sAll = sAll & Left$(sDriverDesc, nDriverDescLength) _
 & " / " & sDriverAttributes & vbCrLf

 ' Next data source
 nRetCode = SQLDrivers(lHEnv, SQL_FETCH_NEXT, sDriverDesc, _
 Len(sDriverDesc), nDriverDescLength, sDriverAttr, _
 Len(sDriverAttr), nAttrLength)

Loop

txtDrivers = sAll

nRetCode = SQLFreeHandle(SQL_HANDLE_ENV, lHEnv)

End Sub

Some of the driver attributes are worth discussing briefly:

DriverODBCVersion

Gives the version of ODBC that the driver supports. Note that even though the
drivers on my system are Version 3.5 or later, their ODBC Versions are only 2.5.
Thus, they support only ODBC 2.5.

SQLLevel

Describes, in general terms, the level of compliance of the driver to SQL. Level 0
is basic SQL-92 compliance. Level 1 is FIPS127-2 Transitional (whatever that is);
Level 2 is SQL-92 Intermediate; Level 3 is SQL-92 Full.

ConnectionFunctions

Indicates which of the three connection-related functions (SQLConnect,
SQLDriverConnect, or SQLBrowseConnect) are supported by this driver. The
value has the form XXX, where X is Y or N. Thus, a value of YYN means that
the driver supports SQLConnect and SQLDriverConnect but not
SQLBrowseConnect.

FileExtns

For file-based drivers (that access the physical data directly), indicates which
filename extensions the driver recognizes.

FileUsage

Indicates how a file-based driver views the data in the physical database. A value
of 0 indicates that the driver is not file-based. A value of 1 indicates that a file-
based driver treats data-source files as tables. A value of 2 indicates that the driver
treats the data files as databases.

C.6.3 Getting Data Sources

The process of getting a list of all data sources is quite similar. It uses the function
SQLDataSources, whose syntax is similar to SQLDrivers. The Visual Basic declaration
is:

Declare Function SQLDataSources Lib "odbc32.dll" (ByVal _
 EnvironmentHandle As Long, ByVal Direction As Integer, _
 ByVal ServerName As String, ByVal BufferLength1 As Integer, _
 NameLength1Ptr As Integer, ByVal Description As String, _
 ByVal BufferLength2 As Integer, NameLength2Ptr As Integer) As
Integer

The complete code is:

Private Sub ListODBCSources()

Dim lHEnv As Long
Dim sServerName As String * 32
Dim sDescription As String * 128
Dim nServerNameLength As Integer
Dim nDescriptionLength As Integer

lstDataSources.Clear

' Allocate an environment handle.
nRetCode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, lHEnv)

' Set ODBC behavior
nRetCode = SQLSetEnvAttr(lHEnv, SQL_ATTR_ODBC_VERSION, _
 SQL_OV_ODBC2, SQL_IS_INTEGER)

' Put first data source name in sServerName

nRetCode = SQLDataSources(lHEnv, SQL_FETCH_FIRST, sServerName, _
 Len(sServerName), nServerNameLength, sDescription, _
 Len(sDescription), nDescriptionLength)

lstDataSources.AddItem "DATA SOURCE / DRIVER"
Do While nRetCode = SQL_SUCCESS

 lstDataSources.AddItem Left$(sServerName, _
 nServerNameLength) & " / " & Trim0(sDescription)

 ' Next data source
 nRetCode = SQLDataSources(lHEnv, SQL_FETCH_NEXT, _
 sServerName, Len(sServerName), nServerNameLength, _
 sDescription, Len(sDescription), nDescriptionLength)

Loop

nRetCode = SQLFreeHandle(SQL_HANDLE_ENV, lHEnv)

End Sub

Appendix D. Obtaining or Creating the Sample
Database
The sample flat file “database,” as well as the Access database and the sample programs,
are all available for free download from the O’Reilly Internet site. You can choose from
any of the following methods to download the data that accompanies the book:

Via the World Wide Web

The sample files are available from
ftp://ftp.ora.com/published/oreilly/windows/access.design2/CodeAccess3.zip.

Via an ftp client program

You can use an ftp client such as WS_FTP32 to ftp to ftp.ora.com, change to the
directory published/oreilly/windows/access.design3/, and get the file example.zip.

In each case, the sample files are stored in a single file compressed using the PKZip file
format. If you don’t own a utility program capable of decompressing the software (or if
you’re still doing these things from the command line), I highly recommend that you
download an evaluation copy of the shareware utility WinZip, from Nico Mak
Computing, Inc.; it is available at http://www.winzip.com.

EXAMPLE.ZIP contains LIBRARY_FLAT.DOC (the flat database created with Microsoft
Word), as well as LIBRARY95.MDB (the sample Access database for Access for Office
95), and LIBRARY97.MBD (the sample Access database for Access for Office 97). (The
two versions perform optimally when using different file formats.) The .mbd file itself
contains the following:

• The four tables (BOOKS, AUTHORS, PUBLISHERS, and BOOK/AUTHOR)
and their primary indexes

• A code module, Examples, that contains all of the example programs from the
book

It does not, however, contain definitions of relationships, nor does it include any query
definitions. The book assumes that you’ll be creating these from scratch.

If you don’t have access to the Internet or to an email account from a service provider
with a gateway to the Internet, it is quite easy to create the sample files yourself. In the
remainder of this section, we’ll guide you through the steps required to create each of the
tables in the Library database, LIBRARY.MDB.

D.1 Creating the Database

The first step is to create the database itself by doing the following:

1. Start Microsoft Access.
2. When the Microsoft Access dialog box appears over the main Microsoft Access

window, as shown in Figure D-1, select the Blank Database button, and Click
OK. Access opens the File New Database dialog box.

Figure D-1. The Microsoft Access dialog box

3. Navigate to the directory in which you’d like to save the database file. If the
directory doesn’t exist, you can create it by clicking on the Create New Folder
button (the third button from the left on the toolbar); you should then navigate to
the newly created directory. In the File name text box, type in library.mdb.
Then click the Create button.

Access creates the new database and opens the Library Database window, which should
resemble Figure D-2. This is a completely empty database; it doesn’t even contain any
tables that are capable of holding data. Our next step is to define each of those tables and
enter some data into them.

Figure D-2. The Library Database window

D.2 Creating the BOOKS Table

To define the design of the BOOKS table, perform the following steps:

1. Click the New button in the Library Database window. Access opens the New
Table dialog box, which contains a listbox with a variety of options. Select
Design View, and click OK. Access opens the Table1 Table window, as shown in
Figure D-3, which allows you to define the fields in a new database table.

Figure D-3. The Table1 Table window

2. Enter the information shown in Table D-1 into the Field Name and Data Type
columns of the Table1 Table window. Note that you can select the data type from
a drop-down listbox.

Table D-1. Fields of the BOOKS table
Field Name Data Type

ISBN Text
Title Text
PubID Text
Price Currency

3. When you select a field, its properties are displayed in the lower portion of the
dialog box. Next, enter the individual field properties shown in Table D-2 in the
Field Properties portion of the dialog box. Note that you don’t have to add or
modify any properties of the Price field.

Table D-2. Nondefault properties of the BOOKS table
Field Name Property Value

ISBN Indexed Yes (No Duplicates)
Title Field Size 200
 Indexed Yes (Duplicates OK)
PubID Indexed Yes (Duplicates OK)

Price Format Currency

4. Designate ISBN as the table’s primary key. To do this, either click on the Primary
Key button on the toolbar (the 11th button from the left of the toolbar, and
immediately to the left of the Undo button), or right-click on the row selector (the
shaded gray field to the right of the ISBN’s Field Name column) and select
Primary Key from the pop-up menu.

5. Save the completed table design. Either click the Save button on the toolbar (the
second button from the left), or select the Save option from the File menu. When
Access opens the Save As dialog box, type BOOKS into the Table Name text box,
and click OK.

6. Close the BOOKS table in Design View.

You’re now ready to begin entering data into the table. Select the BOOKS table in the
database window, and click on the Open button. Access opens the BOOKS table in
Datasheet View, which allows you to input information into the database. Enter the data
shown in Table D-3. When you’ve finished, close the table. Note that you don’t have to
save the data explicitly that you’ve entered into the table; Access automatically takes care
of writing the records that you’ve entered to disk.

Table D-3. Data for the BOOKS table
ISBN Title PubID Price

0-555-55555-9 Macbeth 2 12.00
0-91-335678-7 Faerie Queene 1 15.00
0-99-999999-9 Emma 1 20.00
0-91-045678-5 Hamlet 2 20.00
0-55-123456-9 Main Street 3 22.95
1-22-233700-0 Visual Basic 1 25.00
0-12-333433-3 On Liberty 1 25.00
0-103-45678-9 Iliad 1 25.00
1-1111-1111-1 C++ 1 29.95
0-321-32132-1 Balloon 3 34.00
0-123-45678-0 Ulysses 2 34.00
0-99-777777-7 King Lear 2 49.00
0-12-345678-9 Jane Eyre 3 49.00
0-11-345678-9 Moby-Dick 3 49.00

D.3 Creating the AUTHORS Table

To create the AUTHORS table, follow the same basic steps listed in Section D.2. The
field definitions for the AUTHORS table are shown in Table D-4.

Table D-4. Fields of the AUTHORS table
Field Name Data Type

AuID Text

AuName Text
AuPhone Text

There is only a single property that you need to set, as shown in Table D-5.

Table D-5. Single property to be set in the AUTHORS table
Field Name: AuID

Property: Indexed
Value: Yes (No Duplicates)

When you’ve finished creating the fields and assigning their attributes, define AuID as
the table’s primary key. Then save the table, assigning it the name AUTHORS.

Next, enter the author data into the table; it is shown in Table D-6.

Table D-6. Data for the AUTHORS table
AuID AuName AuPhone

1 Austen 111-111-1111
12 Grumpy 321-321-0000
3 Homer 333-333-3333
10 Jones 123-333-3333
6 Joyce 666-666-6666
2 Meville 222-222-2222
8 Mill 888-888-8888
4 Roman 444-444-4444
5 Shakespeare 555-555-5555
13 Sleepy 321-321-1111
9 Smith 123-222-2222
11 Snoopy 321-321-2222
7 Spenser 777-777-7777

D.4 Creating the PUBLISHERS Table

Once again, follow the same basic steps listed in Section D.2 to create the PUBLISHERS
table. Field definitions for the PUBLISHERS table are shown in Table D-7.

Table D-7. Fields of the PUBLISHERS table
Field Name Data Type

PubID Text
PubName Text
PubPhone Text

Once again, there is only a single property that you need to set, as shown in Table D-8.

Table D-8. Single property to set for the PUBLISHERS table
Field Name: PubID

Property: Indexed
Value: Yes (No Duplicates)

Designate PubID as the primary key, and save the table as PUBLISHERS.

Once you’ve finished creating the PUBLISHERS table, you can enter data into it. The
PUBLISHERS table contains records for only three publishers; these are shown in Table
D-9.

Table D-9. Data for the PUBLISHERS table
PubID PubName PubPhone

1 Big House 123-456-7890
2 Alpha Press 999-999-9999
3 Small House 714-000-0000

D.5 Creating the BOOK/AUTHOR Table

The BOOK/AUTHOR table is the final table needed for our examples. Once again, create
it following the same basic steps described earlier in Section D.2. It consists of only two
fields, as shown in Table D-10. Once you’ve entered the field names and data types into
the table definition, change the two properties listed in Table D-11, and save the table as
BOOK/AUTHOR. When you save the table, Access will open the dialog box shown in
Figure D-4. The table does not have a primary key, so click on the No button; Access will
save the table without designating a primary key.

Table D-10. Fields of the BOOK/AUTHOR table
Field Name Data Type

ISBN text
AuID text

Table D-11. Nondefault properties of the BOOK/AUTHOR table
Field Name Property Value

ISBN Indexed Yes (Duplicates OK)
AuID Indexed Yes (Duplicates OK)

Once you’ve created the BOOK/AUTHOR table, you can enter the data shown in Table
D-12 into it.

Once you’ve finished this data entry, you’ll still have to define the relationships among
the tables. This is discussed in detail in Section 3.4.1, in Chapter 3. Once this detail is
taken care of, you can use the tables to create the queries and to run the programs
discussed in the text of the book.

Figure D-4. The “no primary key” warning dialog box

Table D-12. Data for the BOOK/AUTHOR table

ISBN AuID
0-103-45678-9 3
0-11-345678-9 2
0-12-333433-3 8
0-12-345678-9 1
0-123-45678-0 6
0-321-32132-1 11
0-321-32132-1 12
0-321-32132-1 13
0-55-123456-9 9
0-55-123456-9 10
0-555-55555-9 5
0-91-045678-5 5
0-91-335678-7 7
0-99-777777-7 5
0-99-999999-9 1
1-1111-1111-1 4
1-22-233700-0 4

D.6 Backing Up the Database

Once you’ve created the BOOKS database, it’s a good idea to make a backup copy of
each of the tables. That way, you can feel free to make modifications to individual tables,
to try out the book’s sample programs, and generally to experiment with the data, the
tables, and the database, without having to be concerned that you’ll corrupt the data. You
can make a backup copy by following this procedure for each of the four tables of the
BOOKS database:

1. Highlight the table you’d like to back up.
2. Select the Save As option from the File menu. Access opens the Save As... dialog

box shown in Figure D-5.
3. Select the Within the current database button. Access will suggest a filename for

your backup copy, such as Copy of BOOKS, as shown in Figure D-5.

4. Click the OK button to create the backup copy. It will appear in the Tables
property sheet of the Database dialog box.

Figure D-5. The Save As... dialog box

If the data in any of your tables does become lost or corrupted, you can restore the table
as follows:

1. Highlight the backup copy of the table in the database window.
2. Select the Save As option from the File menu. Access again opens the Save As...

dialog box shown in Figure D-5.
3. Select the Within the current database button.
4. Replace Access’ suggested filename (Copy of Copy of...) with the name of the

original table, and click OK.
5. Access displays a message warning that the name you entered has already been

assigned to another table and asking whether you want to replace it. Click OK.

Before replacing any of the tables that participate in relationships
with other tables, you’ll have to delete that table’s relationships. To
do this, select the Relationships option from the Tools menu. When
Access opens the Relationships window, right click on the line
depicting each relationship in which a table participates, then select
the Delete option from the pop-up menu.

D.7 Entering and Running the Sample Programs

If you’ve downloaded the sample file from O’Reilly & Associates, your database already
includes a code module, Examples, that contains all of the book’s sample VBA programs.
If not, you can create a code module yourself and enter programs into it. To create the
code module:

1. Select the Modules tab when the Library database is open in the Database
window.

2. Click on the New button to create a new code module.
3. When Access opens a new code module (which it will usually name Module1,

unless your database already contains code modules saved with their default
names), click on the Save button on the toolbar.

4. When Access displays the Save As dialog box, enter the name of your new code
module, Examples, in the Module Name text box, and click OK.

You can then begin entering code for each of the program examples. To do this, for each
code example:

1. Select the Procedure option from the Insert menu.
2. When Access opens the Insert Procedure dialog box, enter the name of the

procedure in the Name text box. Since all of the programs listed in the book are
subroutines, you don’t have to worry about the dialog box’s other options. Just
click OK.

To run a program:

1. Select the Modules tab in the Database window, and open the Examples module.
2. Select the Debug Window option from the View menu.
3. When Access opens the Debug window, simply type in the name of the program

you’d like to run.

Appendix E. Suggestions for Further Reading
Here is a brief list of some books on database theory:

1. Atzeni, P., and V. De Antonellis. Relational Database Theory. Benjamin
Cummings: 1993. (A highly theoretical and mathematical treatment of the
subject.)

2. Codd, E. F. The Relational Model for Database Management: Version 2.
Addison-Wesley: 1990. (The classic exposition of the relational model by one of
its creators and chief proponents.)

3. Date, C. J. An Introduction to Database Systems, 6th Edition. Addison-Wesley:
1995. (A less formal and highly readable book.)

4. Simovici, D., and R. Tenney. Relational Database Systems. Academic Press:
1995. (This is a very mathematical treatment of the subject. Much better written
than the Atzeni and De Antonellis book.)

5. Ullman, J. Principles of Database and Knowledge-Base Systems, Volume 1:
Classical Database Systems. Computer Science Press: 1988. (A book with a
somewhat different point of view. Not as mathematical as Atzeni or Simovici, but
more mathematical than Date.)

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Access Database Design and Programming is a Southern
tamandua (Tamandua tetradactyla), one of three species comprising the anteater family.
The Southern tamandua is also known as the collared anteater (although vested anteater
might be a better name). Tamanduas live in the tropical rainforest. They spend much of
their time in the forest canopy, feasting on ants and termites; they often move awkwardly
when they descend to the ground. Tamanduas use their powerful forearms for self-
defense. When attacked, they will back up against a rock or cling to a tree branch with
their hind legs, while fighting and clawing with their forearms. Amazonian Indians
sometimes use tamanduas to clear their homes of ants and termites. Despite this useful
trait, the tamandua is an endangered species. They are often killed for their tails, the
tendons of which are used to make ropes.

Jeffrey Holcomb was the production editor and proofreader for Access Database Design
and Programming. Clairemarie Fisher O’Leary and Tatiana Apandi Diaz were the
copyeditors. Rachel Wheeler, Matt Hutchinson, and Claire Cloutier provided quality
control. Brenda Miller wrote the index.

Edie Freedman designed the cover of this book. The cover image is a 19th-century
engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout
with Quark XPress 4.1 using Adobe’s ITC Garamond font.

David Futato designed the interior layout. Mihaela Maier converted the files from
Microsoft Word to FrameMaker 5.5.6 using tools created by Mike Sierra. The text font is
Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont’s TheSans Mono Condensed. The illustrations that appear in the book were
produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and
Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This
colophon was written by Clairemarie Fisher O’Leary.

	Copyright
	Full Description
	Steven Roman
	O’Reilly Books
	O’Reilly Articles
	Preface to the Third Edition
	Preface to the Second Edition
	The Book’s Audience
	The Sample Code
	Organization of This Book
	Part I
	Part II
	Part III
	Part IV
	Part V
	Part VI
	Part VII
	Part VIII

	Conventions in This Book
	Obtaining Updated Information
	Request for Comments
	Acknowledgments
	Part I: Database Design
	
	1.1 Database Design
	
	Table 1-1. The LIBRARY_FLAT sample database

	1.1.1 Why Use a Relational-Database Design?
	1.1.1.1 Redundancy
	Table 1-2. The BOOKS table from the LIBRARY_FLAT�
	Table 1-3. The AUTHORS table from the LIBRARY_FL�
	Table 1-4. The PUBLISHERS table from the LIBRARY�
	Table 1-5. The BOOK/AUTHOR table from the LIBRAR�
	1.1.1.2 Multiple-value problems
	1.1.1.3 Update anomalies
	1.1.1.4 Insertion anomalies
	1.1.1.5 Deletion anomalies

	1.1.2 Complications of Relational-Database Design
	1.1.2.1 Avoiding data loss
	1.1.2.2 Maintaining relational integrity
	1.1.2.3 Creating views

	1.1.3 Summary

	1.2 Database Programming
	2.1 What Is a Database?
	2.2 Entities and Their Attributes
	
	Table 2-1. The BOOKS table from the LIBRARY data�

	2.3 Keys and Superkeys
	2.4 Relationships Between Entities
	
	Figure 2-1. The LIBRARY entity-relationship diagram

	2.4.1 Types of Relationships

	3.1 Implementing Entities
	3.1.1 Implementing Entity Classes—Table Schemes
	3.1.2 Implementing Entity Sets—Tables
	Table 3-1. The BOOKS table from the LIBRARY data�

	3.2 A Short Glossary
	3.3 Implementing the Relationships in a Relational Database
	
	Figure 3-1. The LIBRARY entity-relationship diagram

	3.3.1 Implementing a One-to-Many Relationship—For
	Table 3-2. The BOOKS table sorted by PubID
	Figure 3-2. A one-to-many relationship shown in tables S and T

	3.3.2 Implementing a One-to-One Relationship
	3.3.3 Implementing a Many-to-Many Relationship—Ne
	Figure 3-3. A many-to-many relationship in the BOOK/AUTHOR table

	3.3.4 Referential Integrity
	3.3.5 Cascading Updates and Cascading Deletions

	3.4 The LIBRARY Relational Database
	
	Table 3-3. The AUTHORS table from the Access LIB�
	Table 3-4. The BOOK/AUTHOR table from the LIBRAR�
	Table 3-5. The BOOKS table from the LIBRARY data�
	Table 3-6. The PUBLISHERS Table from the LIBRARY�

	3.4.1 Setting Up the Relationships in Access
	Figure 3-4. The Relationships view of the BOOKS table
	Figure 3-5. Relationship between the PUBLISHERS and BOOKS tables
	Figure 3-6. Error message due to dangling reference
	Figure 3-7. Relationships view showing various table relationships

	3.5 Index Files
	
	Figure 3-8. Index file between City and Publisher
	Figure 3-9. Index file between City, State, and Publisher

	3.5.1 Example
	Figure 3-10. Index view of the BOOKS table

	3.6 NULL Values
	4.1 Redundancy
	
	Table 4-1. A table with two informational attrib�
	Table 4-2. A table with blank cells to illustrat�

	4.2 Normal Forms
	4.3 First Normal Form
	4.4 Functional Dependencies
	4.5 Second Normal Form
	4.6 Third Normal Form
	
	Table 4-3. Redundant data in a table

	4.7 Boyce-Codd Normal Form
	
	Table 4-4. A table with dependencies

	4.8 Normalization
	
	Table 4-5. A table with redundant data
	Table 4-6. First table derived from Table 4-5 to�
	Table 4-7. Second table derived from Table 4-5 t�

	4.8.1 Decomposition
	Table 4-8. A table with two identical author nam�
	Table 4-9. Partial decomposition of Table 4-8
	Table 4-10. Partial decomposition of Table 4-8
	Table 4-11. An incorrect reconstruction of Table�
	Table 4-12. Table example to show further decomp�
	Table 4-13. Partial decomposition of Table 4-12
	Table 4-14. Partial decomposition of Table 4-12
	Table 4-15. Decomposition example changing price
	Table 4-16. Looking at data by combining Table 4�

	Part II: Database Queries
	
	5.1 Query Languages
	
	Table 5-1. Books published by Big House costing �

	5.2 Relational Algebra and Relational Calculus
	
	Table 5-2. The BOOKS table from the LIBRARY data�
	Table 5-3. The PUBLISHERS table from the LIBRARY�
	Table 5-4. Publishers with books under $20.00

	5.3 Details of the Relational Algebra
	
	Figure 5-1. The Access Query Design window

	5.3.1 Renaming
	Table 5-5. The BOOKS table with original fields
	Table 5-6. The BOOKS table with renamed fields

	5.3.2 Union
	Figure 5-2. The Access Paste Table As dialog box
	Figure 5-3. The Access Append dialog box
	Figure 5-4. The Access Append Query window

	5.3.3 Intersection
	5.3.4 Difference
	Figure 5-5. The Access Join Properties dialog box
	Figure 5-6. The Access Select Query design window showing a join between two properties
	Figure 5-7. The Access Select Query window showing the intersection of two tables

	5.3.5 Cartesian Product
	Figure 5-8. The Access Query window illustrating a Cartesian product of two tables

	5.3.6 Projection
	Figure 5-9. Creating a projection using the BOOKS table

	5.3.7 Selection
	Table 5-7. The BOOKS table in the LIBRARY databs�
	Table 5-8. The resulting table
	Figure 5-10. Creating a selection in the Query Design window

	5.3.8 Joins
	5.3.8.1 Equi-join
	5.3.8.2 Natural join
	Table 5-9. The BOOKS table
	Table 5-10. The PUBLISHERS table
	Table 5-11. The PUBLISHERS nat-join BOOKS table
	5.3.8.3 �-Join

	5.3.9 Outer Joins
	5.3.10 Implementing Joins in Microsoft Access
	Table 5-12. The S table
	Table 5-13. The T table
	Figure 5-11. Establishing associations in the Access Query Design window
	Table 5-14. An equi-join of tables S and T
	Figure 5-12. The SQL statement generated from Figure 5-11
	Table 5-15. Result table from a �-join
	Figure 5-13. Access error for attempting to create unequal �-joins
	Figure 5-14. The Access dialog box for joining properties
	Figure 5-15. The SQL statement illustrating a left outer join
	Table 5-16. A left outer join

	5.3.11 Semi-Joins
	Table 5-17. The PUBLISHERS \(new\) table
	Table 5-18. Result table from an inner join
	Table 5-19. Result table from a semi-join

	5.3.12 Other Relational Algebra Operations
	5.3.13 Optimization

	6.1 Introduction to Access SQL
	6.2 Access Query Design
	
	Figure 6-1. The Access Query Design View
	Figure 6-2. The Access SQL View of Figure 6-1

	6.3 Access Query Types
	
	Table 6-1. A CROSSTAB Query

	6.4 Why Use SQL?
	6.5 Access SQL
	6.5.1 Syntax Conventions
	6.5.1.1 Notes

	6.6 The DDL Component of Access SQL
	6.6.1 The CREATE TABLE Statement
	6.6.1.1 Column definition
	Table 6-2. Access SQL data types
	6.6.1.2 Constraints
	6.6.1.3 Notes

	6.6.2 The ALTER TABLE Statement
	6.6.2.1 Notes

	6.6.3 The CREATE INDEX Statement
	6.6.3.1 Note

	6.6.4 The DROP Statement
	6.6.4.1 Note

	6.7 The DML Component of Access SQL
	6.7.1 Updatable Queries
	6.7.2 Joins
	6.7.2.1 Inner joins
	6.7.2.2 Outer joins
	6.7.2.3 Nested joins
	Figure 6-3. A portion of the Relationships window in Access
	6.7.2.4 Self-joins
	6.7.2.5 Notes

	6.7.3 The SELECT Statement
	6.7.3.1 Predicate
	Table 6-3. The tblALL table
	Table 6-4. The tblDISTINCT table
	Table 6-5. The PUBLISHERS \(altered\) table
	Table 6-6. The tblDISTINCTROW table
	Table 6-7. Publishers with at least one book in �
	Table 6-8. The tblDISTINCT table
	Table 6-9. The tblDISTINCTROW table
	6.7.3.2 ReturnColumnDescription
	Table 6-10. The ISBN-PUB table
	6.7.3.3 FROM TableExpression
	6.7.3.4 WHERE RowCondition
	6.7.3.5 GROUP BY GroupByCriteria
	Table 6-11. Each publisher’s least expensive boo�
	6.7.3.6 HAVING GroupCriteria
	Table 6-12. Each publisher’s cheapest book under�
	6.7.3.7 ORDER BY OrderByCriteria

	6.7.4 The UNION Statement
	6.7.4.1 Example
	6.7.4.2 Notes

	6.7.5 The UPDATE Statement
	6.7.5.1 Example

	6.7.6 The DELETE Statement
	6.7.7 The INSERT INTO Statement
	6.7.7.1 Note

	6.7.8 The SELECT...INTO Statement
	6.7.8.1 Notes

	6.7.9 TRANSFORM
	Table 6-13. Book prices by publisher
	Table 6-14. A cross-tabulation of book prices by�
	Table 6-15. Book prices and discount by publishe�
	Table 6-16. Aggregating results in a crosstab ta�
	Table 6-17. Omitting columns from a crosstab tab�

	6.7.10 Subqueries
	6.7.10.1 Syntax 1
	6.7.10.2 Syntax 2
	6.7.10.3 Syntax 3
	6.7.10.4 Notes

	6.7.11 Parameters

	Part III: Database Architecture
	
	7.1 Why Program?
	7.2 Database Systems
	
	Figure 7-1. The three-level structure of a database system

	7.3 Database Management Systems
	7.4 The Jet DBMS
	
	Figure 7-2. The relationships and structure of the Jet Database Engine (DBMS)

	7.5 Data Definition Languages
	7.5.1 The Jet Data Definition Language
	Example 7-1. Use of the Jet data definition language

	7.6 Data Manipulation Languages
	7.6.1 The Jet Data Manipulation Language
	Example 7-2. Jet DML code altering the BOOKS table

	7.7 Host Languages
	7.8 The Client/Server Architecture
	
	Figure 7-3. The client/server mode example
	Figure 7-4. The distributed client/server model example
	Figure 7-5. The remote database example

	Part IV: Visual Basic for Applications
	
	
	
	Figure 8-1. The Access VBA IDE

	8.1 The Project Window
	
	Figure 8-2. The Project Explorer

	8.1.1 Project Names
	8.1.2 Project Contents
	8.1.2.1 Standard modules
	8.1.2.2 Class modules

	8.2 The Properties Window
	
	Figure 8-3. The Properties window

	8.3 The Code Window
	8.3.1 Procedure and Full-Module Views
	8.3.2 The Object and Procedure Listboxes
	Figure 8-4. The events for a Workbook object

	8.4 The Immediate Window
	
	Figure 8-5. The Immediate window

	8.5 Arranging Windows
	
	Figure 8-6. A split-screen approach

	8.5.1 Docking
	Figure 8-7. The Docking options

	9.1 Navigating the IDE
	9.1.1 General Navigation
	9.1.1.1 Navigating the code window at design time
	9.1.1.2 Tracing code
	9.1.1.3 Bookmarks

	9.2 Getting Help
	9.3 Creating a Procedure
	
	Figure 9-1. The Add Procedure dialog box

	9.4 Run Mode, Break Mode, and Design Mode
	
	Figure 9-2. An error message

	9.5 Errors
	9.5.1 Design-Time and Compile-Time Errors
	Figure 9-3. The Options dialog box
	Figure 9-4. A syntax error message

	9.5.2 Runtime Errors
	9.5.3 Logical Errors
	Figure 9-5. The result of a logical error

	9.6 Debugging
	9.6.1 Tracing
	Example 9-1. Sample code for tracing methods
	9.6.1.1 Step Into (F8 or choose Step Into from the Debug menu)
	9.6.1.2 Step Over (Shift+F8 or choose Step Over from the Debug menu)
	9.6.1.3 Step Out (Ctrl+Shift+F8 or choose Step Out from the Debug menu)
	9.6.1.4 Run to Cursor (Ctrl+F8 or choose Run To Cursor from the Debug menu)
	9.6.1.5 Set Next Statement (Ctrl+F9 or choose Set Next Statement from the Debug menu)
	9.6.1.6 Breaking out of Debug mode

	10.1 Comments
	10.2 Line Continuation
	10.3 Constants
	10.3.1 Enums
	Figure 10-1. Example message box

	10.4 Variables and Data Types
	
	Table 10-1. VBA data types

	10.4.1 Variable Declaration
	Table 10-2. Type-declaration suffixes

	10.4.2 The Importance of Explicit Variable Declaration
	10.4.2.1 Option Explicit

	10.4.3 Numeric Data Types
	10.4.4 Boolean Data Type
	10.4.5 String Data Type
	10.4.6 Date Data Type
	10.4.7 Variant Data Type
	10.4.8 Access Object Data Types
	10.4.8.1 The generic As Object declaration
	10.4.8.2 The Set statement

	10.4.9 Arrays
	10.4.9.1 The dimension of an array
	10.4.9.2 Dynamic arrays
	10.4.9.3 The UBound function

	10.4.10 Variable Naming Conventions
	Table 10-3. Naming convention for nonobject vari�
	Table 10-4. Naming convention for some object va�

	10.4.11 Variable Scope
	10.4.11.1 Procedure-level (local) variables
	Figure 10-2. Examples of variable scope
	10.4.11.2 Module-level variables

	10.4.12 Variable Lifetime
	10.4.12.1 Static variables
	Example 10-1. Using a static variable

	10.4.13 Variable Initialization

	10.5 VBA Operators
	
	Table 10-5. VBA operators and relations

	11.1 Calling Functions
	
	Example 11-1. The AddOne function
	Figure 11-1. The message dialog box displayed by Example 11-1
	Example 11-2. Assigning a function’s return value

	11.2 Calling Subroutines
	11.3 Parameters and Arguments
	11.3.1 Optional Arguments
	Example 11-3. Using an optional argument

	11.3.2 Named Arguments
	11.3.3 ByRef Versus ByVal Parameters
	Example 11-4. Testing the ByVal and ByRef keywords

	11.4 Exiting a Procedure
	
	Example 11-5. Using the Exit Sub statement

	11.5 Public and Private Procedures
	11.6 Fully Qualified Procedure Names
	
	Table 12-1. VBA functions
	Table 12-2. VBA statements

	12.1 The MsgBox Function
	
	Table 12-3. The MsgBox buttons argument values
	Figure 12-1. A MsgBox dialog box
	Table 12-4. MsgBox return values

	12.2 The InputBox Function
	
	Figure 12-2. An InputBox dialog box

	12.3 VBA String Functions
	12.4 Miscellaneous Functions and Statements
	12.4.1 The Is Functions
	12.4.1.1 The IsDate function
	12.4.1.2 The IsEmpty function
	12.4.1.3 The IsNull function
	12.4.1.4 The IsNumeric function

	12.4.2 The Immediate If Function
	12.4.3 The Switch Function
	Example 12-1. The Switch function

	12.4.4 The Beep Statement

	12.5 Handling Errors in Code
	12.5.1 The On Error Goto Label Statement
	Figure 12-3. An error dialog box

	12.5.2 Handling Errors in the Calling Procedure
	12.5.3 The Calls Stack
	12.5.4 The Error Object
	12.5.5 The On Error GoTo 0 Statement
	12.5.6 The On Error Resume Next Statement
	12.5.7 The Resume Statement
	Example 12-2. Error handling with the Resume statement

	13.1 The If ...Then Statement
	13.2 The For Loop
	13.3 The Exit For Statement
	
	Example 13-1. Finding the First Integer field

	13.4 The For Each Loop
	13.5 The Do Loop
	13.6 The Select Case Statement
	13.7 A Final Note on VBA
	13.7.1 File-Related Functions
	Table 13-1. Some VBA file and directory function�

	13.7.2 Date- and Time-Related Functions
	Table 13-2. Some date- and time-related function�

	13.7.3 The Format Function
	Table 13-3. Format function examples

	Part V: Data Access Objects
	
	14.1 Objects
	14.1.1 Object Variables
	Figure 14-1. An example of the intVar variable
	Figure 14-2. An example of a pointer variable
	Example 14-1. An object variable example
	Figure 14-3. The message box from the exaObjectVar() example
	Figure 14-4. Error message from the exaObjectvar() example

	14.1.2 Object-Variable Naming Conventions
	Table 14-1. Standard-variable naming for VBA
	Table 14-2. Object-variable naming for VBA

	14.1.3 Referencing the Properties and Methods of an Object
	Example 14-2. A property and method example

	14.2 The DAO Object Model
	
	Figure 14-5. The DAO object model
	Figure 14-6. A detailed example of the object-collection relationship

	14.3 The Microsoft Access Object Model
	
	Figure 14-7. The Microsoft Access object model

	14.4 Referencing Objects
	14.4.1 Fully Qualified Object Names
	14.4.2 Using Object Variables to Your Advantage
	Example 14-3. An object variable example

	14.4.3 Default Collections
	Table 14-3. DAO and Access object default collec�
	Example 14-4. A default collections example

	14.5 Collections Are Objects Too
	14.5.1 Properties and Methods of Access Collections
	14.5.2 Properties and Methods of DAO Collections
	14.5.3 Properties and Methods of User-Defined Collections
	Example 14-5. A collections example

	14.5.4 Say It Again
	Example 14-6. A TableDef example
	Figure 14-8. A list of TableDefs generated by exaCheckTableDefs()

	14.5.5 Refreshing Certain Collections

	14.6 The Properties Collection
	
	Figure 14-9. An Access properties collection diagram

	14.6.1 The Virtues of Properties Collections
	14.6.2 Types of Properties
	14.6.2.1 Property: Inherited
	14.6.2.2 Property: Name
	14.6.2.3 Property: Type
	Table 14-4. Constants for the Type property in V�
	14.6.2.4 Property: Value
	Example 14-7. A Properties collection example
	Figure 14-10. Window generated from executing exaProperties

	14.6.3 User-Defined Properties
	Example 14-8. A user-defined properties example
	Figure 14-11. Window generated from executing exaUserDefinedProperty

	14.7 Closing DAO Objects
	14.8 A Look at the DAO Objects
	14.8.1 DBEngine Object
	14.8.2 Errors
	Example 14-9. An Errors collection example
	Figure 14-12. Error message from executing exaErrorsCollection

	14.8.3 Workspaces
	14.8.4 Users
	14.8.5 Groups
	14.8.6 Databases
	14.8.7 TableDefs
	14.8.8 QueryDefs
	14.8.9 Recordsets
	14.8.10 Relations
	14.8.11 Containers
	Figure 14-13. Container objects diagram of the MS Jet engine
	Example 14-10. A Containers collection example

	14.8.12 Documents
	Example 14-11. Properties of the Document object

	14.8.13 Fields
	14.8.14 Parameters
	Example 14-12. A parameter query example

	14.8.15 Indexes

	14.9 The CurrentDb Function
	
	Example 14-13. A CurrentDb function example
	Example 14-14. The dbOne and dbTwo variable example
	Figure 14-14. Message box from executing exaCurrentDb2
	Figure 14-15. Message box from executing exaCurrentDb2() when refreshing with dbTwo

	Running exaCurrentDb2
	15.1 Creating a Database
	15.1.1 Notes
	Example 15-1. A CreateDatabase method example

	15.2 Opening a Database
	15.3 Creating a Table and Its Fields
	15.3.1 Notes
	Table 15-1. Constants for the Type property
	15.3.1.1 Note
	Example 15-2. A CreateTableDef method example
	Figure 15-1. Design view of table generated from running exaCreateTable

	15.3.2 Changing the Properties of an Existing Table or Field

	15.4 Creating an Index
	
	Example 15-3. A CreateIndex method example
	Figure 15-2. Indexes view of BOOKS table from running exaCreateIndex

	15.5 Creating a Relation
	
	Table 15-2. Attributes for a Relation object

	15.5.1 Notes
	Table 15-3. The SALESREGIONS table
	Example 15-4. A CreateRelation method example
	Figure 15-3. Relationships window after running exaRelations

	15.6 Creating a QueryDef
	15.6.1 Notes
	15.6.2 Running a Query
	Example 15-5. A CreateQueryDef method example
	Example 15-6. A new action query example

	15.6.3 Properties of a QueryDef Object
	Table 15-4. Possible query-type constants
	Example 15-7. A RecordsAffected property example

	16.1 Recordset Objects
	16.2 Opening a Recordset
	16.2.1 Note
	Example 16-1. An OpenRecordset method example

	16.2.2 Default Recordset Types

	16.3 Moving Through a Recordset
	16.3.1 BOF and EOF
	16.3.1.1 Notes on the BOF and EOF properties
	16.3.1.2 Notes on the Move methods
	Example 16-2. Moving through a Recordset
	Example 16-3. The modified Recordset position example

	16.4 Finding Records in a Recordset
	16.4.1 Finding Records in a Table-Type Recordset
	16.4.1.1 Notes
	Example 16-4. A Seek method example

	16.4.2 Finding Records in a Dynaset-Type or Snapshot-Type Recordset
	Example 16-5. A Find method example

	16.5 Editing Data Using a Recordset
	16.5.1 Editing an Existing Record
	Example 16-6. Editing data with Recordset

	16.5.2 Deleting an Existing Record
	16.5.2.1 Notes
	Example 16-7. Using the Delete method with Recordset

	16.5.3 Adding a New Record
	16.5.3.1 Notes
	Example 16-8. Adding a record with Recordset

	Part VI: ActiveX Data Objects
	
	17.1 What Is ADO?
	17.2 Installing ADO
	
	Figure 17-1. Reference to the ADO object library

	17.3 ADO and OLE DB
	
	Figure 17-2. OLE DB and ADO

	17.3.1 Data Stores
	17.3.2 Data Providers
	17.3.3 Data Consumers
	17.3.4 Service Providers

	17.4 The ADO Object Model
	
	Table 17-1. The ADO objects
	Figure 17-3. The ADO object model
	Figure 17-4. An “operation not supported” message

	17.4.1 The Three-Pronged Approach to Data Manipulation
	Example 17-1. Three methods of creating a Recordset object

	17.4.2 The Connection Object
	17.4.2.1 Properties of the Connection object
	17.4.2.2 Methods of the Connection object

	17.4.3 The Recordset Object
	17.4.3.1 Cursors
	17.4.3.2 LockType
	17.4.3.3 Properties of the Recordset object
	17.4.3.4 Methods of the Recordset object
	Example 17-2. The SupportsExample procedure

	17.4.4 The Command Object
	17.4.4.1 Command objects and connections
	17.4.4.2 Properties of the Command object
	17.4.4.3 Methods of the Command object

	17.4.5 The Property Object and Dynamic Properties
	Table 17-2. The values of the Type property
	Example 17-3. The PropertiesExample procedure

	17.4.6 The Field Object
	17.4.6.1 Properties of the Field object

	17.5 Finding OLE DB Providers
	
	Figure 17-5. Registry entry for an OLE DB provider
	Example 17-4. The ListDPs procedure

	17.6 A Closer Look at Connection Strings
	17.6.1 The Microsoft Jet 3.51 OLE DB Provider
	Example 17-5. The AccessExample procedure

	17.6.2 The Microsoft OLE DB Provider for ODBC Drivers
	Example 17-6. The GetODBCConnectString procedure
	17.6.2.1 Connecting to an Excel workbook
	Figure 17-6. A test Excel worksheet
	Example 17-7. The ExcelExample procedure
	17.6.2.2 Connecting to a text file
	Example 17-8. The TestExample procedure
	Figure 17-7. An error message
	17.6.2.3 ODBC support
	Table 17-3. Availability of properties by Record�
	Table 17-4. Availability of methods by Recordset

	17.7 An Example: Using ADO over the Web
	
	Figure 17-8. A search page

	18.1 The ADOX Object Model
	18.1.1 Creating a Database
	Figure 18-1. The ADOX object model

	18.1.2 Creating Tables
	Table 18-1. DAO/ADOX field data type constants

	18.1.3 The Tables Collection
	Table 18-2. Return values of the Table object’s �

	18.1.4 Creating Indexes
	Table 18-3. Comparison of constants for treating�

	18.1.5 Creating a Primary Key
	18.1.6 Creating a Query
	18.1.7 Conclusion

	Part VII: Programming Problems
	
	19.1 Running Sums
	
	Table 19-1. A running sum

	19.1.1 Solution
	Example 19-1. Calculating running sums using nested SQL statements
	Example 19-2. Calculating a running sum using DAO

	19.2 Overlapping Intervals I
	
	Table 19-2. Overlap table: Rows denote time inte�
	Table 19-3. Hours table

	19.2.1 Solution

	19.3 Overlapping Intervals II
	
	Table 19-4. Superload table: Hours worked by sup�

	19.3.1 Solution
	Table 19-5. Number of workers working at a parti�
	Table 19-6. Maximum number of workers per superv�
	Example 19-3. Calculating the maximum number of workers per supervisor

	19.4 Making Assignments with Default
	
	Table 19-7. Assignment table

	19.4.1 Solution
	Example 19-4. Handling preregistered and default room assignments

	19.5 Time to Completion I
	
	Table 19-8. Widgets table: Time to completion fo�

	19.5.1 Solution

	19.6 Time to Completion II
	
	Table 19-9. Widgets table: Time to completion of�

	19.6.1 Solution
	Example 19-5. TimeToCompletion example

	19.7 Time to Completion III—A MaxMin Problem
	
	Table 19-10. Widgets table: Time to completion o�

	19.7.1 Solution 1
	Table 19-11. Results table for qry1
	Table 19-12. Results table for qry2
	Table 19-13. Results table for qry3

	19.7.2 Solution 2

	19.8 Vertical to Horizontal
	
	Table 19-14. Composers table
	Table 19-15. ComposersData table
	Table 19-16. Combination of Table 19-14 and Tabl�

	19.8.1 Solution
	Example 19-6. VerticalToHorizontal example

	19.9 A Matching Problem
	
	Table 19-17. Programmers table: Programmers and �
	Table 19-18. ProgrammingJobs table

	19.9.1 Solution
	Table 19-19. Jobs and programmers qualified for �

	19.10 Equality of Sets
	
	Table 19-20. Equality

	19.10.1 Solution

	Part VIII: Appendixes
	
	
	
	Figure A-1. The Object Browser

	A.1 DAO Classes
	A.2 A Collection Object
	A.2.1 Methods
	A.2.2 Properties
	A.2.3 Methods

	A.3 Connection Object (DAO 3.5 Only)
	A.3.1 Collections
	A.3.2 Methods
	A.3.3 Properties

	A.4 Container Object
	A.4.1 Collections
	A.4.2 Properties

	A.5 Database Object
	A.5.1 Collections
	A.5.2 Methods
	A.5.3 Properties

	A.6 DBEngine Object
	A.6.1 Collections
	A.6.2 Methods
	A.6.3 Properties

	A.7 Document Object
	A.7.1 Methods
	A.7.2 Properties

	A.8 Error Object
	A.8.1 Properties

	A.9 Field Object
	A.9.1 Collections
	A.9.2 Methods
	A.9.3 Properties

	A.10 Group Object
	A.10.1 Collections
	A.10.2 Methods
	A.10.3 Properties

	A.11 Index Object
	A.11.1 Collections
	A.11.2 Methods
	A.11.3 Properties

	A.12 Parameter Object
	A.12.1 Properties

	A.13 Property Object
	A.13.1 Properties

	A.14 QueryDef Object
	A.14.1 Collections
	A.14.2 Methods
	A.14.3 Properties

	A.15 Recordset Object
	A.15.1 Collections
	A.15.2 Methods
	A.15.3 Properties

	A.16 Relation Object
	A.16.1 Collections
	A.16.2 Methods
	A.16.3 Properties

	A.17 TableDef Object
	A.17.1 Collections
	A.17.2 Methods
	A.17.3 Properties

	A.18 User Object
	A.18.1 Collections
	A.18.2 Methods
	A.18.3 Properties

	A.19 Workspace Object
	A.19.1 Collections
	A.19.2 Methods
	A.19.3 Properties
	Table B-1. WOOD
	Table B-2. SUPPLIER/TYPE
	Table B-3. SUPPLIER/TYPE WOOD

	B.1 Step 1
	
	Table B-4. R

	B.2 Step 2
	
	Table B-5. projSName\(R\)

	B.3 Step 3
	
	Table B-6. SUPPLIER/TYPE ÷ WOOD

	C.1 Introduction
	
	Figure C-1. An overview of ODBC

	C.2 The ODBC Driver Manager
	C.3 The ODBC Driver
	C.3.1 Driver Types

	C.4 Data Sources
	C.4.1 DSNs and Data Source Types
	C.4.1.1 Machine data sources
	C.4.1.2 File data sources
	Figure C-2. The ODBC Administrator

	C.4.2 Creating DSNs: The ODBC Administrator
	Figure C-3. Choose a driver

	C.4.3 Example DSNs
	C.4.3.1 Excel system data source
	C.4.3.2 Excel file data source
	Figure C-4. Creating an Excel data source, Part 1
	Figure C-5. Creating an Excel data source, Part 2
	C.4.3.3 Text-system data source

	C.4.4 Connecting to a Data Source
	Figure C-6. Text data-source setup
	Figure C-7. Setup for the donna.txt source file

	C.4.5 The SQLConnect Function
	C.4.6 Connection Strings
	C.4.7 SQLDriverConnect

	C.5 Getting ODBC Driver Help
	C.6 Getting ODBC Information Using Visual Basic
	C.6.1 Preliminaries
	C.6.2 Getting Driver Information
	C.6.3 Getting Data Sources

	D.1 Creating the Database
	
	Figure D-1. The Microsoft Access dialog box
	Figure D-2. The Library Database window

	D.2 Creating the BOOKS Table
	
	Figure D-3. The Table1 Table window
	Table D-1. Fields of the BOOKS table
	Table D-2. Nondefault properties of the BOOKS ta�
	Table D-3. Data for the BOOKS table

	D.3 Creating the AUTHORS Table
	
	Table D-4. Fields of the AUTHORS table
	Table D-5. Single property to be set in the AUTH�
	Table D-6. Data for the AUTHORS table

	D.4 Creating the PUBLISHERS Table
	
	Table D-7. Fields of the PUBLISHERS table
	Table D-8. Single property to set for the PUBLIS�
	Table D-9. Data for the PUBLISHERS table

	D.5 Creating the BOOK/AUTHOR Table
	
	Table D-10. Fields of the BOOK/AUTHOR table
	Table D-11. Nondefault properties of the BOOK/AU�
	Figure D-4. The “no primary key” warning dialog b
	Table D-12. Data for the BOOK/AUTHOR table

	D.6 Backing Up the Database
	
	Figure D-5. The Save As... dialog box

	D.7 Entering and Running the Sample Programs

