Statistical Analysis with Excel FOR

Learn to:

- Understand mean, median, margin of error, standard deviation, permutations, and correlations
- Crunch numbers and interpret statistics
- Use Excel formulas and functions
- Work with probabilities, related distributions, trends, and more

Joseph Schmuller, PhD
 Author of Active X: No Experience Required

Statistical Analysis with Excel'

 FOR

2ND EDITION

Statistical Analysis with Excel'

 FOR 2ND EDITION

Joseph Schmuller, PhD

WILEY
Wiley Publishing, Inc.

Statistical Analysis with Excel ${ }^{\circledR}$ For Dummies, ${ }^{\circledR}$ 2nd Edition

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com
Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley \& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http : / / www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley \& Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without written permission. Excel is a registered trademark of Microsoft Corporation in the United States and/or other countries All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.
For technical support, please visit www.wiley.com/techsupport.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Control Number: 2009926356
ISBN: 978-0-470-45406-0
Manufactured in the United States of America
$\begin{array}{llllllllll}10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

About the Author

Joseph Schmuller is a veteran of over 25 years in Information Technology. He is the author of several books on computing, including the three editions of Teach Yourself UML in 24 Hours (SAMS), and the first edition of Statistical Analysis with Excel For Dummies. He has written numerous articles on advanced technology. From 1991 through 1997, he was Editor-in-Chief of PC AI magazine.

He is a former member of the American Statistical Association, and he has taught statistics at the undergraduate and graduate levels. He holds a B.S. from Brooklyn College, an M.A. from the University of Missouri-Kansas City, and a Ph.D. from the University of Wisconsin, all in psychology. He and his family live in Jacksonville, Florida, where he is an Adjunct Professor at the University of North Florida.

Dedication

In loving memory of Jesse Edward Sprague, my best friend in the whole world - a man who never met a stranger.
"Friends have all things in common" -Plato

Author's Acknowledgments

One thing I have to tell you about writing a For Dummies book —it's an incredible amount of fun. You get to air out your ideas in a friendly, conversational way, and you get a chance to throw in some humor, too. To write a second edition is almost more fun than one writer should be allowed to have. I worked again with a terrific team. Acquisitions Editor Stephanie McComb and Project Editor Beth Taylor of Wiley Publishing have been encouraging, cooperative, and patient. Technical Editor Namir Shammas helped make this book as technically bulletproof as possible. Any errors that remain are under the sole proprietorship of the author. My deepest thanks to Stephanie and Beth. My thanks to Waterside Productions for representing me in this effort.

Again I thank mentors in college and graduate school who helped shape my statistical knowledge: Mitch Grossberg (Brooklyn College); Mort Goldman, Al Hillix, Larry Simkins, and Jerry Sheridan (University of Missouri-Kansas City); and Cliff Gillman and John Theios (University of Wisconsin-Madison). A long time ago at the University of Missouri-Kansas City, Mort Goldman exempted me from a graduate statistics final on one condition - that I learn the last course topic, Analysis of Covariance, on my own. I hope he's happy with Appendix B.

I thank my mother and my brother David for their love and support and for always being there for me, and Kathryn for so much more than I can say. Finally, a special note of thanks to my friend Brad, who suggested this whole thing in the first place!

Publisher's Acknowledgments

We're proud of this book; please send us your comments through our online registration form located at http://dummies.custhelp.com. For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media Development
 Project Editor: Beth Taylor
 (Previous Edition: Sarah Hellert)

Senior Acquisitions Editor: Stephanie McComb
Composition Services

Copy Editor: Beth Taylor
Technical Editor: Namir Shammas
Project Coordinator: Kristie Rees
Layout and Graphics: Carrie A. Cesavice, Shawn Frazier, Melissa K. Jester

Proofreaders: Melissa Cossell, Bonnie Mikkelson,

Editorial Manager: Cricket Krengel
Editorial Assistant: Laura Sinise
Cartoons: Rich Tennant (www.the5thwave.com)

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher
Barry Pruett, Vice President and Executive Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Acquisitions Director
Robyn Siesky, Editorial Director
Sandy Smith, Senior Marketing Director
Amy Knies, Business Manager
Publishing for Consumer Dummies
Diane Graves Steele, Vice President and Publisher
Composition Services
Debbie Stailey, Director of Composition Services

Contents at a Glance

Introduction 1
Part I: Statistics and Excel: A Marriage Made in Heaven 7
Chapter 1: Evaluating Data in the Real World 9
Chapter 2: Understanding Excel's Statistical Capabilities 27
Part 11: Describing Data 53
Chapter 3: Show and Tell: Graphing Data 55
Chapter 4: Finding Your Center 79
Chapter 5: Deviating from the Average 93
Chapter 6: Meeting Standards and Standings 111
Chapter 7: Summarizing It All. 123
Chapter 8: What's Normal? 141
Part 111: Drawing Conclusions from Data 153
Chapter 9: The Confidence Game: Estimation 155
Chapter 10: One-Sample Hypothesis Testing 171
Chapter 11: Two-Sample Hypothesis Testing 187
Chapter 12: Testing More Than Two Samples 217
Chapter 13: Slightly More Complicated Testing 243
Chapter 14: Regression: Linear and Multiple 255
Chapter 15: Correlation: The Rise and Fall of Relationships 291
Part IU: Working with Probability. 311
Chapter 16: Introducing Probability. 313
Chapter 17: More on Probability 335
Chapter 18: A Career in Modeling 349
Part V: The Part of Tens 367
Chapter 19: Ten Statistical and Graphical Tips and Traps 369
Chapter 20: Ten Things (Twelve, Actually) That Didn’t Fit in Any Other Chapter 375
Appendix A: When Your Worksheet Is a Database 405
Appendix B: The Analysis of Covariance 419
Appendix C: Of Stems, Leaves, Boxes, Whiskers, and Smoothies 433
Index 453

Table of Contents

Introduction 1
About This Book 1
What You Can Safely Skip 2
Foolish Assumptions 2
How This Book Is Organized 3
Part I: Statistics and Excel: A Marriage Made in Heaven 3
Part II: Describing Data 3
Part III: Drawing Conclusions from Data 3
Part IV: Working with Probability 3
Part V: The Part of Tens 4
Appendix A: When Your Worksheet Is a Database 4
Appendix B: The Analysis of Covariance 4
Appendix C: Of Stems, Leaves, Boxes, Whiskers, and Smoothies 4
Icons Used in This Book 5
Where to Go from Here 5
Part 1: Statistics and Excel: A Marriage Made in Heaven 7
Chapter 1: Evaluating Data in the Real World. 9
The Statistical (And Related) Notions You Just Have to Know 9
Samples and populations 10
Variables: Dependent and independent 11
Types of data 12
A little probability 13
Inferential Statistics: Testing Hypotheses 14
Null and alternative hypotheses 15
Two types of error 16
What's New in Excel? 18
Some Things about Excel You Absolutely Have to Know 20
Autofilling cells 20
Referencing cells 22
What's New in This Edition? 25
Chapter 2: Understanding Excel's Statistical Capabilities 27
Getting Started 27
Setting Up for Statistics 30
Worksheet functions in Excel 2007 30
Quickly accessing statistical functions 33
Array functions 35
What's in a name? An array of possibilities 38
Creating your own array formulas 46
Using data analysis tools 47
Accessing Commonly Used Functions 51
Part 11: Describing Data. 53
Chapter 3: Show and Tell: Graphing Data 55
Why Use Graphs? 55
Some Fundamentals 57
Excel's Graphics Capabilities 58
Inserting a Chart 58
Becoming a Columnist 59
Stacking the columns 61
One more thing 63
Slicing the Pie 64
Pulling the slices apart 66
A word from the wise 68
Drawing the Line 68
Passing the Bar 71
The Plot Thickens 74
Chapter 4: Finding Your Center 79
Means: The Lore of Averages 79
Calculating the mean 80
AVERAGE and AVERAGEA 81
AVERAGEIF and AVERAGEIFS 83
TRIMMEAN. 86
Other means to an end 88
Medians: Caught in the Middle 89
Finding the median 90
MEDIAN 90
Statistics À La Mode 91
Finding the mode 91
MODE 92
Chapter 5: Deviating from the Average 93
Measuring Variation 94
Averaging squared deviations: Variance and how to calculate it 94
VARP and VARPA 97
Sample variance 99
VAR and VARA. 100
Back to the Roots: Standard Deviation 100
Population standard deviation 101
STDEVP and STDEVPA 101
Sample standard deviation 102
STDEV and STDEVA 102
The missing functions: STDEVIF and STDEVIFS 103
Related Functions 107
DEVSQ 107
Average deviation 108
AVEDEV 109
Chapter 6: Meeting Standards and Standings 111
Catching Some Zs 111
Characteristics of z-scores 112
Bonds versus The Bambino 112
Exam scores 113
STANDARDIZE 114
Where Do You Stand? 116
RANK 117
LARGE and SMALL 118
PERCENTILE and PERCENTRANK 119
Data analysis tool: Rank and Percentile 121
Chapter 7: Summarizing It AlI. 123
Counting Out 123
COUNT, COUNTA, COUNTBLANK, COUNTIF, COUNTIFS 123
The Long and Short of It 126
MAX, MAXA, MIN, and MINA 126
Getting Esoteric 128
SKEW 128
KURT 130
Tuning In the Frequency 132
FREQUENCY 132
Data analysis tool: Histogram 134
Can You Give Me a Description? 136
Data analysis tool: Descriptive Statistics 136
Instant Statistics 138
Chapter 8: What's Normal? 141
Hitting the Curve 141
Digging deeper 142
Parameters of a normal distribution 143
NORMDIST 145
NORMINV 146
A Distinguished Member of the Family 147
NORMSDIST 148
NORMSINV 149
Part 111: Drawing Conclusions from Data 153
Chapter 9: The Confidence Game: Estimation 155
What is a Sampling Distribution? 155
An EXTREMELY Important Idea: The Central Limit Theorem 157
Simulating the Central Limit Theorem 158
The Limits of Confidence 162
Finding confidence limits for a mean 163
CONFIDENCE 165
Fit to at 166
TINV 168
Chapter 10: One-Sample Hypothesis Testing 171
Hypotheses, Tests, and Errors 171
Hypothesis tests and sampling distributions 172
Catching Some Zs Again 175
ZTEST 177
t for One 179
TDIST 180
Testing a Variance. 181
CHIDIST 182
CHIINV 183
Chapter 11: Two-Sample Hypothesis Testing 187
Hypotheses Built for Two 187
Sampling Distributions Revisited 188
Applying the Central Limit Theorem 189
Zs once more 191
Data analysis tool: z-Test: Two Sample for Means 192
t for Two 195
Like peas in a pod: Equal variances 195
Like p's and q's: Unequal variances 197
TTEST 197
Data Analysis Tools: t-test: Two Sample 199
A Matched Set: Hypothesis Testing for Paired Samples 202
TTEST for matched samples 203
Data analysis tool: t-test: Paired Two Sample for Means 205
Testing Two Variances 207
Using F in conjunction with t 209
FTEST 210
FDIST 212
FINV 213
Data Analysis Tool: F-test Two Sample for Variances 214
Chapter 12: Testing More Than Two Samples 217
Testing More Than Two 217
A thorny problem 218
A solution 219
Meaningful relationships 223
After the F-test 224
Data analysis tool: Anova: Single Factor 228
Comparing the means 230
Another Kind of Hypothesis, Another Kind of Test 232
Working with repeated measures ANOVA 232
Getting trendy 235
Data analysis tool: Anova: Two Factor Without Replication. 238
Analyzing trend 240
Chapter 13: Slightly More Complicated Testing 243
Cracking the Combinations 243
Breaking down the variances 244
Data analysis tool: Anova: Two-Factor Without Replication. 246
Cracking the Combinations Again 248
Rows and columns 248
Interactions 249
The analysis 250
Data analysis tool: Anova: Two-Factor With Replication 252
Chapter 14: Regression: Linear and Multiple 255
The Plot of Scatter. 255
Graphing Lines 257
Regression: What a Line! 259
Using regression for forecasting 261
Variation around the regression line 261
Testing hypotheses about regression 263
Worksheet Functions for Regression 269
SLOPE, INTERCEPT, STEYX 269
FORECAST 271
Array function: TREND 272
Array function: LINEST 275
Data Analysis Tool: Regression 277
Tabled output 279
Graphic output 280
Juggling Many Relationships at Once: Multiple Regression 282
Excel Tools for Multiple Regression 283
TREND revisited 283
LINEST revisited 285
Regression data analysis tool revisited 287
Chapter 15: Correlation: The Rise and Fall of Relationships 291
Scatterplots Again 291
Understanding Correlation 292
Correlation and Regression 294
Testing Hypotheses About Correlation 297
Is a correlation coefficient greater than zero? 297
Do two correlation coefficients differ? 298
Worksheet Functions for Correlation 300
CORREL and PEARSON 300
RSQ 302
COVAR 302
Data Analysis Tool: Correlation. 303
Tabled output. 304
Data Analysis Tool: Covariance 307
Testing Hypotheses About Correlation 308
Worksheet Functions: FISHER, FISHERINV 308
Part IV: Working with Probability 311
Chapter 16: Introducing Probability 313
What is Probability? 313
Experiments, trials, events, and sample spaces 314
Sample spaces and probability 314
Compound Events 315
Union and intersection 315
Intersection again 316
Conditional Probability 317
Working with the probabilities 318
The foundation of hypothesis testing 318
Large Sample Spaces 318
Permutations 319
Combinations 320
Worksheet Functions 321
FACT 321
PERMUT 321
COMBIN 322
Random Variables: Discrete and Continuous 322
Probability Distributions and Density Functions 323
The Binomial Distribution 325
Worksheet Functions 326
BINOMDIST 327
NEGBINOMDIST 328
Hypothesis Testing with the Binomial Distribution 329
CRITBINOM 330
More on hypothesis testing 331
The Hypergeometric Distribution 332
HYPERGEOMDIST 333
Chapter 17: More on Probability 335
Beta. 335
BETADIST 337
BETAINV 338
Poisson 340
POISSON 341
Gamma 342
GAMMADIST 343
GAMMAINV 345
Exponential 345
EXPONDIST 346
Chapter 18: A Career in Modeling 349
Modeling a Distribution 349
Plunging into the Poisson distribution 350
Using POISSON 352
Testing the model's fit 352
A word about CHITEST 355
Playing ball with a model 356
A Simulating Discussion 359
Taking a chance: The Monte Carlo method 359
Loading the dice 359
Simulating the Central Limit Theorem 363
Part V: The Part of Tens 367
Chapter 19: Ten Statistical and Graphical Tips and Traps 369
Significant Doesn't Always Mean Important 369
Trying to Not Reject a Null Hypothesis Has a Number of Implications 370
Regression Isn't Always linear. 370
Extrapolating Beyond a Sample Scatterplot Is a Bad Idea 371
Examine the Variability Around a Regression Line 371
A Sample Can Be Too Large 371
Consumers: Know Your Axes 372
Graphing a Categorical Variable as Though It's a Quantitative Variable Is Just Wrong. 372
Whenever Appropriate, Include Variability in Your Graph 373
Be Careful When Relating Statistics-Book Concepts to Excel 374
Chapter 20: Ten Things (Twelve, Actually) That Didn't Fit in Any Other Chapter 375
Some Forecasting 375
A moving experience 375
How to be a smoothie, exponentially 377
Graphing the Standard Error of the Mean 379
Probabilities and Distributions 383
PROB 383
WEIBULL 383
Drawing Samples 384
Testing Independence: The True Use of CHITEST 385
Logarithmica Esoterica 388
What is a logarithm? 388
What is e ? 390
LOGNORMDIST. 393
LOGINV 394
Array Function: LOGEST 395
Array Function: GROWTH 398
When Your Data Live Elsewhere 401
Appendix A: When Your Worksheet Is a Database 405
Introducing Excel Databases 405
The Satellites database 405
The criteria range 407
The format of a database function 408
Counting and Retrieving 409
DCOUNT and DCOUNTA 409
DGET 410
Arithmetic 410
DMAX and DMIN. 411
DSUM 411
DPRODUCT 411
Statistics 412
DAVERAGE 412
DVAR and DVARP 412
DSTDEV and DSTDEVP 413
According to Form 413
Pivot Tables 414
Appendix B: The Analysis of Covariance 419
Covariance: A Closer Look 419
Why You Analyze Covariance 420
How You Analyze Covariance 421
ANCOVA in Excel 422
Method 1: ANOVA 423
Method 2: Regression 427
After the ANCOVA 430
And One More Thing 431
Appendix C: Of Stems, Leaves, Boxes, Whiskers, and Smoothies 433
Stem-and-Leaf 433
Boxes and Whiskers 437
Data Smoothing 445
Index 453

$x x$

Statistical Analysis with Excel For Dummies, 2nd Edition
www.it-ebooks.info

Introduction

What? Yet another statistics book? Well . . . this is a statistics book, all right, but in my humble (and thoroughly biased) opinion, it's not just another statistics book.

What? Yet another Excel book? Same thoroughly biased opinion - it's not just another Excel book. What? Yet another edition of a book that's not just another statistics book and not just another Excel book? Well . . . yes. You got me there.

So here's the deal - for the previous edition and for this one. Many statistics books teach you the concepts but don't give you a way to apply them. That often leads to a lack of understanding. With Excel, you have a ready-made package for applying statistics concepts.

Looking at it from the opposite direction, many Excel books show you Excel's capabilities but don't tell you about the concepts behind them. Before I tell you about an Excel statistical tool, I give you the statistical foundation it's based on. That way, you understand the tool when you use it - and you use it more effectively.

I didn't want to write a book that's just "select this menu" and "click this button." Some of that is necessary, of course, in any book that shows you how to use a software package. My goal was to go way beyond that.

I also didn't want to write a statistics "cookbook": When-faced-with-problem-\#310-use-statistical-procedure-\#214. My goal was to go way beyond that, too.

Bottom line: This book isn't just about statistics or just about Excel - it sits firmly at the intersection of the two. In the course of telling you about statistics, I cover every Excel statistical feature. (Well . . . almost. I left one out. I left it out of the first edition, too. It's called "Fourier Analysis." All the necessary math to understand it would take a whole book, and you might never use this tool, anyway.)

About This Book

Although statistics involves a logical progression of concepts, I organized this book so you can open it up in any chapter and start reading. The idea is
for you to find what you're looking for in a hurry and use it immediately whether it's a statistical concept or an Excel tool.

On the other hand, cover to cover is okay if you're so inclined. If you're a statistics newbie and you have to use Excel for statistical analysis, I recommend you begin at the beginning - even if you know Excel pretty well.

What You Can Safely Skip

Any reference book throws a lot of information at you, and this one is no exception. I intended it all to be useful, but I didn't aim it all at the same level. So if you're not deeply into the subject matter, you can avoid paragraphs marked with the Technical Stuff icon.

Every so often, you'll run into sidebars. They provide information that elaborates on a topic, but they're not part of the main path. If you're in a hurry, you can breeze past them.

Because I wrote this book so you can open it up anywhere and start using it, step-by-step instructions appear throughout. Many of the procedures I describe have steps in common. After you go through some of the procedures, you can probably skip the first few steps when you come to a procedure you haven't been through before.

Foolish Assumptions

This is not an introductory book on Excel or on Windows, so I'm assuming:
\checkmark You know how to work with Windows. I don't go through the details of pointing, clicking, selecting, and so forth.
\checkmark You have Excel installed on your computer and you can work along with the examples. I don't take you through the steps of Excel installation. Incidentally, I use Excel 2007 (running in Windows Vista). If you're using Excel 97, Excel 2000, or Excel 2003, that's okay. The statistical functionality is the same. Some of the screen shots in the book will look a little different from what appears on your computer, however.
Also, Excel 2007 has an entirely new user interface, so getting to the statistical functionality is somewhat different from previous versions.
\checkmark You've worked with Excel before, and you understand the essentials of worksheets and formulas.

If you don't know much about Excel, consider looking into Greg Harvey's excellent Excel books in the For Dummies series. His latest work covers Excel 2007.

How This Book Is Organized

I organized this book into five parts and three appendixes.

Part 1: Statistics and Excel: A Marriage Made in Heaven

In Part I, I provide a general introduction to statistics and to Excel's statistical capabilities. I discuss important statistical concepts and describe useful Excel techniques. If it's a long time since your last course in statistics or if you never had a statistics course at all, start here. If you haven't worked with Excel's built-in functions (of any kind) definitely start here.

Part 11: Describing Data

Part of statistics is to take sets of numbers and summarize them in meaningful ways. Here's where you find out how to do that. We all know about averages and how to compute them. But that's not the whole story. In this part, I tell you about additional statistics that fill in the gaps, and I show you how to use Excel to work with those statistics. I also introduce Excel graphics in this part.

Part III: Drawing Conclusions from Data

Part III addresses the fundamental aim of statistical analysis: to go beyond the data and help decision-makers make decisions. Usually, the data are measurements of a sample taken from a large population. The goal is to use these data to figure out what's going on in the population.

This opens a wide range of questions: What does an average mean? What does the difference between two averages mean? Are two things associated? These are only a few of the questions I address in Part III, and I discuss the Excel functions and tools that help you answer them.

Part IU: Working with Probability

Probability is the basis for statistical analysis and decision-making. In Part IV, I tell you all about it. I show you how to apply probability, particularly in the area of modeling. Excel provides a rich set of built-in capabilities that help you understand and apply probability. Here's where you find them.

Part U: The Part of Tens

Part V meets two objectives. First, I get to stand on the soapbox and rant about statistical peeves and about helpful hints. The peeves and hints total up to ten. Also, I discuss ten (okay, twelve) Excel things I couldn't fit in any other chapter. They come from all over the world of statistics. If it's Excel and statistical, and if you can't find it anywhere else in the book, you'll find it here.

As I said in the first edition — pretty handy, this Part of Tens.

Appendix A: When Your Worksheet Is a Database

In addition to performing calculations, Excel serves another purpose: recordkeeping. Although it's not a dedicated database, Excel does offer some database functions. Some of them are statistical in nature. I introduce Excel database functions in Appendix A, along with pivot tables that allow you to turn your database inside out and look at your data in different ways.

Appendix B: The Analysis of Covariance

This is new in this edition. The Analysis of Covariance (ANCOVA) is a statistical technique that combines two other techniques - analysis of variance and regression analysis. If you know how two variables are related, you can use that knowledge in some nifty ways, and this is one of the ways. The kicker is that Excel doesn't have a built-in tool for ANCOVA - but I show you how to use what Excel does have so you can get the job done.

Appendix C: Of Stems, Leaves, Boxes, Whiskers, and Smoothies

This is another addition to this edition. Statisticians often use special techniques to explore and visualize data, and Appendix C covers some of those techniques. They're not built into Excel. As is the case with ANCOVA, however, I show you how to use Excel's capabilities to implement them.

Icons Used in This Book

As is the case with all For Dummies books, icons appear all over. Each one is a little picture in the margin that lets you know something special about the paragraph it's next to.

This icon points out a hint or a shortcut that helps you in your work and makes you an all-around better human being.

This one points out timeless wisdom to take with you long after you finish this book, grasshopper.

Pay attention to this icon. It's a reminder to avoid something that might gum up the works for you.

As I mentioned in "What You Can Safely Skip," this icon indicates material you can blow past if statistics and Excel aren't your passion.

Where to Go from Here

You can start the book anywhere, but here are a few hints. Want to learn the foundations of statistics? Turn the page. Introduce yourself to Excel's statistical features? That's Chapter 2. Want to start with graphics? Hit Chapter 3. For anything else, find it in the Table of Contents or in the Index and go for it.

Same final admonition as in the first edition: If you have half as much fun reading and using this book as I had writing it, you'll have a blast.

Part
 Statistics and Excel: A Marriage Made in Heaven

The 5th Wave By Rich Tennant

In this part . . .

part I deals with the foundations of statistics and with the statistics-related things that Excel can do. On the statistics side, this part introduces samples and populations, hypothesis testing, the two types of errors in deci-sion-making, independent and dependent variables, and probability. It's a brief introduction to all the statistical concepts I explore in the rest of the book. On the Excel side, I focus on cell referencing and on how to use worksheet functions, array functions, and data analysis tools. My objective is to get you thinking about statistics conceptually and about Excel as a statistical analysis tool.

Chapter 1

Evaluating Data in the Real World

In This Chapter

$>$ Introducing statistical concepts

- Generalizing from samples to populations
$>$ Getting into probability
- Making decisions
$>$ New features in Excel 2007
$>$ Understanding important Excel Fundamentals
$>$ New features in this edition
he field of statistics is all about decision-making - decision-making
based on groups of numbers. Statisticians constantly ask questions: What do the numbers tell us? What are the trends? What predictions can we make? What conclusions can we draw?

To answer these questions, statisticians have developed an impressive array of analytical tools. These tools help us to make sense of the mountains of data that are out there waiting for us to delve into, and to understand the numbers we generate in the course of our own work.

The Statistical (And Related) Notions You Just Have to Know

Because intensive calculation is often part and parcel of the statistician's toolset, many people have the misconception that statistics is about number crunching. Number crunching is just one small part of the path to sound decisions, however.

By shouldering the number-crunching load, software increases our speed of traveling down that path. Some software packages are specialized for statistical analysis and contain many of the tools that statisticians use. Although not marketed specifically as a statistical package, Excel provides a number of these tools, which is why I wrote this book.

I said that number crunching is a small part of the path to sound decisions. The most important part is the concepts statisticians work with, and that's what I talk about for most of the rest of this chapter.

Samples and populations

On election night, TV commentators routinely predict the outcome of elections before the polls close. Most of the time they're right. How do they do that?

The trick is to interview a sample of voters after they cast their ballots. Assuming the voters tell the truth about whom they voted for, and assuming the sample truly represents the population, network analysts use the sample data to generalize to the population of voters.

This is the job of a statistician - to use the findings from a sample to make a decision about the population from which the sample comes. But sometimes those decisions don't turn out the way the numbers predicted. History buffs are probably familiar with the memorable picture of President Harry Truman holding up a copy of the Chicago Daily Tribune with the famous, but wrong, headline "Dewey Defeats Truman" after the 1948 election. Part of the statistician's job is to express how much confidence he or she has in the decision.

Another election-related example speaks to the idea of the confidence in the decision. Pre-election polls (again, assuming a representative sample of voters) tell you the percentage of sampled voters who prefer each candidate. The polling organization adds how accurate they believe the polls are. When you hear a newscaster say something like "accurate to within three percent," you're hearing a judgment about confidence.

Here's another example. Suppose you've been assigned to find the average reading speed of all fifth-grade children in the U.S., but you haven't got the time or the money to test them all. What would you do?

Your best bet is to take a sample of fifth-graders, measure their reading speeds (in words per minute), and calculate the average of the reading speeds in the sample. You can then use the sample average as an estimate of the population average.

Estimating the population average is one kind of inference that statisticians make from sample data. I discuss inference in more detail in the upcoming section "Inferential Statistics."

Now for some terminology you have to know: Characteristics of a population (like the population average) are called parameters, and characteristics of a sample (like the sample average) are called statistics. When you confine your field of view to samples, your statistics are descriptive. When you broaden your horizons and concern yourself with populations, your statistics are inferential.

Now for a notation convention you have to know: Statisticians use Greek letters (μ, σ, ρ) to stand for parameters, and English letters $\bar{X}, s, r)$ to stand for statistics. Figure 1-1 summarizes the relationship between populations and samples, and parameters and statistics.

Figure 1-1:
The relationship
between populations,
samples, parameters, and
statistics.

Variables: Dependent and independent

Simply put, a variable is something that can take on more than one value. (Something that can have only one value is called a constant.) Some variables you might be familiar with are today's temperature, the Dow Jones Industrial Average, your age, and the value of the dollar against the euro.

Statisticians care about two kinds of variables, independent and dependent. Each kind of variable crops up in any study or experiment, and statisticians assess the relationship between them.

For example, imagine a new way of teaching reading that's intended to increase the reading speed of fifth-graders. Before putting this new method into schools, it would be a good idea to test it. To do that, a researcher would randomly assign a sample of fifth-grade students to one of two groups: One
group receives instruction via the new method, the other receives instruction via traditional methods. Before and after both groups receive instruction, the researcher measures the reading speeds of all the children in this study. What happens next? I get to that in the upcoming section entitled "Inferential Statistics: Testing Hypotheses."

For now, understand that the independent variable here is Method of Instruction. The two possible values of this variable are New and Traditional. The dependent variable is reading speed - which we might measure in words per minute.

In general, the idea is to try and find out if changes in the independent variable are associated with changes in the dependent variable.

In the examples that appear throughout the book, I show you how to use Excel to calculate various characteristics of groups of scores. Keep in mind that each time I show you a group of scores, I'm really talking about the values of a dependent variable.

Types of data

Data come in four kinds. When you work with a variable, the way you work with it depends on what kind of data it is.

The first variety is called nominal data. If a number is a piece of nominal data, it's just a name. Its value doesn't signify anything. A good example is the number on an athlete's jersey. It's just a way of identifying the athlete and distinguishing him or her from teammates. The number doesn't indicate the athlete's level of skill.

Next comes ordinal data. Ordinal data are all about order, and numbers begin to take on meaning over and above just being identifiers. A higher number indicates the presence of more of a particular attribute than a lower number. One example is Moh's Scale. Used since 1822, it's a scale whose values are 1 through 10. Mineralogists use this scale to rate the hardness of substances. Diamond, rated at 10 , is the hardest. Talc, rated at 1 , is the softest. A substance that has a given rating can scratch any substance that has a lower rating.

What's missing from Moh's Scale (and from all ordinal data) is the idea of equal intervals and equal differences. The difference between a hardness of 10 and a hardness of 8 is not the same as the difference between a hardness of 6 and a hardness of 4 .

Interval data provides equal differences. Fahrenheit temperatures provide an example of interval data. The difference between 60 degrees and 70 degrees is the same as the difference between 80 degrees and 90 degrees.

Here's something that might surprise you about Fahrenheit temperatures: A temperature of 100 degrees is not twice as hot as a temperature of 50 degrees. For ratio statements (twice as much as, half as much as) to be valid, zero has to mean the complete absence of the attribute you're measuring. A temperature of 0 degrees F doesn't mean the absence of heat - it's just an arbitrary point on the Fahrenheit scale.

The last data type, ratio data, includes a meaningful zero point. For temperatures, the Kelvin scale gives us ratio data. One hundred degrees Kelvin is twice as hot as 50 degrees Kelvin. This is because the Kelvin zero point is absolute zero, where all molecular motion (the basis of heat) stops. Another example is a ruler. Eight inches is twice as long as four inches. A length of zero means a complete absence of length.

Any of these types can form the basis for an independent variable or a dependent variable. The analytical tools you use depend on the type of data you're dealing with.

A little probability

When statisticians make decisions, they express their confidence about those decisions in terms of probability. They can never be certain about what they decide. They can only tell you how probable their conclusions are.

So what is probability? The best way to attack this is with a few examples. If you toss a coin, what's the probability that it comes up heads? Intuitively, you know that if the coin is fair, you have a $50-50$ chance of heads and a $50-50$ chance of tails. In terms of the kinds of numbers associated with probability, that's $1 / 2$.

How about rolling a die? (One member of a pair of dice.) What's the probability that you roll a 3 ? Hmmm . . . a die has six faces and one of them is 3 , so that ought to be $1 / 6$, right? Right.

Here's one more. You have a standard deck of playing cards. You select one card at random. What's the probability that it's a club? Well . . . a deck of cards has four suits, so that answer is $1 / 4$.

I think you"re getting the picture. If you want to know the probability that an event occurs, figure out how many ways that event can happen and divide by
the total number of events that can happen. In each of the three examples, the event we were interested in (head, 3 , or club) only happens one way.

Things can get a bit more complicated. When you toss a die, what's the probability you roll a 3 or a 4? Now you're talking about two ways the event you're interested in can occur, so that's $(1+1) / 6=2 / 6=1 / 3$. What about the probability of rolling an even number? That has to be 2,4 , or 6 , and the probability is $(1+1+1) / 6=3 / 6=1 / 2$.

On to another kind of probability question. Suppose you roll a die and toss a coin at the same time. What's the probability you roll a 3 and the coin comes up heads? Consider all the possible events that could occur when you roll a die and toss a coin at the same time. Your outcome could be a head and 1-6, or a tail and 1-6. That's a total of 12 possibilities. The head-and- 3 combination can only happen one way. So the answer is $1 / 12$.

In general the formula for the probability that a particular event occurs is

$$
\operatorname{Pr}(\text { event })=\frac{\text { Number of ways the event can occur }}{\text { Total number of possible events }}
$$

I began this section by saying that statisticians express their confidence about their decisions in terms of probability, which is really why I brought up this topic in the first place. This line of thinking leads us to conditional probability - the probability that an event occurs given that some other event occurs. For example, suppose I roll a die, take a look at it (so that you can't see it), and I tell you that I've rolled an even number. What's the probability that I've rolled a 2 ? Ordinarily, the probability of a 2 is $1 / 6$, but I've narrowed the field. I've eliminated the three odd numbers (1,3 , and 5) as possibilities. In this case, only the three even numbers (2, 4, and 6) are possible, so now the probability of rolling a 2 is $1 / 3$.

Exactly how does conditional probability plays into statistical analysis? Read on.

Inferential Statistics: Testing Hypotheses

In advance of doing a study, a statistician draws up a tentative explanation a hypothesis - as to why the data might come out a certain way. After the study is complete and the sample data are all tabulated, he or she faces the essential decision a statistician has to make - whether or not to reject the hypothesis.

That decision is wrapped in a conditional probability question - what's the probability of obtaining the data, given that this hypothesis is correct? Statistical analysis provides tools to calculate the probability. If the probability turns out to be low, the statistician rejects the hypothesis.

Here's an example. Suppose you're interested in whether or not a particular coin is fair - whether it has an equal chance of coming up heads or tails. To study this issue, you'd take the coin and toss it a number of times - say a hundred. These 100 tosses make up your sample data. Starting from the hypothesis that the coin is fair, you'd expect that the data in your sample of 100 tosses would show 50 heads and 50 tails.

If it turns out to be 99 heads and 1 tail, you'd undoubtedly reject the fair coin hypothesis. Why? The conditional probability of getting 99 heads and 1 tail given a fair coin is very low. Wait a second. The coin could still be fair and you just happened to get a 99-1 split, right? Absolutely. In fact, you never really know. You have to gather the sample data (the results from 100 tosses) and make a decision. Your decision might be right, or it might not.

Juries face this all the time. They have to decide among competing hypotheses that explain the evidence in a trial. (Think of the evidence as data.) One hypothesis is that the defendant is guilty. The other is that the defendant is not guilty. Jury-members have to consider the evidence and, in effect, answer a conditional probability question: What's the probability of the evidence given that the defendant is not guilty? The answer to this question determines the verdict.

Null and alternative hypotheses

Consider once again that coin-tossing study I just mentioned. The sample data are the results from the 100 tosses. Before tossing the coin, you might start with the hypothesis that the coin is a fair one, so that you expect an equal number of heads and tails. This starting point is called the null hypothesis. The statistical notation for the null hypothesis is H_{0}. According to this hypothesis, any heads-tails split in the data is consistent with a fair coin. Think of it as the idea that nothing in the results of the study is out of the ordinary.

An alternative hypothesis is possible - that the coin isn't a fair one, and it's loaded to produce an unequal number of heads and tails. This hypothesis says that any heads-tails split is consistent with an unfair coin. The alternative hypothesis is called, believe it or not, the alternative hypothesis. The statistical notation for the alternative hypothesis is H_{l}.

With the hypotheses in place, toss the coin 100 times and note the number of heads and tails. If the results are something like 90 heads and 10 tails, it's a good idea to reject H_{0}. If the results are around 50 heads and 50 tails, don't reject H_{0}.

Similar ideas apply to the reading-speed example I gave earlier. One sample of children receives reading instruction under a new method designed to increase reading speed, the other learns via a traditional method. Measure the children's reading speeds before and after instruction, and tabulate the improvement for each child. The null hypothesis, H_{0}, is that one method isn't different from the other. If the improvements are greater with the new method than with the traditional method - so much greater that it's unlikely that the methods aren't different from one another - reject H_{0}. If they're not, don't reject H_{0}.

Notice that I didn't say "accept H_{0}." The way the logic works, you never accept a hypothesis. You either reject H_{0} or don't reject H_{0}.

Notice also that in the coin-tossing example I said around 50 heads and 50 tails. What does "around" mean? Also, I said if it's $90-10$, reject H_{0}. What about 85-15? 80-20? 70-30? Exactly how much different from 50-50 does the split have to be for you reject H_{0} ? In the reading-speed example, how much greater does the improvement have to be to reject H_{0} ?

I won't answer these questions now. Statisticians have formulated decision rules for situations like this, and we'll explore those rules throughout the book.

Two types of error

Whenever you evaluate the data from a study and decide to reject H_{0} or to not reject H_{0}, you can never be absolutely sure. You never really know what the true state of the world is. In the context of the coin-tossing example, that means you never know for certain if the coin is fair or not. All you can do is make a decision based on the sample data you gather. If you want to be certain about the coin, you'd have to have the data for the entire population of tosses - which means you'd have to keep tossing the coin until the end of time.

Because you're never certain about your decisions, it's possible to make an error regardless of what you decide. As I mentioned before, the coin could be fair and you just happen to get 99 heads in 100 tosses. That's not likely, and that's why you reject H_{0}. It's also possible that the coin is biased, and yet you just happen to toss 50 heads in 100 tosses. Again, that's not likely and you don't reject H_{0} in that case.

Although not likely, those errors are possible. They lurk in every study that involves inferential statistics. Statisticians have named them Type I and Type II.

If you reject H_{0} and you shouldn't, that's a Type I error. In the coin example, that's rejecting the hypothesis that the coin is fair, when in reality it is a fair coin.

If you don't reject H_{0} and you should have, that's a Type II error. That happens if you don't reject the hypothesis that the coin is fair, and in reality it's biased.

How do you know if you've made either type of error? You don't - at least not right after you make your decision to reject or not reject H_{0}. (If it's possible to know, you wouldn't make the error in the first place!) All you can do is gather more data and see if the additional data are consistent with your decision.

If you think of H_{0} as a tendency to maintain the status quo and not interpret anything as being out of the ordinary (no matter how it looks), a Type II error means you missed out on something big. Looked at in that way, Type II errors form the basis of many historical ironies.

Here's what I mean: In the 1950s, a particular TV show gave talented young entertainers a few minutes to perform on stage and a chance to compete for a prize. The audience voted to determine the winner. The producers held auditions around the country to find people for the show. Many years after the show went off the air, the producer was interviewed. The interviewer asked him if he had ever turned down anyone at an audition that he shouldn't have.
"Well," said the producer, "once a young singer auditioned for us and he seemed really odd."
"In what way?" asked the interviewer.
"In a couple of ways," said the producer. "He sang really loud, gyrated his body and his legs when he played the guitar, and he had these long sideburns. We figured this kid would never make it in show business, so we thanked him for showing up, but we sent him on his way."
"Wait a minute, are you telling me you turned down . . ."
"That's right. We actually said 'no' . . . to Elvis Presley!"
Now that's a Type II error.

What's New in Excel?

The big news in Excel 2007 — throughout Microsoft Office 2007, in fact — is the user interface. Where a bar of menus once ruled, you now find a tabbed band. Appearing near the top of the worksheet window, this band is called the Ribbon. Figure 1-2 shows the appearance of the Ribbon after I select the Insert tab.

Figure 1-2:
The Insert
Tab in the
Ribbon in
Excel 2007.

The Ribbon exposes Excel's capabilities in a way that's much easier to understand than in previous versions. Each tab presents groups of icon-labeled command buttons rather than menu choices. Mouseover help adds still more information when you're trying to figure out the capability a particular button activates.

Clicking a button typically opens up a whole category of possibilities. Buttons that do this are called category buttons.

Microsoft has developed shorthand for describing a mouse-click on a command button in the Ribbon, and I use that shorthand throughout this book. The shorthand is

Tab । Command Button
To indicate clicking on the Insert tab's Other Charts category button, for example, I write

Insert | Other Charts

By the way, when I click that button, the gallery in Figure 1-3 appears.
I can extend the shorthand. To select the first chart in that gallery (it's called High-Low-Close, as mouseover help would tell you), I write

Insert | Other Charts | High-Low-Close

Figure 1-3:
Clicking Insert | Other Charts opens this gallery.

The downside to all this, of course, is the Ribbon's newness. If you've spent years with previous versions, you've developed an overall sense of where frequently used capabilities reside. Now you have to reorient: The switch from the menu bar to the Ribbon relocates almost everything.

It's worth your while to reorient. After you get accustomed to the Ribbon, you'll see that everything takes just a few steps now.

Wait a second. Figure 1-3 shows a gallery of charts to insert into a worksheet. What happened to the Chart Wizard? It's gone from Excel 2007. In keeping with everything-takes-just-a-few-steps-now, to create a chart you

1. Select the data to include in the chart.

2. Insert the chart into the worksheet.
3. Use the Design tab and the Layout tab to make modifications.

I've oversimplified, but not by much, as Chapter 3 shows. Creating a chart is more intuitive than it used to be. You're no longer confined to the order of steps specified in the Chart Wizard.

Wait another second. Design tab? Layout tab? They're not in Figure 1-2. After you insert a chart and select it, they appear. Tabs that appear when needed are called contextual tabs.

Also in keeping with everything-takes-just-a-few-steps-now, to use a statistical function you

1. Select a cell for the result of the function.

2. Select a function from the Statistical Functions menu to open a dialog box for that function.

3. Enter the required information into the dialog box.
4. Close the dialog box.

Again I've oversimplified, and again not by much, as you see throughout the book.

Statistical Functions menu? Yep. This time around, you have a Statistical Functions menu that wasn't in the earlier incarnations. It's buried under

Formulas | More Functions | Statistical
In Chapter 2 I show you how to make that menu more accessible.
Excel 2007's statistical functionality is by and large the same as in previous versions. The new version adds three statistical functions: COUNTIFS (counts the number of cells that meet a set of conditions), AVERAGEIF (finds the average of cells that meet a condition), AVERAGEIFS (finds the average of cells that meet a set of conditions).

Some Things about Excel You Absolutely Have to Know

Although I'm assuming you're not new to Excel, I think it's wise to take a little time and space up front to discuss a few Excel fundamentals that figure prominently in statistical work. Knowing these fundamentals helps you work efficiently with Excel formulas.

Autofilling cells

The first is autofill, Excel's capability for repeating a calculation throughout a worksheet. Insert a formula into a cell, and you can drag that formula into adjoining cells.

Figure 1-4 is a worksheet of expenditures for R\&D in science and engineering at colleges and universities for the years shown. The data, taken from a U.S. National Science Foundation report, are in millions of dollars. Column H holds the total for each field, and row 11 holds the total for each year. (More about column I in a moment.)

Figure 1-4: Expenditures for R\&D in science and engineering.

짐 Autofill Example														
4	A	B	c	D	E	F	G	H	1	1	K	L	M	\square
1			Field	1990	1995	2000	2001	otal	Proportion					
2			Physical Sciences	1807	2254	2708	2800	9569						
3			Environmental Sciences	1069	1433	1763	1827	6092						
4			Mathematical Sciences	222	279	341	357	1199						
5			Computer Sciences	515	682	875	954	3026						
6			Life Sciences	8726	12185	17460	19189	57560						
7			Psychology	253	370	516	582	1721						
8			Social Sciences	703	1018	1297	1436	4454						
9			Other Sciences	336	426	534	579	1875						
10			Engineering	2656	3515	4547	4999	15717						
11			Total	16287^{\prime}	22162	30041	32723	101213						
12														
13														
14														
15														
16														
17														
18														
19														
20														
21														
22														
23														
20,	H		eet2. Sheet3 \%					14	-	-				1

I started with column H blank and with row 11 blank. How did I get the totals into column H and row 11?

If I want to create a formula to calculate the first row total (for Physical Sciences), one way (among several) is to enter

```
= D2 + E2 + F2 + G2
```

into cell H2. (A formula always begins with "=".) Press Enter and the total appears in H 2 .

Now, to put that formula into cells H 3 through H10, the trick is to position the cursor on the lower right corner of H 2 until a " + " appears, hold down the left mouse button, and drag the mouse through the cells. That " + " is called the cell's fill handle.

When you finish dragging, release the mouse button and the row totals appear. This saves huge amounts of time, because you don't have to reenter the formula eight times.

Same thing with the column totals. One way to create the formula that sums up the numbers in the first column (1990) is to enter

```
=D2 + D3 + D4 + D5 + D6 + D7 + D8 + D9 + D10
```

into cell D11. Position the cursor on D11's fill handle, drag through row 11 and release in column H , and you autofill the totals into E11 through H11.

Dragging isn't the only way to do it. Another way is to select the array of cells you want to autofill (including the one that contains the formula), and click the down arrow next to

Home I Fill
This opens the Fill pop-up menu (see Figure 1-5). Select Down and you accomplish the same thing as dragging and dropping.

Figure 1-5:
The Fill pop-up menu.

Still another way is to select Series from the Fill pop-up menu. Doing this opens the Series dialog box (see Figure 1-6). In this dialog box, click the AutoFill radio button, click OK, and you're all set. This does take one more step, but the Series dialog box is a bit more compatible with earlier versions of Excel.

I bring this up because statistical analysis often involves repeating a formula from cell to cell. The formulas are usually more complex than the ones in this section, and you might have to repeat them many times, so it pays to know how to autofill.

Referencing cells

The second important fundamental is the way Excel references worksheet cells. Consider again the worksheet in Figure 1-4. Each autofilled formula is slightly different from the original. This, remember, is the formula in cell H 2 :

```
= D2 + E2 + F2 + G2
```

After autofill, the formula in H 3 is

```
= D3 + E3 + F3 + G3
```

and the formula in H 4 is . . . well, you get the picture.
This is perfectly appropriate. I want the total in each row, so Excel adjusts the formula accordingly as it automatically inserts it into each cell. This is called relative referencing - the reference (the cell label) gets adjusted relative to where it is in the worksheet. Here, the formula directs Excel to total up the numbers in the cells in the four columns immediately to the left.

Now for another possibility. Suppose I want to know each row total's proportion of the grand total (the number in H11). That should be straightforward, right? Create a formula for I2, and then autofill cells I3 through I10.

Similar to the earlier example, I'd start by entering this formula into I2:

```
=H2 / H11
```

Press Enter and the proportion appears in I2. Position the cursor on the fill handle, drag through column I, release in I10, and . . . D'oh!!! Figure 1-7 shows the unhappy result - the extremely ugly \#/DIV0! in I3 through I10. What's the story?

Figure 1-7: Whoops! Incorrect autofill!

틱 Autofill Example														
4	A	B	c	D	E	F	G	H	1	J	K	L	M	-
1			Field	1990	1995	2000	2001	otal	Proportion					
2			Physical Sciences	1807	2254	2708	2800	9569	0.0945432					
3			Environmental Sciences	1069	1433	1763	1827	6092	\#DIV/0!					
4			Mathematical Sciences	222	279	341	357	1199	\#DIV/0!					
5			Computer Sciences	515	682	875	954	3026	\#DIV/0!					
6			Life Sciences	8726	12185	17460	19189	57560	\#DIV/0!					
7			Psychology	253	370	516	582	1721	\#DIV/0!					
8			Social Sciences	703	1018	1297	1436	4454	\#DIV/0!					
9			Other Sciences	336	426	534	579	1875	\#DIV/0!					
10			Engineering	2656	3515	4547	4999	15717	\#DIV/0!					
11			Total	16287^{\prime}	22162	30041	32723	101213						=
12														
13														
14														
15														
16														
17														
18														
19														
20														
21														
22														
23														
24.	H		eet2 Sheet3 \%					14	\square	-		-		TH

The story is this: unless you tell it not to, Excel uses relative referencing when you autofill. So the formula inserted into I3 is not

```
=H3 /H11
```

Instead, it's

```
=H3/H12
```

Why does H11 become H12? Relative referencing assumes that the formula means divide the number in the cell by whatever number is nine cells south of here in the same column. Because H12 has nothing in it, the formula is telling Excel to divide by zero, which is a no-no.

The idea is to tell Excel to divide all the numbers by the number in H11, not by whatever number is nine cells south of here. To do this, you work with absolute referencing. You show absolute referencing by adding $\$$-signs to the cell ID. The correct formula for I2 is

```
= H2 / $H$11
```

This tells Excel not to adjust the column and not to adjust the row when you autofill. Figure 1-8 shows the worksheet with the proportions.

Figure 1-8: Autofill based on absolute referencing.

To convert a relative reference into absolute reference format, select the cell address (or addresses) you want to convert, and press the F4 key. F4 is a toggle that goes between relative reference (H11, for example), absolute
reference for both the row and column in the address (\$H\$11), absolute reference for the row-part only ($\mathrm{H} \$ 11$), and absolute reference for the column-part only (\$H11).

What's New in This Edition?

Although Excel's statistical functions haven't changed, I've restructured the instructions for every statistical function. The instructions in this edition fit in with the steps I outlined in the preceding section.

With the disappearance of the Chart Wizard I've restructured the instructions for creating a chart, too. (See Chapter 3.)

One of my points in both editions is that when you report an average, you should also report variability. For this reason I believe Excel 2007 should also offer the functions STDEVIF and STDEVIFS in addition to the new functions AVERAGEIF and AVERAGEIFS. Unfortunately, these functions do not exist in Excel 2007. To fill the void, I show you how to do what these functions would do, and in the process take you through some of Excel's Logical Functions. (See Chapter 5.)

It's easier to assign a name to a cell range in Excel 2007 (it takes . . . you guessed it . . . just-a-few-steps-now). So I rely much more on named cell ranges in this edition. (See Chapter 2.)

In the Part of Tens, I've added a section on importing data from the Web. (See Chapter 20.)

I pointed out in the Introduction that I've added Appendix B and Appendix C. Each one shows how to do some nifty statistical work that doesn't come prepackaged in Excel.

Chapter 2

Understanding Excel's Statistical Capabilities

In This Chapter

$>$ Working with worksheet functions
$>$ Creating a shortcut to statistical functions
$>$ Getting an array of results
$>$ Naming arrays
$>$ Tooling around with analysis
$>$ Using Excel's Quick Statistics feature

1n this chapter, I introduce you to Excel's statistical functions and data analysis tools. If you've used Excel, and I'm assuming you have, you're aware of Excel's extensive functionality, of which statistical capabilities are a subset. Into each worksheet cell you can enter a piece of data, instruct Excel to carry out calculations on data that reside in a set of cells, or use one of Excel's worksheet functions to work on data. Each worksheet function is a built-in formula that saves you the trouble of having to direct Excel to perform a sequence of calculations. As newbies and veterans know, formulas are the business end of Excel. The data analysis tools go beyond the formulas. Each tool provides a set of informative results.

Getting Started

Many of Excel's statistical features are built into its worksheet functions. In previous versions, you accessed the worksheet functions by using the Excel Insert Function button, labeled with the symbol $f x$. Clicking this button opens the Insert Function dialog box, which presents a list of Excel's functions and a capability for searching for Excel functions. Although Excel 2007 provides
easier ways to access the worksheet functions, this latest version preserves this button and offers additional ways to open the Insert Function dialog box. I discuss all of this in more detail in a moment.

Figure 2-1 shows the location of the Insert Function button and the Formula Bar. They're on the right of the Name Box. All three are just below the Ribbon. Inside the Ribbon, in the Formulas tab, is the Function Library.

The Formula Bar is like a clone of a cell you select: Information entered into the Formula Bar goes into the selected cell, and information entered in the selected cell appears in the Formula Bar.

Figure 2-1 shows Excel with the Formulas tab open. This shows you another location for the Insert Function button. Labeled $f x$, it's in the extreme left of the Ribbon, in the Function Library area. As I mention earlier in this section, when you click the Insert Function button, you open the Insert Function dialog box. (See Figure 2-2.)

[^0]

Figure 2-2:
The Insert Function dialog box.

This dialog box enables you to search for a function that fits your needs, or to scroll through a list of Excel functions.

So in addition to clicking the Insert Function button next to the Formula bar, you can open the Insert Function dialog box by selecting

Formulas | Insert Function
To open the Insert Function dialog box, you can also press Shift + F3.
Because of the way earlier versions of Excel were organized, the Insert Function dialog box was extremely useful. In Excel 2007, however, it's mostly helpful if you're not sure which function to use or where to find it.

The Function Library presents the categories of formulas you can use and makes it convenient for you to access them. Clicking a category button in this area opens a menu of the functions in that category.

Most of the time, I work with Statistical Functions that are easily accessible through the Statistical Functions menu. Sometimes I work with Math functions in the Math \& Trig Functions menu. (You see a couple of these later in the chapter.) In Chapter 5, I work with a couple of Logic functions.

The final selection of each category menu (like the Statistical Functions menu) is called Insert Function. Selecting this option is still another way to open the Insert Function dialog box.

The Name Box is something like a running record of what you do in the worksheet. Select a cell, and the cell's address appears in the Name Box. Click the Insert Function button and the name of the function you selected most recently appears in the Name Box.

In addition to the statistical functions, Excel provides a number of data analysis tools you access through the Data tab's Analysis area.

Setting Up for Statistics

In this section, I show you how to use the worksheet functions and the analysis tools.

Worksheet functions in Excel 2007

Because the Ribbon exposes so many of Excel's capabilities, it's not necessary to bury them in menus any more. As I point out in the preceding section, the Function Library area of the Formulas tab shows all the categories of worksheet functions.

The steps in using a worksheet function are:

1. Type your data into a data array and select a cell for the result.
2. Select the appropriate formula category and choose your function from its pop-up menu.
Doing this opens the Function Arguments dialog box.
3. In the Function Arguments dialog box, type the appropriate values for the function's arguments.
Argument is a term from mathematics. It has nothing to do with debates, fights, or confrontations. In mathematics, an argument is a value on which a function does its work.
4. Click OK to put the result into the selected cell.

Yes, that's all there is to it.
To give you an example, I explore a function that typifies how Excel's worksheet functions work. This function, SUM, adds up the numbers in cells you specify and returns the sum in still another cell that you specify. Although adding numbers together is an integral part of statistical number crunching, SUM is not in the Statistical category. It is, however, a typical worksheet function and it shows a familiar operation.

Here, step by step, is how to use SUM.

1. Enter your numbers into an array of cells and select a cell for the result.
In this example, I've entered $45,33,18,37,32,46,39$ into cells C2 through C8, and selected C9 to hold the sum.
2. Select the appropriate formula category and choose your function from its pop-up menu.
This opens the Function Arguments dialog box.
I selected Formulas । Math \& Trig
and scrolled down to find and choose SUM.
3. In the Function Arguments dialog box, enter the appropriate values for the arguments.

Excel guesses that you want to sum the numbers in cells C2 through C8 and identifies that array in the Number 1 box. Excel doesn't keep you in suspense: The Function Arguments dialog box shows the result of applying the function. In this example, the sum of the numbers in the array is 250. (See Figure 2-3.)
4. Click $O K$ to put the sum into the selected cell.

Figure 2-3: Using SUM.

Note a couple of points. First, as Figure 2-3 shows, the Formula Bar holds

```
=SUM (C2:C8)
```

This formula indicates that the value in the selected cell equals the sum of the numbers in cells C 2 through C 8 .

After you get familiar with a worksheet function and its arguments, you can bypass the menu and type the function directly into the cell or into the formula bar, beginning with "=". When you do, Excel opens a helpful menu as you type the formula. (See Figure 2-4.) The menu shows possible formulas beginning with the letter(s) you type, and you can select one by double-clicking it.

Figure 2-4:
As you type a formula,
Excel opens a helpful menu.

Another noteworthy point is the set of boxes in the Function Arguments dialog box in Figure 2-3. In the figure you see just two boxes, Number1 and Number2. The data array appears in Number1. So what's Number2 for?

The Number2 box allows you to include an additional argument in the sum. And it doesn't end there. Click in the Number2 box and the Number3 box appears. Click in the Number3 box, and the Number4 box appears . . . and on and on. The limit is 255 boxes, with each box corresponding to an argument. A value can be another array of cells anywhere in the worksheet, a number, an arithmetic expression that evaluates to a number, a cell ID, or a name that you have attached to a range of cells. (Regarding that last one: Read the upcoming section "What's in a name? An array of possibilities.") As you type in values, the SUM dialog box shows the updated sum. Clicking OK puts the updated sum into the selected cell.

You won't find this multiargument capability on every worksheet function. Some are designed to work with just one argument. For the ones that do work with multiple arguments, however, you can incorporate data that resides all over the worksheet. Figure 2-5 shows a worksheet with a Function Arguments dialog box that includes data from two arrays of cells, two arithmetic expressions, and one cell. Notice the format of the function in the Formula Bar (a comma separates successive arguments).

Figure 2-5: Using SUM with five arguments.

If you select a cell in the same column as your data and just below the last data cell, Excel correctly guesses the data array that you want to work on. Excel doesn't always guess what you want to do, however. Sometimes when Excel does guess, its guess is incorrect. When either of those things happens, it's up to you to enter the appropriate values into the Function Arguments dialog box.

Quickly accessing statistical functions

In the preceding example, I show you a function that's not in the category of statistical functions. In this section, I show you how to create a shortcut to Excel's statistical functions.

You can get to Excel's statistical functions by selecting
Formulas | More Functions | Statistical
and then choosing from the resulting pop-up menu. (See Figure 2-6.)

Figure 2-6: Accessing

Excel's Statistical Functions.

Although Excel has buried the statistical functions several layers deep, you can use a handy Excel 2007 technique to make them as accessible as any of the other categories: You add them to the Quick Access Toolbar in the upperleft corner. (Every Office 2007 application has one.)

To do this, select

Formulas | More Functions

and right-click on Statistical. On the pop-up menu, pick the first option; Add to Quick Access Toolbar. (See Figure 2-7.) Doing this adds a button to the Quick Access Toolbar. Clicking the new button's down arrow opens the pop-up menu of statistical functions. (See Figure 2-8.)

Figure 2-7:
Adding the Statistical functions to the Quick Access Toolbar.

From now on, when I deal with a statistical function, I assume that you've created this shortcut, so you can quickly open the menu of statistical functions. The next section provides an example.

Array functions

Most of Excel's built-in functions are formulas that calculate a single value (like a sum) and put that value into a worksheet cell. Excel has another type of function. It's called an array function because it calculates multiple values and puts those values into an array of cells, rather than into a single cell.

FREQUENCY is a good example of an array function (and it's an Excel statistical function, too). Its job is to summarize a group of scores by showing how the scores fall into a set of intervals that you specify. For example, given these scores
$77,45,44,61,52,53,68,55$
and these intervals
$50,60,70,80$

FREQUENCY shows how many are less than or equal to 50 (2 in this example), how many are greater than 50 and less than or equal to 60 (that would be 3), and so on. The number of scores in each interval is called a frequency. A table of the intervals and the frequencies is called a frequency distribution.

Here's an example of how to use FREQUENCY:

1. Enter the scores into an array of cells.

Figure 2-9 shows a group of scores in cells B2 through B16.
2. Enter the intervals into an array.

I've put the intervals in C2 through C9.
3. Select an array for the frequencies.

I've put Frequency as the label at the top of column D, so I select D2 through D10 for the resulting frequencies. Why the extra cell? FREQUENCY returns a vertical array that has one more cell than the frequencies array.
4. From the Statistical Functions menu, select FREQUENCY to open the Function Arguments dialog box.
I used the shortcut I installed on the Quick Access Toolbar to open this menu and select FREQUENCY.

Figure 2-9: Working with FREQUENCY.

5. In the Function Arguments dialog box, enter the appropriate values for the arguments.

I begin with the Data_array box. In this box I entered the cells that hold the scores. In this example, that's B2:B16. I'm assuming you know Excel well enough to know how to do this in several ways.
Next, I identify the intervals array. FREQUENCY refers to intervals as "bins," and holds the intervals in the Bins_array box. For this example, C2:C9 goes into the Bins_array box. After identifying both arrays, the Insert Function dialog box shows the frequencies inside a pair of curly brackets.
6. Press Ctrl+Shift+Enter to Close the Function Arguments dialog box and put the values in the selected array.
This is VERY important. Because the dialog box has an OK button, the tendency is to click OK, thinking that puts the results into the worksheet. That doesn't get the job done when you work with an array function, however. Always use the keystroke combination Ctrl+Shift+Enter to close the Function Arguments dialog box for an array function.

After closing the Function Arguments dialog box, the frequencies go into the appropriate cells, as Figure 2-10 shows.

D2		f_{x} \{=F		NCY	C2	
4	Name Box B	C	D	E	F	
1	Score	Interval	Frequency			
2	47	30	1			
3	54	40	3			
4	23	50	2			
5	32	60	2			
6	31	70	2			
7	67	80	1			
8	87	90	3			
9	87	100	1			
10	91		0			
11	46					
12	33					
13	65					
14	77					
15	89					
16	56					
17						

Note the formula in the Formula Bar:

```
{= FREQUENCY(B2:B16,C2:C9) }
```

The curly brackets are Excel's way of telling you that this is an array function.
I'm not one to repeat myself, but in this case I'll make an exception. As I said in Step 6, press Ctrl+Shift+Enter whenever you work with an array function. Keep this in mind because the Arguments Function dialog box doesn't provide any reminders. If you click OK after you enter your arguments into an array function, you'll be very frustrated. Trust me.

What's in a name? An array of possibilities

As you get more into Excel's statistical features, you work increasingly with formulas that have multiple arguments. Oftentimes, these arguments refer to arrays of cells, as in the preceding examples.

If you apply meaningful names to these arrays, it helps you keep straight what you're doing. Also, if you come back to a worksheet after being away from it for a while, meaningful array names can help you quickly get back into the swing of things. Another benefit: If you have to explain your worksheet and its formulas to others, meaningful array names are tremendously helpful.

Excel gives you an easy way to attach a name to a group of cells. In Figure 2-11, column C is named Revenue_Millions, indicating "Revenue in millions of dollars." As it stands, that just makes it a bit easier to read the column. If I explicitly tell Excel to treat Revenue_Millions as the name of the array of cells C2 through C13, however, I can use Revenue_Millions whenever I refer to that array of cells.

Figure 2-11:
Defining names for arrays of cells.

	A	B	C
1	Year	Region	Revenue_Millions
2	2006	North	20
3	2006	South	22
4	2006	East	19
5	2006	West	25
6	2007	North	26
7	2007	South	28
8	2007	East	21
9	2007	West	27
10	2008	North	32
11	2008	South	29
12	2008	East	25
13	2008	West	31
14			
15			
16			

Why did I use Revenue_Millions and not Revenue (Millions) or Revenue In Millions or Revenue: Millions? Excel doesn't like blank spaces or symbols in its names. In fact, here are four rules to follow when you supply a name for a range of cells:
\checkmark Begin a name with an alphabetic character - a letter rather than a number or a punctuation mark.
\checkmark As I just mentioned, make sure that the name contains no spaces or symbols. Use an underscore to denote a space between words in the name.
\checkmark Be sure that the name is unique within the worksheet.
\checkmark Be sure that the name doesn't duplicate any cell reference in the worksheet.

Here's how to define a name:

1. Put a descriptive name at the top of a column (or to the left of a row) you want to name.
Figure 2-10 shows this.
2. Select the range of cells you want to name.

For this example, that's cells C2 through C13. Why not include C1? I explain in a second.
3. Right-click on the selected range.

This opens the menu shown in Figure 2-12.

	Cut	
	Copy	
	Paste	
	Paste Special...	
	Insert...	
	Delete...	
	Clear Contents	
	Filter	*
	Sort	-
$\begin{aligned} & \square \\ & 9 \end{aligned}$	Insert Comment	
	Format Cells...	
	Pick From Drop-down List...	
	Name a Range...	
8	Hyperlink...	

4. From the pop-up menu, select Name a Range.

This selection opens the New Name dialog box (see Figure 2-13). As you can see, Excel knows that Revenue_Millions is the name for the array, and that Revenue_Millions refers to cells C2 through C13. When presented with a selected range of cells to name, Excel looks for a nearby name - just above a column or just to the left of a row. If no name is present, you get to supply one in the New Name dialog box. (The New Name dialog box is also accessible by choosing Formula । Define Name.)

Figure 2-13:
The New Name dialog box.

When you select a range of cells like a column with a name at the top, you can include the cell with the name in it and Excel attaches the name to the range. I strongly advise against doing this. Why? If I select C1 through C13, the name Revenue_Millions refers to cells C1 through C13, not C 2 through C 13 . In that case, the first value in the range is text and the others are numbers.

For a formula like SUM (or SUMIF or SUMIFS, which I discuss next), this doesn't make a difference: In those formulas, Excel just ignores values that aren't numbers. If you have to use the whole array in a calculation, however, it makes a huge difference: Excel thinks the name is part of the array and tries to use it in the calculation. You'll see this in the next section on creating your own array formulas.

5. Click OK.

Excel attaches the name to the range of cells.
Now I have the convenience of using the name in a formula. Here, selecting a cell (like C14) and entering the SUM formula directly into C14 opens the boxes in Figure 2-14.

Figure 2-14:
Entering a formula directly into a cell opens these boxes.

SUM		- ${ }^{(~} \times \checkmark \checkmark f_{x} \mid=$ sum(reve		
4	A	B	C	D
1	Year	Region	Revenue_Millions	
2	2006	North	20	
3	2006	South	22	
4	2006	East	19	
5	2006	West	25	
6	2007	North	26	
7	2007	South	28	
8	2007	East	21	
9	2007	West	27	
10	2008	North	32	
11	2008	South	29	
12	2008	East	25	
13	2008	West	31	
14			Fsum(reve	
15			SUM(number1, [number2], ...)	
16			國Revenue_Milions	
17				

As the figure shows, the boxes open as I type. Pressing the Tab key fills in the formula in a way that Excel understands. I have to supply the close parenthesis (see Figure 2-15) and type Enter to see the result.

Using the named array, then, the formula is
=SUM (Revenue_Millions)
which is more descriptive than

```
=SUM (C2:C13)
```

A couple of Excel 2007's new formulas show just how convenient this naming capability is. These formulas, SUMIF and SUMIFS, add a set of numbers if specific conditions in one cell range (SUMIF) or in more than one cell range (SUMIFS) are met. SUMIFS is new in Excel 2007.

To take full advantage of naming, I name both column A (Year) and column B (Region) in the same way I named column C.

Figure 2-15: Completing the formula.

When you define a name for a cell range like B2:B13 in this example, beware: Excel can be a bit quirky when the cells hold names. Excel might guess that the name in the uppermost cell is the name you want to assign to the cell range. In this case, Excel guesses "North" for the name, rather than "Region." If that happens, you make the change in the New Name dialog box.

To keep track of the names in a worksheet, selecting
Formula | Name Manager
opens the Name Manager box shown in Figure 2-16. The nearby buttons in the Defined Names area are also useful.

Figure 2-16: Managing the Defined Names in a worksheet.

Next, I sum the data in column C, but only for the North Region. That is, I only consider a cell in column C if the corresponding cell in column B contains "North." To do this, I followed these steps:

1. Select a cell for the formula result.

My selection here is C15.
2. Select the appropriate formula category and choose your function from its pop-up menu.

This opens the Function Arguments dialog box.
I selected Formulas । Math \& Trig
and scrolled down the menu to find and choose SUMIF. This selection opens the Function Arguments dialog box shown in Figure 2-17.

Figure 2-17: The
Function Arguments dialog box for SUMIF.

SUMIF has three arguments. The first, Range, is the range of cells to evaluate for the condition to include in the sum (North, South, East, or West in this example). The second, Criteria, is the specific value in the Range (North, for this example). The third, Sum_range, holds the values I sum.
3. In the Function Arguments dialog box, enter the appropriate values for the arguments.

Here's where another Defined Names button comes in handy. In that Ribbon area, click the down arrow next to Use in Formula to open the drop-down list shown in Figure 2-18.

Figure 2-18: The Use In Formula drop-down list.

Selecting from this list fills in the Function Arguments dialog box, as shown in Figure 2-19. I had to type North into the Criteria box. Excel adds the double quotes.
4. Click OK.

The result appears in the selected cell. For this example, that's 78.

Figure 2-19:
Completing the Function Arguments dialog box for SUMIF.

In the formula bar,

```
=SUMIF(Region,"North", Revenue_Millions)
```

appears. I can type it exactly that way into the formula bar, without the dialog box or the drop-down list.

The formula in the formula bar is easier to understand than

```
= SUMIF(B2:B13,"North", C2:C13)
```

isn't it?
Incidentally, the same cell range can be both the Range and the Sum_range. For example, to sum just the cells for which Revenue_Millions is less than 25, that's

```
=SUMIF(Revenue_Millions, "< 25", Revenue_Millions)
```

The second argument (Criteria) is always in double-quotes.
What about SUMIFS? That one is useful if I want to find the sum of revenues for North but only for the years 2006 and 2007. Follow these steps to use SUMIFS to find this sum:

1. Select a cell for the formula result.

The selected cell is C17.
2. Select the appropriate formula category and choose your function from its pop-up menu.
This opens the Function Arguments dialog box.
For this example, the selection is SUMIFS from the
Formulas । Math \& Trig menu, opening the Functions Arguments dialog box shown in Figure 2-20.
3. In the Function Arguments dialog box, enter the appropriate values for the arguments.
Notice that in SUMIFS the Sum_range argument appears first. In SUMIF, it appears last. The appropriate values for the arguments appear in Figure 2-20.
4. The formula in the Formula bar is

```
=SUMIFS(Revenue_Millions,Year,"<2008",Region, "North")
```


5. Click OK.

The answer, 46, appears in the selected cell.
With unnamed arrays, the formula would have been

```
=SUMIFS(C2:C13,A2:A13,"<2008",B2:B13,"North")
```

which seems much harder to comprehend.

Figure 2-20:
The
Completed
Function Arguments dialog box for SUMIFS.

A defined name involves absolute referencing. (See Chapter 1.) Therefore, if you try to autofill from a named array, you'll be in for an unpleasant surprise: Rather than autofilling a group of cells, you'll be copying a value over and over again.

Here's what I mean. Suppose you assign the name Series_1 to A2:A11 and Series_2 to B2:B11. In A12, you calculate SUM(Series_1). Being clever, you figure you'll just drag the result from A12 to B12 to calculate SUM(Series_2). What do you find in B12? SUM(Series_1), that's what.

Creating your own array formulas

In addition to Excel's built-in array formulas, you can create your own. To help things along, you can incorporate named arrays.

Figure 2-21 shows two named arrays, X and Y in columns C and $\mathrm{D} . \mathrm{X}$ refers to C2 through C5 (not C1 through C5!) and Y refers to D2 through D5 (not D1 through D5!) XY is the column header for column F. Each cell in column F will store the product of the corresponding cell in column C and the corresponding cell in column D.

Figure 2-21: Two named arrays.

		- f_{x}					
4	A	B	C	D	E	F	
1			X	Y		XY	
2			12	8			
3			14	9			
4			15	10			
5			16	11			
6							
7							

An easy way to enter the products, of course, is to just set F2 equal to C2*E2 and then autofill the remaining applicable cells in column F .

Just to illustrate array formulas, though, I follow these steps to work on the data in the worksheet in Figure 2-21.

1. Select the array that will hold the answers to the array formula.

That would be F2 through F5, or F2:F5 in Excel-speak. Figure 2-21 shows the array selected.
2. Into the selected array, type the formula.

The formula here is $=\mathrm{X}$ * Y

3. Press Ctrl+Shift+Enter (not Enter).

The answers appear in F2 through F5, as Figure 2-22 shows. Note the formula $\{=\mathrm{X} * \mathrm{Y}\}$
in the formula bar. As I told you earlier, the curly brackets indicate an array formula.

Figure 2-22:
The results of the array
formula
$\left\{=X^{*} Y\right\}$.

F2			- $\left.f_{x} \mid=\mathrm{X} * \mathrm{Y}\right\}$			
4	A	B	C	D	E	F
1			X	Y		XY
2			12	8		96
3			14	9		126
4			15	10		150
5			16	11		176
6						
7						

Another thing I mention earlier in this chapter: When you name a range of cells, make sure that the named range does not include the cell with the name in it. If it does, an array formula like $\{=\mathrm{X} * \mathrm{Y}\}$ tries to multiply the letter X by the letter Y to produce the first value, which is impossible and results in the exceptionally ugly \#VALUE! error.

Using data analysis tools

Excel has a set of sophisticated tools for data analysis. Table 2-1 lists the tools I cover. (The one I don't cover, Fourier Analysis, is extremely technical.) Some of the terms in the table may be unfamiliar to you, but you'll know them by the time you finish this book.

Table 2-1	Excel's Data Analysis Tools
Tool	What It Does
Anova: Single Factor	Analysis of variance for two or more samples
Anova: Two Factor with Replication	Analysis of variance with two independent variables, and multiple observations in each combination of the levels of the variables
Anova: Two Factor without Replication	Analysis of variance with two independent variables, and one observation in each combination of the levels of the variables

Table 2-1 (continued)	
Tool	What It Does
Correlation	With more than two measurements on a sample of individuals, calculates a matrix of correlation coefficients for all possible pairs of the measurements
Covariance	With more than two measurements on a sample of individuals, calculates a matrix of covariances for all possible pairs of the measurements
Descriptive Statistics	Generates a report of central tendency, variability, and other characteristics of values in the selected range of cells
Exponential Smoothing	In a sequence of values, calculates a prediction based on a preceding set of values, and on a prior prediction for those values
F-Test Two Sample for Variances	Performs an F-test to compare two variances
Histogram	Tabulates individual and cumulative frequencies for values in the selected range of cells
Moving Average	In a sequence of values, calculates a prediction which is the average of a specified number of preceding values
Random Number Generation	Provides a specified amount of random numbers generated from one of seven possible distributions
Rank and Percentile	Creates a table that shows the ordinal rank and the percentage rank of each value in a set of values
Regression	Creates a report of the regression statistics based on linear regression through a set of data containing one dependent variable and one or more independent variables
Sampling	Creates a sample from the values in a specified range of cells
t-Test: Two Sample	Three t-test tools test the difference between two means. One assumes equal variances in the two samples. Another assumes unequal variances in the two samples. The third assumes matched samples.
z-Test: Two Sample for Means	Performs a two-sample z-test to compare two means when the variances are known

In order to use these tools, you first have to load them into Excel.

To start, click the Office Button and select Excel Options. Doing this opens the Excel Options dialog box. Then follow these steps:

1. In the Excel Options dialog box, select Add-Ins.

Oddly enough, this opens a list of add-ins.
2. Near the bottom of the list, you see a drop-down list labeled Manage. From this list, select Excel Add-Ins.
3. Click Go.

This opens the Add-Ins dialog box. (See Figure 2-23.)
4. Click the check box next to Analysis Toolpak and then click OK.

When Excel finishes loading the Toolpak, you'll find a Data Analysis button in the Analysis area of the Data tab. In general, the steps for using a data analysis tool are:

1. Enter your data into an array.
2. Click Data I Data Analysis to open the Data Analysis dialog box.
3. In the Data Analysis dialog box select the data analysis tool you want to work with.
4. Click OK (or just double-click the selection) to open the dialog box for the selected tool.
5. In the tool's dialog box, enter the appropriate information. I know this sounds like a cop-out, but each tool is different.
6. Click OK to close the dialog box and see the results.

Here's an example to get you accustomed to using these tools. In this example, I go through the Descriptive Statistics tool. This tool calculates a number of statistics that summarize a set of scores.

1. Enter your data into an array.

Figure 2-24 shows an array of numbers in cells B2 through B9, with a column header in B1.
2. Click Data I Data Analysis to open the Data Analysis dialog box.
3. Click Descriptive Statistics and click OK (or just double-click Descriptive Statistics) to open the Descriptive Statistics dialog box.
4. Identify the data array.

In the Input Range box, enter the cells that hold the data. For this example, that's B1 through B9. The easiest way to do this is to move the cursor to the top cell (B1), press the Shift key, and click the bottom cell (B9). That puts the absolute reference format $\$ \mathrm{~B} \$ 1: \$ \mathrm{~B} \$ 9$ into Input Range.
5. Click the Columns radio button to indicate that the data are organized by columns.
6. Check the Labels in First Row checkbox, because the Input Range includes the column heading.
7. Click the New Worksheet Ply radio button, if it isn't already selected.

This tells Excel to create a new tabbed sheet within the current worksheet, and to send the results to the newly created sheet.

Figure 2-24: Working with the Descriptive Statistics Analysis tool.

8. Click the Summary Statistics checkbox and leave the others unchecked. Click OK.
The new tabbed sheet (ply) opens, displaying statistics that summarize the data. Figure 2-25 shows the new ply, after I widened Column A.

Figure 2-25:
The output of the
Descriptive
Statistics
Analysis
tool.

		A		B
1	Number			
2		59.5		
3	Mean	10.55428		
4	Standard Error	62		
5	Median	\#N/A		
6	Mode	29.85202		
7	Standard Deviation	296		
8	Sample Variance	891.1429		
9	Kurtosis	-0.66894		
10	Skewness	-0.50676		
11	Range	86		
12	Minimum	12		
13	Maximum	98		
14	Sum	476		
15	Count	8		
16				

For now, I won't tell you the meaning of each individual statistic in the Summary Statistics display. I leave that for Chapter 7 when I delve more deeply into descriptive statistics.

Accessing Commonly Used Functions

Need quick access to a few commonly used Statistical functions? You can get to AVERAGE, MIN (minimum value in a selected cell range), and MAX (maximum value in a selected range) by clicking the down arrow next to a button on the Home tab. Clicking this down arrow also gets you to the Mathematical functions SUM and COUNT NUMBERS (counts the numerical values in a cell range).

For some reason, this button is in the Editing area. It's labeled Σ. Figure 2-26 shows you exactly where it is and the menu its down arrow opens.

By the way, if you just click the button
Home I Σ
and not the down arrow, you get SUM.
The last selection on that menu is yet another way to open the Insert Function dialog box.

Figure 2-26:
The Home | Σ button and the menu its down arrow opens.

One nice thing about using this menu - it eliminates a step: When you select a function, you don't have to select a cell for the result. Just select the cell range and the function inserts the value in a cell immediately after the range.

Part Il Describing Data

In this part . . .

Here's where you learn how to use statistics to summarize and describe data. I begin by showing you how to use the Excel graphics capabilities to produce the kinds of graphs statisticians use. From there, I move on to descriptive statistics - average, variance, standard deviation, and some others. I tell you how to combine a couple of these statistics to standardize scores. Finally, I describe the normal distribution, a very important topic in statistics. Along the way, you find out about Excel functions and data analysis tools that cover all the statistical ideas in this part.

Chapter 3

Show and Tell: Graphing Data

In This Chapter

$>$ Introducing graphs
$>$ Working with Excel's graphics capabilities
Creating graphs for statistical work

The visual presentation of data is extremely important in statistics. Visual presentation enables you to discern relationships and trends you might not see if you just look at numbers. Visual presentation helps in another way: It's valuable for presenting ideas to groups and making them understand your point of view.

Graphs come in many varieties. In this chapter, I explore the types of graphs you use in statistics and when it's advisable to use them. I also show you how to use Excel to create those graphs.

Why Use Graphs?

Suppose you have to make a pitch to a Congressional committee about commercial space revenues in the early 1990s.

Which would you rather present? The data in Table 3-1, or the graph in Figure 3-1 that shows the same data? (The data, by the way, are from the U.S. Department of Commerce, via the Statistical Abstract of the U.S.)

Table 3-1 US Commercial Space Revenues from 1990 through 1994 (In Millions of Dollars)

Industry	$\mathbf{1 9 9 0}$	$\mathbf{1 9 9 1}$	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$
Commercial Satellites Delivered	1,000	1,300	1,300	1,100	1,400
Satellite Services	800	1,200	1,500	1,850	2,330
Satellite Ground Equipment	860	1,300	1,400	1,600	1,970
Commercial Launches	570	380	450	465	580
Remote Sensing Data	155	190	210	250	300
Commercial R\&D Infrastructure	0	0	0	30	60
Total	3,385	4,370	4,860	5,295	6,640

Figure 3-1: Graphing the data in Table 3-1.

Which one would have a greater and more lasting impact? Although the table is certainly informative, most would argue that the graph gets the point across better and more memorably. Eyes that glaze over when looking at numbers often shine brighter when looking at pictures.

The graph shows you trends you might not see as quickly on the table. (Satellite services rose fastest. Commercial launches, not so much.) Bottom line: Tables are good, graphs are better.

Graphs help bring concepts to life that might otherwise be difficult to understand. In fact, I do that throughout the book. I illustrate points by ... well . . . illustrating points!

Some Fundamentals

Like the graph in Figure 3-1, most graph formats have a horizontal axis and a vertical axis. The pie graph, a format I show you later in this chapter, does not. By convention, the horizontal axis is also called the x-axis and the vertical axis is also called the y-axis.

Also, by convention, what goes on the horizontal axis is called the independent variable and what goes on the vertical axis is called the dependent variable. One of Excel's graph formats reverses that convention, and I bring that to your attention when I cover it.

Just to give you a heads up, Excel calls that reversed-axis format a bar graph. You might have seen the graph in Figure 3-1 referred to as a bar graph. So have I. Excel calls Figure 3-1 a column graph, so I use "columns" from here on.

Getting back to "independent" and "dependent," those terms imply that changes in the vertical direction depend (at least partly) on changes in the horizontal direction.

Another fundamental principle of creating a graph: Don't wear out the viewer's eyes! If you put too much into a graph in the way of information or special effects, you defeat the whole purpose of the graph.

For example, in Figure 3-1 I had to make some choices about filling in the columns. Color-coded columns would have been helpful, but the page you're looking at only shows black, white, and shades of gray.

A lot of graph creation comes with experience, and you just have to use your judgment. In this case, my judgment came into play with the horizontal gridlines. In most graphs, I prefer not to have them. Here, they seem to add
structure and help the viewer figure out the dollar value associated with each column. But then again, that's just my opinion.

Excel's Graphics Capabilities

As I mention a couple of paragraphs ago, the graph in Figure 3-1 is a column graph. It's one of many types of graphs you can create with Excel. Of all the graphics possibilities Excel provides, however, only a few are useful for statistical work. Those are the ones I cover in this chapter.

In addition to the column graph, I show you how to create pie graphs, bar graphs, line graphs, and scatter plots. Excel refers to each one as a chart rather than a "graph." In this chapter, I use the two terms interchangeably.

Inserting a chart

In Excel 2007, you insert a chart into a spreadsheet. This immediately clues you that the chart creation tools are in the Charts area of the Insert tab. (See Figure 3-2.)

Figure 3-2: The Charts area of the Insert tab.

In Excels past a Chart Wizard guided you step by step through chart creation. The chart took shape within the wizard as you worked. You didn't see the full chart on the worksheet (or on a separate page) until you closed the wizard.

Excel 2007 turns the process inside out and simplifies it. Instead of making decisions within the wizard (which is no longer available), you immediately insert a chart into your spreadsheet. Then you use Design and Layout capabilities to modify the chart and make it look just the way you want it.

You follow these steps:

1. Enter your data into a worksheet.

2. Select the data that go into the chart.

3. In the Charts area of the Insert tab, select the chart type.

When you select a chart type, a box opens that presents a variety of subtypes. Choose one and Excel creates a chart in your worksheet.

4. Modify the chart.

Click on the chart, and Excel adds a Design tab and a Layout tab to the Ribbon. These tabs allow you to make all kinds of changes to your chart.

It's really that simple. The next section shows what I mean.

By the way, here's one more important concept about Excel graphics. In Excel, a chart is dynamic. This means that after you create a chart, changing its worksheet data results in an immediate change in the chart.

Becoming a Columnist

In this section, I show you how to create that spiffy graph in Figure 3-1. Follow these steps:

1. Enter your data into a worksheet.

Figure 3-3 shows the data from Table 3-1 entered into a worksheet.

Figure 3-3:
Table 3-1
data entered into a worksheet.

	A	B	C	D	E	F
1		1990	1991	1992	1993	1994
2	Commercial Satellites Delivered	1,000	1,300	1,300	1,100	1,400
3	Satellite Services	800	1,200	1,500	1,850	2,330
4	Satellite Ground Equipment	860	1,300	1,400	1,600	1,970
5	Commercial Launches	570	380	450	465	580
6	Remote Sensing Data	155	190	210	250	300
7	Commercial R\&D Infrastructure	0	0	0	30	60
8	Total	3,385	4,370	4,860	5,295	6,640
9						

2. Select the data that go into the chart.

I selected A1:F7. The selection includes the labels for the axes but doesn't include row G, which holds the column totals.
3. In the Charts area of the Insert tab, select the chart type.

For this example, the chart type is Column. Selecting Insert | Charts | Column opens the gallery in Figure 3-4. Here, you select the specific type of column chart for the data. I selected the first choice in the top row (Clustered Column).

Figure 3-4:
The gallery for a column chart.

4. Modify the chart.

Figure 3-5 shows the resulting chart, as well as the Design tab and the Layout tab. As you can see, I have to do some heavyweight modifying. Why? Excel has guessed wrong about how I wanted to design the chart. It looks okay, but it's not. Rather than the years on the x-axis, Excel laid out the industry types. In other words, it interchanged the rows and columns.

Figure 3-5: The semifinished graph based on a bad guess By Excel.

Fortunately, Excel provides a quick fix. Figure 3-5 shows the Design tab selected. In the Design I Data area, the choice on the left is Switch Row/ Column. So . . . selecting Design I Data I Switch Row/Column does the trick.

Some work remains. The axes aren't labeled yet, and the graph has no title. Here's where the Layout tab comes into play. Figure 3-6 shows Layout I Axis Titles selected, along with the drop-down menu that allows you to add the title for each axis. Primary Horizontal Axis Title and Primary Vertical Axis Title provide options for laying out the axis titles. Layout | Chart Title does the same for the title of the chart.
Adding the titles finishes things off. The result looks like the chart in Figure 3-1.

Figure 3-6: The Layout tab enables you to add
titles.

Stacking the columns

If I had selected Column's second subtype - Stacked Column - I would have created a set of columns that presents the same information in a slightly different way. Each column represents the total of all the data series at a point on the x-axis. Each column is divided into segments. Each segment's size is proportional to how much it contributes to the total. Figure 3-7 shows this.

Figure 3-7: A stacked column graph of the data in Table 3-1.

Notice that the data series are in reverse order from the way they're set up in the first column graph. Excel sets them up in this order for the stacked columns, and in the other order for the clustered columns.

I inserted each graph into the worksheet. Excel also allows you to move a graph to a separate page in the workbook. Select Design I Location I Move Chart (it's on the extreme right of the Design tab) to open the Move Chart dialog box. Click the New Sheet radio button to add a worksheet and move the chart there. Figure 3-8 shows how the chart looks on its own page.

In Appendix C, by the way, I show you another use for the stacked column chart.

This is a nice way of showing percentage changes over the course of time. If you just want to focus on percentages in one year, another type of graph is more effective. I discuss it in a moment, but first I want to tell you .. .

Figure 3-8: The stacked column chart on its own worksheet.

One more thing

Statisticians often use column graphs to show how frequently something occurs. For example, in a thousand tosses of a pair of dice how many times does a 6 come up? How many tosses result in a 7? The x-axis shows each possible outcome of the dice-tosses, and the heights of the columns represent the frequencies. Whenever the heights represent frequencies, your column graph is a histogram.

It's easy enough to use Excel's graphics capabilities to set up a histogram, but Excel makes it easier still. Excel provides a data analysis tool that does everything you need to create a histogram. It's called - believe it or not Histogram. You provide an array of cells that hold all the data - like the outcomes of many dice-tosses, and an array that holds a list of intervals like the possible outcomes of the tosses (the numbers 2-12). Histogram goes through the data array, counts the frequencies within each interval, and then draws the column graph. I describe this tool in greater detail in Chapter 7.

Part II: Describing Data

Slicing the Pie

On to the next chart type. To show the percentages that make up one total, a pie graph gets the job done effectively.

Suppose you want to focus on the U.S. commercial space revenues in 1994 that is, on the last column of data in Table 3-1. You'll catch people's attention if you present the data in the form of a pie graph, like the one in Figure 3-9.

Figure 3-9: A pie graph of the last column of data in Table 3-1.

Here's how to create this graph:

1. Enter your data into a worksheet.

Pretty easy, as I've already done this.
2. Select the data that go into the chart.

I want the names in column A and the data in column F. The trick is to select column A (cells A2 through A7)in the usual way and then press and hold the CTRL key. While holding this key, drag the cursor through F2 through F7. Voilà - two nonadjoining columns are selected
3. In the Charts area of the Insert tab, select the chart type.

I selected Insert | Pie and then chose the first subtype.

4. Modify the chart.

Figure 3-10 shows the initial pie chart on its own page. To get it to look like Figure 3-9, I had to do a lot of modifying.

Figure 3-10: The initial pie chart on its own page.

The little slice filled in black represents 1 percent of the pie (Commercial R\&D Infrastructure) and might be hard to see. I changed the fill color from black to white and added a border. How? I clicked on that slice and several slices were selected. Clicking again isolated it. Then I rightclicked to open the menu in Figure 3-11. Choosing Format Data Point opens the Format Data Point dialog box (Figure 3-12). I worked with Fill and Border to change the slice to a white fill with a black border.

Figure 3-11:
Right-
clicking an
isolated pie chart slice opens this menu.

4 4	Delete Series
	Reset to Match Style
ath	Change Series Chart Type...
域	Select Data...
(1)	3-D Rotation...
	Add Data Label
	Add Trendline...
	Eormat Data Point...

Figure 3-12: The Format Data Point dialog box.

I selected Layout \| Data Labels | Best Fit to add the data to each slice.
With the data labels selected, I right-clicked to open a couple of menus (Figure 3-13) that enabled me to manipulate the color and size of the data label font. After I made them all white, the label outside the small slice became invisible, but right-clicking in its area allowed me to reset its font to black. Right-clicking on the legend brings up the same menus for modifying the size of the font in the legend.

Figure 3-13: Menus for manipulating the color and size of the data label font.

Pulling the slices apart

One variant of the pie chart is to explode the slices. I'm not particularly fond of this type of graph, but you might be. In some circumstances, it might come in handy.

One of the nice things about Excel's graphics capabilities is that you can "what-if" to your heart's content. So . . . after I finish creating the pie chart, I can explode it. To do that, I click on the chart and select Design I Change Chart Type. This opens the Change Chart Type dialog box shown in Figure $3-14$. Selecting the pie chart subtype that separates the slices (Exploded Pie) creates the chart in Figure 3-15.

Figure 3-14: The Change Chart Type dialog box.

Whenever you set up a pie graph — whether intact or exploded - always keep in mind

Figure 3-15:
The exploded version of Figure 3-9.

A word from the wise

Social commentator, raconteur, and former baseball player Yogi Berra once went to a restaurant and ordered a whole pizza.
"How many slices should I cut," asked the waitress, "four or eight?"
"Better make it four," said Yogi, "I'm not hungry enough to eat eight."
Yogi's insightful analysis leads to a useful guideline about pie graphs: They're more digestible if they have fewer slices. If you cut a pie graph too fine, you're likely to leave your audience with information overload.

Drawing the Line

In the preceding example, I focused on one column of data from Table 3-1. In this one, I focus on one row. The idea is to trace the progress of one spacerelated industry across the years 1990-1994. In this example, I graph the revenues from Satellite Services. The final product, shown on its own page, is Figure 3-16.

Figure 3-16: A line graph of the second Row of Data in Table 3-1.

A line graph is a good way to show change over time, when you aren't dealing with too many data series. If you try to graph all six industries on one line graph, it begins to look like spaghetti.

How do you create a graph like Figure 3-16? Follow along:

1. Enter your data into a worksheet.

Once again, already done.

2. Select the data that go into the chart.

For this example, that's cells B3 through F3.
Whoa! Did I forget something? What about that little trick I showed you before where you hold down the CTRL key and select additional cells? Couldn't I do that and select the top row of years for the x-axis?
Nope. Not this time. If I do that, Excel thinks 1990, 1991, 1992, 1993, and 1994 are just another series of data points to plot on the graph. I'll show you another way to put those years on the x-axis.
3. In Charts area of the Insert tab, select the chart type.

This time, it's Insert | Line and then the fourth subtype, Line with Markers. This creates the chart in Figure 3-17.

Figure 3-17: Insert | Line | Line With Markers creates the line chart.

4. Modify the chart.

The line on the chart is a little hard to see. Selecting Design I Chart Styles and the leftmost option makes the line darker.
Next, I added the titles for the chart and for the axes. Clicking the down arrow of Design | Chart Layouts opens a box with 12 possibilities. Selecting the tenth one creates text boxes for the titles on the chart.
I still have to put the years on the x-axis. To do this, I right-clicked inside the chart to open the menu in Figure 3-18.

Figure 3-18:
Rightclicking inside the chart opens this menu.

Clicking Select Data opens the Select Data Source dialog box. (See Figure 3-19.) In the box labeled Horizontal (Category) Axis Labels, clicking the Edit button opens the Axis Labels dialog box (Figure 3-20). A blinking cursor in the Axis label range box shows it's ready for business. Selecting cells B1 through F1 and clicking OK closes this dialog box. Clicking OK closes the Select Source dialog box and puts the years on the x -axis.

Figure 3-19: The Select Source dialog box.

One more modification completes the graph. The legend (showing "Series 1") isn't necessary. Right-click on it and choose Delete from the pop-up menu.

Figure 3-20:

The Axis

Labels
dialog box.

Passing the Bar

Excel's bar chart is a column chart laid on its side. This is the one that reverses the horizontal-vertical convention. Here, the vertical axis holds the independent variable, and it's referred to as the x-axis. The horizontal axis is the y-axis and it tracks the dependent variable.

When would you use the bar graph? This type of graph fits the bill when you want to make a point about reaching a goal, or about the inequities in attaining one.

Table 3-2 shows the data on (what I feel, anyway) is an important social issue. The data, from the U.S. Census Bureau (via the U.S. Statistical Abstract), are for the year 2000. Percent means the percentage of children in each income group.

Table 3-2 Children's Use of the Internet at Home (2000)

Family Income	Percent
Under $\$ 15,000$	7.7
$\$ 15,000-\$ 19,999$	12.9
$\$ 20,000-\$ 24,999$	15.2
$\$ 25,000-\$ 34,999$	21.0
$\$ 35,000-\$ 49,999$	31.8
$\$ 50,000-\$ 74,999$	39.9
Over $\$ 75,000$	51.7

The numbers in the table are pretty dramatic. Casting them into a bar chart renders them even more so, as Figure 3-21 shows.

Figure 3-21: A bar chart of the data in Table 3-2.

To create this graph, follow these steps:

1. Enter your data into a worksheet.

Figure 3-22 shows the data entered into a worksheet.

Figure 3-22:
Table 3-2
data in a worksheet.

	A	B
1	Family Income	Percent
2	Under $\$ 15,000$	7.7
3	$\$ 15,000-\$ 19,999$	12.9
4	$\$ 20,000-\$ 24,999$	15.2
5	$\$ 25,000-\$ 34,999$	21
6	$\$ 35,000-\$ 39,999$	31.8
7	$\$ 50,000-\$ 74,999$	39.9
8	$\$ 75,000$ and over	51.7
9		

2. Select the data that go into the chart.

For this example, the data are cells A1 through B8.
3. In the Charts area of the Insert tab, select the chart type.

I clicked the down arrow for Insert | Bar and selected the first subtype (Clustered Bar). The result appears in Figure 3-23. The title is wrong and the legend is unnecessary, but I deal with that in Step 4.

Figure 3-23: The Initial Excel bar chart.

4. Modify the chart.

The first modification is to select a layout. This is a little confusing, because Design I Chart Layouts holds the desired look, rather than a ribbon area within the Layout tab. Go figure. The trick is to select a layout that puts text boxes for the titles onto the graph. The option that does this (Layout 8) is shown selected in Figure 3-24. (The other way to do this is with Layout I Labels as I showed you earlier.)

After entering the labels, I deleted the legend. Then I darkened the bars via Design I Chart Styles. Right-clicking on each label brings up the menu for increasing the font size.

The Plot Thickens

You use an important statistical technique called linear regression to determine the relationship between one variable, x, and another variable, y. For more information on linear regression, see Chapter 14.

The basis of the technique is a graph that shows individuals measured on both x and y. The graph represents each individual as a point. Because the points seem to scatter around the graph, the graph is called a scatterplot.

Suppose you're trying to find out how well a test of aptitude for sales predicts salespeople's productivity. You administer the test to a sample of salespersons and you tabulate how much money they make in commissions over a two-month period. Each person's pair of scores (test score and commissions) locates him or her within the scatterplot.

To create a scatterplot, follow the steps:

1. Enter your data into a worksheet.

Figure 3-25 shows the entered data.

Figure 3-25: Scatterplot data.

A			Salesperson Aptitude Score Commissions (Thousands of Dollars)
2	1	54	65
3	2	34	45
4	3	23	39
5	4	46	35
6	5	34	45
7	6	47	50
8	7	51	76
9	8	54	62
10	9	35	49
11	10	45	50
12	11	40	48
13	12	39	48
14	13	35	47
15	14	56	61
16	15	22	38
17	16	58	64
18	17	42	54
19	18	33	50
20	19	39	45
21	20	50	62
22			

2. Select the data that go into the chart.

Figure 3-25 shows the selected cells - B2 through C21. (Including B1 creates the same chart, but with an incorrect title.) The cells in Column A are just placeholders that organize the data.

3. In the Charts area of the Insert tab, select the chart type.

I chose the first subtype of Insert | Scatter, resulting in the chart shown in Figure 3-26.

Figure 3-26:
The initial scatterplot.

4. Modify the chart.

Clicking Design । Chart Layouts and selecting the first layout puts the text box on the chart for each title. I typed the title for the chart and the titles for the axes and then deleted the legend. The result is the scatterplot in Figure 3-27.

For the other graphs, that would just about do it, but this one's special. Right-clicking any of the points in the scatterplot opens the pop-up menu in Figure 3-28.

Figure 3-28:
Rightclicking any point on the scatterplot opens this menu.

	Delete
aid	Reset to Match Style
Change Series Chart Type...	
Select Data...	
3-D Rotation...	
Add Data Labels	
Add Trendline...	
国	Eormat Data Series...

Selecting Add Trendline opens the Format Trendline dialog box. I selected the Linear radio button and clicked the two bottom checkboxes. They're labeled Display Equation on Chart and Display R-Squared Value on Chart (Figure 3-29).

Figure 3-29: The Format Trendline dialog box.

Clicking OK closes the Format Trendline dialog box. A couple of additional items are now on the scatterplot, as Figure 3-30 shows. A line passes through the points. Excel refers to it as a trendline, but it's really called a regression line. A couple of equations are there, too. (For clarity, I dragged them from their original locations.) What do they mean? What are those numbers all about?

You'll just have to read Chapter 14 to find out.

Figure 3-30:
The scatterplot, with additional information.

Chapter 4

Finding Your Center

In This Chapter

$>$ Working within your means
$>$ Meeting conditions
$>$ The median is the message
$>$ Getting into the mode
> tatisticians deal with groups of numbers. They often find it helpful to use a single number to summarize a group of numbers. Where would a single summary number come from?

The best bet is to find a number that's somewhere in the middle, and use that number to stand for the whole group. If you look at a group of numbers and try to find one that's somewhere in the middle, you're dealing with that group's central tendency. Like good ice cream, central tendency comes in several flavors.

Means: The Lore of Averages

Just about everyone uses averages. The statistical term for an average is mean. Sometime in your life, you've undoubtedly calculated one. The mean is a quick way of characterizing your grades, your money, or perhaps your performance in some task or sport over time.

Another reason for calculating means concerns the kind of work that scientists do. Typically, a scientist applies some kind of procedure to a small sample of people or things and measures the results in some way. He or she uses the results from the sample to estimate the effects of the procedure on the population that produced the sample. As it happens, the mean of the sample is the best estimate of the population mean.

Calculating the mean

You probably don't need me to tell you how to calculate a mean, but I'm going to do it anyway. Then I'll show you the statistical formula. My goal is to help you understand statistical formulas in general, and then set you up for how Excel calculates means.

A mean is just the sum of a bunch of numbers divided by the amount of numbers you added up. Here's an example. Suppose you measure the reading speeds of six children in words per minute, and you find that their speeds are

56, 78, 45, 49, 55, 62
The average reading speed of these six children is

$$
\frac{56+78+45+49+55+62}{6}=57.5
$$

That is, the mean of this sample is 57.5 words per minute.
A first try at a formula might be

$$
\text { Mean }=\frac{\text { Sum of Numbers }}{\text { Amount of Numbers You Added Up }}
$$

This is unwieldy as formulas go, so statisticians use abbreviations. A commonly used abbreviation for "Number" is x. A typical abbreviation for "Amount of Numbers You Added Up" is N. With these abbreviations, the formula becomes

$$
\text { Mean }=\frac{\text { Sum of } X}{N}
$$

Another abbreviation, used throughout statistics, stands for Sum of. It's the uppercase Greek letter for S. It's pronounced "sigma" and it looks like this: Σ. Here's the formula with the sigma:

$$
\text { Mean }=\frac{\bullet X}{N}
$$

What about "mean"? Statisticians abbreviate that, too. M would be a good abbreviation, and some statisticians use it, but most use \bar{X} (pronounced "X bar") to represent the mean. So here's the formula:

$$
\bar{X}=\frac{\bullet X}{N}
$$

Is that it? Well . . . not quite. English letters, like \bar{X}, represent characteristics of samples. For characteristics of populations, the abbreviations are Greek letters. For the population mean, the abbreviation is the Greek equivalent of M, which is μ (pronounced like "you" but with " m " in front of it). The formula for the population mean, then, is
$\mu=\frac{\sum X}{N}$

AUERAGE and AUERAGEA

Excel's AVERAGE worksheet function calculates the mean of a set of numbers. Figure 4-1 shows the data and Function Arguments dialog box for AVERAGE.

Figure 4-1:
Working with AVERAGE.

Here are the steps:

1. In your worksheet, enter your numbers into an array of cells and select the cell where you want AVERAGE to place the result.
For this example, I entered 56, 78, 45, 49, 55, 62 into cells B2 through B7, and I selected B8 for the result.
2. From the Statistical Functions menu, choose AVERAGE to open the AVERAGE Function Arguments dialog box.
3. In the Function Arguments dialog box, enter the values for the arguments.
If the array of number-containing cells isn't already in the Number 1 box, I enter it into that box. The mean (57.5 for this example) appears in this dialog box.
4. Click OK to close the AVERAGE Function Arguments dialog box.

This puts the mean into the cell selected in the worksheet. In this example, that's B8.

As you can see in Figure 4-1, the formula in the Formula bar is

```
=AVERAGE (B2 : B7)
```

Had I defined Number as the name of B2 through B7 (see Chapter 2), the formula would be

```
=AVERAGE (Number)
```

AVERAGEA does the same thing as AVERAGE, but with one important difference. When AVERAGE calculates a mean, it ignores cells that contain text and it ignores cells that contain the expressions TRUE or FALSE. AVERAGEA takes text and expressions into consideration when it calculates a mean. As far as AVERAGEA is concerned, if a cell has text or FALSE, it has a value of 0 . If a cell holds the word TRUE, it has a value of 1 . AVERAGEA includes these values in the mean.

I'm not sure that you'll use this capability during everyday statistical work (I never have), but Excel has worksheet functions like AVERAGEA, VARA, and STDEVA, and I want you to know how they operate. So here are the steps for AVERAGEA.

1. Type the numbers into the worksheet and select a cell for the result.

For this example, I entered the numbers $56,78,45,49,55,62$ in cells B2 through B7 and select B9. This leaves B8 blank. I did this because I'm going to put different values into B8 and show you the effect on AVERAGEA.
2. From the Statistical Functions menu, select AVERAGEA to open the AVERAGEA Function Arguments dialog box.
3. In the Function Arguments dialog box, enter the values for the arguments.

This time I entered B2:B8 into the Number1 box. The mean (57.5) appears in this dialog box. AVERAGEA ignores blank cells, just as AVERAGE does.
4. Click OK to close the Function Arguments dialog box and the answer appears in the selected cell.

Now for some experimentation. In B8, if I type xxx, the mean in B9 changes from 57.5 to 49.28571 . Next, typing TRUE into B8 changes the mean in B9 to 49.42857. Finally, after typing FALSE into B8, the mean changes to 49.28571.

Why the changes? AVERAGEA evaluates a text string like xxx as zero. Thus, the average in this case is based on seven numbers (not six), one of which is zero. AVERAGEA evaluates the value TRUE as 1 . So the average with TRUE in B8 is based on seven numbers, one of which is 1.00. AVERAGEA evaluates FALSE as zero, and calculates the same average as when B8 holds xxx.

AVERAGEIF and AUERAGEIFS

These two functions are new in Excel 2007. They calculate average conditionally. AVERAGEIF includes numbers in the average if a particular condition is met. AVERAGEIFS includes numbers in the average if more than one condition is met.

To show you how these two new functions work, I set up the worksheet in Figure 4-2. The entries represent the data from a fictional psychology experiment. In this experiment, a person sits in front of a screen and a color-filled shape appears. The color is either red or green and the shape is either a square or a circle. The combination for each trial is random, and all combinations appear an equal number of times. In the lingo of the field, each appearance of a color-filled shape is called a trial. So the worksheet shows the outcomes of 16 trials.

Figure 4-2:
Data from 16 trials of a fictional psychology experiment.

$\underline{1}$	A	B	C	D
1	Trial	Color	Shape	RT_msec
2	1	Red	Circle	410
3	2	Red	Square	334
4	3	Green	Square	335
5	4	Green	Circle	336
6	5	Red	Square	398
7	6	Red	Circle	450
8	7	Green	Circle	440
9	8	Green	Square	467
10	9	Green	Circle	445
11	10	Red	Square	296
12	11	Green	Square	378
13	12	Red	Circle	496
14	13	Red	Circle	544
15	14	Green	Square	468
16	15	Red	Square	577
17	16	Green	Circle	448
18				
19			Average Overall $=$	426.375
20			Average Circle =	446.125
21			Av Green Square=	412

The person sitting in front of the screen presses a button as soon as he or she sees the shape. Column D (labeled RT msec) presents one person's reaction
time in milliseconds (thousandths of a second) for each trial. Columns B and C show the characteristics of the shape presented on that trial. So, for example, row 2 tells you that on the first trial, a red circle appeared and the person responded in 410 msec (milliseconds).

For each column, I defined the name in the top cell of the column to refer to the data in that column. If you don't remember how to do that, reread Chapter 2.

I've calculated three averages. The first, Average Overall (in cell D19) is just

```
=AVERAGE (RT_msec)
```

What about those other two? Cell D20 holds the average of trials that displayed a circle. That's what I mean by a conditional average. It's the average of trials that meet the condition Shape $=$ Circle.

Figure 4-3 shows the completed Function Arguments dialog box for AVERAGEIF. The formula created after clicking OK is

```
=AVERAGEIF(Shape,"Circle",RT_msec)
```

What the dialog box and the formula are telling you is this: Excel includes a cell in column D (RT_msec) in the average if the corresponding cell in column B (Shape) holds the value "Circle." If not, the cell is not included.

Figure 4-3:
The completed dialog box for AVERAGEIF.

To create this formula, follow these steps:

1. Type the numbers into the worksheet and select a cell for the result.

The cell I selected is D20.

2. From the Statistical Functions menu select AVERAGEIF to open the AVERAGEIF Function Arguments dialog box.

3. In the Function Arguments dialog box, enter the values for the arguments.

For AVERAGEIF in this example the Range is Shape, the Criteria is "Circle" (Excel types the double-quotes), and the Average_range is RT_msec.
4. Click OK to close the Function Arguments dialog box and the answer appears in the selected cell.

Some more on AVERAGEIF: To find the average of the first eight trials, the formula is

```
=AVERAGEIF(Trial,"<9",RT_msec)
```

To find the average of reaction times faster than 400 msec the formula is

```
=AVERAGEIF (RT_msec, "<400", RT_msec)
```

For each of these last two, the operator " $<$ " precedes the numeric value. If you try to somehow set it up so that the value precedes the operator, the formula won't work.

What about the average for Green Squares in cell D21? Figure 4-4 shows the completed dialog box for AVERAGEIFS, which can work with more than one criterion. The formula for calculating the average of trials on which Color = Green and Shape = Square is

```
=AVERAGEIFS(RT_msec,Color,"Green",Shape,"Square" )
```


Notice that RT_msec is the first argument in AVERAGEIFS but the last argument in AVERAGEIF.

To create this formula, follow these steps:

1. Type the numbers into the worksheet and select a cell for the result.

The cell I selected is D21.
2. From the Statistical Functions menu select AVERAGEIFS to open the AVERAGEIFS Function Arguments dialog box.
3. In the Function Arguments dialog box, enter the values for the arguments.
For AVERAGEIFS in this example the Average_range is RT_msec. Criteria_range1 is "Color" and Criteria1 is "Green". Criteria_range2 is Shape, the Criteria is "Square". (Excel types the double-quotes.)
4. Click OK to close the Function Arguments dialog box and the answer appears in the selected cell.

Given what you just saw, you may be wondering why it's necessary for Excel to have both AVERAGEIF and AVERAGEIFS. After all,

```
=AVERAGEIF(Shape,"Circle",RT_msec)
```

gives the same answer as

```
=AVERAGEIFS(RT_msec, Shape,"Circle")
```

So why two functions? Short answer: I don't know. Long answer: I don't know.

TRIMMEAN

In a retake on a famous quote about statistics, someone said "There are three kinds of liars: liars, darned liars, and statistical outliers." An outlier is an extreme value in a set of scores - so extreme, in fact, that the person who gathered the scores believes that something is amiss.

One example of outliers involves psychology experiments that measure a person's time to make a decision. Measured in thousandths of a second, these "reaction times" depend on the complexity of the decision. The more complex the decision, the longer the reaction time.

Typically, a person in this kind of experiment goes through many experimental trials - one decision per trial. A trial with an overly fast reaction time (way below the average) might indicate that the person made a quick guess without really considering what he or she was supposed to do. A trial with a very slow reaction time (way above the average) might mean that the person wasn't paying attention at first and then buckled down to the task at hand.

Either kind of outlier can get in the way of conclusions based on averaging the data. For this reason, it's often a good idea to eliminate them before you calculate the mean. Statisticians refer to this as "trimming the mean," and Excel's TRIMMEAN function does this.

Here's how you use TRIMMEAN:

1. Type the scores into a worksheet and select a cell for the result.

For this example, I put these numbers into cells B2 through B11:
$500,280,550,540,525,595,620,1052,591,618$
These scores might result from a psychology experiment that measures reaction time in thousandths of a second (milliseconds). I selected B12 for the result.
2. From the Statistical Functions menu, select TRIMMEAN to open the TRIMMEAN Function Arguments dialog box.
3. In the Function Arguments dialog box, type the values for the arguments.

The data array goes into the Array box. For this example, that's B2:B11.
Next, I have to identify the percent of scores I want to trim. In the Percent box, I enter .2. This tells TRIMMEAN to eliminate the extreme 20 percent of the scores before calculating the mean. The extreme 20 percent means the highest 10 percent of scores and the lowest 10 percent of scores. Figure $4-5$ shows the dialog box, the array of scores, and the selected cell. The dialog box shows the value of the trimmed mean, 567.375.

[^1]The label Percent is a little misleading here. You have to express the percent as a decimal. So you enter 2 rather than 20 in the Percent box if you want to trim the extreme 20 percent. (Quick question: If you enter 0 in the Percent box, what's the answer equivalent to? Answer: AVERAGE(B2:B11)

What percentage of scores should you trim? That's up to you. It depends on what you're measuring, how extreme your scores can be, and how well you know the area you're studying. When you do trim scores and report a mean, it's important to let people know that you've done this and to let them know the percentage you've trimmed.

In the upcoming section on the median, I show you another way to deal with extreme scores.

Other means to an end

This section deals with two types of averages that are different from the one you're familiar with. I tell you about them because you might run into them as you go through Excel's statistical capabilities. (How many different kinds of averages are possible? Ancient Greek mathematicians came up with 11!)

Geometric mean

Suppose you have a two-year investment that yields 25 percent the first year and 75 percent the second year. (If you do, I want to know about it!) What's the average annual rate of return?

To answer that question, you might be tempted to find the mean of 25 and 75 (which averages out to 50). But that misses an important point: At the end of the first year, you multiply your investment by 1.25 - you don't add 1.25 to it. At the end of the second year, you multiply the first-year result by 1.75 .

The regular everyday garden-variety mean won't give you the average rate of return. Instead, you calculate the mean this way:

Average Rate of Return $=\sqrt{1.25 \times 1.75}=1.654$
The average rate of return is about 65.4 percent, not 50 percent. This kind of average is called the geometric mean.

In this example, the geometric mean is the square root of the product of two numbers. For three numbers, the geometric mean is the cube root of the product of the three. For four numbers, it's the fourth root of their product, and so on. In general, the geometric mean of N numbers is the Nth root of their product. The Excel worksheet function GEOMEAN calculates the geometric mean of a group of numbers. Follow the same steps as you would for AVERAGE, but select GEOMEAN from the Statistical Functions menu.

Harmonic mean

Still another mean is something you run into when you have to solve the kinds of problems that live in algebra textbooks.

Suppose, for example, you're in no particular hurry to get to work in the morning, and you drive from your house to your job at the rate of 40 miles per hour. At the end of the day you'd like to get home quickly, so on the return trip (over exactly the same distance) you drive from your job to your house at 60 miles per hour. What is your average speed for the total time you're on the road?

It's not 50 miles per hour, because you're on the road a different amount of time on each leg of the trip. Without going into this in too much detail, the formula for figuring this one out is

$$
\frac{1}{\text { Average }}=\frac{1}{2}\left[\frac{1}{40}+\frac{1}{60}\right]=\frac{1}{48}
$$

The average here is 48 . This kind of average is called a harmonic mean. I show it to you for two numbers, but you can calculate it for any amount of numbers. Just put each number in the denominator of a fraction with 1 as the numerator. Mathematicians call this the reciprocal of a number. (So $1 / 40$ is the reciprocal of 40.) Add all the reciprocals together and take their average. The result is the reciprocal of the harmonic mean.

In the rare event you ever have to figure one of these out in the real world, Excel saves you from the drudgery of calculation. The worksheet function HARMEAN calculates the harmonic mean of a group of numbers. Follow the same steps as you would for AVERAGE, but in the Statistical Functions menu select HARMEAN.

Medians: Caught in the Middle

The mean is a useful way to summarize a group of numbers. It's sensitive to extreme values, however: If one number is out of whack relative to the others, the mean quickly gets out of whack, too. When that happens, the mean might not be a good representative of the group.

For example, with these numbers as reading speeds (in words per minute) for a group of children

56, 78, 45, 49, 55, 62
the mean is 57.5 . Suppose the child who reads at 78 words per minute leaves the group and an exceptionally fast reader replaces him. Her reading speed is 180 words per minute. Now the group's reading speeds are
$56,180,45,49,55,62$

The new average is 74.5 . It's misleading because except for the new child, no one else in the group reads nearly that fast. In a case like this, it's a good idea to turn to a different measure of central tendency - the median.

Simply put, the median is the middle value in a group of numbers. Arrange the numbers in order, and the median is the value below which half the scores fall and above which half the scores fall.

Finding the median

In our example, the first group of reading speeds (in increasing order) is:
$45,49,55,56,62,78$
The median is right in the middle of 55 and 56 - it's 55.5
What about the group with the new child? That's
$45,49,55,56,62,180$
The median is still 55.5. The extreme value doesn't change the median.

MEDIAN

The worksheet function MEDIAN (you guessed it) calculates the median of a group of numbers. Here are the steps:

1. Type your data into a worksheet and select a cell for the result.

I used $45,49,55,56,62,78$ for this example, in cells B2 through B7, with cell B8 selected for the median. I arranged the numbers in increasing order, but you don't have to do that to use MEDIAN.
2. From the Statistical Functions menu, select MEDIAN to open the MEDIAN Function Arguments dialog box.
3. In the Function Arguments dialog box, enter the values for the arguments.
The Function Arguments dialog box opens with the data array in the Numberl box. The median appears in that dialog box. (It's 55.5 for this example.) Figure $4-6$ shows the dialog box along with the array of cells and the selected cell.
4. Click OK to close the dialog box and the answer appears in the selected cell.

As an exercise, replace 78 with 180 in A6, and you'll see that the median doesn't change.

In Appendix C, I explore an application of the median.

Statistics À La Mode

One more measure of central tendency is important. This one is the score that occurs most frequently in a group of scores. It's called the mode.

Finding the mode

Nothing is complicated about finding the mode. Look at the scores, find the one that occurs most frequently, and you've found the mode. Two scores tie for that honor? In that case, your set of scores has two modes. (The technical name is bimodal.)

Can you have more than two modes? Absolutely.
Suppose every score occurs equally often. When that happens, you have no mode.

Sometimes, the mode is the most representative measure of central tendency. Imagine a small company that consists of 30 consultants and two high-ranking officers. Each consultant has an annual salary of $\$ 40,000$. Each officer has an annual salary of $\$ 250,000$. The mean salary in this company is $\$ 53,125$.

Does the mean give you a clear picture of the company's salary structure? If you were looking for a job with that company, would the mean influence your
expectations? You're probably better off if you consider the mode, which in this case is $\$ 40,000$.

MODE

Excel's MODE function finds the mode for you.

1. Type your data into a worksheet and select a cell for the result.

I use $56,23,77,75,57,75,91,59$, and 75 in this example. The data are in cells B2 through B10, with B11 as the selected cell for the mode.
2. From the Statistical Functions menu, select MODE to open the MODE Function Arguments dialog box. (See Figure 4-7).
3. In the Function Arguments dialog box, type the values for the arguments.
The Function Arguments dialog box opens with an array highlighted in the Number 1 box. For this example the highlighted array is correct, and the mode (75 for this example) appears in the dialog box.

Figure 4-7: The MODE Function Arguments dialog box along with the array of cells and the selected cell.

4. Click OK to close the dialog box and the answer appears in the selected cell.

Chapter 5

Deviating from the Average

In This Chapter

$>$ What variation is all about
$>$ Variance and standard deviation
$>$ Excel worksheet functions that calculate variation
$>$ Workarounds for missing worksheet functions
$>$ Additional worksheet functions for variation
ere are three pieces of wisdom about statisticians:
Piece of Wisdom \#1: "A statistician is a person who stands in a bucket of ice water, sticks their head in an oven and says 'on average, I feel fine."
(K. Dunning)

Piece of Wisdom \#2: "A statistician drowned crossing a stream with an average depth of 6 inches." (Anonymous)

Piece of Wisdom \#3: "Three statisticians go deer hunting with bows and arrows. They spot a big buck and take aim. One shoots and his arrow flies off ten feet to the left. The second shoots and his arrow goes ten feet to the right. The third statistician jumps up and down yelling, 'We got him! We got him!'" (Bill Butz, quoted by Diana McLellan in Washingtonian)

What's the common theme? Calculating the mean is a great way to summarize a group of numbers, but it doesn't supply all the information you typically need. If you just rely on the mean, you might miss something important.

To avoid missing important information, another type of statistic is necessary a statistic that measures variation. It's a kind of average of how much each number in a group differs from the group mean. Several statistics are available for measuring variation. All of them work the same way: The larger the value of the statistic, the more the numbers differ from the mean. The smaller the value, the less they differ.

Measuring Variation

Suppose you measure the heights of a group of children and you find that their heights (in inches) are
$48,48,48,48,48$
Then you measure another group and find that their heights are
$50,47,52,46,45$
If you calculate the mean of each group, you'll find they're the same - 48 inches. Just looking at the numbers tells you the two groups of heights are different: The heights in the first group are all the same, while the heights in the second vary quite a bit.

Averaging squared deviations: Variance and how to calculate it

One way to show the dissimilarity between the two groups is to examine the deviations in each one. Think of a "deviation" as the difference between a score and the mean of all the scores in a group.

Here's what I'm talking about. Table 5-1 shows the first group of heights and their deviations.

Table 5-1	The First Group of Heights and Their Deviations	
Height	Height-Mean	Deviation
48	$48-48$	0
48	$48-48$	0
48	$48-48$	0
48	$48-48$	0
48	$48-48$	0

One way to proceed is to average the deviations. Clearly, the average of the numbers in the Deviation column is zero.

Table 5-2 shows the second group of heights and their deviations.

Table 5-2	The Second Group of Heights and Their Deviations	
Height	Height-Mean	Deviation
50	$50-48$	2
47	$47-48$	-1
52	$52-48$	4
46	$46-48$	-2
45	$45-48$	-3

What about the average of the deviations in Table 5-2? That's . . . zero!
Hmmm . . . Now what?
Averaging the deviations doesn't help us see a difference between the two groups, because the average of deviations from the mean in any group of numbers is always zero. In fact, veteran statisticians will tell you that's a defining property of the mean.

The joker in the deck here is the negative numbers. How do statisticians deal with them?

The trick is to use something you might recall from algebra: A minus times a minus is a plus. Sound familiar?

So . . . does this mean that you multiply each deviation times itself, and then average the results? Absolutely. Multiplying a deviation times itself is called squaring a deviation. The average of the squared deviations is so important that it has a special name: variance.

Table 5-3 shows the group of heights from Table 5-2, along with their deviations and squared deviations.

Table 5-3 The Second Group of Heights and Their Squared Deviations

Height	Height-Mean	Deviation	Squared Deviation
50	$50-48$	2	4
47	$47-48$	-1	1
52	$52-48$	4	16
46	$46-48$	-2	4
45	$45-48$	-3	9

The variance - the average of the squared deviations for this group - is $(4+1+16+4+9) / 5=34 / 5=6.8$. This, of course, is very different from the first group, whose variance is zero.

To develop the variance formula for you and show you how it works, I use symbols to show all this. \bar{X} represents the Height heading in the first column of the table and \bar{X} represents the mean. Because a deviation is the result of subtracting the mean from each number,
$(X-\bar{X})$
represents a deviation. Multiplying a deviation by itself? That's just

$$
(X-\bar{X})^{2}
$$

To calculate variance you square each deviation, add them up, and find the average of the squared deviations. If N represents the amount of squared deviations you have (in our example, five), then the formula for calculating the variance is

$$
\frac{\sum(X-\bar{X})^{2}}{N}
$$

Σ is the uppercase Greek letter sigma and it stands for the sum of.
What's the symbol for Variance? As I say in Chapter 1, Greek letters represent population parameters and English letters represent statistics. Imagine that our little group of five numbers is an entire population. Does the Greek alphabet have a letter that corresponds to V in the same way that μ (the symbol for the population mean) corresponds to M ?

As a matter of fact, it doesn't. Instead, we use the lowercase sigma! It looks like this: σ. Not only that, but because we're talking about squared quantities, the symbol is σ^{2}.

So the formula for calculating variance is:
$\sigma^{2}=\frac{\sum(X-\bar{X})^{2}}{N}$

Variance is large if the numbers in a group vary greatly from their mean. Variance is small if the numbers are very similar to their mean.

The variance you just worked through is appropriate if the group of five measurements is a population. Does this mean that variance for a sample is different? It does, and you'll see why in a minute. First, I turn your attention back to Excel.

UARP and UARPA

Excel's two worksheet functions, VARP and VARPA, calculate the population variance.

Start with VARP. Figure 5-1 shows the Function Arguments dialog box for VARP along with data. Here are the steps to follow:

Figure 5-1:
Working with VARP.

1. Put your data into a worksheet and select a cell to display the result.

Figure 5-1 shows that for this example, I've put the numbers $50,47,52$, 46, 45 into cells B2 through B6 and selected B8 for the result.
2. From the Statistical Functions menu, select VARP to open the VARP Function Arguments dialog box.
3. In the Function Arguments dialog box, enter the appropriate values for the arguments.
I entered B2:B6 in the Number1 field. The population variance, 6.8, appears in the Function Arguments dialog box.
4. Click OK to close the dialog box and put the result in the selected cell.

Had I defined Score as the name of B2:B6 (see Chapter 2), the formula in the formula bar would be

```
=VARP(Score)
```

When VARP calculates the variance in a range of cells, it only sees numbers. If text or logical values are in some of the cells, VARP ignores them.

VARPA, on the other hand, does not. VARPA takes text and logical values into consideration and includes them in its variance calculation. How? If a cell contains text, VARPA sees that cell as containing a value of zero. If a cell contains the logical value FALSE, that's also zero as far as VARPA is concerned. In VARPA's view of the world, the logical value TRUE is one. Those zeros and ones get added into the mix and affect the mean and the variance.

To see this in action, I keep the numbers in cells B2 through B6 and again select cell B8. I follow the same steps as for VARP, but this time open the VARPA Function Arguments dialog box. In the Value1 field of the VARPA dialog box I type B2:B7 (that's B7, not B6) and click OK. Cell B8 shows the same result as before because VARPA evaluates the blank cell B7 as no entry.

Typing TRUE into Cell B7 changes the result in B8 because VARPA evaluates B7 as 1. (See Figure 5-2.)

Figure 5-2:
VARPA
evaluates TRUE as 1.0, changing the variance from the value in

Figure 5-1.

Typing FALSE (or any other string of letters except TRUE) into B7 changes the value in B8 once again. This time, VARPA evaluates B7 as zero.

Sample variance

Earlier, I mentioned that you use this formula to calculate population variance:

$$
\sigma^{2}=\frac{\sum(X-\bar{X})^{2}}{N}
$$

I also said that sample variance is a little different. Here's the difference. If your set of numbers is a sample drawn from a large population, you're probably interested in using the variance of the sample to estimate the variance of the population.

The formula you used for the variance doesn't quite work as an estimate of the population variance. Although the sample mean works just fine as an estimate of the population mean, this doesn't hold true with variance, for reasons way beyond the scope of this book.

How do you calculate a good estimate of the population variance? It's pretty easy. You just use $N-1$ in the denominator rather than N. (Again, for reasons way beyond our scope.)

Also, because we're working with a characteristic of a sample (rather than of a population), we use the English equivalent of the Greek letter - s rather than σ. This means that the formula for the sample variance is

$$
s^{2}=\frac{\sum(X-\bar{X})^{2}}{N-1}
$$

The value of s^{2}, given the squared deviations in our set of five numbers is
$(4+1+16+4+9) / 4=34 / 4=8.5$
So, if these numbers
$50,47,52,46,45$
are an entire population, their variance is 6.4. If they're a sample drawn from a larger population, our best estimate of that population's variance is 8.5 .

UAR and UARA

The worksheet functions VAR and VARA calculate the sample variance.
Figure 5-3 shows the Function Arguments dialog box for VAR with 50, 47, 52, 46, 45 entered into cells B2 through B6. Cell B7 is part of the cell range, but I left it empty.

Figure 5-3:
Working with VAR.

The relationship between VAR and VARA is the same as the relationship between VARP and VARPA: VAR ignores cells that contain logical values (TRUE and FALSE) and text. VARA includes those cells. Once again, TRUE evaluates to 1.0 and FALSE evaluates to 0 . Text in a cell causes VARA to see that cell's value as 0 .

This is why I left B7 blank. If you experiment a bit with VARA and logical values or text in B7, you'll see exactly what VARA does.

Back to the Roots: Standard Deviation

After you calculate the variance of a set of numbers, you have a value whose units are different from your original measurements. For example, if your original measurements are in inches, their variance is in square inches. This is because you square the deviations before you average them.

Often, it's more intuitive if you have a variation statistic that's in the same units as the original measurements. It's easy to turn variance into that kind of statistic. All you have to do is take the square root of the variance.

Like the variance, this square root is so important that we give it a special name: standard deviation.

Population standard deviation

The standard deviation of a population is the square root of the population variance. The symbol for the population standard deviation is σ (sigma). Its formula is
$\sigma=\sqrt{\sigma^{2}}=\sqrt{\frac{\sum(X-\bar{X})^{2}}{N}}$

For these measurements (in inches)
$50,47,52,46,45$
the population variance is 6.8 square inches, and the population standard deviation is 2.61 inches (rounded off).

STDEUP and STDEUPA

The Excel worksheet functions STDEVP and STDEVPA calculate the population standard deviation. After entering your numbers into your worksheet and selecting a cell

1. Type your data into an array and select a cell for the result.
2. In the Statistical Functions menu, select STDEVP to open the STDEVP Function Arguments dialog box.
3. In the Function Arguments dialog box, type the appropriate values for the arguments.

After you enter the data array, the dialog box shows the value of the population standard deviation for the numbers in the data array. Figure 5-4 shows this.

Figure 5-4:
The Function Arguments dialog box for STDEVP, along with the data.

4. Click OK to close the dialog box and put the result into the selected cell.

Like VARPA, STDEVPA uses any logical values and text values it finds when it calculates the population standard deviation. TRUE evaluates to 1.0 and FALSE evaluates to 0 . Text in a cell gives that cell a value of 0 .

Sample standard deviation

The standard deviation of a sample - an estimate of the standard deviation of a population - is the square root of the sample variance. Its symbol is s and its formula is

$$
s=\sqrt{s^{2}}=\sqrt{\frac{\sum(X-\bar{X})^{2}}{N-1}}
$$

For these measurements (in inches)
$50,47,52,46,45$
the population variance is 8.4 square inches, and the population standard deviation is 2.92 inches (rounded off).

STDEU and STDEUA

The Excel worksheet functions STDEV and STDEVA calculate the sample standard deviation. To work with STDEV

1. Type your data into an array and select a cell for the result.
2. In the Statistical Functions menu, select STDEV to open the STDEV Function Arguments dialog box.
3. In the Function Arguments dialog box, type the appropriate values for the arguments.

With the data array entered, the dialog box shows the value of the population standard deviation for the numbers in the data array. Figure 5-5 shows this.
4. Click OK to close the dialog box and put the result into the selected cell.

STDEVA uses text and logical values in its calculations. Cells with text have values of 0 , and cells whose values are FALSE also evaluate to 0 . Cells that evaluate to TRUE have values of 1.0.

Figure 5-5:
The
Function Arguments dialog box for STDEV.

The missing functions: STDEVIF and STDEUIFS

Here's a rule of thumb: Whenever you present a mean, provide a standard deviation. Use AVERAGE and STDEV in tandem.

Remember that Excel 2007 offers two new functions, AVERAGEIF and AVERAGEIFS, for calculating means conditionally. (See Chapter 4.) Two additional new functions would have been helpful: STDEVIF and STDEVIFS for calculating standard deviations conditionally when you calculate means conditionally.

Excel 2007, however, doesn't provide these functions. Instead, I show you a couple of workarounds that enable you to calculate standard deviations conditionally.

The workarounds filter out data that meet a set of conditions, and then calculate the standard deviation of the filtered data. Figure 5-6 shows what I mean. The data are from the fictional psychology experiment I describe in Chapter 4.

Here, once again, is the description:
A person sits in front of a screen and a color-filled shape appears. The color is either red or green and the shape is either a square or a circle. The combination for each trial is random, and all combinations appear an equal number of times. In the lingo of the field, each appearance of a color-filled shape is called a trial. So the worksheet shows the outcomes of 16 trials.

Figure 5-6:
Filtering data to calculate standard deviation conditionally.

4	A		B	C	D	E	F	G	H	1	J	K
1	Trial		Color	Shape	RT_msec				Circle			Green_Square
2		1	Red	Circle	410				410			
3		2	Red	Square	334							
4		3	Green	Square	335							335
5		4	Green	Circle	336				336			
6		5	Red	Square	398							
7		6	Red	Circle	450				450			
8		7	Green	Circle	440				440			
9		8	Green	Square	467							467
10		9	Green	Circle	445				445			
11		10	Red	Square	296							
12		11	Green	Square	378							378
13		12	Red	Circle	496				496			
14		13	Red	Circle	544				544			
15		14	Green	Square	468							468
16		15	Red	Square	577							
17		16	Green	Circle	448				448			
18												
19				Average Overall =	426.375			St Dev Circle $=$	60.42336		St Dev Green Square =	66.44797464
20				Average Circle =	446.125							
21				Av Green Square=	412							
22												

The person sitting in front of the screen presses a button as soon as he or she sees the shape. Column A presents the trial number. Columns B and C show the color and shape, respectively, presented on that trial. Column D (labeled RT_msec) presents one person's reaction time in milliseconds (thousandths of a second) for each trial. So, for example, row 2 tells you that on the first trial, a red circle appeared and the person responded in 410 msec (milliseconds).

For each column, I defined the name in the top cell of the column to refer to the data in that column. If you don't remember how to do that, reread Chapter 2.

Cell D19 displays the overall average of RT_msec. The formula for that average, of course, is

```
=AVERAGE (RT_msec)
```

Cell D20 shows the average for all trials on which a circle appeared. The formula that calculates that conditional average is

```
=AVERAGEIF(Shape,"Circle",RT_msec)
```

Cell D21 presents the average for trials on which a green square appeared. That formula is

```
=AVERAGEIFS(RT_msec, Color,"Green", Shape,"Square")
```

Columns H and K hold filtered data. Column H shows the data for trials that displayed a circle. Cell H19 presents the standard deviation for those trials and is the equivalent of

```
=STDEVIF(Shape,"Circle",RT_msec)
```

if this function existed.
Column K shows the data for trials that displayed a green square. Cell K19 presents the standard deviation for those trials, and is the equivalent of

```
=STDEVIFS(RT_msec, Color,"Green",Shape,"Square")
```

if that function existed.
How did I filter the data? I'll let you in on it in a moment, but first I have to tell you about...

A little logic

In order to proceed, you have to know about two of Excel's logic functions: IF and AND. You access them by clicking

Formulas | Logical Functions

and selecting them from the Logical Functions menu.
IF takes three arguments:
\checkmark A logical condition to be satisfied
\checkmark The action to take if the logical condition is satisfied (that is, if the value of the logical condition is TRUE)
\checkmark An optional argument that specifies the action to take if the logical condition is not satisfied (that is, if the value of the logical condition is FALSE)

Figure 5-7 shows the Function Arguments dialog box for IF.

Figure 5-7: The Function Arguments dialog box for IF.

AND can take up to 255 arguments. AND checks to see if all of its arguments meet each specified condition - that is, if each condition is TRUE. If they all do, AND returns the value TRUE. If not, AND returns FALSE.

Figure 5-8 shows the Function Arguments dialog box for AND.

Figure 5-8:
The
Function Arguments dialog box for AND.

And now, back to the show

In this example, I use IF to set the value of a cell in column H to the corresponding value in column D if the value in the corresponding cell in column C is "Circle". The formula in cell H 2 is

```
=IF(C2="Circle",D2," ")
```

If this were a phrase it would be, "If the value in C2 is 'Circle', then set the value of this cell to the value in D2. If not, leave this cell blank." Autofilling the next 15 cells of column H yields the filtered data in column H in Figure 5-6. The standard deviation in cell H 19 is the value STDEVIF would have provided.

I could have omitted the third argument (the two double-quotes) without affecting the value of the standard deviation. Without the third argument, Excel fills in FALSE for cells that don't meet the condition instead of leaving them blank.

I use AND along with IF for the cells in column K. Each one holds the value from the corresponding cell in column D if two conditions are true:
\checkmark The value in the corresponding cell in column B is "Green"
\checkmark The value in the corresponding cell in column C is "Square"
The formula for cell K 2 is

```
=IF(AND(B2="Green",C2="Square" ),D2," ")
```

If this was a phrase it would be, "If the value in B2 is 'Green' and the value in C2 is 'Square', then set the value of this cell to the value in D2. If not, leave this cell blank." Autofilling the next 15 cells in column K results in the filtered data in column K in Figure 5-6. The standard deviation in cell K 19 is the value STDEVIFS would have provided.

Related Functions

Before we move on, take a quick look at a couple of other variation-related worksheet functions.

DEUSO

DEVSQ calculates the sum of the squared deviations from the mean (without dividing by N or by $N-1$). For these numbers
$50,47,52,46,45$
that's 34 , as Figure $5-9$ shows.
\qquad

Figure 5-9: The DEVSO dialog box.

Average deviation

One more Excel function deals with deviations in a way other than squaring them.

The variance and standard deviation deal with negative deviations by squaring all the deviations before averaging them. How about if we just ignore the minus signs? This is called taking the absolute value of each deviation. (That's the way mathematicians say "How about if we just ignore the minus signs?").

If we do that for the heights
50, 47, 52, 46, 45
we can put the absolute values of the deviations into a table like Table 5-4.

Table 5-4	A Group of Numbers and Their Absolute Deviations	
Height	Height-Mean	\|Deviation
50	$50-48$	2
47	$47-48$	1
52	$52-48$	4
46	$46-48$	2
45	$45-48$	3

In Table 5-4, notice the vertical lines around Deviation in the heading for the third column. Vertical lines around a number symbolize its absolute value. That is, the vertical lines are the mathematical symbol for "How about if we just ignore the minus signs?"

The average of the numbers in the third column is 2.4 . This average is called the average absolute deviation, and it's a quick and easy way to characterize the spread of measurements around their mean. It's in the same units as the original measurements. So if the heights are in inches, the absolute average deviation is in inches, too.

Like variance and standard deviation, a large average absolute deviation signifies a lot of spread. A small average absolute deviation signifies little spread.

This statistic is less complicated than variance or standard deviation, but is rarely used. Why? For reasons that are (once again) beyond our scope, statisticians can't use it as the foundation for additional statistics you'll meet later. Variance and standard deviation serve that purpose.

AUEDEV

Excel's AVEDEV worksheet function calculates the average absolute deviation of a group of numbers. Figure $5-10$ shows the AVEDEV dialog box, which presents the average absolute deviation for the cells in the indicated range.

Figure 5-10: The AVEDEV Function Arguments dialog box.

Chapter 6

Meeting Standards and Standings

In This Chapter

$>$ How to standardize scores
$>$ Making comparisons
$>$ Ranks in files
$>$ Rolling in the percentiles

1n my left hand I hold 15 Argentine pesos. In my right, I hold 100 Chilean pesos. Which is worth more? Both currencies are called pesos, right? So shouldn't the 100 be greater than the 15 ? Not necessarily. "Peso" is just word magic - a coincidence of names. Each one comes out of a different country, and each country has its own economy. To compare the two amounts of money, you have to convert each currency into a standard unit. The most intuitive standard for us is our own currency. How much is each amount worth in dollars and cents? As I write this, 15 Argentine pesos are worth more than $\$ 4$. One hundred Chilean pesos are worth about 15 cents.

In this chapter, I show you how to use statistics to create standard units. Standard units show you where a score stands in relation to other scores in a group, and I show you additional ways to determine a score's standing within a group.

Catching Some Zs

As the previous paragraph shows, a number in isolation doesn't really tell a story. In order to fully understand what a number means, you have to consider the process that produced it. In order to compare one number to another, they both have to be on the same scale.

In some cases, like currency conversion, it's easy to figure out a standard. In others, like temperature conversion or conversion into the metric system, a formula guides you.

When it's not all laid out for you, you can use the mean and the standard deviation to standardize scores that come from different processes. The idea is to take a set of scores and use its mean as a zero-point and its standard deviation as a unit of measure. Then you compare the deviation of each score from the mean to the standard deviation. You're asking "how big is a particular deviation relative to (something like) an average of all the deviations?"

To do this, you divide the score's deviation by the standard deviation. In effect, you transform the score into another kind of score. The transformed score is called a standard score, or a z-score.

The formula for this is

$$
z=\frac{X-\bar{X}}{s}
$$

if you're dealing with a sample, and

$$
z=\frac{X-\mu}{\sigma}
$$

if you're dealing with a population. In either case, x represents the score you're transforming into a z-score.

Characteristics of z-scores

A z-score can be positive, negative, or zero. A negative z-score represents a score that's less than the mean and a positive z-score represents a score that's greater than the mean. When the score is equal to the mean, its z-score is zero.

When you calculate the z-score for every score in the set, the mean of the z-scores is 0 , and the standard deviation of the z-scores is 1 .

After you do this for several sets of scores, you can legitimately compare a score from one set to a score from another. If the two sets have different means and different standard deviations, comparing without standardizing is like comparing apples with kumquats.

In the examples that follow, I show how to use z-scores to make comparisons.

Bonds versus The Bambino

Here's an important question that often comes up in the context of serious metaphysical discussions: Who is the greatest home run hitter of all time,

Barry Bonds or Babe Ruth? Although this is a difficult question to answer, one way to get your hands around it is to look at each player's best season and compare the two. Bonds hit 73 home runs in 2001, and Ruth hit 60 in 1927. On the surface, Bonds appears to be the more productive hitter.

The year 1927 was very different from 2001, however. Baseball (and everything else) went through huge changes in the intervening years, and player statistics reflect those changes. A home run was harder to hit in the 20s than in the 00 s. Still, 73 versus 60 ? Hmmm . . .

Standard scores can help us decide whose best season was better. To standardize, I took the top 50 home run hitters of 1927 and the top 50 from 2001. I calculated the mean and standard deviation of each group, and then turned Ruth's 60 and Bonds's 73 into z-scores.

The average from 1927 is 12.68 homers with a standard deviation of 10.49 . The average from 2001 is 37.02 homers with a standard deviation of 9.64 . Although the means differ greatly, the standard deviations are pretty close.

And the z-scores? Ruth's is

$$
z=\frac{60-12.68}{10.49}=4.51
$$

Bonds's is
$z=\frac{73-37.02}{9.64}=3.73$

The clear winner in the z-score best-season home run derby is Babe Ruth. Period.

Just to show you how times have changed, Lou Gehrig hit 47 home runs in 1927 (finishing second to Ruth) for a z-score of 3.27. In 2001, 47 home runs amounted to a z-score of 1.04 .

Exam scores

Getting away from sports debates, one practical application of z -scores is the assignment of grades to exam scores. Based on percentage scoring, instructors traditionally evaluate a score of 90 points or higher (out of 100) as an A, $80-89$ points as a B, $70-79$ points as a C, $60-69$ points as a D, and less than 60 points as an F . Then they average scores from several exams together to assign a course grade.

Is that fair? Just as a peso from Argentina is worth more than a peso from Chile, and a home run was harder to hit in 1927 than in 2001, is a point on one exam worth the same as a "point" on another? Like peso, isn't that just word magic?

Indeed it is. A point on a difficult exam is, by definition, harder to come by than a point on an easy exam. Because points might not mean the same thing from one exam to another, the fairest thing to do is convert scores from each exam into z-scores before averaging them. That way, you're averaging numbers on a level playing field.

In the courses I teach, I do just that. I often find that a lower numerical score on one exam results in a higher z-score than a higher numerical score from another exam. For example, on an exam where the mean is 65 and the standard deviation is 12 , a score of 71 results in a z-score of .5 . On another exam, with a mean of 69 and a standard deviation of 14 , a score of 75 is equivalent to a z-score of .429. (Yes, it's like Ruth's 60 home runs versus Bonds's 73.) Moral of the story: Numbers in isolation tell you very little. You have to understand the process that produces them.

STANDARDIZE

Excel's STANDARDIZE worksheet function calculates z-scores. Figure 6-1 shows a set of exam scores along with their mean and standard deviation. I used AVERAGE and STDEVP to calculate the statistics. The Function Arguments dialog box for STANDARDIZE is also in the figure.

Figure 6-1: Exam scores and the Function Arguments dialog box for STANDARD-

IZE.

	A	B	C	D	E	F	G	H	1	J	K		L
1			Score										
2			57	,\$C\$34)									
3			78										
4			85	Functio	gument						8	®	
5			87										
6			65	STA	DIZE								
7			60		x	C2			57				
8			77		Mean	\$C\$33			75.9				
9			58										
10			85		rd_dev	\$C\$34			12.7				
11			72						-1.480				
12			57	Retur	normalize	value fro	butio	cteriz	mear	andar			
13			98										
14			88					ue your	to no				
15			72										
16			83										
17			45	Formul	sult $=-1$. 48809980							
18			72										
19			75	Help	s function					OK	Canc		
20			77										
21			90										
22			77										
23			80										
24			70										
25			98										
26			93										
27			83										
28			82										
29			53										
30			72										
31			88										
32			78										
33		Mean=	75.96774										
34		St Dev=	12.74628										

Caching some z's

Because negative z-scores might have connotations that are, well, negative, educators sometimes change the z-score when they evaluate students. In effect, they're hiding the z-score, but the concept is the same - standardization with the standard deviation as the unit of measure.

One popular transformation is called the T-score. The T-score eliminates negative scores because a set of T-scores has a mean of 50 and a standard deviation of 10 . The idea is to give an exam, grade all the tests, and calculate the mean and standard deviation. Next, turn each score into a z-score. Then follow this formula:

$$
T=(z)(10)+50
$$

People who use the T-score often like to round to the nearest whole number.

SAT scores are another transformation of the z-score. (Some refer to the SAT as a C-score.)

The SAT has a mean of 500 and a standard deviation of 100 . After the exams are graded, and their mean and standard deviation calculated, each exam score becomes a z-score in the usual way. This formula converts the z-score into a SAT score:

$$
S A T=(z)(100)+500
$$

Rounding to the nearest whole number is part of the procedure here, too.

The IO score is still another transformed z. Its mean is 100 and (in the Stanford-Binet version) its standard deviation is 16 . What's the procedure for computing an IQ score? You guessed it. In a group of IO scores, calculate the mean and standard deviation, and then calculate the z-score. Then it's

$$
I Q=(z)(16)+100
$$

As with the other two, IO scores are rounded to the nearest whole number.

Here are the steps:

1. Enter the data into an array and select a cell.

The data are in C2:C32. I selected D2 to hold the z-score for the score in C2. Ultimately, I'll autofill column D and line up all the z-scores next to the corresponding exam scores.
2. From the Statistical Functions menu, select STANDARDIZE to open the Function Arguments dialog box for STANDARDIZE.
3. In the Function Arguments dialog box, enter the appropriate values for the arguments.
First, I entered the cell that holds the first exam score into the X box. In this example, that's D2.
In the Mean box, I entered the cell that holds the mean - C33 for this example. It has to be in absolute reference format, so the entry is $\$ \mathrm{C} \$ 33$.

You can type it that way, or you select C33 and then highlight the Mean box and press the F4 key.
In the Standard_dev box, I entered the cell that holds the standard deviation. The appropriate cell in this example is C34. This also has to be in absolute reference format, so the entry is $\$ \mathrm{C} \$ 34$.
4. Click OK to close the Function Arguments dialog box and put the z-score for the first exam score into the selected cell.

To finish up, I positioned the cursor on the selected cell's autofill handle, hold the left mouse button down, and drag the cursor to autofill the remaining z -scores.

Figure 6-2 shows the autofilled array of z-scores.

Figure 6-2: The autofilled array of z-scores.

D2 -			(3) f_{x}	${ }_{\text {x }}=$ STANDARDIZE $(C 2, \$ C \$ 33, \$ C \$ 34)$			
4	A	B	C	D	E	F	G
1			Score				
2			57	-1.4881			
3			78	0.159439			
4			85	0.708619			
5			87	0.865527			
6			65	-0.86047			
7			60	-1.25274			
8			77	0.080985			
9			58	-1.40965			
10			85	0.708619			
11			72	-0.31129			
12			57	-1.4881			
13			98	1.728524			
14			88	0.943982			
15			72	-0.31129			
16			83	0.55171			
17			45	-2.42955			
18			72	-0.31129			
19			75	-0.07592			
20			77	0.080985			
21			90	1.10089			
22			77	0.080985			
23			80	0.316348			
24			70	-0.46819			
25			98	1.728524			
26			93	1.336253			
27			83	0.55171			
28			82	0.473256			
29			53	-1.80192			
30			72	-0.31129			
31			88	0.943982			
32			78	0.159439			
33		Mean=	75.96774				
34		St Dev=	12.74628				
35							

Where Do You Stand?

Standard scores are designed to show you how a score stands in relation to other scores in the same group. To do this, they use the standard deviation as a unit of measure.

If you don't want to use the standard deviation, you can show a score's relative standing in a simpler way. You can determine the score's rank within the group: The highest score has a rank of 1 , the second highest has a rank of 2 , and so on.

RANK

With Excel's RANK function you can quickly determine the ranks of all the scores in a group. Figure 6-3 shows the Function Arguments dialog box for RANK along with a group of scores. I've also set up a column for the ranks.

Figure 6-3:
Working with RANK.

Here are the steps for using RANK:

1. Enter the data into an array and select a cell.

For this example, I entered the scores into cells C2 through C16, and selected cell D2.
2. From the Statistical Functions menu select RANK to open the Function Arguments dialog box for RANK.
3. In the Function Arguments dialog box, type the appropriate values for the arguments.

In the Number box, I entered the cell that holds the score whose rank I want to insert into the selected cell. For this example, that's C2.

In the Ref box, I entered the array that contains the scores. I enter C2:C16 into the Ref box.

This part is important. After I insert RANK into D2 I'm going to drag the cursor through column D and autofill the ranks of the remaining scores. To set up for this, I have to let Excel know I want C2 through C16 to be the array for every score, not just the first one.

That means the array in the Ref box has to look like this: $\$ \mathrm{C} \$ 2: \$ \mathrm{C} \$ 16$. I can either add the $\$$-signs manually, or highlight the Ref box and then press the F4 key.
In the Order box, I indicate the order for sorting the scores. To rank the scores in descending order, I can either leave the Order box alone or type 0 (zero) into that box. To rank the scores in ascending order, I type a non-zero value into the Order box. I left this box alone.

4. Click OK to put the rank into the selected cell.

I then position the cursor on the selected cell's autofill handle, hold the left mouse button down, and drag the cursor to autofill the ranks of the remaining scores. (See Figure 6-4.)

Figure 6-4: The autofilled ranks.

LARGE and SMALL

You can turn the ranking process inside out by supplying a rank and asking which score has that rank. The worksheet functions LARGE and SMALL handle this from either end. They tell you the fifth largest score or the third smallest score, or any other rank you're interested in.

Figure 6-5 shows the Function Arguments dialog box for LARGE. In the Array box you enter the array of cells that holds the group of scores. In the K box you enter the position whose value you want to find. To find the seventh largest score in the array, for example, type $\mathbf{7}$ into the K box.

SMALL does the same thing, except it finds score positions from the lower end of the group. The Function Arguments dialog box for SMALL also has an Array box and a K box. Entering 7 in this K box returns the seventh lowest score in the array.

Figure 6-5: The
Function Arguments dialog box for LARGE.

PERCENTILE and PERCENTRANK

Closely related to rank is the percentile, which represents a score's standing in the group as the percent of scores below it. If you've taken standardized tests like the SAT, you've encountered percentiles. An SAT score in the 80th percentile is higher than 80 percent of the other SAT scores.

Excel's PERCENTILE function enables you to find the value at any percentile. Figure 6-6 shows the Function Arguments dialog box PERCENTILE. The dialog box shows the 75 th percentile (the value that's greater than 75 percent of the scores) for the numbers in cells C2 through C16. In this example, the 75th percentile is 72.5 .

Figure 6-6: The Function Arguments dialog box for
PERCENTILE.

In the PERCENTILE dialog box, you enter the percentile into the K box. Enter it as a decimal, so that the 75th percentile is .75 .

Drawn and quartiled

A few specific percentiles are often used to summarize a group of scores. The medianthe 50th percentile (because it's higher than 50 percent of the scores) - is one of them. Three others are the 25th percentile, the 75th and the 100th percentile (the maximum score). Because
they divide a group of scores into fourths, these particular four percentiles are called quartiles. Excel's QUARTILE function calculates them. Selecting QUARTILE from the Insert Function dialog box opens the QUARTILE dialog box shown in the figure.

The trick is to enter the right kind of numbers into the Quart box - 1 for the 25th percentile, 2 for the 50 th, 3 for the 75 th, and 4 for the 100th.

Entering 0 into the Quart box gives you the lowest score in the group.

In contrast to percentiles, you might be interested in the flip side: Given a value, what percent of scores falls below it? PERCENTRANK handles this. In Figure 6-7 the Function Arguments dialog box for PERCENTRANK shows the percent rank of 65 for the scores in cells C2 through C16. (It's 0.642 , or 64.2 percent.) The Array box holds the array of cells and the X box holds the score (65). The Significance box is optional: You can enter the amount of significant figures in which you would like the answer to appear, or you can leave it blank.

Figure 6-7:
The
Function
Arguments dialog box for PERCENTRANK.

For the X box, you can enter either the value of a score or the label of the cell in which it appears. In this example, C10 in the X box gives you the same result as putting 65 in the X box.

Data analysis tool: Rank and Percentile

As the name of this section indicates, Excel provides a data analysis tool that calculates ranks and percentiles of each score in a group. The Rank and Percentiles tool calculates both at the same time, so it saves you some steps versus using the separate worksheet functions. (See Chapter 2 to install Excel's data analysis tools.) In Figure 6-8, I take the exam scores from the z-score example and open the Rank and Percentile dialog box.

Figure 6-8: The Rank and Percentile analysis tool.

Here are the steps for using Rank and Percentile:

1. Type your data into an array.

In this example, the data are in cells C2 through C32.
2. In the Tools menu, choose Data Analysis to open the Data Analysis dialog box.
3. In the Data Analysis dialog box, select Rank and Percentile.
4. Click OK to open the Rank and Percentile dialog box.
5. In the Rank and Percentile dialog box, enter the data array into the Input Range box. Make sure that it's in absolute reference format.
In this example, a label is in the first row (in cell C1). I want the label included in the output, so I enter $\$ \mathrm{C} \$ 1: \$ \mathrm{C} \$ 32$ in the Input Range box, and I check the Labels in First Row checkbox.
6. Click the Columns radio button to indicate that the data are organized by columns.
7. Click the New Ply radio button to create a new tabbed page in the worksheet, and to send the results to the newly created page.
8. Click OK to close the dialog box. Open the newly created page to see the results.

Figure 6-9 shows the new page with the results. The table orders the scores from highest to lowest, as the Score column shows along with the Rank column. The Point column tells you the score's position in the original grouping. For example, the 98 in cell B2 is the 12th score in the original data. The Percent column gives the percentile for each score.

Figure 6-9: The Output of the Rank and Percentile analysis tool.

A1		-		f_{x} Point
4	A	B	C	D
1	Point	Score	Rank	Percent
2	12	98	1	96.60\%
3	24	98	1	96.60\%
4	25	93	3	93.30\%
5	20	90	4	90.00\%
6	13	88	5	83.30\%
7	30	88	5	83.30\%
8	4	87	7	80.00\%
9	3	85	8	73.30\%
10	9	85	8	73.30\%
11	15	83	10	66.60\%
12	26	83	10	66.60\%
13	27	82	12	63.30\%
14	22	80	13	60.00\%
15	2	78	14	53.30\%
16	31	78	14	53.30\%
17	7	77	16	43.30\%
18	19	77	16	43.30\%
19	21	77	16	43.30\%
20	18	75	19	40.00\%
21	10	72	20	26.60\%
22	14	72	20	26.60\%
23	17	72	20	26.60\%
24	29	72	20	26.60\%
25	23	70	24	23.30\%
26	5	65	25	20.00\%
27	6	60	26	16.60\%
28	8	58	27	13.30\%
29	1	57	28	6.60\%
30	11	57	28	6.60\%
31	28	53	30	3.30\%
32	16	45	31	0.00\%
33				

Chapter 7

Summarizing It All

In This Chapter

Things great and small
$>$ Symmetry, peaks, and plateaus
$>$ Getting descriptive

- Statistics served up on a tray

Measures of central tendency and variability are excellent ways of summarizing a set of scores. They aren't the only ways. Central tendency and variability make up a subset of descriptive statistics. Some descriptive statistics are intuitive - like count, maximum, and minimum. Some are not like skewness and kurtosis.

In this chapter, I discuss descriptive statistics, and I show you Excel's capabilities for calculating them and visualizing them.

Counting Out

The most fundamental descriptive statistic I can imagine is the number of scores in a set of scores. Excel offers five ways to determine that number. Yes, five ways. Count them.

COUNT, COUNTA, COUNTBLANK, COUNIIF, COUNTIFS

Given an array of cells, COUNT gives you the amount of those cells that contain numerical data. Figure 7-1 shows that l've entered a group of scores, selected a cell to hold COUNT's result, and opened the Function Arguments dialog box for COUNT. Here are the steps:

Figure 7-1:
The
Function Arguments Dialog Box for COUNT, showing multiple arguments.

1. Enter your data into the worksheet and select a cell for the result.

I entered data into columns C, D, and E to show off COUNT's multi-argument capability. I selected cell C14 to hold the count.
2. From the Statistical Functions menu, select COUNT and click OK to open the Function Arguments dialog box for COUNT.
3. In the Function Arguments dialog box, enter the appropriate values for the arguments.

In the Number1 box I entered one of the data columns for this example, like C1:C12.

I clicked in the Number2 box and entered another data column. I entered D1:D6.

I clicked in the Number3 box and entered the last column, which in this example is $\mathrm{E} 1: \mathrm{E} 2$.
4. Click $O K$ to put the result in the selected cell.

COUNTA works like COUNT, except that its tally includes cells that contain text and logical values in its tally.

COUNTBLANK counts the number of blank cells in an array. In Figure 7-2, I use the numbers from the preceding example, but I extend the array to include cells D7 through D12 and E3 through E12. The array in the Range box is C1:E12. The Argument Functions dialog box for COUNTBLANK shows the number of blank cells (16 for this example).

Figure 7-2: COUNT BLANK tallies the blank cells in a specified array.

COUNTIF shows the number of cells whose value meets a specified criterion. Figure 7-3 reuses the data once again, showing the Arguments Function dialog box for COUNTIF. Although the range is C1:E12, COUNTIF doesn't include blank cells.

The criterion I used, >= 89, tells COUNTIF to count only the cells whose values are greater than or equal to 89 . For this example, that count is 1 .

This probably won't make much difference as you use this function, but a little quirk of Excel shows up here. If you put double quotes around the criterion, the result appears in the dialog box before you click OK. If you don't, it doesn't. If you click OK without quoting, Excel supplies the quotes and the result appears in the selected cell, and Excel applies the quotes.

COUNTIFS is new in Excel 2007. This function can use multiple criteria to determine the count. If the criteria come from two arrays, they must have the same number of cells. This is because COUNTIFS counts pairs of cells. It includes a pair of cells in the count if one of the cells meets a criterion and the other meets a criterion. Take a look at Figure 7-4.

In this example, COUNTIFS operates in C1:C6 and D1:D6. The criterion for the cells in column C is $>=40$. The criterion for the cells in column D is >50. This means that COUNTIFS counts cell-pairs whose C cell holds a value greater than or equal to 40 and whose D cell holds a value greater than 50 . Only two cell-pairs meet these conditions, as the dialog box shows.

You can use a cell range more than once in COUNTIFS. For example

```
=COUNTIFS(C1:C12,">30",C1:C12,"<60")
```

gives the number of cells in which the value is between 30 and 60 (not including 30 and 60).

The Long and Short of It

Two more descriptive statistics that probably require no introduction are the maximum and the minimum. These, of course, are the largest value and the smallest value in a group of scores.

MAX, MAXA, MIN, and MINA

Excel has worksheet functions that determine a group's largest and smallest values. I show you what MAX is all about. The others work in a similar fashion.

Figure 7-5 reuses the scores from the preceding examples. I selected a cell to hold their maximum value, and opened the Function Arguments dialog box for MAX. Here are the steps:

Figure 7-5:
The Function Arguments dialog box for MAX.

1. Type your data into the worksheet and select a cell to hold the result.

I entered data into columns C, D, and E to show off MAX's multi-argument capability. For this example, I selected cell C14.
2. From the Statistical Functions menu select MAX to open the Function Arguments dialog box for MAX.
3. In the Function Arguments dialog box, enter the appropriate values for the arguments.

In the Number1 box, I entered one of the data columns, $\mathrm{C} 1: \mathrm{C} 12$.
Clicking the Number2 box creates and opens the Number3 box. In the Number2 box, I entered another array, D1:D6.

I clicked in the Number3 box and entered the last array, E1:E2.
4. Click $O K$ to put the result in the selected cell.

MAX ignores any text or logical values it encounters along the way. MAXA takes text and logical values into account when it finds the maximum. If MAXA encounters the logical value TRUE, it converts that value to 1 . MAXA converts FALSE, or any text other than "TRUE", to 0 .

MIN and MINA work the same way as MAX and MAXA, except that they find the minimum rather than the maximum. Take care when you use MINA, because the conversions of logical values and text to 0 and 1 influence the result. With the numbers in the preceding example, the minimum is 22 . If you enter FALSE or other text into a cell in any of the arrays, MINA gives 0 as the minimum. If you enter TRUE, MINA gives 1 as the minimum.

Getting Esoteric

In this section, I discuss some little-used statistics that are related to the mean and the variance. For most people, the mean and the variance are enough to describe a set of data. These other statistics, skewness and kurtosis, go just a bit further. You might use them someday if you have a huge set of data and you want to provide some in-depth description.

Think of the mean as locating a group of scores by showing you where their center is. This is the starting point for the other statistics. With respect to the mean
\checkmark The variance tells you how spread out the scores are.
\checkmark Skewness indicates how symmetrically the scores are distributed.
\checkmark Kurtosis shows you whether or not your scores are distributed with a peak in the neighborhood of the mean.

Skewness and kurtosis are related to the mean and variance in fairly involved mathematical ways. The variance involves the sum of squared deviations of scores around the mean. Skewness depends on cubing the deviations around the mean before you add them all up. Kurtosis takes it all to a higher power - the fourth power, to be exact. I get more specific in the subsections that follow.

SKEW

Figure 7-6 shows three histograms. The first is symmetric, the other two are not. The symmetry and the asymmetry are reflected in the skewness statistic.

For the symmetric histogram, the skewness is 0 . For the second histogram the one that tails off to the right - the value of the skewness statistic is positive. It's also said to be skewed to the right. For the third histogram (which tails off to the left), the value of the skewness statistic is negative. It's also said to be skewed to the left.

Where do zero, positive, and negative skew come from? They come from this formula:

$$
\text { skewness }=\frac{\sum(X-\bar{X})^{3}}{(N-1) s^{3}}
$$

In the formula, \bar{X} is the mean of the scores, N is the number of scores, and s is the standard deviation.

I include this formula for completeness. If you're ever concerned with skewness, you probably won't use this formula anyway because Excel's SKEW function does the work for you.

To use SKEW:

1. Type your numbers into a worksheet and select a cell for the result.

For this example, I've entered scores into the first ten rows of columns C, D, E, and F. (See Figure 7-7.) I selected cell I2 for the result.
2. From the Statistical Functions menu, select SKEW to open the Function Arguments dialog box for SKEW.
3. In the Function Arguments dialog box, type the appropriate values for the arguments.

In the Number 1 box, enter the array of cells that holds the data. For this example, the array is C1:F10. With the data array entered, the Function Arguments dialog box shows the skewness, which for this example is negative.
4. Click OK to put the result into the selected cell.

Figure 7-7: Using the SKEW function to calculate skewness.

KURT

Figure 7-8 shows two histograms. The first has a peak at its center, the second is flat. The first is said to be leptokurtic. Its kurtosis is positive. The second is platykurtic. Its kurtosis is negative.

Negative? Wait a second. How can that be? I mentioned earlier that kurtosis involves the sum of fourth powers of deviations from the mean. Because four is an even number, even the fourth power of a negative deviation is positive. If you're adding all positive numbers, how can kurtosis ever be negative?

Here's how. The formula for kurtosis is
kurtosis $=\frac{\sum(X-\bar{X})^{4}}{(N-1) s^{4}}-3$
where \bar{X} is the mean of the scores, N is the number of scores, and s is the standard deviation.

Uh . . . why 3 ? The 3 comes into the picture because that's the kurtosis of something special called the standard normal distribution. (I discuss the normal distribution at length in Chapter 8.) Technically, statisticians refer to this formula as kurtosis excess - meaning that it shows the kurtosis in a set of scores that's in excess of the standard normal distribution's kurtosis. If you're about to ask the question "Why is the kurtosis of the standard normal distribution equal to 3 ?" don't ask.

This is another formula you'll probably never use because Excel's KURT function takes care of business. Figure 7-9 shows the scores from the preceding example, a selected cell, and the Function Arguments dialog box for KURT.

To use KURT:

1. Enter your numbers into a worksheet and select a cell for the result.

For this example, I entered scores into the first ten rows of columns C, D, E, and F. I selected cell I2 for the result.
2. From the Statistical Functions menu, select KURT to open the Function Arguments dialog box for KURT.
3. In the Function Arguments dialog box, enter the appropriate values for the arguments.
In the Number 1 box, I entered the array of cells that holds the data. Here, the array is C1:F10. With the data array entered, the Function Arguments dialog box shows the kurtosis, which for this example is negative.
4. Click OK to put the result into the selected cell.

Tuning In the Frequency

Although the calculations for skewness and kurtosis are all well and good, it's helpful to see how the scores are distributed. To do this, you create a frequency distribution, a table that divides the possible scores into intervals and shows the number (the frequency) of scores that fall into each interval.

Excel gives you two ways to create a frequency distribution. One is a worksheet function, the other is a data analysis tool.

FREQUENCY

I show you the FREQUENCY worksheet function in Chapter 2 when I introduce array functions. Here, I give you another look. In the upcoming example, I reuse the data from the skewness and kurtosis discussions so you can see what the distribution of those scores looks like.

Figure 7-10 shows the data once again, along with a selected array, labeled Frequency. I've also added the label Intervals to a column, and in that column I put the interval boundaries. Each number in that column is the upper bound of an interval. The figure also shows the Function Arguments dialog box for FREQUENCY.

Figure 7-10: Finding the frequencies in an array of cells.

This is an array function, so the steps are a bit different from the functions I showed you so far in this chapter.

1. Enter the scores into an array of cells.

The array, as in the preceding examples is C1:F10.
2. Enter the intervals into an array.

I entered $5,10,15,20,25$, and 30 into $\mathrm{H} 2: \mathrm{H} 7$.
3. Select an array for the resulting frequencies.

I put Frequency as the label at the top of column I, so I selected I2 through I7 to hold the resulting frequencies.
4. From the Statistical Functions menu, select FREQUENCY to open the Function Arguments dialog box for FREQUENCY.
5. In the Function Arguments dialog box, enter the appropriate values for the arguments.
In the Data_array box I entered the cells that hold the scores. In this example, that's C1:F10.
FREQUENCY refers to intervals as "bins," and holds the intervals in the Bins_array box. For this example, H2:H7 goes into the Bins_array box.
After I identified both arrays, the Function Arguments dialog box shows the frequencies inside a pair of curly brackets. Look closely at Figure 7-10 and you see that Excel adds a frequency of zero to the end of the set of frequencies.

6. Press Ctrl+Shift+Enter to close the Function Arguments dialog box.
 Use this keystroke combination because FREQUENCY is an array function.
 When you close the Function Arguments dialog box, the frequencies go into the appropriate cells, as Figure 7-11 shows.

Figure 7-11: FREQUENCY's frequencies.

12			* (3) $f_{x} \mid=$ FREQUENCY(C1:F10,H2:H7) \}						
4	A	B	C	D	E	F	G	H	1
1			22	20	23	30		Interval	Frequency
2			26	28	29	24		5	0
3			23	22	25	13		10	3
4			12	27	28	17		15	6
5			21	19	23	25		20	6
6			16	22	15	18		25	15
7			11	6	21	29		30	10
8			25	24	27	30			
9			10	26	7	19			
10			24	15	14	21			
11									

If I had assigned the name Data to C1:F10 and the name Interval to $\mathrm{H} 2: \mathrm{H} 7$, and used those names in the Function Arguments dialog box, the resulting formula would have been

```
=FREQUENCY(Data,Interval)
```

which might be easier to understand than

```
=FREQUENCY(C1:F10,H2:H7)
```

(Don't remember how to assign a name to a range of cells? Take another look at Chapter 2.)

Data analysis tool: Histogram

Here's another way to create a frequency distribution - with the Histogram data analysis tool. To show you that the two methods are equivalent, I use the data from the FREQUENCY example. Figure 7-12 shows the data along with the Histogram dialog box.

The steps are:

1. Enter the scores into an array, and enter intervals into another array.
2. Click on Data I Data Analysis to open the Data Analysis dialog box.
3. From the Data Analysis dialog box, select Histogram to open the Histogram dialog box.

Figure 7-12:

The

Histogram analysis tool.

4. In the Histogram dialog box, enter the appropriate values.

The data are in cells C1 through F10, so C1:F10 goes into the Input Range box. The easiest way to enter this array is to click on C1, press and hold the Shift key, and then click F10. Excel puts the absolute reference format ($\$ \mathrm{C} \$ 1: \$ \mathrm{~F} \$ 10$) into the Input Range box.
In the Bin Range box, I enter the array that holds the intervals. In this example, that's H2 through H7. I click on H2, press and hold the Shift key, and then click H7. The absolute reference format ($\$ \mathrm{H} \$ 2: \$ \mathrm{H} \$ 7$) appears in the Bin Range box.
5. Click the New Worksheet Ply radio button to create a new tabbed page and to put the results on the new page.
6. Click the Chart Output checkbox to create a histogram and visualize the results.

7. Click OK to close the dialog box.

Figure 7-13 shows Histogram's output. The table matches up with what FREQUENCY produces. Notice that Histogram adds "More" to the Bin column. The size of the histogram is somewhat smaller when it first appears. I used the mouse to stretch the histogram and give it the appearance you see in the figure. The histogram shows that the distribution does tail off to the left (consistent with the negative skewness statistic) and seems to not have a distinctive peak (consistent with the negative kurtosis statistic).

Figure 7-13:
The Histogram tool's output (after I stretched the chart).

By the way, the other checkbox options on the Histogram dialog box are Pareto chart and Cumulative percentage. The Pareto chart sorts the intervals in order from highest frequency to lowest before creating the graph. Cumulative percentage shows the percentage of scores in an interval combined with the percentages in all the preceding intervals. Checking this box also puts a cumulative percentage line in the histogram.

Can You Give Me a Description?

If you're dealing with individual descriptive statistics, the worksheet functions I've discussed get the job done nicely. If you want an overall report that presents just about all the descriptive statistical information in one place, use the Data Analysis tool I describe in the next section.

Data analysis tool: Descriptive Statistics

In Chapter 2, I show you the Descriptive Statistics tool to introduce Excel's data analysis tools. Here's a slightly more complex example. Figure 7-14 shows three columns of scores and the Descriptive Statistics dialog box. I've labeled the columns First, Second, and Third so you can see how this tool incorporates labels.

Here are the steps for using this tool:

1. Enter the data into an array.

Figure 7-14: The
Descriptive
Statistics tool at work.

027 - f_{x}									
	A	B	C	D	E ${ }^{\text {E }}$ F	H	1	J K	
1		First	Second	Third	Descriptive Statistics			(8\|x)	
2		55	85	74					
3		23	61	75	Input				
4		41	45	12	Input Range:	\$8\$1:\$0 \$9	[閣]	OK	
5		98	48	24		ColumnsRows		Cancel	
6		74	20	84	Grouped By:				
7		52	22	85				Help	
8		36	91	62	Labels in First Row				
9		65	74	39					
10					Output options				
11					Output Range: O New Worksheet Ply:	㰓			
12									
13									
15					V Summary statistics				
16 17					\square Confidence Level for Mean:	95	\%		
17 18					$\square \mathrm{Kth}$ Largest:	1			
19					$\square \mathrm{Kth}$ Smallest:	1			
20									
21									
22									

2. Select Data I Data Analysis to open the Data Analysis dialog box.
3. Choose Descriptive Statistics to open the Descriptive Statistics dialog box.
4. In the Descriptive Statistics dialog box, enter the appropriate values.

In the Input Range box, I enter the data. The easiest way to do this is to move the cursor to the upper-left cell (B1), press the Shift key, and click the lower-right cell (D9). That puts $\$ \mathrm{~B} \$ 1: \$ \mathrm{D} \$ 9$ into Input Range.
5. Click the Columns radio button to indicate that the data are organized by columns.
6. Check the Labels in First Row checkbox, because the Input Range includes the column headings.
7. Click the New Worksheet Ply radio button to create a new tabbed sheet within the current worksheet, and to send the results to the newly created sheet.
8. Click the Summary Statistics checkbox, and leave the others unchecked.
9. Click OK to close the dialog box.

The new tabbed sheet (ply) opens, displaying statistics that summarize the data.

As Figure 7-15 shows, the statistics summarize each column separately. When this page first opens, the columns that show the statistic names are too narrow, so the figure shows what the page looks like after I widened the columns.

	\%	A	B	C	D	E	F
	1	First		Second		Third	
	2						
	3	Mean	55.5	Mean	55.75	Mean	56.875
	4	Standard Error	8.343089527	Standard Error	9.49765	Standard Error	9.990062
	5	Median	53.5	Median	54.5	Median	68
Figure 7-15:	6	Mode	\#N/A	Mode	\#N/A	Mode	\#N/A
	7	Standard Deviation	23.59782072	Standard Deviation	26.86341	Standard Deviation	28.25616
	8	Sample Variance	556.8571429	Sample Variance	721.6429	Sample Variance	798.4107
	9	Kurtosis	0.288278448	Kurtosis	-1.38727	Kurtosis	-1.30336
Descriptive Statistics	10	Skewness	0.567053259	Skewness	-0.10605	Skewness	-0.66104
	11	Range	75	Range	71	Range	73
	12	Minimum	23	Minimum	20	Minimum	12
tool's	13	Maximum	98	Maximum	91	Maximum	85
	14	Sum	444	Sum	446	Sum	455
output.	15	Count	8	Count	8	Count	8
	16						

The Descriptive Statistics tool gives values for these statistics: mean, standard error, median, mode, standard deviation, sample variance, kurtosis, skewness, range, minimum, maximum, sum, and count. Except for standard error and range, I've discussed all of them.

Range is just the difference between the maximum and the minimum. Standard error is more involved, and I defer the explanation until Chapter 9. For now, I'll just say that standard error is the standard deviation divided by the square root of the sample size and leave it at that.

By the way, one of the checkboxes left unchecked in the example's Step 6 provides something called the Confidence Limit of the Mean, which I also defer until Chapter 9. The remaining two checkboxes, Kth Largest and Kth Smallest, work like the functions LARGE and SMALL.

Instant Statistics

Suppose you're working with a cell range full of data. You might like to quickly know the status of the average and perhaps some other descriptive statistics about the data without going to the trouble of using several Statistical functions.

You can customize the Status bar at the bottom of the worksheet to track these values for you and display them whenever you select the cell range. To do this, right-click the status bar to open the Customize Status Bar menu. (See Figure 7-16.) In the area second from the bottom, checking all the items displays the values I mention in the preceding section (along with the count of items in the range - numerical and non-numerical).

Figure 7-17 shows these values displayed on the Status bar for the cells I selected.

Figure 7-17: Displaying values on the status bar.

140
 Part II: Describing Data

Chapter 8

What's Normal?

In This Chapter

$>$ Meet the normal distribution
$>$ Standard deviations and the normal distribution
$>$ Excel's normal distribution-related functions

Abstract

Amain job of statisticians is to estimate population characteristics. The job becomes easier if they can make some assumptions about the populations they study.

One particular assumption works over and over again: A specific attribute, trait, or ability is distributed throughout a population so that most people have an average or near-average amount of the attribute, and progressively fewer people have increasingly extreme amounts of the attribute. In this chapter, I discuss this assumption and what it means for statistics. I also describe Excel functions related to this assumption.

Hitting the Curve

When you measure something in the physical world like length or weight, you deal with objects you can see and touch. Statisticians, social scientists, market researchers, and businesspeople, on the other hand, often have to measure something they can't see or put their hands around. Traits like intelligence, musical ability, or willingness to buy a new product fall into this category.

These kinds of traits are usually distributed throughout the population so that most people are around the average - with progressively fewer people represented toward the extremes. Because this happens so often, it's become an assumption about how most traits are distributed.

It's possible to capture the most-people-are-about-average assumption in a graphic way. Figure 8-1 shows the familiar bell curve that characterizes how a variety of attributes are distributed. The area under the curve represents the population. The horizontal axis represents measurements of the ability under consideration. A vertical line drawn down the center of the curve would correspond to the average of the measurements.

Figure 8-1:
The Bell curve.

So if we assume that it's possible to measure a trait like intelligence and if we assume this curve represents how intelligence is distributed in the population, we can say this: The bell curve shows that most people have about average intelligence, very few have very little intelligence, and very few are geniuses. That seems to fit nicely with our intuitions about intelligence, doesn't it?

Digging deeper

On the horizontal axis of Figure 8-1 you see x, and on the vertical axis $f(x)$. What do these symbols mean? The horizontal axis, as I just mentioned, represents measurements, so think of each measurement as an x.

The explanation of $f(x)$ is a little more involved. A mathematical relationship between x and $f(x)$ creates the bell curve and enables us to visualize it. The relationship is rather complex, and I won't burden you with it. Just understand that $f(x)$ represents the height of the curve for a specified value of x. You supply a value for x (and for a couple of other things), and that complex relationship I mentioned returns a value of $f(x)$.

Now for some specifics. The bell curve is formally called the normal distribution. The term $f(x)$ is called probability density, so the normal distribution is an example of a probability density function. Rather than give you a technical definition of probability density, I ask you to think of probability density as something that turns the area under the curve into probability. Probability of . . . what? I discuss that in the next section.

Parameters of a normal distribution

People often speak of the normal distribution. That's a misnomer. It's really a family of distributions. The members of the family differ from one another in terms of two parameters - yes, parameters because I'm talking about populations. Those two parameters are the mean (μ) and the standard deviation (σ). The mean tells you where the center of the distribution is, and the standard deviation tells you how spread out the distribution is around the mean. The mean is in the middle of the distribution. Every member of the normal distribution family is symmetric - the left side of the distribution is a mirror image of the right.

The characteristics of the normal distribution are well known to statisticians. More important, you can apply those characteristics to your work.

How? This brings me back to probability. You can find some useful probabilities if you can do four things:
\checkmark If you can lay out a line that represents the scale of the attribute you're measuring
\checkmark If you can indicate on the line where the mean of the measurements is
\checkmark If you know the standard deviation
\checkmark If you know (or if you can assume) the attribute is normally distributed throughout the population

I'll work with IQ scores to show you what I mean. Scores on the StanfordBinet IQ test follow a normal distribution. The mean of the distribution of these scores is 100 and the standard deviation is 16 . Figure $8-2$ shows this distribution.

Figure 8-2: The normal distribution of IQ divided into standard deviations.

As the figure shows, I've laid out a line for the IQ scale. Each point on the line represents an IQ score. With 100 (the mean) as the reference point, I've marked off every 16 points (the standard deviation). I've drawn a dotted line from the mean up to $f(100)$ (the height of the normal distribution where $x=$ $100)$, and a dotted line from each standard deviation point.

The figure also shows the proportion of area bounded by the curve and the horizontal axis, and by successive pairs of standard deviations. It also shows the proportion beyond 3 standard deviations on either side (52 and 148). Note that the curve never touches the horizontal. It gets closer and closer, but it never touches. (Mathematicians say the curve is asymptotic to the horizontal.)

So between the mean and one standard deviation - between 100 and 116 are .3413 (or 34.13 percent) of the scores in the population. Another way to say this: The probability that an IQ score is between 100 and 116 is .3413 . At the extremes, in the tails of the distribution, .0013 (. 13 percent) of the scores are on each side.

The proportions in Figure 8-2 hold for every member of the normal distribution family, not just for Stanford-Binet IQ scores. For example, in a sidebar in Chapter 6, I mention SAT scores, which have a mean of 500 and a standard deviation of 100 . They're normally distributed, too. That means 34.13 percent of SAT scores are between 500 and $600,34.13$ percent between 400 and 500, and . . . well, you can use Figure 8-2 as a guide for other proportions.

NORMDIST

Figure 8-2 only shows areas partitioned by scores at the standard deviations. What about the proportion of IQ scores between 100 and 125 ? Or between 75 and 91? Or greater than 118? If you've ever taken a course in statistics, you might remember homework problems that involve finding proportions of areas under the normal distribution. You might also remember relying on tables of the normal distribution to solve them.

Excel's NORMDIST worksheet function enables you to find normal distribution areas without relying on tables. NORMDIST finds a cumulative area. You supply a score, a mean, and a standard deviation for a normal distribution, and NORMDIST returns the proportion of area to the left of the score (also called cumulative proportion or cumulative probability). For example, Figure 8-2 shows that in the IQ distribution 8413 of the area is to the left of 116 .

How did I get that proportion? All the proportions to the left of 100 add up to .5000. (All the proportions to the right of 100 add up to .5000 , too.) Add that .5000 to the .3413 between 100 and 116 and you have .8413 .

Restating this another way, the probability of an IQ score less than or equal to 116 is 8413 .

In Figure 8-3, I use NORMDIST to find this proportion. Here are the steps:

1. Select a cell for NORMDIST's answer.

For this example, I selected C2.
2. From the Statistical Functions menu, select NORMDIST to open the
Function Arguments dialog box for NORMDIST. Function Arguments dialog box for NORMDIST.
3. In the Function Arguments dialog box, enter the appropriate values for the arguments.
In the X box, I entered the score for which I want to find the cumulative area. In this example, that's 116 .

In the Mean box, I entered the mean of the distribution, and in the Standard_dev box, I enter the standard deviation. Here, the mean is 100 and the standard deviation is 116 .

In the Cumulative box, I entered TRUE. This tells NORMDIST to find the cumulative area. The dialog box shows the result.

4. Click OK to see the result in the selected cell.

Figure 8 -3 shows that the cumulative area is .84134476 (in the dialog box). If you enter FALSE in the Cumulative box, NORMDIST returns the height of the normal distribution at 116 .

Figure 8-3:
Working
With
NORMDIST.

To find the proportion of IQ scores greater than 116, subtract the result from 1.0. (Just for the record, that's . 15865524 .)

How about the proportion of IQ scores between 116 and 125? Apply NORMDIST for each score and subtract the results. For this particular example, the formula is

```
=NORMDIST(125,100,16,TRUE) -NORMDIST(116,100,16,TRUE)
```

The answer, by the way, is .09957 .

NORMINV

NORMINV is the flip side of NORMDIST. You supply a cumulative probability, a mean, and a standard deviation, and NORMINV returns the score that cuts off the cumulative probability. For example, if you supply . 5000 along with a mean and a standard deviation, NORMINV returns the mean.

This function is useful if you have to calculate the score for a specific percentile in a normal distribution. Figure 8-4 shows the Function Arguments dialog box for NORMINV with .75 as the cumulative probability, 500 as the mean, and 100 as the standard deviation. Because the SAT follows a normal distribution with 500 as its mean and 100 as its standard deviation, the result corresponds to the score at the 75th percentile for the SAT. (For more on percentiles, see Chapter 6.)

Figure 8-4: Working With NORMINV.

A Distinguished Member of the Family

To standardize a set of scores so that you can compare them to other sets of scores, you convert each one to a z-score. (See Chapter 6.) The formula for converting a score to a z -score (also known as a standard score) is:

$$
z=\frac{x-\mu}{\sigma}
$$

The idea is to use the standard deviation as a unit of measure. For example, the Stanford-Binet version of the IQ test has a mean of 100 and a standard deviation of 16 . The Wechsler version has a mean of 100 and a standard deviation of 15 . How does a Stanford-Binet score of, say, 110, stack up against a Wechsler score of 110 ?

An easy way to answer this question is to put the two versions on a level playing field by standardizing both scores. For the Stanford-Binet

$$
z=\frac{110-100}{16}=.625
$$

For the Wechsler

$$
z=\frac{110-100}{15}=.667
$$

So 110 on the Wechsler is a slightly higher score than 110 on the Stanford-Binet.
Now, if you convert all the scores in a normal distribution (such as either version of the IQ), you have a normal distribution of z-scores. Any set of z-scores
(normally distributed or not) has a mean of 0 and a standard deviation of 1 . If a normal distribution has those parameters it's a standard normal distribution a normal distribution of standard scores.

This is the member of the normal distribution family that most people have heard of. It's the one they remember most from statistics courses, and it's the one that most people are thinking about when they say the normal distribution. It's also what people think of when they hear z-scores. This distribution leads many to the mistaken idea that converting to z -scores somehow transforms a set of scores into a normal distribution.

Figure 8-5 shows the standard normal distribution. It looks like Figure 8-2, except that l've substituted 0 for the mean and standard deviation units in the appropriate places.

Figure 8-5:
The standard normal distribution divided up by standard deviations.

In the next two sections, I describe Excel's functions for working with the standard normal distribution.

NORMSDIST

NORMSDIST is like its counterpart NORMDIST, except that it's designed for a normal distribution whose mean is 0 and whose standard deviation is 1.00 .

You supply a z-score and it returns the area to the left of the z-score - the probability that a z-score is less than or equal to the one you supplied.

Figure 8-6 shows the Function Arguments dialog box with 1 as the z-score. The dialog box presents .841344746 , the probability that a z-score is less than or equal to 1.00 in a standard normal distribution. Clicking OK puts that result into a selected cell.

Figure 8-6: Working with NORMSDIST.

NORMSINU

NORSMINV is the flip side of NORMSDIST. You supply a cumulative probability and NORMSINV returns the z-score that cuts off the cumulative probability. For example, if you supply .5000 , NORMSINV returns 0 , the mean of the standard normal distribution.

Figure 8-7 shows the Function Arguments dialog box for NORMSINV, with . 75 as the cumulative probability. The dialog box shows the answer, .67448975, the z-score at the 75th percentile of the standard normal distribution.

Figure 8-7:
Working with NORMSIVV

Okay, just because you asked ...

The relationship between x and $f(x)$ for the normal distribution is, as I mention, a pretty complex one. Here's the equation:

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-)^{2}}{2 \sigma^{2}}}
$$

If you supply values for μ (the mean), σ (the standard deviation), and x (a score), the equation gives you back a value for $f(x)$, the height of the normal distribution at $x . \pi$ and e are important constants in mathematics. π is approximately 3.1416 (the ratio of a circle's circumference to its diameter). e is approximately 2.71828 . It's related to something called natural logarithms and to a variety of other mathematical concepts. (I tell you more about e in Chapter 20.)
In a standard normal distribution, $\mu=0$ and $\sigma=1$, so the equation becomes

$$
f(z)=\frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}}
$$

I changed the x to z because you deal with z-scores in this member of the normal distribution family.

In Excel, you can set up a range of cells that contain standard scores, create a formula that captures the preceding equation, and autofill another range of cells with the formula results. Next, select the range with the formula results. Then you can select
Insert | Line
from the Chart area on the Ribbon and choose the Line with Markers layout. (See Chapter 2.) As the accompanying figure shows, this layout nicely traces out the standard normal distribution. The figure also shows the autofilled values.

C

The Formula Bar shows the Excel formula that corresponds to the normal distribution equation:

$$
\begin{gathered}
=\left(\left(1 / \operatorname{SQRT}\left(2^{*} \operatorname{PI}()\right)\right)\right) \star \\
\operatorname{EXP}(-(\operatorname{B2} 2) / 2)
\end{gathered}
$$

PI() is an Excel function that gives the value of π. The function EXP() raises e to the power indicated by what's in the parentheses that follow it.

I show you all of this because I want you to see the equation of the normal distribution as an Excel formula. The NORMDIST worksheet function offers a much easier way to supply the $f(z)$ values. Enter this formula into C2
=NORMDIST (B2, 0, 1, FALSE)
autofill column C and you have the same values as in the figure.

152 Parl: : Osesciling 9 ata

Part III Drawing Conclusions from Data

The 5th Wave By Rich Tennant

"What do you mean I don't fit your desired sample population at this time?"

In this part . . .

p
art III deals with using statistical methods to make inferences about data. This is all aimed at using the data from samples to draw conclusions about populations, and it's the essence of statistical analysis. I begin with the extremely important concept of sampling distributions. I move on to estimation and confidence limits and then to statistical tests geared at one sample, two samples, and more. Part III ends with discussions of regression and correlation - the statistics of relationships.

The statistical methods in this part are computationally intensive. Fortunately, Excel has specialized features for doing the calculations. The seven chapters in this part describe Excel functions and tools for inferential statistics.

Chapter 9

The Confidence Game: Estimation

In This Chapter

$>$ Introducing sampling distributions

- Understanding standard error
$>$ Simulating the sampling distribution of the mean
$>$ Attaching confidence limits to estimates

populations and samples are pretty straightforward ideas. A population is a huge collection of individuals, from which you draw a sample. Assess the members of the sample on some trait or attribute, calculate statistics that summarize that sample, and you're in business.

In addition to summarizing the scores in the sample, you can use the statistics to create estimates of the population parameters. This is no small accomplishment. On the basis of a small percentage of individuals from the population, you can draw a picture of the population.

A question emerges, however: How much confidence can you have in the estimates you create? In order to answer this, you have to have a context in which to place your estimates. How probable are they? How likely is the true value of a parameter to be within a particular lower bound and upper bound?

In this chapter, I introduce the context for estimates, show how that plays into confidence in those estimates, and describe an Excel function that enables you to calculate your confidence level.

What is a Sampling Distribution?

Imagine that you have a population, and you draw a sample from this population. You measure the individuals of the sample on a particular attribute and calculate the sample mean. Return the sample members to the population. Draw another sample, assess the new sample's members, and then calculate their mean. Repeat this process again and again, always using the same number of individuals as you had in the original sample. If you could do this an infinite amount of times (with the same-size sample each time), you'd have
an infinite amount of sample means. Those sample means form a distribution of their own. This distribution is called the sampling distribution of the mean.

For a sample mean, this is the context I mention at the beginning of this chapter. Like any other number, a statistic makes no sense by itself. You have to know where it comes from in order to understand it. Of course, a statistic comes from a calculation performed on sample data. In another sense, a statistic is part of a sampling distribution.

In general, a sampling distribution is the distribution of all possible values of a statistic for a given sample size.

I italicize that definition for a reason: It's extremely important. After many years of teaching statistics, I can tell you that this concept usually sets the boundary line between people who understand statistics and people who don't.

So . . . if you understand what a sampling distribution is, you'll understand what the field of statistics is all about. If you don't, you won't. It's almost that simple.

If you don't know what a sampling distribution is, statistics will be a cookbook type of subject for you: Whenever you have to apply statistics, you'll plug numbers into formulas and hope for the best. On the other hand, if you're comfortable with the idea of a sampling distribution, you'll grasp the big picture of inferential statistics.

To help clarify the idea of a sampling distribution, take a look at Figure 9-1. It summarizes the steps in creating a sampling distribution of the mean.

Figure 9-1:
The sampling distribution of the mean.

A sampling distribution - like any other group of scores - has a mean and a standard deviation. The symbol for the mean of the sampling distribution of the mean (yes, I know that's a mouthful) is $\mu_{\bar{x}}$.

The standard deviation of a sampling distribution is a pretty hot item. It has a special name - standard error. For the sampling distribution of the mean, the standard deviation is called the standard error of the mean. Its symbol is $\sigma_{\bar{x}}$.

An EXTREMELY Important Idea: The Central Limit Theorem

The situation I ask you to imagine is one that never happens in the real world. You never take an infinite amount of samples and calculate their means, and you never create a sampling distribution of the mean. Typically, you draw one sample and calculate its statistics.

So if you have only one sample how can you ever know anything about a sampling distribution - a theoretical distribution that encompasses an infinite number of samples? Is this all just a wild-goose chase?

No, it's not. You can figure out a lot about a sampling distribution because of a great gift from mathematicians to the field of statistics. This gift is called the Central Limit Theorem.

According to the Central Limit Theorem
\checkmark The sampling distribution of the mean is approximately a normal distribution if the sample size is large enough.
Large enough means about 30 or more.
\checkmark The mean of the sampling distribution of the mean is the same as the population mean.
In equation form that's

$$
\mu_{\bar{x}}=\mu
$$

\checkmark The standard deviation of the sampling distribution of the mean (also known as the standard error of the mean) is equal to the population standard deviation divided by the square root of the sample size.
The equation here is

$$
\sigma_{\bar{x}}=\sigma / \sqrt{N}
$$

Notice that the Central Limit theorem says nothing about the population. All it says is that if the sample size is large enough, the sampling distribution of
the mean is a normal distribution, with the indicated parameters. The population that supplies the samples doesn't have to be a normal distribution for the Central Limit Theorem to hold.

What if the population is a normal distribution? In that case, the sampling distribution of the mean is a normal distribution regardless of the sample size.

Figure 9-2 shows a general picture of the sampling distribution of the mean, partitioned into standard error units.

Figure 9-2:
The
sampling distribution of the mean.

Simulating the Central Limit Theorem

It almost doesn't sound right. How can a population that's not normally distributed result in a normally distributed sampling distribution?

To give you an idea of how the Central Limit Theorem works, I created a simulation. This simulation creates something like a sampling distribution of the mean for a very small sample, based on a population that's not normally distributed. As you'll see, even though the population is not a normal distribution, and even though the sample is small, the sampling distribution of the mean looks quite a bit like a normal distribution.

Imagine a huge population that consists of just three scores - 1,2 , and 3 and each one is equally likely to appear in a sample. (That kind of population is definitely not a normal distribution.) Imagine also that you can randomly select a sample of three scores from this population. Table 1 shows all the possible samples and their means.

Table 9-1		All Possible Samples of Three Scores (And Their Means) From a Population Consisting of the Scores 1, 2, and 3			
Sample	Mean	Sample	Mean	Sample	Mean
$1,1,1$	1.00	$2,1,1$	1.33	$3,1,1$	1.67
$1,1,2$	1.33	$2,1,2$	1.67	$3,1,2$	2.00
$1,1,3$	1.67	$2,1,3$	2.00	$3,1,3$	2.33
$1,2,1$	1.33	$2,2,1$	1.67	$3,2,1$	2.00
$1,2,2$	1.67	$2,2,2$	2.00	$3,2,2$	2.33
$1,2,3$	2.00	$2,2,3$	2.33	$3,2,3$	2.67
$1,3,1$	1.67	$2,3,1$	2.00	$3,3,1$	2.33
$1,3,2$	2.00	$2,3,2$	2.33	$3,3,2$	2.67
$1,3,3$	2.33	$2,3,3$	2.67	$3,3,3$	3.00

If you look closely at the table, you can almost see what's about to happen in the simulation. The sample mean that appears most frequently is 2.00 . The sample means that appear least frequently are 1.00 and 3.00 . Hmmm . . .

In the simulation, I randomly select a score from the population, and then randomly select two more. That group of three scores is a sample. Then I calculate the mean of that sample. I repeat this process for a total of 60 samples, resulting in 60 sample means. Finally, I graph the distribution of the sample means.

What does the simulated sampling distribution of the mean look like? Figure 9-3 shows a worksheet that answers that question.

In the worksheet, each row is a sample. The columns labeled $\mathrm{x} 1, \mathrm{x} 2$, and x 3 show the three scores for each sample. Column G shows the average for the sample in each row. Column I shows all the possible values for the sample mean, and column J shows how often each mean appears in the 60 samples. Columns I and J, and the graph, show that the distribution has its maximum frequency when the sample mean is 2.00 . The frequencies tail off as the sample means get farther and farther away from 2.00 .

Figure 9-3: Simulating the sampling distribution of the mean ($\mathrm{N}=3$) from a population consisting of the scores 1,2, and 3 . The simulation consists of 60 samples.

4	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P
1		Sample	x1	$\times 2$	x 3	Mean									
2		1	1	3	3	2.333333		Mean F	Frequency						
3		2	3	2	1	2		1.00	4						
4		3	1	2	2	1.666667		1.33	8						
5		4	2	2	2	2		1.67	15						
6		5	1	2	1	1.333333		2.00	16						
7		6	2	2	2	2		2.33	9						
8		7	3	1	2	2		2.67	7						
9		8	2	3	1	2		3.00	1						
10		9	2	3	2	2.333333									
11		10	3	2	3	2.666667									
12		11	1	3	2	2		Sampl	ling Dis	ributi	n of t	(Me	(N		
13		12	2	1	2	1.666667									
14		13	2	2	2	- 2									
15		14	1	1	3	1.666667		16							
16		15	3	2	3	2.666667		14							
17		16	1	3	1	1.666667	〕	12							
18		17	1	1	3	1.666667	$\stackrel{5}{0}$	10							
19		18	2	3	2	2.333333	$\stackrel{1}{2}$								
20		19	3	3	2	2.666667	\%	8							
21		20	2	2	1	1.666667	㞱	6							
22		21	1	1	3	1.666667		4							
23		22	2	1	1	1.333333									
24		23	2	2	2	2								-	
25		24	2	3	3	2.666667									
26		25	1	1	1	1		1.00	$0 \quad 1.33$	1.67	2.00	2.33	2.67	3.00	
27		26	1	1	1	1									
28		27	3	1	2	2					mple	ean			
29		28	3	1	1	1.666667									
30		29	2	1	3	2									

The point of all this is that the population looks nothing like a normal distribution and the sample size is very small. Even under those constraints, the sampling distribution of the mean based on 60 samples begins to look very much like a normal distribution.

What about the parameters the Central Limit Theorem predicts for the sampling distribution? Start with the population. The population mean is 2.00 , the population variance is .67 , and the population standard deviation is .82 . (This kind of population requires some slightly fancy mathematics for figuring out the parameters. The math is a little beyond where we are, so I'll leave it at that.)

On to the sampling distribution. The mean of the 60 means is 1.91 , and their standard deviation (an estimate of the standard error of the mean) is .48 . Those numbers closely approximate the Central Limit Theorem-predicted parameters for the sampling distribution of the mean, 2.00 (equal to the population mean) and .47 (the population standard deviation, 82 , divided by the square root of 3 , the sample size).

In case you're interested in doing this simulation, here are the steps:

1. Select a cell for your first randomly selected number.

I selected cell D2.

2. Use the worksheet function RANDBETWEEN to select 1,2 , or 3.

This simulates drawing a number from a population consisting of the numbers 1,2 , and 3 where you have an equal chance of selecting each number. You can either select Formulas । Math \& Trig I RANDBETWEEN and use the Function Arguments dialog box, or just type

```
=RANDBETWEEN (1,3)
```

in D2 and press Enter. The first argument is the smallest number RANDBETWEEN returns, and the second argument is the largest number.
3. Select the cell to the right of the original cell and pick another random number between one and three. Do this again for a third random number in the cell to the right of the second one.
The easiest way to do this is to autofill the two cells to the right of the original cell. In my worksheet those two cells are E2 and F2.
4. Consider these three cells to be a sample and calculate their mean in the cell to the right of the third cell.
The easiest way to do this is just type

```
=AVERAGE (D2 : F2)
```

in cell G2 and press Enter.
5. Repeat this process for as many samples as you want to include in the simulation. Have each row correspond to a sample.
I used 60 samples. The quick and easy way to get this done is to select the first row of three randomly selected numbers and their mean, and then autofill the remaining rows. The set of sample means in column G is the simulated sampling distribution of the mean. Use AVERAGE and STDEVP to find its mean and standard deviation.

To see what this simulated sampling distribution looks like, use the array function FREQUENCY on the sample means in column G. Follow these steps:

1. Enter the possible values of the sample mean into an array.

I used column I for this. I expressed the possible values of the sample mean in fraction form ($3 / 3,4 / 3,5 / 3,6 / 3,7 / 3,8 / 3$, and $9 / 3$) as I entered them into the cells I3 through I9. Excel converts them to decimal form.
2. Select an array for the frequencies of the possible values of the sample mean.
I used column J to hold the frequencies, selecting cells J3 through J9.
3. From the Statistical Functions menu, select FREQUENCY to open the Function Arguments dialog box for FREQUENCY.
4. In the Function Arguments dialog box, enter the appropriate values for the arguments.
In the Data_array box, I entered the cells that hold the sample means. In this example, that's G2:G61.
5. Identify the array that holds the possible values of the sample mean.

FREQUENCY holds this array in the Bins_array box. For my worksheet, 13:19 goes into the Bins_array box. After you identify both arrays, the Function Arguments dialog box shows the frequencies inside a pair of curly brackets. (See Figure 9-4.)

Figure 9-4:

6. Press Ctrl+Shift+Enter to close the Function Arguments dialog box and show the frequencies.

Use this keystroke combination because FREQUENCY is an array function. (For more on FREQUENCY, see Chapter 7.)

Finally, with I3:19 highlighted, select
Insert | Column
and choose the Clustered Column layout to produce the graph of the frequencies. (See Chapter 3.) Your graph will probably look somewhat different from mine.

By the way, Excel repeats the random selection process whenever you do something that causes Excel to recalculate the worksheet. The effect is that the numbers can change as you work through this. For example, if you go back and autofill one of the rows again, the numbers change and the graph changes.

The Limits of Confidence

I told you about sampling distributions because they help you answer the question I pose at the beginning of this chapter: How much confidence can you have in the estimates you create?

The idea is to calculate a statistic, and then use that statistic to establish upper and lower bounds for the population parameter with, say, 95 percent
confidence. You can only do this if you know the sampling distribution of the statistic and the standard error. In the next section, I show how to do this for the mean.

Finding confidence limits for a mean

The FarBlonJet Corporation, a manufacturer of navigation systems, has developed a new battery to power their portable model. To help market their system, FarBlonJet wants to know how long, on average, each battery lasts before it burns out.

They'd like to estimate that average with 95 percent confidence. They test a sample of 100 batteries, and find that the sample mean is 60 hours, with a standard deviation of 20 hours. The Central Limit Theorem, remember, says that with a large enough sample (30 or more), the sampling distribution of the mean approximates a normal distribution. The standard error of the mean (the standard deviation of the sampling distribution of the mean) is

$$
\sigma_{\bar{x}}=\sigma / \sqrt{N}
$$

The sample size, N, is 100 . What about σ ? That's unknown, so you have to estimate it. If you know σ, that would mean you know μ, and establishing confidence limits would be unnecessary.

The best estimate of σ is the standard deviation of the sample. In this case that's 20. This leads to an estimate of the standard error of the mean

$$
s_{\bar{x}}=s / \sqrt{N}=20 / \sqrt{100}=20 / 10=2
$$

The best estimate of the population mean is the sample mean, 60. Armed with this information, - estimated mean, estimated standard error of the mean, normal distribution - you can envision the sampling distribution of the mean, which I've done in Figure 9-5. Consistent with Figure 9-2, each standard deviation is a standard error of the mean.

Now that you have the sampling distribution, you can establish the 95 percent confidence limits for the mean. This means that, starting at the center of the distribution, how far out to the sides do you have to extend until you have 95 percent of the area under the curve? (For more on area under the normal distribution and what it means, see Chapter 8.)

One way to answer this question is to work with the standard normal distribution and find the z-score that cuts off 47.5 percent on the right side and 47.5 percent on the left side (yes, Chapter 8 again). The one on the right is a positive z-score, the one on the left is a negative z-score. Then multiply each z-score by the standard error. Add each result to the sample mean to get the upper confidence limit and the lower confidence limit.

It turns out that the z-score is 1.96 for the boundary on the right side of the standard normal distribution, and -1.96 for the boundary on the left. You can calculate those values (difficult), get them from a table of the normal distribution that you typically find in a statistics textbook (easier), or use the Excel worksheet function I describe in the next section to do all the calculations (much easier). The point is that the upper bound in the sampling distribution is $63.92\left(60+1.96^{s_{\bar{x}}}\right.$), and the lower bound is $56.08\left(60-1.96^{S_{\bar{x}}}\right)$. Figure $9-6$ shows these bounds on the sampling distribution.

This means you can say with 95 percent confidence that the FarBlonJet battery lasts, on the average, between 56.08 hours and 63.92 hours. Want a narrower range? You can either reduce your confidence level (to, say, 90 percent) or test a larger sample of batteries.

Figure 9-6:
The 95
percent confidence limits on the FarBlonJet sampling distribution.

CONFIDENCE

The CONFIDENCE worksheet function does the lion's share of the work in constructing confidence intervals. You supply the confidence level, the standard deviation, and the sample size. CONFIDENCE returns the result of multiplying the appropriate z-score by the standard error of the mean. To determine the upper bound of the confidence limit, you add that result to the sample mean. To determine the lower bound, you subtract that result from the sample mean.

To show you how it works, I'll go through the FarBlonJet batteries example again. Here are the steps:

1. Select a cell.

2. From the Statistical Functions menu, select CONFIDENCE to open the Function Arguments dialog box for CONFIDENCE. (See Figure 9-7.)
The Alpha box holds the result of subtracting the desired confidence level from 1.00.

Figure 9-7:
The
Function Arguments dialog box for CONFIDENCE.

Yes, that's a little confusing. Instead of typing .95 for the 95 percent confidence limit, I have to type .05. Think of it as the percentage of area beyond the confidence limits rather than the area within the confidence limits. And why is it labeled "Alpha"? I get into that in Chapter 10.
3. In the Standard_dev box, I typed the standard deviation of the sample. For this example, the standard deviation is 20.
The Size box holds the number of individuals in the sample. The example specifies 100 batteries tested. After I typed that number, the answer (3.919928) appears in the dialog box.

4. Click OK to put the answer into your selected cell.

To finish things off, I add the answer to the sample mean (60) to determine the upper confidence limit (63.92) and subtract the answer from the mean to determine the lower confidence limit (56.08).

Fit to a t

The Central Limit Theorem specifies (approximately) a normal distribution for large samples. Many times, however, you don't have the luxury of large sample sizes, and the normal distribution isn't appropriate. What do you do?

For small samples, the sampling distribution of the mean is a member of a family of distributions called the t-distribution. The parameter that distinguishes members of this family from one another is called degrees of freedom.

Think of degrees of freedom as the denominator of your variance estimate. For example, if your sample consists of 25 individuals, the sample variance that estimates population variance is
$s^{2}=\frac{\sum(x-\bar{x})^{2}}{N-1}=\frac{\sum(x-\bar{x})^{2}}{25-1}=\frac{\sum(x-\bar{x})^{2}}{24}$

The number in the denominator is 24 , and that's the value of the degrees of freedom parameter. In general, degrees of freedom (df) $=N-1$ (N is the sample size) when you use the t-distribution the way I'm about to in this section.

Figure $9-8$ shows two members of the t-distribution family ($\mathrm{df}=3$ and $\mathrm{df}=10$), along with the normal distribution for comparison. As the Figure shows, the greater the df, the more closely t approximates a normal distribution.

Figure 9-8: Some members of the t-distribution family.

So to determine the 95 percent confidence level if you have a small sample, work with the member of the t-distribution family that has the appropriate df. Find the value that cuts off 47.5 percent of the area on the right side of the distribution and 47.5 percent of the area on the left side of the distribution. The one on the right is a positive value, the one on the left is negative. Then multiply each value by the standard error. Add each result to the mean to get the upper confidence limit and the lower confidence limit.

In the FarBlonJet batteries example, suppose the sample consists of 25 batteries, with a mean of 60 and a standard deviation of 20 . The estimate for the standard error of the mean is

$$
s_{\bar{x}}=s / \sqrt{N}=20 / \sqrt{25}=20 / 5=4
$$

The $\mathrm{df}=N-1=24$. The value that cuts off 47.5 percent of the area on the right of this distribution is 2.064, and on the left it's -2.064 . As I said earlier, you can calculate these values (difficult), look them up in a table that's in statistics textbooks (easier), or use the Excel function I describe in the next section (much easier).

The point is that the upper confidence limit is $68.256\left(60+2.064^{S_{\bar{x}}}\right)$ and the lower confidence limit is 51.744 ($60-2.064$). With a sample of 25 batteries, you can say with 95 percent confidence that the average life of a FarBlonJet battery is between 51.744 hours and 68.256 hours. Notice that with a smaller sample, the range is wider for the same level of confidence that I used in the previous example.

TINV

Excel's TINV worksheet function finds the value in the t-distribution that cuts off the desired area. Working with it is short and sweet:

1. Select a cell.

2. From the Statistical Functions menu, select TINV to open the Function Arguments dialog box for TINV.
3. In the Function Arguments dialog box, enter the appropriate values for the arguments.
4. In the Probability box, enter the result of subtracting your confidence level from 1.00.
As I say in the description of the CONFIDENCE function, that's a bit confusing. Instead of typing .95 for the 95 percent confidence limit, I typed .05 in the Probability box. Think of it as the percentage of area beyond the confidence limits rather than the area within the confidence limits.
5. In the Deg_freedom box I type the degrees of freedom.

For this example, $\mathrm{df}=24$. The answer appears in the dialog box.
6. Click $O K$ to close the dialog box and put the answer in the selected cell. (See Figure 9-9.)

Figure 9-9:
The
Function Arguments dialog box for TINV.

You still have to multiply TINV's answer by the standard error of the mean and do the arithmetic to find the upper and lower limits.

I advise against using the CONFIDENCE worksheet function if your sample size is less than 30 and if you can't assume your population is a normal distribution. Why? CONFIDENCE always assumes a normally distributed sampling distribution, and that's not always appropriate. So if your confidence level is 95 percent, for example, CONFIDENCE multiplies the standard error by 1.96 regardless of the sample size. The result is that the confidence interval is too narrow for a small sample size.

Chapter 10

One-Sample Hypothesis Testing

In This Chapter

$>$ Introducing hypothesis tests
$>$ Testing hypotheses about means
$>$ Testing hypotheses about variances

ωhatever your occupation, you often have to assess whether something out of the ordinary has happened. Sometimes you start with a sample from a population about whose parameters you know a great deal. You have to decide whether that sample is like the rest of the population or if it's different.

Measure that sample and calculate its statistics. Finally, compare those statistics with the population parameters. Are they the same? Are they different? Does the sample represent something that's off the beaten path? Proper use of statistics helps you decide.

Sometimes you don't know the parameters of the population you're dealing with. Then what? In this chapter, I discuss statistical techniques and worksheet functions for dealing with both cases.

Hypotheses, Tests, and Errors

A hypothesis is a guess about the way the world works. It's a tentative explanation of some process, whether that process is natural or artificial. Before studying and measuring the individuals in a sample, a researcher formulates hypotheses that predict what the data should look like.

Generally, one hypothesis predicts that the data won't show anything new or interesting. Dubbed the null hypothesis (abbreviated H_{0}), this hypothesis holds that if the data deviate from the norm in any way, that deviation is due strictly to chance. Another hypothesis, the alternative hypothesis (abbreviated H_{1}), explains things differently. According to the alternative hypothesis, the data show something important.

After gathering the data, it's up to the researcher to make a decision. The way the logic works, the decision centers around the null hypothesis. The researcher must decide to either reject the null hypothesis or to not reject the null hypothesis. Hypothesis testing is the process of formulating hypotheses, gathering data, and deciding whether to reject or not reject the null hypothesis.

Nothing in the logic involves accepting either hypothesis. Nor does the logic entail any decisions about the alternative hypothesis. It's all about rejecting or not rejecting H_{0}.

Regardless of the reject-don't-reject decision, an error is possible. One type of error occurs when you believe that the data show something important and you reject H_{0}, and in reality the data are due just to chance. This is called a Type I error. At the outset of a study, you set the criteria for rejecting H_{0}. In so doing, you set the probability of a Type I error. This probability is called alpha (α)

The other type of error occurs when you don't reject H_{0} and the data are really due to something out of the ordinary. For one reason or another, you happened to miss it. This is called a Type II error. Its probability is called beta (β). Table 10-1 summarizes the possible decisions and errors.

Table 10-1	Decisions and Errors in Hypothesis Testing		
		"True State" of the World	
	Heject H0	Type I Error	H_{1} is True
Decision			
	Do Not Reject H0	Correct Decision	

Note that you never know the true state of the world. All you can ever do is measure the individuals in a sample, calculate the statistics, and make a decision about H_{0}.

Hypothesis tests and sampling distributions

In Chapter 9, I discuss sampling distributions. A sampling distribution, remember, is the set of all possible values of a statistic for a given sample size.

Also in Chapter 9, I discuss the Central Limit Theorem. This theorem tells you that the sampling distribution of the mean approximates a normal distribution if the sample size is large (for practical purposes, at least 30). This holds whether or not the population is normally distributed. If the population is a normal distribution, the sampling distribution is normal for any sample size. Two other points from the Central Limit Theorem:
\checkmark The mean of the sampling distribution of the mean is equal to the population mean.
The equation for this is

$$
\mu_{\bar{x}}=\mu
$$

\checkmark The standard error of the mean (the standard deviation of the sampling distribution) is equal to the population standard deviation divided by the square root of the sample size.

This equation is

$$
\sigma_{\bar{x}}=\sigma / \sqrt{N}
$$

The sampling distribution of the mean figures prominently into the type of hypothesis testing I discuss in this chapter. Theoretically, when you test a null hypothesis versus an alternative hypothesis, each hypothesis corresponds to a separate sampling distribution.

Figure 10-1 shows what I mean. The figure shows two normal distributions. I placed them arbitrarily. Each normal distribution represents a sampling distribution of the mean. The one on the left represents the distribution of possible sample means if the null hypothesis is truly how the world works. The one on the right represents the distribution of possible sample means if the alternative hypothesis is truly how the world works.

Of course, when you do a hypothesis test, you never know which distribution produces the results. You work with a sample mean - a point on the horizontal axis. It's your job to decide which distribution the sample mean is part of. You set up a critical value - a decision criterion. If the sample mean is on one side of the critical value, you reject H_{0}. If not, you don't.

In this vein, the Figure also shows α and β. These, as I mention earlier, are the probabilities of decision errors. The area that corresponds to α is in the H_{0} distribution. I shaded it in dark gray. It represents the probability that a sample mean comes from the H_{0} distribution, but it's so extreme that you reject H_{0}.

Figure 10-1:
H_{0} and H_{1} each correspond to a sampling distribution.

Where you set the critical value determines α. In most hypothesis testing, you set α at .05 . This means that you're willing to tolerate a Type I error (incorrectly rejecting $\left.H_{0}\right) 5$ percent of the time. Graphically, the critical value cuts off 5 percent of the area of the sampling distribution. By the way, if you're talking about the 5 percent of the area that's in the right tail of the distribution (as in Figure 10-1), you're talking about the upper 5 percent. If it's the 5 percent in the left tail you're interested in, that's the lower 5 percent.

The area that corresponds to β is in the H_{1} distribution. I shaded it in light gray. This area represents the probability that a sample mean comes from the H_{1} distribution, but it's close enough to the center of the H_{0} distribution that you don't reject H_{0}. You don't get to set β. The size of this area depends on the separation between the means of the two distributions, and that's up to the world we live in - not up to you.

These sampling distributions are appropriate when your work corresponds to the conditions of the Central Limit Theorem: if you know the population you're working with is a normal distribution, or if you have a large sample.

Catching Some Zs Again

Here's an example of a hypothesis test that involves a sample from a normally distributed population. Because the population is normally distributed, any sample size results in a normally distributed sampling distribution.
Because it's a normal distribution, you use z-scores in the hypothesis test:

$$
z=\frac{\bar{x}-\mu}{\sigma / \sqrt{N}}
$$

One more "because": Because you use the z-score in the hypothesis test, the z-score here is called the test statistic.

Suppose you think that people living in a particular zip code have higher-than-average IQs. You take a sample of 16 people from that zip code, give them IQ tests, tabulate the results, and calculate the statistics. For the population of IQ scores, $\mu=100$ and $\sigma=16$ (for the Stanford-Binet version).

The hypotheses are:
$\mathrm{H}_{0}: \mu_{\mathrm{ZIP} \text { code }} \leq 100$
$\mathrm{H}_{1}: \mu_{\text {ZIP code }}>100$
Assume $\alpha=.05$. That's the shaded area in the tail of the H_{0} distribution in Figure 10-1.

Why the \leq in H_{0} ? You use that symbol because you'll only reject H_{0} if the sample mean is larger than the hypothesized value. Anything else is evidence in favor of not rejecting H_{0}.

Suppose the sample mean is 107.75 . Can you reject H_{0} ?
The test involves turning 107.75 into a standard score in the sampling distribution of the mean:
$z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{N}}=\frac{107.75-100}{16 / \sqrt{16}}=\frac{7.75}{16 / 4}=\frac{7.75}{4}=1.94$
Is the value of the test statistic large enough to enable you to reject H_{0} with $\alpha=.05$? It is. The critical value - the value of z that cuts off 5 percent of the
area in a standard normal distribution - is 1.645. (After years of working with the standard normal distribution, I happen to know this. Read Chapter 8, find out about Excel's NORMSINV function, and you can have information like that at your fingertips, too.) The calculated value, 1.94 , exceeds 1.645 , so it's in the rejection region. The decision is to reject H_{0}.

This means that if H_{0} is true, the probability of getting a test statistic value that's at least this large is less than .05 . That's strong evidence in favor of rejecting H_{0}. In statistical parlance, any time you reject H_{0} the result is said to be "statistically significant."

This type of hypothesis testing is called one-tailed because the rejection region is in one tail of the sampling distribution.

A hypothesis test can be one-tailed in the other direction. Suppose you had reason to believe that people in that zip code had lower than average IQ. In that case, the hypotheses are:
$\mathrm{H}_{0}: \mu_{\mathrm{ZIP} \text { code }} \geq 100$
$\mathrm{H}_{1}: \mu_{\text {ZIP code }}<100$
For this hypothesis test, the critical value of the test statistic is -1.645 if $\alpha=.05$.

A hypothesis test can be two-tailed, meaning that the rejection region is in both tails of the H_{0} sampling distribution. That happens when the hypotheses look like this:
$\mathrm{H}_{0}: \mu_{\mathrm{ZIP} \text { code }}=100$
$\mathrm{H}_{1}: \mu_{\text {ZIP code }} \neq 100$
In this case, the alternate hypothesis just specifies that the mean is different from the null-hypothesis value, without saying whether it's greater or whether it's less. Figure 10-2 shows what the two-tailed rejection region looks like for $\alpha=.05$. The 5 percent is divided evenly between the left tail (also called the lower tail) and the right tail (the upper tail).

For a standard normal distribution, incidentally, the z-score that cuts off 2.5 percent in the right tail is 1.96 . The z-score that cuts off 2.5 percent in the left tail is -1.96 . (Again, I happen to know these values after years of working with the standard normal distribution.) The z-score in the preceding example, 1.94, does not exceed 1.96. The decision, in the two-tailed case, is to not reject H_{0}.

Figure 10-2: The twotailed rejection region for $\alpha=.05$.

This brings up an important point. A one-tailed hypothesis test can reject H_{0}, while a two-tailed test on the same data might not. A two-tailed test indicates that you're looking for a difference between the sample mean and the nullhypothesis mean, but you don't know in which direction. A one-tailed test shows that you have a pretty good idea of how the difference should come out. For practical purposes, this means you should try to have enough knowledge to be able to specify a one-tailed test.

ZTEST

Excel's ZTEST worksheet function does the calculations for hypothesis tests involving z-scores in a standard normal distribution. You provide sample data, a null hypothesis value, and a population standard deviation. ZTEST returns the probability in one tail of the H_{0} sampling distribution.

This is a bit different from the way things work when you apply the formulas I just showed you. The formula calculates a z-score. Then it's up to you to see where that score stands in a standard normal distribution with respect to probability. ZTEST eliminates the middleman (the need to calculate the z-score) and goes right to the probability.

Figure 10-3 shows the data and the Function Arguments dialog box for ZTEST. The data are IQ scores for 16 people in the zip code example in the preceding section. That example, remember, tests the hypothesis that people in a particular zip code have a higher than average IQ.

Figure 10-3:

Here are the steps:

1. Enter your data into an array of cells and select a cell for the result.

The data in this example are in cells C3 through C18.
2. From the Statistical Functions menu, select ZTEST to open the Function Arguments dialog box for ZTEST. (See Figure 10-3.)
3. In the Function Arguments dialog box, enter the appropriate values for the arguments.
In the Array box, I enter the array of cells that hold the data. For this example, that's C3:C18.
In the X box, type the H_{0} mean. For this example, the mean is 100 the mean of IQ scores in the population.
In the Sigma box, type the population standard deviation. The population standard deviation for IQ is 16 . After typing that number, the answer (0.026342) appears in the dialog box.
4. Click OK to put the answer into the selected cell.

With $\alpha=.05$, and a one-tailed test $\left(\mathrm{H}_{1}: \mu>100\right)$, the decision is to reject H_{0}, because the answer (0.026) is less than .05 . Note that with a two-tailed test $\left(H_{1}: \mu \neq 100\right)$, the decision is to not reject H_{0}. That's because 2×0.026 is greater than .05 - just barely greater (.052) - but if you draw the line at .05 , you cannot reject H_{0}.

t for One

In the preceding example, I worked with IQ scores. The population of IQ scores is a normal distribution with a well-known mean and standard deviation. This enabled me to work with the Central Limit Theorem and describe the sampling distribution of the mean as a normal distribution. I was then able to use z as the test statistic.

In the real world, however, you typically don't have the luxury of working with such well-defined populations. You usually have small samples, and you're typically measuring something that isn't as well known as IQ. The bottom line is that you often don't know the population parameters, nor do you know whether or not the population is normally distributed.

When that's the case, you use the sample data to estimate the population standard deviation, and you treat the sampling distribution of the mean as a member of a family of distributions called the t-distribution. You use t as a test statistic. In Chapter 9, I introduce this distribution, and mention that you distinguish members of this family by a parameter called degrees of freedom (df).

The formula for the test statistic is

$$
t=\frac{\bar{x}-\mu}{s / \sqrt{N}}
$$

Think of df as the denominator of the estimate of the population variance. For the hypothesis tests in this section, that's $N-1$, where N is the number of scores in the sample. The higher the df, the more closely the t-distribution resembles the normal distribution.

Here's an example. FarKlempt Robotics, Inc., markets microrobots. They claim their product averages four defects per unit. A consumer group believes this average is higher. The consumer group takes a sample of 9 FarKlempt microrobots and finds an average of 7 defects, with a standard deviation of 3.16. The hypothesis test is:
$\mathrm{H}_{0}: \mu \leq 4$
$\mathrm{H}_{1}: \mu>4$
$\alpha=.05$

The formula is:

$$
t=\frac{\bar{x}-\mu}{s / \sqrt{N}}=\frac{7-4}{3.16 / \sqrt{9}}=\frac{3}{3.16 / 3}=2.85
$$

Can you reject H_{0} ? The Excel function in the next section tells you.

TDIST

You use the worksheet function TDIST to decide whether or not your calculated t value is in the region of rejection. You supply a value for t, a value for df, and determine whether the test is one-tailed or two-tailed. TDIST returns the probability of obtaining a t value at least as high as yours if H_{0} is true. If that probability is less than your α, you reject H_{0}.

The steps are:

1. Select a cell to store the result.
2. From the Statistical Functions menu, select TDIST to open the Function Arguments dialog box for TDIST. (See Figure 10-4.)

Figure 10-4:
The
Function Arguments dialog box for TDIST.

3. In the Function Arguments dialog box, enter the appropriate values for the arguments.
The calculated t value goes in the X box. For this example, the calculated t value is 2.85 .

The degrees of freedom go in the Deg_freedom box. The degrees of freedom for this example is 8 (9 scores -1).

In the Tails box, the idea is to type 1 (for a one-tailed test) or 2 (for a two-tailed test). In this example, it's a one-tailed test. After I typed 1, the dialog box shows the probability in the tail of the t-distribution beyond the t value.
4. Click OK to close the dialog box and put the answer in the selected cell.

The value in the dialog box in Figure 10-4 is less than . 05 , so the decision is to reject H_{0}.

Testing a Variance

So far, l've told you about one-sample hypothesis testing for means. You can also test hypotheses about variances.

This sometimes comes up in the context of manufacturing. For example, suppose FarKlempt Robotics, Inc, produces a part that has to be a certain length with a very small variability. You can take a sample of parts, measure them, find the sample variability and perform a hypothesis test against the desired variability.

The family of distributions for the test is called chi-square. Its symbol is χ^{2}. I won't go into all the mathematics. I'll just tell you that, once again, df is the parameter that distinguishes one member of the family from another. Figure 10-5 shows two members of the chi-square family.

The formula for this test statistic is

$$
\chi^{2}=\frac{(N-1) s^{2}}{\sigma^{2}}
$$

N is the number of scores in the sample, s^{2} is the sample variance, and σ^{2} is the population variance specified in H_{0}.

With this test, you have to assume that what you're measuring has a normal distribution.

Suppose the process for the FarKlempt part has to have at most a standard deviation of 1.5 inches for its length. (Notice I said standard deviation. This allows me to speak in terms of inches. If I said variance the units would be square inches.). After measuring a sample of 26 parts, you find a standard deviation of 1.8 inches.

Figure 10-5: Two members of the chi-square family.

The hypotheses are:
$\mathrm{H}_{0}: \sigma^{2} \leq 2.25$ (remember to square the "at-most" standard deviation of 1.5 inches)
$\mathrm{H}_{1}: \sigma^{2}>2.25$
$\alpha=.05$
Working with the formula,

$$
\chi^{2}=\frac{(N-1) s^{2}}{\sigma^{2}}=\frac{(26-1)(1.8)^{2}}{(1.5)^{2}}=\frac{(25)(3.24)}{2.25}=36
$$

Can you reject H_{0} ? Read on.

CHIDIST

After calculating a value for your chi-square test statistic, you use the CHIDIST worksheet function to make a judgment about it. You supply the
chi-square value and the df, and it tells you the probability of obtaining a value at least that high if H_{0} is true. If that probability is less than your α, reject H_{0}.

To show you how it works, I apply the information from the example in the preceding section. Follow these steps:

1. Select a cell to store the result.
2. From the Statistical Functions menu, select CHIDIST to open the Function Arguments dialog box for CHIDIST. (See Figure 10-6.)

Figure 10-6:
The
Function
Arguments dialog box for CHIDIST.

3. In the Function Arguments dialog box, type the appropriate values for the arguments.

In the X box, I typed the calculated chi-square value. For this example, that value is 36 .

In the Deg_freedom box, I typed the degrees of freedom. The degrees of freedom for this example is $25(26-1)$. After typing the df, the dialog box shows the one-tailed probability of obtaining at least this value of chi-square if H_{0} is true.
4. Click $O K$ to close the dialog box and put the answer in the selected cell.

The value in the dialog box in Figure 10-6 is greater than .05 , so the decision is to not reject H_{0}. (Can you conclude that the process is within acceptable limits of variability? See the nearby sidebar "A point to ponder.")

CHIINV

CHIINV is the flip side of CHIDIST. You supply a probability and df, and CHIINV tells you the corresponding value of chi-square. If you want to know
the value you have to exceed in order to reject H_{0} in the preceding example, follow these steps:

1. Select a cell to store the result.
2. From the Statistical Functions menu, select CHIINV and click OK to open the Function Arguments dialog box for CHIINV. (See Figure 10-7.)

3. In the Function Arguments dialog box, enter the appropriate values for the arguments.

In the Probability box, I typed .05 , the probability I'm interested in for this example.

In the Deg_freedom box, I typed the degrees of freedom. The value for degrees of freedom in this example is $25(26-1)$. After I typed the df, the dialog box shows the value (37.65248) that cuts off the upper 5 percent of the area in this chi-square distribution.
4. Click $O K$ to close the dialog box and put the answer in the selected cell.

As the dialog box in Figure 10-7 shows, the calculated value (36) didn't miss the cutoff value by much. A miss is still a miss (to paraphrase "As Time Goes By"), and you cannot reject H_{0}.

A point to ponder

Retrace the preceding example. FarKlempt Robotics wants to show that its manufacturing process is within acceptable limits of variability. The null hypothesis, in effect, says the process is acceptable. The data do not present evidence for rejecting H_{0}. The value of the test statistic just misses the critical value. Does that mean the manufacturing process is within acceptable limits?

Statistics are an aid to common sense, not a substitute. If the data are just barely within acceptability, that should set off alarms.
Usually, you try to reject H_{0}. This is a rare case when not rejecting H_{0} is more desirable, because nonrejection implies something
positive - the manufacturing process is working properly. Can you still use hypothesis testing techniques in this situation?

Yes, you can - with a notable change. Rather than a small value of α, like . 05 , you choose a large value, like .20. This stacks the deck against not rejecting H_{0} - small values of the test statistic can lead to rejection. If α is .20 in this example, the critical value is 30.6752 . (Use CHINV to verify that.) Because the obtained value, 36 , is higher than this critical value the decision with this α is to reject H_{0}.
Using a high α is not often done. When the desired outcome is to not reject H_{0}, I strongly advise it.

Chapter 11

Two-Sample Hypothesis Testing

In This Chapter

$>$ Testing differences between means of two samples
$>$ Testing means of paired samples
$>$ Testing hypotheses about variances

1n business, in education, and in scientific research the need often arises to compare one sample with another. Sometimes the samples are independent, sometimes they're matched in some way. Each sample comes from a different population. The objective is to decide whether or not the populations they come from are different from one another.

Usually, this involves tests of hypotheses about population means. You can also test hypotheses about population variances. In this chapter, I show you how to carry out these tests. I also discuss useful worksheet functions and data analysis tools that help you get the job done.

Hypotheses Built for Two

As in the one-sample case (Chapter 10), hypothesis testing with two samples starts with a null hypothesis $\left(\mathrm{H}_{0}\right)$ and an alternative hypothesis $\left(\mathrm{H}_{1}\right)$. The null hypothesis specifies that any differences you see between the two samples are due strictly to chance. The alternative hypothesis says, in effect, that any differences you see are real and not due to chance.

It's possible to have a one-tailed test, in which the alternative hypothesis specifies the direction of the difference between the two means, or a twotailed test in which the alternative hypothesis does not specify the direction of the difference.

For a one-tailed test, the hypotheses look like this:
$\mathrm{H}_{0}: \mu_{1}-\mu_{2}=0$
$H_{1}: \mu_{1}-\mu_{2}>0$
or like this:
$H_{0}: \mu_{1}-\mu_{2}=0$
$H_{1}: \mu_{1}-\mu_{2}<0$
For a two-tailed test, the hypotheses are:
$\mathrm{H}_{0}: \mu_{1}-\mu_{2}=0$
$H_{1}: \mu_{1}-\mu_{2} \neq 0$
The zero in these hypotheses is the typical case. It's possible, however, to test for any value - just substitute that value for zero.

To carry out the test, you first set α, the probability of a Type I error that you're willing to live with (see Chapter 9). Then you calculate the mean and standard deviation of each sample, subtract one mean from the other, and use a formula to convert the result into a test statistic. Compare the test statistic to a sampling distribution of test statistics. If it's in the rejection region that α specifies (see Chapter 10), reject H_{0}. If not, don't reject H_{0}.

Sampling Distributions Revisited

In Chapter 9, I introduce the idea of a sampling distribution - a distribution of all possible values of a statistic for a particular sample size. In that chapter, I describe the sampling distribution of the mean. In Chapter 10, I show its connection with one-sample hypothesis testing.

For this type of hypothesis testing, another sampling distribution is necessary. This one is the sampling distribution of the difference between means.

The sampling distribution of the difference between means is the distribution of all possible values of differences between pairs of sample means with the sample sizes held constant from pair to pair. (Yes, that's a mouthful.) Held constant from pair to pair means that the first sample in the pair always has the same size, and the second sample in the pair always has the same size. The two sample sizes are not necessarily equal.

Within each pair, each sample comes from a different population. All the samples are independent of one another, so that picking individuals for one sample has no effect on picking individuals for another.

Figure 11-1 shows the steps in creating this sampling distribution. This is something you never do in practice. It's all theoretical. As the figure shows, the idea is to take a sample out of one population and a sample out of another, calculate their means, and subtract one mean from the other. Return the samples to the populations, and repeat over and over and over. The result of the process is a set of differences between means. This set of differences is the sampling distribution.

Figure 11-1: Creating the sampling distribution of the difference between means.

Applying the Central Limit Theorem

Like any other set of numbers, this sampling distribution has a mean and a standard deviation. As is the case with the sampling distribution of the mean (Chapters 9 and 10), the Central Limit Theorem applies here.

According to the Central Limit Theorem, if the samples are large, the sampling distribution of the difference between means is approximately a normal distribution. If the populations are normally distributed, the sampling distribution is a normal distribution even if the samples are small.

The Central Limit Theorem also has something to say about the mean and standard deviation of this sampling distribution. Suppose the parameters for the first population are μ_{1} and σ_{1}, and the parameters for the second population are μ_{2} and σ_{2}. The mean of the sampling distribution is
$\mu_{\bar{x}_{1}-\bar{x}_{2}}=\mu_{1}-\mu_{2}$

The standard deviation of the sampling distribution is
$\sigma_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\frac{\sigma_{1}{ }^{2}}{N_{1}}+\frac{\sigma_{2}{ }^{2}}{N_{2}}}$
N_{1} is the number of individuals in the sample from the first population, N_{2} is the number of individuals in the sample from the second.

This standard deviation is called the standard error of the difference between means.

Figure 11-2 shows the sampling distribution along with its parameters, as specified by the Central Limit Theorem.

Figure 11-2:
The
sampling distribution of the difference between means according to the Central Limit Theorem.

Zs once more

Because the Central Limit Theorem says that the sampling distribution is approximately normal for large samples (or for small samples from normally distributed populations), you use the z-score as your test statistic. Another way to say "use the z-score as your test statistic" is "perform a z-test." Here's the formula:
$z=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sigma_{\bar{x}_{1}-\bar{x}_{2}}}$

The term $\left(\mu_{1}-\mu_{2}\right)$ represents the difference between the means in H_{0}.
This formula converts the difference between sample means into a standard score. Compare the standard score against a standard normal distribution a normal distribution with $\mu=0$ and $\sigma=1$. If the score is in the rejection region defined by α, reject H_{0}. If it's not, don't reject H_{0}.

You use this formula when you know the value of $\sigma_{1}{ }^{2}$ and $\sigma_{2}{ }^{2}$.
Here's an example. Imagine a new training technique designed to increase IQ. Take a sample of 25 people and train them under the new technique. Take another sample of 25 people and give them no special training. Suppose that the sample mean for the new technique sample is 107 , and for the no-training sample it's 101.2. The hypothesis test is:
$\mathrm{H}_{0}: \mu_{1}-\mu_{2}=0$
$\mathrm{H}_{1}: \mu_{1}-\mu_{2}>0$
I'll set α at . 05
The IQ is known to have a standard deviation of 16, and I assume that standard deviation would be the same in the population of people trained on the new technique. Of course, that population doesn't exist. The assumption is that if it did, it should have the same value for the standard deviation as the regular population of IQ scores. Does the mean of that (theoretical) population have the same value as the regular population? H_{0} says it does. H_{1} says it's larger.

The test statistic is
$z=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sigma_{\bar{x}_{1}-\bar{x}_{2}}}=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}{ }^{2}}{N_{1}}+\frac{\sigma_{2}{ }^{2}}{N_{2}}}}=\frac{(107-101.2)}{\sqrt{\frac{16^{2}}{25}+\frac{16^{2}}{25}}}=\frac{5.8}{4.53}=1.28$

With $\alpha=.05$, the critical value of z - the value that cuts off the upper 5 percent of the area under the standard normal distribution - is 1.645 . (You can use the worksheet function NORMSINV from Chapter 8 to verify this.) The calculated value of the test statistic is less than the critical value, so the decision is to not reject H_{0}. Figure 11-3 summarizes this.

Figure 11-3: The sampling distribution of the difference between means, along with the critical value for $\alpha=.05$ and the obtained value of the test statistic in the IO Example.

Data analysis tool: z-Test: Two Sample for Means

Excel provides a data analysis tool that makes it easy to do tests like the one in the IQ example. It's called z-Test: Two Sample for Means. Figure 11-4 shows the dialog box for this tool along with sample data that correspond to the IQ example.

Figure 11-4: The z-Test data analysis tool and data from two samples.

E	F	G	H		1	J	K	L		M	N
New Technique		No Training									
120		115	z-Te	est: Tw	o Sample	Means					Q
124		118		,	Sample	Means					
94		90		Iput							OK
122		99		ariable	1 Range:		\$E\$2:SE\$27		[OK
82		108		Variable	2Range:		\$G\$2:\$6\$27		[6]		Cancel
110		76					\$6\$2:36\$27				
108		99		Hypothe	sized Mean	ference:	0				Hep
88		94									
98		86		Variable	1 Variance	own):	256				
106		84		ariable	2 Variance	wn):	256				
108		108									
84		90		7 Labe							
82		82		lpha:	0.05						
107		76									
110		112		utput o	ptions						
104		118		Qutp	ut Range:				閶		
120		102			Worksheet						
102		98			Worksheet						
116		120			Workbook						
98		104									
80		104									
114		80									
132		119									
134		126									
132		122									

To use this tool, follow these steps:

1. Type the data for each sample into a separate data array.

For this example, the data in the New Technique sample are in column E and the data for the No Training sample are in column G.
2. Select Data I Data Analysis to open the Data Analysis dialog box.
3. In the Data Analysis dialog box, scroll down the Analysis Tools list and select z-Test: Two Sample for Means. Click OK to open the z-Test: Two Sample for Means dialog box (see Figure 11-4).
4. In the Variable 1 Range box, enter the cell range that holds the data for one of the samples.

For the example, the New Technique data are in $\$ \mathrm{E} \$ 2: \$ \mathrm{E} \$ 27$. (Note the $\$$-signs for absolute referencing.)
5. In the Variable 2 Range box, enter the cell range that holds the data for the other sample.
The No Training data are in $\$ \mathrm{G} \$ 2: \$ \mathrm{G} \$ 27$.
6. In the Hypothesized Mean Difference box, type the difference between $\mu 1$ and $\mu 2$ that H 0 specifies.
In this example, that difference is 0 .
7. In the Variable 1 Variance (known) box, type the variance of the first sample.
The standard deviation of the population of IQ scores is 16 , so this variance is 256 .

8. In the Variable 2 Variance (known) box, type the variance of the second sample.

In this example, this variance is also 256 .
9. If the cell ranges include column headings, check the Labels checkbox.

I included the headings in the ranges, so I checked the box.
10. The Alpha box has 0.05 as a default.

I used the default value, consistent with the value of α in this example.
11. In the Output Options, select a radio button to indicate where you want the results.

I selected New Worksheet Ply to put the results on a new page in the worksheet.
12. Click OK.

Because I selected New Worksheet Ply, a newly created page opens with the results.

Figure 11-5 shows the tool's results, after I expanded the columns. Rows 4, 5, and 7 hold values you input into the dialog box. Row 6 counts the number of scores in each sample.

Figure 11-5:
Results of the z -Test data analysis tool.

	A	B	C	D
1	z-Test: Two Sample for Means			
2				
3		New Technique	No Training	
4	Mean	107	101.2	
5	Known Variance	256	256	
6	Observations	25	25	
7	Hypothesized Mean Difference	0		
8	z	1.281631041		
9	$P(Z<=z)$ one-tail	0.099986053		
10	z Critical one-tail	1.644853627		
11	P(Z<=z) two-tail	0.199972106		
12	z Critical two-tail	1.959963985		
13				

The value of the test statistic is in cell B 8 . The critical value for a one-tailed test is in B10, and the critical value for a two-tailed test is in B12.

Cell B9 displays the proportion of area that the test statistic cuts off in one tail of the standard normal distribution. Cell B11 doubles that value - it's the proportion of area cut off by the positive value of the test statistic (in the tail on the right side of the distribution) plus the proportion cut off by the negative value of the test statistic (in the tail on the left side of the distribution).

t for Two

The example in the preceding section involves a situation you rarely encounter - known population variances. If you know a population's variance, you're likely to know the population mean. If you know the mean, you probably don't have to perform hypothesis tests about it.

Not knowing the variances takes the Central Limit Theorem out of play. This means that you can't use the normal distribution as an approximation of the sampling distribution of the difference between means. Instead, you use the t-distribution, a family of distributions I introduce in Chapter 9 and apply to one-sample hypothesis testing in Chapter 10. The members of this family of distributions differ from one another in terms of a parameter called degrees of freedom (df). Think of df as the denominator of the variance estimate you use when you calculate a value of t as a test statistic. Another way to say "calculate a value of t as a test statistic": "Perform a t-test."

Unknown population variances lead to two possibilities for hypothesis testing. One possibility is that although the variances are unknown, you have reason to assume they're equal. The other possibility is that you cannot assume they're equal. In the subsections that follow, I discuss these possibilities.

Like peas in a pod: Equal variances

When you don't know a population variance, you use the sample variance to estimate it. If you have two samples, you average (sort of) the two sample variances to arrive at the estimate.

Putting sample variances together to estimate a population variance is called pooling. With two sample variances, here's how you do it:
$s_{p}{ }^{2}=\frac{\left(N_{1}-1\right) s_{1}{ }^{2}+\left(N_{2}-1\right) s_{2}{ }^{2}}{\left(N_{1}-1\right)+\left(N_{2}-1\right)}$
In this formula $\mathrm{s}_{\mathrm{p}}{ }^{2}$ stands for the pooled estimate. Notice that the denominator of this estimate is $\left(N_{1}-1\right)+\left(N_{2}-1\right)$. Is this the df? Absolutely!

The formula for calculating t is
$t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{s_{p} \sqrt{\frac{1}{N_{1}}+\frac{1}{N_{2}}}}$

On to an example. FarKlempt Robotics is trying to choose between two machines to produce a component for its new microrobot. Speed is of the essence, so they have each machine produce ten copies of the component, and time each production run. The hypotheses are:
$\mathrm{H}_{0}: \mu_{1}-\mu_{2}=0$
$H_{1}: \mu_{1}-\mu_{2} \neq 0$
They set α at .05 . This is a two-tailed test, because they don't know in advance which machine might be faster.

Table 11-1 presents the data for the production times in minutes.

Table 11-1
Sample Statistics from the FarKlempt Machine Study

	Machine 1	Machine 2
Mean Production Time	23.00	20.00
Standard Deviation	2.71	2.79
Sample Size	10	10

The pooled estimate of σ^{2} is

$$
\begin{aligned}
s_{p}{ }^{2}= & \frac{\left(n_{1}-1\right) s_{1}{ }^{2}+\left(n_{2}-1\right) s_{2}{ }^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)}=\frac{(10-1)(2.71)^{2}+(10-1)(2.79)^{2}}{(10-1)+(10-1)}= \\
& \frac{(9)(2.71)^{2}+(9)(2.79)^{2}}{9+9}=\frac{66+70}{18}=7.56
\end{aligned}
$$

The estimate of σ is 2.75 , the square root of 7.56 .
The test statistic is
$t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=\frac{(23-20)}{2.75 \sqrt{\frac{1}{10}+\frac{1}{10}}}=\frac{3}{1.23}=2.44$

For this test statistic, $\mathrm{df}=18$, the denominator of the variance estimate. In a t -distribution with 18 df , the critical value is 2.10 for the right-side (upper) tail and -2.10 for the left-side (lower) tail. If you don't believe me, apply TINV (Chapter 9). The calculated value of the test statistic is greater than 2.10,
so the decision is to reject H_{0}. The data provide evidence that Machine 2 is significantly faster than Machine 1. (You can use the word "significant" whenever you reject H_{0}.)

Like p's and q's: Unequal variances

The case of unequal variances presents a challenge. As it happens, when variances are not equal, the t distribution with $\left(\mathrm{N}_{1}-1\right)+\left(\mathrm{N}_{2}-1\right)$ degrees of freedom is not as close an approximation to the sampling distribution as statisticians would like.

Statisticians meet this challenge by reducing the degrees of freedom. To accomplish the reduction they use a fairly involved formula that depends on the sample standard deviations and the sample sizes.

Because the variances aren't equal, a pooled estimate is not appropriate. So you calculate the t-test in a different way:
$t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{1}{ }^{2}}{n_{1}}+\frac{s_{2}{ }^{2}}{n_{2}}}}$
You evaluate the test statistic against a member of the t-distribution family that has the reduced degrees of freedom.

TTEST

The worksheet function TTEST eliminates the muss, fuss, and bother of working through the formulas for the t-test.

Figure 11-6 shows the data for the FarKlempt machines example I showed you earlier. The Figure also shows the Function Arguments dialog box for TTEST.

Follow these steps:

1. Type the data for each sample into a separate data array and select a cell for the result.
For this example, the data for the Machine 1 sample are in column B and the data for the Machine 2 sample are in column D.
2. From the Statistical Functions menu, select TTEST to open the Function Arguments dialog box for TTEST.

Figure 11-6:
Working with TTEST.

3. In the Function Arguments dialog box, enter the appropriate values for the arguments.

In the Arrayl box, enter the sequence of cells that holds the data for one of the samples. In this example, the Machine 1 data are in B3:B12.
In the Array2 box, enter the sequence of cells that holds the data for the other sample. The Machine 2 data are in D3:D12.
The Tails box indicates whether this is a one-tailed test or a two-tailed test. In this example, it's a two-tailed test, so I typed 2 in this box.
The Type box holds a number that indicates the type of t-test. The choices are 1 for a paired test (which you find out about in an upcoming section), 2 for two samples assuming equal variances, and 3 for two samples assuming unequal variances. I typed 2.
With values supplied for all the arguments, the dialog box shows the probability associated with the t value for the data. It does not show the value of t .

4. Click OK to put the answer in the selected cell.

The value in the dialog box in Figure 11-6 is less than .05, so the decision is to reject H_{0}.

By the way, for this example, typing 3 into the Type box (indicating unequal variances) results in a very slight adjustment in the probability from the equal variance test. The adjustment is small because the sample variances are almost equal and the sample sizes are the same.

Data Analysis Tools: \boldsymbol{t}-test: Two Sample

Excel provides data analysis tools that carry out t-tests. One tool works for the equal variance cases, another for the unequal variances case. As you'll see, when you use these tools you end up with more information than TTEST gives you.

Here's an example that applies the equal variances t-test tool to the data from the FarKlempt machines example. Figure 11-7 shows the data along with the dialog box for t-Test: Two-Sample Assuming Equal Variances.

Figure 11-7:
The equal variances t-Test data analysis tool and data from two samples.

To use this tool, follow these steps:

1. Type the data for each sample into a separate data array.

For this example, the data in the Machine 1 sample are in column B and the data for the Machine 2 sample are in column D.
2. Select Data I Data Analysis to open the Data Analysis dialog box.
3. In the Data Analysis dialog box, scroll down the Analysis Tools list and select t-Test: Two Sample Assuming Equal Variances. Click OK to open this tool's dialog box.
This is the dialog box in Figure 11-7.
4. In the Variable 1 Range box, enter the cell range that holds the data for one of the samples.

For the example, the Machine 1 data are in $\$ \mathrm{~B} \$ 3: \$ \mathrm{~B} \$ 12$. (Note the $\$$-signs for absolute referencing.)
5. In the Variable 2 Range box, enter the cell range that holds the data for the other sample.

The Machine 2 data are in \$D\$3:\$D\$12.

6. In the Hypothesized Mean Difference box, type the difference between $\mu 1$ and $\mu 2$ that H 0 specifies.

In this example, that difference is 0 . If the cell ranges include column headings, check the Labels checkbox. I included the headings in the ranges, so I checked the box.

7. The Alpha box has 0.05 as a default. Change that value if you're so inclined.

8. In the Output Options, select a radio button to indicate where you want the results.
I selected New Worksheet Ply to put the results on a new page in the worksheet.
9. Click OK.

Because I selected New Worksheet Ply, a newly created page opens with the results.

Figure 11-8 shows the tool's results, after I expanded the columns. Rows 4 through 7 hold sample statistics. Cell B8 shows the H_{0}-specified difference between the population means, and B9 shows the degrees of freedom.

The remaining rows provide t-related information. The calculated value of the test statistic is in B10. Cell B11 gives the proportion of area the positive value of the test statistic cuts off in the upper tail of the t-distribution with the indicated df. Cell B12 gives the critical value for a one-tailed test: That's the value that cuts off the proportion of the area in the upper tail equal to α.

Cell B13 doubles the proportion in B11. This cell holds the proportion of area from B11 added to the proportion of area that the negative value of the test statistic cuts off in the lower tail. Cell B14 shows the critical value for a twotailed test: That's the positive value that cuts off $\alpha / 2$ in the upper tail. The corresponding negative value (not shown) cuts off $\alpha / 2$ in the lower tail.

Figure 11-8: Results of the Equal Variances t-Test data analysis tool.

| | A | B | C |
| :--- | :--- | ---: | ---: | ---: |
| 1 | t-Test: Two-Sample Assuming Equal Variances | | |
| 2 | | | |
| 3 | | Machine 1 | Machine 2 |
| 4 | Mean | 23 | 20 |
| 5 | Variance | 7.333333333 | 7.777777778 |
| 6 | Observations | 10 | 10 |
| 7 | Pooled Variance | 7.555555556 | |
| 8 | Hypothesized Mean Difference | 0 | |
| 9 | df | 18 | |
| 10 | t Stat | 2.44046765 | |
| 11 | $P(T<=t)$ one-tail | 0.012617628 | |
| 12 | t Critical one-tail | 1.734063592 | |
| 13 | $P(T<=t)$ two-tail | 0.025235255 | |
| 14 | t Critical two-tail | 2.100922037 | |
| 15 | | | |
| 16 | | | |

The samples in the example I used have the same number of scores and approximately equal variances, so applying the unequal variances version of the t-Test tool to that data set won't show much of a difference from the equal variances case.

Instead I created another example, summarized in Table 11-2. The samples in this example have different sizes and widely differing variances.

Table 11-2	Sample Statistics for the Unequal Variances t-Test Example	
	Sample 1	Sample 2
Mean	52.50	41.33
Standard Deviation	499.71	41.87
Sample Size	8	6

To show you the difference between the equal variances tool and the unequal variances tool, I ran both on the data and put the results side by side.
Figure 11-9 shows the results from both tools. To run the Unequal Variances tool, you go through the same steps as for the Equal Variances version with one exception: In the Data Analysis Tools dialog box, you select t-Test: Two Sample Assuming Unequal Variances.

Figure 11-9:
Results of the Equal
Variances
t-Test data analysis tool and the Unequal
Variances
t -Test data
analysis tool for the data summarized in Table 11-2.

Figure 11-9 shows one obvious difference between the two tools: The Unequal Variances Tool shows no pooled estimate of σ^{2}, because the t-test for that
case doesn't use one. Another difference is in the df. As I pointed out before, in the unequal variances case you reduce the df based on the sample variances and the sample sizes. For the equal variances case, the df in this example is 12 , for the unequal variances case, it's 9 .

The effects of these differences show up in the remaining statistics. The t values, critical values, and probabilities are different.

A Matched Set: Hypothesis Testing for Paired Samples

In the hypothesis tests I've described so far, the samples are independent of one another. Choosing an individual for one sample has no bearing on the choice of an individual for the other.

Sometimes, the samples are matched. The most obvious case is when the same individual provides a score under each of two conditions - as in a before-after study. For example, suppose ten people participate in a weightloss program. They weigh in before they start the program and again after one month on the program. The important data is the set of before-after differences. Table 11-3 shows the data:

Table 11-3	Data for the Weight-Loss Example		
Person	Weight Before Program	Weight After One Month	Difference
1	198	194	4
2	201	203	-2
3	210	200	10
4	185	183	2
5	204	200	4
6	156	153	3
7	167	166	1
8	197	197	0
9	220	215	5
10	186	184	2
Mean			2.9
Standard			3.25
Deviation			

The idea is to think of these differences as a sample of scores, and treat them as you would in a one-sample t-test (Chapter 10).

You carry out a test on these hypotheses:
$\mathrm{H}_{0}: \mu_{\mathrm{d}} \leq 0$
$\mathrm{H}_{1}: \mu_{\mathrm{d}}>0$
The din the subscripts stands for "Difference." Set $\alpha=.05$.
The formula for this kind of t-test is:

$$
t=\frac{\bar{d}-\mu_{d}}{s_{\bar{d}}}
$$

In this formula, \bar{d} is the mean of the differences. To find $s_{\bar{d}}$, you calculate the standard deviation of the differences and divide by the square root of the number of pairs:

$$
s_{\bar{d}}=\frac{s}{\sqrt{N}}
$$

The df is $N-1$.
From Table 11-3,

$$
t=\frac{\bar{d}-\mu_{d}}{s_{\bar{d}}}=\frac{2.9}{3.25 / \sqrt{10}}=2.82
$$

With $\mathrm{df}=9$ (Number of pairs -1), the critical value for $\alpha=.05$ is 2.26 . (Use TINV to verify.) The calculated value exceeds this value, so the decision is to reject H_{0}.

TTEST for matched samples

Earlier, I described the worksheet function TTEST and showed you how to use it with independent samples. This time, I use it for the matched samples weight-loss example. Figure 11-10 shows the Function Argument box for TTEST along with data from the weight-loss example.

Here are the steps to follow:

1. Enter the data for each sample into a separate data array and select a cell.

For this example, the data for the Before sample are in column B and the data for the After sample are in column C.
2. From the Statistical Functions menu, select TTEST to open the Function Arguments dialog box for TTEST.
3. In the Function Arguments dialog box, enter the appropriate values for the arguments.

In the Arrayl box, type the sequence of cells that holds the data for one of the samples. In this example, the Before data are in B3:B12.

In the Array2 box, type the sequence of cells that holds the data for the other sample. The After data are in C3:C12.

The Tails box indicates whether this is a one-tailed test or a two-tailed test. In this example, it's a one-tailed test so I type 1 in the Tails box.

The Type box holds a number that indicates the type of t-test to perform. The choices are 1 for a paired test, 2 for two samples assuming equal variances, and 3 for two samples assuming unequal variances. I typed 1.
With values supplied for all the arguments, the dialog box shows the probability associated with the t value for the data. It does not show the value of t.
4. Click $O K$ to put the answer in the selected cell.

The value in the dialog box in Figure 11-10 is less than .05 , so the decision is to reject H_{0}.

If I assign the column headers in Figure 11-10 as names for the respective arrays, the formula in the Formula bar can be

```
=TTEST(Before,After, 1,1)
```

That format might be easier to explain if you had to show the worksheet to someone. (If you don't remember how to define a name for a cell range, see Chapter 2.)

Data analysis tool: t-test: Paired Two Sample for Means

Excel provides a data analysis tool that takes care of just about everything for matched samples. It's called t-test: Paired Two Sample for Means. In this section, I use it on the weight-loss data.

Figure 11-11 shows the data along with the dialog box for t-Test: Paired Two Sample for Means.

Figure 11-11: The Paired Two Sample t -Test data analysis tool and data from matched samples.

Here are the steps to follow:

1. Enter the data for each sample into a separate data array.

For this example, the data in the Before sample are in column B and the data for the After sample are in column C.
2. Select Data I Data Analysis to open the Data Analysis dialog box.
3. In the Data Analysis dialog box, scroll down the Analysis Tools list and select t-Test: Paired Two Sample for Means. Click OK to open this tool's dialog box.
This is the dialog box in Figure 11-11.

4. In the Variable 1 Range box, enter the cell range that holds the data for one of the samples.

For the example, the Before data are in $\$ B \$ 2: \$ B \$ 12$. (Note the $\$$-signs for absolute referencing.)
5. In the Variable 2 Range box, enter the cell range that holds the data for the other sample.
The After data are in $\$ \mathrm{C} \$ 2: \$ \mathrm{C} \$ 12$.
6. In the Hypothesized Mean Difference box, type the difference between $\mu 1$ and $\mu 2$ that H 0 specifies.

In this example, that difference is 0 .
7. If the cell ranges include column headings, check the Labels checkbox.

I included the headings in the ranges, so I checked the box.
8. The Alpha box has 0.05 as a default. Change that value if you want to use a different α.
9. In the Output Options, select a radio button to indicate where you want the results.

I selected New Worksheet Ply to put the results on a new page in the worksheet.

10. Click OK.

Because I selected New Worksheet Ply, a newly created page opens with the results.

Figure 11-12 shows the tool's results, after I expanded the columns. Rows 4 through 7 hold sample statistics. The only item that's new is the number in cell B7, the Pearson Correlation Coefficient. This is a number between -1 and +1 that indicates the strength of the relationship between the data in the first sample and the data in the second.

If this number is close to 1 (as in the example), high scores in one sample are associated with high scores in the other, and low scores in one are associated with low scores in the other. If the number is close to -1 , high scores in the first sample are associated with low scores in the second, and low scores in the first are associated with high scores in the second.

If the number is close to zero, scores in the first sample are unrelated to scores in the second. Because the two samples consist of scores on the same people, you expect a high value. (I describe this topic in much greater detail in Chapter 15.)

Cell B8 shows the H_{0}-specified difference between the population means, and B9 shows the degrees of freedom.

The remaining rows provide t-related information. The calculated value of the test statistic is in B10. Cell B11 gives the proportion of area the positive value of the test statistic cuts off in the upper tail of the t-distribution with the indicated df. Cell B12 gives the critical value for a one-tailed test: That's the value that cuts off the proportion of the area in the upper tail equal to α.

Cell B13 doubles the proportion in B11. This cell holds the proportion of area from B11 added to the proportion of area that the negative value of the test statistic cuts off in the lower tail. Cell B13 shows the critical value for a twotailed test: That's the positive value that cuts off $\alpha / 2$ in the upper tail. The corresponding negative value (not shown) cuts off $\alpha / 2$ in the lower tail.

Figure 11-12:
Results of The Paired Two Sample t-Test data analysis tool.

	A	B	C
1	t -Test: Paired Two Sample for Means		
2			
3		Before	After
4	Mean	192.4	189.5
5	Variance	377.6	342.9444444
6	Observations	10	10
7	Pearson Correlation	0.986507688	
8	Hypothesized Mean Difference	0	
9	df	9	
10	t Stat	2.824139508	
11	$P(T<=t)$ one-tail	0.009955992	
12	t Critical one-tail	1.833112923	
13	P(T<=t) two-tail	0.019911984	
14	t Critical two-tail	2.262157158	
15			

Testing Two Variances

The two-sample hypothesis testing I've described thus far pertains to means. It's also possible to test hypotheses about variances.

In this section I extend the one-variance manufacturing example I used in Chapter 10. FarKlempt Robotics, Inc., produces a part that has to be a certain length with a very small variability. They're considering two machines to produce this part, and they want to choose the one that results in the least variability. They take a sample of parts from each machine, measure them, find the variance for each sample, and perform a hypothesis test to see if one machine's variance is significantly greater than the other's.

The hypotheses are:
$H_{0:} \sigma_{1}^{2}=\sigma_{2}^{2}$
$\mathrm{H}_{1:} \sigma_{1}^{2} \neq \sigma_{2}^{2}$
As always, an α is a must. As usual, I set it to .05 .

When you test two variances, you don't subtract one from the other. Instead, you divide one by the other to calculate the test statistic. Sir Ronald Fisher is a famous statistician who worked out the mathematics and the family of distributions for working with variances in this way. The test statistic is named in his honor. It's called an F-ratio and the test is the F test. The family of distributions for the test is called the F-distribution.

Without going into all the mathematics, I'll just tell you that, once again, df is the parameter that distinguishes one member of the family from another. What's different about this family is that two variance estimates are involved, so each member of the family is associated with two values of df, rather than one as in the t-test. Another difference between the F-distribution and the others you've seen is that the F cannot have a negative value. Figure 11-13 shows two members of the F-distribution family.

The test statistic is:

$$
F=\frac{\text { larger } \mathrm{s}^{2}}{\text { smaller s }^{2}}
$$

Figure 11-13:
Two members of the F-distribution family.

Suppose FarKlempt Robotics produces 10 parts with Machine 1 and finds a sample variance of .60 square inches. They produce 15 parts with Machine 2 and find a sample variance of .44 square inches. Can they reject H_{0} ?

Calculating the test statistic,

$$
F=\frac{.60}{.44}=1.36
$$

The df's are 9 and 14: The variance estimate in the numerator of the F ratio is based on 10 cases, and the variance estimate in the denominator is based on 15 cases.

When the df's are 9 and 14 and it's a two-tailed test at $\alpha=.05$, the critical value of F is 3.21 . (In a moment, I'll show you an Excel function that finds that value for you.) The calculated value is less than the critical value, so the decision is to not reject H_{0}.

It makes a difference which df is in the numerator and which df is in the denominator. The F-distribution for $\mathrm{df}=9$ and $\mathrm{df}=14$ is different from the F-distribution for $\mathrm{df}=14$ and $\mathrm{df}=9$. For example, the critical value in the latter case is 3.98 , not 3.21 .

Using F in conjunction with t

One use of the F-distribution is in conjunction with the t-test for independent samples. Before you do the t-test, you use F to help decide whether to assume equal variances or unequal variances in the samples.

In the equal variances t-test example I showed you earlier, the standard deviations are 2.71 and 2.79. The variances are 7.34 and 7.78. The F-ratio of these variances is
$F=\frac{7.78}{7.34}=1.06$
Each sample is based on 10 observations, so $\mathrm{df}=9$ for each sample variance. An F-ratio of 1.06 cuts off the upper 47 percent of the F-distribution whose df are 9 and 9 , so it's safe to use the equal variances version of the t-test for these data.

In the sidebar at the end of Chapter 10, I mention that on rare occasions a high α is a good thing. When H_{0} is a desirable outcome and you'd rather not reject it, you stack the deck against rejecting by setting α at a high level so that small differences cause you to reject H_{0}.

This is one of those rare occasions. It's more desirable to use the equal variances t-test, which typically provides more degrees of freedom than the unequal variances t-test. Setting a high value of α (. 20 is a good one) for the F-test enables you to be confident when you assume equal variances.

FTEST

The worksheet function FTEST calculates an F-ratio on the data from two samples. It doesn't return the F-ratio. Instead, it provides the two-tailed probability of the calculated F-ratio under H_{0}. This means that the answer is the proportion of area to the right of the F-ratio, and to the left of the reciprocal of the F-ratio (1 divided by the F-ratio).

Figure 11-14 presents the data for the FarKlempt machines example I just summarized for you. The Figure also shows the Function Arguments dialog box for FTEST.

Follow these steps:

1. Enter the data for each sample into a separate data array and select a cell for the answer.

For this example, the data for the Machine 1 sample are in column B and the data for the Machine 2 sample are in column D.
2. From the Statistical Functions menu, select FTEST to open the Function Arguments dialog box for FTEST.
3. In the Function Arguments dialog box, enter the appropriate values for the arguments.

In the Array1 box, enter the sequence of cells that holds the data for the sample with the larger variance. In this example, the Machine 1 data are in B3:B12.

In the Array2 box, enter the sequence of cells that holds the data for the other sample. The Machine 2 data are in D3:D17.
With values entered for all the arguments, the answer appears in the dialog box.

4. Click $O K$ to put the answer in the selected cell.

The value in the dialog box in Figure 11-14 is greater than .05, so the decision is to not reject H_{0}. Figure 11-15 shows the area that the answer represents.

Had I assigned names to those two arrays, the formula in the Formula bar could have been:

```
=FTEST(Machine_1,Machine_2)
```

If you don't know how to assign names to arrays, see Chapter 2. In that chapter, you also find out why I inserted an underscore into each name.

Figure 11-15: FTEST's result.

FDIST

You use the worksheet function FDIST to decide whether or not your calculated F-ratio is in the region of rejection. You supply a value for F, a value for each df, and whether the test is one-tailed or two-tailed. FDIST returns the probability of obtaining an F-ratio at least as high as yours if H_{0} is true. If that probability is less than your α, you reject H_{0}.

Here, I apply FDIST to the example I just used. The F-ratio is 1.36 , with 9 and 14 df .

The steps are:

1. Select a cell for the answer.
2. From the Statistical Functions menu, select FDIST to open the Function Arguments dialog box for FDIST. (See Figure 11-16.)

Figure 11-16:

3. In the Function Arguments dialog box, enter the appropriate values for the arguments.

In the X box, type the calculated F . For this example, the calculated F is 1.36 .

In the Deg_freedom1 box, I type the degrees of freedom for the variance estimate in the numerator of the F. The degrees of freedom for the numerator in this example is 9 (10 scores - 1).
In the Deg_freedom2 box, I type the degrees of freedom for the variance estimate in the denominator of the F. The degrees of freedom for the denominator in this example is 14 (15 scores - 1).
With values entered for all the arguments, the answer appears in the dialog box.

4. Click OK to close the dialog box and put the answer in the selected cell.

The value in the dialog box in Figure 11-16 is greater than .05, so the decision is to not reject H_{0}.

FINV

Excel's FINV worksheet function finds the value in the F-distribution that cuts off a given proportion of the area in the upper (right-side) tail. You can use it to find the critical value of F. Here, I use it to find the critical value for the two-tailed test in the FarKlempt machines example.

1. Select a cell for the answer.
2. From the Statistical Functions menu, select FINV to open the Function Arguments dialog box for FINV.
3. In the Function Arguments dialog box, enter the appropriate values for the arguments.
In the Probability box, I enter the proportion of area in the upper tail. In this example, that's .025 because it's a two-tailed test with $\alpha=.05$.
In the Deg_freedom1 box, I type the degrees of freedom for the numerator. For this example, df for the numerator $=9$.
In the Deg_freedom2 box, I type the degrees of freedom for the denominator. For this example, df for the denominator $=9$.
With values entered for all the arguments, the answer appears in the dialog box. (See Figure 11-17.)
4. Click $O K$ to put the answer into the selected cell.

Figure 11-17:
The
Function Arguments dialog box for FINV.

Data Analysis Tool：F－test Two Sample for Variances

Excel provides a data analysis tool for carrying out an F－test on two sample variances．I apply it here to the sample variances example I＇ve been using． Figure 11－18 shows the data，along with the dialog box for F－Test：Two－Sample for Variances．

Figure 11－18： The F－Test data analysis tool and data from two samples．

1	A	B	C	D	E		F	G	H	1	J	K
1												
2		Machine 1		Machine 2		－Test Tw	－Sample	Vari			8	83
3		3.4		2.7		－Test Two	－Sample					
4		2.6		3.2		Input					OK	
5		2.3		2.3		Variable	1 Range：		\＄8\＄2：\＄8\＄12	䬎	OK	
6		2.5		4.5		Variable	2 Range：		\＄0\＄2：\＄0\＄17	罭	Cancel	
7		3.4		3.1								
8		3.9		3.7		\checkmark Lab					Help	
9		2.2		3.9		Alpha：	0.025					
10		3.9		2.5								
11		3.9		2.8		Output	ptions					
12		4.3		2.9		O Qut	ut Range：			夙		
13				3.4		－New	Worksheet					
14				4.1		－New	Worksheet					
15				4.3		O New	Workbook					
16				3.1								
17				3.6								
18												

To use this tool，follow these steps：
1．Enter the data for each sample into a separate data array．
For this example，the data in the Machine 1 sample are in column B and the data for the Machine 2 sample are in column D．
2．Select Data I Data Analysis to open the Data Analysis dialog box．
3．In the Data Analysis dialog box，scroll down the Analysis Tools list and select F－Test Two Sample For Variances．Click OK to open this tool＇s dialog box．
This is the dialog box in Figure 11－18．
4．In the Variable 1 Range box，enter the cell range that holds the data for the first sample．
For the example，the Machine 1 data are in $\$ \mathrm{~B} \$ 2: \$ B \$ 12$ ．（Note the $\$$－signs for absolute referencing．）
5．In the Variable 2 Range box，enter the cell range that holds the data for the second sample．

The Machine 2 data are in $\$ \mathrm{D} \$ 2: \$ \mathrm{D} \$ 17$ ．
6. If the cell ranges include column headings, check the Labels checkbox. I included the headings in the ranges, so I checked the box.
7. The Alpha box has 0.05 as a default. Change that value for a different α.

The Alpha box provides a one-tailed alpha. I want a two-tailed test, so I changed this value to 025
8. In the Output Options, select a radio button to indicate where you want the results.
I selected New Worksheet Ply to put the results on a new page in the worksheet.

9. Click OK.

Because I selected New Worksheet Ply, a newly created page opens with the results.

Figure 11-19 shows the tool's results, after I expanded the columns. Rows 4 through 6 hold sample statistics. Cell B7 shows the degrees of freedom.

The remaining rows present F-related information. The calculated value of F is in B8. Cell B9 gives the proportion of area the calculated F cuts off in the upper tail of the F-distribution. This is the right-side area in Figure 11-15. Cell B10 gives the critical value for a one-tailed test: That's the value that cuts off the proportion of the area in the upper tail equal to the value in the Alpha box.

Figure 11-19:
Results of The F-Test data analysis tool.

	A	B	C	D
1	F-Test Two-Sample for Variances			
2				
3		Machine 1	Machine 2	
4	Mean	3.24	3.34	
5	Variance	0.600444444	0.441142857	
6	Observations	10	15	
7	df	9	14	
8	F	1.361111111		
9	$\mathrm{P}(\mathrm{F}<=\mathrm{f})$ one-tail	0.291848115		
10	F Critical one-tail	2.645790735		
11				

216 Part III: Drawing Conclusions from Data

Chapter 12

Testing More Than Two Samples

In This Chapter

$>$ Why multiple t-tests won't work
$>$ Introducing ANOVA
$>$ What to do after an ANOVA
$>$ Working with repeated measures
$>$ Performing a trend analysis

Abstract

tatistics would be limited if you could only make inferences about one or two samples. In this chapter, I discuss the procedures for testing hypotheses about three or more samples. I show what to do when samples are independent of one another, and what to do when they're not. In both cases, I discuss what to do after you test the hypotheses.

I also introduce Excel data analysis tools that do the work for you. Although these tools aren't at the level you'd find in a dedicated statistical package, you can combine them with Excel's standard features to produce some sophisticated analyses.

Testing More Than Two

Imagine this situation. Your company asks you to evaluate three different methods for training its employees to do a particular job. You randomly assign 30 employees to one of the three methods. Your plan is to train them, test them, tabulate the results, and make some conclusions. Before you can finish the study, three people leave the company - one from the Method 1 group, and two from the Method 3 group.

Table 12-1 shows the data.

Table 12-1	Data from Three Training Methods		
	Method 1	Method 2	Method 3
95	83	68	
	91	89	75
	89	85	79
90	89	74	
	99	81	75
	88	89	81
	96	90	73
Mean	98	82	77
Variance	95	84	
Standard Deviation	93.44	85.20	75.25

Do the three methods provide different results, or are they so similar that you can't distinguish among them? To decide, you have to carry out a hypothesis test:
$\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}$
$\mathrm{H}_{1}: \operatorname{Not} \mathrm{H}_{0}$
with $\alpha=.05$.

A thorny problem

Sounds pretty easy, particularly if you've read Chapter 11. Take the mean of the scores from Method 1, the mean of the scores from Method 2, and do a t-test to see if they're different. Follow the same procedure for Method 1 versus Method 3, and for Method 2 versus Method 3. If at least one of those t-tests shows a significant difference, reject H_{0}. Nothing to it, right?

Wrong. If your α is .05 for each t-test, you're setting yourself up for a Type I error with a probability higher than you planned on. The probability that at least one of the three t-test results in a significant difference is way above .05 .

In fact, it's .14 , which is way beyond acceptable. (The mathematics behind calculating that number is a little involved, so I won't elaborate.)

With more than three samples, the situation gets even worse. Four groups require six t-tests, and the probability that at least one of them is significant is .26 . Table $12-2$ shows what happens with increasing numbers of samples.

Table 12-2	The Incredible Increasing Alpha	
Number of Samples t	Number of Tests	Pr(At Least One Significant $\boldsymbol{t})$
3	3	.14
4	6	.26
5	10	.40
6	15	.54
7	21	.66
8	28	.76
9	36	.84
10	45	.90

Carrying out multiple t-tests is clearly not the answer. So what do you do?

A solution

It's necessary to take a different approach. The idea is to think in terms of variances rather than means.

I'd like you to think of variance in a slightly different way. The formula for estimating population variance, remember, is
$s^{2}=\frac{\sum(x-\bar{x})^{2}}{N-1}$

Because the variance is almost a mean of squared deviations from the mean, statisticians also refer to it as Mean Square. In a way, that's an unfortunate nickname: It leaves out "deviation from the mean," but there you have it.

The numerator of the variance, excuse me, Mean Square, is the sum of squared deviations from the mean. This leads to another nickname, Sum of Squares. The denominator, as I say in Chapter 10, is degrees of freedom (df). So, the slightly different way to think of variance is

$$
\text { Mean Square }=\frac{\text { Sum of Squares }}{\mathrm{df}}
$$

You can abbreviate this as

$$
\mathrm{MS}=\frac{\mathrm{SS}}{\mathrm{df}}
$$

Now, on to solving the thorny problem. One important step is to find the Mean Squares hiding in the data. Another is to understand that you use these Mean Squares to estimate the variances of the populations that produced these samples. In this case, assume those variances are equal, so you're really estimating one variance. The final step is to understand that you use these estimates to test the hypotheses I show you at the beginning of the chapter.

Three different Mean Squares are inside the data in Table 12-1. Start with the whole set of 27 scores, forgetting for the moment that they're divided into three groups. Suppose you want to use those 27 scores to calculate an estimate of the population variance. (A dicey idea, but humor me.) The mean of those 27 scores is 85 . I'll call that mean the grand mean because it's the average of everything.

So the Mean Square would be

$$
\frac{(95-85)^{2}+(91-85)^{2}+\ldots+(73-85)^{2}+(77-85)^{2}}{(27-1)}=68.08
$$

The denominator has 26 (27-1) degrees of freedom. I refer to that variance as the Total Variance, or in the new way of thinking about this, the $\mathrm{MS}_{\text {Total }}$. It's often abbreviated as MS_{T}.

Here's another variance to consider. In Chapter 11, I describe the t-test for two samples with equal variances. For that test, you put the two sample variances together to create a pooled estimate of the population variance. The data in Table 12-1 provide three sample variances for a pooled estimate: $16.28,14.18,15.64$. Assuming these numbers represent equal population variances, the pooled estimate is:

$$
\begin{aligned}
& s_{p}{ }^{2}=\frac{\left(n_{1}-1\right) s_{1}{ }^{2}+\left(n_{2}-1\right) s_{2}{ }^{2}+\left(n_{3}-1\right) s_{3}{ }^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)+\left(n_{3}-1\right)} \\
& =\frac{(9-1)(16.28)+(10-1)(14.18)+(8-1)(15.64)}{(9-1)+(10-1)+(8-1)}=15.31
\end{aligned}
$$

Because this pooled estimate comes from the variance within the groups, it's called $\mathrm{MS}_{\text {Within }}$, or MS_{W}.

One more Mean Square to go - the variance of the sample means around the grand mean. In this example, that means the variance in these numbers: $93.44,85.20$, and 75.25 - sort of. I said "sort of" because these are means, not scores. When you deal with means you have to take into account the number of scores that produced each mean. To do that you multiply each squared deviation by the number of scores in that sample.

So this variance is:
$\frac{(9)(93.44-85)^{2}+(10)(85.20-85)^{2}+(8)(75.25-85)^{2}}{3-1}=701.34$
The df for this variance is 2 (the number of samples -1).
Statisticians, not known for their crispness of usage, refer to this as the variance between sample means. (Among is the correct word when you're talking about more than two items.) This variance is known as $\mathrm{MS}_{\text {Between }}$, or MS_{B}.

So you now have three estimates of population variance: $\mathrm{MS}_{\mathrm{T}}, \mathrm{MS}_{\mathrm{W}}$, and MS_{B}. What do you do with them?

Remember that the original objective is to test a hypothesis about three means. According to H_{0}, any differences you see among the three sample means are due strictly to chance. The implication is that the variance among those means is the same as the variance of any three numbers selected at random from the population.

If you could somehow compare the variance among the means (that's MS_{B}, remember) with the population variance, you could see if that holds up. If only you had an estimate of the population variance that's independent of the differences among the groups, you'd be in business.

Ah . . . but you do have that estimate. You have MS_{w}, an estimate based on pooling the variances within the samples. Assuming those variances represent equal population variances, this is a pretty solid estimate. In this example, it's based on 24 degrees of freedom.

222 Part III: Drawing Conclusions from Data

The reasoning now becomes: If MS_{B} is about the same as MS_{W}, you have evidence consistent with H_{0}. If MS_{B} is significantly larger than MS_{w}, you have evidence that's inconsistent with H_{0}. In effect, you transform these hypotheses
$\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}$
$\mathrm{H}_{1}: \operatorname{Not} \mathrm{H}_{0}$
into these
$\mathrm{H}_{0}: \sigma_{\mathrm{B}}{ }^{2} \leq \sigma_{\mathrm{w}}{ }^{2}$
$\mathrm{H}_{\mathrm{i}}: \sigma_{\mathrm{B}}{ }^{2}>\sigma_{\mathrm{W}}{ }^{2}$
Rather than multiple t-tests among sample means, you perform a test of the difference between two variances.

What is that test? In Chapter 11 I show you the test for hypotheses about two variances. It's called the F-test. To perform this test, you divide one variance by the other. You evaluate the result against a family of distributions called the F-distribution. Because two variances are involved, two values for degrees of freedom define each member of the family.

For this example, F has $\mathrm{df}=2$ (for the MS_{B}) and $\mathrm{df}=24$ (for the MS_{w}).
Figure 12-1 shows what this member of the F family looks like. For our purposes, it's the distribution of possible F values if H_{0} is true.

The test statistic for the example is:

$$
F=\frac{701.34}{15.31}=45.82
$$

What proportion of area does this value cut off in the upper tail of the F-distribution? From Figure 12-1, you can see that this proportion is microscopic, as the values on the horizontal axis only go up to 5 . (And the proportion of area beyond 5 is tiny.) It's way less than .05 .

This means that it's highly unlikely that differences among the means are due to chance. It means that you reject H_{0}.

This whole procedure for testing more than two samples is called the analysis of variance, often abbreviated as ANOVA. In the context of an ANOVA, the denominator of an F-ratio has the generic name error term. The independent variable is sometimes called a factor. So this is a single-factor or (one-factor) ANOVA.

Figure 12-1:
The F-distribution with 2 and 24 degrees of freedom.

In this example, the factor is Training Method. Each instance of the independent variable is called a level. The independent variable in this example has three levels.

More complex studies have more than one factor, and each factor can have many levels.

Meaningful relationships

Take another look at the Mean Squares in this example, each with its Sum of Squares and degrees of freedom. Before, when I calculated each Mean Square for you, I didn't explicitly show you each Sum of Squares, but here I include them:
$M S_{B}=\frac{S S_{B}}{d f_{B}}=\frac{1402.68}{2}=701.34$
$M S_{W}=\frac{S S_{W}}{d f_{W}}=\frac{367.32}{24}=15.31$
$M S_{T}=\frac{S S_{T}}{d f_{T}}=\frac{1770}{26}=68.08$

Start with the degrees of freedom: $\mathrm{df}_{\mathrm{B}}=2, \mathrm{df}_{\mathrm{W}}=24$, and $\mathrm{df}_{\mathrm{T}}=26$. Is it a coincidence that they add up? Hardly. It's always the case that
$\mathrm{df}_{\mathrm{B}}+\mathrm{df}_{\mathrm{w}}=\mathrm{df}_{\mathrm{T}}$

How about those Sums of Squares?
$1402.68+367.32=1770$

Again, this is no coincidence. In the analysis of variance, this always happens:
$\mathrm{SS}_{\mathrm{B}}+\mathrm{SS}_{\mathrm{w}}=\mathrm{SS}_{\mathrm{T}}$
In fact, statisticians who work with the analysis of variance speak of partitioning (read "breaking down into non-overlapping pieces") the SS_{T} into one portion for the SS_{B} and another for the SS_{w}, and partitioning the df_{T} into one amount for the df_{B} and another for the df_{w}.

After the F-test

The F-test enables you to decide whether or not to reject H_{0}. After you decide to reject, then what? All you can say is that somewhere within the set of means, something is different from something else. The F-test doesn't specify what those "somethings" are.

Planned comparisons

In order to get more specific, you have to do some further tests. Not only that, you have to plan those tests in advance of carrying out the ANOVA.

What are those tests? Given what I said earlier, this might surprise you: t -tests. While this might sound inconsistent with the increased alpha of multiple t-tests, it's not. If an analysis of variance enables you to reject H_{0}, then it's OK to use t-tests to turn the magnifying glass on the data and find out where the differences are. And as I'm about to show you, the t-test you use is slightly different from the one I discuss in Chapter 11.

These post-ANOVA t-tests are called planned comparisons. Some refer to them as a priori tests. I illustrate by following through with the example. Suppose before you gathered the data, you had reason to believe that Method 1 would result in higher scores than Method 2, and that Method 2 would result in higher scores than Method 3. In that case, you plan in advance to compare the means of those samples in the event your ANOVAbased decision is to reject H_{0}.

The formula for this kind of t-test is
$t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{M S_{W}\left[\frac{1}{n_{1}}+\frac{1}{n_{2}}\right]}}$
It's a test of
$\mathrm{H}_{0}: \mu_{1} \leq \mu_{2}$
$H_{1}: \mu_{1}>\mu_{2}$
MS_{W} takes the place of the pooled estimate $\mathrm{s}_{\mathrm{p}}{ }^{2}$ I show you in Chapter 11. In fact, when I introduced MS_{w}, I showed how it's just a pooled estimate that can incorporate variances from more than two samples. The df for this t-test is df_{w}, rather than $\left(\mathrm{n}_{1}-1\right)+\left(\mathrm{n}_{2}-1\right)$.

For this example, the Method 1 versus Method 2 comparison is:
$t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{M S_{W}\left[\frac{1}{n_{1}}+\frac{1}{n_{2}}\right]}}=\frac{93.44-85.2}{\sqrt{15.31\left[\frac{1}{9}+\frac{1}{10}\right]}}=4.59$
With $\mathrm{df}=24$, this value of t cuts off a miniscule portion of area in the upper tail of the t -distribution. The decision is to reject H_{0}.

The planned comparison t-test formula I showed you matches up with the t-test for two samples. You can write the planned comparison t-test formula in a way that sets up additional possibilities. Start by writing the numerator
$\bar{x}_{1}-\bar{x}_{2}$
a bit differently:
$(+1) \bar{x}_{1}+(-1) \bar{x}_{2}$

The +1 and -1 are comparison coefficients. I refer to them, in a general way, as c_{1} and c_{2}. In fact, c_{3} and \bar{x}_{3} can enter the comparison, even if you're just comparing \bar{x}_{1} with \bar{x}_{2} :

$$
(+1) \bar{x}_{1}+(-1) \bar{x}_{2}+(0) \bar{x}_{3}
$$

The important thing is that the coefficients add up to zero.

226 Part III: Drawing Conclusions from Data

Here's how the comparison coefficients figure into the planned comparison t-test formula for a study that involves three samples:

$$
t=\frac{c_{1} \bar{x}_{1}+c_{2} \bar{x}_{2}+c_{3} \bar{x}_{3}}{\sqrt{M S_{W}\left[\frac{c_{1}{ }^{2}}{n_{1}}+\frac{c_{2}{ }^{2}}{n_{2}}+\frac{c_{3}{ }^{2}}{n_{3}}\right]}}
$$

Applying this formula to Method 2 versus Method 3:

$$
t=\frac{c_{1} \bar{x}_{1}+c_{2} \bar{x}_{2}+c_{3} \bar{x}_{3}}{\sqrt{M S_{W}\left[\frac{c_{1}{ }^{2}}{n_{1}}+\frac{c_{2}{ }^{2}}{n_{2}}+\frac{c_{3}{ }^{2}}{n_{3}}\right]}}=\frac{(0)(93.44)+(+1)(85.2)+(-1)(75.25)}{\sqrt{15.31\left[\frac{0^{2}}{9}+\frac{1^{2}}{10}+\frac{1^{2}}{8}\right]}}=5.36
$$

The value for t indicates the results from Method 2 are significantly higher than the results from Method 3.

You can also plan a more complex comparison - say, Method 1 versus the average of Method 2 and Method 3. Begin with the numerator. That would be
$\bar{x}_{1}-\frac{\left(\bar{x}_{2}+\bar{x}_{3}\right)}{2}$
With comparison coefficients, you can write this as
$(+1) \bar{x}_{1}+\left(-\frac{1}{2}\right) \bar{x}_{2}+\left(-\frac{1}{2}\right) \bar{x}_{3}$
If you're more comfortable with whole numbers, you can write it as:
$(+2) \bar{x}_{1}+(-1) \bar{x}_{2}+(-1) \bar{x}_{3}$
Plugging these whole numbers into the formula gives you
$t=\frac{c_{1} \bar{x}_{1}+c_{2} \bar{x}_{2}+c_{3} \bar{x}_{3}}{\sqrt{M S_{W}\left[\frac{c_{1}{ }^{2}}{n_{1}}+\frac{c_{2}{ }^{2}}{n_{2}}+\frac{c_{3}{ }^{2}}{n_{3}}\right]}}=\frac{(2)(93.44)+(-1)(85.2)+(-1)(75.25)}{\sqrt{15.31\left[\frac{\frac{2}{}^{2}}{9}+\frac{1^{2}}{10}+\frac{1^{2}}{8}\right]}}=9.97$
Again, strong evidence for rejecting H_{0}.

Unplanned comparisons

Things would get boring if your post-ANOVA testing is limited to comparisons you have to plan in advance. Sometimes you want to snoop around your data and see if anything interesting reveals itself. Sometimes something jumps out at you that you didn't anticipate.

When this happens, you can make comparisons you didn't plan on. These comparisons are called a posteriori tests, post hoc tests, or simply unplanned comparisons. Statisticians have come up with a wide variety of these tests, many of them with exotic names and many of them dependent on special sampling distributions.

The idea behind these tests is that you pay a price for not having planned them in advance. That price has to do with stacking the deck against rejecting H_{0} for the particular comparison.

Of all the unplanned tests available, the one I like best is a creation of famed statistician Henry Scheffé. As opposed to esoteric formulas and distributions, you start with the test I already showed you, and then add a couple of easy-to-do extras.

The first extra is to understand the relationship between t and F. I've shown you the F-test for three samples. You can also carry out an F-test for two samples. That F-test has $\mathrm{df}=1$ and $\mathrm{df}=\left(n_{1}-1\right)+\left(n_{2}-1\right)$. The df for the t -test, of course, is $\left(n_{1}-1\right)+\left(n_{2}-1\right)$. Hmmm . . . seems like they should be related somehow.

They are. The relationship between the two-sample t and the two-sample F is
$t^{2}=F$
Now I can tell you the steps for performing Scheffé's test:

1. Calculate the planned comparison t-test.
2. Square the value to create F.
3. Find the critical value of \boldsymbol{F} for $\mathbf{d f B}$ and dfW at $\alpha=.05$ (or whatever α you choose).
4. Multiply this critical \boldsymbol{F} by the number of samples - 1.

The result is your critical F for the unplanned comparison. I'll call this F '.
5. Compare the calculated F to F^{\prime}. If the calculated F is greater, reject $\mathbf{H 0}$ for this test. If it's not, don't reject H0 for this test.

Imagine that in the example, you didn't plan in advance to compare the mean of Method 1 with the mean of Method 3. (In a study involving only three samples that's hard to imagine, I grant you.) The t-test is:

$$
t=\frac{c_{1} \bar{x}_{1}+c_{2} \bar{x}_{2}+c_{3} \bar{x}_{3}}{\sqrt{M S_{W}\left[\frac{c_{1}{ }^{2}}{n_{1}}+\frac{c_{2}{ }^{2}}{n_{2}}+\frac{c_{3}{ }^{2}}{n_{3}}\right]}}=\frac{(+1)(93.44)+(0)(85.2)+(-1)(75.25)}{\sqrt{15.31\left[\frac{1^{2}}{9}+\frac{0^{2}}{10}+\frac{-1^{2}}{8}\right]}}=9.57
$$

Squaring this result gives

$$
F=t^{2}=(9.57)^{2}=91.61
$$

For F with 2 and 24 df and $\alpha=.05$, the critical value is 3.403 . (You can look that up in a table in a statistics textbook or you can use the worksheet function FINV.) So

$$
F^{\prime}=(3-1) F=(2)(3.403)=6.806
$$

Because the calculated F, 91.61, is greater than F^{\prime}, the decision is to reject H_{0}. You have evidence that Method 1's results are different from Method 3's results.

Data analysis tool: Anova: Single Factor

The calculations for the ANOVA can get intense. Excel has a data analysis tool that does the heavy lifting. It's called Anova: Single Factor. Figure 12-2 shows this tool along with the data for the preceding example.

Figure 12-2: The Anova: Single Factor data analysis tool dialog box.

The steps for using this tool are:

1. Enter the data for each sample into a separate data array.

For this example the data in the Method 1 sample are in column B, the data in the Method 2 sample are in Column C, and the data for the Method 3 sample are in column D.
2. Select Data I Data Analysis to open the Data Analysis dialog box.
3. In the Data Analysis dialog box, scroll down the Analysis Tools list and select Anova: Single Factor. Click OK to open the Anova: Single Factor dialog box.

This is the dialog box in Figure 12-2.
4. In the Input Range box, enter the cell range that holds all the data.

For the example, the data are in $\$ \mathrm{~B} \$ 2$: $\$ \mathrm{D} \$ 12$. (Note the $\$$-signs for absolute referencing.)
5. If the cell ranges include column headings, check the Labels checkbox.

I included the headings in the ranges, so I checked the box.
6. The Alpha box has 0.05 as a default. Change that value if you're so inclined.
7. In the Output Options, select a radio button to indicate where you want the results.

I selected New Worksheet Ply to put the results on a new page in the worksheet.
8. Click OK.

Because I selected New Worksheet Ply, a newly created page opens with the results.

Figure 12-3 shows the tool's output, after I expanded the columns. The output features two tables, SUMMARY and ANOVA. The SUMMARY table provides summary statistics of the samples - the number in each group, the group sums, averages, and variances. The ANOVA table presents the Sums of Squares, df, Mean Squares, F, P-value, and critical F for the indicated df. The P -value is the proportion of area that the F cuts off in the upper tail of the F-distribution. If this value is less than .05 , reject H_{0}.

Figure 12-3:
Output from the Anova: Single Factor analysis tool.

L24		$3 f_{x}$						
4	A	B	C	D	E	F	G	H
1	Anova: Single Factor							
2								
3	SUMMARY							
4	Groups	Count	Sum	Average	Variance			
5	Method 1	9	841	93.44444	16.27778			
6	Method 2	10	852	85.2	14.17778			
7	Method 3	8	602	75.25	15.64286			
8								
9								
10	ANOVA							
11	Source of Variation	SS	df	MS	F	P-value	F crit	
12	Between Groups	1402.677778	2	701.3389	45.82389	$6.38 \mathrm{E}-09$	3.402826	
13	Within Groups	367.3222222	24	15.30509				
14								
15	Total	1770	26					
16								

Comparing the means

Excel's ANOVA tool does not provide a built-in facility for carrying out planned (or unplanned) comparisons among the means. With a little ingenuity, however, you can use the Excel worksheet function SUMPRODUCT to do those comparisons.

The worksheet page with the ANOVA output is the launching pad for the planned comparisons. In this section, I take you through one planned comparison - the mean of Method 1 versus the mean of Method 2.

Begin by creating columns that hold important information for the comparisons. Figure $12-4$ shows what I mean. I put the comparison coefficients in column J, the squares of those coefficients in column K, and the reciprocal of each sample size ($1 / n$) in column L.

A few rows below those cells, I put t-test related information - the t-test numerator, the denominator, and the value of t. I use separate cells for the numerator and denominator to simplify the formulas. You can put them together in one big formula and just have a cell for t, but it's hard to keep track of everything.

SUMPRODUCT takes arrays of cells, multiplies the numbers in the corresponding cells, and sums the products. (This function is in the Math \& Trig Functions menu, not the Statistical Functions menu.) I used SUMPRODUCT to multiply each coefficient by each sample mean and then add the products. I stored that result in K11. That's the numerator for the planned comparison t-test. The formula for K11 is

```
=SUMPRODUCT(J5:J7,D5:D7)
```

The array J5:J7 holds the comparison coefficients, and D5:D7 holds the sample means.

K12 holds the denominator. I selected K12 so you could see its formula in the formula bar:

```
=SQRT(D13 * (SUMPRODUCT(K5 : K7 , L5 : L7 ) ))
```

D13 has the MS_{W}. SUMPRODUCT multiplies the squared coefficients in K5:K7 by the reciprocals of the sample sizes in L5:L7 and sums the products. SQRT takes the square root of the whole thing.

K13 holds the value for t . That's just K11 divided by K12.
K14 presents the P-value for t - the proportion of area that t cuts off in the upper tail of the t -distribution with $\mathrm{df}=24$. The formula for that cell is

```
=TDIST(K13,C13,1)
```

The arguments are the calculated t (in K13), the degrees of freedom for MS_{W} (in C 13), and the number of tails.

If you change the coefficients in J5:J7, you instantaneously create and complete another comparison.

In fact, I'll do that right now, and show you Scheffé's post hoc comparison. That one, in this example, compares the mean of Method 1 with the mean of Method 3. Figure 12-5 shows the extra information for this test, starting a couple of rows below the t-test.

Figure 12-5:
Carrying out a post hoc comparison.

Cell K16 holds F, the square of the t value in K13. K17 has F, the product of $\mathrm{C} 12\left(\mathrm{df}_{\mathrm{B}}\right.$, which is the number of samples -1$)$ and G 12 (the critical value of F for 2 and 24 degrees of freedom and $\alpha=.05$). K16 is greater than K17, so reject H_{0} for this comparison.

Another Kind of Hypothesis, Another Kind of Test

The ANOVA I just showed you works with independent samples. As you may remember from Chapter 11, sometimes you work with matched samples. For example, sometimes a person provides data in a number of different conditions. In this section, I introduce the ANOVA you use when you have more than two matched samples.

This type of ANOVA is called repeated measures. You'll see it called other names, too, like randomized blocks or within subjects.

Working with repeated measures ANOUA

To show how this works, I extend the example from Chapter 11. In that example, ten people participate in a weight-loss program. Table 12-3 shows their data over a three-month period.

Chapter 12: Testing More Than Two Samples

Table 12-3		Data for the Weight-Loss Example			
Person	Before	One Month	Two Months	Three Months	Mean
1	198	194	191	188	192.75
2	201	203	200	196	200.00
3	210	200	192	188	197.50
4	185	183	180	178	181.50
5	204	200	195	191	197.50
6	156	153	150	145	151.00
7	167	166	167	166	166.50
8	197	197	195	192	195.25
9	220	215	209	205	212.25
10	186	184	179	175	181.00
Mean	192.4	189.5	185.8	182.4	187.525

Is the program effective? This question calls for a hypothesis test:
$\mathrm{H}_{0}: \mu_{\text {Before }}=\mu_{1}=\mu_{2}=\mu_{3}$
$\mathrm{H}_{1}: \operatorname{Not} \mathrm{H}_{0}$
Once again, I set $\alpha=.05$
As in the previous ANOVA, start with the variances in the data. The MS_{T} is the variance in all 40 scores from the grand mean, which is 187.525 :

$$
M S_{T}=\frac{(198-187.525)^{2}+(201-187.525)^{2}+\ldots+(175-187.525)^{2}}{40-1}=318.20
$$

The people participating in the weight-loss program also supply variance. Each one's overall mean (his or her average over the four measurements) varies from the grand mean. Because these data are in the rows, I call this $\mathrm{MS}_{\text {Rows }}$:

$$
M S_{\text {Rous }}=\frac{(192.75-187.525)^{2}+(200-187.525)^{2}+\ldots+(181-187.525)^{2}}{10-1}=1292.41
$$

234 Part III: Drawing Conclusions from Data

The means of the columns also vary from the grand mean:

$$
M S_{\text {Coumms }}=\frac{(192.4-187.525)^{2}+(189.5-187.525)^{2}+(185.8-187.525)^{2}+(182.4-187.525)^{2}}{4-1}=189.69
$$

One more source of variance is in the data. Think of it as the variance left over after you pull out the variance in the rows and the variance in the columns from the total variance. Actually, it's more correct to say that it's the Sum of Squares left over when you subtract the $\mathrm{SS}_{\text {Rows }}$ and the $\mathrm{SS}_{\text {Columns }}$ from the SS_{T}.

This variance is called $\mathrm{MS}_{\text {Error }}$. As I say earlier, in the ANOVA the denominator of an F is called an "error term." So the word "error" here gives you a hint that this MS is a denominator for an F.

To calculate $\mathrm{MS}_{\text {Error }}$, you use the relationships among the Sums of Squares and among the df.

$$
M S_{\text {Enror }}=\frac{S S_{\text {Eror }}}{d f_{\text {Enor }}}=\frac{S S_{T}-S S_{\text {Rous }}-S S_{\text {Columns }}}{d f_{T}-d f_{\text {Rous }}-d f_{\text {Columns }}}=\frac{209.175}{27}=7.75
$$

Here's another way to calculate the $\mathrm{df}_{\text {Error }}$:

$$
\mathrm{df}_{\text {Error }}=(\text { number of rows }-1)(\text { number of columns }-1)
$$

To perform the hypothesis test, you calculate the F :

$$
F=\frac{M S_{\text {Columns }}}{M S_{\text {Error }}}=\frac{189.69}{7.75}=24.49
$$

With 3 and 27 degrees of freedom, the critical F for $\alpha=.05$ is 2.96. (Look it up or use the Excel worksheet function FINV.) The calculated F is larger than the critical F, so the decision is to reject H_{0}.

What about an F involving $\mathrm{MS}_{\text {Rows }}$? That one doesn't figure into H_{0} for this example. If you find a significant F, all it shows is that people are different from one another with respect to weight and that doesn't tell you very much.

As is the case with the ANOVA I showed you before, you plan comparisons to zero in on the differences. You can use the same formula, except you substitute $\mathrm{MS}_{\text {Error }}$ for MS_{w} :
$t=\frac{c_{1} \bar{x}_{1}+c_{2} \bar{x}_{2}+c_{3} \bar{x}_{3}+c_{4} \bar{x}_{4}}{\sqrt{M S_{\text {Bro }}\left[\frac{c_{1}{ }^{2}}{n_{1}}+\frac{c_{2}{ }^{2}}{n_{2}}+\frac{c_{3}^{2}}{n_{3}}+\frac{c_{4}{ }^{2}}{n_{4}}\right]}}$

The df for this test is $\mathrm{df}_{\text {Error }}$.
For Scheffé's post hoc test, you also follow the same procedure as before and substitute $\mathrm{MS}_{\text {Error }}$ for MS_{w}. The only other change is to substitute $\mathrm{df}_{\text {Columns }}$ for df_{B} and substitute $\mathrm{df}_{\text {Error }}$ for df_{w} when you find F.

Getting trendy

In situations like the one in the weight-loss example, you have an independent variable that's quantitative - its levels are numbers (0 months, 1 month, 2 months, 3 months). Not only that, but in this case, the intervals are equal.

With that kind of an independent variable, it's often a good idea to look for trends in the data, rather than just plan comparisons among means. If you graph the means in the weight-loss example, they seem to approximate a line, as Figure 12-6 shows. Trend analysis is the statistical procedure that examines that pattern. The objective is to see if the pattern contributes to the significant differences among the means.

Figure 12-6: The means for the weight-loss example.

A trend can be linear, as it apparently is in this example, or nonlinear (in which the means fall on a curve). In this example, I only deal with linear trend.

To analyze a trend, you use comparison coefficients - those numbers you use in planned comparisons. You use them in a slightly different way than you did before.

236
 Part III: Drawing Conclusions from Data

Here, you use comparison coefficients to find a Sum of Squares for linear trend. I abbreviate that as $\mathrm{SS}_{\text {Linear }}$. This is a portion of $\mathrm{SS}_{\text {Columns }}$. In fact,

$$
\mathrm{SS}_{\text {Linear }}+\mathrm{SS}_{\text {Nonlinear }}=\mathrm{SS}_{\text {Columns }}
$$

Also,

$$
\mathrm{df}_{\text {Linear }}+\mathrm{df}_{\text {Nonininar }}=\mathrm{df}_{\text {Colums }}
$$

After you calculate $\mathrm{SS}_{\text {Linear }}$, you divide it by $\mathrm{df}_{\text {Linear }}$ to produce $\mathrm{MS}_{\text {Linear }}$. This is extremely easy because $\mathrm{df}_{\text {Linear }}=1$. Divide $\mathrm{MS}_{\text {Linear }}$ by $\mathrm{MS}_{\text {Error }}$ and you have an F. If that F is higher than the critical value of F with $\mathrm{df}=1$ and $\mathrm{df}_{\text {Error }}$ at your α -level, then weight is decreasing in a linear way over the time period of the weight-loss program.

The comparison coefficients are different for different numbers of samples. For four samples, the coefficients are $-3,-1,1$, and 3 . To form the $\mathrm{SS}_{\mathrm{Linear}}$ the formula is

$$
S S_{\text {Linear }}=\frac{n\left(\sum c \bar{x}\right)^{2}}{\sum c^{2}}
$$

In this formula, n is the number of people and c represents the coefficients. Applying the formula to this example,

$$
S S_{\text {Linear }}=\frac{n\left(\sum c \bar{x}\right)^{2}}{\sum c^{2}}=\frac{10[(-3)(192.4)+(-1)(189.5)+(1)(185.8)+(3)(182.4)]^{2}}{(-3)^{2}+(-1)^{2}+(3)^{2}+(1)^{2}}=567.845
$$

This is such a large proportion of $\mathrm{SS}_{\text {Columns }}$ that $\mathrm{SS}_{\text {Nonlinear }}$ is really small:

$$
\mathrm{SS}_{\text {Nonlinear }}=\mathrm{SS}_{\text {Columns }}-\mathrm{SS}_{\text {Linear }}=569.075-567.845=1.23
$$

As I pointed out before, $\mathrm{df}=1$, so $\mathrm{MS}_{\text {Linear }}$ is conveniently the same as $\mathrm{SS}_{\text {Linear }}$.
Finally,

$$
F=\frac{M S_{\text {Linear }}}{M S_{\text {Enror }}}=\frac{567.85}{7.75}=73.30
$$

The critical value for F with 1 and 27 degrees of freedom and $\alpha=.05$ is 4.21 . Because the calculated value is larger than the critical value, statisticians would say the data shows a significant linear component. This, of course, verifies what you see in Figure 12-6.

A little more on trend

The coefficients I showed you represent one possible component of what underlies the differences among the four means in the example - the linear component. With four means, it's also possible to have other components. I lumped those other components
together into a category I called nonlinear. Now I discuss them explicitly.

One possibility is that four means can differ from one another and form a trend that looks like a curve, as in the next figure.

Four means can form still another kind of trend:

(continued)

The first kind, where the trend changes direction once is called a quadratic component. In the first figure it increases, and then it decreases. The second, where the trend changes direction twice is called a cubic component. In the second figure it increases, decreases, and then increases again. In Figure 12-6, the trend is linear and doesn't change direction (it just keeps decreasing).

Quadratic and cubic components have coefficients, too, and here they are:
Quadratic: 1, $-1,-1,1$
Cubic: $-1,3,-3,1$
You test for these components the same way you test for the linear component. A trend can be a combination of components: If you have a significant F, one or more of these trend components might be significant.
Linear, quadratic, and cubic are as far as you can go with four means. With five means, you can look for those three plus a quartic component(three direction-changes), and with six you
can try and scope out all of the preceding plus a quintic component (four direction-changes). What do the coefficients look like?
For five means, they're:
Linear: $-2,-1,0,1,2$
Quadratic: 2, $-1,-2,-1,2$
Cubic: -1, 2, 0, -2, 1
Quartic: 1, -4, 6, -4, 1
And for six means:
Linear: $-5,-3,-1,1,3,5$
Quadratic: $5,-1,-4,-4,-1,5$
Cubic: $-5,7,4,-4,-7,5$
Quartic: 1, $-3,2,2,-3,1$
Quintic: $-1,5,-10,10,-5,1$
I could go on with more means, coefficents, and exotic component names (hextic? septic?), but enough already. This should hold you for a while.

Data analysis tool: Anova: Two Factor Without Replication

Huh? Is that a misprint? Two-Factor??? Without Replication?? What's that all about?

Here's the story: If you're looking through the data analysis tools for something like Anova: Single Factor Repeated Measures, you won't find it. The tool you're looking for is there, but it's hiding out under a different name.

Figure 12-7 shows this tool's dialog box along with the data for the preceding weight-loss example.

Figure 12-7:
The Anova: Two Factor

Without Replication data analysis tool dialog box.

The steps for using this tool are:

1. Type the data for each sample into a separate data array. Put the label for each person in a data array.

For this example the labels for Person are in column B. The data in the Before sample are in column C, the data in the 1 Month sample are in column D, the data for the 2 Month sample are in column E, and the data for the 3 Month sample are in column F .
2. Select Data I Data Analysis to open the Data Analysis dialog box.
3. In the Data Analysis dialog box, scroll down the Analysis Tools list and select Anova: Two Factor Without Replication. Click OK to open the select Anova: Two Factor Without Replication dialog box.

This is the dialog box in Figure 12-7.
4. In the Input Range box, type the cell range that holds all the data.

For the example, the data are in $\$ B \$ 2: \$ F \$ 12$. Note the $\$$-signs for absolute referencing. Note also - and this is important - the Person column is part of the data.
5. If the cell ranges include column headings, select the Labels option. I included the headings in the ranges, so I checked the box.
6. The Alpha box has 0.05 as a default. Change that value if you want a different α.
7. In the Output Options, select a radio button to indicate where you want the results.
I selected New Worksheet Ply to put the results on a new page in the worksheet.
8. Click OK.

Because I selected New Worksheet Ply, a newly created page opens with the results.

Figure 12-8 shows the tool's output, after I expanded the columns. The output features two tables, SUMMARY and ANOVA.

The SUMMARY table is in two parts. The first part provides summary statistics for the rows. The second part provides summary statistics for the columns. Summary statistics include the number of scores in each row and in each column along with the sums, means, and variances.

The ANOVA table presents the Sums of Squares, df, Mean Squares, F, P-values, and critical F-ratios for the indicated df. The table features two values for F. One F is for the rows, the other for the columns. The P -value is the proportion of area that the F cuts off in the upper tail of the F-distribution. If this value is less than .05 , reject H_{0}.

Although the ANOVA table includes an F for the rows, this doesn't concern you in this case, as H_{0} is only about the columns in the data. Each row represents the data for one person. A high F just implies that people are different from one another, and that's not news.

Figure 12-8: Output from the Anova: Two Factor Without Replication data analysis tool.

4	A	B	C	D	E	F	G
1	Anova: Two-Factor Without Replication						
2							
3	SUMMARY	Count	Sum	Average	Variance		
4	1	4	771	192.75	18.25		
5	2	4	800	200	8.666666667		
6	3	4	790	197.5	94.33333333		
7	4	4	726	181.5	9.666666667		
8	5	4	790	197.5	32.33333333		
9	6	4	604	151	22		
10	7	4	666	166.5	0.333333333		
11	8	4	781	195.25	5.583333333		
12	9	4	849	212.25	43.58333333		
13	10	4	724	181	24.66666667		
14							
15	Before	10	1924	192.4	377.6		
16	1 Month	10	1895	189.5	342.9444444		
17	2 Months	10	1858	185.8	298.8444444		
18	3 Months	10	1824	182.4	296.2666667		
19							
20							
21	ANOVA						
22	Source of Variation	SS	df	MS	F	P-value	F crit
23	Rows	11631.73	9	1292.413889	166.8228756	$2.71 \mathrm{E}-21$	2.250131
24	Columns	569.075	3	189.6916667	24.48512011	7.3E-08	2.960351
25	Error	209.175	27	7.747222222			
26							
27	Total	12409.98	39	318.2044872			
28							

Analyzing trend

Excel's Anova: Two Factor Without Replication tool does not provide a way for performing a trend analysis. As with the planned comparisons, a little ingenuity takes you a long way. The Excel worksheet functions SUMPRODUCT and SUMSQ help with the calculations.

The worksheet page with the ANOVA output gives the information you need to get started. In this section, I take you through the analysis of linear trend.

I start by putting the comparison coefficients for linear trend into J15 through J18, as shown in Figure 12-9.

Figure 12-9: Carrying out a trend analysis.

In J22 through J24, I put information related to $\mathrm{SS}_{\text {Linear }}$ - the numerator, the denominator, and the value of the Sum of Squares. I use separate cells for the numerator and denominator to simplify the formulas.

As I pointed out before, SUMPRODUCT takes arrays of cells, multiplies the numbers in the corresponding cells, and sums the products. (This function is on the Math \& Trig menu, not the Statistical Functions menu.) I used SUMPRODUCT to multiply each coefficient by each sample mean and then add the products. I stored that result in J22. That's the numerator for the $\mathrm{SS}_{\text {Linear }}$. I selected J22 so you could see its formula in the Formula bar:

```
=B15*SUMPRODUCT(J15:J18,D15:D18)^2
```

The value in B 15 is the number in each column. The array J15:J18 holds the comparison coefficients, and D15:D18 holds the column means.

J23 holds the denominator. Its formula is:

```
=SUMSQ(J15:J18)
```

SUMSQ (another function on the Math \& Trig Functions menu) squares the coefficients in J15:J18 and adds them.

J 24 holds the value for $\mathrm{SS}_{\text {Linear }}$. That's J22 divided by J23.
Figure 12-9 shows that in the ANOVA table I've inserted two rows above the row for Error. One row holds the SS, df, MS, F, P-Value and critical F for Linear, the other holds these values for Nonlinear. $\mathrm{SS}_{\text {Nonlinear }}$ in B26 is B24-B25.

The F for Linear is D25 divided by D27. The formula for the P-Value in F25 is

```
=FDIST(E25,C25,C27)
```

The first argument, E25, is the F. The second and third arguments are the df.
The formula for the critical F in F 25 is

$$
=F \operatorname{INV}(0.05, \mathrm{C} 25, \mathrm{C} 27)
$$

The first argument is α, and the second and third are the df.

Chapter 13

Slightly More Complicated Testing

In This Chapter

- Working with two variables
- Working with replications
- Understanding interactions

1n Chapter 11, I show you how to test hypotheses with two samples. In Chapter 12, I show you how to test hypotheses when you have more than two samples. The common thread through both chapters is that one independent variable (also called a factor) is involved.

Many times, you have to test the effects of more than one factor. In this Chapter, I show how to analyze two factors within the same set of data. Several types of situations are possible, and I describe Excel data analysis tools that deal with each one.

Cracking the Combinations

FarKlempt Robotics, Inc., manufactures battery-powered robots. They want to test three rechargeable batteries for these robots on a set of three tasks climbing, walking, and assembling. Which combination of battery and task results in the longest battery life?

They test a sample of nine robots. They randomly assign each robot one battery and one type of task. FarKlempt tracks the number of days each robot works before recharging. The data are in Table 13-1.

Table 13-1	FarKlempt Robots: Number of Days before Recharging in Three Tasks with Three Batteries			
Task	Battery 1	Battery 2	Battery 3	Average
Climbing	12	15	20	15.67
Walking	14	16	19	16.33
Assembling	11	14	18	14.33
Average	12.33	15.00	19.00	15.44

This calls for two hypothesis tests:
$\mathrm{H}_{0}: \mu_{\text {Battery1 }}=\mu_{\text {Battery2 }}=\mu_{\text {Battery } 3}$
$\mathrm{H}_{1}: \operatorname{Not} \mathrm{H}_{0}$
and
$\mathrm{H}_{0}: \mu_{\text {Climbing }}=\mu_{\text {Walking }}=\mu_{\text {Assembling }}$
$\mathrm{H}_{1}: \operatorname{Not} \mathrm{H}_{0}$
In both tests, set $\alpha=.05$.

Breaking down the variances

The appropriate analysis for these tests is an analysis of variance (ANOVA). Each variable - Batteries and Tasks - is also called a factor. So this analysis is called a two-factor ANOVA.

To understand this ANOVA, consider the variances inside the data. First, focus on the variance in the whole set of nine numbers - MS_{T}. " T " in the subscript stands for "Total.") The mean of those numbers is 15.44. Because it's the mean of all the numbers, it goes by the name grand mean.

This variance is

$$
M S_{T}=\frac{(12-15.44)^{2}+(15-15.44)^{2}+\ldots+(18-15.44)^{2}}{9-1}=\frac{76.22}{8}=9.53
$$

The means of the three batteries (the column means) also vary from 15.44. That variance is
$M S_{\text {Batereres }}=\frac{(3)(12.33-15.44)^{2}+(3)(15.00-15.44)^{2}+(3)(19.00-15.44)^{2}}{3-1}$
$=\frac{67.56}{2}=33.78$
Why does the 3 appear as a multiplier of each squared deviation? When you deal with means, you have to take into account the number of scores that produced each mean.

Similarly, the means of the tasks (the row means) vary from 15.44:
$M S_{\text {Tasks }}=\frac{(3)(15.67-15.44)^{2}+(3)(16.33-15.44)^{2}+(3)(14.33-15.44)^{2}}{3-1}$
$=\frac{6.22}{2}=3.11$
One variance is left. It's called $\mathrm{MS}_{\text {Error }}$. This is what remains when you subtract the $\mathrm{SS}_{\text {Batteries }}$ and the $\mathrm{SS}_{\text {Tasks }}$ from the SS_{T}, and divide that by the df that remains when you subtract $\mathrm{df}_{\text {Batteries }}$ and $\mathrm{df}_{\text {Tasks }}$ from df_{T} :

$$
M S_{\text {Error }}=\frac{S S_{T}-S S_{\text {Bateries }}-S S_{\text {Tasks }}}{d f_{T}-d f_{\text {Batereics }}-d f_{\text {Tasks }}}=\frac{2.44}{4}=0.61
$$

To test the hypotheses, you calculate one F for the effects of the batteries and another for the effects of the tasks. For both, the denominator (the so-called "error term") is $\mathrm{MS}_{\text {Error }}$:

$$
\begin{gathered}
F=\frac{M S_{\text {Batereres }}}{M S_{\text {Eror }}}=\frac{33.77}{0.61}=55.27 \\
F=\frac{M S_{\text {Tasks }}}{M S_{\text {Eror }}}=\frac{2.44}{0.61}=5.09
\end{gathered}
$$

Each F has 2 and 4 degrees of freedom. With $\alpha=.05$, the critical F in each case is 6.94. The decision is to reject H_{0} for the batteries (they differ from one another to an extent greater than chance), but not for the tasks.

To zero in on the differences for the batteries, you carry out planned comparisons among the column means. (See Chapter 12 for the details.)

Data analysis tool: Anova: Two-Factor Without Replication

Excel's Anova: Two-Factor Without Replication tool carries out the analysis I just outlined. (I used this tool for another type of analysis in Chapter 12.) Without Replication means that only one robot is assigned to each batterytask combination. If you assign more than one to each combination, that's replication.

Figure 13-1 shows this tool's dialog box along with the data for the batteriestasks example.

Figure 13-1:
The Anova: Two Factor Without Replication data analysis tool dialog box along with the batteriestasks data.

The steps for using this tool are:

1. Enter the data into the worksheet, and include labels for the rows and columns.

For this example, the labels for the tasks are in cells B4, B5, and B6. The labels for the batteries are in cells C3, D3, and E3. The data are in cells C4 through E6.
2. Select Data I Data Analysis to open the Data Analysis dialog box.
3. In the Data Analysis dialog box, scroll down the Analysis Tools list and select Anova: Two Factor Without Replication. Click OK to open the select Anova: Two Factor Without Replication dialog box.

This is the dialog box in Figure 13-1.
4. In the Input Range box, enter the cell range that holds all the data.

For the example, the data range is $\$ B \$ 3: \$ E \$ 6$. Note the $\$$-signs for absolute referencing. Note also - and this is important - the row labels are
part of the data range. The column labels are, too. The first cell in the data range, B 2 , is blank, but that's OK.
5. If the cell ranges include column headings, select the Labels option.

I included the headings in the ranges, so I checked the box.
6. The Alpha box has 0.05 as a default. Change that value if you want a different α.
7. In the Output Options, select a radio button to indicate where you want the results.
I selected New Worksheet Ply to put the results on a new page in the worksheet.

8. Click OK.

Because I selected New Worksheet Ply, a newly created page opens with the results.

Figure 13-2 shows the tool's output, after I expanded the columns. The output features two tables, SUMMARY and ANOVA.

The SUMMARY table is in two parts. The first part provides summary statistics for the rows. The second part provides summary statistics for the columns. Summary statistics include the number of scores in each row and in each column along with the sums, means, and variances.

The ANOVA table presents the Sums of Squares, df, Mean Squares, F, P-values, and critical F for the indicated df. The table features two values for F. One F is for the rows, the other for the columns. The P -value is the proportion of area that the F cuts off in the upper tail of the F-distribution. If this value is less than .05 , reject H_{0}.

In this example, the decisions are to reject H_{0} for the batteries (the columns) and to not reject H_{0} for the tasks (the rows).

Figure 13-2: Output from the Anova: Two Factor Without Replication data analysis tool.

4	A	B	C	D	E	F	G
1	Anova: Two-Factor Without Replication						
2							
3	SUMMARY	Count	Sum	Average	Variance		
4	Climbing	3	47	15.66666667	16.33333333		
5	Walking	3	49	16.33333333	6.333333333		
6	Assembling	3	43	14.33333333	12.33333333		
7							
8	Battery 1	3	37	12.33333333	2.333333333		
9	Battery 2	3	45	15	1		
10	Battery 3	3	57	19	1		
11							
12							
13	ANOVA						
14	Source of Variation	SS	df	MS	F	P-value	F crit
15	Rows	6.222222	2	3.111111111	5.090909091	0.079552926	6.94427191
16	Columns	67.55556	2	33.77777778	55.27272727	0.001219451	6.94427191
17	Error	2.444444	4	0.611111111			
18							
19	Total	76.22222	8	9.527777778			
20							

Cracking the Combinations Again

The analysis I just showed you involves one score for each combination of the two factors. Assigning one individual to each combination is appropriate for robots and other manufactured objects, where you can assume that one object is pretty much the same as another.

When people are involved, it's a different story. Individual variation among humans is something you can't overlook. For this reason, it's necessary to assign a sample of people to a combination of factors - not just one person.

Rows and columns

I illustrate with an example. Imagine that a company has two methods of presenting its training information. One is via a person who presents the information orally, the other is via a text. Imagine also that the information is presented in either a humorous way or in a technical way. I refer to the first factor as Presentation Method and to the second as Presentation Style.

Combining the two levels of Presentation Method with the two levels of Presentation Style gives four combinations. The company randomly assigns 4 people to each combination, for a total of 16 people. After providing the training, they test the 16 people on their comprehension of the material.

Figure 13-3 shows the combinations, the four comprehension scores within each combination, and summary statistics for the combinations, rows, and columns.

Figure 13-3: Combining the levels of Presentation Method with the levels of Presentation Style.

Here are the hypotheses:
$\mathrm{H}_{0}: \mu_{\text {Spoken }}=\mu_{\text {Text }}$
$\mathrm{H}_{1}: \operatorname{Not} \mathrm{H}_{0}$
and
$\mathrm{H}_{0}: \mu_{\text {Humorous }}=\mu_{\text {Technical }}$
$\mathrm{H}_{1}: \operatorname{Not} \mathrm{H}_{0}$
Because the two presentation methods (Spoken and Text) are in the rows, I refer to Presentation Type as the row factor. The two presentation styles (Humorous and Technical) are in the columns, so Presentation Style is the column factor.

Interactions

When you have rows and columns of data, and you're testing hypotheses about the row factor and the column factor, you have an additional consideration. Namely, you have to be concerned about the row-column combinations. Do the combinations result in peculiar effects?

For the example I presented, it's possible that combining Spoken and Text with Humorous and Technical yields something unexpected. In fact, you can see that in the data in Figure 13-3: For Spoken presentation, the Humorous style produces a higher average than the Technical style. For Text presentation, the Humorous style produces a lower average than the Technical style.

A situation like that is called an interaction. In formal terms, an interaction occurs when the levels of one factor affect the levels of the other factor differently. The label for the interaction is row factor \times column factor, so for this example that's Method \times Type.

The hypotheses for this are:
H_{0} : Presentation Method does not interact with Presentation Style
$\mathrm{H}_{1}: \operatorname{Not} \mathrm{H}_{0}$

The analysis

The statistical analysis, once again, is an analysis of variance (ANOVA). As is the case with the other ANOVAs I showed you, it depends on the variances in the data.

The first variance is the total variance, labeled MS_{T}. That's the variance of all 16 scores around their mean (the "grand mean"), which is 44.81:

$$
M S_{T}=\frac{(54-44.81)^{2}+(55-44.81)^{2}+\ldots+(72-44.81)^{2}}{16-1}=\frac{5674.44}{15}=378.30
$$

The denominator tells you that $\mathrm{df}=15$ for MS_{T}.
The next variance comes from the row factor. That's $\mathrm{MS}_{\text {Method }}$, and it's the variance of the row means around the grand mean:

$$
M S_{\text {Netrod }}=\frac{(8)(40.75-44.81)^{2}+(8)(48.88-44.81)^{2}}{2-1}=\frac{264.06}{1}=264.06
$$

The 8 multiplies each squared deviation because you have to take into account the number of scores that produced each row mean. The df for $\mathrm{MS}_{\text {Method }}$ is the number of rows -1 , which is 1 .

Similarly, the variance for the column factor is

$$
M S_{\text {Syle }}=\frac{(8)(43.25-44.81)^{2}+(8)(46.38-44.81)^{2}}{2-1}=\frac{39.06}{1}=39.06
$$

The df for $\mathrm{MS}_{\text {Style }}$ is 1 (the number of columns -1).
Another variance is the pooled estimate based on the variances within the four row-column combinations. It's called the $\mathrm{MS}_{\text {within }}$, or MS_{w}. (For details on MS_{w} and pooled estimates, see Chapter 12.). For this example,
$M S_{W}=\frac{(4-1)(12.92)+(4-1)(12.92)+(4-1)(12.25)+(4-1)(12.33)}{(4-1)+(4-1)+(4-1)+(4-1)}$
$=\frac{151.25}{12}=12.60$
This one is the error term (the denominator) for each F that you calculate. Its denominator tells you that $\mathrm{df}=12$ for this MS.

The last variance comes from the interaction between the row factor and the column factor. In this example, it's labeled $\mathrm{MS}_{\text {Method } \mathrm{X} \text { Type }}$. You can calculate this a couple of ways. The easiest way is to take advantage of this general relationship:

$$
\mathrm{SS}_{\text {Row } \mathrm{C} \text { Column }}=\mathrm{SS}_{\mathrm{T}}-\mathrm{SS}_{\text {Row Factor }}-\mathrm{SS}_{\text {Column Factor }}-\mathrm{SS}_{\mathrm{w}}
$$

And this one:

$$
\mathrm{df}_{\text {Row } \mathrm{X} \text { Column }}=\mathrm{df}_{\mathrm{T}}-\mathrm{df}_{\text {Row Factor }}-\mathrm{df}_{\text {Column Factor }}-\mathrm{df}_{\mathrm{w}}
$$

Another way to calculate this is

$$
\mathrm{df}_{\text {Row } \mathrm{XColumn}}=(\text { number of rows }-1)(\text { number of columns }-1)
$$

The MS is

$$
M S_{\text {Row X Column }}=\frac{S S_{\text {Row } X \text { Column }}}{d f_{\text {Row } X \text { Column }}}
$$

For this example,

$$
M S_{\text {Method } X \text { Syle }}=\frac{S S_{\text {Method } X \text { Syle }}}{d f_{\text {Method } X \text { Syle }}}=\frac{5764.44-264.06-39.06-151.25}{15-12-1-1}=\frac{5220.06}{1}=5220.06
$$

To test the hypotheses, you calculate three $F \mathrm{~s}$:

$$
\begin{gathered}
F=\frac{M S_{S_{\text {yle }}}}{M S_{W}}=\frac{39.06}{12.60}=3.10 \\
F=\frac{M S_{\text {Method }}}{M S_{W}}=\frac{264.06}{12.60}=20.95 \\
F=\frac{M S_{\text {Method } X \text { Syle e }}}{M S_{W}}=\frac{5220.06}{12.60}=414.15
\end{gathered}
$$

For $\mathrm{df}=1$ and 12, the critical F at $\alpha=.05$ is 4.75 . (You can use the Excel function FINV to verify.). The decision is to reject H_{0} for the Presentation Method and for the Method \times Style interaction, and to not reject H_{0} for the Presentation Style.

Data analysis tool: Anova: Two-Factor With Replication

Excel provides a data analysis tool that handles everything. This one is called Anova: Two-Factor With Replication. "Replication" means you have more than one score in each row-column combination.

Figure 13-4 shows this tool's dialog box along with the data for the batteriestasks example.

Figure 13-4:
The Anova: Two Factor

With
Replication data analysis
tool dialog box along with the type-method data.

The steps for using this tool are:

1. Enter the data into the worksheet and include labels for the rows and columns.

For this example, the labels for the presentation methods are in cells B3 and B7. The presentation types are in cells C2 and D2. The data are in cells C3 through D10.
2. Select Data I Data Analysis to open the Data Analysis dialog box.
3. In the Data Analysis dialog box, scroll down the Analysis Tools list and select Anova: Two Factor With Replication. Click OK to open the select Anova: Two Factor With Replication dialog box.
This is the dialog box in Figure 13-4.

4. In the Input Range box, type the cell range that holds all the data.

For the example, the data are in $\$ B \$ 2: \$ D \$ 10$. Note the $\$$-signs for absolute referencing. Note also - again, this is important - the labels for the row factor (presentation method) are part of the data range. The labels for the column factor are part of the range, too. The first cell in the range, B 2 , is blank, but that's OK .
5. If the cell ranges include column headings, select the Labels option.

I included the headings in the ranges, so I checked the box.
6. The Alpha box has 0.05 as a default. Change that value if you want a different α.
7. In the Output Options, select a radio button to indicate where you want the results.

I selected New Worksheet Ply to put the results on a new page in the worksheet.

8. Click OK.

Because I selected New Worksheet Ply, a newly created page opens with the results.

Figure 13-5 shows the tool's output, after I expanded the columns. The output features two tables, SUMMARY and ANOVA.

The SUMMARY table is in two parts. The first part provides summary statistics for the factor combinations and for the row factor. The second part provides summary statistics for the column factor. Summary statistics include the number of scores in each row-column combination, in each row, and in each column along with the counts, sums, means, and variances.

The ANOVA table presents the Sums of Squares, df, Mean Squares, F, P-values, and critical F for the indicated df. The table features three values for F. One F is for the row factor, one for the column factor, and one for the interaction. In the table, the row factor is called Sample. The P-value is the proportion of area that the F cuts off in the upper tail of the F-distribution. If this value is less than .05 , reject H_{0}.

In this example, the decisions are to reject H_{0} for the Presentation Method (the row factor, labeled Sample in the table), to not reject H_{0} for the Presentation Style (the column factor), and to reject H_{0} for the interaction.

Part III: Drawing Conclusions from Data

Figure 13-5: Output from the Anova: Two Factor Without Replication data analysis tool.

4	A	B	C	D	E	F	G
1	Anova: Two-Factor With Replication						
2							
3	SUMMARY	Humorous	Technical	Total			
4	Spoken						
5	Count	4	4	8			
6	Sum	229	97	326			
7	Average	57.25	24.25	40.75			
8	Variance	12.91667	12.91667	322.2143			
9							
10	Written						
11	Count	4	4	8			
12	Sum	117	274	391			
13	Average	29.25	68.5	48.875			
14	Variance	12.25	12.33333	450.6964			
15							
16	Total						
17	Count	8	8				
18	Sum	346	371				
19	Average	43.25	46.375				
20	Variance	234.7857	570.2679				
21							
22							
23	ANOVA						
24	Source of Variation	SS	df	MS	F	P-value	F crit
25	Sample	264.0625	1	264.0625	20.95041	0.000636	4.747225
26	Columns	39.0625	1	39.0625	3.099174	0.103771	4.747225
27	Interaction	5220.063	- 1	5220.063	414.1537	1.14E-10	4.747225
28	Within	151.25	12	12.60417			
29							
30	Total	5674.438	15	378.2958			
31							

Chapter 14

Regression: Linear and Multiple

In This Chapter

- Summarizing a relationship
$>$ Working with regression
$>$ Hypothesis testing and regression
$>$ Balancing many relationships

0ne of the main things you do when you work with statistics is make predictions. The idea is to take data on one or more variables, and use these data to predict a value of another variable. To do this, you have to understand how to summarize relationships among variables, and to test hypotheses about those relationships.

In this chapter, I introduce regression, a statistical way to do just that. Regression also enables you to use the details of relationships to make predictions. First, I show you how to analyze the relationship between one variable and another. Then I show you how to analyze the relationship between a variable and two others. These analyses involve a good bit of calculation, and Excel is more than equal to the task.

The Plot of Scatter

Sahutsket University is an exciting, dynamic institution. Every year, the school receives thousands of applications. One challenge the Admissions Office faces is this: Applicants want the Office to predict what their GPAs (grade-point averages on a 4.0 scale) will be if they attend Sahutsket.

What's the best prediction? Without knowing anything about an applicant, and only knowing its own students' GPAs, the answer is clear: It's the average GPA at Sahutsket U. Regardless of who the applicant is, that's all the Admissions Office can say if its knowledge is limited.

With more knowledge about the students and about the applicants, a more accurate prediction becomes possible. For example, if Sahutsket keeps records on its students' SAT scores (Verbal and Math combined), the Admissions Office can match up each student's GPA with his or her SAT score and see if the two pieces of data are somehow related. If they are, an applicant can supply his or her SAT score, and the Admissions Office can use that score to help make a prediction.

Figure 14-1 shows the GPA-SAT matchup in a graphic way. Because the points are scattered, it's called a scatterplot. By convention, the vertical axis (the y-axis) represents what you're trying to predict. That's also called the dependent variable or the y-variable. In this case, that's GPA. Also by convention, the horizontal axis (the x-axis) represents what you're using to make your prediction. That's also called the independent variable or the x-variable. Here, that's SAT.

Figure 14-1: SATs and GAPs in the Sahutsket University student body.

Each point in the graph represents an individual student's GPA and SAT. In a real scatterplot of a university student body, you'd see many more points than I show here. The general tendency of the set of points seems to be that high SAT scores are associated with high GPAs and low SAT scores are associated with low GPAs.

I singled out one of the points. It shows a Sahutsket student with an SAT score of 1000 and a GPA of 2.5. I also show the average GPA to give you a sense that knowing the GPA-SAT relationship provides an advantage over just knowing the mean.

How do you make that advantage work for you? You start by summarizing the relationship between SAT and GPA. The summary is a line through the points. How and where do you draw the line?

I'll get to that in a minute. First, I have to tell you about lines in general.

Graphing Lines

In the world of mathematics, a line is a way to picture a relationship between an independent variable (x) and a dependent variable (y). In this relationship
$y=4+2 x$
every time I supply a value for x, I can figure out the corresponding value for y. The equation says to take the x-value, multiply by 2 , and then add 3 .

If $x=1$, for example, $y=6$. If $x=2, y=8$. Table $14-1$ shows a number of $x-y$ pairs in this relationship, including the pair in which $x=0$.

| Table 14-1 | $x-y$ Pairs in $\boldsymbol{y}=\mathbf{4 + 2 x}$ |
| :---: | :---: | :---: |
| \boldsymbol{x} | \boldsymbol{y} |
| 0 | 4 |
| 1 | 6 |
| 2 | 8 |
| 3 | 10 |
| 4 | 12 |
| 5 | 14 |
| 6 | 16 |

Figure 14-2 shows these pairs as points on a set of $x-y$ axes, along with a line through the points. Each time I list an $x-y$ pair in parentheses, the x-value is first.

As the Figure shows, the points fall neatly onto the line. The line graphs the equation $y=4+2 x$. In fact, whenever you have an equation like this, where x isn't squared or cubed or raised to any power higher than 1, you have what mathematicians call a linear equation. (If x is raised to a higher power than one, you connect the points with a curve, not a line.)

Figure 14-2: The graph for $y=4+2 x$.

A couple of things to keep in mind about a line: You can describe a line in terms of how slanted it is, and where it runs into the y-axis.

The how-slanted-it-is part is called the slope. The slope tells you how much y changes when x changes by 1 unit. In the line in Figure 14-2, when x changes by 1 (from 4 to 5 , for example) y changes by 2 (from 12 to 14).

The where-it-runs-into-the-y-axis part is called the y-intercept (or sometimes just the intercept). That's the value of y when $x=0$. In Figure 14-2 the y-intercept is 4 .

You can see these numbers in the equation. The slope is the number that multiplies x and the intercept is the number you add to x. In general,
$y=a+b x$
where a represents the intercept and b represents the slope.
The slope can be a positive number, a negative number, or zero. In Figure 14-2, the slope is positive. If the slope is negative, the line is slanted in a direction opposite to what you see in Figure 14-2. A negative slope means that y decreases as x increases. If the slope is zero, the line is parallel to the horizontal axis. If the slope is zero, y doesn't change as x changes.

The same applies to the intercept - it can be a positive number, a negative number, or zero. If the intercept is positive, the line cuts off the y-axis above the x-axis. If the intercept is negative, the line cuts off the y-axis below the
x-axis. If the intercept is zero, it intersects with the y-axis and the x-axis, at the point called the origin.

And now, back to what I was originally talking about.

Regression: What a Line!

Before I began telling you about lines, equations, slopes, and intercepts, I mentioned that a line is the best way to summarize the relationship in the scatterplot in Figure 14-1. It's possible to draw an infinite amount of straight lines through the scatterplot. Which one best summarizes the relationship?

Intuitively, the "best fitting" line ought to be the one that goes through the maximum number of points and isn't too far away from the points it doesn't go through. For statisticians, that line has a special property: If you draw that line through the scatterplot, then draw distances (in the vertical direction) between the points and the line, and then square those distances and add them up, the sum of the squared distances is a minimum.

Statisticians call this line the regression line, and indicate it as

$$
y^{\prime}=a+b x
$$

Each y^{\prime} is a point on the line. It represents the best prediction of y for a given value of x.

To figure out exactly where this line is, you calculate its slope and its intercept. For a regression line, the slope and intercept are called regression coefficients.

The formulas for the regression coefficients are pretty straightforward. For the slope, the formula is

$$
b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}
$$

The intercept formula is

$$
a=\bar{y}-b \bar{x}
$$

I illustrate with an example. To keep the numbers manageable and comprehensible, I use a small sample instead of the thousands of students you'd find in a scatterplot of an entire university student body. Table 14-2 shows a sample of data from 20 Sahusket University students.

Table 14-2	SAT Scores and GPAs for 20 Sahusket University Students	
Student	SAT	GPA
1	990	2.2
2	1150	3.2
3	1080	2.6
4	1100	3.3
5	1280	3.8
6	990	2.2
7	1110	3.2
8	920	2.0
9	1000	2.2
10	1200	3.6
11	1000	2.1
12	1150	2.8
13	1070	2.2
14	1120	2.1
15	1250	2.4
16	1020	2.2
17	1060	2.3
18	1550	3.9
19	1480	3.8
20	1010	2.0
Mean	1126.5	2.705
Variance	26171.32	0.46
Standard Deviation	161.78	0.82

For this set of data, the slope of the regression line is

$$
b=\frac{(990-1126.5)(2.2-2.705)+(1150-1126.5)(3.2-2.705)+\ldots+(1010-1126.5)(2.0-2.705)}{(2.2-2.705)^{2}+(3.2-2.705)^{2}+\ldots+(2.0-2.705)^{2}}=0.0034
$$

The intercept is

$$
a=\bar{y}-b \bar{x}=2.705-0.0034(1126.5)=-1.1538
$$

So the equation of the best fitting line through these 20 points is

$$
y^{\prime}=-1.1538+0.0034 x
$$

or in terms of GPAs and SATs

$$
\text { Predicted } G P A=-1.1538+0.0034(S A T)
$$

Using regression for forecasting

Based on this sample and this regression line, you can take an applicant's SAT score, say 1230, and predict the applicant's GPA:

$$
\text { Predicted } G P A=-1.1538+0.0034(1230)=3.028
$$

Without this rule, the only prediction is the mean GPA, 2.705.

Variation around the regression line

In Chapter 5, I describe how the mean doesn't tell the whole story about a set of data. You have to show how the scores vary around the mean. For that reason, I introduce the variance and standard deviation.

You have a similar situation here. To get the full picture of the relationship in a scatterplot, you have to show how the scores vary around the regression line. Here, I introduce the residual variance and standard error of estimate, which are analogous to the variance and the standard deviation.

The residual variance is sort of an average of the squared deviations of the observed y-values around the predicted y-values. Each deviation of a data point from a predicted point $\left(y-y^{\prime}\right)$ is called a residual, hence the name. The formula is

$$
s_{y x}{ }^{2}=\frac{\sum\left(y-y^{\prime}\right)^{2}}{N-2}
$$

I said "sort of" because the denominator is $N-2$, rather than N. The reason for the -2 is beyond our scope. As I've said before, the denominator of a variance estimate is degrees of freedom (df), and that concept comes in handy in a little while.

The standard error of estimate is

$$
s_{y x}=\sqrt{s x^{2}}=\sqrt{\frac{\sum\left(y-y^{\prime}\right)^{2}}{N-2}}
$$

To show you how the residual error and the standard error of estimate play out for the data in the example, here's Table 14-3. This table extends Table 14-2 by showing the predicted GPA for each SAT:

Table 14-3	SAT Scores, GPAs, and Predicted GPAs for 20 Sahusket University Students		
Student	SAT	GPA	Predicted GPA
1	990	2.2	2.24
2	1150	3.2	2.79
3	1080	2.6	2.55
4	1100	3.3	2.61
5	1280	3.8	3.23
6	990	2.2	2.24
7	1110	3.2	2.65
8	920	2.0	2.00
9	1000	2.2	2.27
10	1200	3.6	2.96
11	1000	2.1	2.27
12	1150	2.8	2.79
13	1070	2.2	2.51
14	1120	2.1	2.68
15	1250	2.4	3.13
16	1020	2.2	2.34
17	1060	2.3	2.48
18	1550	3.9	4.16
19	1480	3.8	3.92
20	1010	2.0	2.31
Mean	1126.5	2.705	
Variance	26171.32	0.46	
Standard	161.78	0.82	
Deviation			
102			

As the table shows, sometimes the predicted GPA is pretty close, sometimes it's not. One predicted value (4.16) is impossible.

For these data, the residual variance is

$$
s_{y x}^{2}=\frac{\sum\left(y-y^{\prime}\right)^{2}}{N-2}=\frac{(2.2-2.24)^{2}+(3.2-2.79)^{2}+\ldots+(2.0-2.31)^{2}}{20-2}=\frac{2.91}{18}=.16
$$

The standard error of estimate is

$$
s_{y x}=\sqrt{s_{y x}{ }^{2}}=\sqrt{.16}=.40
$$

If the residual variance and the standard error of estimate are small, the regression line is a good fit to the data in the scatterplot. If the residual variance and the standard error of estimate are large, the regression line is a poor fit.

What's "small"? What's "large"? What's a "good" fit?
Keep reading.

Testing hypotheses about regression

The regression equation l've been working with

$$
y^{\prime}=a+b x
$$

summarizes a relationship in a scatterplot of a sample. The regression coefficients a and b are sample statistics. You can use these statistics to test hypotheses about population parameters, and that's what I do in this section.

The regression line through the population that produces the sample (like the entire Sahutsket University student body, past and present) is the graph of an equation that consists of parameters, rather than statistics. By convention, remember, Greek letters stand for parameters, so the regression equation for the population is

$$
y^{\prime}=\alpha+\beta x+\varepsilon
$$

The first two Greek letters on the right are α (alpha) and β (beta), the equivalents of a and b. What about that last one? It looks something like the Greek equivalent of e. What's it doing there?

That last term is the Greek letter epsilon. It represents "error" in the population. In a way, "error" is an unfortunate term. It's a catchall for "things you don't know or things you have no control over." Error is reflected in the residuals - the deviations from the predictions. The more you understand about what you're measuring, the more you decrease the error.

You can't measure the error in the relationship between SAT and GPA, but it's lurking there. Someone might score low on the SAT, for example, and then go on to have a wonderful college career with a higher-than-predicted GPA. On a scatterplot, this person's SAT-GPA point looks like an error in prediction. As you find out more about that person, you might discover that he or she was sick on the day of the SAT, and that explains the "error."

You can test hypotheses about α, β, and ε, and that's what I do in the upcoming subsections.

Testing the fit

I begin with a test of how well the regression line fits the scatterplot. This is a test of ε, the error in the relationship.

The objective is to decide whether or not the line really does represent a relationship between the variables. It's possible that what looks like a relationship is just due to chance and the equation of the regression line doesn't mean anything (because the amount of error is overwhelming) - or it's possible that the variables are strongly related.

These possibilities are testable, and you set up hypotheses to test them:
H_{0} : No real relationship
$\mathrm{H}_{1}: \operatorname{Not} \mathrm{H}_{0}$
Although those hypotheses make nice light reading, they don't set up a statistical test. To set up the test, you have to consider the variances. To consider the variances, you start with the deviations. Figure 14-3 focuses on one point in a scatterplot and its deviation from the regression line (the residual) and from the mean of the y-variable. It also shows the deviation between the regression line and the mean.

As the figure shows, the distance between the point and the regression line and the distance between the regression line and the mean add up to the distance between the point and the mean:

$$
\left(y-y^{\prime}\right)+\left(y^{\prime}-\bar{y}\right)=(y-\bar{y})
$$

This sets the stage for some other important relationships.

Figure 14-3: The deviations in a scatterplot.

Start by squaring each deviation. That gives you $\left(y-y^{\prime}\right)^{2},\left(y^{\prime}-\bar{y}\right)^{2}$, and $(y-\bar{y})^{2}$. If you add up each of the squared deviations, you have

$$
\sum(y-y)^{2}
$$

I just showed you this one. That's the numerator for the residual variance. It represents the variability around the regression line- the "error" I spoke of earlier. In the terminology of Chapter 12, the numerator of a variance is called a Sum of Squares, or SS. So this is $\mathrm{SS}_{\text {Residual }}$.
$\sum\left(y^{\prime}-\bar{y}\right)^{2}$
This one is new. The deviation $\left(y^{\prime}-\bar{y}\right)$ represents the gain in prediction due to using the regression line rather than the mean. The sum reflects this gain, and is called $\mathrm{SS}_{\text {Regression }}$.
$\sum(y-\bar{y})^{2}$
I showed you this one in Chapter 5 - although I used x rather than y. That's the numerator of the variance of y. In Chapter 12 terms, it's the numerator of total variance. This one is $\mathrm{SS}_{\text {Total }}$.

This relationship holds among these three sums:

$$
\mathrm{SS}_{\text {Residual }}+\mathrm{SS}_{\text {Regression }}=\mathrm{SS}_{\text {Total }}
$$

Each one is associated with a value for degrees of freedom - the denominator of a variance estimate. As I pointed out in the previous section, the denominator for $\mathrm{SS}_{\text {Residual }}$ is $N-2$. The df for $\mathrm{SS}_{\text {Total }}$ is $N-1$ (see Chapter 5 and Chapter 12). As with the SS, the degrees of freedom add up:

$$
\mathrm{df}_{\text {Regression }}+\mathrm{df}_{\text {Residual }}=\mathrm{df}_{\text {Total }}
$$

This leaves one degree of freedom for Regression.
Where is this all headed, and what does it have to do with hypothesis testing? Well, since you asked, you get variance estimates by dividing SS by df. Each variance estimate is called a Mean Square, abbreviated MS (again, Chapter 12):

$$
\begin{aligned}
& \mathrm{MS}_{\text {Regression }}=\frac{\mathrm{SS}_{\text {Regression }}}{\mathrm{df}_{\text {Regression }}} \\
& \mathrm{MS}_{\text {Residual }}=\frac{\mathrm{SS}_{\text {Residual }}}{\mathrm{df}_{\text {Residual }}} \\
& \mathrm{MS}_{\text {Totala }}=\frac{\mathrm{SS}_{\text {Total }}}{\mathrm{df}_{\text {Total }}}
\end{aligned}
$$

Now for the hypothesis part. If H_{0} is true and what looks like a relationship between x and y is really no big deal, the piece that represents the gain in prediction because of the regression line $\left(\mathrm{MS}_{\text {Regression }}\right)$ should be no greater than the variability around the regression line $\left(\mathrm{MS}_{\text {Residual }}\right)$. If H_{0} is not true, and the gain in prediction is substantial, then $\mathrm{MS}_{\text {Regression }}$ should be a lot bigger than $\mathrm{MS}_{\text {Residual }}$.

So the hypotheses now set up as
$\mathrm{H}_{0}: \sigma_{\text {Regression }}^{2} \leq \sigma_{\text {Residual }}^{2}$
$\mathrm{H}_{1}: \sigma_{\text {Regression }}^{2}>\sigma_{\text {Residual }}^{2}$
These are hypotheses you can test. How? To test a hypothesis about two variances, you use an F test (Chapter 11). The test statistic here is

$$
\mathrm{F}=\frac{\mathrm{MS} S_{\text {Regression }}}{\mathrm{MS}_{\text {Residual }}}
$$

To show you how it all works, I apply the formulas to the Sahusket example. The $\mathrm{MS}_{\text {Residual }}$ is the same as $\mathrm{s}_{\mathrm{yx}}{ }^{2}$ from the preceding section, and that value is 0.16 . The $\mathrm{MS}_{\text {Regression }}$ is

$$
\mathrm{MS}_{\text {Regression }}=\frac{(2.24-2.705)^{2}+(2.79-2.705)^{2}+\ldots+(2.31-2.705)^{2}}{1}=5.83
$$

This sets up the F :
$\mathrm{F}=\frac{\mathrm{MS}_{\text {Regression }}}{\mathrm{MS}_{\text {Residual }}}=\frac{5.83}{0.16}=36.03$

With 1 and 18 df and $\alpha=.05$, the critical value of F is 4.41 . (You can use the worksheet function FINV to verify.) The calculated F is greater than the critical F, so the decision is to reject H_{0}. That means the regression line provides a good fit to the data in the sample.

Testing the slope

Another question that arises in linear regression is whether or not the slope of the regression line is significantly different from zero. If it's not, the mean is just as good a predictor as the regression line.

The hypotheses for this test are:
$\mathrm{H}_{0}: \beta \leq 0$
$\mathrm{H}_{1}: \beta>0$
The statistical test is t, which I discuss in Chapters 9, 10, and 11 in connection with means. The t-test for the slope is
$t=\frac{b-\beta}{s_{b}}$
with $\mathrm{df}=N-2$. The denominator estimates the standard error of the slope. This term sounds more complicated than it is. The formula is:

$$
s_{b}=\frac{s_{y x}}{s_{x} \sqrt{(N-1)}}
$$

where s_{x} is the standard deviation of the x-variable. For the data in the example $s_{b}=\frac{s_{y_{x}}}{s_{x} \sqrt{(N-1)}}=\frac{0.402}{(161.776) \sqrt{(20-1)}}=.00057$
$t=\frac{b-\beta}{s_{b}}=\frac{.0034-0}{.00057}=5.96$
The actual value is 6.00 . Rounding s_{yx} and s_{b} to a manageable number of decimal places before calculating results in 5.96 . Either way, this is larger than the critical value of t for 18 df and $\alpha=.05$ (2.10), so the decision is to reject H_{0}. This example, by the way, shows why it's important to test hypotheses.

The slope, 0.0034 looks like a very small number. (Possibly because it is a very small number.) Still, it's big enough to reject H_{0} in this case.

Testing the intercept

For completeness, I include the hypothesis test for the intercept. I doubt you'll have much use for it, but it appears in the output of some of Excel's regressionrelated capabilities. I want you to understand all aspects of that output (which I tell you about in a little while), so here it is.

The hypotheses are
$\mathrm{H}_{0}: \alpha=0$
$H_{1}: \alpha \neq 0$
The test, once again, is a t-test. The formula is

$$
t=\frac{\mathrm{a}-\alpha}{s_{\mathrm{a}}}
$$

The denominator is the estimate of the standard error of the intercept. Without going into detail, the formula for s_{a} is

$$
s_{a}=\frac{s_{y x}}{s_{x} \sqrt{\frac{1}{N}+\frac{\bar{x}^{2}}{(N-1) s_{x}{ }^{2}}}}
$$

where s_{x} is the standard deviation of the x-variable, $s_{x}{ }^{2}$ is the variance of the x -variable, and \bar{x}^{2} is the squared mean of the x -variable. Applying this formula to the data in the example,

$$
s_{a}=\frac{s_{y x}}{s_{x} \sqrt{\frac{1}{N}+\frac{\bar{x}^{2}}{(N-1) s_{x}{ }^{2}}}}=\frac{0.40}{161.78 \sqrt{\frac{1}{20}+\frac{(1126.5)^{2}}{(20-1)(161.78)^{2}}}}=0.649
$$

The t-test is
$t=\frac{\mathrm{a}-\alpha}{s_{\mathrm{a}}}=\frac{-1.15}{0.649}=-1.78$

With 18 degrees of freedom, and the probability of a Type I error at .05 , the critical t is 2.45 for a two-tailed test. It's a two-tailed test because H_{1} is that
the intercept doesn't equal zero - it doesn't specify whether the intercept is greater than zero or less than zero. Because the calculated value isn't more negative than the negative critical value, the decision is to not reject H_{0}.

Worksheet Functions for Regression

Excel is a big help for computation-intensive work like linear regression. An assortment of functions and data analysis tools makes life a lot easier. In this section, I concentrate on the worksheet functions and on two array functions.

Figure 14-4 shows the data I use to illustrate each function. The data are GPA and SAT scores for 20 students in the example I showed you earlier. As the figure shows, the SAT scores are in C3:C22 and the GPAs are in D3:D22. The SAT is the x -variable and GPA is the y -variable.

To clarify what the functions do, I defined names for the data arrays. I defined SAT as the name for C3:C22 and I defined GPA as the name for D3:D22. That way, I can use those names in the arguments for the functions. If you don't remember how to define a name for an array, go back to Chapter 2.

Figure 14-4: Data for the regressionrelated worksheet functions.

4	A	B	C	D
1				
2		Student	SAT	GPA
3		1	990	2.2
4		2	1150	3.2
5		3	1080	2.6
6		4	1100	3.3
7		5	1280	3.8
8		6	990	2.2
9		7	1110	3.2
10		8	920	2.0
11		9	1000	2.2
12		10	1200	3.6
13		11	1000	2.1
14		12	1150	2.8
15		13	1070	2.2
16		14	1120	2.1
17		15	1250	2.4
18		16	1020	2.2
19		17	1060	2.3
20		18	1550	3.9
21		19	1480	3.8
22		20	1010	2.0
23				

SLOPE, INTERCEPT, STEXX

These three functions work the same way, so I give a general description and provide details as necessary for each function.

1. With the data entered, select a cell.

2. From the Statistical Functions menu, select a regression function to open its Function Arguments dialog box.

- To calculate the slope of a regression line through the data, select SLOPE.
- To calculate the intercept, select INTERCEPT.
- To calculate the standard error of estimate, select STEYX.

Figures 14-5, 14-6, and 14-7 show the Function Arguments dialog boxes for these three functions.
3. In the Function Arguments dialog box, enter the appropriate values for the arguments.
In the Known_y's box, I entered the name for the cell range that holds the scores for the y-variable. For this example, that's GPA (defined as the name for $\mathrm{C} 3: \mathrm{C} 22$).

In the Known_x's box, I entered the name for the cell range that holds the scores for the x -variable. For this example, it's SAT (defined as the name for D3:D22). After I enter this name, the answer appears in the dialog box.

- SLOPE's answer is .00342556 (Figure 14-5).
- INTERCEPT's answer is -1.153832541 (Figure 14-6).
- STEYX's answer is 0.402400043 (Figure 14-7).

4. Click $O K$ to put the answer into the selected cell.

Figure 14-5:
The
Function Arguments dialog box for SLOPE.

Figure 14－6：
The
Function
Arguments dialog box for INTERCEPT．

Figure 14－7：
The
Function Arguments dialog box for STEYX．

Function Arguments			18
INTERCEPT			
Known＿y＇s GPA		［䀶］$=\{2.2 ; 3.2 ; 2.6 ; 3.3 ;$	2；2；2．2；3，
Known＿x＇s	SAT	［园通 $=\{990 ; 1150 ; 1080 ; 1$	990；1110
$=-1.153832541$ Calculates the point at which a line will intersect the y－axis by using a best－fit regression line plotted through the known x－values and y－values．			
Known＿x＇s is the independent set of observations or data and can be numbers or names，arrays，or references that contain numbers．			
Formula result＝－ 1.153832541			
Help on this function		OK	Cancel

FORECAST

This one is a bit different from the preceding three．In addition to the col－ umns for the x －and－y variables，for FORECAST，you supply a value for x and the answer is a prediction based on the linear regression relationship between the x－variable and the y－variable．

Figure 14－8 shows the Function Arguments dialog box for FORECAST．In the X box，I entered 1290．For this SAT，the figure shows the predicted GPA is 3.265070236 ．

Figure 14－8： The
Function
Arguments dialog box for FORECAST．

Function Arguments				（8）x
FORECAST				
Known＿y＇s	1290	䜿 $=1290$		
	GPA	國 $=\{2.2 ; 3.2 ; 2.6 ; 3.3 ; 3.8 ; 2.2 ; 3.2 ; 2 ; 2.2 ; 3.6$		
Known＿x＇s	SAT	目县 $=\{990 ; 1150 ; 1080 ; 1100 ; 1280 ; 990 ; 1110 ;$ ¢		
$=3.265070236$ Calculates，or predicts，a future value along a linear trend by using existing values． Known＿x＇s is the independent array or range of numeric data．The variance of Known＿x＇s must not be zero．				
Formula result $=3.265070236$				
Help on this function			OK	Cancel

Array function: TREND

TREND is a versatile function. You can use TREND to generate a set of predicted y-values for the x-values in the sample.

You can also supply a new set of x -values and generate a set of predicted y-values, based on the linear relationship in your sample. It's like applying FORECAST repeatedly in one fell swoop.

In this section, I go through both uses.

Predicting y's for the x's in your sample

First, I use TREND to predict GPAs for the 20 students in the sample. Figure 14-9 shows TREND set up to do this. I include the Formula Bar in this screen shot so you can see what the formula looks like for this use of TREND.

Figure 14-9:

1. With the data entered, select a column for TREND's answers.

I selected E3:E22. That puts the predicted GPAs right next to the sample GPAs.
2. From the Statistical Functions menu, select TREND to open the Function Arguments dialog box for TREND.
3. In the Function Arguments dialog box, enter the appropriate values for the arguments.
In the Known_y's box, enter the name for the cell range that holds the scores for the y-variable. For this example, that's GPA (D3:D22).

In the Known_x's box, enter the name for the cell range that holds the scores for the x -variable. For this example, it's SAT (C3:C22).
I left the New_x's box blank.
In the Const box, I typed TRUE (or leave it blank) to calculate the y-intercept, or type FALSE to set the y-intercept to zero.
(I really don't know why you'd enter FALSE.) A note of caution: In the dialog box, the instruction for the Const box refers to b. That's the y-intercept. Earlier in the chapter, I use a to represent the y-intercept, and b to represent the slope. No particular usage is standard for this.
4. IMPORTANT: Do NOT click OK. Because this is an array function, press Ctrl+Shift+Enter to put TREND's answers into the selected array.

Figure 14-10 shows the answers in E3:E22.

Figure 14-10: The results of TREND: Predicted GPAs for the sample SATs.

4	A	B	C	D	E	F
1						
2		Student	SAT	GPA	Predicted GPA	
3		1	990	2.2	2.237418427	
4		2	1150	3.2	2.785499392	
5		3	1080	2.6	2.54571397	
6		4	1100	3.3	2.61422409	
7		5	1280	3.8	3.230815175	
8		6	990	2.2	2.237418427	
9		7	1110	3.2	2.648479151	
10		8	920	2.0	1.997633005	
11		9	1000	2.2	2.271673487	
12		10	1200	3.6	2.956774693	
13		11	1000	2.1	2.271673487	
14		12	1150	2.8	2.785499392	
15		13	1070	2.2	2.511458909	
16		14	1120	2.1	2.682734211	
17		15	1250	2.4	3.128049994	
18		16	1020	2.2	2.340183608	
19		17	1060	2.3	2.477203849	
20		18	1550	3.9	4.155701803	
21		19	1480	3.8	3.915916381	
22		20	1010	2.0	2.305928548	
23						

Predicting a new set of y 's for a new set of x 's

Here, I use TREND to predict GPAs for four new SAT scores. Figure 14-11 shows TREND set up for this, with the name New_SAT defined for the cell range that holds the new scores. The figure also shows the selected cell range for the results. Once again, I included the Formula Bar to show you the formula for this use of the function.

Figure 14-11:
The Function Arguments dialog box for TREND, along with data. TREND is set up to predict GPAs for a new set of SATs.

1. With the data entered, select a cell range for TREND's answers. I selected G8:G11.
2. From the Statistical Functions menu, select TREND to open the Function Arguments dialog box for TREND.
3. In the Function Arguments dialog box, enter the appropriate values for the arguments.
In the Known_y's box, enter the name of the cell range that holds the scores for the y-variable. For this example, that's GPA (D3:D22).
In the Known_x's box, enter the name of the cell range that holds the scores for the x-variable. For this example, it's SAT (C3:C22).

In the New_x's box, enter the name of the cell range that holds the new scores for the x-variable. Here, that's New_SAT (F8:F11).
In the Const box, the choices are to enter TRUE (or leave it blank) to calculate the y-intercept, or FALSE to set the y-intercept to zero.I entered TRUE. (Again, I really don't know why you'd enter FALSE.)
4. IMPORTANT: Do NOT click OK. Because this is an array function, press Ctrl+Shift+Enter to put TREND's answers into the selected column.

Figure 14-12 shows the answers in G8:G11. This time I included the Formula Bar to show you that Excel now surrounds the formula with curly brackets to indicate an array formula.

Figure 14-12: The Results of TREND: Predicted GPAs for a new set of

SATs.

G8			$f_{x} \mid\{=$ TREND(GPA,SAT, New_SAT,TRUE) $\}$					
4	A	B	C	D	E	F	G	H
1								
2		Student	SAT	GPA				
3		1	990	2.2				
4		2	1150	3.2				
5		3	1080	2.6				
6		4	1100	3.3				
7		5	1280	3.8		New_SAT	Predicted GPA	
8		6	990	2.2		1290	3.265070236	
9		7	1110	3.2		1030	2.374438668	
10		8	920	2.0		1050	2.442948789	
11		9	1000	2.2		1270	3.196560115	
12		10	1200	3.6				
13		11	1000	2.1				
14		12	1150	2.8				
15		13	1070	2.2				
16		14	1120	2.1				
17		15	1250	2.4				
18		16	1020	2.2				
19		17	1060	2.3				
20		18	1550	3.9				
21		19	1480	3.8				
22		20	1010	2.0				
23								
24								

Array function: LINEST

LINEST combines SLOPE, INTERCEPT, and STEYX, and throws in a few extras. Figure 14-13 shows the Function Arguments dialog box for LINEST, along with the data and the selected array for the answers. Notice that it's a five-row-by-two-column array. For linear regression, that's what the selected array has to be. How would you know the exact row-column dimensions of the array if I didn't tell you? Well . . . you wouldn't.

Figure 14-13:
The
Function Arguments dialog box for LINEST, along with the data and the selected array for the results.

Here are the steps for using LINEST:

1. With the data entered, select a five-row-by-two-column array of cells for LINEST's results.
I selected G3:H7.
2. From the Statistical Functions menu, select LINEST to open the Function Arguments dialog box for LINEST.
3. In the Function Arguments dialog box, enter the appropriate values for the arguments.
In the Known_y's box, I entered the name of the cell range that holds the scores for the y-variable. For this example, that's GPA (D3:D22).
In the Known_x's box, I entered the name of the cell range that holds the scores for the x-variable. For this example, it's SAT (C3:C22).
In the Const box, the choices are to enter TRUE (or leave it blank) to calculate the y-intercept, or FALSE to set the y-intercept to zero. .I entered TRUE.

In the Stats box, the choices are to enter TRUE to return regression statistics in addition to the slope and the intercept, or FALSE (or leave it blank) to return just the slope and the intercept. I entered TRUE.

In the dialog box, b refers to intercept and m-coefficient refers to slope. As I said earlier, no set of symbols is standard for this.

4. IMPORTANT: Do NOT click OK. Because this is an array function, press Ctrl+Shift+Enter to put LINEST's answers into the selected array.

Figure 14-14 shows LINEST's results. They're not labeled in any way, so I added the labels for you in the worksheet. The left column gives you the slope, standard error of the slope, something called "R Square," F, and the $\mathrm{SS}_{\text {regression }}$. What's R Square? That's another measure of the strength of the relationship between SAT and GPA in the sample. I discuss it in detail in Chapter 15.

The right column provides the intercept, standard error of the intercept, standard error of estimate, degrees of freedom, and SS_{r} residual ${ }^{-}$

Figure 14-14: LINEST's results in the selected array.

Data Analysis Tool: Reqression

Excel's Regression data analysis tool does everything LINEST does (and more) and labels the output for you, too. Figure 14-15 shows the Regression tool's dialog box, along with the data for the SAT-GPA example.
Figure 14-15:
The
Regression
data
analysis tool
dialog box,
along with
the SAT-
GPA data.

The steps for using this tool are:

1. Type the data into the worksheet, and include labels for the columns.
2. Select Data I Data Analysis to open the Data Analysis dialog box.
3. In the Data Analysis dialog box, scroll down the Analysis Tools list and select Regression. Click OK to open the Regression dialog box. This is the dialog box in Figure 14-15.
4. In the Input Y Range box, enter the cell range that holds the data for the y-variable.
For the example, the GPAs (including the label) are in $\$ \mathrm{D} \$ 2$: $\$ \mathrm{D} \$ 22$. Note the $\$$-signs for absolute referencing.
5. In the Input X Range box, enter the cell range that holds the data for the x-variable.

The SATs (including the label) are in $\$ \mathrm{C} \$ 2: \$ \mathrm{C} \$ 22$.
6. If the cell ranges include column headings, check the Labels checkbox.

I included the headings in the ranges, so I checked the box.
7. The Alpha box has 0.05 as a default. Change that value if you want a different alpha.
8. In the Output Options, select a radio button to indicate where you want the results.

I selected New Worksheet Ply to put the results on a new page in the worksheet.
9. The Residuals area provides four capabilities for viewing the deviations between the data points and the predicted points. Check as many as you like.
I selected all four. I'll explain them when I show you the output.
10. Select the Normal Probability Plots option if you want to produce a graph of the percentiles of the y-variable.
I checked this one so I could show it to you in the output.

11. Click OK.

Because I selected New Worksheet Ply, a newly created page opens with the results.

A word about Steps 4 and 5: You'll notice I didn't enter the names for the cell ranges (GPA and SAT). Instead I entered the ranges (\$D\$2:\$D\$22 and $\$ C \$ 2: \$ C \$ 22)$. Why? When I define a name for a cell range, I don't include the cell that holds the name (for reasons I explain in Chapter 2). Following this practice, however, creates a small hurdle when you use a data analysis tool: You can't check the Labels checkbox if the defined names aren't in the named range. Checking that checkbox makes the variable names show up in the output - which is a good thing. So . . . I just enter the cell range including the name cell and check the Labels checkbox.

Tabled output

Figure 14-16 shows the upper half of the tool's tabled output, after I expanded the columns. The title is SUMMARY OUTPUT. This part of the output features one table for Regression Statistics, another for ANOVA, and one for the regression coefficients.

Figure 14-16: The upper half of the Regression data analysis tool's tabled output.

The first three rows of the Regression Statistics table present information related to R^{2}, a measure of the strength of the SAT-GPA relationship in the sample. The fourth row shows the standard error of estimate and the fifth gives the number of individuals in the sample.

The ANOVA table shows the results of testing
$\mathrm{H}_{0}: \sigma_{\text {Regression }} \leq \sigma_{\text {Residual }}$
$H_{1}: \sigma_{\text {Regression }}>\sigma_{\text {Residual }}$
If the value in the F-significance column is less than .05 (or whatever alpha level you're using), reject H_{0}. In this example, it's less than . 05 .

Just below the ANOVA table is a table that gives the information on the regression coefficients. Excel doesn't name it, but I refer to it as the coefficients table. The Coefficients column provides the values for the intercept and the slope. The slope is labeled with the name of the x-variable. The Standard Error column presents the standard error of the intercept and the standard error of the slope.

The remaining columns provide the results for the t-tests of the intercept and the slope. The P-value column lets you know whether or not to reject H_{0} for each test. If the value is less than your alpha, reject H_{0}. In this example, the decision is to reject H_{0} for the slope, but not for the intercept.

Figure 14-17 shows the lower half of the Regression tool's tabled output.

Figure 14-17: The lower half of the Regression data analysis tool's tabled output.

22	RESIDUAL OUTPUT				PROBABILITY OUTPUT	
23						
24	Observation	Predicted GPA	Residuals	Standard Residuals	Percentile	GPA
25	1	2.237418427	-0.037418427	-0.095536221	2.5	2
26	2	2.785499392	0.414500608	1.058297332	7.5	2
27	3	2.54571397	0.05428603	0.138602356	12.5	2.1
28	4	2.61422409	0.68577591	1.750913753	17.5	2.1
29	5	3.230815175	0.569184825	1.453234976	22.5	2.2
30	6	2.237418427	-0.037418427	-0.095536221	27.5	2.2
31	7	2.648479151	0.551520849	1.408135554	32.5	2.2
32	8	1.997633005	0.002366995	0.006043379	37.5	2.2
33	9	2.271673487	-0.071673487	-0.182995776	42.5	2.2
34	10	2.956774693	0.643225307	1.642274131	47.5	2.3
35	11	2.271673487	-0.171673487	-0.43831442	52.5	2.4
36	12	2.785499392	0.014500608	0.037022757	57.5	2.6
37	13	2.511458909	-0.311458909	-0.795212664	62.5	2.8
38	14	2.682734211	-0.582734211	-1.487829085	67.5	3.2
39	15	3.128049994	-0.728049994	-1.858847373	72.5	3.2
40	16	2.340183608	-0.140183608	-0.357914887	77.5	3.3
41	17	2.477203849	-0.177203849	-0.452434465	82.5	3.6
42	18	4.155701803	-0.255701803	-0.652854376	87.5	3.8
43	19	3.915916381	-0.115916381	-0.295956132	92.5	3.8
44	20	2.305928548	-0.305928548	-0.78109262	97.5	3.9
45						

Here, you find the RESIDUAL OUTPUT and the PROBABILITY OUTPUT. The RESIDUAL OUTPUT is a table that shows the predicted value and the residual ($y-y^{\prime}$) for each individual in the sample. It also shows the standard residual for each observation, which is
standard residual $=\frac{\text { residual }- \text { average residual }}{s_{y x}}$

The tabled data on residuals and standard residuals are useful for analyzing the variability around the regression line. You can scan these data for outliers, for example, and see if outliers are associated with particular values of the x-variable. (If they are, it might mean that something weird is going on in your sample.)

The PROBABILITY OUTPUT is a table of the percentiles in the y-variable data in the sample. (Yes, PERCENTILE OUTPUT would be a better name.)

Graphic output

Figures 14-18, 14-19, and 14-20 show the Regression tool's graphic output. The Normal Probability Plot in Figure 14-18 is a graphic version of the PROBABILITY OUTPUT table. The SAT Residual Plot in Figure 14-19 shows the residuals graphed against the x-variable: For each SAT score in the sample, this plot shows the corresponding residual. Figure 14-20 shows the SAT Line Fit Plot - a look at the observed and the predicted y-values. Note that in the Line Fit Plot, the SATs do not appear on the x-axis in numerical order. Rather, they appear in the same order as in the data.

Figure 14-18: The Normal Probability Plot shows the percentile data for the y -variable.

Figure 14-20:
The SAT Line Fit Plot shows the observed y-values and the predicted y -values.

If you've used the Regression Tool in earlier versions of Excel, you'll notice a change in the Normal Probability Plot and the Line Fit Plot. These two formerly appeared as scatterplots. In Excel 2007, they appear as column charts. You can use Excel's graphics capabilities to easily reformat them to scatterplots.

Juggling Many Relationships at Once: Multiple Regression

Linear regression is a great tool for making predictions. When you know the slope and the intercept of the line that relates two variables, you can take a new x -value and predict a new y -value. In the example I've been working through, you take a SAT score and predict a GPA for a Sahutsket University student.

What if you knew more than just the SAT score for each student? What if you had the student's high-school average (on a 100 scale), and you could use that information, too? If you could combine SAT with HS average, you might have a more accurate predictor than just SAT alone.

When you work with more than one independent variable, you're in the realm of multiple regression. As in linear regression, you find regression coefficients for the best-fitting line through a scatterplot. Once again, "best-fitting" means that the sum of the squared distances from the data points to the line is a minimum.

With two independent variables, however, you can't show a scatterplot in two dimensions. You need three dimensions, and that becomes difficult to draw. Instead, I'll just show you the equation of the regression line:

$$
y^{\prime}=a+b_{1} x_{1}+b_{2} x_{2}
$$

For the SAT-GPA example, that translates to

$$
\text { Predicted GPA }=a+b_{1}(S A T)+b_{2}(\text { High School Average })
$$

You can test hypotheses about the overall fit, and about all three of the regression coefficients.

I won't go through all the formulas for finding the coefficients, because that gets really complicated. Instead, I'll go right to the Excel capabilities.

A couple of things to bear in mind before I proceed:
\checkmark You can have any number of x-variables. I just use two in the upcoming example.
\checkmark Expect the coefficient for SAT to change from linear regression to multiple regression. Expect the intercept to change, too.
\checkmark Expect the standard error of estimate to decrease from linear regression to multiple regression. Because multiple regression uses more information than linear regression, it reduces the error.

Excel Tools for Multiple Reqression

The good news about Excel's multiple regression tools is that they're the some of the same ones I just told you about for linear regression: You just use them in a slightly different way.

The bad news is . . . well . . . uh . . . I can't think of any bad news!

TREND revisited

I begin with TREND. Before, I showed you how to use this function to predict values based on one x-variable. Change what you enter into the dialog box, and it predicts values based on more than one.

Figure 14-21 shows the TREND dialog box and data for 20 students. In the data, I've added a column for each student's high-school average. I defined HS_Average as the name for the data in this column. The Figure also shows the selected column for TREND's predictions. I include the Formula Bar in this screen shot so you can see what the formula looks like.

1. With the data entered, select a column for TREND's answers.

I selected F3:F22. That puts the predicted GPAs right next to the sample GPAs.
2. From the Statistical Functions menu, select TREND to open the Function Arguments dialog box for TREND.

Figure 14-21: The Function Arguments dialog box for TREND along with data. TREND is set up to predict GPAs for the sample SATs and high-school averages.

3. In the Function Arguments dialog box, enter the appropriate values for the arguments.
In the Known_y's box, I entered the name of the cell range that holds the scores for the y-variable. For this example, that's GPA (E3:E22).

In the Known_x's box, I entered the names of the cell ranges that hold the scores for the x-variables. With the cell ranges named, it's SAT:HS_ Average. These names cover C3:D22, the cells that hold the SAT scores and the high-school averages.

I left the New_x's box blank.
In the Const box, the choices are TRUE (or leave it blank) to calculate the y-intercept, or FALSE to set the y-intercept to zero. I entered TRUE. (I really don't know why you'd enter FALSE.) A note of caution: In the dialog box, the instruction for the Const box refers to b. That's the y-intercept. Earlier in the chapter, I use a to represent the y-intercept, and b to represent the slope. No particular usage is standard for this. Also, the dialog box makes it sound like this function just works for linear regression. As you're about to see, it works for multiple regression, too.
4. IMPORTANT: Do NOT click OK. Because this is an array function, press Ctrl+Shift+Enter to put TREND's answers into the selected column.

Figure 14-22 shows the answers in F3:F22. Note the difference in the Formula Bar from Figure 14-21 to Figure 14-22. After the function completes its work, Excel adds curly brackets to indicate an array formula.

So TREND predicts the values, and I haven't even shown you how to find the coefficients yet!

Figure 14-22: The results of TREND: Predicted GPAs for the sample SATs and high-school averages.

F3			f_{x} \{ $\{=$ TREND(GPA,SAT:HS_Average, ,TRUE) \}				
4	A	B	C	D	E	F	G
1							
2		Student	SAT	HS_Average	GPA	Predicted_GPA	
3		1	990	- 75	2.2	2.048403376	
4		2	1150	87	3.2	2.967217927	
5		3	1080	88	2.6	2.831485598	
6		4	1100	79	3.3	2.499039035	
7		5	1280	92	3.8	3.511405481	
8		6	990	80	2.2	2.261402606	
9		7	1110	85	3.2	2.780114135	
10		8	920	80	2.0	2.083070431	
11		9	1000	84	2.2	2.457278015	
12		10	1200	91	3.6	3.264997435	
13		11	1000	74	2.1	2.031279555	
14		12	1150	75	2.8	2.456019776	
15		13	1070	78	2.2	2.380011114	
16		14	1120	72	2.1	2.251792163	
17		15	1250	80	2.4	2.923779255	
18		16	1020	78	2.2	2.252630989	
19		17	1060	85	2.3	2.65273401	
20		18	1550	89	3.9	4.071458617	
21		19	1480	90	3.8	3.935726288	
22		20	1010	83	2.0	2.440154194	
23							

LINEST revisited

To find the multiple regression coefficients, I turn again to LINEST.
In Figure 14-23, I've put the data and the dialog box for LINEST, along with the data and the selected array for the answers. The selected array is five-rows-by-three-columns. It's always five rows. The number of columns is equal to the number of regression coefficients. For linear regression, it's two- the slope and the intercept. For this case of multiple regression, it's three.

Figure 14-23:
The
Function Arguments dialog box for LINEST, along with the data and the selected array for the results of a multiple regression.

Here are the steps for using LINEST for multiple regression with three coefficients:

1. With the data entered, select a five-row-by-three-column array of cells for LINEST's results.

I selected H3:J7.
2. Click the Insert Function button to open the Insert Function dialog box.
3. In the Insert Function dialog box, select LINEST and click OK to open the Function Arguments dialog box for LINEST.
In the Known_y's box, enter the column that holds the scores for the y -variable. For this example, that's E3:E22, the GPAs.
In the Known_x's box, enter the columns that hold the scores for the x-variables .For this example, it's C3:D22, the SAT scores and the highschool averages.

In the Const box, enter TRUE (or leave it blank) to calculate the y-intercept. Enter FALSE to set the y-intercept to zero. I typed TRUE.

In the Stats box, enter TRUE to return regression statistics in addition to the slope and the intercept, FALSE (or leave it blank) to return just the slope and the intercept. I entered TRUE. The dialog box refers to the intercept as b and to the other coefficients as m-coefficients. I use a to represent the slope and b to refer to the other coefficients. No set of symbols is standard.

4. IMPORTANT: Do NOT click OK. Because this is an array function, press Ctrl+Shift+Enter to put LINEST's answers into the selected array.

Figure 14-24 shows LINEST's results. They're not labeled in any way, so I added the labels for you in the worksheet. I also drew a box around part of the results to clarify what goes with what.

The entries that stand out are the ugly \#N/A symbols in the last three rows of the rightmost column. These indicate that LINEST doesn't put anything into these cells.

The top two rows of the array provide the values and standard errors for the coefficients. I drew the box around those rows to separate them from the three remaining rows, which present information in a different way. Before I get to those rows, I'll just tell you that the top row gives you the information for writing the regression equation:

$$
y^{\prime}=-3.67+.0025 x_{1}+.043 x_{2}
$$

In terms of SAT, GPA, and high-school average, it's:

$$
\text { Predicted GPA }=-3.67+.0025(S A T)+.043(\text { High School Average })
$$

The third row has R Square (a measure of the strength of the relationship between GPA and the other two variables, which I cover in Chapter 15) and the standard error of estimate. Compare the standard error of estimate for the multiple regression with the standard error for the linear regression, and you'll see that the multiple one is smaller. (Never mind. I'll do it for you. It's .40 for the linear and 0.35 for the multiple.)

The fourth row shows the F-ratio that tests the hypothesis about whether or not the line is a good fit to the scatterplot, and the df for the denominator of the F. The df for the numerator (not shown) is the number of coefficients minus 1 . You can use FINV to verify that this F with $\mathrm{df}=2$ and 17 is significant.

The last row gives you $\mathrm{SS}_{\text {Regression }}$ and $\mathrm{SS}_{\text {Residual }}$.

Figure 14-24: LINEST's multiple results in the selected array.

	A	B	C	D	E	F	G	H	1	J	K
1											
2		Student	SAT	HS_Average	GPA			b2	b1	Intercept	
3		1	990	75	2.2		Coefficient	0.0426	0.002548	-3.66871	
4		2	1150	87	3.2		Standard Error	0.015812	0.00059	1.088105	
5		,	1080	88	2.6		R Square	0.766552	0.346627	\#N/A	standard error of estimate
6		4	1100	79	3.3		F	27.91065	17	\#N/A	df
7		5	1280	92	3.8		SSregression	6.706945	2.042555	\#N/A	SSresidual
8		6	990	80	2.2						
9		7	1110	85	3.2						
10		8	920	80	2.0						
11		9	1000	84	2.2						
12		10	1200	91	3.6						
13		11	1000	74	2.1						
14		12	1150	75	2.8						
15		13	1070	78	2.2						
16		14	1120	72	2.1						
17		15	1250	80	2.4						
18		16	1020	78	2.2						
19		17	1060	85	2.3						
20		18	1550	89	3.9						
21		19	1480	90	3.8						
22		20	1010	83	2.0						
23											

Regression data analysis tool revisited

In the same way you use TREND and LINEST for multiple regression, you use the Regression data analysis tool. Specify the appropriate array for the x-variables, and you're off and running.

Here are the steps:

1. Type the data into the worksheet, and include labels for the columns.
2. Select Data I Data Analysis to open the Data Analysis dialog box.
3. In the Data Analysis dialog box, scroll down the Analysis Tools list and select Regression. Click OK to open the Regression dialog box. This is the dialog box in Figure 14-15.
4. In the Input Y Range box, enter the cell range that holds the data for the y-variable.
The GPAs (including the label) are in $\$$ E $\$ 2: \$ E \$ 22$. Note the $\$$-signs for absolute referencing.
5. In the Input X Range box, enter the cell range that holds the data for the x-variable.

The SATs and the high-school averages (including the labels) are in \$C $2: \$ \mathrm{D} \$ 22$.
6. If the cell ranges include column headings, select the Labels checkbox.

I included the labels in the ranges, so I selected the box.
7. The Alpha box has 0.05 as a default. Change that value if you want a different alpha.

In the Output Options, select a radio button to indicate where you want the results.
8. I selected New Worksheet Ply to put the results on a new page in the worksheet.
9. The Residuals area provides four capabilities for viewing the deviations between the data points and the predicted points. Select as many as you like.

I selected all four.
10. The option in the Normal Probability Plot area produces a graph of the percentiles of the y-variable.
I checked this one.

11. Click OK.

Go back to the section, "Data Analysis Tool: Regression," for the details of what's in the output. It's the same as before, with a couple of changes and additions because of the new variable. Figure 14-25 shows the ANOVA table and the coefficients table.

The ANOVA table shows the new df (2, 17, and 19 for Regression, Residual, and Total, respectively). The coefficients table adds information for the HS Average. It shows the values of all the coefficients, as well as standard errors, and t -test information for hypothesis testing.

Figure 14-25: Part of the output from the Regression data analysis tool: The ANOVA
table and the Coefficients table.

If you go through the example, you'll see the table of residuals in the output. Compare the absolute values of the residuals from the linear regression with the absolute values of the residuals from the multiple regression; you'll see the multiple ones are smaller, on average.

The graphic output has some additions, too: A scatterplot of HS Average and GPA that also shows predicted GPAs, and a plot of residuals and HS Average.

290 Part III: Drawing Conclusions from Data
www.it-ebooks.info

Chapter 15

Correlation: The Rise and Fall of Relationships

In This Chapter

$>$ What correlation is all about
$>$ How correlation connects to regression

- Conclusions from correlations
- Analyzing items

1n Chapter 14, I show you the ins and outs of regression, a tool for summarizing relationships between (and among) variables. In this chapter, I introduce you to the ups and downs of correlation, another tool for looking at relationships.

I use the example of SAT and GPA from Chapter 14, and show how to think about the data in a slightly different way. The new concepts connect to what I showed you in the preceding chapter, and you'll see how that works. I also show you how to test hypotheses about relationships and how to use Excel functions and data analysis tools for correlation.

Scatterplots Again

A scatterplot is a graphic way of showing a relationship between two variables. Figure $15-1$ is a scatterplot that represents the GPAs and SAT scores of 20 students at the fictional Sahusket University. The GPAs are on a 4.0 scale and the SATs are combined Verbal and Math.

Each point represents one student. A point's location in the horizontal direction represents the student's SAT. That same point's location in the vertical direction represents the student's GPA.

Figure 15-1:
A scatterplot of 20 students' SAT and GPA at Sahusket University.

Understanding Correlation

In Chapter 14, I refer to the SAT as the independent variable and to the GPA as the dependent variable. The objective in Chapter 14 was to use SAT to predict GPA. Here's a very important point: Although I use scores on one variable to predict scores on the other, I do not mean that the score on one variable causes a score on the other. "Relationship" doesn't necessarily mean "causality."

Correlation is a statistical way of looking at a relationship. When two things are correlated, it means that they vary together. Positive correlation means that high scores on one are associated with high scores on the other, and that low scores on one are associated with low scores on the other. The scatterplot in Figure 15-1 is an example of positive correlation.

Negative correlation, on the other hand, means that high scores on the first thing are associated with low scores on the second. Negative correlation also means that low scores on the first are associated with high scores on the second. An example is the correlation between body weight and the time spent on a weight-loss program. If the program is effective, the higher the amount of time spent on the program, the lower the body weight. Also, the lower the amount of time spent on the program, the higher the body weight.

Table 15-1, a repeat of Table 14-2, shows the data from the scatterplot.

Chapter 15: Correlation: The Rise and Fall of Relationships

Table 15-1 SAT Scores and GPAs for 20 Sahusket

Student	SAT	GPA
1	990	2.2
2	1150	3.2
3	1080	2.6
4	1100	3.3
5	1280	3.8
6	990	2.2
7	1110	3.2
8	920	2.0
9	1000	2.2
10	1200	3.6
11	1000	2.1
12	1150	2.8
13	1070	2.2
14	1120	2.1
15	1250	2.4
16	1020	2.2
17	1060	2.3
18	1550	3.9
19	1480	3.8
20	1010	2.0
Mean	1126.5	2.705
Variance	26171.32	0.46
Standard Deviation	161.78	0.82

In keeping with the way I used SAT and GPA in Chapter 14, SAT is the x-variable and GPA is the y-variable.

The formula for calculating the correlation between the two is
$r=\frac{\left[\frac{1}{N-1}\right] \sum(x-\bar{x})(y-\bar{y})}{s_{x} s_{y}}$

The term on the left, r, is called the correlation coefficient. It's also called Pearson's product-moment correlation coefficient after its creator Karl Pearson.

The two terms in the denominator on the right are the standard deviation of the x-variable and the standard deviation of the y-variable. The term in the numerator is called the covariance. So another way to write this formula is
$r=\frac{\operatorname{cov}(x, y)}{s_{x} s_{y}}$

The covariance represents x and y varying together. Dividing the covariance by the product of the two standard deviations imposes some limits. The lower limit of the correlation coefficient is -1.00 , and the upper limit is +1.00 .

A correlation coefficient of -1.00 represents perfect negative correlation (low x-scores associated with high y-scores, and high x-scores associated with low y-scores.) A correlation of +1.00 represents perfect positive correlation (low x-scores associated with low y-scores and high x-scores associated with high y-scores.) A correlation of 0.00 means that the two variables are not related.

Applying the formula to the data in Table 15-1,

$$
\begin{aligned}
& r=\frac{\left[\frac{1}{N-1}\right] \sum(x-\bar{x})(y-\bar{y})}{s_{x} s_{y}}= \\
& \frac{\left[\frac{1}{20-1}\right](990-1126.5)(2.2-2.705)+\ldots+(1010-1126.5)(2.0-2.705)}{(161.78)(0.82)}=.817
\end{aligned}
$$

What, exactly, does this number mean? I'm about to tell you.

Correlation and Reqression

Figure 15.2 shows the scatterplot with the line that "best fits" the points. It's possible to draw an infinite number of lines through these points. Which one is best?

To be "best," a line has to meet a specific standard: If you draw the distances in the vertical direction between the points and the line, and you square those distances, and then you add those squared distances, the best fitting line is the one that makes the sum of those squared distances as small as possible. This line is called the regression line.

Figure 15-2: Scatterplot of the 20 students, including the regression line.

The regression line's purpose in life is to enable you to make predictions. As I mention in Chapter 14, without a regression line your best predicted value of the y-variable is the mean of the y 's. A regression line takes the x-variable into account and delivers a more precise prediction. Each point on the regression line represents a predicted value for y. In the symbology of regression, each predicted value is a y^{\prime}.

Why do I tell you all of this? Because correlation is closely related to regression. Figure 15-3 focuses on one point in the scatterplot, and its distance to the regression line and to the mean. (This is a repeat of Figure 14-3.)

Figure 15-3: One point in the scatterplot and its associated distances.

Notice the three distances laid out in the Figure. The distance labeled (y - y^{\prime}) is the difference between the point and the regression line's prediction for where the point should be. (In Chapter 14, I call that a residual.) The distance labeled y - (\bar{y}) is the difference between the point and the mean of the y 's. The distance labeled $y^{\prime}-(\bar{y})$ is the gain in prediction ability that you get from using the regression line to predict the point instead of using the mean.

Figure 15-3 shows the three distances are related like this:

$$
\left(y-y^{\prime}\right)+\left(y^{\prime}-\bar{y}\right)=(y-\bar{y})
$$

As I point out in Chapter 14, you can square all the residuals and add them, square all the deviations of the predicted points from the mean and add them, and square all the deviations of the actual points from the mean and add them, too.

It turns out that these sums of squares are related in the same way as the deviations I just showed you:

$$
\mathrm{SS}_{\text {Residaal }}+\mathrm{SS}_{\text {Regression }}=\mathrm{SS}_{\text {Total }}
$$

If $\mathrm{SS}_{\text {Regression }}$ is large in comparison to $\mathrm{SS}_{\text {Residual }}$, that indicates that the relationship between the x-variable and the y-variable is a strong one. It means that throughout the scatterplot, the variability around the regression line is small.

On the other hand, if $\mathrm{SS}_{\text {Regression }}$ is small in comparison to $\mathrm{SS}_{\text {Residual }}$, that means that the relationship between the x-variable and the y-variable is weak. In this case, the variability around the regression line is large throughout the scatterplot.

One way to test $\mathrm{SS}_{\text {Regression }}$ against $\mathrm{SS}_{\text {Residual }}$ is to divide each by its degrees of freedom (1 for $\mathrm{SS}_{\text {Regression }}$ and $N-2$ for $\mathrm{SS}_{\text {Residual }}$) to form variance estimates (also known as Mean Squares, or MS), and then divide one by the other to calculate an F. If $\mathrm{MS}_{\text {Regression }}$ is significantly larger than $\mathrm{MS}_{\text {Residual }}$, you have evidence that the $x-y$ relationship is strong. (See Chapter 14 for details.)

Here's the clincher, as far as correlation is concerned: Another way to assess the size of $\mathrm{SS}_{\text {Regression }}$ is to compare it with $\mathrm{SS}_{\text {Total }}$. Divide the first by the second. If the ratio is large, this tells you the $x-y$ relationship is strong. This ratio has a name. It's called the coefficient of determination. Its symbol is r^{2}. Take the square root of this coefficient, and you have \ldots the correlation coefficient!
$r= \pm \sqrt{r^{2}}= \pm \sqrt{\frac{S S_{\text {Regression }}}{S S_{\text {Total }}}}$

The plus-or-minus sign (\pm) means that r is either the positive or negative square root, depending on whether the slope of the regression line is positive or negative.

So, if you calculate a correlation coefficient and you quickly want to know what its value signifies, just square it. The answer - the coefficient of determination - lets you know the proportion of the $\mathrm{SS}_{\text {Total }}$ that's tied up in the relationship between the x-variable and the y-variable. If it's a large proportion, the correlation coefficient signifies a strong relationship. If it's a small proportion, the correlation coefficient signifies a weak relationship.

In the GPA-SAT example, the correlation coefficient is .817 . The coefficient of determination is

$$
\mathbf{r}^{2}=(.817)^{2}=.667
$$

In this sample of 20 students, the $\mathrm{SS}_{\text {Regression }}$ is 66.7 percent of the $\mathrm{SS}_{\text {Total }}$. Sounds like a large proportion, but what's large? What's small? Those questions scream out for hypothesis tests.

Testing Hypotheses About Correlation

In this section, I show you how to answer important questions about correlation. Like any other kind of hypothesis testing, the idea is to use sample statistics to make inferences about population parameters. Here, the sample statistic is r, the correlation coefficient. By convention, the population parameter is ρ (rho), the Greek equivalent of r. (Yes, it does look like our letter p, but it really is the Greek equivalent of r.)

Two kinds of questions are important in connection with correlation: (1) Is a correlation coefficient greater than zero? (2) Are two correlation coefficients different from one another?

Is a correlation coefficient greater than zero?

Returning once again to the Sahusket SAT-GPA example, you can use the sample r to test hypotheses about the population ρ - the correlation coefficient for all students at Sahusket University.

Assuming we know in advance (before we gather any sample data), that any correlation between SAT and GPA should be positive, the hypotheses are:
$\mathrm{H}_{0}: \rho \leq 0$
$\mathrm{H}_{1}: \rho>0$
I set $\alpha=.05$.
The appropriate statistical test is a t-test. The formula is:

$$
t=\frac{r-\rho}{s_{r}}
$$

This test has $N-2 \mathrm{df}$.
For the example, the values in the numerator are set: r is .817 and $\rho\left(\right.$ in $\left.H_{0}\right)$ is zero. What about the denominator? I won't burden you with the details. I'll just tell you that's

$$
\sqrt{\frac{1-r^{2}}{N-2}}
$$

With a little algebra, the formula for the t-test simplifies to

$$
t=\frac{r \sqrt{N-2}}{\sqrt{1-r^{2}}}
$$

For the example,

$$
t=\frac{r \sqrt{N-2}}{\sqrt{1-r^{2}}}=\frac{.817 \sqrt{20-2}}{\sqrt{1-.817^{2}}}=6.011
$$

With $\mathrm{df}=18$ and $\alpha=.05$ (one-tailed), the critical value of t is 2.10 (use the worksheet function TINV to check). Because the calculated value is greater than the critical value, the decision is to reject H_{0}.

Do two correlation coefficients differ?

In a sample of 24 students at Farshimmelt College, the correlation between SAT and GPA is .752. Is this different from the correlation (.817) at Sahutsket University? If I have no way of assuming that one correlation should be higher than the other, the hypotheses are:
$\mathrm{H}_{0}: \rho_{\text {Sahusket }}=\rho_{\text {Farshimmelt }}$
$\mathrm{H}_{1}: \rho_{\text {Sahusket }} \neq \rho_{\text {Farshimmelt }}$
Again, $\alpha=.05$.
For highly technical reasons, you can't set up a t-test for this one. In fact, you can't even work with .817 and .752 , the two correlation coefficients.

Instead, what you do is transform each correlation coefficient into something else and then work with the two something elses in a formula that gives you - believe it or not - a z-test.

The transformation is called Fisher's r to z transformation. Fisher is the statistician who's remembered as the " F " in the F-test. He transforms the r into a z by doing this:
$z_{r}=\frac{1}{2}\left[\log _{e}(1+r)-\log _{e}(1-r)\right]$
If you know what loge means, fine. If not, don't worry about it. (I explain it in Chapter 20.) Excel takes care of all of this for you, as you see in a moment.

$$
\begin{aligned}
& z_{.817}=\frac{1}{2}\left[\log _{e}(1+.817)-\log _{e}(1-.817)\right]=1.1477 \\
& z_{.752}=\frac{1}{2}\left[\log _{e}(1+.752)-\log _{e}(1-.752)\right]=0.9775
\end{aligned}
$$

After you transform r to z, the formula is

$$
Z=\frac{z_{1}-z_{2}}{\sigma_{z_{1}-z_{2}}}
$$

The denominator turns out to be easier than you might think. It's:

$$
\sigma_{z_{1}-z_{2}}=\sqrt{\frac{1}{N_{1}-3}+\frac{1}{N_{2}-3}}
$$

For this example,

$$
\sigma_{z_{1}-z_{2}}=\sqrt{\frac{1}{N_{1}-3}+\frac{1}{N_{2}-3}}=\sqrt{\frac{1}{20-3}+\frac{1}{24-3}}=.326
$$

The whole formula is
$Z=\frac{z_{1}-z_{2}}{\sigma_{z_{1}-z_{2}}}=\frac{1.1477-.9775}{.326}=.522$

The next step is to compare the calculated value to a standard normal distribution. For a two-tailed test with $\alpha=.05$ the critical values in a standard normal distribution are 1.96 in the upper tail and -1.96 in the lower tail. The calculated value falls in between those two, so the decision is to not reject H_{0}.

Worksheet Functions for Correlation

Excel provides two worksheet functions for calculating correlation - and, they do exactly the same thing in exactly the same way! Why Excel offers both CORREL and PEARSON I do not know, but there you have it. Those are the two main correlation functions.

The others are RSQ and COVAR. RSQ calculates the coefficient of determination (the square of the correlation coefficient), and COVAR calculates the covariance, sort of.

CORREL and PEARSON

Figure 15-4 shows the data for the Sahusket SAT-GPA example, along with the Function Arguments dialog box for CORREL.

Figure 15-4:
The
Function Arguments dialog box for CORREL, along with data.

To use this function, the steps are:

1. Type the data into cell arrays and select a cell for CORREL's answer.

I've entered the SAT data into C3:C22 and the GPA data into D3:D22, and selected F15. I've defined SAT as the name of C3:C22 and GPA as the name of D3:D22. (Reread Chapter 2 to see how to do this.)
2. From the Statistical Functions menu, select CORREL to open its Function Arguments dialog box.
3. In the Function Arguments dialog box, enter the appropriate values for the arguments.
In the Array 1 box, I entered SAT - the name I assigned to the cell range (C3:C22) that holds the scores for one of the variables.
In the Array 2 box, I entered GPA - the name I assigned the cell range (D3:D22) that holds the scores for the other variable.
With values entered for each argument, the answer, 0.81662505 , appears in the dialog box.

4. Click OK to put the answer into the selected cell.

Selecting PEARSON instead of CORREL gives you exactly the same answer, and you use it exactly the same way.

Item analysis: A useful application of correlation

Instructors often want to know how performance on a particular exam question is related to overall performance on the exam. Ideally, someone who knows the material answers the question correctly; someone who doesn't answers it incorrectly. If everyone answers it correctly - or if no one does - it's a useless question. This evaluation is called item analysis.
Suppose it's possible to answer the exam question either correctly or incorrectly, and it's possible to score from 0 to 100 on the exam. Arbitrarily, you can assign a score of 0 for an incorrect answer to the question, and 1 for a correct answer, and then calculate a correlation coefficient where each pair of scores is either 0 or 1 for the question and a number from

0 to 100 for the exam. The score on the exam question is called a dichotomous variable, and this type of correlation is called point biserial correlation.
If the point biserial correlation is high for an exam question, it's a good idea to retain that question. If the correlation is low, the question probably serves no purpose.
Because one of the variables can only be 0 or 1, the formula for the biserial correlation coefficient is a bit different from the formula for the regular correlation coefficient. If you use Excel for the calculations, however, that doesn't matter. Just use CORREL (or PEARSON) in the way I outline.

RSO

If you have to quickly calculate the coefficient of determination $\left(r^{2}\right)$, RSQ is the function for you. I see no particular need for this function because it's easy enough to use CORREL and then square the answer.

Here's what the EXCEL Formula Bar looks like after you fill in the RSQ Function Arguments dialog box for this example:

```
=RSQ (GPA,SAT)
```

In terms of the dialog box, the only difference between this one and CORREL (and PEARSON) is that the boxes you fill in are called Known_y's and Known_x's rather than Array 1 and Array 2.

COUAR

This is another function for which I see no burning need. A minute ago I said COVAR calculates covariance "sort of." I said that because the covariance I introduced earlier (as the numerator of the correlation coefficient) is

$$
\text { covariance }=\left[\frac{1}{N-1}\right] \sum(x-\bar{x})(y-\bar{y})
$$

COVAR, however, calculates

$$
\text { covariance }=\left[\frac{1}{N}\right] \sum(x-\bar{x})(y-\bar{y})
$$

You use this function the same way you use CORREL. After you fill in its Function Arguments dialog box for this example, the formula in the formula bar is

```
=COVAR (SAT , GPA)
```

If you want to use this function to calculate r, you divide the answer by the product of STDEVP(SAT) and STDEVP(GPA). I don't know why you'd bother with all of this when you can just use CORREL.

Data Analysis Tool: Correlation

If you have to calculate a single correlation coefficient, you'll find that Excel's Correlation data analysis tool does the same thing CORREL does, although the output is in tabular form. This tool becomes useful when you have to calculate multiple correlations on a set of data.

For example, Figure 15-5 shows SAT, High School Average, and GPA for 20 Sahusket University students, along with the dialog box for the Correlation data analysis tool.

The steps for using this tool are:

1. Type the data into the worksheet and include labels for the columns.

In this example, the data (including labels) are in C2:E22.
2. Select Data I Data Analysis to open the Data Analysis dialog box.
3. In the Data Analysis dialog box, scroll down the Analysis Tools list and select Correlation. Click OK to open the Correlation dialog box.
This is the dialog box in Figure 15-5.
4. In the Input Range box, enter the cell range that holds all the data.

I entered $\$ C \$ 2: \$ E \$ 22$. Note the $\$$-signs for absolute referencing.
5. To the right of Grouped By, select a radio button to indicate if the data are organized in columns or rows.

I chose the Columns radio button.

6. If the cell ranges include column headings, check the Labels checkbox. I included the headings in the ranges, so I checked the box.

7. In the Output Options, select a radio button to indicate where you want the results.

I selected New Worksheet Ply to put the results on a new page in the worksheet.

8. Click OK.

Because I selected New Worksheet Ply, a newly created page opens with the results.

Tabled output

Figure 15-6 shows the tool's tabled output, after I expanded the columns. The table is a correlation matrix.

Figure 15-6:

Each cell in the matrix represents the correlation of the variable in the row with the variable in the column. Cell B3 presents the correlation of SAT with High School Average, for example. Each cell in the main diagonal contains 1. This is because each main diagonal cell represents the correlation of a variable with itself.

It's only necessary to fill in half the matrix. The cells above the main diagonal would contain the same values as the cells below the main diagonal.

What does this table tell you, exactly? Read on. . . .

Multiple correlation

The correlation coefficients in this matrix combine to produce a multiple correlation coefficient. This is a number that summarizes the relationship
between the dependent variable - GPA in this example - and the two independent variables (SAT and High School Average).

To show you how these correlation coefficients combine, I abbreviate GPA as G, SAT as S, and High School Average as H. So $r G S$ is the correlation coefficient for GPA and SAT, $r G H$ is the correlation coefficient for GPA and High School Average, and $r S H$ is the correlation coefficient for SAT and High School Average.

Here's the formula that puts them all together:

$$
R_{G . S H}=\sqrt{\frac{r_{G S}{ }^{2}+r_{G H}{ }^{2}-2 r_{G S} r_{G H} r_{S H}}{1-r_{G S}{ }^{2}}}
$$

The uppercase R on the left indicates that this is a multiple correlation coefficient, as opposed to the lowercase r that indicates a correlation between two variables. The subscript G.SH means that the multiple correlation is between GPA and the combination of SAT and High School Average.

This is the calculation that produces Multiple R in the Regression Statistics section of the Regression data analysis tool's results. (See Chapter 14.)

For this example,

$$
R_{G . S H}=\sqrt{\frac{(.816625)^{2}+(.714354)^{2}-2(.816625)(.714354)(.552527)}{1-(.816625)^{2}}}=.875529
$$

Because I use the same data to show you multiple regression in Chapter 14, this value (with some additional decimal places) is in Figure 14-25, in cell B4.

If you square this number, you get the multiple coefficient of determination. In Chapter 14, I tell you about R Square, and that's what this is. It's another item in the Regression Statistics that the Regression data analysis tool calculates. You also find it in LINEST's results, although it's not labeled.

For this example, that result is:
$R^{2}{ }_{G . S H}=(.875529)^{2}=.766552$
You can go back and see this number in Figure 14-24 in cell H5 (the LINEST results). You can also see it in Figure 14-25, cell B5 (the Regression data analysis tool report).

Adjusting R ${ }^{2}$

Here's some more information about R^{2} as it relates to Excel. In addition to R^{2} - or as Excel likes to write it, R Square - the Regression data analysis tool calculates Adjusted R Square. In Figure 14-21, it's in cell B6. Why is it necessary to "adjust" R Square?
In multiple regression, adding independent variables (like High School Average) sometimes makes the regression equation less accurate. The multiple coefficient of determination, R Square, doesn't reflect this. Its denominator is $\mathrm{SS}_{\text {Total }}$ (for the dependent variable) and that never changes. The numerator can only
increase or stay the same. So any decline in accuracy doesn't result in a lower R Square.

Taking degrees of freedom into account fixes the flaw. Every time you add an independent variable, you change the degrees of freedom and that makes all the difference. Just so you know, here's the adjustment:

$$
\text { Adjusted } R^{2}=1-\left(1-R^{2}\right)\left[\frac{(N-1)}{(N-k-1)}\right]
$$

The k in the denominator is the number of independent variables.

Partial correlation

GPA and SAT are associated with High School Average (in the example). Each one's association with High School Average might somehow hide the true correlation between them.

What would their correlation be if you could remove that association? Another way to say this: What would be the GPA-SAT correlation if you could hold High School Average constant?

One way to hold High School Average constant is to find the GPA-SAT correlation for a sample of students who have one High School Average - 87, for example. In a sample like that, the correlation of each variable with High School Average is zero. This usually isn't feasible in the real world, however.

Another way is to find the partial correlation between GPA and SAT. This is a statistical way of removing each variable's association with High School Average in your sample. You use the correlation coefficients in the correlation matrix to do this:

$$
r_{G S . H}=\frac{r_{G S}-r_{G H} r_{S H}}{\sqrt{1-r_{G H}^{2}} \sqrt{1-r_{S H}^{2}}}
$$

Once again, G stands for GPA, S for SAT, and H for High School Average. The subscript GS.H means that the correlation is between GPA and SAT with High School Average "partialled out."

For this example,
$r_{G S . H}=\frac{.816625-(.714353)(.552527)}{\sqrt{1-(.714353)^{2}} \sqrt{1-(.552527)^{2}}}=.547005$

Semipartial correlation

It's also possible to remove the correlation with High School Average from just SAT without removing it from GPA. This is called semipartial correlation. The formula for this one also uses the correlation coefficients from the correlation matrix:

$$
r_{G(S . H)}=\frac{r_{G S}-r_{G H} r_{S H}}{\sqrt{1-r_{S H}^{2}}}
$$

The subscript $G(S . H)$ means the correlation is between GPA and SAT with High School Average "partialled out" of SAT only.

Applying this formula to the example,
$r_{G(S . H)}=\frac{.816625-(.714353)(.552527)}{\sqrt{1-(.552527)^{2}}}=.315714$
Some statistics textbooks refer to semipartial correlation as part correlation.

Data Analysis Tool: Covariance

You use the Covariance data analysis tool the same way you use the Correlation data analysis tool. I won't go through the steps again. Instead, I'll just show you the tabled output in Figure 15-7. The data are from Figure 15-5.

The table is a covariance matrix. Each cell in the matrix shows the covariance of the variable in the row with the variable in the column (again, using N rather than $N-1$). Cell C4 shows the covariance of GPA with High School Average. The main diagonal in this matrix presents the variance of each variable (which is equivalent to the covariance of a variable with itself). In this case, the variance is what you compute if you use VARP.

Figure 15-7:
The
Covariance data analysis tool's tabled output for SAT, High School

Average, and GPA.

Again, it's only necessary to fill half the matrix. Cells above the main diagonal would hold the same values as the cells below the main diagonal.

As is the case with COVAR, I don't see why you'd use this tool. I just include it for completeness.

Testing Hypotheses About Correlation

Excel has no worksheet function for testing hypotheses about r. As I pointed out before, you perform a t-test whose formula is:
$t=\frac{r \sqrt{N-2}}{\sqrt{1-r^{2}}}$
With 0.817 stored in cell H12, I used this formula to calculate t :

```
=H12*SQRT(20-2)/SQRT (1-H12^2)
```

I then used the answer (6.011 and some additional decimal places) as input to TDIST (along with 18 df and 1 tail) to find that the one-tailed probability of the result is way less than 05 .

Worksheet Functions: FISHER, F1SHERINU

Excel handles the rather complex transformations that enable you to test hypotheses about the difference between two correlation coefficients. FISHER
transforms r to z. FISHERINV does the reverse. Just to refresh your memory, you use the transformed values in the formula

$$
Z=\frac{z_{1}-z_{2}}{\sigma_{z_{1}-z_{2}}}
$$

in which the denominator is

$$
\sigma_{z_{1}-z_{2}}=\sqrt{\frac{1}{N_{1}-3}+\frac{1}{N_{2}-3}}
$$

In the example I discussed earlier (Sahusket versus Farshimmelt), the correlation coefficients were .817 and .752 , and I did a two-tailed test. The first step is to transform each correlation. I'll go through the steps for using FISHER to transform .817:

1. Select a cell for FISHER's answer.

I selected B3 for the transformed value.
2. From the Statistical Functions menu, select FISHER to open its Function Arguments dialog box.
The FISHER Function Arguments dialog box appears in Figure 15-8.

Figure 15-8: The FISHER Function Arguments dialog box.

| Function Arguments | | | | \|y||x |
| :---: | :---: | :---: | :---: | :---: |
| FISHER | | | | |
| X | 0.817 䈅 $=0.817$ | | | |
| Returns the Fisher transformation. $\quad=1.147727958$ | | | | |
| | | | | |
| \mathbf{X} is the value for which you want the transformation, a number between -1 and 1 , excluding -1 and 1 . | | | | |
| Formula result $=1.147727958$ | | | | |
| Help on this function | | | OK | Cancel |

3. In the Function Arguments dialog box, type the appropriate value for the argument.

In the x box, I typed .817 , the correlation coefficient. The answer, 1.147728, appears in the dialog box.
4. Click $O K$ to put the answer into the selected cell.

I selected B4 to store the transformation of .752. Next, I used this formula to calculate Z

$$
=(\mathrm{B} 3-\mathrm{B} 4) / \operatorname{SQRT}((1 /(20-3))+(1 /(24-3)))
$$

Finally, I used NORMSINV to find the critical value of z for rejecting H_{0} with a two-tailed α of .05 . Because the result of the formula (0.521633) is less than that critical value (1.96), the decision is to not reject H_{0}.

Part IV Working with Probability

The 5th Wave

By Rich Tennant

"Ted and I spent over 120 man-hours together analyzing the survey data, and here's what we discovered: Ted borrows pens and never returns them, he intentionally squeaks his chair to annoy me, and, evidently, I talk in my sleep."

In this part . . .

S
tatistical analysis and decision-making rest on a foundation of probability. Throughout the book, I give a smattering of probability ideas - just enough to get you through the statistics. Part IV gives a more in-depth treatment and covers related Excel features. You find out about discrete and continuous random variables, counting rules, conditional probability, and probability distributions. In this part, I also discuss specific probability distributions that are appropriate for specific purposes. Part IV ends with an exploration of modeling, tests of how well a model fits data, and how Excel deals with modeling and testing.

Chapter 16

Introducing Probability

In This Chapter

$>$ Defining probability

- Working with probability
$>$ Dealing with random variables and their distributions
$>$ Focusing on the binomial distribution

Abstract

Throughout this book, I toss around the concept of probability, because it's the basis of hypothesis testing and inferential statistics. Most of the time, I represent probability as the proportion of area under part of a distribution. For example, the probability of a Type I error $(a / k / a \alpha)$ is the area in a tail of the standard normal distribution or the t distribution.

In this chapter, I explore probability in greater detail, including random variables, permutations, and combinations. I examine probability's fundamentals and applications, zero in on a couple of specific probability distributions, and I discuss probability-related Excel worksheet functions.

What is Probability?

Most of us have an intuitive idea about what probability is all about. Toss a fair coin, and you have a 50-50 chance it comes up "Head." Toss a fair die (one of a pair of dice) and you have a one-in-six chance it comes up " 2 ."

If you wanted to be more formal in your definition, you'd most likely say something about all the possible things that could happen, and the proportion of those things you care about. Two things can happen when you toss a coin, and if you only care about one of them (Head), the probability of that event happening is one out of two. Six things can happen when you toss a die, and if you only care about one of them (2), the probability of that event happening is one out of six.

Experiments, trials, events, and sample spaces

Statisticians and others who work with probability refer to a process like tossing a coin or throwing a die as an experiment. Each time you go through the process, that's a trial.

This might not fit your personal definition of an experiment (or of a trial, for that matter), but for a statistician, an experiment is any process that produces one of at least two distinct results (like a Head or a Tail).

Another piece of the definition of an experiment: You can't predict the result with certainty. Each distinct result is called an elementary outcome. Put a bunch of elementary outcomes together and you have an event. For example, with a die the elementary outcomes 2,4 , and 6 make up the event "even number."

Put all the possible elementary outcomes together and you've got yourself a sample space. The numbers $1,2,3,4,5$, and 6 make up the sample space for a die. "Head" and "Tail" make up the sample space for a coin.

Sample spaces and probability

How does all this play into probability? If each elementary outcome in a sample space is equally likely, the probability of an event is

$$
\operatorname{pr}(\text { Event })=\frac{\text { Number of Elementary Outcomes in the Event }}{\text { Number of Elementary Outcomes in the Sample Space }}
$$

So the probability of tossing a die and getting an even number is

$$
\operatorname{pr}(\text { Even Number })=\frac{\text { Number of Even-Numbered Elementary Outcomes }}{\text { Number of Possible Outcomes of a Die }}=\frac{3}{6}=.5
$$

If the elementary outcomes are not equally likely, you find the probability of an event in a different way. First, you have to have some way of assigning a probability to each one. Then you add up the probabilities of the elementary outcomes that make up the event.

A couple of things to bear in mind about outcome probabilities: Each probability has to be between zero and one. All the probabilities of elementary outcomes in a sample space have to add up to 1.00 .

How do you assign those probabilities? Sometimes you have advance information - such as knowing that a coin is biased toward coming up Head 60 percent of the time. Sometimes you just have to think through the situation to figure out the probability of an outcome.

Here's a quick example of "thinking through." Suppose a die is biased so that the probability of an outcome is proportional to the numerical label of the outcome: A 6 comes up six times as often as a 1, a 5 comes up five times as often as a 1 , and so on. What is the probability of each outcome? All the probabilities have to add up to 1.00 , and all the numbers on a die add up to $21(1+2+3+4+5+$ $6=21$), so the probabilities are: $\operatorname{pr}(1)=1 / 21, \operatorname{pr}(2)=2 / 21, \ldots, \operatorname{pr}(6)=6 / 21$.

Compound Events

Some rules for dealing with compound events help you "think through." A compound event consists of more than one event. It's possible to combine events by either union or intersection (or both).

Union and intersection

On a toss of a fair die, what's the probability of getting a 1 or a 4 ?
Mathematicians have a symbol for "or." It looks like this \cup and it's called "union." Using this symbol, the probability of a 1 or a 4 is $p r(1 \cup 4)$.

In approaching this kind of probability, it's helpful to keep track of the elementary outcomes. One elementary outcome is in each event, so the event " 1 or 4 " has two elementary outcomes. With a sample space of six outcomes, the probability is $2 / 6$ or $1 / 3$. Another way to calculate this is
$\operatorname{pr}(1 \cup 4)=p r(1)+\operatorname{pr}(4)=(1 / 6)+(1 / 6)=2 / 6=1 / 3$
Here's a slightly more involved one: What's the probability of getting a number between 1 and 3 or a number between 2 and 4 ?

Just adding the elementary outcomes in each event won't get it done this time. Three outcomes are in the event "between 1 and 3 " and three are in the event "between 2 and 4." The probability can't be $3+3$ divided by the six outcomes in the sample space because that's 1.00 , leaving nothing for $\operatorname{pr}(5)$ and $\mathrm{pr}(6)$. For the same reason, you can't just add the probabilities.

The challenge arises in the overlap of the two events. The elementary outcomes in "between 1 and 3 " are 1, 2, and 3 . The elementary outcomes in "between 2 and 4 " are 2, 3, and 4. Two outcomes overlap: 2 and 3 . In order to not count them twice, the trick is to subtract them from the total.

A couple of things will make life easier as I proceed. I abbreviate "between 1 and 3 " as A and "between 2 and 4 " as B. Also, I use the mathematical symbol for "overlap." The symbol is \cap and it's called intersection.

Using the symbols, the probability of "between 1 and 3 " or "between 2 and 4 " is $p r(A \cup B)=$
Number of outcomes in A + Number of outcomes in B - Number of outcomes in $(A \cap B)$
Number of outcomes in the sample space
$\operatorname{pr}(A \cup B)=\frac{3+3-2}{6}=\frac{4}{6}=\frac{2}{3}$
You can also work with the probabilities:
$\operatorname{pr}(A \cup B)=\frac{3}{6}+\frac{3}{6}-\frac{2}{6}=\frac{4}{6}=\frac{2}{3}$

The general formula is:

$$
p r(A \cup B)=p r(A)+p r(B)-p r(A \cap B)
$$

Why was it okay to just add the probabilities together in the earlier example? Because $p r(1 \cap 4)$ is zero: It's impossible to get a 1 and a 4 in the same toss of a die. Whenever $\operatorname{pr}(\mathrm{A} \cap \mathrm{B})=0, A$ and B are said to be mutually exclusive.

Intersection again

Imagine throwing a coin and rolling a die at the same time. These two experiments are independent, because the result of one has no influence on the result of the other.

What's the probability of getting a Head and a 4? You use the intersection symbol and write this as pr(Head 4):
$\operatorname{pr}($ Head $\cap 4)=\frac{\text { Number of Elementary Outcomes in Head } \cap 4}{\text { Number of Elementary Outcomes in the Sample Space }}$
Start with the sample space. Table 16-1 lists all the elementary outcomes.

Table 16-1 The Elementary Outcomes in the Sample Space for Throwing a Coin and Rolling a Die

Head, 1	Tail, 1
Head, 2	Tail, 2
Head, 3	Tail, 3
Head, 4	Tail, 4
Head, 5	Tail, 5
Head, 6	Tail, 6

As the table shows, 12 outcomes are possible. How many outcomes are in the event "Head and 4"? Just one. So

$$
\operatorname{pr}(\text { Head } \cap 4)=\frac{\text { Number of Elementary Outcomes in Head } \cap 4}{\text { Number of Elementary Outcomes in the Sample Space }}=\frac{1}{12}
$$

You can also work with the probabilities:
$p r($ Head $\cap 4)=p r($ Head $) \times p r(4)=\frac{1}{2} \times \frac{1}{6}=\frac{1}{12}$
In general, if A and B are independent,
$\operatorname{pr}(A \cap B)=\operatorname{pr}(A) \times \operatorname{pr}(B)$

Conditional Probability

In some circumstances, you narrow the sample space. For example, suppose I toss a die, and I tell you the result is greater than 2 . What's the probability that it's a 5 ?

Ordinarily, the probability of a 5 would be $1 / 6$. In this case, however, the sample space isn't $1,2,3,4,5$, and 6 . When you know the result is greater than 2 , the sample space becomes $3,4,5$, and 6 . The probability of a 5 is now $1 / 4$.

This is an example of conditional probability. It's "conditional" because I've given a "condition" - the toss resulted in a number greater than 2 . The notation for this is
$\operatorname{pr}(5 \mid$ Greater than 2$)$

The vertical line is shorthand for the word given, and you read that notation as "the probability of a 5 given Greater than 2."

Working with the probabilities

In general, if you have two events A and B,

$$
\operatorname{pr}(A \mid B)=\frac{\operatorname{pr}(A \cap B)}{\operatorname{pr}(B)}
$$

as long as $\operatorname{pr}(B)$ isn't zero.
For the intersection in the numerator on the right, this is not a case where you just multiply probabilities together. In fact, if you could do that, you wouldn't have a conditional probability, because that would mean A and B are independent. If they're independent, one event can't be conditional on the other.

You have to think through the probability of the intersection. In a die, how many outcomes are in the event " $5 \cap$ Greater than 2 "? Just one, so $\operatorname{pr}(5 \cap$ Greater than 2) is $1 / 6$, and
$\operatorname{pr}(5$ | Greater than 2$)=\frac{\operatorname{pr}(5 \cap \text { Greater than } 2)}{\operatorname{pr}(\text { Greater than } 2)}=\frac{1 / 6}{4 / 6}=\frac{1}{4}$

The foundation of hypothesis testing

All the hypothesis testing I've gone through in previous chapters involves conditional probability. When you calculate a sample statistic, compute a statistical test, and then compare the test statistic against a critical value, you're looking for a conditional probability. Specifically, you're trying to find
$p r$ (obtained test statistic or a more extreme value $\mid \mathrm{H}_{0}$ is true)
If that conditional probability is low (less than .05 in all the examples I show you in hypothesis-testing chapters), you reject H_{0}.

Large Sample Spaces

When dealing with probability, it's important to understand the sample space. In the examples I show you, the sample spaces are small. With a coin or a die, it's easy to list all the elementary outcomes.

The world, of course, isn't that simple. In fact, probability problems that live in statistics textbooks aren't even that simple. Most of the time, sample spaces are large and it's not convenient to list every elementary outcome.

Take, for example, rolling a die twice. How many elementary outcomes are in the sample space consisting of both tosses? You can sit down and list them, but it's better to reason it out: Six possibilities for the first toss, and each of those six can pair up with six possibilities on the second. So the sample space has $6 \times 6=36$ possible elementary outcomes. (This is similar to the coin-and-die sample space in Table 16-1, where the sample space consists of $2 \times 6=12$ elementary outcomes. With 12 outcomes, it was easy to list them all in a table. With 36 outcomes, it starts to get . . . well . . . dicey.)

Events often require some thought, too. What's the probability of rolling a die twice and totaling five? You have to count the number of ways the two tosses can total five, and then divide by the number of elementary outcomes in the sample space (36). You total a five by getting any of these pairs of tosses: 1 and 4,2 and 3,3 and 2 , or 4 and 1 . That's four ways and they don't overlap (excuse me, intersect), so

$$
\operatorname{pr}(5)=\frac{\text { Number of Ways of Rolling a } 5}{\text { Number of Possible Outcomes of Two Tosses }}=\frac{4}{36}=.11
$$

Listing all the elementary outcomes for the sample space is often a nightmare. Fortunately, shortcuts are available, as I show in the upcoming subsections. Because each shortcut quickly helps you count a number of items, another name for a shortcut is a counting rule.

Believe it or not, I just slipped one counting rule past you. A couple of paragraphs ago, I say that in two tosses of a die you have a sample space of 6×6 $=36$ possible outcomes. This is the product rule: If N_{1} outcomes are possible on the first trial of an experiment, and N_{2} outcomes on the second trial, the number of possible outcomes is $N_{1} N_{2}$. Each possible outcome on the first trial can associate with all possible outcomes on the second. What about three trials? That's $N_{1} N_{2} N_{3}$.

Now for a couple more counting rules.

Permutations

Suppose you have to arrange five objects into a sequence. How many ways can you do that? For the first position in the sequence, you have five choices. After you make that choice, you have four choices for the second position. Then you have three choices for the third, two for the fourth, and one for the fifth. The number of ways is $(5)(4)(3)(2)(1)=120$.

In general, the number of sequences of N objects is $N(N-1)(N-2) \ldots(2)(1)$. This kind of computation occurs fairly frequently in probability-world and it has its own notation, N ! You don't read this by screaming out " N " in a loud voice. Instead, it's "N factorial." By definition, $1!=1$, and $0!=1$.

Now for the good stuff. If you have to order the 26 letters of the alphabet, the number of possible sequences is $26!$, a huge number. But suppose the task is to create five-letter sequences so that no letter repeats in the sequence. How many ways can you do that? You have 26 choices for the first letter, 25 for the second, 24 for the third, 23 for the fourth, 22 for the fifth, and that's it. So that's $(26)(25(24)(23)(22)$. Here's how that product is related to $26!$:
$\frac{26!}{21!}$

Each sequence is called a permutation. In general, if you take permutations of N things r at a time, the notation is $N P r$ (the P stands for "permutation"). The formula is

$$
{ }_{N} P_{r}=\frac{N!}{(N-r)!}
$$

Combinations

In the example I just showed you, these sequences are different from one another: $a b c d e, a d b c e, d b c a e$, and on and on and on. In fact, you could come up with $5!=120$ of these different sequences just for the letters a, b, c, d, and e.

Suppose I add the restriction that one of these sequences is no different from another, and all I'm concerned about is having sets of five nonrepeating letters in no particular order. Each set is called a combination. For this example, the number of combinations is the number of permutations divided by 5 !:
$\frac{26!}{5!(21!)}$

In general, the notation for combinations of N things taken r at a time is NCr (the C stands for "combination"). The formula is

$$
{ }_{N} C_{r}=\frac{N!}{r!(N-r)!}
$$

Worksheet Functions

Three Excel functions help you with factorials, permutations, and combinations. Excel categorizes one of them as a Statistical function, but, surprisingly, not the other two.

FACT

FACT, which computes factorials, is one of the functions not categorized as Statistical. Instead, you'll find it in the Math \& Trig Functions menu. It's easy to use. Supply it with a number, and it returns the factorial. Here are the steps:

1. Select a cell for FACT's answer.

2. From the Math \& Trig functions menu, select FACT to open its Function Arguments dialog box.
3. In the Function Arguments dialog box, enter the appropriate value for the argument.
In the Number box, I typed the number whose factorial I want to compute.
The answer appears in the dialog box. If I enter 5, for example, 120 appears.
4. Click OK to put the answer into the selected cell.

PERMUT

You'll find this one in the Statistical Functions menu. As its name suggests, PERMUT enables you to calculate ${ }_{N} P_{r}$. Here's how to use it to find ${ }_{26} P_{5}$, the number of five-letter sequences (no repeating letters) you can create from the 26 letters of the alphabet. In a permutation, remember, abcde is considered different from bcdae. Follow these steps:

1. Select a cell for PERMUT's answer.
2. From the Statistical Functions menu, select PERMUT to open its Function Arguments dialog box (Figure 16-1).
3. In the Function Arguments dialog box, type the appropriate values for the arguments.
In the Number box, I entered the N in ${ }_{N} P_{r}$. For this example, N is 26 .
In the Number_chosen box, I entered the r in ${ }_{N} P_{r}$. That would be 5 .
With values entered for both arguments, the answer appears in the dialog box. For this example, the answer is 7893600 .

322

\qquad

4. Click $O K$ to put the answer into the selected cell.

COMBIN

COMBIN works pretty much the same way as PERMUT. Excel categorizes COMBIN as a Math \& Trig function.

Here's how you use it to find ${ }_{26} C_{5}$, the number of ways to construct a 5 -letter sequence (no repeating letters) from the 26 letters of the alphabet. In a combination, abcde is considered equivalent to bcdae.

1. Select a cell for COMBIN's answer.
2. From the Math \& Trig Functions menu, select COMBIN to open its Function Arguments dialog box.
3. In the Function Arguments dialog box, type the appropriate values for the arguments.
In the Number box, I entered the N in ${ }_{N} C_{r}$. Once again, N is 26 .
In the Number_chosen box, I entered the r in ${ }_{N} C_{r}$. And again, r is 5 .
With values entered for both arguments, the answer appears in the dialog box. For this example, the answer is 65870 .
4. Click OK to put the answer into the selected cell.

Random Variables: Discrete and Continuous

Return to tosses of a fair die, where six elementary outcomes are possible. If I use x to refer to the result of a toss, x can be any whole number from 1 to 6 .

Because x can take on a set of values, it's a variable. Because x 's possible values correspond to the elementary outcomes of an experiment (meaning you can't predict its values with absolute certainty) x is called a random variable.

Random variables come in two varieties. One variety is discrete, of which dietossing is a good example. A discrete random variable can only take on what mathematicians like to call a countable number of values - like the numbers $1-6$. Values between the whole numbers $1-6$ (like 1.25 or 3.1416) are impossible for a random variable that corresponds to the outcomes of die-tosses.

The other kind of random variable is continuous. A continuous random variable can take on an infinite number of values. Temperature is an example. Depending on the precision of a thermometer, it's possible to have temperatures like 34.516 degrees.

Probability Distributions and Density Functions

Back again to die-tossing. Each value of the random variable x (1-6, remember) has a probability. If the die is fair, each probability is $1 / 6$. Pair each value of a discrete random variable like x with its probability, and you have a probability distribution.

Probability distributions are easy enough to represent in graphs. Figure 16-2 shows the probability distribution for x.

Figure 16-2:
The probability distribution for x, a random variable based on the tosses of a fair die.

A random variable has a mean, a variance, and a standard deviation. Calculating these parameters is pretty straightforward. In random-variable world, the mean is called the expected value, and the expected value of random variable x is abbreviated as $E(x)$. Here's how you calculate it:

$$
E(x)=\sum x(p r(x))
$$

For the probability distribution in Figure 16-2, that's

$$
E(x)=\sum x(p r(x))=1(1 / 6)+2(1 / 6)+3(1 / 6)+4(1 / 6)+5(1 / 6)+6(1 / 6)=3.5
$$

The variance of a random variable is often abbreviated as $V(x)$, and the formula is

$$
V(x)=\sum x^{2}(p r(x))-E(x)^{2}
$$

Working with the probability distribution in Figure 16-2 once again,

$$
V(x)=1^{2}(1 / 6)+2^{2}(1 / 6)+3^{2}(1 / 6)+4^{2}(1 / 6)+5^{2}(1 / 6)+6^{2}(1 / 6)-3.5^{2}=2.917
$$

The standard deviation is the square root of the variance, which in this case is 1.708 .

For continuous random variables, things get a little trickier. You can't pair a value with a probability, because you can't really pin down a value. Instead, you associate a continuous random variable with a mathematical rule (an equation) that generates probability density, and the distribution is called a probability density function. To calculate the mean and variance of a continuous random variable, you need calculus.

In Chapter 8, I show you a probability density function - the standard normal distribution. I reproduce it here as Figure 16-3.

In the figure, $f(x)$ represents the probability density. Because probability density can involve some heavyweight mathematical concepts, I won't go into it. As I mention in Chapter 8, think of probability density as something that turns the area under the curve into probability.

While you can't speak of the probability of a specific value of a continuous random variable, you can work with the probability of an interval. To find the probability that the random variable takes on a value within an interval, you find the proportion of the total area under the curve that's inside that interval. Figure $16-3$ shows this. The probability that x is between 0 and 1σ is .3413 .

Figure 16-3: The standard normal distribution: A probability density function.

For the rest of this chapter, I deal just with discrete random variables. A specific one is up next.

The Binomial Distribution

Imagine an experiment that has these five characteristics:
\checkmark The experiment consists of N identical trials.
A trial could be a toss of a die, or a toss of a coin.
\checkmark Each trial results in one of two elementary outcomes.
\checkmark It's standard to call one outcome a success and the other a failure. For die-tossing, a success might be a toss that comes up 3, in which case a failure is any other outcome.
\checkmark The probability of a success remains the same from trial to trial.
Again, it's pretty standard to use p to represent the probability of a success, and $1-p$ (or q) to represent the probability of a failure.

The trials are independent.
The discrete random variable x is the number of successes in the N trials.

This type of experiment is called a binomial experiment. The probability distribution for x follows this rule:

$$
\operatorname{pr}(x)=\frac{N!}{x!(N-x)!} p^{x}(1-p)^{N-x}
$$

On the extreme right, $p x(1-p) N-x$ is the probability of one combination of x successes in N trials. The term to its immediate left is $N C x$, the number of possible combinations of x successes in N trials.

This is called the binomial distribution. You use it to find probabilities like the probability you'll get four 3 s in ten tosses of a die:

$$
\operatorname{pr}(4)=\frac{10!}{4!(6)!}\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right)^{6}=.054
$$

The negative binomial distribution is closely related. In this distribution, the random variable is the number of trials before the x th success. For example, you use the negative binomial to find the probability of 5 tosses that result in anything but a 3 before the fourth time you roll a 3 .

For this to happen, in the eight tosses before the fourth 3, you have to get 5 non- 3 s and 3 successes (tosses when a 3 comes up). Then, the next toss results in a 3 . The probability of a combination of 4 successes and 5 failures is $\mathrm{p}^{4}(1-\mathrm{p})^{5}$. The number of ways you can have a combination of 5 failures and $4-1$ successes is ${ }_{5+4-1} \mathrm{C}_{4-1}$. So the probability is
$\operatorname{pr}(5$ failures before the 4 th success $)=\frac{(5+4-1)!}{(4-1)!(5)!}\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right)^{5}=.017$
In general, the negative binomial distribution (sometimes called the Pascal distribution) is
$\operatorname{pr}(f$ failures before the x th success $)=\frac{(f+x-1)!}{(x-1)!(f)!} p^{x}(1-p)^{f}$

Worksheet Functions

These distributions are computation intensive, so I get to the worksheet functions right away.

BINOMDIST

BINOMDIST is Excel's worksheet function for the binomial distribution. As an example, I use BINOMDIST to calculate the probability of getting four 3 s in ten tosses of a fair die:

1. Select a cell for BINOMDIST's answer.
2. From the Statistical Functions menu, select BINOMDIST to open its Function Arguments dialog box (Figure 16-4).

Figure 16-4:
The
BINOMDIST
Function
Arguments dialog box.

3. In the Function Arguments dialog box, type the appropriate values for the arguments.

In the Number_s box, I entered the number of successes. For this example, the number of successes is 4 .

In the Trials box, I entered the number of trials. The number of trials is 10.
In the Probability_s box, I entered the probability of a success. I entered $1 / 6$, the probability of a 3 on a toss of a fair die.

In the Cumulative box, one possibility is FALSE for the probability of exactly the number of successes entered in the Number_s box. The other is TRUE for the probability of getting that number of successes or fewer. I entered FALSE.

With values entered for all the arguments, the answer appears in the dialog box.

4. Click OK to put the answer into the selected cell.

To give you a better idea of what the binomial distribution looks like, I use BINOMDIST (with FALSE entered in the Cumulative box) to find $\operatorname{pr}(0)$ through
pr(10), and then I use Excel's graphics capabilities (see Chapter 3) to graph the results. Figure 16-5 shows the data and the graph.

Figure 16-5:
The
binomial distribution for x successes in ten tosses of a die, with $p=1 / 6$.

Incidentally, if you type TRUE in the Cumulative box, the result is .984 (and some more decimal places $)$, which is $p r(0)+p r(1)+p r(2)+p r(3)+p r(4)$.

NEGBINOMDIST

As its name suggests, NEGBINOMDIST handles the negative binomial distribution. I use it here to work out the example I gave you earlier - the probability of getting five failures (tosses that result in anything but a 3) before the fourth success (the fourth 3).

1. Select a cell for NEGBINOMDIST's answer.

2. From the Statistical Functions menu, select NEGBINOMDIST to open its Function Arguments dialog box (Figure 16-6).

Figure 16-6: The
NEGBINOM DIST
Function Arguments dialog box.

3. In the Function Arguments dialog box, type the appropriate values for the arguments.
In the Number_f box, I entered the number of failures. The number of failures is 5 for this example.
In the Number_s box, I entered the number of successes. For this example, that's 4.
In the Probability_s box, I entered $1 / 6$, the probability of a success.
With values entered for all the arguments, the answer appears in the dialog box. The answer is 0.017 and some additional decimal places.
4. Click $O K$ to put the answer into the selected cell.

Hypothesis Testing with the Binomial Distribution

Hypothesis tests sometimes involve the binomial distribution. Typically, you have some idea about the probability of a success, and you put that idea into a null hypothesis. Then you perform N trials and record the number of successes. Finally, you compute the probability of getting that many successes or a more extreme amount if your H_{0} is true. If the probability is low, reject H_{0}.

When you test in this way, you're using sample statistics to make an inference about a population parameter. Here, that parameter is the probability of a success in the population of trials. By convention, Greek letters represent parameters. Statisticians use π (pi), the Greek equivalent of p, to stand for the probability of a success in the population.

Continuing with the die-tossing example, suppose you have a die and you want to test whether or not it's fair. You suspect that if it's not, it's biased toward 3. Define a toss that results in 3 as a success. You toss it 10 times. Four tosses are successes. Casting all this into hypothesis-testing terms:
$\mathrm{H}_{0}: \pi \leq 1 / 6$
$\mathrm{H}_{1:} \pi>1 / 6$
As I usually do, I set $\alpha=.05$
To test these hypotheses, you have to find the probability of getting at least 4 successes in 10 tosses with $p=1 / 6$. That probability is $\operatorname{pr}(4)+\operatorname{pr}(5)+\operatorname{pr}(6)+$ $\operatorname{pr}(7)+\operatorname{pr}(8)+\operatorname{pr}(9)+\operatorname{pr}(10)$. If the total is less than .05 , reject H_{0}.

That's a lot of calculating. You can use BINOMDIST to take care of it all (as I did when I set up the worksheet in Figure 16-5), or you can take a different route. You can find a critical value for the number of successes, and if the number of successes is greater than the critical value, reject H_{0}.

How do you find the critical value? You can use a convenient worksheet function that I'm about to show you.

CRITBINOM

This function is tailor-made for binomial-based hypothesis testing. Give CRITBINOM the number of trials, the probability of a success, and a criterion cumulative probability. CRITBINOM returns the smallest value of x (the number of successes) for which the cumulative probability is greater than or equal to the criterion.

Here are the steps for the hypothesis testing example I just showed you:

1. Select a cell for CRITBINOM's answer.
2. From the Statistical Functions menu, select CRITBINOM and click OK to open its Function Arguments dialog box (Figure 16-7).

Figure 16-7:
The CRITBINOM Function Arguments dialog box.

3. In the Function Arguments dialog box, enter the appropriate values for the arguments.
In the Trials box, I entered 10, the number of trials.
In the Probability_s box, I entered the probability of a success. In this example it's $1 / 6$, the value of π according to H_{0}.
In the Alpha box, I entered the cumulative probability to exceed. I entered .95 , because I want to find the critical value that cuts off the upper 5 percent of the binomial distribution.

With values entered for the arguments, the critical value, 4, appears in the dialog box.
4. Click OK to put the answer into the selected cell.

As it happens, the critical value is the number of successes in the sample. The decision is to reject H_{0}.

More on hypothesis testing

In some situations, the binomial distribution approximates the standard normal distribution. When this happens, you use the statistics of the normal distribution to answer questions about the binomial distribution.

Those statistics involve z-scores, which means that you have to know the mean and the standard deviation of the binomial. Fortunately, they're easy to compute. If N is the number of trials, and π is the probability of a success, the mean is

$$
\mu=N \pi
$$

the variance is

$$
\sigma^{2}=N \pi(1-\pi)
$$

and the standard deviation is

$$
\sigma=\sqrt{N \pi(1-\pi)}
$$

The binomial approximation to the normal is appropriate when $N \pi \geq 5$ and $N(1-\pi) \geq 5$.

When you test a hypothesis, you're making an inference about π, and you have to start with an estimate. You run N trials and get x successes. The estimate is
$P=\frac{x}{N}$
In order to create a z-score, you need one more piece of information - the standard error of P. This sounds harder than it is, because this standard error is just
$\sigma_{\mathrm{P}}=\sqrt{\frac{\pi(1-\pi)}{N}}$
Now you're ready for a hypothesis test.

Here's an example. The CEO of the FarKlempt Robotics Inc. believes that 50 percent of FarKlempt robots are purchased for home use. A sample of 1,000 FarKlempt customers indicates that 550 of them use their robots at home. Is this significantly different from what the CEO believes? The hypotheses:
$\mathrm{H}_{0}: \pi=.50$
$\mathrm{H}_{1}: \pi \neq .50$
I set $\alpha=.05$
$N \pi=500$, and $N(1-\pi)=500$, so the normal approximation is appropriate.
First, calculate P:

$$
\mathrm{P}=\frac{x}{N}=\frac{550}{1000}=.55
$$

Now, create a z-score

$$
z=\frac{P-\pi}{\sqrt{\frac{\pi(1-\pi)}{N}}}=\frac{.55-.50}{\sqrt{\frac{(.50)(1-.50)}{1000}}}=\frac{.05}{\sqrt{\frac{.25}{1000}}}=3.162
$$

With $\alpha=.05$, is 3.162 a large enough z-score to reject H_{0} ? An easy way to find out is to use the worksheet function NORMSDIST (Chapter 8). If you do, you'll find that this z -score cuts off less than .01 of the area in the upper tail of the standard normal distribution. The decision is to reject H_{0}.

The Hypergeometric Distribution

Here's another distribution that deals with successes and failures.
I start with an example. In a set of 16 light bulbs, 9 are good and 7 are defective. If you randomly select 6 light bulbs out of these 16 , what's the probability that 3 of the 6 are good? Consider selecting a good lightbulb as a "success."

When you finish selecting, your set of selections is a combination of 3 of the 9 good light bulbs together with a combination of 3 of the 7 defective light bulbs. The probability of getting 3 good bulbs is a . . . well . . . combination of counting rules:

$$
\operatorname{pr}(3)=\frac{\left({ }_{9} C_{3}\right)\left({ }_{7} C_{3}\right)}{{ }_{16} C_{6}}=\frac{(84)(35)}{8008}=.37
$$

Each outcome of the selection of the good light bulbs can associate with all outcomes of the selection of the defective light bulbs, so the product rule is appropriate for the numerator. The denominator (the sample space) is the number of possible combinations of 6 items in a group of 16 .

This is an example of the hypergeometric distribution. In general, with a small population that consists of N_{1} successes and N_{2} failures, the probability of x successes in a sample of m items is

$$
\operatorname{pr}(x)=\frac{\left({ }_{N_{1}} C_{x}\right)\left({ }_{N_{2}} C_{m-x}\right)}{N_{1}+N_{2}} C_{m}
$$

The random variable x is said to be a hypergeometrically distributed random variable.

HyPERGEOMDIST

This function calculates everything for you when you deal with the hypergeometric distribution. Here's how to use it to go through the example I just showed you.

1. Select a cell for HYPERGEOMDIST's answer.

2. From the Statistical Functions menu, select HYPERGEOMDIST to open its Function Arguments dialog box (Figure 16-8).

Figure 16-8:
The
HYPERGEO MDIST Function Arguments dialog box.

3. In the Function Arguments dialog box, enter the appropriate values for the arguments.
In the Sample_s box, I entered the number of successes in the sample. That number is 3 for this example.

In the Number_sample box, I entered the number of items in the sample. The sample size for this example is 6 .
In the Population_s box, I entered the number of successes in the population. In this example that's 7, the number of good light bulbs.
In the Number_pop box, I entered the number of items in the population. The total number of light bulbs is 16 , and that's the population size.
With values entered for all the arguments, the answer appears in the dialog box. The answer is 0.37 and some additional decimal places.

4. Click OK to put the answer into the selected cell.

As I do with the binomial, I use HYPERGEOMDIST to calculate pr(0) through $\mathrm{p}(6)$ for this example. Then I use Excel's graphics capabilities (see Chapter 3) to graph the results. Figure 16-9 shows the data and the graph. My objective is to help you visualize and understand the hypergeometric distribution.

Figure 16-9:

Chapter 17

More on Probability

In This Chapter

> The beta version
$>$ Pursuing Poisson
$>$ Grappling with gamma

- Exponentially speaking

1n the Chapter 16, I delve into probability in a semiformal way, and introduce distributions of random variables. The binomial distribution is the starting point. In this chapter, I examine additional distributions.

One of the symbols on the pages of this book (and other books in the Dummies series) lets you know that "Technical Stuff" follows. It might have been a good idea to hang that symbol above this chapter's title. So here's a small note of caution: Some mathematics follows. I put the math in to help you understand what you're doing when you work with the dialog boxes of the Excel functions I describe.

Are these functions on the esoteric side? Well . . . yes. Will you ever have occasion to use them? Well . . . you just might.

Beta

This one connects with the binomial distribution, which I discuss in Chapter 16. The beta distribution (not to be confused with "beta," the probability of a Type 2 error) is a sort of chameleon in the world of distributions. It takes on a wide variety of appearances, depending on the circumstances. I won't give you all the mathematics behind the beta distribution, because the full treatment involves calculus.

The connection with the binomial is this: In the binomial, the random variable x is the number of successes in N trials with p as the probability of a success. N and p are constants. In the beta distribution, the random variable x is the probability of a success, with N and the number of successes as constants.

Why is this useful? In the real world, you usually don't know the value of p, and you're trying to find it. Typically, you conduct a study, find the number of successes in a set of trials, and then you have to estimate p. Beta shows you the likelihood of possible values of p for the number of trials and successes in your study.

Some of the math is complicated, but I can at least show you the rule that generates the density function for N trials with r successes, when N and r are whole numbers:
$f(x \mid r, N)=\frac{(N-1)!}{(r-1)!(N-r-1)!} x^{r-1}(1-x)^{N-r-1}$

The vertical bar in the parentheses on the left means "given that." So this density function is for specific values of N and r. Calculus enters the picture when N and r aren't whole numbers. (Density function? "Given that"? See Chapter 16.)

To give you an idea of what this function looks like, I used Excel to generate and graph the density function for four successes in ten trials. Figure 17-1 shows the data and the graph. Each value on the x-axis is a possible value for the probability of a success. The curve shows probability density. As I point out in the last chapter, probability density is what makes the area under the curve correspond to probability. The curve's maximum point is at $x=.4$, which is what you would expect for four successes in ten trials.

Figure 17-1: The Beta Density function for four successes in ten trials.

Suppose I toss a die (one of a pair of dice), and I define a success as any toss that results in a 3. I assume I'm tossing a fair die, so I assume that $p=\operatorname{pr}(3)=$ $1 / 6$. Suppose I toss a die ten times and get four 3 s . How good does that fairdie assumption look?

The graph in Figure 17-1 gives you a hint: The area to the left of .16667 (the decimal equivalent of $1 / 6$) is a pretty small proportion of the total area, meaning that the probability that p is $1 / 6$ or less is pretty low.

Now, if you have to go through all the trouble of creating a graph, and then guesstimate proportions of area to come with an answer like "pretty low," you're doing a whole lot of work for very little return. Fortunately, Excel has a better way.

BETADIST

BETADIST eliminates the need for all the graphing and guesstimating. This function enables you to work with the cumulative beta distribution to determine the probability that p is less than or equal to some value. Considering the complexity of beta, BETADIST is surprisingly easy to work with.

In the BETADIST Function Arguments dialog box, and in the BETADIST help file, you'll see "Alpha" and "Beta." The dialog box tells you each one is a "parameter for the distribution" and the help file tells you that each is "a parameter of the distribution." Aside from altering the preposition, neither one is much help - at least, not in any way that helps you apply Alpha and Beta.

So here are the nuts and bolts: For the example I'm working through, Alpha is the number of successes and Beta is the number of failures.

When you put the density function in terms of Alpha (α) and Beta (β), it's
$f(x)=\frac{(\alpha+\beta-1)!}{(\alpha-1)!(\beta-1)!} x^{\alpha-1}(1-x)^{\beta-1}$

Again, this only applies when α and β are both whole numbers. If that's not the case, you need calculus to compute $f(x)$.

The steps are:

1. Select a cell for BETADIST's answer.

2. From the Statistical Functions menu, select BETADIST to open its Function Arguments dialog box (Figure 17-2).

3. In the Function Arguments dialog box, type the appropriate values for the arguments.
The X box holds the probability of a success. For this example, the probability of a success is $1 / 6$.

Excel refers to Alpha and Beta (coming up next) as "parameters to the distribution." I treat them as "number of successes" and "number of failures." So I entered 4 in the Alpha box and 6 in the Beta box.
The A box and the B box are evaluation limits for the value in the X box. These aren't relevant for this type of example. I left them blank, which by default sets $\mathrm{A}=0$ and $\mathrm{B}=1$.

Figure 17-2:
The
BETADIST
Function Arguments dialog box.

After all the entries, the answer appears in the dialog box.
The answer for this example is .048021492. "Pretty low" indeed. With four successes in ten tosses, you'd intuitively expect that p is greater than $1 / 6$.

4. Click $O K$ to put the answer into the selected cell.

The beta distribution has wider applicability than I show you here. Consequently, you can put all kinds of numbers (within certain restrictions) into the various boxes. For example, the value you put into the X box can be greater than 1.00 , and you can enter values that aren't whole numbers into the Alpha box and the Beta box.

BETAINU

This one is the inverse of BETADIST. If you enter a probability and values for successes and failures, it returns a value for p. For example if you supply it with $.048021492,4$ successes, and 6 failures, it returns 0.1666667 - the decimal equivalent of $1 / 6$.

BETAINV has a more helpful application. You can use it to find the confidence limits for the probability of a success.

Suppose you've found r successes in N trials, and you're interested in the 95 percent confidence limits for the probability of a success. The lower limit is:
$\operatorname{BETAINV}(.025, r, N-r)$

The upper limit is:
$\operatorname{BETAINV}(.975, r, N-r)$

1. Select a cell for BETAINV's answer.
2. From the Statistical Functions menu, select BETAINV to open its Function Arguments dialog box (Figure 17-3).

Figure 17-3:
The BETAINV Function Arguments dialog box.

3. In the Function Arguments dialog box, enter the appropriate values for the arguments.
The X box holds a cumulative probability. For the lower bound of the 95 percent confidence limits, the probability is .025 .

In the Alpha box, I entered the number of successes. For this example that's 4.

In the Beta box, I entered the number of failures (NOT the number of trials). The number of failures is 6 .
The A box and the B box are evaluation limits for the value in the X box. Again, these aren't relevant for this type of example. I left them blank, which by default sets $\mathrm{A}=0$ and $\mathrm{B}=1$.
With the entries for X, Alpha, and Beta, the answer appears in the dialog box. The answer for this example is .13699536 .
4. Click $O K$ to put the answer into the selected cell.

Entering .975 in the X box gives .700704575 as the result. So the 95 percent confidence limits for the probability of a success are 137 and .701 (rounded off) if you have 4 successes in 10 trials.

With more trials of course, the confidence limit narrows. For 40 successes in 100 trials, the confidence limits are .307 and .497

Poisson

If you have the kind of process that produces a binomial distribution, and you have an extremely large number of trials and a very small number of successes, the Poisson distribution approximates the binomial. The equation of the Poisson is
$\operatorname{pr}(x)=\frac{\mu^{x} e^{-\mu}}{x!}$

In the numerator, μ is the mean number of successes in the trials, and e is 2.71828 (and infinitely more decimal places), a constant near and dear to the hearts of mathematicians.

Here's an example. The FarKlempt Robotics Inc. produces a universal joint for its robots' elbows. The production process is under strict computer control, so that the probability a joint is defective is .001 . What is the probability that in a sample of 1000 , one joint is defective? What's the probability that two are defective? Three?

Named after 19th-century mathematician Siméon-Denis Poisson, this distribution is computationally easier than the binomial - or at least it was when mathematicians had no computational aids. With Excel, you can easily use BINOMDIST to do the binomial calculations.

First, I apply the Poisson distribution to the FarKlempt example. If $\pi=.001$ and $N=1000$, the mean is

$$
\mu=N \pi=(1000)(.001)=1
$$

(See Chapter 16 for an explanation of $\mu=N \pi$.)
Now for the Poisson. The probability that one joint in a sample of 1000 is defective is:

$$
p r(1)=\frac{\mu^{x} e^{-\mu}}{x!}=\frac{1^{1}(2.71828)^{-1}}{1!}=.368
$$

For two defective joints in 1000, it's
$p r(2)=\frac{\mu^{x} e^{-\mu}}{x!}=\frac{1^{2}(2.71828)^{-2}}{2!}=.184$

And for three defective joints in 1000:
$p r(3)=\frac{\mu^{x} e^{-\mu}}{x!}=\frac{1^{3}(2.71828)^{-1}}{3!}=.061$

As you read through this, it may seem odd that I refer to a defective item as a "success." Remember, that's just a way of labeling a specific event.

POISSON

Here are the steps for using Excel's POISSON for the preceding example:

1. Select a cell for POISSON's answer.
2. From the Statistical Functions menu, select POISSON to open its Function Arguments dialog box (Figure 17-4).

Figure 17-4:
The
POISSON Function Arguments dialog box.
3. In the Function Arguments dialog box, enter the appropriate values for the arguments.

In the X box, I entered the number of events for which I'm determining the probability. I'm looking for $\operatorname{pr}(1)$, so I entered 1.

In the Mean box, I entered the mean of the process. That's $N \pi$, which for this example is 1 .

In the Cumulative box, it's either TRUE for the cumulative probability or FALSE for just the probability of the number of events. I entered FALSE.
With the entries for X , Mean, and Cumulative, the answer appears in the dialog box. The answer for this example is .367879441 .

4. Click $O K$ to put the answer into the selected cell.

In the example, I showed you the probability for two defective joints in 1,000 and the probability for three. To follow through with the calculations, I'd type 2 into the X box to calculate $\operatorname{pr}(2)$, and 3 to find $\operatorname{pr}(3)$.

As I said before, in the 21st century, it's pretty easy to calculate the binomial probabilities directly. Figure 17-5 shows you the Poisson and the Binomial probabilities for the numbers in Column B and the conditions of the example. I graphed the probabilities so you can see how close the two really are. I selected Cell D3 so the formula box shows you how I used BINOMDIST to calculate the binomial probabilities.

Figure 17-5: Poisson probabilities and Binomial probabilities.

Although the Poisson's usefulness as an approximation is outdated, it has taken on a life of its own. Phenomena as widely disparate as reaction time data in psychology experiments, degeneration of radioactive substances, and scores in professional hockey games seem to fit Poisson distributions. This is why business analysts and scientific researchers like to base models on this distribution. ("Base models on?" What does that mean? I tell you all about it in Chapter 18.)

Gamma

The gamma distribution is related to the Poisson distribution in the same way the negative binomial distribution is related to the binomial. The negative
binomial tells you the number of trials until a specified number of successes in a binomial distribution. The gamma distribution tells you how many samples you go through to find a specified number of successes in a Poisson distribution. Each sample can be a set of objects (as in the FarKlempt Robotics universal joint example), a physical area, or a time interval.

The probability density function for the gamma distribution is:
$f(x)=\frac{1}{\beta^{\alpha}(\alpha-1)!} x^{\alpha-1} e^{-x / \beta}$

Again, this works when α is a whole number. If it's not, you guessed it calculus. (By the way, when this function has only whole-number values of α it's called the Erlang distribution, just in case anybody ever asks you.) The letter e, once again, is the constant 2.7818 I told you about earlier.

Don't worry about the exotic-looking math. As long as you understand what each symbol means, you're in business. Excel does the heavy lifting for you.

So here's what the symbols mean. For the FarKlempt Robotics example, α is the number of successes and β corresponds to μ the Poisson distribution. The variable x tracks the number of samples. So if x is $3, \alpha$ is 2 , and β is 1 , you're talking about the probability density associated with finding the second success in the third sample, if the average number of successes per sample (of 1000) is 1 . (Where does 1 come from, again? That's 1000 universal joints per sample multiplied by .001 , the probability of producing a defective one.)

To determine probability, you have to work with area under the density function. This brings me to the Excel worksheet function designed for gamma.

GAMMADIST

GAMMADIST gives you a couple of options. You can use it to calculate the probability density, and you can use it to calculate probability. Figure 17-6 shows how I used the first option to create a graph of the probability density so you can see what the function looks like. Working within the context of the example I just laid out, I set Alpha to 2, Beta to 1, and calculated the density for the values of x in Column D.

The values in Column E shows the probability densities associated with finding the second defective universal joint in the indicated number of samples of 1000 . For example, Cell E5 holds the probability density for finding the second defective joint in the third sample.

In real life, you work with probabilities rather than densities. Next, I show you how to use GAMMADIST to determine the probability of finding the second defective joint in the third sample. Here it is:

1. Select a cell for GAMMADIST's answer.

2. From the Statistical Functions menu, select GAMMADIST to open its Function Arguments dialog box (Figure 17-7).

Figure 17-7:
The
GAMMA DIST Function Arguments dialog box.

3. In the Function Arguments dialog box, enter the appropriate values for the arguments.

The X box holds the number of samples for which I'm determining the probability. I'm looking for pr(3), so I entered 3.

In the Alpha box, I entered the number of successes. I want to find the second success in the third sample, so I entered 2.

In the Beta box, I entered the average number of successes that occur within a sample. For this example, that's 1.

In the Cumulative box the choices are TRUE for the cumulative distribution or FALSE to find the probability density. I want to find the probability, not the density, so I entered TRUE.

With values entered for X, Alpha, Beta, and Cumulative, the answer .800851727 - appears in the dialog box.
4. Click OK to put the answer into the selected cell.

gAMMAINU

If you want to know, at a certain level of probability, how many samples it takes to observe a specified number of successes, this is the function for you.

GAMMAINV is the inverse of GAMMADIST. Enter a probability along with Alpha and Beta and it returns the number of samples. Its Function Arguments dialog box has a Probability box, an Alpha box, and a Beta box. Figure 17-8 shows that if you enter the answer for the preceding section into the Probability box and the same numbers for Alpha and Beta, the answer is 3. (Well, actually, a tiny bit more than 3.)

Figure 17-8:
The
GAMMAINV
Function
Arguments
dialog box.

Exponential

If you're dealing with the gamma distribution and you have Alpha = 1 , you have the exponential distribution. This gives the probability that it takes a specified number of samples to get to the first success.

What does the density function look like? Excuse me . . . I'm about to go mathematical on you for a moment. Here, once again, is the density function for gamma:
$f(x)=\frac{1}{\beta^{\alpha}(\alpha-1)!} x^{\alpha-1} e^{-x / \beta}$
If $\alpha=1$, it looks like this:
$f(x)=\frac{1}{\beta} e^{-x / \beta}$

Statisticians like substituting λ (the Greek letter "lambda") for $\frac{1}{\beta}$, so here's
the final version:
$f(x)=\lambda e^{-\lambda x}$
I bring this up because Excel's EXPONDIST Function Arguments dialog box has a box for LAMBDA, and I want you to know what it means.

EXPONDIST

Use EXPONDIST to determine the probability that it takes a specified number of samples to get to the first success in a Poisson distribution. Here, I work once again with the universal joint example. I show you how to find the probability that you'll see the first success in the third sample.

1. Select a cell for EXPONDIST's answer.

2. From the Statistical Functions menu, select EXPONDIST to open its Function Arguments dialog box (Figure 17-9).

Figure 17-9:
The dialog box.

3. In the Function Arguments dialog box, enter the appropriate values for the arguments.
In the X box, I entered the number of samples for which I'm determining the probability. I'm looking for pr(3), so I typed 3.
In the Lambda box, I entered the average number of successes per sample. This goes back to the numbers I gave you in the example - the probability of a success (.001) times the number of universal joints in each sample (1000). That product is 1 , so I entered 1 in this box.

In the Cumulative box, the choices are TRUE for the cumulative distribution or FALSE to find the probability density. I want to find the probability, not the density, so I entered TRUE.
With values entered for X, Lambda, and Cumulative, the answer appears in the dialog box. The answer for this example is .950212932 .
4. Click $O K$ to put the answer into the selected cell.

348
 Part IV: Working with Probability

www.it-ebooks.info

Chapter 18

A Career in Modeling

In This Chapter

$>$ What is a model?
$>$ Modeling and fitting
$>$ Working with the Monte Carlo method

Model is a term that gets thrown around a lot these days. Simply put, a model is something you know and can work with that helps you understand something you know little about. A model is supposed to mimic, in some way, the thing it's modeling. A globe, for example, is a model of the earth. A street map is a model of a neighborhood. A blueprint is a model of a house.

Researchers use models to help them understand natural processes and phenomena. Business analysts use models to help them understand business processes. The models these people use might include concepts from mathematics and statistics - concepts that are so well known they can shed light on the unknown. The idea is to create a model that consists of concepts you understand, put the model through its paces, and see if the results look like real-world results.

In this chapter, I discuss modeling. My goal is to show how you can harness Excel's statistical capabilities to help you understand processes in your world.

Modeling a Distribution

In one approach to modeling, you gather data and group them into a distribution. Next, you try and figure out a process that results in that kind of a distribution. Restate that process in statistical terms so that it can generate a distribution, and then see how well the generated distribution matches up to the real one. This "process you figure out and restate in statistical terms" is the model.

If the distribution you generate matches up well with the real data, does this mean your model is "right"? Does it mean the process you guessed is the process that produces the data?

Unfortunately, no. The logic doesn't work that way. You can show that a model is wrong, but you can't prove that it's right.

Plunging into the Poisson distribution

In this section, I go through an example of modeling with the Poisson distribution. I introduced this distribution in Chapter 17, and I told you it seems to characterize an array of processes in the real world. By characterize a process, I mean that a distribution of real-world data looks a lot like a Poisson distribution. When this happens, it's possible that the kind of process that produces a Poisson distribution is also responsible for producing the data.

What is that process? Start with a random variable x that tracks the number of occurrences of a specific event in an interval. In Chapter 17, the "interval" was a sample of 1,000 universal joints, and the specific event was "defective joint." Poisson distributions are also appropriate for events occurring in intervals of time, and the event can be something like "arrival at a toll booth." Next, I outline the conditions for a Poisson process, and use both defective joints and toll booth arrivals to illustrate:
\checkmark The numbers of occurrences of the event in two nonoverlapping intervals are independent.
The number of defective joints in one sample is independent of the number of defective joints in another. The number of arrivals at a toll booth during one hour is independent of the number of arrivals during another.
\checkmark The probability of an occurrence of the event is proportional to the size of the interval.

The chance that you'll find a defective joint is larger in a sample of 10,000 than it is in a sample of 1,000 . The chance of an arrival at a toll booth is greater for one hour than it is for a half hour.
\checkmark The probability of more than one occurrence of the event in a small interval is 0 or close to 0 .

In a sample of 1,000 universal joints, you have an extremely low probability of finding two defective ones right next to one another. At any time, two vehicles don't arrive at a toll booth simultaneously.

As I show you in Chapter 17, the formula for the Poisson distribution is
$p r(x)=\frac{\mu^{x} e^{-\mu}}{x!}$

In this equation, μ represents the average number of occurrences of the event in the interval you're looking at, and e is the constant 2.781828 (followed by infinitely many more decimal places).

Time to use the Poisson in a model. At the FarBlonJet Corporation, web designers track the number of hits per hour on the intranet home page. They monitor the page for 200 consecutive hours, and group the data as in Table 18-1.

Table 18-1 Hits Per Hour on the FarBlonJet Intranet Home Page

Hits/Hour	Observed Hours	Hits/Hour \boldsymbol{X} Observed Hours
0	10	0
1	30	30
2	44	88
3	44	132
4	36	144
5	18	90
6	10	60
7	8	56
Total	200	600

The first column shows the variable Hits/Hour. The second column, Observed Hours, shows the number of hours in which each value of Hits/Hour occurred. In the 200 hours observed, 10 of those hours went by with no hits, 30 hours had one hit, 44 had two hits, and so on. These data lead the web designers to use a Poisson distribution to model Hits/Hour. Another way to say this: They believe a Poisson process produces the number of hits per hour on the Web page.

Multiplying the first column by the second column results in the third column. Summing the third column shows that in the 200 observed hours the intranet page received 600 hits. So the average number of hits/hour is 3.00.

Applying the Poisson distribution to this example,
$\operatorname{pr}(x)=\frac{\mu^{x} e^{-\mu}}{x!}=\frac{3^{x} e^{-3}}{x!}$

From here on, I pick it up in Excel.

Using POISSON

Figure 18-1 shows each value of x (hits/hour), the probability of each x if the average number of hits per hour is 3 , the predicted number of hours, and the observed number of hours (taken from the second column in Table 18-1). I selected cell B3 so that the formula box shows how I used the POISSON worksheet function. I autofilled Column B down to cell B10. (For the details on using POISSON, see Chapter 17.)

Figure 18-1:
Web-page hits/hour -Poissonpredicted $(\mu=3)$ and observed.

To get the predicted number of hours, I multiplied each probability in Column B by 200 (the total number of observed hours). I used Excel's graphics capabilities (see Chapter 3) to show you how close the predicted hours are to the observed hours. They look pretty close, don't they?

Testing the model's fit

Well, "looking pretty close" isn't enough for a statistician. A statistical test is a necessity. As is the case with all statistical tests, this one starts with a null hypothesis and an alternative hypothesis. Here they are:
H_{0} : The distribution of observed hits/hour follows a Poisson distribution.
$\mathrm{H}_{1}: \operatorname{Not} \mathrm{H}_{0}$
The appropriate statistical test involves an extension of the binomial distribution. It's called the multinomial distribution - "multi" because it encompasses more categories than just "success" and "failure." It's difficult to work with, and Excel has no worksheet function to handle the computations.

Fortunately, pioneering statistician Karl Pearson (inventor of the correlation coefficient) noticed that χ^{2} ("chi-square"), a distribution I show you in

Chapter 11, approximates the multinomial. Originally intended for one-sample hypothesis tests about variances, χ^{2} has become much better known for applications like the one I'm about to show you.

Pearson's big idea was this. If you want to know how well a hypothesized distribution (like the Poisson) fits a sample (like the observed hours), use the distribution to generate a hypothesized sample (our predicted hours, for instance), and work with this formula:

$$
\chi^{2}=\sum \frac{(\text { Observed }- \text { Predicted })^{2}}{\text { Predicted }}
$$

Usually, this is written with Expected rather than Predicted, and both Observed and Expected are abbreviated. The usual form of this formula is:

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E}
$$

For this example

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E}=\frac{(10-9.9574)^{2}}{9.9574}+\frac{(30-29.8722)^{2}}{29.8722}+\ldots+\frac{(8-4.3208)^{2}}{4.3208}
$$

What does that total up to? Excel figures it out for us. Figure $18-2$ shows the same columns as before, with column F holding the values for (O-E) ${ }^{2} / \mathrm{E}$. I could have used this formula

$$
=\left((D 3-C 3)^{\wedge} 2\right) / C 3
$$

to calculate the value in F3 and then autofill up to F10.
I chose a different route. First I assigned the name Predicted_Hrs to C3:C10 and the name Observed_Hrs to D3:D10. Then I used an array formula (see Chapter 2). I selected F3:F10 and created this formula

```
=(Observed_Hrs-Predicted_Hrs)^2/Predicted_Hrs
```

Pressing CTRL+Shift+Enter puts the values into F3:F10. That key combination also puts the curly brackets into the formula in the Formula Bar.

The sum of the values in column F is in cell F11, and that's χ^{2}. If you're trying to show that the Poisson distribution is a good fit to the data, you're looking for a low value of χ^{2}.

354
 Part IV: Working with Probability

Figure 18-2:
Web page hits/hour -Poissonpredicted ($\mu=3$) and observed,
along with the calculations needed to

F3		- 3	f_{x} \{ $=$	(Observed_Hrs-Predicted_Hrs)^2/Predicted_Hrs\}			
4	A	B	C	D	E	F	
1							
2	X	$\mathrm{pr}(\mathrm{x})$	Predicted_Hrs	Observed_Hrs		$\left((O-E)^{\wedge} 2\right) / E$	
3	0	0.049787068	9.957413674	10		0.000182135	
4	1	0.149361205	29.87224102	30		0.000546405	
5	2	0.224041808	44.80836153	44		0.014583179	
6	3	0.224041808	44.80836153	44		0.014583179	
7	4	0.168031356	33.60627115	36		0.170502041	
8	5	0.100818813	20.16376269	18		0.232192228	
9	6	0.050409407	10.08188134	10		0.000665010	
10	7	0.021604031	4.32080629	8		3.132856565	
11					Sum $=$	3.566110742	
12							

compute χ^{2}.

OK. Now what? Is 3.5661 high or is it low?
To find out, you evaluate the calculated value of χ^{2} against the χ^{2} distribution. The goal is to find the probability of getting a value at least as high as the calculated value, 3.5661 . The trick is to know how many degrees of freedom (df) you have. For a goodness-of-fit application like this one

$$
d f=k-m-1
$$

where $k=$ the number of categories and $m=$ the number of parameters estimated from the data. The number of categories is 8 (0 Hits/Hour through 7 Hits/Hour). The number of parameters? I used the observed hours to estimate the parameter μ, so m in this example is 1 . That means $\mathrm{df}=8-1-1=6$.

Use the worksheet function CHIDIST on the value in F11, with 6 df. CHIDIST returns .73515 , the probability of getting a χ^{2} of at least 3.5661 if H_{0} is true. (See Chapter 10 for more on CHIDIST.) Figure 18-3 shows the χ^{2} distribution with 6 df and the area to the right of 3.5661 .

If $\alpha=.05$, the decision is to not reject H_{0} - meaning you can't reject the hypothesis that the observed data come from a Poisson distribution.

This is one of those infrequent times when it's beneficial to not reject H_{0} if you want to make the case that a Poisson process is producing the data. If the probability had been just a little greater than .05 , not rejecting H_{0} would look suspicious. The large probability, however, makes nonrejection of H_{0} and an underlying Poisson process - seem more reasonable. (For more on this see the sidebar in Chapter 10.)

Figure 18-3: The χ^{2} distribution, $\mathrm{df}=6$. The shaded area is the probability of getting a χ^{2} of at least 3.5661 if H_{0} is true.

A word about CHITEST

Excel provides CHITEST, a worksheet function that on first look appears to carry out the test I showed you with about one tenth the work I did on the worksheet. Its Function Arguments dialog box provides one box for the observed values and another for the expected values.

The problem is that CHITEST does not return a value for χ^{2}. It skips that step and returns the probability that you'll get a χ^{2} at least as high as the one you calculate from the observed values and the predicted values.

The problem is that CHITEST's degrees of freedom are wrong for this case. CHITEST goes ahead and assumes that $\mathrm{df}=\mathrm{k}-1$ (7) rather than $\mathrm{k}-\mathrm{m}-1$ (6). You lose a degree of freedom because you estimate μ from the data. In other kinds of modeling, you lose more than one degree of freedom. Suppose, for example, you believe that a normal distribution characterizes the underlying process. In that case, you estimate μ and σ from the data, and you lose two degrees of freedom.

By basing its answer on less than the correct df, CHITEST gives you an inappropriately large (and misleading) value for the probability.

CHITEST would be perfect if it had an option for entering df, or if it returned a value for χ^{2} (which you could then evaluate via CHIDIST and the correct df).

When you don't lose any degrees of freedom, CHITEST works as advertised. Does that ever happen? In the next section, it does.

Playing ball with a model

Baseball is a game that generates huge amounts of statistics - and many study these statistics closely. SABR, the Society for American Baseball Research, has sprung from the efforts of a band of dedicated fan-statisticians (fantasticians?) who delve into the statistical nooks and crannies of the Great American Pastime. They call their work sabermetrics. (I made up "fantasticians." They call themselves "sabermetricians.")

The reason I mention this is that sabermetrics supplies a nice example of modeling. It's based on the obvious idea that during a game a baseball team's objective is to score runs, and to keep its opponent from scoring runs. The better a team does at both, the more games it wins. Bill James, who gave sabermetrics its name and is its leading exponent, discovered a neat relationship between the amount of runs a team scores, the amount of runs the team allows, and its winning percentage. He calls it the Pythagorean percentage:

Pythagorean Percentage $=\frac{(\text { Runs Scored })^{2}}{(\text { Runs Scored })^{2}+(\text { Runs Allowed })^{2}}$
Think of it as a model for predicting games won. Calculate this percentage and multiply it by the number of games a team plays. Then compare the answer to the team's wins. How well does the model predict the number of games each team won during the 2008 season?

To find out, I found all the relevant data for every Major League team for 2008. (Thank you, www.baseball-reference.com.) I put the data into the worksheet in Figure 18-4.

As Figure 18-4 shows, I used an array formula to calculate the Pythagorean percentage in Column D. First, I assigned the name Runs_Scored to the data in Column B, and the name Runs_Allowed to the data in Column C. Then I selected D2:D31 and created the formula

```
=Runs_Scored^2 / (Runs_Scored^2 + Runs_Allowed^2)
```

Next, I pressed CTRL+Shift+Enter to put the values into D2:D31 and the curly brackets into the formula in the Formula Bar.

	D2		$f_{x} \mid\{$	\{=Runs_Scored^2/(Runs_Scored^2 + Runs_Allowed^2) ${ }^{\text {d }}$			
	4	A	B	C	D	E	F
	1	Team	Runs_Scored	Runs_Allowed	Pythagorean	Predicted_Wins	Wins
	2	Arizona	720	706	0.510	83	82
	3	Atlanta	753	778	0.484	78	72
	4	Baltimore	782	869	0.447	72	68
	5	Boston	845	694	0.597	97	95
	6	Chicago Cubs	855	671	0.619	100	97
	7	Chicago White Sox	811	729	0.553	90	89
	8	Cincinatti	704	800	0.436	71	74
	9	Cleveland	805	761	0.528	86	81
	10	Colorado	747	822	0.452	73	74
	11	Detroit	821	857	0.479	78	74
	12	Florida	770	767	0.502	81	84
	13	Houston	712	743	0.479	77	86
Figure 18-4:	14	Kansas City	691	781	0.439	71	75
	15	Los Angeles Angels	765	697	0.546	89	100
Runs	16	Los Angeles Dodgers	700	648	0.539	87	84
scored, runs	17	Milwaukee	750	689	0.542	88	90
	18	Minnesota	829	745	0.553	90	88
allowed,	19	New York Mets	799	715	0.555	90	89
predicted	20	New York Yankees	789	727	0.541	88	89
	21	Oakland	646	690	0.467	75	75
Wins, and	22	Philadelphia	799	680	0.580	94	92
wins for	23	Pittsburgh	735	884	0.409	66	67
each major	24	San Diego	637	764	0.410	66	63
	25	Seattle	671	811	0.406	66	61
league	26	San Francisco	640	759	0.416	67	72
baseball	27	St. Louis	779	725	0.536	87	86
team in	28	Tampa Bay	774	671	0.571	92	97
team in	29	Texas	901	967	0.465	75	79
2008.	30	Toronto	714	610	0.578	94	86
	31	Washington	641	825	0.376	61	59

Had I wanted to do it another way, I'd have put this formula in Cell D2:

$$
=\mathrm{B} 2^{\wedge} 2 /\left(\left(\mathrm{B} 2^{\wedge} 2\right)+\left(\mathrm{C} 2^{\wedge} 2\right)\right)
$$

Then I would have autofilled the remaining cells in Column D.
Finally, I multiplied each Pythagorean percentage in Column D by the number of games each team played (24 teams played 162 games, 6 played 161) to get the predicted wins in Column E. Because the number of wins can only be a whole number, I used the ROUND function to round off the predicted wins. For example, the formula that supplies the value in E3 is:

$$
=\text { ROUND (} \mathrm{D} 3 * 162,0 \text {) }
$$

The zero in the parentheses indicates that I wanted no decimal places.
Before proceeding, I assigned the name Predicted_Wins to the data in Column E, and the name Wins to the data in Column F.

How well does the model fit with reality? This time, CHITEST can supply the answer. I don't lose any degrees of freedom here: I didn't use the Wins data in Column F to estimate any parameters, like a mean or a variance, and then apply those parameters to calculate Predicted Wins. Instead, the predictions came from other data - the Runs Scored and the Runs Allowed. For this reason, $\mathrm{df}=\mathrm{k}-\mathrm{m}-1=30-0-1=29$.

Here's how to use CHITEST (when it's appropriate!):

1. With the data entered, select a cell for CHITEST's answer.
2. From the Statistical Functions menu, select CHITEST and click OK to open the Function Arguments dialog box for CHITEST. (See Figure 18-5.)

Figure 18-5:
The
CHITEST Function Arguments dialog box.

3. In the Function Arguments dialog box, type the appropriate values for the arguments.

In the Actual_range box, type the cell range that holds the scores for the observed values. For this example, that's Wins (the name for F2:F32).

In the Expected_range box, type the cell range that holds the predicted values. For this example, it's Predicted_Wins (the name for E2:E32).
With the cursor in the Expected_range box, the dialog box mentions a product of row totals and column totals. Don't let that confuse you. That has to do with a slightly different application of this function (which I cover in Chapter 20).

With values entered for Actual_range and for Expected_range, the answer appears in the dialog box. The answer here is .99999518 , which means that with 29 degrees of freedom you have a huge chance of finding a value of χ^{2} at least as high as the one you'd calculate from these observed values and these predicted values. Bottom line: The model fits the data extremely well.
4. Click $O K$ to put the answer into the selected cell.

A Simulating Discussion

Another approach to modeling is to simulate a process. The idea is to define as much as you can about what a process does and then somehow use numbers to represent that process and carry it out. It's a great way to find out what a process does in case other methods of analysis are very complex.

Taking a chance: The Monte Carlo method

Many processes contain an element of randomness. You just can't predict the outcome with certainty. To simulate this type of process, you have to have some way of simulating the randomness. Simulation methods that incorporate randomness are called Monte Carlo simulations. The name comes from the city in Monaco whose main attraction is gambling casinos.

In the next sections, I show you a couple of examples. These examples aren't so complex that you can't analyze them. I use them for just that reason: You can check the results against analysis.

Loading the dice

In Chapter 16, I talked about a die (one member of a pair of dice) that's biased to come up according to the numbers on its faces: A 6 is six times as likely as a 1, a 5 is five times as likely, and so on. On any toss, the probability of getting a number n is $n / 21$.

Suppose you have a pair of dice loaded this way. What would the outcomes of 200 tosses of these dice look like? What would be the average of those 200 tosses? What would be the variance and the standard deviation? You can use Excel to set up Monte Carlo simulations and answer these questions.

To start, I used Excel to calculate the probability of each outcome. Figure 18-6 shows how I did it. Column A holds all the possible outcomes of tossing a pair of dice (2-12). Columns C through N hold the possible ways of getting each outcome. Columns C, E, G, I, K, and M show the possible outcomes on the first die. Columns D, F, H, J, L, and N show the possible outcomes on the second die. Column B gives the probability of each outcome, based on the numbers in Columns C-M. I highlighted B7 so the formula box shows I used this formula to have Excel calculate the probability of a 7:

$$
=((\mathrm{C} 7 * \mathrm{D} 7)+(\mathrm{E} 7 * \mathrm{~F} 7)+(\mathrm{G} 7 * \mathrm{H} 7)+(\mathrm{I} 7 * \mathrm{~J} 7)+(\mathrm{K} 7 * \mathrm{~L} 7)+(\mathrm{M} 7 * N 7)) / 21^{\wedge} 2
$$

I autofilled the remaining cells in Column B.

The sum in B14 confirms that I considered every possibility.

Figure 18-6: Outcomes and probabilities for a pair of loaded dice.

B7			$f_{x}=\left(\left(C 7^{*} \mathrm{D} 7\right)+\left(E 7^{*} \mathrm{~F} 7\right)+\left(\mathrm{G} 7^{*} \mathrm{H} 7\right)+\left(17^{*} \mathrm{~J} 7\right)+\left(\mathrm{K} 7^{*} \text { L7) }+\left(\mathrm{M} 7^{*} \mathrm{~N} 7\right)\right)^{\prime} / 21^{\wedge} 2\right.$											
亿	A	B	C	D	E	F	G	H	I	J	K	L	M	N
1	x	pr (x)	1st	2nd										
2	2	0.0022676	1	1										
3	3	0.0090703	2	1	1	2								
4	4	0.0226757	3	1	2	2	3	1						
5	5	0.0453515	4	1	3	2	2	3	4	1				
6	6	0.0793651	5	1	4	2	3	3	2	4	1	5		
7	7	0.1269841	6	1	5	2	4	3	3	4	2	5	1	6
8	8	0.1587302	6	2	5	3	4	4	3	5	2	6		
9	9	0.1723356	6	3	5	4	4	5	3	6				
10	10	0.1655329	6	4	5	5	4	6						
11	11	0.1360544	6	5	5	6								
12	12	0.0816327	6	6										
13														
14	Sum $=$	1.0000000												

Next, it's time to simulate the process of tossing the dice. Each toss, in effect, generates a value of the random variable x according to the probability distribution defined by Column A and Column B. How do you simulate these tosses?

Data analysis tool: Random Number Generation

Excel's Random Number Generation tool is tailor-made for this kind of simulation. Tell it how many values you want to generate, give it a probability distribution to work with, and it randomly generates numbers according to the parameters of the distribution. Each randomly generated number corresponds to a toss of the dice.

Here's how to use the Random Number Generation Tool:

1. Select Data I Data Analysis to open the Data Analysis dialog box.
2. In the Data Analysis dialog box, scroll down the Analysis Tools list and select Random Number Generation. Click OK to open the Random Number Generation dialog box.

Figure 18-7 shows the Random Number Generation dialog box.

3. In the Number of Variables box, type the number of variables you want to create random numbers for.

I know, I know. . . Don't end a sentence with a preposition. As Winston Churchill once said: "That's the kind of nonsense up with which I will not put." Hey but seriously, I entered 1 for this example. I'm only interested in the outcomes of tossing a pair of dice.
4. In the Number of Random Numbers box, type the number of numbers to generate.
I entered 200 to simulate 200 tosses of the loaded dice.
5. In the Distribution box, click the down arrow to select the type of distribution.

You have seven options here. The choice you make determines what appears in the Parameters area of the dialog box, because different types of distributions have different types (and numbers) of parameters. You're dealing with a discrete random variable here, so the appropriate choice is Discrete.
6. Choosing Discrete causes the Value and Probability Input Range box to appear under Parameters. Enter the array of cells that holds the values of the variable and the associated probabilities.

The possible outcomes of the tosses of the die are in A2:A12, and the probabilities are in B2:B12, so the range is A2:B12. Excel fills in the $\$$-signs for absolute referencing.
7. In the Output Options, select a radio button to indicate where you want the results.

I selected New Worksheet Ply to put the results on a new page in the worksheet.

8. Click OK.

Because I selected New Worksheet Ply, a newly created page opens with the results. Figure $18-8$ shows the new page. The randomly generated numbers are in Column A. The 200 rows of random numbers are too long to show you. I could have cut and pasted them into 10 columns of 20 cells, but then you'd just be looking at 200 random numbers.

Instead, I used FREQUENCY to group the numbers into frequencies in Columns C and D and then used Excel's graphics capabilities to create a graph of the results. I selected D2 so the formula box shows how I used FREQUENCY for that cell. As you can see, I defined Tosses as the name for A2:A201 and x as the name for C2:C12.

Figure 18-8: The results of simulating 200 tosses of a pair of loaded dice.

What about the statistics for these simulated tosses?

```
=AVERAGE (Tosses)
```

tells you the mean is 8.240 .
=VAR (Tosses)
returns 4.244 as the estimate of the variance, and SQRT applied to the variance returns 2.060 as the estimate of the standard deviation.

How do these values match up with the parameters of the random variable? This is what I meant before by "checking against analysis." In Chapter 16, I show how to calculate the expected value (the mean), the variance, and the standard deviation for a discrete random variable.

The expected value is:

$$
E(x)=\sum x(p r(x))
$$

In the worksheet in Figure 18-6, I used the SUMPRODUCT worksheet function to calculate $E(x)$. The formula is:

```
=SUMPRODUCT(A2 : A12, B2 : B12)
```

The expected value is 8.667 .
The variance is:
$V(x)=\sum x^{2}(p r(x))-[E(x)]^{2}$

With $E(x)$ stored in B16, I used this formula

```
=SUMPRODUCT(A2:A12,A2:A12,B2:B12) -B16^2
```

Note the use of A2:A12 twice in SUMPRODUCT. That gives you the sum of $x 2$.
The formula returns 4.444 as the variance. SQRT applied to that number gives 2.108 as the standard deviation.

Table 18-2 shows how closely the results from the simulation match up with the parameters of the random variable.

Table 18-2 Statistics from the Loaded Dice-Tossing Simulation and the Parameters of the Discrete Distribution

	Simulation Statistic	Distribution Parameter
Mean	8.240	8.667
Variance	4.244	4.444
Standard Deviation	2.060	2.108

Simulating the Central Limit Theorem

This might surprise you, but statisticians often use simulations to make determinations about some of their statistics. They do this when mathematical analysis becomes very difficult.

For example, some statistical tests depend on normally distributed populations. If the populations aren't normal, what happens to those tests? Do they still do what they're supposed to? To answer that question, statisticians might create non-normally distributed populations of numbers, simulate experiments with them, and apply the statistical tests to the simulated results.

In this section, I use simulation to examine an important statistical item the Central Limit Theorem. In Chapter 9, I introduce the Central Limit Theorem in connection with the sampling distribution of the mean. In fact, I simulated sampling from a population with only three possible values to show you that even with a small sample size, the sampling distribution starts to look normally distributed.

Here, I use the Random Number Generation tool to set up a normally distributed population and draw 40 samples of 16 scores each. I calculate the mean

364

of each sample, and then set up a distribution of those means. The idea is to see how that distribution matches up with the Central Limit Theorem.

The distribution for this example has the parameters of the population of scores on the IQ test, a distribution I use for examples in several chapters. It's a normal distribution with $\mu=100$ and $\sigma=16$. According to the Central Limit Theorem, the mean of the distribution of means should be 100, and the standard deviation (the standard error of the mean) should be 4.

For a normal distribution, the Random Number Generation dialog box looks like Figure 18-9. The first two entries cause Excel to generate 16 random numbers for a single variable. Choosing Normal in the Distribution box causes the Mean box and the Standard Deviation box to appear under Parameters. As the Figure shows, I entered 100 for the Mean and 16 for the Standard Deviation. Under Output Options, I selected Output Range and entered a column of 16 cells. This puts the randomly generated numbers into the indicated column on the current page.

Figure 18-9: The Random Number Generation dialog box for a normal distribution.

I used this dialog box 40 times to generate 40 simulated samples of 16 scores each from a normal population, and put the results in adjoining columns. Then I used AVERAGE to calculate the mean for each column.

Next, I copied the 40 means to another worksheet so I could show you how they're distributed. I calculated their mean and the standard deviation. I used FREQUENCY to group the means into a frequency distribution, and Excel's graphics capabilities to graph the distribution. Figure $18-10$ shows the results.

The mean of the means, 99.671, is close to the Central Limit Theorem's predicted value of 100 . The standard deviation of the means, 3.885 , is close to the Central Limit's predicted value of 4 for the standard error of the mean. The graph shows the makings of a normal distribution, although it's slightly skewed. In general, the simulation matches up well with the Central Limit Theorem.

Figure 18-10: The results of the Central Limit Theorem simulation.

A couple of paragraphs ago, I said "I copied the 40 means to another worksheet." That's not quite a slam-dunk. When you try to paste a cell into another worksheet, and that cell holds a formula, Excel usually balks and gives you an ugly-looking error message when you paste. That happens when the formula refers to cell locations that don't hold any values in the new worksheet.

To get around that, you have to do a little trick on the cell you want to copy. You have to convert its contents from a formula into the value that the formula calculates. The steps are:

1. Select the cell or cell array you want to copy.
2. Right-click and from the pop-up menu, select Copy (or just press Ctrl+C without right-clicking).
3. Click the cell where you want the copy to go.
4. Right-click and from the pop-up menu again, select Paste Special to open the Paste Special dialog box. (See Figure 18-11.)
5. In the dialog box, select the Values radio button.
6. Click $O K$ to complete the conversion.

The Paste Special dialog box offers another helpful capability. Every so often in statistical work, you have to take a row of values and relocate them into a column or vice versa. Excel calls this transposition. In the steps that follow, I describe transposing a row into a column, but it works the other way, too:

1. Select a row of data.

2. Right-click and from the pop-up menu, select copy or press Ctrl+ \mathbf{C} without right-clicking.

Figure 18-11:
The Paste
Special dialog box.

Paste Special	(8) x
Paste	
- All	- All using Source theme
O Ermulas	O All except borders
- Values	Column widths
- Formats	- Formulas and number formats
- Comments	- Values and number formats
- Validation	
Operation	
- №ne	- Multiply
- Add	- Divide
- Subtract	
\square Skip blanks	\square Transpose
Paste Link	OK Cancel

3. Select the cell that begins the column where you want to put the values.
4. Right-click and from the pop-up menu again, select Paste Special to open the Paste Special dialog box. (Refer to Figure 18-11.)
5. Click the Transpose checkbox. (It's in the lower-right corner.)
6. Click OK to complete the row-to-column transposition.

Part V
 The Part of Tens

The 5th Wave

By Rich Tennant

In this part . . .

we come to the famous "Part of Tens." I put two chapters into this part. The first one covers statistical traps and helpful tips - from problems with hypothesis testing to advice on graphs, from pitfalls in regression to advice on graphing variability.

The second chapter goes over a number of Excel features I just couldn't fit anywhere else. This part covers forcasting, graphing, testing for independence, and more. I talk about Excel functions based on logarithms - do you see what I mean about not fitting anywhere else? - and end by showing you how to import data from the Web.

Chapter 19

Ten Statistical and Graphical Tips and Traps

In This Chapter

- Beware of significance
$>$ Be wary of graphs
$>$ Be cautious with regression
$>$ Be careful with concepts

The world of statistics is full of pitfalls, but it's also full of opportunities. Whether you're a user of statistics or someone who has to interpret them, it's possible to fall into the pitfalls. It's also possible to walk around them. Here are ten tips and traps from the areas of hypothesis testing, regression, correlation, and graphs.

Significant Doesn't Always Mean Important

As I say earlier in the book, "significance" is, in many ways, a poorly chosen term. When a statistical test yields a significant result, and the decision is to reject H_{0}, that doesn't guarantee that the study behind the data is an important one. Statistics can only help decision making about numbers and inferences about the processes that produced them. They can't make those processes important or earth shattering. Importance is something you have to judge for yourself - and no statistical test can do that for you.

Trying to Not Reject a Null Hypothesis Has a Number of Implications

Let me tell you a story: Some years ago, an industrial firm was trying to show it was finally in compliance with environmental cleanup laws. They took numerous measurements of the pollution in the body of water surrounding their factory, compared the measurements with a null hypothesis-generated set of expectations, and found that they couldn't reject H_{0} with $\alpha=.05$. Their measurements didn't differ significantly (there's that word again) from "clean" water.

This, the company claimed, was evidence that they had cleaned up their act. Closer inspection revealed that their data approached significance, but the pollution wasn't quite of a high enough magnitude to reject H_{0}. Does this mean they're not polluting?

Not at all. In striving to "prove" a null hypothesis, they had stacked the deck in favor of themselves. They set a high barrier to get over, didn't clear it, and then patted themselves on the back.

Every so often, it's appropriate to try and not reject H_{0}. When you set out on that path, be sure to set a high value of α (about .20-.30), so that small divergences from H_{0} cause rejection of H_{0}. (I discuss this in Chapter 10 and I mention it in other parts of the book. I think it's important enough to mention again here.)

Regression Isn't Always linear

When trying to fit a regression model to a scatterplot, the temptation is to immediately use a line. This is the best-understood regression model, and when you get the hang of it, slopes and intercepts aren't all that daunting.

But linear regression isn't the only kind of regression. It's possible to fit a curve through a scatterplot. I won't kid you: The statistical concepts behind curvilinear regression are more difficult to understand than the concepts behind linear regression.

It's worth taking the time to master those concepts, however. Sometimes, a curve is a much better fit than a line. (This is partly a plug for Chapter 20, where I take you through curvilinear regression - and some of the concepts behind it.)

Extrapolating Beyond a Sample Scatterplot Is a Bad Idea

Whether you're working with linear regression or curvilinear regression, keep in mind that it's inappropriate to generalize beyond the boundaries of the scatterplot.

Suppose you've established a solid predictive relationship between a test of mathematics aptitude and performance in mathematics courses, and your scatterplot only covers a narrow range of mathematics aptitude. You have no way of knowing whether the relationship holds up beyond that range. Predictions outside that range aren't valid.

Your best bet is to expand the scatterplot by testing more people. You might find that the original relationship only tells part of the story.

Examine the Variability Around a Regression Line

Careful analysis of residuals (the differences between observed and predicted values) can tell you a lot about how well the line fits the data. A foundational assumption is that variability around a regression line is the same up and down the line. If it isn't, the model might not be as predictive as you think. If the variability is systematic (greater variability at one end than at the other), curvilinear regression might be more appropriate than linear. The standard error of estimate won't always be the indicator.

A Sample Can Be Too Large

Believe it or not. This sometimes happens with correlation coefficients. A very large sample can make a small correlation coefficient statistically significant. For example, with 100 degrees of freedom and $\alpha=.05$, a correlation coefficient of 195 is cause for rejecting the null hypothesis that the population correlation coefficient is equal to zero.

But what does that correlation coefficient really mean? The coefficient of determination - r^{2} - is just .038, meaning that the $\mathrm{SS}_{\text {Regression }}$ is less than 4 percent of the $\mathrm{SS}_{\text {Total }}$ (See Chapter 16.) That's a very small association.

Bottom line: When looking at a correlation coefficient, be aware of the sample size. If it's large enough, it can make a trivial association turn out statistically significant. (Hmmm . . . "significance" . . . there it is again!)

Consumers: Know Your Axes

When you look at a graph, make sure that you know what's on each axis. Make sure that you understand the units of measure. Do you understand the independent variable? Do you understand the dependent variable? Can you describe each one in your own words? If the answer to any of those questions is "No," you don't understand the graph you're looking at.

When looking at a graph in a TV ad, be very wary if it disappears too quickly, before you can see what's on the axes. The advertiser may be trying to create a lingering false impression about a bogus relationship inside the graph. The graphed relationship might be as valid as that other staple of TV advertising scientific proof via animated cartoon: Tiny animated scrub brushes cleaning cartoon teeth might not necessarily guarantee whiter teeth for you if you buy the product. (I know that's off-topic, but I had to get it in.)

Graphing a Categorical Variable as Though It's a Quantitative Variable Is Just Wrong

So you're just about ready to compete in the Rock-Paper-Scissors World Series. In preparation for this international tournament, you've tallied all your matches from the past ten years, listing the percentage of times you won when you played each role.

To summarize all the outcomes, you're about to use Excel's graphics capabilities to create a graph. One thing's sure: Whatever your preference rock-paper-scissors-wise, the graph absolutely, positively had better NOT look like Figure 19-1.

So many people create these kinds of graphs - people who should know better. The line in the graph implies continuity from one point to another. With these data, of course, that's impossible. What's between Rock and Paper? Why are they equal units apart? Why are the three categories in that order? (Can you tell this is my pet peeve?)

Figure 19-1: Absolutely the wrong way to graph categorical data.

Simply put, a line graph is not the proper graph when at least one of your variables is a set of categories. Instead, create a column graph. A pie chart works here, too, because the data are percentages and you have just a few slices. (See Chapter 3 for Yogi Berra's pie-slice guidelines.)

When I wrote the first edition of this book, I whimsically came up with the idea of a Rock Paper Scissors World Series for this example. Between then and now, I found out . . . there really is one! (The World RPS Society puts it on.)

Whenever Appropriate, Include Variability in Your Graph

When the points in your graph represent means, make sure that the graph includes the standard error of each mean. This gives the viewer an idea of the variability in the data - which is an important aspect of the data. Here's another plug: In Chapter 20, I show you how to do that in Excel.

Means by themselves don't always tell you the whole story. Take every opportunity to examine variances and standard deviations. You may find some hidden nuggets. Systematic variation - high values of variance associated with large means, for example - might be a clue about a relationship you didn't see before. (Appendix C shows you some additional ways to explore data.)

Be Careful When Relating Statistics-Book Concepts to Excel

If you're serious about doing statistical work, you'll probably have occasion to look into a statistics text or two. Bear in mind that the symbols in some areas of statistics aren't standard: For example, some texts use M rather than to represent the sample mean, and some represent a deviation from the mean with just x.

Connecting textbook concepts to Excel's statistical functions can be a challenge, because of the texts and because of Excel. Messages on dialog boxes and in help files might contain symbols other than the ones you read about, or they might use the same symbols but in a different way. The discrepancy might lead you to make an incorrect entry into a parameter in a dialog box, resulting in an error that's hard to trace.

Chapter 20

Ten Things (Twelve, Actually) That Didn't Fit in Any Other Chapter

In This Chapter

$>$ What's in the forecast?
$>$ Visualizing variability
$>$ Odds and ends of probability

- Looking for independence
$>$ Logging out
$>$ Importing data

1wrote this book to show you all of Excel's statistical capabilities. My intent was to tell you about them in the context of the world of statistics, and I had a definite path in mind.

Some of the capabilities don't neatly fit along that path. I still want you to be aware of them, however, so here they are.

Some Forecasting

Here are a couple of useful techniques to help you come up with some forecasts. Although they didn't quite fit into the regression chapter, and they really didn't go into the descriptive statistics chapters, so they deserve a section of their own.

A moving experience

In many contexts, it makes sense to gather data over periods of time. When you do this, you have a time series.

Investors often have to base their decisions on time series - like stock prices - and the numbers in a time series typically show numerous ups and downs. A mean that takes all the peaks and valleys into account might obscure the big picture of the overall trend.

One way to smooth out the bumps and see the big picture is to calculate a moving average. This is an average calculated from the most recent scores in the time series. It moves because you keep calculating it over the time series. As you add a score to the front end, you delete one from the back end.

Suppose you have daily stock prices of a particular stock for the last 20 days, and you decide to keep a moving average for the most recent 5 days. Start with the average from days $1-5$ of those 20 days. Then average the prices from days 2-6. Next, average days 3-7, and so on, until you average the final 5 days of the time series.

Excel's Moving Average data analysis tool does the work for you. Figure 20-1 shows a fictional company's stock prices for 20 days, and the dialog box for the Moving Average tool.

The figure shows my entries for Moving Average. The Input Range is cells A1 through A21, the Labels in First Row checkbox is checked, and the Interval is 5 . That means that each average consists of the most recent five days. Cells B2 through B21 are the output range, and I checked the boxes for Chart Output and for Standard Errors.

The results are in Figure 20-2. Ignore the ugly-looking \#N/A symbols. Each number in Column B is a moving average - a forecast of the price on the basis of the most recent five days.

Each number in Column C is a standard error. In this context, a standard error is the square root of the average of the squared difference between the price and the forecast for the previous five days. So the first standard error in cell C10 is

$$
\sqrt{\frac{(51-47.2)^{2}+(45-47.2)^{2}+(56-49)^{2}+(49-50)^{2}+(55-51.2)^{2}}{5}}=4.091943
$$

Figure 20-2: The results: moving averages and standard errors.

The graph (stretched out from its original appearance and with a reformatted vertical axis) shows the moving average in the series labeled Forecast. Sometimes the forecast matches up with the data, sometimes it doesn't.

As the figure shows, the moving average smoothes out the peaks and valleys in the price data.

In general, how many scores do you include? That's up to you. Include too many and you risk obsolete data influencing your result. Include too few and you risk missing something important.

How to be a smoothie, exponentially

Exponential smoothing is similar to a moving average. It's a technique for forecasting based on prior data. In contrast with the moving average, which works just with a sequence of actual values, exponential smoothing takes its previous prediction into account.

Exponential smoothing operates according to a damping factor, a number between zero and one. With α representing the damping factor, the formula is
$y_{t}{ }^{\prime}=(1-\alpha) y_{t-1}+\alpha y_{t-1}^{\prime}$

In terms of stock prices from the preceding example, $y t$ ' represents the predicted stock price at a time t. If t is today, $t-1$ is yesterday. So $y t-1$ is yesterday's actual price and $y^{\prime} t-1$ is yesterday's predicted price. The sequence of predictions begins with the first predicted value as the observed value from the day before.

A larger damping factor gives more weight to yesterday's prediction. A smaller damping factor gives greater weight to yesterday's actual value. A damping factor of 0.5 weighs each one equally.

Figure 20-3 shows the dialog box for the Exponential Smoothing data analysis tool. It's similar to the Moving Average tool, except for the Damping Factor box.

Figure 20-3:
The
Exponential
Smoothing
data
analysis tool dialog box.

I applied Exponential Smoothing to the data from the previous example. I did this three times with $0.1,0.5$, and 0.9 as the damping factors. Figure 20-4 shows the graphic output for each result.

The highest damping factor, 0.9 , results in the flattest sequence of predictions. The lowest, 0.1 , predicts the most pronounced set of peaks and valleys. How should you set the damping factor? Like the interval in the moving average, that's up to you. Your experience and the specific area of application are the determining factors.

In Appendix C, I show you another technique for smoothing. That one is based on medians.

Figure 20-4: Exponential smoothing with three damping factors.

Graphing the Standard Error of the Mean

When you create a graph and your data are means, it's a good idea to include the standard error of each mean in your graph. This gives the viewer an idea of the spread of scores around each mean.

Figure 20-5 gives an example of a situation where this arises. The data are (fictional) scores for four groups of people on a test. Each column header indicates the amount of preparation time for the eight people within the group. I used Excel's graphics capabilities (Chapter 3) to draw the graph. Because the independent variable is quantitative, a line graph is appropriate. (See Chapter 19 for a rant on my biggest peeve.)

For each group I used AVERAGE to calculate the mean and STDEV to calculate the standard deviation. I also calculated the standard error of each mean. I selected cell B12, so the formula box shows you that I calculated the standard error for column B via this formula:

```
=B11/SQRT (COUNT (B2:B9))
```

The trick is to get each standard error into the graph. In Excel 2007, it's a snap. Begin by selecting the graph. This causes the Design, Layout, and Format tabs to appear. Select Layout | Error Bars

Figure 20-5: Four groups, their means, standard deviations, and standard errors. The graph shows the group means.

This opens a menu. Figure 20-6 shows what I mean.

Figure 20-6:
Selecting Layout
Error Bars.

In this menu, you have to be careful. One selection is Error Bars with Standard Error. Avoid it. If you think this selection tells Excel to put the standard error of each mean on the graph, rest assured that Excel has absolutely no idea of what you're talking about. For this selection, Excel calculates the standard error of the set of four means - not the standard error within each group.

Instead, in that menu, pick the final choice, More Error Bar options. This opens the Format Error Bars dialog box. (See Figure 20-7.)

Figure 20-7:
The Format Error Bars dialog box.

In the Display area, click the radio button next to Both (for Direction) and the radio button next to Cap (for End Style).

Remember the cautionary note I gave you a moment ago? I've got a similar one here. One selection in the Error Amount area is Standard Error. Avoid this one, too. It does not tell Excel to put the standard error of each mean on the graph.

In the Error Amount area, click the radio button next to Custom. This activates the Specify Value button. Click that button to open the Custom Error Bars dialog box shown in Figure 20-8. With the cursor in the Positive Error Value box, select the cell range that holds the standard errors (\$B\$12:\$E\$12). Move the cursor to the Negative Error Value box and do the same.

Part V: The Part of Tens

Figure 20-8:
The Custom Error Bars dialog box.

That Negative Error Value box might give you a little trouble. Make sure that it's cleared of any default values before you enter the cell range.

Click OK on the Custom Error Bars dialog box, close the Format Error Bars dialog box and the graph looks like Figure 20-9.

Figure 20-9: The graph of the group means
including the standard error of each mean.

This, by the way, is a good example of how the Ribbon expands the user experience. In previous Excel versions it was difficult to access the Error Bar capability, or to even know it was available. Buried under a tab in a dialog box, Error Bars seldom saw the light of day. The Ribbon, on the other hand, makes them immediately visible, as Figure 20-6 shows.

Probabilities and Distributions

Here are some probability-related worksheet functions. A little on the esoteric side, you might find some use for them.

PROB

If you have a probability distribution of a discrete random variable, and you want to find the probability that the variable takes on a particular value, PROB is for you. Figure 20-10 shows the PROB Argument Functions dialog box along with a distribution.

Figure 20-10: The PROB Function Arguments dialog box and a probability distribution.

You supply the random variable (X_range), the probabilities (Prob_range), a Lower Limit, and an Upper Limit. PROB returns the probability that the random variable takes on a value between those limits.

WEIBULL

This is a probability density function that's mostly applicable to engineering. It serves as a model for the time until a physical system fails. As engineers know, in some systems, the number of failures stays the same over time because shocks to the system cause failure. In others, like some microelectronic components, the number of failures decreases with time. In still others, wear and tear increase failures with time.

The Weibull distribution's two parameters allow it to reflect all these possibilities. One parameter, Alpha, determines how wide or narrow the distribution is. The other, Beta, determines where it's centered on the x-axis.

The Weibull probability density function is a rather complicated equation. Thanks to Excel, you don't have to worry about it. Figure 20-11 shows WEIBULL's Function Arguments dialog box.

Figure 20-11:

The dialog box in the figure answers the kind of question a product engineer would ask: Assume the time to failure of a bulb in an LCD projector follows a Weibull distribution with Alpha $=.75$ and Beta $=2000$ hours. What's the probability the bulb lasts at most 4000 hours? The dialog box shows that the answer is .814 .

Drawing Samples

Excel's Sampling data analysis tool is helpful for creating samples. You can tailor it in a couple of ways. If you're trying to put a focus group together and you have to select the participants from a pool of people, you could assign each one a number, and have the Sampling tool select your group.

One way to select is periodically. You supply n, and Excel samples every nth number. The other way to select is randomly. You supply the number of individuals you want randomly selected and Excel does the rest.

Figure 20-12 presents the Sampling dialog box, three groups I had it sample from, and two columns of output.

The first output column, Column A, shows the results of periodic sampling with a period of 6 . Sampling begins with the sixth score in Group 1. Excel then counts out scores and delivers the sixth, and goes through that process
again until it finishes in the last group. The periodic sampling process, as you can see, doesn't recycle. I supplied an output range up to cell A11, but Excel stopped after four numbers.

Figure 20-12: The Sampling data analysis tool dialog box, sampled groups, and results.

The second output column, Column B, shows the results of random sampling. I asked for 20 and that's what I got. If you closely examine the numbers in Column B, you'll see that the random sampling process can select a number more than once.

Beware of a little quirk: The Labels checkbox seems to have no effect. When I specified an input range that includes C1, D1, and E1, and checked the Labels checkbox, I received an error message: "Sampling - Input range contains nonnumeric data." Not a showstopper, but a little annoying.

Testing Independence: The True Use of CHITEST

In Chapter 18, I show you how to use CHITEST to test the goodness of fit of a model to a set of data. At the time, I warned you about the pitfalls of using this function in that context, and I mentioned that it's really intended for something else.

Here's the something else. Imagine you've surveyed a total of 200 people. Each person lives in either a rural area, an urban area, or a suburb. Your survey asked them their favorite type of movie - drama, comedy, or animation. You want to know if their movie preference is independent of the environment in which they live.

Table 20-1 shows the results.

Table 20-1	Living Environment and Movie Preference			
	Drama	Comedy	Animation	Total
Rural	40	30	10	80
Urban	20	30	20	70
Suburban	10	20	20	50
Total	70	80	50	200

The number in each cell represents the number of people in the environment indicated in the row who prefer the type of movie indicated in the column.

Do the data show that preference is independent of environment? This calls for a hypothesis test:
H_{0} : Movie preference is independent of environment
$\mathrm{H}_{1}: \operatorname{Not} \mathrm{H}_{0}$
$\alpha=.05$
To get this done, you have to know what to expect if the two are independent. Then you can compare the data with the expected numbers and see if they match. If they do, you can't reject H_{0}. If they don't, you reject H_{0}.

Concepts from probability help determine the expected data. In Chapter 16, I tell you that if two events are independent, you multiply their probabilities to find the probability that they occur together. Here, you can treat the tabled numbers as proportions, and the proportions as probabilities.

For example, in your sample, the probability is $80 / 200$ that a person is from a rural environment. The probability is $70 / 200$ that a person prefers drama. What's the probability that a person is in the category "rural and likes drama"? If the environment and preference are independent, that's (80/200) $\times(70 / 200)$. To turn that probability into an expected number of people, you multiply it by the total number of people in the sample - 200 . So the expected number of people is $(80 \times 70) / 200$, which is 28 .

In general,
Expected Number in a Cell $=\frac{\text { Row Total } \times \text { Column Total }}{\text { Total }}$

Chapter 20: Ten Things (Twelve, Actually) That Didn't Fit in Any Other Chapter

After you have the expected numbers, you compare them to the observed numbers (the data) via this formula:

$$
\chi^{2}=\sum \frac{(\text { Observed }- \text { Expected })^{2}}{\text { Expected }}
$$

You test the result against a χ^{2} (chi-square) distribution with $\mathrm{df}=$ (Number of Rows -1) X (Number of Columns - 1), which in this case comes out to 4.

The CHITEST worksheet function performs the test. You supply the observed numbers and the expected numbers, and CHITEST returns the probability that a χ^{2} at least as high as the result from the preceding formula could have resulted if the two types of categories are independent. If the probability is small (less than .05), reject H_{0}. If not, don't reject. CHITEST doesn't return a value of χ^{2}, it just returns the probability (under a χ^{2} distribution with the correct df).

Figure 20-13 shows a worksheet with both the observed data and the expected numbers, along with CHITEST's Function Arguments dialog box. Before I ran CHITEST I attached the name Observed to D3:F5, and the name Expected to D10:F12. (If you don't remember how to do this, reread Chapter 2.)

Figure 20-13:
The
CHITEST Function Arguments dialog box, with observed data and expected numbers.

The figure shows that I've entered Observed into the Actual_range box, and Expected into the Expected_range box. The dialog box shows a very small probability, . 00068 , so the decision is to reject H_{0}. The data are consistent with the idea that movie preference is not independent of environment.

Logarithmica Esoterica

The functions in this section are really out there. Unless you're a tech-head, you'll probably never use them. I present them for completeness. You might run into them while you're wandering through Excel's statistical functions, and wonder what they are.

They're based on what mathematicians call natural logarithms, which in turn are based on e, that constant I use at various points throughout the book. I begin with a brief discussion of logarithms, and then I turn to e.

What is a logarithm?

Plain and simple, a logarithm is an exponent - a power to which you raise a number. In the equation
$10^{2}=100$
2 is an exponent. Does that mean that 2 is also a logarithm? Well . . . yes. In terms of logarithms,

$$
\log _{10} 100=2
$$

That's really just another way of saying $10^{2}=100$. Mathematicians read it as "the logarithm of 100 to the base 10 equals 2 ." It means that if you want to raise 10 to some power to get 100 , that power is 2 .

How about 1,000? As you know
$10^{3}=1,000$
so
$\log _{10} 1000=3$
How about 453? Uh . . . Hmmm . . . That's like trying to solve

$$
10^{x}=453
$$

What could that answer possibly be? 10^{2} means 10×10 and that gives you 100 . 10^{3} means $10 \times 10 \times 10$ and that's 1,000 . But 453 ?

Here's where you have to think outside the dialog box. You have to imagine exponents that aren't whole numbers. I know, I know . . . how can you multiply a number by itself a fraction at a time? If you could, somehow, the number in that 453 equation would have to be between 2 (which gets you to 100) and 3 (which gets you to 1,000).

In the 16th century, mathematician John Napier showed how to do it and logarithms were born. Why did Napier bother with this? One reason is that it was a great help to astronomers. Astronomers have to deal with numbers that are . . . well . . . astronomical. Logarithms ease computational strain in a couple of ways. One way is to substitute small numbers for large ones: The logarithm of $1,000,000$ is 6 and the logarithm of $100,000,000$ is 8 . Also, working with logarithms opens up a helpful set of computational shortcuts. Before calculators and computers appeared on the scene, this was a very big deal.

Incidentally,
$10^{2.560982}=453$
meaning that

$$
\log _{10} 453=2.6560982
$$

You can use Excel to check that out if you don't believe me. Select a cell and type

$$
=\operatorname{LOG}(453,10)
$$

press Enter, and watch what happens. Then just to close the loop, reverse the process. If your selected cell is - let's say - D3, select another cell and type

```
=POWER(10,D3)
```

or

```
=10^D3
```

Either way, the result is 453 .
Ten, the number that's raised to the exponent, is called the base. Because it's also the base of our number system and we're so familiar with it, logarithms of base 10 are called common logarithms.

Does that mean you can have other bases? Absolutely. Any number (except 0 or 1 or a negative number) can be a base. For example,
$6.4^{2}=40.96$

So
$\log _{6.4} 40.96=2$

If you ever see log without a base, base 10 is understood, so
$\log 100=2$
In terms of bases, one number is special . . .

What is e ?

Which brings me to e, a constant that's all about growth. Before I get back to logarithms, I'll tell you about e.

Imagine the princely sum of $\$ 1$ deposited in a bank account. Suppose the interest rate is 2 percent a year. (Good luck with that.) If it's simple interest, the bank adds $\$.02$ every year, and in 50 years you have $\$ 2$.

If it's compound interest, at the end of 50 years you have $(1+.02)^{50}$ - which is just a bit more than $\$ 2.68$, assuming the bank compounds the interest once a year.

Of course, if they compound it twice a year, each payment is $\$.01$, and after 50 years they've compounded it 100 times. That gives you $(1+.01)^{100}$, or just over $\$ 2.70$. What about compounding it four times a year? After 50 years 200 compoundings - you have $(1+.005)^{200}$ which results in the don't-spend-it-all-in-one-place amount of $\$ 2.71$ and a tiny bit more.

Focusing on "just a bit more" and a "tiny bit more," and taking it to extremes, after one hundred thousand compoundings you have $\$ 2.718268$. After one hundred million, you have $\$ 2.718282$.

If you could get the bank to compound many more times in those 50 years, your sum of money approaches a limit - an amount it gets ever so close to, but never quite reaches. That limit is e.

The way I set up the example, the rule for calculating the amount is
$(1+(1 / n))^{n}$

Chapter 20: Ten Things (Twelve, Actually) That Didn't Fit in Any Other Chapter

where n represents the number of payments. Two cents is $1 / 50$ th of a dollar and I specified 50 years - 50 payments. Then I specified two payments a year (and each year's payments have to add up to 2 percent), so that in 50 years you have 100 payments of $1 / 100$ th of a dollar, and so on.

To see this in action, enter numbers into a column of a spreadsheet as I have in Figure 20-14. In cells C2 through C20, I have the numbers 1 through 10 and then selected steps through one hundred million. In D2, I put this formula

$$
=(1+(1 / \mathrm{C} 2))^{\wedge} \mathrm{C} 2
$$

and then autofilled to D20. The entry in D20 is very close to e.

Figure 20-14: Getting to e.

D2		-		$=(1+(1 / C 2))^{\wedge} C 2$	
4	A	B	C	D	E
1			n	f(n)	
2			1	2	
3			2	2.25	
4			3	2.37037037	
5			4	2.44140625	
6			5	2.48832	
7			6	2.521626372	
8			7	2.546499697	
9			8	2.565784514	
10			9	2.581174792	
11			10	2.59374246	
12			25	2.665836331	
13			50	2.691588029	
14			100	2.704813829	
15			200	2.711517123	
16			400	2.714891744	
17			800	2.716584847	
18			1000	2.716923932	
19			100000	2.718268237	
20			100000000	2.718281786	
21					

Mathematicians can tell you another way to get to e :
$e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots$

Those exclamation points signify factorial. $1!=1,2!=2$ X 1, 3! = 3 X 2 X 1. (For more on factorials, see Chapter 16).

Excel helps visualize this one, too. Figure 20-15 lays out a spreadsheet with selected numbers up to 170 in Column C. In D2, I put this formula:

```
=1+ 1/FACT(C2)
```

and, as the Formula Bar in the Figure shows, in D3 I put this one:

```
=D2 +1/ FACT(C3)
```

Then I autofilled up to D17. The entry in D17 is very close to e. In fact, from D11 on, you see no change, even if you increase the amount of decimal places.

D3		- 3	$f_{x}=\mathrm{D} 2+1 / \mathrm{F}$	(C3)
4	Name Box B	C	D	E
1		n	$f(n)$	
2		1	2	
3		2	2.5	
4		3	2.6666666667	
5		4	2.7083333333	
6		5	2.7166666667	
7		6	2.7180555556	
8		7	2.7182539683	
9		8	2.7182787698	
10		9	2.7182815256	
11		10	2.7182818011	
12		25	2.7182818011	
13		50	2.7182818011	
14		100	2.7182818011	
15		150	2.7182818011	
16		160	2.7182818011	
17		170	2.7182818011	
18				

Why did I stop at 170 ? Because that takes Excel to the max. At 171, you get an error message.

So e is associated with growth. Its value is $2.781828 \ldots$ The three dots mean you never quite get to the exact value (like π, the constant that enables you to find the area of a circle).

This number pops up in all kinds of places. It's in the formula for the normal distribution (see Chapter 8), and it's in distributions I discuss in Chapter 17. Many natural phenomena are related to e.

It's so important that scientists, mathematicians, and business analysts use it as the base for logarithms. Logarithms to the base e are called natural logarithms. A natural logarithm is abbreviated as \ln.

Table 20-2 presents some comparisons (rounded to three decimal places) between common logarithms and natural logarithms:

Table 20-2	Some Common Logarithms (Log) and Natural Logarithms (Ln)	
Number	Log	Ln
e	0.434	1.000
10	1.000	2.303
50	1.699	3.912
100	2.000	4.605
453	2.656	6.116
1000	3.000	6.908

One more thing. In many formulas and equations, it's often necessary to raise e to a power. Sometimes the power is a fairly complicated mathematical expression. Because superscripts are usually printed in small font, it can be a strain to have to constantly read them. To ease the eyestrain, mathematicians have invented a special notation: exp. Whenever you see exp followed by something in parentheses, it means to raise e to the power of whatever's in the parentheses. For example,

$$
\exp (1.6)=e^{1.6}=4.953
$$

Excel's EXP function does that calculation for you.
Speaking of raising e, when Google, Inc., filed their IPO they said they wanted to raise $\$ 2,718,281,828$, which is e times a billion dollars rounded to the nearest dollar.

On to the Excel functions.

LOGNORMDIST

A random variable is said to be lognormally distributed if its natural logarithm is normally distributed. Maybe the name is a little misleading, because I just said \log means "common logarithm" and \ln means "natural logarithm."

Unlike the normal distribution, the lognormal can't have a negative number as a possible value for the variable. Also unlike the normal, the lognormal is not symmetric - it's skewed to the right.

Like the Weibull distribution I describe earlier, engineers use it to model the breakdown of physical systems - particularly of the wear-and-tear variety. Here's where the large-numbers-to-small numbers property of logarithms comes into play. When huge numbers of hours figure into a system's life cycle, it's easier to think about the distribution of logarithms than the distribution of the hours.

Excel's LOGNORMDIST works with the lognormal distribution. You specify a value, a mean, and a standard deviation for the lognormal. LOGNORMDIST returns the probability that the variable is, at most, that value.

For example, the FarKlempt Robotics Inc. has gathered extensive hours-tofailure data on a universal joint component that goes into their robots. They find that hours-to-failure is lognormally distributed with a mean of 10 and a standard deviation of 2.5 . What is the probability that this component fails in, at most, 10,000 hours?

Figure 20－16 shows the LOGNORMDIST Function Arguments dialog box for this example．In the X box，I entered $\ln (10000)$ ．I entered 10 into the Mean box and 2.5 into the Standard＿dev box．The dialog box shows the answer， .000929 （and some more decimals）．

Figure 20－16： The
LOGNORM DIST Function Arguments dialog box．

Function Arguments			\％ 8
LOGNORMDIST			
x	$\ln (10000)$	［罭 ${ }^{\text {c }}$＝ 9.210340372	
Mean	10	［國］$=10$	
Standard＿dev	2.5	［罭 ${ }^{\text {a }}$＝ 2.5	
Returns the cumulative lognormal distribution of x ，where $\ln (x)$ is normally distributed with parameters Mean and Standard＿dev．			
Standard＿dev is the standard deviation of $\ln (\mathrm{x})$ ，a positive number．			
Formula result $=0.000929534$			
Help on this function		OK	Cancel

LOGINU

LOGINV turns LOGNORMDIST around．You supply a probability，a mean， and a standard deviation for a lognormal distribution．LOGINV gives you the value of the random variable that cuts off that probability．

To find the value that cuts off .001 in the preceding example＇s distribution，I used the LOGINV dialog box in Figure 20－17．With the indicated entries，the dialog box shows that the value is 9.722 （and more decimals）．

Figure 20－17： The LOGINV Function Arguments dialog box．

By the way，in terms of hours that＇s 16，685－just for ． 001 ．

Array Function: LOGEST

In Chapter 14, I tell you all about linear regression. It's also possible to have a relationship between two variables that's curvilinear rather than linear.

The equation for a line that fits a scatterplot is

$$
y^{\prime}=a+b x
$$

One way to fit a curve through a scatterplot is with this equation:

$$
y^{\prime}=a e^{b x}
$$

LOGEST estimates a and b for this curvilinear equation. Figure 20-18 shows the LOGEST function arguments dialog box and the data for this example. It also shows an array for the results. Before using this function, I attached the name x to $\mathrm{B} 2: \mathrm{B} 12$ and y to $\mathrm{C} 2: \mathrm{C} 12$.

Figure 20-18:
The
Function Arguments dialog box for LOGEST, along with the data and the selected array for the results.

Here are the steps for this function:

1. With the data entered, select a five-row-by-two-column array of cells for LOGEST's results.

I selected F4:G8.
2. From the Statistical Functions menu, select LOGEST to open the Function Arguments dialog box for LOGEST.
3. In the Function Arguments dialog box, type the appropriate values for the arguments.
In the Known_y's box, type the cell range that holds the scores for the y -variable. For this example, that's y (the name I gave to C2:C12).
In the Known_x's box, type the cell range that holds the scores for the x -variable. For this example, it's x (the name I gave to B2:B12).
In the Const box, the choices are TRUE (or leave it blank) to calculate the value of a in the curvilinear equation I showed you or FALSE to set a to 1 . I typed TRUE.
The dialog box uses b where I use a. No set of symbols is standard.
In the Stats box, the choices are TRUE to return the regression statistics in addition to a and b, FALSE (or leave it blank) to return just a and b. I typed TRUE.
Again, the dialog box uses b where I use a and m-coefficient where I use b.
4. IMPORTANT: Do NOT click OK. Because this is an array function, press Ctrl+Shift+Enter to put LOGEST's answers into the selected array.

Figure 20-19 shows LOGEST's results. They're not labeled in any way, so I added the labels for you in the worksheet. The left column gives you the $\exp (b)$ more on that in a moment, standard error of b, R Square, F , and the $\mathrm{SS}_{\text {regression }}$. The right column provides a, standard error of a, standard error of estimate, degrees of freedom, and $\mathrm{SS}_{\text {residual }}$. For more on these statistics, see Chapters 14 and 15.

	4	A	B	C	D	E	F	G	H
	1		x	y					
	2		10	6					
Figure 20-19:	3		20	8		exp(slope)	1.025949	4.171775	intercept
	4		15	6		st error of slope	0.003109	0.098679	st error of intercept
	5		22	8		R-Square	0.882981	0.150622	st error of estimate
results inthe selected	6		20	6		F	67.9108	9	df
	7		31	7		SSregression	1.540693	0.204183	SSresidual
	8		12	6					
	9		42	14					
array.	10		51	16					
	11		54	18					
	12		33	8					

About $\exp (b)$. LOGEST, unfortunately, doesn't return the value of b - the exponent for the curvilinear equation. To find the exponent, you have to calculate the natural logarithm of what it does return. Applying Excel's LN worksheet function here gives 0.0256 as the value of the exponent.

Chapter 20: Ten Things (Twelve, Actually) That Didn't Fit in Any Other Chapter

So the curvilinear regression equation for the sample data is:
$y^{\prime}=4.1718 e^{0.0256 x}$
or in that exp notation I told you about,
$y^{\prime}=4.1718 \exp (0.0256 x)$

A good way to help yourself understand all of this is to use Excel's graphics capabilities to create a scatterplot. (See Chapter 3.) Then right-click on a data point in the plot and select Add Trendline from the pop-up menu. That opens the Format Trendline dialog box (Figure 20-20). Click the radio button next to Exponential, as I've done in the figure. Also, as I've done in the figure, toward the bottom of the dialog box click the checkbox next to Display Equation on Chart.

Figure 20-20:
The Type tab on the Add Trendline dialog box.

Click Close, and you have a scatterplot complete with curve and equation. I reformatted mine in several ways to make it look clearer on the printed page. Figure 20-21 shows the result.

Figure 20-21: The scatterplot with curve and equation.

Array Function: GROWTH

GROWTH is curvilinear regression's answer to TREND (Chapter 14). You can use this function two ways - to predict a set of y-values for the x-values in your sample, or to predict a set of y-values for a new set of x-values.

Predicting y's for the x's in your sample

Figure 20-22 shows GROWTH set up to calculate y's for the x's I already have. I included the Formula Bar in this screen shot so you can see what the formula looks like for this use of GROWTH.

Here are the steps:

Figure 20-22: The Function Arguments dialog box for GROWTH, along with the sample
data. GROWTH
is set up to predict x's for the sample y's.

1. With the data entered, select a cell range for GROWTH's answers. I selected D2:D12 to put the predicted y's right next to the sample y's.
2. From the Statistical Functions menu, select GROWTH to open the Function Arguments dialog box for GROWTH.
3. In the Function Arguments dialog box, type the appropriate values for the arguments.
In the Known_y's box, type the cell range that holds the scores for the y -variable. For this example, that's y (the name I gave to $\mathrm{C} 2: \mathrm{C} 12$).
In the Known_x's box, type the cell range that holds the scores for the x -variable. For this example, it's x (the name I gave to B2:B12).
I'm not calculating values for new x's here, so I leave the New_x's box blank.
In the Const box, the choices are TRUE (or leave it blank) to calculate a, or FALSE to set a to 1 . I entered TRUE. (I really don't know why you'd enter FALSE.) Once again, the dialog uses b where I use a.
4. IMPORTANT: Do NOT click OK. Because this is an array function, press Ctrl+Shift+Enter to put GROWTH's answers into the selected column.

Figure 20-23 shows the answers in D2:D12.

Figure 20-23: The results of GROWTH: Predicted y 's for the sample x's.

	A	B	C	D	E	
1		x	y	y		
2		10		6	5.389863	
3		20	8	6.963614		
4		15	6	6.126412		
5		22	8	7.329697		
6		20	6	6.963614		
7		31	7	9.230331		
8		12	6	5.673214		
9		42	14	12.23488		
10		51	16	15.40746		
11		54	18	16.63827		
12		33	8	9.715578		

Predicting a new set of y 's for a new set of x 's

Here, I use GROWTH to predict y's for a new set of x's. Figure 20-24 shows GROWTH set up for this. In addition to the array named x and the array named y, I defined New_x as the name for B15:B22, the cell range that holds the new set of x 's.

Figure 20-24 also shows the selected array of cells for the results. Once again, I included the Formula Bar to show you the formula for this use of the function.

To do this, follow these steps:

1. With the data entered, select a cell range for GROWTH's answers. I selected C15:C22.
2. From the Statistical Functions menu, select GROWTH to open the Function Arguments dialog box for GROWTH.
3. In the Function Arguments dialog box, type the appropriate values for the arguments.

In the Known_y's box, enter the cell range that holds the scores for the y -variable. For this example, that's y (the name I gave to $\mathrm{C} 2: \mathrm{C} 12$).

In the Known_x's box, enter the cell range that holds the scores for the x -variable. For this example, it's x (the name I gave to B2:B12).

In the New_x's box, enter the cell range that holds the new scores for the x-variable. That's New_x (the name I gave to B15:B22).

In the Const box, the choices are TRUE (or leave it blank) to calculate a, or FALSE to set a to one. I typed TRUE. (Again, I really don't know why you'd enter FALSE.)
4. IMPORTANT: Do NOT click OK. Because this is an array function, press Ctrl+Shift+ Enter to put GROWTH's answers into the selected column.
Figure 20-25 shows the answers in C15:C22.

Chapter 20: Ten Things (Twelve, Actually) That Didn't Fit in Any Other Chapter

Figure 20-25: The Results of GROWTH: Predicted y's for a New Set of x 's.

C15			f_{x} \{ $\{=$ GROWTH(y, x, New_x,TRUE) \}			
4	A	B	C	D	E	F
1		x	y			
2		10	6			
3		20	8			
4		15	6			
5		22	8			
6		20	6			
7		31	7			
8		12	6			
9		42	14			
10		51	16			
11		54	18			
12		33	8			
13						
14		New_x	V			
15		17	6.448484			
16		18	6.615814			
17		55	17.07001			
18		16	6.285385			
19		23	7.519894			
20		34	9.967686			
21		14	5.97146			
22		35	10.22634			
23						

When Your Data Live Elsewhere

In a few places throughout the book, I use data from the history of baseball. Happily, the Web site www.baseball-reference. com provides these data. How did I get these data from a web page into a worksheet?

It's way easier than you might think. To take the first giant step, I select
Data| Get External Data
and then choose the type of data source I'm dealing with. Figure 20-26 shows how to do it.

Figure 20-26:
Selecting
Data | Get External

Data.

As you can see, you can import from a number of different types of sources. Here, I just discuss data import from the web. To illustrate, I import data from the Web site of Wiley Publishing.

After I choose From Web, the New Web Query window opens within the spreadsheet. The window displays the home page that appears when I open my browser. In the Address box, I enter the address of the Web page that supplies the data. Specifically, I typed Wiley.com into the Address box. When I clicked Go, the window opened the page with this URL:
www.wiley.com/WileyCDA/
Figure $20-27$ shows the appearance of the New Web Query window with this URL.

Figure 20-27:
The New Web Query window displaying a Wiley Web page.

The important items to note here are the right-pointing arrows throughout the window. You can't see it on the figure, but those arrows are in yellow. Each one points to a grouping of data you can import into Excel.

I clicked the arrow next to ABOUT WILEY. Then I clicked Import. The Import Data dialog box opens and gives the choice of putting the data into the existing worksheet or a new one. I chose the existing worksheet, and specified cell A1 as the starting point for the table. (I could have also selected a cell before I opened the New Web Query window.) Then I clicked OK. Figure 20-28 shows the result.

Chapter 20: Ten Things (Twelve, Actually) That Didn't Fit in Any Other Chapter 403

Figure 20-28:	4	A	B	C
	1	About Wiley	Resources For	Wiley Events
Data	2	Locations	Authors	Conferences
imported	3	Careers	Librarians	Author Events
from a Web	4	Permissions	Booksellers	
	5	Investor Relations	Instructors	
page into a	6	See All	Societies	
worksheet.	7		Members of the Press	
	8			

That's all there is to it!

404 Part v: The Part of Tens
www.it-ebooks.info

Appendix A

When Your Worksheet Is a Database

In This Chapter

- Databases in Excel
- Statistics in databases
- Pivot tables

Abstract

Excel's main function in life is to perform calculations. As the chapters in this book show, many of those calculations revolve around built-in statistical capabilities.

You can also set up a worksheet to store information in something like a database, although Excel is not as sophisticated as a dedicated database package. Excel offers database functions that are much like its statistical functions, so I thought I'd familiarize you with them.

Introducing Excel Databases

Strictly speaking, Excel provides a data list. This is an array of worksheet cells into which you enter related data in a uniform format. You organize the data in columns, and you put a name at the top of each column. In database terminology, each named column is a field. Each row is a separate record.

This type of structure is useful for keeping inventories, as long as they're not overly huge. You wouldn't use an Excel database for recordkeeping in a warehouse or a large corporation. For a small business, however, it might fit the bill.

The Satellites database

Figure A-1 shows an example. This is an inventory of the classic satellites in our solar system. By "classic," I mean that astronomers discovered most of
them before the 20th century, via conventional telescopes. The three 20thcentury entries are so dim that astronomers discovered them by examining photographic plates. Today's super telescopes and space probes have revealed many more satellites that I didn't include.

Figure A-1:

4	A	B	C	D	E	F	G	H
1		Name	Planet	Orbital Period_Days	\|Average Distance X 1000 km)	Year_Discovered	Discoverer	
2		*io	Saturn	1.26	>150	>1877	Galileo	
3				>20			Cassini	
4								
5								
6								
7								
8								
9								
10		Name	Planet	Orbital Period_Days	Average Distance X $\mathbf{1 0 0 0}^{\text {km }}$	Year_Discovered	Discoverer	
11		Amalthea	Jupiter	0.50	181.30	1892	Barnard	
12		Ariel	Uranus	2.52	191.24	1851	Lassell	
13		Callisto	Jupiter	16.69	1883.00	1610	Galileo	
14		Charon	Pluto	6.39	19.64	1978	Christy	
15		Deimos	Mars	1.26	23.46	1877	Hall	
16		Dione	Saturn	2.74	377.40	1684	Cassini	
17		Enceladus	Saturn	1.37	238.02	1789	Herschel	
18		Europa	Jupiter	3.55	670.90	1610	Galileo	
19		Ganymede	Jupiter	7.15	1070.00	1610	Galileo	
20		Hyperion	Saturn	21.28	1481.00	1848	Bond	
21		lapetus	Saturn	79.33	3561.30	1671	Cassini	
22		10	Jupiter	1.77	421.60	1610	Gatileo	
23		Mimas	Saturn	9.42	185.52	1789	Herschel	
24		Miranda	Uranus	1.41	129.78	1948	Kuiper	
25		Moon	Earth	27.32	384.40	N/A	N/A	
26		Nereid	Neptune	360.14	5513.40	1949	Kuiper	
27		Oberon	Uranus	13.46	582.50	1787	Herschel	
28		Phobos	Mars	0.32	9.38	1877	Hall	
29		Phoebe	Saturn	-550.48	12952.00	1898	Pickering	
30		Rhea	Saturn	4.52	527.04	1672	Cassini	
31		Tethys	Saturn	1.89	294.66	1684	Cassini	
32		Titan	Saturn	15.94	1221.85	1655	Huygens	
33		Titania	Uranus	8.71	435.84	1787	Herschel	
34		Triton	Neptune	-5.88	354.80	1846	Lassell	
35		Umbriel	Uranus	4.14	265.97	1851	Lassell	

The database is in cells B10:G35. I defined Satellites as the name of this cell range. Notice that I included the field names in the range. (Reread Chapter 2 if you don't remember how to name a cell range.)

The Name field provides the name of the satellite; the Planet field indicates the planet around which the satellite revolves.

Orbital_Period_Days shows how long it takes for a satellite to make a complete revolution around its planet. Our Moon, for example, takes a little over 27 days. A couple of records have negative values in this field. That means they revolve around the planet in a direction opposite to the planet's rotation.

Average Distance_X_1000_km is the average distance from the planet to the satellite in thousands of kilometers. The last two fields provide the year of discovery, and the astronomer who discovered the satellite. For our Moon, of course, those two are unknown.

After you label each field, you attach a name to each cell that holds a field name. Important point: The range for each name is just the cell that holds the field name, not the whole column of data. So here, I define Name as the name of the cell labeled Name.

Okay, I worked really hard to set up the premise for the preceding sentence. Here are two examples that are easier to follow: I define Planet as the name of cell C10, and Orbital_Period_Days as the name of D10, and so on. Now I can use these field names in Excel's database formulas.

The criteria range

I copied the column headers - excuse me, field names - into the top row. I also put some information into nearby cells. This area is for the criteria range. This range enables you to use Excel's database functions to ask (and answer) questions about the data. Database honchos call this "querying." Criteria are a part and parcel of each database function. ("Criteria" is plural. The singular form is "criterion.")

It's not necessary to have this range at the top of the worksheet. You can designate any range in the worksheet as the criteria range.

When you use an Excel database function it's in this format:

```
=FUNCTION(Database, Field, Criteria)
```

The function operates on the specified database, in the designated field, according to the indicated criteria.

For example, if you want to know how many satellites revolve around Saturn, you select a cell and enter

```
=DCOUNT(Satellites,Average_Distance_X_1000_km,C1:C2)
```

Here's what this formula means: In the database (B1:G35), DCOUNT tallies up the amount of number-containing cells in the Average_Distance_X_1000_km field, constrained by the criterion specified in the cell range $\mathrm{C} 1: \mathrm{C} 2$. That criterion is equivalent to Planet = Saturn. Note that a criterion has to include at least one column header . . . uh . . . field name from the criteria range, and at least one row. Bear in mind that you can't use the actual field name in the criteria. You use the cell ID (like C1).

When you include more than one row, you're saying "or." For example, if your criterion happens to be G1:G3, you're specifying satellites discovered by Galileo or Cassini.

When you include more than one column in a criterion, you're saying "and." If your criterion is E1:F2, you're specifying satellites farther than $150,000 \mathrm{~km}$ from their planets and discovered after 1877.

The format of a database function

The formula I just showed you

```
=DCOUNT(Satellites,Average_Distance__X_1000_km, C1:C2)
```

is accessible via a Function Arguments dialog box, as is the case for all the other worksheet functions in Excel. Figure A-2 shows the equivalent dialog box for the preceding formula, set against the backdrop of the database and the criteria range.

How do you open this dialog box? Unlike the Statistical Functions or the Math \& Trig Functions, Database Functions do not reside on their own menu. Instead you click the Insert Function button to open the Insert Function dialog box. Then in that dialog box, you scroll down the list of functions until you find the database function you're looking for.

Here's an example:

1. Select a worksheet cell.

As Figure A-2 shows, I selected H6.
2. Click the Insert Function button (it's labeled $f x$) to open the Insert Function dialog box.

3. In the Insert Function dialog box, select a function to open its Function Arguments dialog box.

From the Database category, I selected DCOUNT and that's the dialog box in Figure A-2.
4. In the Function Arguments dialog box, enter the appropriate values for the arguments.
For the Database, I entered Satellites in the Database box. For the Field, I entered Average_Distance_X_1000_km in the Field box. This isn't as keyboard intensive as it sounds. As I type along, a pop-up appears with the full name of the field name. Double-clicking the name puts it into the Field box. For the Range, I entered C1:C2 in the Range box.
The answer, 9, appears in the dialog box.
5. Click $O K$ to put the answer into the selected cell.

All the database functions follow the same format, you access them all the same way, and you fill in the same type of information in their dialog boxes. So I'm going to skip over that sequence of steps as I describe each function, and just discuss the equivalent worksheet formula.

Counting and Retrieving

One essential database capability is to let you know how many records meet a particular criterion. Another is to retrieve records. Here are the Excel versions.

DCOUNT and DCOUNTA

As I just showed you, DCOUNT counts records. The restriction is that the field you specify has to contain numbers. If it doesn't, the answer is zero, as in

```
=DCOUNT(Satellites,Name, C1:C2)
```

because no records in the Name field contain numbers.
DCOUNTA counts records in a different way. This one works with any field. It counts the number of non-blank records in the field that satisfy the criterion. So this formula returns 9 :

```
=DCOUNTA(Satellites,Name,C1:C2)
```


Getting to "or"

Here's a tally that involves "or":

```
=DCOUNTA(Satellites,Name, D1:D3)
```

The criterion D1:D3 specifies satellites whose orbital period is 1.26 days or greater than 20 days - as I mention before, multiple rows mean "or." Five satellites meet that criterion: Deimos, Hyperion, lapetus, our Moon, and Nereid.

Wildcards

Look closely at Figure A-1 and you see the cryptic entry *io in Cell B2. I did that so you'd know that Excel database functions can deal with wildcard characters. The formula

```
=DCOUNTA(Satellites,Name, B1: B2 )
```

returns 3, the number of satellites with the letter-string "io" anywhere in their names (Dione, Io, and Hyperion).

DGET

DGET retrieves exactly one record. If the criteria you specify result in more than one record (or in no records), DGET returns an error message.

This formula

```
=DGET(Satellites,Name,D1:D2)
```

retrieves "Deimos," the name of the satellite whose orbital period is 1.26 days.
This one

```
=DGET(Satellites,Name,E1:E2)
```

results in an error message because the criterion specifies more than one record.

Arithmetic

Excel wouldn't be Excel without calculation capabilities. Here are the ones it offers for its databases.

DMAX and DMIN

As their names suggest, these provide the maximum value and the minimum value according to your specifications. The formula

```
=DMAX(Satellites,Orbital_Period___Days,E1:E2)
```

returns 360.14 . This is the maximum orbital period for any satellite that's farther than $150,000 \mathrm{~km}$ from its planet.

For the minimum value that meets this criterion,

```
=DMIN(Satellites,Orbital_Period___Days,E1:E2)
```

gives you -550.48. That's Phoebe, a satellite that revolves in the opposite direction to its planet's rotation.

DSUM

This one adds up the values in a field. To add all the orbital periods in the satellites discovered by Galileo or by Cassini, use this formula:

```
=DSUM(Satellites,Orbital_Period___Days,G1:G3)
```

That sum is 117.64 .
Want to total up all the orbital periods? (I know, I know . . . =SUM(B11:B35). Just work with me here.)

This formula gets it done:

```
=DSUM(Satellites,Orbital_Period__Days,C1:C3)
```

Why? It's all in the criterion. C1:C3 means that Planet = Saturn or . . . anything else, because C3 is empty. The sum, by the way, is 35.457 . Bottom line: Be careful whenever you include an empty cell in your criteria.

DPRODUCT

Here's a function that's probably here only because Excel's designers could create it. You specify the data values, and DPRODUCT multiplies them.

The formula

```
=DPRODUCT(Satellites,Orbital_Period__Days,G1:G2)
```

returns the product (749.832) of the orbital periods of the satellites Galileo discovered - a calculation I'm pretty sure Galileo never thought about.

Statistics

Which brings me to the statistical database functions. These work just like the similarly named worksheet functions.

DAVERAGE

Here's the formula for the average of the orbital periods of satellites discovered after 1887:

```
=DAVERAGE(Satellites,Orbital_Period___Days, F1:F2)
```

The average is negative (-36.4086) because the specification includes those two satellites with the negative orbital periods.

DUAR and DUARP

DVAR is the database counterpart of VAR, which divides the sum of N squared deviations by $N-1$. This is called sample variance.

DVARP is the database counterpart of VARP, which divides the sum of N squared deviations by N. This is the population variance. (For details on VAR and VARP, sample variance and population variance, and the implications of N and $N-1$, see Chapter 5.)

Here's the sample variance for the orbital period of satellites farther than $150,000 \mathrm{~km}$ from their planets and discovered after 1877:

```
=DVAR(Satellites,Orbital_Period__Days, E1:F2)
```

That turns out to be $210,358.1$.
The population variance for that same subset of satellites is

```
=DVARP(Satellites,Orbital_Period___Days,E1:F2)
```

which is $140,238.7$.

Once again, if you have multiple columns in the criteria, you're dealing with "and."

DSTDEU and DSTDEUP

These two return standard deviations. The standard deviation is the square root of the variance. (See Chapter 5.) DSTDEV returns the sample standard deviation, which is the square root of DVAR's returned value. DSTDEVP returns the population standard deviation, the square root of DVARP's returned value.

For the specifications in the preceding example, the sample standard deviation is

```
=DSTDEV(Satellites,Orbital_Period__Days,E1:F2)
```

which is 458.6481 .
The population standard deviation is

```
=DSTDEVP(Satellites,Orbital_Period__Days,E1:F2)
```

This result is 374.4846 .

According to Form

Excel provides a Data Form to help you work with databases. Unfortunately, Excel 2007 didn't put a button for this form on the Ribbon. To access this button, you have to put it on the Quick Access toolbar.

Here's how to do it:

1. Click the down arrow on the right of the Quick Access toolbar to open the Customize Quick Access Toolbar menu.
2. From this menu, select More Commands to open the Excel Options dialog box.
3. In the Choose Commands From drop-down menu, select Commands Not in the Ribbon.
4. In the list box on the left, scroll down and select Form.
5. Click the Add button to put Form into the list box on the right.
6. Click OK to close the Excel Options dialog box.

The Data Form button is now on the Quick Access toolbar.

To use the Data Form, highlight the entire cell range of the database, including the column headers. Then click the Data Form button.

Figure A-3 shows the appearance of the Data Form when you open it with the whole database selected. Excel fills in the field names automatically, and the fields populate with the values from the first record. You can use the form to navigate through the database, and you can use it to add a record. You can start with one record and use the New button to enter all the rest, but for me it's easier to just type each record.

Figure A-3:
The Data
Form for working with Excel databases.

Whenever you add records (and whichever way you add them), be sure to click Formulas | Manage Names and increase the cell range attached to the database name.

The title on the Data Form is the same as the name on the bottom tab of the worksheet. So it's a good idea to put the name of the database on the tab. It's clearer what the Form shows when something like "Satellites" is in its title rather than "Sheet 1."

Pivot Tables

A pivot table is a cross-tabulation - another way of looking at the data. You can reorganize the database, and turn it (literally) on its side and inside out. And you can do it in any number of ways.

For example, you can set up a pivot table that has the satellites in the rows and a planet in each column, and has the data for orbital period inside the cells. Figure A-4 shows what I mean.

Figure A-4: A pivot table of the satellites data showing satellites, planets, and orbital period.

4	A	B	c	D	E	F	G	H	1	J
2										
3	Sum of Orbital_Period_Days	Column Labels								
4	Row Labels	Earth	Jupiter	Mars	Neptune	Pluto	Saturn	Uranus	Grand Total	
5	Amalthea		0.5						0.5	
6	Ariel							2.52	2.52	
7	Callisto		16.69						16.69	
8	Charon					6.387			6.387	
9	Deimos			1.26					1.26	
10	Dione						2.74		2.74	
11	Enceladus						1.37		1.37	
12	Europa		3.55						3.55	
13	Ganymede		7.15						7.15	
14	Hyperion						21.28		21.28	
15	lapetus						79.33		79.33	
16	10		1.77						1.77	
17	Mimas						9.42		9.42	
18	Miranda							1.41	1.41	
19	Moon	27.32							27.32	
20	Nereid				360.14				360.14	
21	Oberon							13.46	13.46	
22	Phobos			0.32					0.32	
23	Phoebe						-550.48		-550.48	
24	Rhea						4.52		4.52	
25	Tethys						1.89		1.89	
26	Titan						15.94		15.94	
27	Titania							8.71	8.71	
28	Triton				-5.88				-5.88	
29	Umbriel							4.14	4.14	
30	Grand Total	27.32	29.66	1.58	354.26	6.387	-413.99	30.24	35.457	
31										

Figure A-5 shows a pivot table that presents another view of the data. This one takes the spotlight off the individual satellites and puts it on the planets. Each planet's row is divided into two rows - one for the Orbital Period and one for the Average Distance. The numbers are the sums across each planet's satellites. Adding up the Orbital Period for all of Jupiter's satellites gives you 29.66, for instance.

Figure A-5:
Another pivot table of the satellites data, showing planets, orbital period, and average distance.

4	A	B	C	D
1				
2				
3		Values		
4	Row Labels	Sum of Orbital_Period_Days	Sum of Average_Distance_X_1000_km	
5	Earth	27.32	384.4	
6	Jupiter	29.66	4226.8	
7	Mars	1.58	32.84	
8	Neptune	354.26	5868.2	
9	Pluto	6.387	19.64	
10	Saturn	-413.99	20838.79	
11	Uranus	30.24	1605.33	
12	Grand Total	35.457	32976	

This example focuses on creating the pivot table in Figure A-4. Creating pivot tables in Excel 2007 is easier than in earlier versions. Before, you
went through a number of steps as you worked via a wizard. Now, here's what you do:

1. Open the worksheet that holds the database.

In this case, it's Satellites.
2. Select any cell in the range of the database.
3. Select Insert I Pivot Table to open the Create Pivot Table dialog box (See Figure A-6).

Figure A-6: The Create Pivot Table dialog box.

4. Make your entries within this dialog box.

Because I selected a cell within the database before I opened this dialog box, the first radio button is selected and the Range box is filled in.
I selected the radio button next to New Worksheet to put the pivot table on a new worksheet.

5. Click OK.

The result is the Pivot Table Layout on a new worksheet. (See Figure A-7.)

6. Populate the Pivot Table Layout.

To populate the PivotTable Layout, you select a field from the PivotTable Field List, drag it into the appropriate box below, and drop it.

I begin with the rows. To make the names of the satellites appear in the rows, I selected Name and dropped it into the Row Labels box. Figure A-8 shows the result. In addition to the satellite names in the rows, the checkbox next to Name is bold and checked, to indicate it's in the table. Unchecking the checkbox removes Name from the table.

Figure A-7:
A new worksheet containing the pivot table layout.

Next, I dropped Planet into the Column Labels box. (Figure A-9.)
Dragging Orbital Period (Days) from the Field List and dropping it into the Σ Values box results in the table shown in Figure A-4.
Dropping a field into the Report Filter box creates something like a multipage version of the table. For example, putting Discoverer in the Report Filter box creates a drop-down that allows you to see just the data for each Discoverer.

The down arrow next to a field opens a menu of options for sorting and filtering that field.

The importance of pivot tables is that they allow you to get your hands dirty with the data. By dropping fields into and out of the table, you might see relationships and carry out analyses that might not occur to you if you just look at the original database.

Figure A-9: The
PivotTable Layout after dropping the Planet Field into Column Labels Box.

Appendix B

The Analysis of Covariance

In This Chapter

$>$ Another look at covariance
$>$ Why and how we analyze covariance
$>$ Analysis of Covariance (ANCOVA) in Excel

0ne of the major points of this book is that Excel comes with a surprising number of analytical tools and formulas. The toolset isn't as extensive as you'd find in a dedicated statistics package, but it's still impressive.

Some analyses, unfortunately, aren't part of Excel. And some of those might turn out to be important for you. In many cases, with a little ingenuity you can use the existing parts of Excel to perform those analyses anyway. In this Appendix, I focus on one of those analyses.

Covariance: A Closer Look

In Chapter 15, I mention covariance in connection with correlation. I spoke about it briefly as the numerator of the correlation coefficient. I also mention that covariance represents two variables changing together.

What does that mean, exactly?
Imagine a group of people on whom we measure mathematical ability and sociability. (Let's just assume we have valid, reliable ways of measuring both.) If we find that the people with high mathematical ability are the most sociable, and the people with low mathematical ability are the least sociable, this thing called covariance is numerically high and positive. This type of positive relationship is called a direct relationship.

A different result is possible: The people with high mathematical ability might turn out to be the least sociable, and the people with low mathematical ability the most sociable. If that happens, covariance is numerically high and negative. This type of negative relationship is called an inverse relationship.

Still another result is possible. We might find no connection whatsoever between mathematical ability and sociability. In this case, the two variables are independent, and the numerical value of covariance is close to zero. It could be slightly positive, it could be slightly negative, but it's close to zero.

Sounds a lot like correlation? It should. As I said, covariance is the numerator of the correlation coefficient. One way to look at it is that the correlation coefficient puts an upper and lower bound on covariance. With a little experience, we can understand what a correlation coefficient of .98 means, or a correlation coefficient of -.62 . Without a lot of context, it's hard to know what a covariance of 473.5 means.

Why You Analyze Covariance

So you've had a refresher on what covariance is. Why do we want to . . . uh ... analyze it?

Let's begin with a typical study: You randomly assign people to different conditions and you assess their performance under those conditions. For example, you might randomly assign 15 children to one of three groups that differ on how they prepare for a math exam. One group prepares by listening to a human instructor. Another prepares by going through an interactive program on a computer. The third prepares by reading a textbook. Then they take the exam.

The performance on the test is the dependent variable. The three preparation conditions make up the independent variable. The goal is usually to find out if the different conditions of the independent variable affect the dependent variable. Recall from Chapter 12 that this involves a hypothesis test that looks like this:
$\mathrm{H}_{0}: \mu_{\text {Instructor }}=\mu_{\text {Computer }}=\mu_{\text {Text }}$
$\mathrm{H}_{1}: \operatorname{Not} \mathrm{H}_{0}$
In Chapter 12, I also point out that the appropriate statistical technique is the analysis of variance (ANOVA).

So far, so good. What about covariance?

In addition to the dependent variable and the independent variable, a third kind of variable can come into play. Here's how. Suppose you have another relevant measure for each of the 15 children - mathematics aptitude. In addition to preparation type, this could also affect each child's exam performance. This third variable is called the covariate. The relationship between the dependent variable and the covariate is covariance.

Big shots in the field of research design and analysis have a name for randomly assigning individuals to different conditions of the independent variable and keeping everything else the same (like the time of day you give the test, the amount of time each child prepares, the amount of time each child has to take the test). They call this experimental control.

They also have a name for assessing the effects of a covariate - that is, its covariance with the dependent variable. They refer to that as statistical control. Both are valuable tools in the analyst's arsenal.

Bottom-line question: Why do you need statistical control? Suppose you carry out the study and find no significant differences among preparation groups. This could mean that experimental control wasn't powerful enough to discern an effect of preparation type. That's when statistical control can come to the rescue. Suppose mathematics aptitude affected performance in ways that masked the effects of preparation type. That is, does the possible correlation of performance with aptitude affect the results?

By combining experimental control with statistical control, analysis of covariance (ANCOVA) answers that question.

How You Analyze Covariance

How do you combine the two types of control?
In Chapter 12, I point out that ANOVA separates $\mathrm{SS}_{\text {Total }}$ into $\mathrm{SS}_{\text {Between }}$ and $\mathrm{SS}_{\text {within }}$. Divide each SS by its degrees of freedom and you have three MS (variances). The $\mathrm{MS}_{\text {Between }}$ reflects differences among group means. The $\mathrm{MS}_{\text {Within }}$ estimates the population variance. It's based on pooling the variances within the groups. If the $\mathrm{MS}_{\text {Between }}$ is significantly greater than the $\mathrm{MS}_{\text {within }}$, you can reject the null hypothesis. If not, you can't. (Reread Chapter 12 if this all sounds strange to you.)

In ANCOVA, you use the relationship between the dependent variable and the covariate to adjust $\mathrm{SS}_{\text {Between }}$ and $\mathrm{SS}_{\text {within }}$. If the relationship is strong, it's likely that the adjustment increases $\mathrm{SS}_{\text {Between }}$ and reduces $\mathrm{SS}_{\text {within }}$. Statistics,
like most other aspects of our world, feature no free lunches: The adjustment lowers the $\mathrm{df}_{\text {within }}$ by 1 . It might help to think of it this way:

ANOVA:

$$
F=\frac{S S_{\text {Betueen }} / d f_{\text {Betureen }}}{S S_{\text {Within }} / d f_{\text {Withinin }}}
$$

ANCOVA:

$$
F=\frac{\left(S S_{\text {Bemwen }}+\text { something based on relationship with covariate }\right) / d f_{\text {Bemuen }}}{\left(S S_{\text {Wuthin }}-\text { something based on relationship with covariate }\right) /\left(d f_{\text {Wathin }}-1\right)}
$$

A possible outcome of the adjustment (if the relationship is strong) is that the F ratio is higher for ANCOVA than for ANOVA. In practical terms, this means that adding statistical control can result in a more powerful study (that is, greater ability to find an effect) than experimental control alone.

Here's a way to understand ANOVA vs. ANCOVA: ANOVA helps you find a needle in a haystack. ANCOVA also does this, but it removes some of the hay from the haystack - and it makes the needle a little bigger, too.

ANCOUA in Excel

Although Excel has no built-in tools for ANCOVA, you can use what Excel does provide to make ANCOVA way easier than it looks in statistics books.

What does Excel provide? When it comes to covariance, recall that the COVAR worksheet function does all the calculations for you, as does the Covariance analysis tool.

It sounds like the Covariance analysis tool is ideal for something called Analysis of Covariance (ANCOVA). Oddly, it's not. We also have no use for COVAR as we proceed.

Instead, I show you two approaches that use other Excel features to carry out an ANCOVA. One approach uses the Anova: Single Factor analysis tool along with some worksheet functions. The other uses the Regression analysis tool along with some worksheet functions.

Both approaches tackle the data in Table B-1. In both methods, I use regression slopes to express the relationship between the dependent variable and the covariate.

Table B-1 Data for Exam Performance with Three Preparation Methods and for Mathematics Aptitude

Human		Computer		Text	
Math Aptitude	Exam	Math Aptitude	Exam	Math Aptitude	Exam
10	6	7	9	7	9
9	9	7	5	9	12
8	7	8	14	4	9
6	2	11	10	11	18
9	10	11	15	7	11

These methods are for the kind of research design I discuss in Chapter 12 (single factor ANOVA). You can use ANCOVA for any kind of research design that involves ANOVA, but these two particular methods won't work for more complicated designs (as in Chapter 13, for example).

Method 1: ANOUA

When most statistics textbooks cover analysis of covariance, they show you a lot of arcane-looking computation formulas designed to avoid even more complex-looking regression-related calculations. The result is that they often obscure what ANCOVA is supposed to do.

With this method, and the next one, I show you how to harness Excel's power to get around all of that. My goal is to make ANCOVA a lot easier than it looks in stat books.

Figure B-1 shows the ANCOVA worksheet for this method. I'll take you through the steps.

The data from Table B-1 are in cells B1:D13, separated into one table for the dependent variable data and another for the covariate data. I structured the data this way because I have to use the Anova: Single Factor tool on the dependent variable and again on the covariate. The input to the Anova tool is a contiguous range of cells, so the layout in Table B-1 doesn't work.

The first thing I did was set up to calculate $b_{\text {within }}$, a quantity I use to adjust the SS and to adjust group means for post-analysis testing.

	$\underline{1}$	A	B	C	D	E	F	G	H	1	J	K	L	M
	1		Human	Computer	Textbook				Anova: Dep Variable					
	2		6	9	9				SUMMARY					
	3		9	5	12				Groups	Count	Sum	Average	Variance	
	4		7	14	9				Human	5	34	6.8	9.7	
	5		2	10	18				Computer	5	53	10.6	16.3	
	6		10	15	11				Textbook	5	59	11.8	13.7	
	7													
	8		X1	X2	x3				ANOVA					
	9		10	7	7				Source of Variation	SS	df	MS	F	P-value
	10		9	7	9				Between Groups	68.13333	2	34.06667	2.574307	0.117412
	11		8	8	4				Within Groups	158.8	12	13.23333		
	12		6	11	11									
	13		9	10	7				Total	226.9333	14			
	14	VarianceX	2.3	3.3	6.8	12.4								
	15	SlopeXY	1.456522	1.0757576	1.235294				Anova: Covariate					
	16	VarX*SlopeXY	3.35	3.55	8.4	15.3			SUMMARY					
	17								Groups	Count	Sum	Average	Variance	
Figure	18	bwithin	1.233871						X1	5	42	8.4	2.3	
The	19	btotal	1.026718						X2	5	43	8.6	3.3	
	20								X3	5	38	7.6	6.8	
Method 1	21	Ancova												
	22	Source of Variation	SS	$d f$	MS	F	p-value		ANOVA					
ANCOVA	23	Adjusted Between	88.40883	2	44.20442	5.838222	0.018706714		Source of Variation	SS	df	MS	F	P-value
worksheet	24	Adjusted Within	83.2871	11	7.571554				Between Groups	2.8	2	1.4	0.33871	0.719287
	25	Adjusted Total	171.6959	13					Within Groups	49.6	12	4.133333		
for the data	26													
in Table B-1	27		Human	Computer	Textbook				Total	52.4	14			
in Table	28	Adjusted Means	6.553226	10.106452	12.54032									
	29													

What is $\mathrm{b}_{\text {within }}$? Imagine a scatterplot for each of the three groups, and a regression line through each scatterplot. Each regression line has a slope. The value of $b_{\text {within }}$ is the average of the group slopes with each slope weighted by the variance of the covariate within the group.

This might be a rare case where the formula is clearer than the words. Here it is:

$$
b_{\text {within }}=\frac{\sum s_{x i}^{2} b_{i}}{\sum s_{x i}^{2}}
$$

So I used VAR to calculate the variance of each group within the covariate. Those variances are in row 14, labeled VarianceX. I could have run the Anova tool to get these variances. I did it this way for clarity. The sum of these variances, 12.4, is in cell E14.

Then I used SLOPE to calculate the slope within each group. Those are in row 15, labeled SlopeXY.

Row 16, labeled VarX*SlopeXY, contains the product of each group slope multiplied by the variance in that group. Cell E16 holds the sum of these products.

The value of $b_{\text {within }}$ is in cell B18. The formula for that cell is

```
=E16/E14
```

Cell B19 holds another slope I use for SS adjustment. It's called $\mathrm{b}_{\text {total }}$ and it represents the slope of the regression line drawn through a scatterplot of all the scores regardless of the group they're in. The formula for B19 is

```
=SLOPE(B2:D6,B9:D13)
```

Next, I constructed the spiffy-looking ANCOVA table in cells A21:F25. The objective of this whole process is to fill in this table. I formatted all the labels and borders to make it look something like the results of an Anova:Single Factor analysis. Then I filled in the sources of variation in A23:A25, and the df in C23:C25. The df are the same as for ANOVA, except you lose a df from the $\mathrm{df}_{\text {Within }}$, and that of course is reflected in the $\mathrm{df}_{\text {Total }}$.

The next order of business is to run the Anova:Single Factor analysis tool. I ran it once for the dependent variable and once for the covariate. Why for the covariate? After all, I'm not testing any hypotheses about Math Aptitude. The reason for an ANOVA on the covariate is that the ANOVA output provides SS values I need to complete the ANCOVA.

In Chapter 12, I explain how to use this tool. The only difference is that in this case I directed the output to this worksheet rather than to separate worksheets.

I removed some rows from the Anova tool's outputs so that everything would fit into one screen shot, and I modified them a bit for clarity.

The values in the ANOVA tables enable me to fill in the ANCOVA table. The Adusted $\mathrm{SS}_{\text {Total }}$ is

$$
\text { Adjusted } S S_{\text {ToalY }}=S S_{\text {Toaly }}-b_{\text {Total }}^{2} S S_{\text {ToalX }}
$$

Adjusted $S S_{\text {Toaly }}=226.93-(1.03)^{2}(52.4)=171.70$

This means that

```
=I13-B19^2*I27
```

goes into cell B25 in the ANCOVA table. By the way, I rounded off to two decimal places to make everything look nicer on this page. The worksheet has way more decimal places.

Next up: Adjusted $\mathrm{SS}_{\text {within }}$. The formula for the adjustment is

$$
\text { Adjusted } S S_{\text {WithinY }}=S S_{\text {WuthinY } Y}-b_{\text {Whthin }}^{2} S S_{\text {WithinX }}
$$

Numerically, that's

$$
\text { Adjusted } S S_{\text {WuhhirY }}=158.8-(1.23)^{2}(49.6)=83.29
$$

So in cell B24 I put this formula

$$
=I 11-B 18^{\wedge} 2 * \text { I2 } 5
$$

Adjusted $\mathrm{SS}_{\text {Between }}$? That's just

```
=B25-B24
```

in cell B23.
I complete the ANCOVA table by dividing each Adjusted SS by its df, and then dividing the Adjusted $\mathrm{MS}_{\text {Between }}$ by the Adjusted $\mathrm{MS}_{\text {within }}$ to compute F.

That last column in the ANCOVA table, P-value, is a little trick courtesy of FDIST. The formula in cell F23 is

```
=FDIST(E23,C23,C24)
```

Just below the ANCOVA table, I put the adjusted means for the dependent variable. These enter into post-analysis testing, which I cover in the section after the next one. For now, I'll just tell you that each adjusted mean is

$$
\text { Adjusted } \bar{y}_{i}=\bar{y}_{i}-b_{\text {Whthin }}\left(\bar{x}_{i}-\bar{X}\right)
$$

where that uppercase X with a bar over it represents the average of all 15 scores in the covariate.

For this example, the adjusted means are

$$
\begin{aligned}
\text { Adjusted } \bar{y}_{\text {Human }} & =6.8-1.23(8.4-8.2)=6.55 \\
\text { Adjusted } \bar{y}_{\text {Computer }} & =10.6-1.23(8.6-8.2)=10.11 \\
\text { Adjusted } \bar{y}_{\text {Textook }} & =11.8-1.23(7.6-8.2)=12.54
\end{aligned}
$$

The adjustments increase the spread among the means.
In this worksheet, the group means are in the ANOVA outputs. Specifically, they're in K4:K6 for the dependent variable and in K18:K20 for the covariate. So the formula for the adjusted Human mean (in cell B28) is

```
=K4-B18*(K18-AVERAGE (B9:D13))
```

For the adjusted Computer mean (cell C28) it's

```
=K5-B18* (K19-AVERAGE (B9:D13))
```

and for the adjusted Textbook mean (cell D28) it's

```
=K6-B18*(K20-AVERAGE (B9:D13))
```

What's the benefit of ANCOVA? Take a look at Figure B-1. Compare the result of the dependent-variable ANOVA ($F_{2,12}=2.57$) with the result of the ANCOVA ($F_{2,11}=5.84$). Although we sacrificed a df, the P-value shows the ANCOVA result is significant. The ANOVA result is not. The ANCOVA adjusted the $\mathrm{SS}_{\text {Between }}$ upward, and adjusted the $\mathrm{SS}_{\text {within }}$ downward.

Bottom line: The relationship between the dependent variable and the covariate enables us to uncover a significant effect we might otherwise miss. In this example, ANCOVA avoids a Type II error.

Method 2: Reqression

If the preceding method works, why am I bothering to show you yet another method? Even more important, why should you take the trouble to master it?

The reason I'd like you to read on is this. The method I'm about to show you asks you to change your mind-set about the data. If you can do that, you'll find yourself open to another way of looking at statistical analysis and to mastering some new statistical concepts.

Here's what I mean. The worksheet in Figure B-2 shows the data from Table B-1 in a different type of layout. The figure also shows the work for the completed ANCOVA.

Column A has the math exam data, and column B has the math aptitude data, but they're not separated into three groups as before. What's going on here?

My plan is to treat this as a multiple regression. Exam is the dependent variable, and Math Aptitude is an independent variable. But it's not the only independent variable.

The key is to somehow represent the group that each individual is a member of. Tag1 and Tag2 take care of that. If a child is in the Human Instructor group, Tag1 $=1$ and Tag2 $=0$. If a child is in the Computer group, Tag1 $=0$ and Tag2 = 1. If a child is in the Textbook group, Tag1 $=0$ and Tag2 $=0$. In general, with k groups, k - 1 columns can specify group membership in this way. Just to let you know, in Statistics World columns B, C, and D are called vectors, but I won't go there.

Figure B-2:
The
Method 2
ANCOVA
worksheet for the data in Table B-1.

	A	B	c	D	E	E F	G	H	1	J	K
2	6	10	1	0							
3	9	9	1	0		Regression Sta	atistics				
4	7	8	1	0		Multiple R	0.795605872				
5	2	6	1	0		R Square	0.632988704				
6	10	9	1	0		Adjusted R Square	0.532894714				
7	9	7	0	1		Standard Error	2.751645735				
8	5	7	0	1	1	Observations	15				
9	14	8	0	1							
10	10	11	0	1		ANOVA					
11	15	10	0	1			df	SS	MS	F	Significance F
12	9	7	0	0		Regression	3	143.6462366	47.88207885	6.323943177	0.00944713
13	12	9	0	0		Residual	11	83.28709677	7.571554252		
14	9	4	0	0	-	Total	14	226.9333333			
15	18	11	0	0							
16	11	7	0	0			Coefficients	Standard Error	t Stat	P-value	Lower 95\%
17						Intercept	2.422580645	3.214266308	0.753696307	0.466858376	-4.651971795
18	SSTotal $\mathrm{X}=$	52.4				Math_Aptitude	1.233870968	0.39070744	3.158043186	0.00911065	0.373929691
19						Tag1	-5.987096774	1.768140033	-3.386098761	0.006076656	-9.878746745
20	btotal $=$	1.026717557				Tag2	-2.433870968	1.783612627	-1.364573748	0.199650778	-6.359575889
21											
22	Means					ANCOVA					
23	Group	Dependent Var	Covariate	Adjusted		Source	SS	df	MS	F	Significance F
24	Human	6.8	8.4	6.553226		Adjusted Between	88.40883198	2	44.20441599	5.838222182	0.018706714
25	Computer	10.6	8.6	10.10645		Adjusted Within	83.28709677	11	7.571554252		
26	Textbook	11.8	7.6	12.54032		Adjusted Total	171.6959288	13			

This categorization scheme works when you have the same number of individuals in each group. If you don't, things get a little dicey.

I drew lines to separate the three groups but that's just to clarify.
What l've set up is a multiple regression with a dependent variable (Exam) and three independent variables (Math Aptitude, Tag1, and Tag2). What I'm saying is that Exam score depends on Math Aptitude, Tag 1, and Tag 2.

Below the data layout, cell B18 holds $\mathrm{SS}_{\text {Totalx }}$. The formula for that cell is

```
=COUNT (B2 : B1 6) *VARP (B2 : B16)
```

meaning that I multiplied the number of scores in column B (15) by the variance in column B (treated as a population of 15 scores, hence VARP) to give $\mathrm{SS}_{\text {TotalX }}$, the numerator of a variance.

I also calculated $b_{\text {total }}$ in cell B20:

```
=SLOPE(A2:A16,B2:B16)
```

What about $b_{\text {within }}$? Patience.
Below those values is a table of means and adjusted means, but I'll get to that later.

You might not believe this, but the analysis is almost done.

All that remains is to run the Regression analysis tool and use its results to complete the ANCOVA table.

In Chapter 14 I show you how to use the Regression tool. The difference here (as with ANOVA in Method 1) is that I directed the output to this worksheet rather than to a separate worksheet. For this example, the Input Y range in the Regression tool dialog box is A1:A16. Because this is a multiple regression, the Input X range is $\mathrm{B} 1: \mathrm{D} 16$.

The ANCOVA table is below the Regression output. As before, I formatted the whole thing, labels, rows, columns, and all. Then I filled in the df.

I begin, as in Method 1, with the Adjusted $\mathrm{SS}_{\text {Total }}$. Again, that's

$$
\begin{gathered}
\text { Adjusted } S S_{\text {ToatiY }}=S S_{\text {ToalY }}-b_{\text {Total }}^{2} S S_{\text {TooalX }} \\
\text { Adjusted } S S_{\text {Toaly }}=226.93-(1.03)^{2}(52.4)=171.70
\end{gathered}
$$

So this time

$$
=\mathrm{H} 14-\left(\mathrm{B} 20^{\wedge} 2 * \mathrm{~B} 18\right)
$$

goes into cell G26.
What next? The values for the Adjusted Within row are in the ANOVA table for the Regression output. They're in the row labeled Residual. That's right the Adjusted $\mathrm{SS}_{\text {within }}$ is the $\mathrm{SS}_{\text {Residual }}$ and Adjusted $\mathrm{MS}_{\text {within }}$ is the $\mathrm{MS}_{\text {Residual }}$.

That means

$$
=\mathrm{H} 13
$$

goes into cell G25 and

$$
=I 13
$$

goes into cell I25.
The Adjusted $\mathrm{SS}_{\text {Between }}$ is

$$
=\mathrm{G} 26-\mathrm{G} 25
$$

in cell G24.

I divided the Adjusted SSs by the df to produce the Adjusted MSs. Then I divided the Adjusted $\mathrm{MS}_{\text {Between }}$ by the Adjusted $\mathrm{MS}_{\text {within }}$ to compute F. The rightmost entry, Significance F, is based on FDIST as in Method 1.

Did I forget $\mathrm{b}_{\text {within }}$? Nope. It's is in the Regression output in cell G18 under Coefficients. It's the regression coefficient for Math_Aptitude. I used this value to calculate the Adjusted Means in the Means table. After using AVERAGE to compute the means for the dependent variable and the covariate, I put this formula into cell D24

```
=B24-$G$18*(C24-AVERAGE ($B$2:$B$16))
```

and autofilled D25 and D26.
When you began reading this subsection, you might have wondered why I bothered to show you this method. Now that you've read it, you might wonder why I bothered to show you the first one!

After the ANCOUA

As I point out in Chapter 12, a significant F value indicates that an effect is somewhere within the data. It's still necessary to zoom in on where.

Post-analysis tests come in two varieties - the kind you plan in advance, and the kind you don't. The first, planned comparisons, are motivated by your ideas about what to expect before you gather the data. The second, post-hoc tests, are motivated by what looks interesting in the data you gathered.

In an ANOVA, you perform those tests on group means. In an ANCOVA, you adjust the group means (of the dependent variable) just as you adjust the SSs and the MSs. You also adjust the error term (the denominator) of the tests.

I deal here with planned comparisons. After adjusting the means (which I did in each Method), the next step is to adjust the MS that goes into the denominator of the planned comparisons. I refer to the adjusted MS as and the way to calculate it is

$$
M S_{\text {Eror }}=\text { Adjusted } M S_{\text {Within }} 1+\frac{S S_{\text {Betweenx }}(k-1)}{S S_{\text {Withinx }}}
$$

in which k is the number of groups.

For our example, that's

$$
M S_{\text {Eror }}=7.571+\frac{2.8(2)}{49.6}=8.43
$$

In the Method 1 worksheet, I select a cell and enter
$=\mathrm{D} 24 *(1+(I 24 * 2) /[25)$
I can now proceed with planned comparisons as I did in Chapter 12.
From all I show you here, it looks like Method 1 has the advantage over Method 2. Using the ANOVA analysis tool gives you the values you need for the planned comparisons, and it gives you the dependent-variable ANOVA to compare against the ANCOVA.

With the data arranged as in Method 2, we can't get all that information, can we?

Yes we can. And that sets the stage for looking at a particular statistical analysis (ANOVA) in a new way, as I mention at the beginning of Method 2.

Read on.

And One More Thing

In several chapters of this book, you see the interplay between ANOVA and Regression: After every regression analysis, ANOVA tests hypotheses about regression ideas.

In this section, I turn things around: I take an exercise normally treatable via ANOVA, turn it into a regression problem, and use regression to do an analysis of variance. This is called the MRC (multiple regression/correlation) approach. It's based on the work of psychologist/statistician Jacob Cohen, who in the late 1960s formulated the idea of multiple regression as a general system for data analysis.

Without going into all the details, Cohen's idea is that many kinds of data are expressible in the format that regression operates on. Performing a regression analysis is all that's necessary. In effect, various statistical techniques then become special cases of the general system.

The dependent variable data in Table B-1 provide an opportunity to illustrate this approach. With the groups identified under Tag1 and Tag2, and the Tags as independent variables, ANOVA is exactly the same as multiple regression.

You might already be a step ahead of me. Figure B-3 shows the data laid out as in Figure B-2, but with different analyses.

4	A	B	C	D	E	F	G	H	1	J	K
1	Exam	Math_Aptitude	Tag1	Tag2		Dependent Variable					
2	6	10	1	0		ANOVA					
3	9	9	1	0			df	SS	MS	F	Significance F
4	7	8	1	0		Regression	2	68.13333333	34.06667	2.574307305	0.117412202
5	2	6	1	0		Residual	12	158.8	13.23333		
6	10	9	1	0		Total	14	226.9333333			
7	9	7	0	1							
8	5	7	0	1		Covariate					
9	14	8	0	1		ANOVA					
10	10	11	0	1			df	SS	MS	F	Significance F
11	15	10	0	1		Regression	2	2.8	1.4	0.338709677	0.719287208
12	9	7	0	0		Residual	12	49.6	4.133333		
13	12	9	0	0		Total	14	52.4			
14	9	4	0	0							
15	18	11	0	0							
16	11	7	0	0							
17											

I ran the Regression analysis tool twice and directed the output to this worksheet both times. I deleted everything but the ANOVA from each output.

The first time I ran the tool, the Input Y Range was A2:A16 (Exam) and the Input X Range was C2:D16 (Tag1 and Tag2). The result is the first ANOVA table, just below the heading Dependent Variable.

The second time, the Input Y Range was B2:B16 (Math Aptitude) and the Input X Range was C2:D16, resulting in the ANOVA table below the heading Covariate.

Do the numbers look familiar? They should. They're the same as the two ANOVAs I ran for Method 1. The only difference, of course, is the names in the Source of Variance column. Rather than Between and Within, these outputs display Regression and Residual.

To complete the post-analysis tests for Method 2 ANCOVA, you only need the ANOVA for the covariate. I show you both to illustrate the MRC approach.

You can extend the MRC approach to more complex hypothesis tests, like the ones I discuss in Chapter 13. When you do, it becomes a bit more complicated: You have to know more about multiple regression and how it applies to things like interaction. In any event, the MRC approach is definitely worth looking into.

Appendix C

Of Stems, Leaves, Boxes, Whiskers, and Smoothies

In This Chapter

$>$ Stem-and-leaf tables
> Box-and-whisker charts
$>$ Data smoothing
hroughout Part III, I discuss Excel capabilities for testing hypotheses. The general process is that you formulate a hypothesis, gather data, and use a statistical technique to test the hypothesis.

Famed statistician John Tukey referred to hypothesis testing as confirmatory data analysis. He stressed, however, the importance of another process exploratory data analysis (EDA). As the name suggests, in this process you explore data to find and illustrate features of interest, and perhaps generate hypotheses to investigate further.

Tukey catalogued a wide array of techniques for exploring sets of data and for presenting data sets in ways that make them easy to understand. In this Appendix, I show you how to use Excel to implement three of those techniques.

Stem-and-Leaf

Whenever I return an exam, naturally I tell the class the mean and the standard deviation, and what a score means in terms of a letter grade. If you read Chapter 6, you know I do that in terms of z-scores.

What's missing, though, is a sense of how the distribution of exam scores looks. Even with a frequency distribution (Chapter 2), an individual doesn't know exactly where his or her score sits in the overall distribution.

Tukey's stem-and-leaf display is a way around this. It organizes data so that an entire distribution of scores is quickly and easily comprehensible.

The display breaks each score into two components: a leaf which is usually the last digit of the score, and a stem which is everything else. The objective is to create a layout that looks like Figure C-1.

In the display (also called a stemplot), the row labeled 9 means that all scores in that row are between 90 and 99 . The leaves - $0,3,8$, and 8 - in that row stand for scores of $90,93,98$, and 98 .

Figure C-2 shows an Excel worksheet with scores (in A1:A31), an intermediate display, and a stem-and-leaf display like Figure C-1. The intermediate display is the foundation for the stem-and-leaf display.

The first thing I did was arrange the scores in increasing order, which is how they appear in A1:A31.

Next, I completed the intermediate display. I put numbers representing the stems in a column. That's $90,80,70,60,50$, and 40 in C4:C9.

Figure C-2: An Excel worksheet with scores, an intermediate table, and a stemplot.

E12		- $3 \quad f_{x}=\operatorname{MOD}(E 4, \$ C 4)$												
4	A	B	C	D	E	F	G	H	1	」	K	L	M	N
1	45													
2	53													
3	57													
4	57		90	90	93	98	98							
5	58		80	80	82	83	83	85	85	87	88	88		
6	60		70	70	72	72	72	72	75	77	77	77	78	78
7	65		60	60	65									
8	70		50	53	57	57	58							
9	72		40	45										
10	72													
11	72		Stem			aves								
12	72		9	0	3	8	8							
13	75		8	0	2	3	3	5	5	7	8	8		
14	77		7	0	2	2	2	2	5	7	7	7	8	8
15	77		6	0	5									
16	77		5	3	7	7	8							
17	78		4	5										
18	78													
19	80													
20	82													
21	83													
22	83													
23	85													
24	85													
25	87													
26	88													
27	88													
28	90													
29	93													
30	98													
31	98													

After that, I put the scores from column A into the appropriate row in the intermediate display. Here are the steps for putting the data into the row:

1. For an intermediate display row, select the subset of scores from the data column.

For the first row, I selected 90-98 from column A.
2. Right-click the selection and choose Copy from the pop-up menu.
3. Select the first cell for the row where the selected scores go.

I selected cell D4 to begin the first row.
4. Right-click the selected cell and choose Paste Special from the pop-up menu to open the Paste Special dialog box.
5. In the Paste Special dialog box, choose Transpose.

This puts the selected column data into the row, with the scores in increasing order.

Going through those steps for each row completes the intermediate display.
Then I completed the stem-and-leaf display. I began by putting the stems into a column: $9,8,7,6,5$, and 4 into C12:C17. Then I used the MOD function to add the leaves. The MOD function takes two arguments - a number and a
divisor - and returns the remainder. Here are the steps for using MOD and finishing the display.

1. Select the first cell for the leaf row.

I selected D12, the highlighted cell in Figure C-2.
2. From the Math \& Trig menu, select MOD to open the Function

Arguments dialog box for MOD. (See Figure C-3.)

3. In the Function Arguments dialog box, enter the values for the arguments.

For Number, I want the corresponding entry in the intermediate table, so that's D4.

For Divisor, I want the intermediate display number that corresponds to the stem. That's cell C4. I also want C4 to be the divisor when I autofill the remaining cells in the row, so I press the F4 key to turn C 4 into $\$ \mathrm{C} \$ 4$.
4. Click OK to close the dialog box and place the calculated value into the selected cell.

Figure A3-2 shows the Formula bar displaying the formula for D12:

```
=MOD(D4,$C$4)
```

5. Autofill the row with the same number of scores as the row in the intermediate table.

Complete these five steps for each row and you have a stem-and-leaf display. I added the label Stem and the label Leaves.

To make everything look nicer for pasting to Powerpoint, I merged the cell holding the Leaves label with a few of the cells to its right.

After pasting to PowerPoint, stretching the copy and enlarging the font make everything clearer.

Consider the stem-and-leaf display next time you have to present a distribution of scores.

Boxes and Whiskers

In Chapter 20, I describe a way of using Excel to put the standard error of the mean into a graph. It's a great way of adding information to a graph that shows means of a dependent variable versus values of an independent variable.

Figure C-4 shows the Internet connections per district in the fictional eightdistrict Farchadat County for the years 2006-2008, along with the standard error for each mean.

Figure C-4: Internet connections per district, Farchadat county, 2006-2008.

Does this chart tell the whole story? Do you really get a sense of the underlying data? Take a look at Table C-1 before you answer.

Table C-1 Number of Internet Connections in Farchadat County, 2006-2008

District	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$
1	1,140	957	1,179
2	1,460	960	824
3	489	496	652
4	594	871	651
5	502	732	765
6	508	908	696
7	370	119	390
8	200	220	106

That's the data summarized in Figure C-4. As you can see, the numbers are quite a bit different from year to year, even though the means are the same and the standard errors (particularly for 2007 and 2008) are pretty similar.

If you had to present the information to a Farchadat audience, you couldn't just show them all the numbers. That would make everyone's eyes glaze over and they'd quickly lose interest. So Figure C-4 doesn't give enough detail and Table C-1 gives way too much.

What do you do?
Instead of showing the mean and the standard error, the box-and-whisker plot shows the minimum, first quartile, median, third quartile, and maximum of a set of data. Statisticians refer to this set of statistics as a five-number summary.

You represent each five-number summary as a box with "whiskers." The box is bounded on the top by the third quartile, on the bottom by the first quartile. The median divides the box. How you lay out the chart determines the width of the box. The whiskers are error bars: One extends upward from the third quartile to the maximum, the other extends downward from the first quartile to the minimum.

Figure C-5 shows this. Notice that the median isn't necessarily in the middle of the box and the whiskers aren't necessarily the same length.

Figure C-5: A box with whiskers.

Surprisingly, Excel doesn't offer a box-and-whisker chart. Instead, I show you how to cajole a type of Excel chart into boxes and whiskers. Full disclosure: The method I show you here isn't original. It draws heavily (okay, entirely) from the work of Jon Peltier. Check out Jon's Web site (peltiertech.com) for all kinds of great ideas.

The first order of business is to put the data into a worksheet and start computing some statistics. Figure C-6 shows the worksheet and the statistics. I used the Mean and Standard Error to create the chart in Figure C-4. I use everything else to create a box-and-whisker plot for the data.

The next group of statistics holds the values for the five-number summary. I use MIN to find the minimum value for each year and MAX to find the maximum value. (See Chapter 7.) QUARTILE (Chapter 6) computes the first quartile and the third quartile. Not surprisingly, MEDIAN (Chapter 4) determines the median.

The final group of statistics holds the values I put directly into the box-andwhisker plot. Why is this group necessary?

	A	B	C	D
1	District	2006	2007	2008
2	1	1140	957	1179
3	2	1460	960	824
4	3	489	496	652
5	4	594	871	651
6	5	502	732	765
7	6	508	908	696
8	7	370	119	390
9	8	200	220	106
10				
11	Mean	657.88	657.88	657.88
12	Standard Error	139.63	111.98	103.72
13				
14	Minimum	200	119	106
15	Q1	459.25	427	585.75
16	Median	505	801.5	674
17	Q3	730.5	920.25	779.75
18	Maximum	1460	960	1179
19				
20	Q1-Minimum	259.25	308	479.75
21	Q1	459.25	427	585.75
22	Median-Q1	45.75	374.50	88.25
23	Q3-Median	225.5	118.75	105.75
24	Max-Q3	729.5	39.75	399.25

I'm about to turn a Stacked Column chart (Chapter 3) into a box-and-whisker plot. In a stacked column, each segment's size is proportional to how much it contributes to the size of the column. In a box-and-whisker box, however, the size of a segment represents a difference between one value and another like the difference between the quartile and the median, or between the median and the first quartile.

So the box is really a stacked column with three segments. The first segment is the first quartile. The second is the difference between the median and the first quartile. The third is the difference between the third quartile and the median.

But wait. Won't that just look like a column that starts at the x-axis? Not after I make the first segment disappear!

The other two differences - between the maximum and the third quartile and between the first quartile and the minimum - become the whiskers.

Follow these steps after you calculate all the statistics you see in Figure C-6.

1. Select the data for the boxes in the box-and-whisker plot.

In this worksheet, that's B21:D23. Row 20 and Row 24 don't figure into this step.

2. Select Insert I Column I Stacked Column to add a stacked column chart to the worksheet.

Figure C-7 shows Steps 1 and 2.
Figure C-8 shows what the stacked column chart looks like after I insert it, delete the gridlines, and reformat and title the axes.

Figure C-7:
Selecting the
Box-And-
Whiskers data and inserting a stacked column chart.

Figure C-8: The stacked column chart.

3. Add the whiskers.

This is a lot like what I discuss in Chapter 20 when I show how to add standard errors to a chart.
First, I add the lower whiskers. With Series 1 selected, I click Layout I Error Bars and pick More Error Bars Options from the menu.
This opens the Format Error Bars dialog box. I select the Minus radio button, the Cap radio button, and the Custom radio button.
Then I click the Specify Value button to open the Custom Error Bars dialog box. Leaving the Positive Error Value as is, I specify the cell range for the Negative Error Value. For this worksheet, that's B20:D20 (Q1-Minimum). Figure C-9 shows the dialog boxes.

Figure C-9: Using the Format Error Bars dialog box and the Custom Error Bars dialog box to add the lower whiskers.

4. Clicking OK closes this dialog box, and clicking Close closes the Format Errors dialog box.
I follow similar steps to add the upper whiskers. This time I select Series 3. Then as before, I click Layout I Error Bars and More Error Bars Options. This time in the Format Errors dialog box I select the Plus radio button, the Cap radio button, and the Custom radio button.

Again, I click the Specify Value button to open the Custom Error Bars dialog box. This time, I specify the cell range for the Positive Error Value. That cell range is B24:D24 (Max-Q3). I click OK and Close.
Figure C-10 shows what the chart looks like after these steps.

Figure C-10:
The stacked column chart with whiskers.

5. Make the bottom segments disappear.

To give the appearance of boxes rather than stacked columns, I select Series 1 (the bottom segment of each column), right-click and choose Format Data Series from the pop-up menu to open the Format Data Series dialog box.
In the Format Data Series dialog box, I select Fill and click the No Fill radio button. Then I select Border Color and click the No Line radio button.
Clicking Close closes the dialog box. Figure C-11 shows the appearance of the chart.
6. Reformat the remaining series to complete the box-and-whiskers plot.

I select Series 2 , right-click and pick Format Data Series from the pop-up menu. I select Fill and click the No Fill radio button.
Then I select Border Color and click the Solid Line radio button. I click the Color Button and select black from the Theme Colors palette.
I click Close, and then go through the same sequence for Series 3 .
After that, I delete the legend. Voilà - Figure C-12! I can add another data series that shows where the means are, and another that would allow me to connect the medians, but this is enough for now.

Figure C-11: The almostfinished box-andwhiskers plot.

The box-and-whiskers plot shows important aspects of the data you can't see in Figure C-4. One feature it shows is skewness (see Chapter 7): Although the means are identical and the standard errors pretty similar, the skewness differs from year to year. You see this in the position of the median within the box, and in the relative lengths of a box's whiskers. The data for 2006 are positively skewed, the data for 2007 are negatively skewed, and the data for 2008 are nearly symmetrical (slightly negative, to be exact).

Another feature the box-and-whiskers plot shows is kurtosis (see Chapter 7) how flat or how peaked the data are. Positive kurtosis means a frequency chart of the data would show a peak. Negative kurtosis means a frequency chart of the data would show flatness. The height of the box is the clue here. A longer box suggests negative kurtosis, a shorter box suggests positive kurtosis.

For 2008, the data have positive kurtosis, for 2007 the data have negative kurtosis. For 2006, the kurtosis is positive, but less so than for 2008. Admittedly, kurtosis doesn't mean much with just eight scores. With a larger number, around 30 , this feature takes on greater importance.

What's the point of all this? The information about skewness, at least, would probably cause a Farchadat analyst to look at why a particular district might be an outlier one year and perhaps not the next.

Data Smoothing

Statisticians typically have to look at large masses of data and find hard-tosee patterns. Sometimes an overall trend suggests a particular analytic tool. And sometimes that tool, while statistically powerful, doesn't help the statistician arrive at an explanation.

And so it is with Figure C-13, a chart of home runs hit in the American League from 1901 until 2008. (Yes, I know - yet another baseball example. Bear with me. Even if you're not a fan, I think you can appreciate the thought process.)

Figure C-13:
Home Runs, American League, 1901-2008.

The obvious overall trend is that as the years go by, more home runs are hit. Fitting a regression line confirms this idea. The equation

Home Runs $=24.325^{*}$ Year -465395
is a terrific fit to the data. The equation gives an R-Squared value of 0.91 , indicating that a linear model nicely describes the relationship between home runs and years.

And so . . . what?
Just fitting a regression line glosses over important things within baseball things both great and small that make up a baseball season, an era, a history. And baseball has many of those things. The objective is to get them to reveal themselves.

The other extreme from the regression line is to connect the dots. That would just give a bunch of zigzags that likely won't illuminate a century of history.

The problem is similar to what I discuss in the preceding section - how to rise above the details without glossing over everything. In other words, summarize without eliminating too much: Get rid of the zigzags but keep the important peaks and valleys. How do we do this without knowing what's important in advance?

EDA helps point the way. One of Tukey's EDA techniques is called threemedian smoothing. For each data point in a series, replace that data point with the median of three numbers: the data point itself, the data point that precedes it, and the data point that follows. Here's a formula:

$$
\tilde{y}_{i}=\operatorname{Median}\left(y_{i-1}, y_{i}, y_{i+1}\right)
$$

Why the median? Unlike the mean, the median is not sensitive to extreme values that occur once in awhile - like a zig or a zag. (See Chapter 4 if this sounds unfamiliar.) The effect is to filter out the noise and leave meaningful ups and downs.

Why three numbers? Like most everything in EDA, that's not ironclad. For some sets of data you might want the median to cover more numbers. It's up to the intuitions, experiences, and ideas of the analyst.

Another of Tukey's techniques is called hanning. This is a running weighted mean. You replace a data point with the sum of one fourth the previous data point plus half the data point plus one fourth the next data point. The formula:

$$
\tilde{y}_{i}=\frac{y_{i-1}}{4}+\frac{y_{i}}{2}+\frac{y_{i+1}}{4}
$$

Still another technique is the skip mean. For this one, I let the formula tell the story:

$$
\tilde{y}_{i}=\frac{y_{i-1}}{2}+\frac{y_{i+1}}{2}
$$

Tukey provides a number of others, but I confine the discussion to these three.

In EDA, you don't just use one technique on a set of data. Often, you start with a median smooth, repeat it several times, and then try one or two others.

For the data in the scatterplot in Figure C-13, I applied the three-median smooth, repeated it (that is, I applied it to the newly smoothed data), hanned the smoothed data, and then applied the skip mean. Again, no technique (or order of techniques) is right or wrong. You apply what you think illuminates meaningful features of the data.

Figure C-14 shows part of a worksheet for all of this. I obviously couldn't fit all 108 years in one screenshot, but this gives you the idea. Column A shows the year, column B the number of home runs hit that year in the American League. The remaining columns show successive smooths of the data. Column C applies the three-median smooth to column B, column D applies the three-median smooth to column C. A quick look at the numbers shows that the repetition didn't make much difference. Column E applies hanning to column D, and column F applies the skip mean to column E. In columns C-F, I used the actual number of home runs for the first value (for the year 1901) and for the final value (for the year 2008).

Just to clue you in on how I arrived at the smoothed values, here are the worksheet formulas for a typical cell in each column.

-	A	B	C	D	E	F
1	Year	HR	3 Median	3 Median Repeated	3 Median Repeated Hann	3 Median Repeated Hann Skip
2	1901	228	228	228	228	228
3	1902	258	228	228	217	208
4	1903	184	184	184	188	190
5	1904	156	156	156	163	169.625
6	1905	156	156	156	151.25	149.75
7	1906	137	137	137	136.5	136.25
8	1907	104	116	116	121.25	126.25
9	1908	116	109	116	116	122.5
10	1909	109	116	116	123.75	128.75
11	1910	147	147	147	141.5	138.75
12	1911	198	156	156	153.75	149.125
13	1912	156	159	156	156.75	155.625
14	1913	159	156	159	157.5	155.75
15	1914	148	159	156	154.75	153.25
16	1915	160	148	148	149	148.5
17	1916	144	144	144	142.25	142.375
18	1917	133	133	133	135.75	151
19	1918	96	133	133	159.75	190.625
20	1919	240	240	240	245.5	261.75
21	1920	369	369	369	363.75	347.75
22	1921	477	477	477	450	416
23	1922	525	477	477	468.25	450.375
24	1923	442	442	442	450.75	454.75
25	1924	397	442	442	441.25	445.25
26	1925	533	424	439	439.75	440.125
27	1926	424	439	439	439	444.875
28	1927	439	439	439	450	469.5

For cell C3, the formula is

```
=MEDIAN (B2 : B4)
```

For D3, it's

```
=MEDIAN (B2 : B4)
```

For E3

$$
=(\mathrm{D} 2 / 4)+(\mathrm{D} 3 / 2)+(\mathrm{D} 4 / 4)
$$

And for F3

$$
=(\mathrm{E} 2 / 2)+(\mathrm{E} 4 / 2)
$$

I autofilled each column, except for the first value and the final value.
Next, I superimposed the numbers in column F as a series on the scatterplot. I formatted the series to have a solid line and no markers. Figure C-15 shows this. I refer to that solid line as "the smoothed line."

You can easily watch the effect of each successive smoothing technique on the smoothed line. The key is to right-click on the plot area and choose Select Data from the pop-up menu. Click on the name of the data series that represents the smoothed line, edit the cell range of the series to reflect the column that holds the particular smoothing technique, and click OK to close the editing dialog boxes.

Figure C-15: The smoothed data for home runs in the American League, 1901-2008.

And now the story begins to reveal itself. Instead of a regression line that just tells us that home runs increase as the years go by, the highs and lows stimulate thinking as to why they're there. Here's a highly abridged version of baseball history consistent with the twists and turns of the smoothed line.

The low flat segment from 1901 until 1920 signifies the "dead-ball era," a time when the composition of a baseball inhibited batted balls from going far enough to become home runs.

As the 1920s began, however, a gentleman named George Herman Ruth (see Chapter 6) began whacking them out of American League ballparks with alarming regularity. Noting that this induced many to attend said ballparks, the powers that be (so the story goes) livened up the baseball to make the home run a more frequent event. This most likely accounts for the steady rise in the smoothed line until the 1940s.

Why the sudden decline after 1940? World history played a role: World War II took many of the best players and home-run production declined. In the late 1940s, they came back. This provided the initial impetus for the ensuing rise in home runs. After that, the long-overdue diversification of the talent pool helped home-run output increase steadily until the beginning of the ' 60 s .

From then on, the smoothed line shows a series of peaks and valleys. A number of influences caused the peaks. The valleys most likely indicate pitchers adapting, learning, and perfecting their craft.

First peak: 1961 brought expansion, and two new teams joined the American League. The League stocked the new teams with players from the established teams. The result was that the pool of pitchers thinned out - the number of talented pitchers per team declined, and batters took advantage, causing a sudden rise in home runs after the steady increase through the ' 40 s and ' 50 s.

My best guess is that pitching improved, because home-run production declined in the late ' 60 s . Then the powers that be intervened again by changing the rules. The pitcher delivers the ball starting from a standing position on a raised area called "the mound" 60 feet 6 inches from home plate. In order to reduce the pitcher's leverage and thereby increase batting production, baseball's overseers lowered the height of the mound in 1969. Coupled with another expansion that year (two additional teams), home-run production rose again.

In 1973, the American League (but not the National League) changed its rules yet again to improve batting production. Instead of letting notoriously weakhitting pitchers bat, the League invented the role of the designated hitter. The designated hitter has one job - to bat in place of the pitcher.

With the removal of weak hitters from team batting orders, I expected an immediate dramatic increase in home runs. It didn't happen that way. Instead, the smoothed line dips a bit and then increases steadily, if undramatically, for the1970s. The introduction of the designated hitter likely affected baseball in a variety of ways that aren't immediately obvious. I'm sure sabermetricians (see Chapter 13) have addressed those possibilities.

In 1977, the American League added two more teams, coinciding with another rise in home runs that continued until the early ' 80 s. Pitchers apparently adapted, and home runs declined until the early ' 90 s.

Then something seems to have fueled home-run production, peaking around 1998 when the League expanded again and added another team. Many have speculated on what juiced up this increase, but that's beyond the scope of this discussion. As the smoothed line shows, home runs are in a period of decline lately. Hmmm . . .

I had a lot of fun writing this capsule summary of baseball history and showing how events (as I see them) coincided with the peaks and valleys in the smoothed line. My knowledge is a little stronger on what might have caused the peaks, less so on the valleys. I assume "pitchers adapting" accounts
for the valleys, but I'm not certain. Did they really adapt? If so, how? Did anything else have an influence? (Strike-shortened seasons, for example?) Knowing about the valleys causes me to form hypotheses and test them - in this case, perhaps, by examining other statistics from the appropriate eras. For completeness, I have to verify my ideas about the peaks, too.

Bottom line: Exploring and visualizing the data stimulates thought about what's producing the patterns the exploration uncovers. Speculation leads to testable hypotheses, which lead to analysis. As Tukey said in the preface to his book Exploratory Data Analysis (Addison-Wesley, 1977): "The greatest value of a picture is when it forces us to notice what we never expected to see."

I don't think he was just talking about the designated hitter.

A SMOOTH add-in for Excel

EDA should be in the toolset of every statistician. If you want to get more heavily into data smoothing, visit quantdec.com, the Web site of Pennsylvania-based Quantitative Decisions. Founder Bill Huber has developed a free Excel add-in that incorporates all of Tukey's data smoothing techniques. (More than the ones I
tell you about here.) It's called SMOOTH. After you download and install it in your spreadsheet, SMOOTH appears in the Statistical Functions menu. Each time you invoke SMOOTH you can apply a number of techniques successively. For example, in one run of SMOOTH, I can apply the four techniques I use for the home-run data.

452
 Statistical Analysis with Excel For Dummies, 2nd Edition

Index

- A

a posteriori tests. See unplanned comparisons
a priori tests. See planned comparisons
absolute referencing. See also referencing cells
converting relative references to, 24-25
defined, 24
defined names and, 46
absolute values, 108
Add-Ins dialog box, 49
alpha
Anova: Single Factor tool, 229
Anova: Two-Factor with Replication tool, 253
Anova: Two-Factor without Replication tool, 239, 247
defined, 172
F-Test Two Sample for Variances tool, 215
increasing, 219
Regression tool, 278, 288
t-test: Paired Two Sample for Means tool, 206
t-Test: Two Sample tool, 200
alternative hypotheses. See also hypotheses
data importance, 171
decisions, 172
defined, 15, 171
statistical notation, 15
testing versus null hypothesis, 173
analysis of covariance (ANCOVA). See also covariance; covariance analysis
ANOVA method, 423-427
benefit of, 427
defined, 421-422
in Excel, 422-431
F-ratio and, 422
outputs, 426
planned comparisons, 430
post-hoc tests and, 430
regression method, 427-430
table, 425-426
analysis of variance (ANOVA). See also variances
calculations, 228
defined, 222
dependent-variable, 431
F-ratio denominator, 222
multiple regression and, 432
one-factor, 222
post t-tests, 224
repeated measures, 232-235
two-factor, 244-245
AND function, 106
ANOVA. See analysis of variance
ANOVA method (ANCOVA), 423-427
Anova: Single Factor
alpha, 229
ANOVA table, 229
cell ranges, 229
defined, 47
dialog box, 228
output, 230
SUMMARY table, 229
use steps, 229
Anova: Two-Factor with Replication
alpha, 253
ANOVA table, 253
cell ranges, 253
defined, 47, 252
dialog box, 252
output, 254
output options, 253
SUMMARY table, 253
use steps, 252-253
Anova: Two-Factor without Replication
alpha, 239, 247
ANOVA table, 240, 247
cell ranges, 239, 247
defined, 47, 238
dialog box, 239, 246
output, 240, 247

Anova: Two-Factor without Replication
(continued)
output options, 239, 247
SUMMARY table, 240, 247
for two-factor ANOVA, 246-247
use steps, 239, 246-247
arguments
AND function, 106
AVEDEV function, 109
AVERAGE function, 82
AVERAGEA function, 82
AVERAGEIF function, 84
AVERAGEIFS function, 85, 86
BETADIST function, 337-338
BETAINV function, 339
BINOMDIST function, 327
CHIDIST function, 183
CHIINV function, 184
CHITEST function, 358, 387
COMBIN function, 322
CONFIDENCE function, 165-166
CORREL function, 300, 301
COUNT function, 124
COUNTBLANK function, 125
COUNTIF function, 125
COUNTIFS function, 126
CRITBINOM function, 330-331
DCOUNT function, 408, 409
defined, 30
DEVSQ function, 108
entering, 31
EXPONDIST function, 346-347
FACT function, 321
FDIST function, 212
FINV function, 213
FISHER function, 309
FORECAST function, 271
FREQUENCY function, 37
FTEST function, 210
GAMMADIST function, 344-345
GAMMAINV function, 345
GROWTH function, 398, 399, 400
HYPERGEOMDIST function, 333-334
IF function, 106
INTERCEPT function, 270, 271
KURT function, 131, 132
LINEST function, 275-276
LOGEST function, 395, 396
LOGINV function, 394

LOGNORMDIST function, 394
MAX function, 127
MEDIAN function, 90, 91
MOD function, 436
MODE function, 92
NEGBINOMDIST function, 328-329
NORMDIST function, 145, 146
NORMINV function, 146, 147
NORMSDIST defined, 149
NORMSINV function, 149
PEARSON function, 300-301
PERCENTILE function, 119
PERCENTRANK function, 120
PERMUT function, 321-322
POISSON function, 341-342
PROB function, 383
QUARTILE function, 120
RANK function, 117
SKEW function, 129, 130
SLOPE function, 270
STANDARDIZE function, 114, 115
STDEV function, 103
STDEVP function, 101, 102
STEYX function, 270, 271
SUM function, 33
SUMIF function, 43, 44, 45
TDIST function, 180
TINV function, 168
TREND function, 272-273, 274
TRIMMEAN function, 87
TTEST function, 197-198, 204
VAR function, 100
VARP function, 97
VARPA function, 98
WEIBULL function, 384
ZTEST function, 178
array formulas
creating, 46-47
results, 47
typing, 46
array functions. See also functions; specific functions
defined, 35
example, 35-37
arrays. See also cells
finding frequencies in, 133
FTEST function, 211
intervals, 37
names, defining, 38
referring to, 38
right-clicking, 39
selecting, 40
unnamed, 45
z-scores, 116
asymptotic curves, 144
autofilling cells
absolute referencing, 24
benefits, 21
defined, 20
incorrect, 23
from named arrays, 46
relative referencing, 23
using, 21-22
AVEDEV function, 109
average absolute deviation, 109
average deviation, 108-109
AVERAGE function
accessing, 51
defined, 81
formulas, 82, 161
Function Arguments dialog box, 82
with STDEV function, 103
steps, 81-82
using, 364
working with, 81
AVERAGEA function
defined, 82
evaluation, 83
Function Arguments dialog box, 82
steps, 82
AVERAGEIF function
defined, 20,83
formula creation, 84-85
formulas, 84
Function Arguments dialog box, 84
AVERAGEIFS function
defined, 20,83
formula creation, 86
Function Arguments dialog box, 85, 86
averages. See also means
deviation, 95
moving, 376
reporting, 25
trial, 85, 105
axes. See also x-axis; y-axis
horizontal, 57, 142
knowing, 372
pie charts and, 57
titles, 61
vertical, 57, 142
Axis Labels dialog box, 70, 71

- B

bar graphs. See also graphs
bars, darkening, 73
creating, 72-73
data selection, 72
defined, 57, 71
illustrated, 72
layout, 73
modifying, 73
type selection, 72
uses, 71
bases, 389-390
bell curve
defined, 142
illustrated, 142
as normal distribution, 143
best fitting line, 294
beta distribution
applicability, 338
binomial connection, 335
cumulative, working with, 337-338
defined, 335
random variable, 335
BETADIST function
defined, 337
Function Arguments dialog box, 337-338
use steps, 337-338
BETAINV function
defined, 338
Function Arguments dialog box, 339
lower limit, 338
return, 338
upper limit, 339
use steps, 339
bimodal, 91
BINOMDIST function
defined, 327
Function Arguments dialog box, 327
illustrated, 328
use steps, 327
binomial distribution
BINOMDIST function for, 327-328
defined, 326
hypothesis testing with, 329-332
illustrated, 328
negative, 326
standard normal distribution approximation, 331
binomial experiments, 326
bins, 37, 133
box-and-whisker plot
box, 438
data, 440, 444
data selection, 441
defined, 438
five-number summary, 438
illustrated, 439, 444
kurtosis display, 444-445
series, reformatting, 443
skewness display, 444
turning stacked column chart into, 440
whiskers, 438
worksheet for, 440

-C

categorical variables, 372-373
category buttons, 18
cell ranges
in COUNTIFS function, 126
database name, increasing, 414
name attachment to, 40
naming, 38-46
right-clicking, 39
selecting, 40
standard scores, 150
cells. See also arrays; cell ranges autofilling, 20-22
entering formulas directly into, 40
referencing, 22-25
Central Limit Theorem
defined, 157
large samples, 189, 191
mean of sampling distribution, 73, 157
normal distribution for large samples, 166
normally distributed populations, 189
parameters for sampling distribution, 160
population and, 158
sampling distribution as normal distribution, 157-158
sampling distribution of the difference between means, 189
simulation, 158-162, 363-366
simulation results, 365
standard deviation of sampling
distribution, 157
standard error of the mean, 173
two-sample hypothesis testing, 189-190
central tendency
defined, 79
means, 79-89
medians, 89-91
mode, 91-92
Change Chart Type dialog box, 67
Chart Wizard, 19
charts. See also graphs
creating, 19
defined, 58
gallery, 19
High-Low-Close, 18
inserting, 58-59
modifying, 59
Charts area (Insert tab), 58-59
CHIDIST function
defined, 182-183
Function Arguments dialog box, 183
use steps, 183
using, 354
CHIINV function
defined, 183-184
Function Arguments dialog box, 184
use steps, 184
chi-square distributions
defined, 181
degrees of freedom and, 181
members, 182
multinomial approximation, 352-353
test statistic, 181
CHITEST function
defined, 355
degrees of freedom and, 355-356
Function Arguments dialog box, 358, 387
return, 387
in testing independence, 385-388
use steps, 358
coefficient of determination
calculating with RSQ, 302
defined, 296
multiple, 305
square root of, 296-297
column factor
defined, 249
row factor interaction, 251
variance, 250
column graphs. See also graphs
for categorical variables, 373
data selection, 59
defined, 57
gallery, 60
as histograms, 63
illustrated, 56
modifying, 60-61
for occurrence frequency, 63
stacked, 61-63, 440
titles, 61
type selection, 59
COMBIN function, 322
combinations
calculating, 322
defined, 320
formula, 320
large sample spaces, 219
notation, 319
common logarithms. See also logarithms defined, 389
natural logarithms comparisons, 392
comparison coefficients
changing, 231
defined, 225
in finding Sum of Squares for linear trends, 236
multiplying with SUMPRODUCT, 231
in planned comparison t-test formula, 226
squared, 230
in trend analysis, 235
comparisons. See planned comparisons; unplanned comparisons
compound events. See also events
combining methods, 315
defined, 315
formulas, 315,316
intersection, 316-317
union, 315-316
conditional probability. See also probabilities
in decision-making process, 15
defined, 14, 317
example, 317
hypothesis testing foundation, 318
working with, 318
confidence, estimates, 155, 162-166
CONFIDENCE function
defined, 165
Function Arguments dialog box, 165-166
return, 165
sample size and, 169
sampling distribution assumption, 169
use steps, 165-166
Confidence Limit of the Mean, 138
confidence limits
defined, 162-163
example, 164-165
finding for a mean, 163-165
lower, 168
percentage of area beyond, 166
upper, 168
confirmatory data analysis, 433
constants, 11
contextual tabs, 19
continuous random variables, 323
CORREL function
cell ranges, 301
defined, 300
Function Arguments dialog box, 300, 301
use steps, 301
correlation
calculation formula, 293
defined, 291, 292
multiple, 304-305
negative, 292
partial, 306-307
point biserial, 301
positive, 292
regression and, 294-297
semipartial, 307
testing hypotheses about, 297-300, 308-310
worksheet functions for, 300-302
correlation coefficient
calculating, 297
defined, 294
difference, 298-300
greater than zero, 297-298
large samples and, 371-372
lower limit, 294
multiple, 304-305
Pearson's product-moment, 294
transforming, 299
upper limit, 294
correlation matrix, 304
Correlation tool
cell ranges, 303, 304
defined, 48, 303
dialog box, 303
multiple correlation, 304-305
output options, 304
partial correlation, 306-307
semipartial correlation, 307
tabled output, 304-307
use steps, 303-304
COUNT function
defined, 123
Function Arguments dialog box, 124
use steps, 123-124
COUNT NUMBERS function, 51
COUNTA function, 124
COUNTBLANK function
defined, 124
Function Arguments dialog box, 125
COUNTIF function, 125
COUNTIFS function
defined, 20, 125
example use, 126
Function Arguments dialog box, 126
pairs of cells, 125
counting rule, 319
COVAR function, 302
covariance
calculating, 302
defined, 294
formula, 302
matrix, 307
covariance analysis
ANCOVA, 422-431
covariate, 421
dependent variable, 420
experimental control, 421
independent variable, 420
method, 421-422
reason for, 420-421
statistical control, 421
Covariance tool
defined, 48, 307
tabled output, 308
covariate
defined, 421
dependent variable relationship, 421, 427
variances within, 424
Create Pivot Table dialog box, 416-418
CRITBINOM function
defined, 330
Function Arguments dialog box, 330-331
return, 330
use steps, 330-331
criteria range, 407
critical values
defined, 173
example, 175-176
for F, 236
one-tailed test, 194
setting, 174
cubic component, 238
cumulative area, 145
cumulative proportion, 145
curly brackets, 37
curvilinear regression. See also regression equation, 397
extrapolating beyond scatterplot and, 371
GROWTH function, 398-401
Custom Error Bars dialog box, 381-382, 442
Customize Status Bar menu, 138-139

damping factor, 378
data
box-and-whisker plot, 440, 444
graphing, 55-77
imported from Web page, 403
importing, 401-403
interval, 13
median, 446
nominal, 12
ordinal, 12
percentile, 281
ratio, 13
scatterplots, 74
sets, 433,446
smoothed, 449
testing more than two samples, 218
types of, 12-13
data analysis tools, 199-202
Anova: Single Factor, 47, 228-230
Anova: Two-Factor with Replication tool, 47, 252-254
Anova: Two-Factor without Replication, 47, 238-240, 246-247
Correlation, 48, 303-307
Covariance, 48, 307-308
defined, 47
Descriptive Statistics, 48, 50, 51, 136-138
Exponential Smoothing, 48, 378
F-Test Two Sample for Variances, 48, 214-215
Histogram, 48, 63, 134-136
list of, 47-48
Moving Average, 48, 376-377
Random Number Generation, 48, 360-363
Rank and Percentile, 48, 121-122
Regression, 48, 277-282, 287-289
Sampling, 48, 384-385
t-test: Paired Two Sample for Means, 205-207
t-Test: Two Sample, 48, 199-202
use example, 50-51
using, 47-51
z-Test: Two Sample for Means, 48, 192-194
Data Form
accessing, 413
defined, 413
illustrated, 414
using, 414
data lists, 405
data smoothing
hanning, 447
peaks and valleys, 450, 451
skip mean, 447
SMOOTH, 451
three-median, 446

Data tab (Ribbon)
Analysis area, 30
Data Analysis button, 49, 50, 134, 137
Get External Data button, 401
database functions. See also functions
accessing, 409
arithmetic, 410-412
example, 407
format, 407, 408-409
operation, 407
statistics, 412-414
wildcards and, 410
databases
Data Form, 413-414
fields, 405
records, 405, 409-410
satellites, 405-407
uses, 405
worksheets as, 405-418
DAVERAGE function, 412
DCOUNT function
defined, 407
formula, 408, 409
Function Arguments dialog box, 408, 409
use steps, 408-409
DCOUNTA function
defined, 409
formula, 409, 410
decision-making
in field of statistics, 9
hypotheses, 15
number crunching and, 9
degrees of freedom
CHIDIST function, 183
CHIINV function, 184
in chi-square distributions, 181
CHITEST function, 355-356
defined, 166, 179, 195
denominator of variance estimate, 261
equal variances and, 202
FDIST function, 212
F-distribution, 223
FINV function, 213
F-ratio, 209
Mean Squares and, 224
in population variance, 179
reducing, 197
regression, 266
degrees of freedom (continued)
TDIST function, 180
t-distribution and, 167, 179
TINV function, 168
unequal variances and, 202
dependent variables. See also variables
covariance analysis, 420
covariate relationship, 421, 427
defined, 12, 256, 292
independent variable relationship, 257
in vertical axis, 57
Descriptive Statistics tool
defined, 48, 136
dialog box, 50, 137
opening, 137
options, 137
output, 51, 138
statistics values, 138
use steps, 136-137
working with, 50
Design tab (Ribbon)
Change Chart Type button, 67
Chart Layouts button, 70, 73, 75
Chart Styles button, 70, 73
Data button, 61
Location button, 62
deviations
absolute value of, 108
average, 108-109
averaging, 95
defined, 94
in scatterplot, 265
squared, 94-97, 221
standard, 100-107, 148, 178, 190, 379
DEVSQ function
defined, 107
Function Arguments dialog box, 108
DGET function, 410
dichotomous variables, 301
direct relationships, 419
discrete random variables, 323
distributions
beta, 335-338
binomial, 326, 327-332
chi-square, 181-182, 352-353
Erlang, 343
exponential, 346-347
F-distribution, 208-210, 213, 223
frequency, 36, 132-136
gamma, 343-345
hypergeometric, 332-334
lognormal, 394-395
multinomial, 352
normal, 131, 143-144, 150-151, 157-158, 392
parameters, 361
Pascal, 326
Poisson, 340-342, 350
probability, 323, 324
sampling, 156-158, 161-162, 172-175, 188-191
t-distribution, 166-168, 179
Weibull, 384
DMAX function, 411
DMIN function, 411
DPRODUCT function, 411-412
drawing samples, 384-385
DSUM function, 411
DVAR function, 412-413
DVARP function, 412-413

- E•

e

defined, 390
growth association, 392
natural phenomenon related to, 392
paths to, 391-392
raising to power of, 393
elementary outcomes
defined, 314
large sample spaces, 319
probabilities of, 314
in sample space, 317
English letters, 11
epsilon, 264
equal variances. See also variances defined, 195
degrees of freedom and, 202
t-test, 210
Erlang distribution, 343
error terms
defined, 222, 234
for $F, 250$
errors
epsilon representation, 264
in hypothesis testing, 172
probabilities, 173
Type I, 17, 172
Type II, 17, 172
types of, 16-17
*VALUE!, 47
estimates
confidence, 155, 162-166
context, 155
pooled, 196, 197, 220-221
population mean, 163
population variance, 195
residual error, 262
standard error, 167, 261, 262, 270
events
combining, 315-316
compound, 315-316
intervals, 350
overlap, 316
exam scores, 113-114
Excel 2007
ANCOVA in, 422-431
graphics capabilities, 58-59
relating statistics-book concepts to, 374
statistical capabilities, 27-52
worksheet functions, 30-33
Excel Options dialog box, 49
EXP function, 151, 393
exp notation, 393
expected numbers, 386-387
expected value, 324
experimental control, 421
experiments
binomial, 326
defined, 314
exploratory data analysis (EDA)
defined, 433
three-median smoothing, 446
Exploratory Data Analysis (Tukey), 451
EXPONDIST function
Cumulative box, 347
defined, 346
Function Arguments dialog box, 346-347

Lambda box, 346
use steps, 346-347
exponential distribution
calculating, 346-347
defined, 345
density function, 345
exponential smoothing
damping factor, 378
defined, 377
illustrated, 379
Exponential Smoothing tool
application, 378
defined, 48
dialog box, 378
exponents
base, 389
curvilinear equation, 396
defined, 388

- F•

FACT function, 321
factorials
computing, 321
indication, 391
factors, 222, 243
FDIST function
defined, 212
degrees of freedom, 212
Function Arguments dialog box, 212
return, 212
use steps, 212-213
F-distribution
cutting off portion of tail, 213
defined, 208
degrees of freedom, 223
members, 208
statistic test, 208
with t-test, 209-210
fields
defined, 405
dropping into/out of pivot tables, 418
Fill pop-up menu, 22
FINV function, 213
FISHER function
defined, 308-309
Function Arguments dialog box, 309
FISHERINV function, 309

Fisher's r to z transformation, 299
five-number summary
defined, 438
representation, 438
values, 439
FORECAST function, 271
forecasting, regression for, 261
Format Data Point dialog box, 65-66
Format Data Series dialog box, 443
Format Error Bars dialog box
for adding whiskers, 442
Both button, 381
Cap button, 381, 442
Custom button, 381, 442
illustrated, 381
opening, 381
Plus button, 442
Specify Value button, 381, 443
Format Trendline dialog box, 76, 397
Formula Bar
defined, 28
function format, 32
illustrated, 28
formulas, 195, 203
array, 46-47
autofilled, 22-23
combinations, 320
compound events, 315,316
converting score to z-score, 147
correlation, 293
covariance, 302
creating, 21
entering directly into cells, 40
event occurrence, 14
inserting in cells, 20, 21
intercept, 259
kurtosis, 131
Mean Square, 220
permutations, 320
Poisson distribution, 340-341, 350
population standard deviation, 101
population variance estimation, 219
regression coefficients, 259
repeating, 22
sample standard deviation, 102
sample variance, 99
skewness, 128-129
slope, 259
standard error of estimate, 262
t-test, 195, 203, 225
typing, 32
variance, 96
z-score, 112
z-test, 191
Formulas tab (Ribbon)
Define Name button, 39
Insert Function button, 29
Logical Functions button, 105
Manage Names button, 414
Math \& Trig button, 42,45
More Functions button, 33, 34
F-ratio
ANCOVA and, 422
calculation, 210-211
defined, 208
degrees of freedom, 209
error term, 222
region of rejection determination, 212-213
variance estimates in, 209
frequencies
defined, 36
finding in arrays, 133
finished, 37
frequency distribution
creating, 132-136
defined, 36, 132
FREQUENCY function
arguments, 37
bins, 37,133
defined, 35,132
example use, 36-37
formulas, 37, 134
frequencies, 134
Function Arguments dialog box, 37, 133
in simulated sampling distribution, 161-162
use steps, 133-134
using, 361, 364
working with, 36
F-test
after, 224-228
defined, 208
rejection decision, 224
FTEST function
arrays, 211
defined, 210
formula, 211

Function Arguments dialog box, 210
results, 211
use steps, 210-211
working with, 210
F-Test Two Sample for Variances tool alpha, 215
cell ranges, 214
data, 214
defined, 48
dialog box, 214
output options, 215
results, 215
use steps, 214-215
variables, 214
Function Arguments dialog box, 31, 32
AND function, 106
AVEDEV function, 109
AVERAGE function, 82
AVERAGEA function, 82
AVERAGEIF function, 84
AVERAGEIFS function, 85, 86
BETADIST function, 337-338
BETAINV function, 339
BINOMDIST function, 327
CHIDIST function, 183
CHIINV function, 184
CHITEST function, 358, 387
COMBIN function, 322
CONFIDENCE function, 165-166
CORREL function, 300, 301
COUNT function, 124
COUNTBLANK function, 125
COUNTIF function, 125
COUNTIFS function, 126
CRITBINOM function, 330-331
DCOUNT function, 408, 409
DEVSQ function, 108
EXPONDIST function, 346-347
FACT function, 321
FDIST function, 212
FINV function, 213
FISHER function, 309
FORECAST function, 271
FREQUENCY function, 37, 133
FTEST function, 210
GAMMADIST function, 344-345

GAMMAINV function, 345
GROWTH function, 398, 399, 400
HYPERGEOMDIST function, 333-334
IF function, 106
INTERCEPT function, 270, 271
KURT function, 131, 132
LINEST function, 275-276
LOGEST function, 395, 396
LOGINV function, 394
LOGNORMDIST function, 394
MAX function, 127
MEDIAN function, 90, 91
MOD function, 436
MODE function, 92
NEGBINOMDIST function, 328-329
NORMDIST function, 145, 146
NORMINV function, 146, 147
NORMSDIST defined, 149
NORMSINV function, 149
opening, 45
PEARSON function, 300-301
PERCENTILE function, 119
PERCENTRANK function, 120
PERMUT function, 321-322
POISSON function, 341-342
PROB function, 383
QUARTILE function, 120
RANK function, 117
SKEW function, 129, 130
SLOPE function, 270
STANDARDIZE function, 114, 115
STDEV function, 103
STDEVP function, 101, 102
STEYX function, 270, 271
SUMIF function, 43, 44, 45
TDIST function, 180
TINV function, 168
TREND function, 272-273, 274
TRIMMEAN function, 87
TTEST function, 197-198, 204
VAR function, 100
VARP function, 97
VARPA function, 98
WEIBULL function, 384
ZTEST function, 178

Function Library
accessing, 28
defined, 29
functions
access menus, 29
accessing, 33-35
adding to Quick Access Toolbar, 34
AND, 106
array, 35-37
AVEDEV, 109
AVERAGE, 51, 81-82
AVERAGEA, 82-83
AVERAGEIF, 20, 25, 83-85
AVERAGEIFS, 20, 25, 85-86
BETADIST, 337-338
BETAINV, 338-340
BINOMDIST, 327-328
CHIDIST, 182-183
CHIINV, 183-184
CHITEST, 355-356, 358, 385-388
commonly used, accessing, 51-52
CONFIDENCE, 165-166
CORREL, 300-301
COUNT, 123-124
COUNT NUMBERS, 51
COUNTA, 124
COUNTBLANK, 124-125
COUNTIF, 125
COUNTIFS, 20, 125-126
COVAR, 302
CRITBINOM, 330-331
DAVERAGE, 412
DCOUNT, 407, 408-409, 409
DCOUNTA, 409-410
DEVSQ, 107-108
DGET, 410
dialog box, 20
DMAX, 411
DMIN, 411
DPRODUCT, 411-412
DSTDEV, 413
DSTDEVP, 413
DSUM, 411
DVAR, 412-413
DVARP, 412-413
EXP, 151, 393

EXPONDIST, 346-347
FACT, 321
FDIST, 212-213
FINV, 213
FISHER, 308-309
FISHERINV, 309
FORECAST, 271
Formula Bar format, 32
FREQUENCY, 35-37, 132-134
FTEST, 210-211
GAMMADIST, 343-345
GAMMAINV, 345
GEOMEAN, 88
GROWTH, 398-401
HARMEAN, 89
HYPERGEOMDIST, 333-334
IF, 105-106
INTERCEPT, 269-271
KURT, 131-132
LARGE, 118-119
LINEST, 275-277
LOGEST, 395-398
LOGINV, 394
LOGNORMDIST, 393-394
MAX, 51, 126-127, 439
MAXA, 127
MEDIAN, 90-91, 439
MIN, 51, 127, 439
MINA, 127
MOD, 435-436
MODE, 92
NORMDIST, 145-146
NORMINV, 146-147
NORMSDIST, 148-149
NORMSINV, 149
opening list of, 27
PERCENTILE, 119
PERCENTRANK, 120
PI, 151
POISSON, 341-342
PROB, 383
QUARTILE, 120, 439
RANDBETWEEN, 160-161
RANK, 117-118
RSQ, 302
selecting, 20, 45
shortcut to, 33-35
SKEW, 129-130
SLOPE, 269-270, 424
SMALL, 118
STANDARDIZE, 114-116
STDEV, 102-103
STDEVA, 103
STDEVP, 101-102
STDEVPA, 102
STEYX, 269-271
SUM, 30-31, 51
SUMIF, 41, 42-43
SUMIFS, 41
SUMPRODUCT, 230-231, 241
SUMQ, 242
TDIST, 180-181
TINV, 168-169
TREND, 272-275
TRIMMEAN, 86-87
TTEST, 197-198, 203-205
using, 19-20
VAR, 100
VARA, 100
VARP, 97-98
VARPA, 98
WEIBULL, 383-384
worksheet, 30-33
ZTEST, 177-178
fx symbol, 27, 28

$\bullet G$

gamma distribution
calculating, 343-345
defined, 342-343
probability density function, 343
GAMMADIST function
defined, 343
Function Arguments dialog box, 344-345
use steps, 344-345
GAMMAINV function, 345
GEOMEAN function, 88
geometric mean, 88
goodness-of-fit application, 354
grand mean
defined, 220, 244
variance from, 233-234
graphs. See also axes; charts
bar, 57, 71-73
benefits, 55
categorical variable, 372-373
column, 57, 59-63
creation guidelines, 57-58
fundamentals, 57-58
horizontal axis (x-axis), 57
illustrated example, 56
line, 68-71, 257-259
pie, 57, 64-68
reasons for using, 55-57
scatterplot, 74-77
standard error, 373, 382
variability in, 373
vertical axis (y-axis), 57
"what-if" capabilities, 67
Greek letters, 11
group of means, 382
GROWTH function
cell ranges, 399, 400
defined, 398
Function Arguments dialog box, 398, 399, 400
predicting new set of y's, 399-401
predicting y's, 398-399
results, 399, 401
use steps, 399, 400

- H-

hanning, 447
HARMEAN function, 89
harmonic mean, 89
High-Low-Close chart, 18
Histogram tool
Cumulative percentage option, 136
defined, 48, 63
dialog box, 135
FREQUENCY function versus, 134, 135-136
opening, 134
options, 135

Histogram tool (continued)
output, 136
Pareto chart option, 136
use steps, 134-135
histograms
column graphs as, 63
cumulative percentage line, 136
kurtosis, 130
setting up, 63
skewness, 129
Home tab, Σ button, 51, 52
horizontal axis. See also axes
bell curve, 142
defined, 57
independent variable, 57
HYPERGEOMDIST function
defined, 333
Function Arguments dialog box, 333-334
results, 334
use steps, 333-334
hypergeometric distribution
defined, 333
example, 332-333
graphics results, 334
hypergeometrically distributed random variables, 333
hypotheses
accepting, 172
alternative, 15-16, 171
defined, 14, 171
null, 15, 16, 171
rejection decision, 14-15, 172
hypothesis testing
with binomial distribution, 329-332
calculations for, 177-178
conditional probability, 318
as confirmatory data analysis, 433
correlation, 297-300, 308-310
decisions, 172
defined, 171
errors, 172
independence, 385-388
more than two samples, 217-242
multiple regression, 282
one-sample, 171-185
one-tailed, 176
paired samples, 202-207
regression, 263-269
sampling distributions and, 172-174
slope, 267-268
test statistic, 175
two factors, 243-254
two variances, 207-215
two-sample, 187-215
two-tailed, 176
with variances, 181-184
-1•
icons, in this book, 5
IF function
arguments, 105
Function Arguments dialog box, 106
Import Data dialog box, 402
importance, 369
importing data, 401-403
independence, testing, 385-388
independent variables. See also variables
covariance analysis, 420
defined, 12, 256, 292
dependent variable relationship, 257
factor, 222
in horizontal axis, 57
level, 223
number of, 283
standard deviation, 267
inferential statistics
error types, 16-17
hypotheses, 14-16
populations and, 11
Insert Function button
defined, 27
fx label, 27, 28
location, 28
Insert Function dialog box
illustrated, 29
opening, 27-28, 29
Insert tab (Ribbon)
Bar button, 72
Column button, 59, 162
illustrated, 18
Line button, 69, 150

Other Charts button, 18
Pie button, 64
Pivot Table button, 416
Scatter button, 74
instant statistics, 138-139
interaction, 249
intercept
calculating, 270
defined, 258
formula, 259
linear regression, 283
multiple regression, 283
negative, 258
positive, 258
regression line, 260
testing, 268-269
zero, 259
INTERCEPT function, 270, 271
intersection
in combining events, 316-317
symbol, 316
interval data, 13
intervals
overlapping, 350
size, 350
small, 350
inverse relationships, 420

-K•

known population variances, 195
KURT function
defined, 131
Function Arguments dialog box, 131, 132
use steps, 132
kurtosis
in box-and-whisker plot, 444-445
defined, 128
excess, 131
formula, 131
with KURT function, 131-132
leptokurtic, 130
mean and variance relationship, 128
negative, 444, 445
platykurtic, 130
positive, 444, 445

- \angle

LARGE function
defined, 118
Function Arguments dialog box, 119
large sample spaces. See also probabilities; sample spaces
combinations, 320
counting rule, 319
elementary outcomes, 319
permutations, 319-320
product rule, 319
Layout tab (Ribbon)
Axis Titles button, 61
Chart Title button, 61
Data Labels button, 66
Error Bars button, 379, 380, 442
Labels button, 73
leaves. See also stem-and-leaf plot
adding, 435
defined, 434
labeling, 435
leptokurtic, 130
Line Fit Plot (Regression tool), 282
line graphs. See also graphs
categorical variables and, 373
creating, 69-70
data selection, 69
defined, 68
illustrated, 68
modifying, 69
titles, 70
type selection, 69
uses, 68
linear equations, 257
linear regression. See also regression
defined, 74
extrapolating beyond scatterplot and, 371
intercept, 283
in predictions, 282
regression coefficient, 283
standard error of estimate, 283
linear trends. See also trends
cubic, 238
defined, 235
quadratic, 238
Sum of Squares for, 236
lines
graphing, 257-259
intercept, 258-259
regression, 259
slope, 258
smoothed, 448, 449, 450
LINEST function
cell ranges, 276, 286
defined, 275
Function Arguments dialog box, 275-276, 285, 286
for multiple regression, 285-287
multiple results, 287
results, 277
use steps, 276, 286
loaded dice
outcomes, 360
probabilities, 360
simulation results, 362
tossing simulation statistics, 363
logarithms
common, 389
defined, 388
natural, 388, 392
LOGEST function
defined, 395
Function Arguments dialog box, 395, 396
results, 396
use steps, 395-396
LOGINV function, 394
lognormal distribution, 394-395
LOGNORMDIST function
defined, 393
Function Arguments dialog box, 394
return, 393

- M

Math \& Trig Functions menu, 29
MAX function
accessing, 51
defined, 51, 126
in five-number summary, 439
Function Arguments dialog box, 127
use steps, 126-127

MAXA function, 127
mean and variance, 128
Mean Squares
defined, 219, 266
degrees of freedom and, 224
example, 220
finding, 220
formula, 220
Sum of Squares and, 223
means
abbreviation, 80
calculating, 80-81, 379
comparing, 230-232
confidence limits for, 163-165
defined, 79
example, 80
formula, 80-81
functions, 81-88
geometric, 88
grand, 220
group of, 382
for group of numbers, 89
harmonic, 89
population, 81
random variable, 324
running weighted, 447
sample, 79
of sampling distribution, 157, 190
skip, 447
MEDIAN function
defined, 90
in five-number summary, 439
Function Arguments dialog box, 90, 91
steps, 90
medians
defined, 90
extreme values and, 446
finding, 90
quartile difference, 440
worksheet function, 90-91
MIN function
accessing, 51
defined, 51,127
in five-number summary, 439
MINA function, 127

MOD function
arguments, 435-436
defined, 435
Function Arguments dialog box, 436
mode
defined, 91
finding, 91-92
function, 91
as representative of central tendency, 91
MODE function, 92
modeling
distributions, 349-358
simulations, 359-366
models
defined, 349
fit, testing, 352-355
Poisson distribution in, 351
researcher use, 349
Moh's Scale, 12
Monte Carlo simulations, 359
Move Chart dialog box, 62
moving average
defined, 376
results, 377
in series, 377
Moving Average tool
defined, 48, 376
dialog box, 376
use results, 377
multinomial distribution, 352
multiple, 219, 222
multiple coefficient of determination, 305
multiple correlation coefficient. See also correlation coefficient
combination, 305
defined, 304
indication, 305
multiple regression. See also regression
as ANCOVA method, 427-430
ANOVA and, 432
defined, 282
Excel tools for, 283-289
hypothesis testing, 282
intercept, 283
LINEST function for, 285-287
regression coefficient, 283

Regression tool for, 287-289
standard error of estimate, 283
TREND function for, 283-285
x-variables, 283
multiple regression/correlation (MRC), 431, 432

- N

Name box, 29
Name Manager dialog box, 42
named arrays. See also arrays
in array formulas, 46-47
autofilling from, 46
illustrated, 46
names, array
absolute referencing and, 46
attachment of, 40
beginning character, 38
defining, 38-46
managing, 42
spaces/symbols and, 38
tracking, 42
uniqueness, 39
using, 41
natural logarithms. See also logarithms
abbreviation, 392
common logarithms comparisons, 392
defined, 150, 388
negative binomial distribution
defined, 326
NEGBINOMDIST function for, 328-329
negative correlation, 292
negative kurtosis, 444, 445
NEGBINOMDIST function
defined, 328
Function Arguments dialog box, 328-329
use steps, 328-329
New Name dialog box, 39-40
New Web Query window, 402
nominal data, 12
nonlinear trends, 235
normal distribution
defined, 143
divided into standard deviations, 144
Excel formula, 151
normal distribution (continued)
formula, 392
member symmetry, 143
parameters, 143-144
probabilities, 143
sampling distribution as, 157-158
standard, 131, 148
x and $f(x)$ relationship, 150-151
Normal Probability Plot (Regression tool), 282
NORMDIST function
cumulative area, 145
defined, 145
formula, 146
Function Arguments dialog box, 145, 146
use steps, 145
NORMINV function
defined, 146
Function Arguments dialog box, 146, 147
uses, 146
NORMSDIST
defined, 148
Function Arguments dialog box, 149
NORMSINV function, 149
null hypotheses. See also hypotheses
defined, 15, 171
rejecting/not rejecting, 16, 17
statistical notation, 15
as tendency to maintain status quo, 17
testing versus alternative hypothesis, 173
trying not to reject, 370
number crunching, 9-10

- 0
one-factor ANOVA, 222
one-tailed hypothesis testing
critical value, 194
defined, 176
rejection, 177
TTEST function, 204
ordinal data, 12
organization, this book, 3-4
origin, 259
outcomes
elementary, $314,317,319$
loaded dice, 360
summarizing, 372
outliers, 86
- p
paired samples hypothesis testing, 202-207
defined, 202
example data, 202
t-test: Paired Two Sample for Means tool, 205-207
TTEST for, 203-205
parameters
distribution, 361
Greek letters for, 11
normal distribution, 143-144
number of, 354
statistics relationship, 11
part correlation, 307
partial correlation, 306-307
Pascal distribution, 326
Paste Special dialog box, 365-366
Pearson Correlation Coefficient, 206
PEARSON function
defined, 300
use steps, 301
Pearson's product-moment correlation coefficient, 294
Peltier Web site, 439
percentages, Pythagorean, 356
PERCENTILE function, 119
percentiles
data, 281
defined, 119
scores, 119-121
in summarizing score groups, 120
PERCENTRANK function, 120
periodic sampling, 385
PERMUT function
defined, 321
Function Arguments dialog box, 321-322
use steps, 321
permutations
calculating, 321-322
defined, 320
formula, 320
large sample spaces, 319-320
PI function, 151
pie graphs. See also graphs
axes and, 57
borders, 65
changing, 67
creating, 64-65
data selection, 64
exploding, illustrated, 67
fills, 65
illustrated, 64
labels, 66
modifying, 65
slices, clicking, 65
slices, number of, 68
slices, pulling apart, 66-67
type selection, 64
pivot tables
creating, 416-418
defined, 414
dropping fields into/out of, 418
illustrated examples, 415
importance, 418
setting up, 414-415
PivotTable Layout
defined, 416
illustrated, 417, 418
populating, 416-418
planned comparisons. See also unplanned comparisons
ANCOVA and, 430
carrying out, 230
comparison coefficients, 225
defined, 224
t-test formula, 225-226
platykurtic, 130
point biserial correlation, 301
Poisson distribution
binomial calculations, 340
calculating, 341-342
defined, 340
formula, 340-341, 350
illustrated, 342
in model, 351
uses, 350
POISSON function
defined, 341
Function Arguments dialog box, 341-342
results, 342
use steps, 341-342
using, 352
Poisson process, 350
pooled estimates
defined, 195
example, 196
of population variance, 220-221
unequal variances and, 197
pooling, 195
population standard deviation. See also standard deviation
defined, 101
formula, 101
functions, 101-102
symbol, 101
population variances
calculating, 97-98
defined, 412
degrees of freedom in, 179
estimating, 195
estimating formula, 219
known, 195
pooled estimates, 220-221
unknown, 195
populations
bell curve, 142
Central Limit Theorem and, 158
characteristics, 11, 81
inferential statistics and, 11
mean, 81
mean, best estimate, 163
parameters, estimating, 155
regression equation, 263
regression line through, 263
samples relationship, 11
standard deviation, 178
positive correlation, 292
positive kurtosis, 444, 445
post hoc tests. See unplanned comparisons
predictions
gain in, 265
linear regression in, 282
outside range, 371
PROB function, 383
probabilities
assigning, 315
beta, 335-340
binomial distribution, 325-326
conditional, 14, 317-318
decision error, 174
defined, 13
of elementary outcomes, 314
exponential distribution, 345-347
formula, 14
gamma distribution, 342-345
hypergeometric distribution, 332-334
hypothesis testing, 329-332
intuitive idea of, 313
large sample spaces, 318-320
loaded dice, 360
multiplying, 386
Poisson distribution, 340-342
probability distributions, 323-325
as proportion of area under part of distribution, 313
sample mean, 174
sample spaces and, 314-315
successes, 329
working with, 318
worksheet functions, 326-329, 383-384
probability decision errors, 173
probability density
curve, 336
defined, 143, 324
graph creation, 343
probability density function
defined, 324
gamma distribution, 343
illustrated, 325
normal distribution, 143
Weibull, 384
probability distributions
defined, 323
for random variable, 323
working with, 324
product rule, 319
Pythagorean percentage
calculating, 356-357
defined, 356
multiplying, 357
- 0
quadratic component, 238
quantitative variables, 372-373
quartic component, 238
QUARTILE function, 120, 439
questions, statistician, 9
Quick Access Toolbar, 34
quintic component, 238

- R •

R Square, 306
RANDBETWEEN function, 160-161
Random Number Generation tool
defined, 48, 360
dialog box, 361, 364
distribution types, 361
for normal distribution, 364
number of variables, 361
output options, 361
use steps, $360-361$
using, 363-364
random sampling, 385
random variables. See also variables
beta distribution, 335-336
continuous, 323
defined, 323
discrete, 323
hypergeometrically distributed, 333
lognormally distributed, 393
mean, 324
probability distributions for, 323
standard deviation, 324
variance, 324
randomized blocks. See repeated measures range, 138

Rank and Percentile tool. See also data analysis tools
defined, 48
illustrated, 121
opening, 121
options, 122
output, 122
use steps, 121-122
RANK function
defined, 117
Function Arguments dialog box, 117
steps, 117-118
ranks
auto-filled, 118
finding score for, 118-119
ratio data, 13
reciprocal, 89
records. See also databases
counting, 409-410
defined, 405
retrieving one, 410
referencing cells. See also cells
absolute, 24-25
relative, 23-24
regression
correlation and, 294-297
curvilinear, 371
defined, 255
degrees of freedom, 266
equation, 263
for forecasting, 261
hypothesis testing about, 263-269
linear, 74, 282, 370
multiple, 282
uses, 255
worksheet functions, 269-277
regression coefficients
defined, 259
formulas, 259
linear regression, 283
multiple regression, 283
regression line
defined, 259, 294
intercept, 260
point prediction, 296
points on, 295
through population, 263
scatterplot fit, 264-267
slope, 260, 424
variability around, 261-263, 371
x-variable and, 295
regression method (ANCOVA), 427-430
Regression tool
Adjusted R Square, 306
alpha, 278, 288
for ANCOVA table, 429
ANOVA table, 279, 288
cell ranges, 278, 288
defined, 48, 277
dialog box, 277
graphic output, 280-282, 289
Line Fit Plot, 282
lower half of tabled output, 280
for multiple regression, 287-289
Normal Probability Plot, 282
output, 279-282, 289
output options, 278, 288
percentile data, 281
PROBABILITY OUTPUT table, 280
RESIDUAL OUTPUT table, 280
residuals, 281
running, 432
tabled output, 279-280, 288
upper half of tabled output, 279
use steps, 277-278
y-values, 281
relationships
correlation and, 291-310
direct, 419
independent variable and dependent variable, 257
inverse, 420
population and sample, 11
Sum of Squares, 234
variable, 255-289
relative referencing. See also referencing cells
in autofilling, 24
converting to absolute references, 24-25
defined, 23
formula assumption, 24
using, 23-24
repeated measures. See also analysis of variance
defined, 232
error term, 234
example data, 233
variances, 233
working with, 232-235
residual variance
defined, 261
example, 263
residuals
analysis, 371
defined, 261, 296
error estimate, 262
graph, 281
Ribbon
Data tab, 30, 49, 50, 134, 401
defined, 18
Design tab, 61, 67, 70, 73, 75
Formula tab, 28, 29, 34, 39, 42, 414
Home tab, 51-52
Insert tab, 18, 59, 64, 69, 72, 416
Layout tab, 61, 66, 73, 379, 442
menu bar switch to, 19
row factor
column factor interaction, 251
defined, 249
variance, 250
rows. See also databases
multiple, "or" and, 410
stem-and-leaf display, 436
totaling, 23
RSQ function, 302
running weighted mean, 447
-S •
sabermetrics, 356
sample mean, 79, 174
sample spaces
defined, 314
elementary outcomes in, 317
large, 318-320
probability and, 314-315
sample standard deviation. See also standard deviation
defined, 102
formula, 102
functions, 102-103
return of, 413
symbol, 102
sample variances. See also variances
calculating, 100
defined, 412
estimating population variance, 166
formula, 99
samples
all possible, from three scores, 159
characteristics of, 81
drawing, 384-385
examples, 10
paired, 202-207
populations relationship, 11
too large, 371-372
sampling distributions
Central Limit Theorem and, 157
CONFIDENCE function assumption, 169
defined, 156, 172
of difference between means, 188, 189, 190
example illustration, 164
FREQUENCY function and, 161-162
hypothesis tests and, 172-175
illustrated, 156
importance of, 156
for large samples, 191
mean of, 157, 190
parameters, 160
partitioned into standard error units, 158
RANDBETWEEN function and, 160-161
set of differences as, 189
simulation, illustrated, 160
simulation steps, 160-162
small samples, 166
standard deviation of, 157, 190
two-sample hypothesis testing, 188-194
Sampling tool
defined, 48, 384
dialog box, 385
selecting periodically, 384
selecting randomly, 384
satellites database, 405-407
scatterplots. See also graphs
with additional information, 77
creating, 74-75
data, 74
defined, 74, 256, 291
deviations in, 265
expanding, 371
extrapolating beyond, 371
fitting curve through, 370
illustrated, 75
layout, 75
modifying, 75
points, distances, 295
points, right-clicking, 76
regression line fit, 264-267
trendline, 76
type selection, 74
x-axis, 256
y-axis, 256
Scheffé's test, 227-228
scores
converting, to z-score, 147
distribution, 132-136
exam, 113-114
number of, 123
percentage of, 136
percentile, 119-121
rank, 17-19
standard. See z-scores
standard units, 111
standardizing, 147
standing, 116-122
in stem-and-leaf display, 434-435
Select Source dialog box, 70
semipartial correlation, 307
Series dialog box, 22
significance, 369
significant linear component, 236
simulations
Central Limit Theorem, 158-162, 363-366
loaded dice, 359-363
Monte Carlo, 359

SKEW function
defined, 129
Function Arguments dialog box, 129, 130
use steps, 129
skewness
in box-and-whisker plot, 444
defined, 128
formula, 128, 129
histogram illustration, 129
mean and variance relationship, 128
SKEW function for, 129-130
skip mean, 447
slices. See also pie graphs
clicking, 65
number of, 68
pulling apart, 66-67
slope
calculating, 424
defined, 258
formula, 259
negative, 258
positive, 258
regression line, 260, 424
standard error, 267
testing, 267-268
t-test for, 267
SLOPE function, 270, 424
SMALL function, 118
SMOOTH, 451
smoothed lines, 448, 449, 450
smoothing
data, 447, 450-451
exponential, 377-379
three-median, 446
squared deviations. See also deviations
averaging, 94-97
defined, 95
multiplying by number of scores, 221
stacked column graphs. See also column graphs; graphs
column order, 62
column size, 61-62
conversion into box-and-whisker plots, 440-444
illustrated, 441
inserting, 62
stacked column graphs (continued)
in own worksheet, 63
segments, 61
with whiskers, 443
standard deviation. See also deviations
calculating, 379
defined, 100-101
filtering data to calculate, 104
normal distribution divided into, 144, 148
population, 101-102, 178
random variable, 324
return of, 413
sample, 102-103, 413
sampling distribution, 157, 190
trial, 105
as unit of measure, 116
standard error
defined, 138, 157
difference between means, 190
graph, 373
maximum/minimum difference, 138
multiplying z-score by, 164
slope, 267
standard error of estimate
calculating, 270
defined, 261
formula, 262
linear regression, 282
multiple regression, 282
standard error of mean
in Central Limit Theorem, 173
defined, 157
estimate, 167
graph illustration, 382
graphing, 379-382
standard normal distribution
binomial distribution approximation, 331
defined, 131, 148
divided by standard deviations, 148
illustrated, 325
standard scores. See z-scores
standard units, 111
STANDARDIZE function
defined, 114
Function Arguments dialog box, 114, 115
statistical concepts, 10
statistical control, 421
Statistical Functions menu
illustrated, 35
locating, 20
statistics
as aid to common sense, 185
as decision-making field, 9
English letters for, 11
inferential, 14-17
instant, 138-139
parameters relationship, 11
Status bar
customizing, 138-139
displaying values of, 139
right-clicking, 138
STDEV function
AVERAGE function with, 103
defined, 102
Function Arguments dialog box, 103
STDEVA function, 103
STDEVP function
defined, 101
Function Arguments dialog box, 101, 102
STDEVPA function, 102
stem-and-leaf plot
defined, 434
illustrated, 434
intermediate display, 434-435
leaves, adding, 435
leaves, labeling, 435
rows, 436
stems, placing, 435
stemplot. See stem-and-leaf plot
STEYX function, 270, 271
SUM function
accessing, 51
defined, 30
with five arguments, 33
use illustration, 31
using, 30-31
Sum of, abbreviation, 80
Sum of Squares
defined, 220, 265
for linear trends, 236
Mean Squares and, 223
relationships of, 234

SUMIF function
defined, 41
formulas, 44, 45
Function Arguments dialog box, 43, 44, 45
SUMIFS function, 41
SUMPRODUCT function
defined, 230, 241
formulas, 362,363
squared coefficients multiplication, 231, 241
SUMQ function, 242
systematic variation, 373

-T•

TDIST function
defined, 180
Function Arguments dialog box, 180
return, 180
use steps, 180-181
t-distribution
defined, 166
degrees of freedom and, 167, 179
members, 167
value, finding, 168
test statistic
chi-square, 181
defined, 175
evaluation, 197
t as, 179
two-variances hypothesis testing, 208
value size, 175
z-scores as, 175, 191
testing. See hypothesis testing
testing more than two samples. See also hypothesis testing
data, 218
defined, 217
problem, 218-219
relationships, 223-224
solution, 219-223
three-median smoothing, 446
time series, 375
TINV function
answer, multiplying by standard error, 169
defined, 168

Function Arguments dialog box, 168
use steps, 168
Toolpak, 49
Total Variance, 220, 265
traits
distribution, 141-142
measuring, 142
types of, 141
transformation, correlation coefficient, 299
transposition, 365
trend analysis
carrying out, 241
comparison coefficients in, 235
defined, 235
objective, 235
TREND function
defined, 272
Function Arguments dialog box, 272-273, 274, 284
for multiple regression, 283-285
predicting new set of y's, 273-275
predicting y's, 272-273
results, 273, 275, 285
use steps, 272-273, 274, 283-284
trendlines, 76
trends
analyzing, 235, 240-242
cubic component, 238
four means, 237
linear, 235
nonlinear, 235
quadratic component, 238
quartic component, 238
quintic component, 238
trials, 83
average, 105
defined, 104, 314
experimental, 86
slow/fast reaction times, 86
standard deviation, 105
TRIMMEAN function
defined, 87
Function Arguments dialog box, 87
percentages trimmed, 88
use guidelines, 87
T-score, 115
t -Test: Paired Two Sample for Means tool cell ranges, 206
data from matched samples, 205
defined, 205
dialog box, 205
difference, 206
output options, 206
results, 207
unequal variances, 210
use steps, 205-206
variables, 206
t-Test: Two Sample tool
cell ranges, 199
defined, 48
Equal Variances tool, 201
output options, 200
results, 200
samples, 201
Unequal Variances tool, 201
variables, 199
TTEST function
defined, 197
Function Arguments dialog box, 197-198, 204
for matched samples, 203-205
one-tailed test, 204
two-tailed test, 198
use steps, 197-198, 204
working with, 198
t-tests
equal variances, 210
F-distribution, 209-210
formulas, 195, 203, 225
intercept, 268
planned comparison, 225
post-ANOVA, 224
slope, 267
unequal variances, 210
two-factor ANOVA
analysis, 250-251
Anova: Two-factor with Replication tool for, 252-254
Anova: Two-Factor without Replication tool for, 246-247
column factor, 249, 250
defined, 244
grand mean, 244
hypothesis testing, 245
interactions, 249
presentation methods, 248-249
row factor, 249, 250
rows and columns, 248-249
variances, 244-245, 250
two-factors hypothesis testing
combinations, 243-254
defined, 243
variances, 244-245
two-sample hypothesis testing
Central Limit Theorem, 189-190
one-tailed test, 187, 188
paired samples, 202-207
sampling distributions, 188-194
two variances, 207-215
two-tailed test, 187, 188
two-tailed hypothesis testing
defined, 176
rejection region, 177
TTEST function, 198
z-score, 176
two-variances hypothesis testing, 207
with FDIST function, 212-213
with FINV function, 213
with F-test data analysis tool, 214-215
with FTEST function, 210-211
test statistic, 208
Type I error
defined, 17, 172
example, 17
probability, 268
tolerating, 174
Type II error, 17, 172

- U •
unequal variances. See also variances defined, 197
degrees of freedom and, 202
t-test, 210
t-test calculation, 197
union
in combining events, 315-316
symbol, 315
unplanned comparisons. See also planned comparisons
ANCOVA and, 430
carrying out, 232
defined, 227
Scheffé's test, 227-228

- U

\#VALUE! error, 47
values
absolute, 108
critical, 173
Descriptive Statistics tool, 138
displaying on Status bar, 139
Excel guessing, 33
expected, 324
five-number summary, 439
smoothed, 447
types of, 32
typing in, 32
VAR function, 100
VARA function, 100
variability
in graphs, 373
regression line, 371
reporting, 25
variables
categorical, 372-373
defined, 11
dependent, 11, 12, 57, 256
dichotomous, 301
independent, 11, 12, 57, 222-223, 256
one value, 11
quantitative, 372-373
random, 322-323
relationships, 255
variances
analysis of, 222, 224
between sample means, 221
in covariate, 424
defined, 95
equal, 195-197, 202
example, 96
formula, 96, 99
from grand mean, 233-234
large, 97
Mean Square, 219
measuring, 93, 94-100
population, 412
population, calculating, 97-98
random variable, 324
residual, 261, 263
sample, 99, 166, 412
small, 97
square root, 100-101
symbol, 96
testing, 181-184
Total, 220, 265
two-factor ANOVA, 244-245, 250
two-factors hypothesis testing, 244-245
unequal, 197, 202
VARP function
defined, 97
formula, 98
Function Arguments dialog box, 97
working with, 97-98
VARPA function, 98
vertical axis. See also axes
bell curve, 142
defined, 57
dependent variable, 57

-W

Weibull distribution, 384
WEIBULL function, 383-384
whiskers. See also box-and-whisker plot adding, 442
defined, 438
quartiles becoming, 440
stacked column chart with, 443
wildcard characters, database functions and, 410
within subjects. See repeated measures
worksheet functions. See also specific functions
arguments, 31-32
categories, 30
for correlation, 300-302
in Excel 2007, 30-33
multiargument capabilities, 32
worksheet functions (continued)
probabilities, 326-329, 383-384
regression, 269-277
steps for using, 30-31
worksheets
as databases, 405-418
names, tracking, 42
Status bar, 138-139

- X
x-axis. See also horizontal axis
defined, 57
intercept, 258-259
use of, 256
x-variables. See also independent variables number of, 283
regression line and, 295
specifying, 287
standard deviation, 267
y-variable relationship, 257
x-y pairs, 257
- V
y-axis. See also vertical axis
defined, 57
intercept, 258-259
use of, 256
y-intercept. See intercept
y-variables. See also dependent variables defined, 256
x-variable relationship, 257
- 7
z-scores. See also scores auto-filled array, 116
characteristics of, 112
converting scores to, 147
defined, 112
in exam score example, 113-114
formula, 112
hiding, 115
multiplying by standard error, 164
negative, 115, 164
NORMSDIST function and, 149
NORMSINV function and, 149
positive, 164
STANDARDIZE function and, 114-116
as test statistic, 175, 191
in two-tailed hypothesis testing, 176
z-Test: Two Sample for Means tool
cell ranges, 193
defined, 48
dialog box, 193
difference, 193
results, 194
use steps, 193-194
variance, 193, 194
z-test formula, 191
ZTEST function
defined, 177
Function Arguments dialog box, 178
use steps, 178
z-score calculation elimination, 177

```
Accounting For Dummies, 4th Edition*
978-0-470-24600-9
Bookkeeping Workbook For Dummies+
978-0-470-16983-4
Commodities For Dummies
978-0-470-04928-0
Doing Business in China For Dummies
978-0-470-04929-7
Accounting For Dummies, 4th Edition* 978-0-470-24600-9
Bookkeeping Workbook For Dummies + 978-0-470-16983-4
Commodities For Dummies
978-0-470-04928-0
Doing Business in China For Dummies
978-0-470-04929-7
```

E-Mail Marketing For Dummies
978-0-470-19087-6
Job Interviews For Dummies, 3rd Edition* ${ }^{*}$ 978-0-470-17748-8
Personal Finance Workbook For Dummies* ${ }_{+}$ 978-0-470-09933-9
Real Estate License Exams For Dummies
978-0-7645-7623-2

Six Sigma For Dummies

978-0-7645-6798-8
Small Business Kit For Dummies, 2nd Edition* ${ }^{+}$
978-0-7645-5984-6
Telephone Sales For Dummies
978-0-470-16836-3

BUSINESS PRODUCTIVITY \& MICROSOFT OFFICE

Access 2007 For Dummies
978-0-470-03649-5
Excel 2007 For Dummies
978-0-470-03737-9
Office 2007 For Dummies
978-0-470-00923-9

PowerPoint 2007 For Dummies
978-0-470-04059-1
Project 2007 For Dummies
978-0-470-03651-8
QuickBooks 2008 For Dummies
978-0-470-18470-7

Quicken 2008 For Dummies
978-0-470-17473-9
Salesforce.com For Dummies, 2nd Edition
978-0-470-04893-1
Word 2007 For Dummies
978-0-470-03658-7

EDUCATION, HISTORY, REFERENCE \& TEST PREPARATION

African American History For Dummies 978-0-7645-5469-8

Algebra For Dummies 978-0-7645-5325-7

Algebra Workbook For Dummies 978-0-7645-8467-1

Art History For Dummies
978-0-470-09910-0

ASVAB For Dummies, 2nd Edition

 978-0-470-10671-6British Military History For Dummies 978-0-470-03213-8

Calculus For Dummies
978-0-7645-2498-1
Canadian History For Dummies, 2nd Edition
978-0-470-83656-9

Geometry Workbook For Dummies 978-0-471-79940-5

The SAT I For Dummies, 6th Edition 978-0-7645-7193-0

Series 7 Exam For Dummies 978-0-470-09932-2

World History For Dummies 978-0-7645-5242-7

FOOD, GARDEN, HOBBIES \& HOME

Bridge For Dummies, 2nd Edition
978-0-471-92426-5
Coin Collecting For Dummies, 2nd Edition 978-0-470-22275-1
Cooking Basics For Dummies, 3rd Edition 978-0-7645-7206-7

Drawing For Dummies
978-0-7645-5476-6
Etiquette For Dummies, 2nd Edition 978-0-470-10672-3

Gardening Basics For Dummies* \dagger
978-0-470-03749-2

Knitting Patterns For Dummies 978-0-470-04556-5

Living Gluten-Free For Dummies ${ }^{+}$ 978-0-471-77383-2

Painting Do-It-Yourself For Dummies 978-0-470-17533-0

health, self help, PARENTING \& PETS

Anger Management For Dummies 978-0-470-03715-7

Anxiety \& Depression Workbook For Dummies
978-0-7645-9793-0
Dieting For Dummies, 2nd Edition 978-0-7645-4149-0
Dog Training For Dummies, 2nd Edition 978-0-7645-8418-3

Horseback Riding For Dummies
978-0-470-09719-9
Infertility For Dummies ${ }^{\dagger}$
978-0-470-11518-3
Meditation For Dummies with CD-ROM, 2nd Edition
978-0-471-77774-8
Post-Traumatic Stress Disorder For Dummies
978-0-470-04922-8

Puppies For Dummies, 2nd Edition 978-0-470-03717-1
Thyroid For Dummies, 2nd Edition + 978-0-471-78755-6

Type 1 Diabetes For Dummies* \dagger 978-0-470-17811-9

[^2]Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974. U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

AdWords For Dummies
978-0-470-15252-2
Blogging For Dummies, 2nd Edition 978-0-470-23017-6

Digital Photography All-in-One
Desk Reference For Dummies, 3rd Edition 978-0-470-03743-0
Digital Photography For Dummies, 5th Edition 978-0-7645-9802-9
Digital SLR Cameras \& Photography For Dummies, 2nd Edition
978-0-470-14927-0
eBay Business All-in-One Desk Reference For Dummies
978-0-7645-8438-1
eBay For Dummies, 5th Edition* 978-0-470-04529-9
eBay Listings That Sell For Dummies 978-0-471-78912-3
Facebook For Dummies
978-0-470-26273-3
The Internet For Dummies, 11th Edition 978-0-470-12174-0
Investing Online For Dummies, 5th Edition 978-0-7645-8456-5
iPod \& iTunes For Dummies, 5th Edition 978-0-470-17474-6

MySpace For Dummies 978-0-470-09529-4

Podcasting For Dummies 978-0-471-74898-4
Search Engine Optimization For Dummies, 2nd Edition 978-0-471-97998-2
Second Life For Dummies 978-0-470-18025-9
Starting an eBay Business For Dummies, 3rd Edition \dagger
978-0-470-14924-9

GRAPHICS, DESIGN \& WEB DEVELOPMENT

Adobe Creative Suite 3 Design Premium All-in-One Desk Reference For Dummies 978-0-470-11724-8
Adobe Web Suite CS3 All-in-One Desk Reference For Dummies
978-0-470-12099-6
AutoCAD 2008 For Dummies
978-0-470-11650-0
Building a Web Site For Dummies, 3rd Edition
978-0-470-14928-7
Creating Web Pages All-in-One Desk Reference For Dummies, 3rd Edition
978-0-470-09629-1

Creating Web Pages For Dummies, 8th Edition
978-0-470-08030-6
Dreamweaver CS3 For Dummies 978-0-470-11490-2
Flash CS3 For Dummies 978-0-470-12100-9
Google SketchUp For Dummies 978-0-470-13744-4
InDesign CS3 For Dummies
978-0-470-11865-8
Photoshop CS3 All-in-One Desk Reference For Dummies 978-0-470-11195-6

Photoshop CS3 For Dummies
978-0-470-11193-2
Photoshop Elements 5 For Dummies 978-0-470-09810-3
SolidWorks For Dummies 978-0-7645-9555-4
Visio 2007 For Dummies
978-0-470-08983-5
Web Design For Dummies, 2nd Edition 978-0-471-78117-2
Web Sites Do-It-Yourself For Dummies 978-0-470-16903-2
Web Stores Do-It-Yourself For Dummies 978-0-470-17443-2

LANGUAGES, RELIGION \& SPIRITUALITY

Arabic For Dummies
978-0-471-77270-5
Chinese For Dummies, Audio Set
978-0-470-12766-7
French For Dummies
978-0-7645-5193-2
German For Dummies
978-0-7645-5195-6
Hebrew For Dummies 978-0-7645-5489-6

Ingles Para Dummies
978-0-7645-5427-8
Italian For Dummies, Audio Set 978-0-470-09586-7

Italian Verbs For Dummies
978-0-471-77389-4
Japanese For Dummies
978-0-7645-5429-2
Latin For Dummies
978-0-7645-5431-5
Portuguese For Dummies
978-0-471-78738-9
Russian For Dummies
978-0-471-78001-4
Spanish Phrases For Dummies
978-0-7645-7204-3
Spanish For Dummies
978-0-7645-5194-9

Spanish For Dummies, Audio Set
978-0-470-09585-0
The Bible For Dummies
978-0-7645-5296-0
Catholicism For Dummies
978-0-7645-5391-2
The Historical Jesus For Dummies 978-0-470-16785-4

Islam For Dummies
978-0-7645-5503-9
Spirituality For Dummies, 2nd Edition
978-0-470-19142-2

NETWORKING AND PROGRAMMING

ASP.NET 3.5 For Dummies
978-0-470-19592-5
C\# 2008 For Dummies
978-0-470-19109-5
Hacking For Dummies, 2nd Edition
978-0-470-05235-8
Home Networking For Dummies, 4th Edition 978-0-470-11806-1

Java For Dummies, 4th Edition 978-0-470-08716-9
Microsoft ${ }^{\ominus}$ SQL Server"' 2008 All-in-One Desk Reference For Dummies 978-0-470-17954-3
Networking All-in-One Desk Reference For Dummies, 2nd Edition 978-0-7645-9939-2

Networking For Dummies, 8th Edition
978-0-470-05620-2
SharePoint 2007 For Dummies
978-0-470-09941-4
Wireless Home Networking
For Dummies, 2nd Edition
978-0-471-74940-0
iMac For Dummies, 5th Edition 978-0-7645-8458-9

Laptops For Dummies, 2nd Edition 978-0-470-05432-1

Linux For Dummies, 8th Edition 978-0-470-11649-4

MacBook For Dummies 978-0-470-04859-7

Mac OS X Leopard All-in-One Desk Reference For Dummies 978-0-470-05434-5

Mac OS X Leopard For Dummies 978-0-470-05433-8

Macs For Dummies, 9th Edition 978-0-470-04849-8

PCs For Dummies, 11th Edition 978-0-470-13728-4

Windows ${ }^{\circledR}$ Home Server For Dummies 978-0-470-18592-6

Windows Server 2008 For Dummies 978-0-470-18043-3

Windows Vista All-in-One Desk Reference For Dummies 978-0-471-74941-7
Windows Vista For Dummies 978-0-471-75421-3
Windows Vista Security For Dummies 978-0-470-11805-4

SPORTS, FITNESS \& MUSIC

Coaching Hockey For Dummies 978-0-470-83685-9
Coaching Soccer For Dummies 978-0-471-77381-8
Fitness For Dummies, 3rd Edition 978-0-7645-7851-9
Football For Dummies, 3rd Edition
978-0-470-12536-6

GarageBand For Dummies

978-0-7645-7323-1
Golf For Dummies, 3rd Edition 978-0-471-76871-5
Guitar For Dummies, 2nd Edition 978-0-7645-9904-0
Home Recording For Musicians For Dummies, 2nd Edition
978-0-7645-8884-6

* Separate Canadian edition also available
\dagger Separate U.K. edition also available

Get smart @ dummies.com ${ }^{\circledR}$

- Find a full list of Dummies titles

- Look into loads of FREE on-site articles
- Sign up for FREE eTips e-mailed to you weekly
- See what other products carry the Dummies name
- Shop directly from the Dummies bookstore
- Enter to win new prizes every month!

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974. U.K. customers visit www.wileyeurope.com or call (0) 1243843291 . Canadian customers visit www.wiley.ca or call 1-800-567-4797.

DoMore with Dummies Products for the Rest of Us!

Check out the Dummies Product Shop at www.dummies.com for more information!

You too can understand the statistics of life，even if you＇re math－challenged！

What do you need to calculate？Manufacturing output？ A curve for test scores？Sports stats？You and Excel can do it，and this non－intimidating guide shows you how． It demystifies the different types of statistics，how Excel functions and formulas work，the meaning of means and medians，how to interpret your figures，and more－in plain English．
－Getting there－learn how variables，samples，and probability are used to get the information you want
－Excel tricks — find out what＇s built into the program to help you work with Excel formulas
－Playing with worksheets－get acquainted with the worksheet functions for each step
－Graphic displays－present your data as pie graphs，bar graphs， line graphs，or scatter plots
－What＇s normal？— understand normal distribution and probability
－Hyping hypotheses — learn to use hypothesis testing with means and variables
－When regression is progress－discover when and how to use regression for forecasting
－What are the odds－work with probability，random variables， and binomial distribution

Open the book and find：
－Ten statistical and graphical tips and traps
－The difference between descriptive and inferential statistics
－Why graphs are good
－How to measure variations
－What standard scores are and why they＇re used
－When to use two－sample hypothesis testing
－How to use correlations
－Different ways of working with probability

Go to dummies．com for more！

For Dummies ${ }^{\circledR}$
A Branded Imprint of
WILEY
\＄29．99 US／\＄35．99 CN／£19．99 UK

ISBN 978－ロ－47ロ－454ロレーロ

Joseph Schmuller，PhD，is a technical architect at Blue Cross－Blue Shield of Florida．A former member of the American Statistical Association，he has taught statistics at the undergraduate，honors undergraduate，and graduate levels，and has been honored with an award for excellence in teaching．

[^0]: Figure 2-1:

[^1]: 4. Click OK to close the dialog box and the answer appears in the selected cell.
[^2]: * Separate Canadian edition also available
 \dagger Separate U.K. edition also available

