
What readers are saying about Manage It!

As a 30+ year veteran in the growth of PM, I gained insight into things

I have been doing for years. Here, process takes a backseat to context,

and Johanna provides the professional with one of the finest com-

pendiums of observations, advice, and counsel on managing projects I

have come across.

Mike Dwyer

Sr. Manager, Strategic Initiatives, Healthways

Johanna packs a wealth of practical advice into this book. Even the

most experienced project managers will find numerous nuggets and

gems that they can immediately apply to their project work.

James A. Ward

Senior Project Management Consultant, James A. Ward and

Associates, Inc.

As I was reading this book, I was picturing in my mind many simi-

lar experiences. As I thought to myself, “But what about this?” I kept

finding what I was thinking of! This is one of the best IT books I have

ever read, but it still shows Johanna’s personality. It almost feels like

she is at your elbow as you read it.

Eric Petersen

Senior Consultant, Emprove

Most project management stuff I’ve read is very cerebral and theoret-

ical, and then sometimes it’s extraordinarily specific and dictatorial

but in a realm that has nothing to do with me. This book provides just

what I need—specific suggestions about dealing with reality. Moreover,

it suggests how to think about the problem, rather than stopping at

the cookbook answer.

Peter Harris

Solutions Architect, Claricode, Inc.

This book is a pleasure to read and is packed with wisdom. Junior

project managers will get a great introduction with some really valu-

able practical advice, while senior project managers will learn some

new tricks and relearn some forgotten fundamentals. Project spon-

sors and customers should get a copy too. I pulled some classics from

my shelves including DeMarco, Weinberg, Brooks, McConnell, Cock-

burn, McCarthy, and Humphrey. Johanna is as readable as the best

of them.

George Hawthorne

Project Manager, Oblomov Consulting

I’ve been on the receiving end of (mostly) poor project management for

nearly twenty years. I had never entertained the thought of becoming

a project manager, however, until I read this book. Johanna places

the art in perspective and codifies a practical, flexible approach,

founded on empirical process control theory that thrives on dynamic

environments—where continuous learning is essential to project suc-

cess. I’ve implored everyone associated with project work to read it.

Twice.

Bil Kleb

Aerospace Engineer

In twenty years of managing projects, there have been many new

items for project managers to consider. Johanna Rothman describes

many of them in Manage It! The chapter on meetings is worth the

price of the book by itself. Read this book, and practice its principles.

The people who work on your projects will think you are really smart.

Dwayne Phillips

Senior Systems Engineer

Each project is unique—which is why all project managers need to

know more than one approach for managing projects. Johanna walks

us through her thought process to assess the context around the

project, choose a life cycle, and establish clear criteria for a project.

Her advice will help you make choices that will help your project suc-

ceed.

Esther Derby

President, esther derby associates, inc.

Manage It!
Your Guide to Modern,

Pragmatic Project Management

Johanna Rothman

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2007 Johanna Rothman.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 0-9787392-4-8

ISBN-13: 978-0-9787392-4-9

Printed on acid-free paper with 85% recycled, 30% post-consumer content.

First printing, June 2007

Version: 2007-5-29

http://www.pragmaticprogrammer.com

To Ilse Rothman, the first project manager I knew who

worked in timeboxes and chunks.

And for Naomi, Shaina, and Mark, who supported me

whenever I descended into my “cave” to write.

Contents
Foreword 12

Preface 14

1 Starting a Project 17

1.1 Define Projects and Project Managers 17

1.2 Manage Your Drivers, Constraints, and Floats 19

1.3 Discuss Your Project Constraints with Your Client or Sponsor 22

1.4 Decide on a Driver for Your Project 23

1.5 Manage Sponsors Who Want to Overconstrain Your Project 25

1.6 Write a Project Charter to Share These Decisions . . . 27

1.7 Know What Quality Means for Your Project 30

2 Planning the Project 33

2.1 Start the Wheels Turning 33

2.2 Plan Just Enough to Start 34

2.3 Develop a Project Plan Template 35

2.4 Define Release Criteria 42

2.5 Use Release Criteria . 47

3 Using Life Cycles to Design Your Project 50

3.1 Understanding Project Life Cycles 50

3.2 Overview of Life Cycles 51

3.3 Seeing Feedback in the Project 55

3.4 Larger Projects Might Have Multiple Combinations of Life Cycles 56

3.5 Managing Architectural Risk 60

3.6 Paddling Your Way Out of a Waterfall 62

3.7 My Favorite Life Cycles 63

CONTENTS 8

4 Scheduling the Project 64

4.1 Pragmatic Approaches to Project Scheduling 64

4.2 Select from These Scheduling Techniques 66

4.3 Start Scheduling with a Low-Tech Tool 69

5 Estimating the Work 77

5.1 Pragmatic Approaches to Project Estimation 77

5.2 Milestones Define Your Project’s Chunks 91

5.3 How Little Can You Do? 93

5.4 Estimating with Multitasking 93

5.5 Scheduling People to Multitask by Design 94

5.6 Using Rolling-Wave Scheduling 95

5.7 Deciding on an Iteration Duration 96

5.8 Estimating Using Inch-Pebbles Wherever Possible . . . 98

6 Recognizing and Avoiding Schedule Games 101

6.1 Bring Me a Rock . 101

6.2 Hope Is Our Most Important Strategy 104

6.3 Queen of Denial . 106

6.4 Sweep Under the Rug 109

6.5 Happy Date . 111

6.6 Pants on Fire . 113

6.7 Split Focus . 115

6.8 Schedule Equals Commitment 117

6.9 We’ll Know Where We Are When We Get There 119

6.10 The Schedule Tool Is Always Right 121

6.11 We Gotta Have It; We’re Toast Without It 124

6.12 We Can’t Say No . 126

6.13 Schedule Chicken . 128

6.14 90% Done . 129

6.15 We’ll Go Faster Now . 131

6.16 Schedule Trance . 133

7 Creating a Great Project Team 135

7.1 Recruit the People You Need 135

7.2 Help the Team Jell . 137

7.3 Make Your Organization Work for You 140

7.4 Know How Large a Team You Need 143

7.5 Know When to Add More People 145

7.6 Become a Great Project Manager 145

7.7 Know When It’s Time to Leave 148

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=8

CONTENTS 9

8 Steering the Project 156

8.1 Steer the Project with Rhythm 156

8.2 Conduct Interim Retrospectives 157

8.3 Rank the Requirements 158

8.4 Timebox Requirements Work 161

8.5 Timebox Iterations to Four or Fewer Weeks 164

8.6 Use Rolling-Wave Planning and Scheduling 165

8.7 Create a Cross-Functional Project Team 168

8.8 Select a Life Cycle Based on Your Project’s Risks . . . 169

8.9 Keep Reasonable Work Hours 170

8.10 Use Inch-Pebbles . 171

8.11 Manage Interruptions 172

8.12 Manage Defects Starting at the Beginning of the Project 174

9 Maintaining Project Rhythm 179

9.1 Adopt or Adapt Continuous Integration for Your Project 179

9.2 Create Automated Smoke Tests for the Build 181

9.3 Implement by Feature, Not by Architecture 182

9.4 Get Multiple Sets of Eyes on Work Products 187

9.5 Plan to Refactor . 188

9.6 Utilize Use Cases, User Stories, Personas, and Scenarios to Define Requirements190

9.7 Separate GUI Design from Requirements 191

9.8 Use Low-Fidelity Prototyping as Long as Possible . . . 192

10 Managing Meetings 194

10.1 Cancel These Meetings 194

10.2 Conduct These Types of Meetings 197

10.3 Project Kickoff Meetings 198

10.4 Release Planning Meetings 198

10.5 Status Meetings . 199

10.6 Reporting Status to Management 204

10.7 Project Team Meetings 205

10.8 Iteration Review Meetings 206

10.9 Troubleshooting Meetings 206

10.10 Manage Conference Calls with Remote Teams 208

11 Creating and Using a Project Dashboard 212

11.1 Measurements Can Be Dangerous 212

11.2 Measure Progress Toward Project Completion 215

11.3 Develop a Project Dashboard for Sponsors 238

11.4 Use a Project Weather Report 241

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=9

CONTENTS 10

12 Managing Multisite Projects 246

12.1 What Does a Question Cost You? 247

12.2 Identify Your Project’s Cultural Differences 248

12.3 Build Trust Among the Teams 249

12.4 Use Complementary Practices on a Team-by-Team Basis252

12.5 Look for Potential Multisite Project and Multicultural Problems260

12.6 Avoid These Mistakes When Outsourcing 262

13 Integrating Testing into the Project 265

13.1 Start People with a Mind-Set Toward Reducing Technical Debt265

13.2 Reduce Risks with Small Tests 266

13.3 TDD Is the Easiest Way to Integrate Testing into Your Project267

13.4 Use a Wide Variety of Testing Techniques 270

13.5 Define Every Team Member’s Testing Role 273

13.6 What’s the Right Developer-to-Tester Ratio? 277

13.7 Make the Testing Concurrent with Development 283

13.8 Define a Test Strategy for Your Project 283

13.9 System Test Strategy Template 284

13.10 There’s a Difference Between QA and Test 286

14 Managing Programs 288

14.1 When Your Project Is a Program 288

14.2 Organizing Multiple Related Projects into One Release 289

14.3 Organizing Multiple Related Projects Over Time 291

14.4 Managing Project Managers 294

14.5 Creating a Program Dashboard 296

15 Completing a Project 298

15.1 Managing Requests for Early Release 298

15.2 Managing Beta Releases 299

15.3 When You Know You Can’t Meet the Release Date . . . 300

15.4 Shepherding the Project to Completion 308

15.5 Canceling a Project . 312

16 Managing the Project Portfolio 315

16.1 Build the Portfolio of All Projects 315

16.2 Evaluate the Projects . 317

16.3 Decide Which Projects to Fund Now 318

16.4 Rank-Order the Portfolio 318

16.5 Start Projects Faster . 319

16.6 Manage the Demand for New Features with a Product Backlog 321

16.7 Troubleshoot Portfolio Management 323

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=10

CONTENTS 11

A More Detailed Information About Life Cycles 330

A.1 Serial Life Cycle: Waterfall or Phase-Gate 330

A.2 Iterative Life Cycle: Spiral, Evolutionary Prototyping, Unified Process334

A.3 Incremental Life Cycle: Staged Delivery, Design to Schedule338

A.4 Agile Life Cycles . 339

B Glossary of Terms 343

C Bibliography 345

Index 350

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=11

Foreword
Hello, and welcome to Johanna’s latest book. I’m currently a director at

Yahoo! (in Berkeley) and have been in the software business for several

decades. In fact, you might have heard of Digital Equipment Corpora-

tion (the foundation of the early Internet) and its Alpha system. That

was a very important project for me.

I played a major role in the delivery of the Alpha software. It was a

monumental task: some 2,000 engineers scattered all over the world,

all working on various parts of the system. It required rigorous planning

and project management, and we delivered on a four-year schedule

within one month of our target date. So, as you can imagine, I thought

I was a pretty good manager! But I was about to find out what an

excellent manager is like.

In May 1996, I decided to leave DEC, and I heard about a job opening

at another major software company in the Boston area. It was just the

kind of challenge I relish, director of a product group—“a team living

in chaos.” Great, I thought. This is what I do! Coax the potential out of

the chaos, and help deliver an actual working product. Now where’s my

white horse?

I heard that a consultant had been brought in to “triage” the develop-

ment of the group’s beta release. This only strengthened my conviction

that they would soon find the hero they had been waiting for—in me.

But, wow! Instead, I was instantly (and progressively more and more)

humbled and impressed. I understand what consultants are supposed

to do. . . but when do they actually articulate situations in practical and

actionable ways? This consultant had done just that. And in just a cou-

ple of months, she had managed to get all the pieces in place: a project

charter, a program plan, and project plans, as well as defined roles

and responsibilities, a defined development process, pertinent metrics,

release criteria, beta customers. . . all the elements that are critical for

a project to succeed.

FOREWORD 13

But all that usually takes significant time to put in place—especially

when starting from a deficit position. Yet here they were! You’ve

probably guessed by now that this consultant was Johanna Rothman.

(Johanna has a case study about our joint adventure on her website—

only the names have been changed to protect the guilty!)

Over the years since I first met Johanna, I’ve run software development

organizations in companies large and small. And on numerous occa-

sions, I’ve engaged Johanna’s services to help move my team to the next

level. Her assessment process is rigorous and provides the solid foot-

ing that’s required for effective project management. She tailors effec-

tive workshops on a multitude of topics—for me, she has done iterative

project requirements, project management, and QA. I have hired her for

interim management positions and for one-on-one coaching for people

with varied skill sets. Johanna draws on a broad range of experience

in a diversity of situations and organizations, and she always manages

to provide solutions that are practical and realistic—solutions that can

actually be implemented to solve key problems.

And so, this book is a real gift from Johanna.

She pulls knowledge from all her years on the front lines and presents

the material in a cohesive way. The book provides you with the tools you

need to analyze your own situation, build a framework and rational

plan, and then execute. Johanna gives you lots of tips and examples

of what works and what doesn’t—and advice on how to avoid the rat

holes. Even after years of project and program management experience,

I learned new things when reviewing this book. And when I’m in a new

or challenging situation or when I need a sounding board to help me

think through a tough problem, Johanna is the one I call.

Oh, yeah—that project we worked on when I first met Johanna? We

shipped the product to the beta customers, and it worked!

I know Johanna’s book will help you succeed as well.

Ellen R. Salisbury (Director, Yahoo! Research Berkeley)

April 2007

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=13

Preface
You’ve been bombarded with a ton of techniques, practices, and unso-

licited pieces of advice about how to manage projects. All of them are

saying “Look at me, I’m right.”

Well, many of them are right—under certain conditions. Since each

project is unique, you will need to evaluate your context (the project,

the project team, and the business in which you’re working) and then

make pragmatic choices about what will work and what won’t.

Every day your projects become faster-paced, your customers grow

more impatient, and there is less and less tolerance for products that

don’t work. What worked before might have been good enough to get

you here, but the chances that it will work in the future are not good.

You must take advantage of all practices and techniques to reduce your

project’s risk, including considering agile techniques for every project.

This book is a risk-based guide to making good decisions about how

to plan and guide your projects. It will help software project managers,

team members, and software managers succeed. Much of the informa-

tion also applies if you are building more tangible products, such as a

house or a circuit board, or if you are managing a service project.

I’m assuming you’re managing a high-tech project, with at least some

software component. You might have had some of the same project

management experiences as I have: lots of software projects and some

hardware/software combination projects. I’ve also managed a few ser-

vice projects, such as planning and holding conferences. I’ve been part

of some construction projects (one new house, one small remodel, and

one large remodel). But the bulk of my experience is with software or

software/hardware projects in some form.

It’s harder to manage software projects than it is to manage projects

that have a tangible deliverable. Software is ephemeral—not concrete,

not material, not created out of substance—so we can’t touch it, we

PREFACE 15

can’t directly measure it, and we can’t see it. It’s harder to see the

product unfold, and it’s harder to see and anticipate the risks—so it’s

much harder to deal with risks. The way we practice software product

development does not always help us see where the project is or where

it’s heading.

When you manage tangible-product projects, you can see the product

take shape. You can see the shell of the building, the finish on the walls,

and all the steps in between. With service products with a tangible

result, such as a conference or meeting, you can gain some insight into

the project if there are interim deliverables, such as rough-draft reports

or run-throughs of meetings. Both tangible-product projects and some

service projects allow you to see project progress before the end of the

project.

So, what do you do when you can’t directly see project progress? What

do you do when you suspect the project smells funny, and you think

it might be headed toward disaster? How do you deal with stakehold-

ers who don’t want to make the decisions that will help you create a

successful project?

This book is about providing insight into your software projects and

managing the risks that arise from within the project as well as the

risks with which you start your projects. From chartering to release,

each chapter discusses ways you can see inside your software project,

measure it, feel it, taste it, and smell it.

One thing you won’t find in this book is the One True Way to manage

projects. There is no One True Way that works for all projects. You also

won’t find best practices. I’ll suggest helpful practices for each life cycle

that might help you and the project team achieve your goals.

You’ll notice that there are forward and backward references in this

book. That’s because a project is a nonlinear system. Your early deci-

sions for your current project have implications for how you’ll finish

this one—and possibly how you’ll start the next one. How you manage

projects might affect the way you can manage the product backlog or

project portfolio.

All the templates in this book are also online, at the book’s home page,

http://pragmaticprogrammer.com/titles/jrpm.

Report erratum

this copy is (First printing, June 2007)

http://pragmaticprogrammer.com/titles/jrpm
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=15

PREFACE 16

I thank all the people who helped me write and edit this book: Tom

Ayerst, Jim Bullock, Brian Burke, Piers Cawley, Shanti Chilukuri,

Esther Derby, Michael F. Dwyer, Mark Druy, Jenn Greene, Payson Hall,

Peter Harris, George Hawthorne, Ron Jeffries, Bil Kleb, Michael Lee, Hal

Macomber, Rob McGurrin, Andrew McKinlay, Erik Petersen, Dwayne

Phillips, Frederick Ros, Ellen Salisbury, George Stepanek, Andrew Wag-

ner, and Jim Ward. My editor, Daniel Steinberg, provided exceptionally

helpful feedback. Kim Wimpsett was again a copyeditor par excellence.

I thank Steve Peter for his typesetting wizardry. Mark Tatro of Rotate

Graphics developed all the schedule game cartoons. Working with Andy

Hunt and Dave Thomas was, once again, my pleasure. Any mistakes

are mine.

The stories I’m telling are all true—the names, companies, and specifics

have all been changed to protect the innocent and the guilty.

Let’s start.

Johanna Rothman

April 2007

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=16

Chapter 1

Starting a Project
The easiest way to start a project wrong is to just start. Want at least

a reasonable hope for success? That will take a bit more organizing

and planning. You’ll need to know what’s driving your project and what

done means for the project. And you need to write those decisions down

in a charter so you can share them with the rest of the project team.

1.1 Define Projects and Project Managers

First, let’s make sure we agree on what a project is.

Project:

A novel undertaking or systematic process to create a new prod-

uct or service, the delivery of which signals completion. Projects

involve risk and are typically constrained by limited resources.1

Project managers manage those risks and resources. You need project

management when you have risks across the project: the schedule is

tight, it’s not clear you can achieve the technical goals, quality could

suffer, you don’t have unlimited funds, and you might not have the

people you need when you need them.

Each project has a different focus, so each project is unique. That

means you’ll need to plan and manage each project in a way that makes

sense for your project. Before you initiate a project, start by gathering

some ideas about what the project is supposed to accomplish.

1. © 2007 R. Max Wideman, http://www.maxwideman.com; reproduced with permission.

http://www.maxwideman.com

DEFINE PROJECTS AND PROJECT MANAGERS 18

What Are We Building?

by Chris, project manager

I’m a project manager at a large company. I run software/hardware

integration projects. My colleague Nikky runs events. My team builds

machines, and Nikky’s teams organize events—our outputs aren’t similar

in any way, but we’re both project managers.

Our risks are completely different. Our deliverables are totally different. I

need software, hardware, and some documentation. Nikky needs booths,

food, or whatever else it takes to make her events successful.

One of the things we do that’s the same is learn at the beginning what the

focus of our project is so we can define what we’re building quickly.

Knowing what we’re building and what done means helps both of us run

our projects.

Every project is unique. Projects have different size teams with different

capabilities. Some have internal customers, and others have external

customers. Some work under substantial time pressure; others have

very different risks for completion. At the center of every project is the

product. Again, let’s agree on the following definition.

Product:

The set of deliverables that results from the project.

You’re a successful project manager—or want to be. Take a little time

to identify what’s unique about this project. That way, you can start,

manage, and end the project with a shot at success.

Now that we have defined a project and product, let’s clarify what we

mean by a project manager. Wideman says that a project manager

“heads up the project team and is assigned the authority and responsi-

bility for conducting the project and meeting project objectives through

project management.”2 That’s great as a formal definition. But here’s

a working definition you might find more ambiguous and, at the same

time, more accurate:

Project manager:

The person whose job it is to articulate and communicate what

done means and to guide the project team to done. By done, I

mean a product that meets the needs of the organization develop-

ing the product and the customers who will use the product.

2. © 2007 R. Max Wideman, http://www.maxwideman.com; reproduced with permission.

Report erratum

this copy is (First printing, June 2007)

http://www.maxwideman.com
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=18

MANAGE YOUR DRIVERS, CONSTRAINTS, AND FLOATS 19

That business of done implies substantial risk. I bet your product is

loaded with risks. We’ll take a look at how you identify and classify

some of these risks. Before you do anything else, you must understand

what’s driving the project.

Small or Big—Projects All Involve Risk

by Eric, experienced project manager

I’ve worked in big projects (several years, with a couple hundred people)

and small projects (two or three of us working with a client who had two

or three people, over a total of three months). There’s one thing I know

about projects: there’s always risk in getting to the final deliverable.

Sometimes the risks depend on the team. Think of something simple like

making your bed at home. To me it’s just a checklist item. But to my kids,

making a bed is a project full of risks. Mostly the risk is they won’t finish

before bedtime!

1.2 Manage Your Drivers, Constraints, and Floats

One of the biggest risks to finishing a project is understanding the

project’s context.

The project’s context is a result of what is important to the organization.

What’s driving the project? Are there constraints on the project? Can

you trade off any of the drivers and constraints or buy yourself some

more degrees of freedom?

What’s Driving This Project Is Different from My Previous Project

by Stuart, project manager

I’m managing my second project now. The first project was a point release

for our flagship product. It was pretty easy to figure out what we needed

to focus on—adding a few new features and making sure we fixed a bunch

of defects.

But this second project—wow, this one is really different. This is an

experiment for us so we can see whether we want to enter this market. We

need a bunch of new features. The features have to work, but we don’t

have to focus on defects. And the deadline is really close. My boss told me

we could have a couple of more people, but not contractors, because we

need to manage the cost.

What really helped was when I identified what was driving this project.

The number-one priority was the feature set. The second was date. The

third was the people. I had a lot more flexibility for defects and cost to

release.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=19

MANAGE YOUR DRIVERS, CONSTRAINTS, AND FLOATS 20

Cost

Schedule

Quality
Cost

Schedule

Resources

Figure 1.1: Traditional iron triangles

You’ve probably heard of the iron triangle in projects. Two of the three

sides of the triangle are cost and schedule. The third side is usually

either quality or scope (see Figure 1.1). The iron triangle is too simplis-

tic. Look at Stuart’s two projects. The drivers were vastly different.

Successful project managers like Stuart trade off many more factors

than what’s in the iron triangle. You can’t just tell your customers to

choose two of the sides of the iron triangle, and then you can deliver

what they want. If that was all there was to it, anyone could be a project

manager.

First, write down your customers’ expectations—what’s driving the pro-

ject from your customers’ perspective [Rot98]. Your list includes what

your customers expect (the feature set), when they will receive it (time

to release), and how good it is (defect levels) [Gra92].

Next, write down the constraints you are under. What’s your environ-

ment like? Do you have the flexibility to collocate the team? What pro-

cesses are you stuck with? Who do you have? What can they do? How

much money do you have? You can change these constraints (this often

happens when a project is in trouble). Constraints dictate how big (or

how long or how good) your project can be.

Look at your list of customers’ expectations and project constraints.

What jumps out as you as being required for your project’s success?

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=20

MANAGE YOUR DRIVERS, CONSTRAINTS, AND FLOATS 21

Choose one item, say time to release. That is what you identify as your

driver.

What’s left on your list? You’ll see things such as feature set, low

defects, and cost to release. Which of the remaining items will you

need to manage to make the project successful? Create a hierarchy with

these concerns being a little less critical to the success of your project

than the driver. Your customers’ expectations and sponsors’ concerns

will constrain your project in one or more of those dimensions. Choose

two or three of these. We will call these the constraints of the project.

Again, look at the remaining items. Some of these items are important

to the project, but you have flexibility to manage them. We call these

floats, and you should have at least three of them for this project.

Finally, go back to the set of items you did not select. Are any of them

more important than the ones you did select? If so, you are allowed to

do some juggling. If not, you have identified the driver, constraints, and

floats for this project.

I’ve seen projects with up to three constraints succeed, but only with

extraordinary effort on the part of the project team. In my experience,

if you have one driver, two constraints, and three floats, you have a

reasonable chance of success. The more floats you have, the easier it is

to organize the project.

Ideally, you would have no more than one driver, no more than one

constraint, and four floats. Most of us work on less than ideal projects,

so if you have one driver, two constraints, and three floats, you can still

succeed. More drivers or more constraints lead to an overconstrained

project. You might be able to succeed, but you and your project team

will have to select a project organization and practices that can help

you get close to success—and realize you still might not achieve total

success.

If you have more drivers or constraints and you feel like you have no

choice but to start the project, the best thing you can do is choose

something as a driver and deliver pieces of the project as often as pos-

sible to help your sponsors decide what they do want. As you start

the project, keep asking context-free questions (see Section 1.5, Use

Context-Free Questions to Identify Project Drivers, on page 26) to elicit

success criteria for the project. And, define release criteria (see Sec-

tion 2.3, Release Criteria, on page 37) so you know when you’re done.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=21

DISCUSS YOUR PROJECT CONSTRAINTS WITH YOUR CLIENT OR SPONSOR 22

Tip: With Too Many Constraints, You Decide

Overconstrained projects will fail. Too many drivers means

no one knows what the success criteria are. Too many con-

straints means no one in the organization is willing to make

priority decisions.

If you need to, push your management into making some

decisions about what’s driving the project, what the con-

straints are, and where you have more flexibility. If that

doesn’t work, make the decisions yourself. Your project and

the organization will benefit.

You can’t create project requirements that don’t fit inside the project

constraints. If you try, you have the problem of a ten-pound project in

a five-pound project bag. No matter what you try, you just don’t have

enough people, time, money, or tools to release a product when man-

agement wants it, with the features management wants, and without

too many defects.

1.3 Discuss Your Project Constraints with Your Client or Sponsor

Feel free to take the initiative to understand what your sponsor wants.

Here’s a conversation I had with a sponsor for a recent project:

JR: Hey Clyde, let’s discuss what’s really driving this project.

Clyde: Oh, no. Not this again. You made me do this the last time.

JR: Yup. And remember when you wanted to add another feature?

Because you told me you wanted to squeeze in as many features as

possible before the release date, I was able to add it, because of the way

we had organized the project. It wasn’t easy, but it was possible.

Clyde: Oh, yeah. I forgot. OK. But this project is different.

JR: Oh? Tell me more.

Clyde: Look, you take care of the people. And the project environment—

that’s your job too. Since you won’t need capital equipment, I don’t have

to think about the cost because the cost is all salary.

JR: And maybe some software.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=22

DECIDE ON A DRIVER FOR YOUR PROJECT 23

Clyde: Picky, picky. OK, if you need some software, let me know. But

honestly, the cost is practically all salary—not something I need to man-

age. I really care how long this project is going to take.

JR: What about the feature set? Or how good it has to be? This is a

small app for the finance department. You know what perfectionists they

are. If I don’t give them everything perfectly, Leslie blows her top.

Clyde: Yeah, but I’m paying for it. And what I want is to give them the

smallest number of features that work well enough so that you and the

team are done soon, say, in maybe ten weeks.

JR: If it’s week eight and we don’t quite have all the features and we

have too many defects, what do you want to do?

Clyde: JR, come on. I want it all. You and your team have done this

before. You can do it again.

JR: Clyde, you know that the project team and I will do as much as we

can, assuming I understand what you really want.

Clyde: Fine. No half-baked features. You start it, you finish it so that

Leslie likes it. Otherwise, Leslie will have my head. And I’m going to need

you and the project team later to join that big program Vince has started.

He says he’ll be ready for more people in about ten weeks. That gives

you just enough time to do something reasonable for Leslie.

1.4 Decide on a Driver for Your Project

In my conversation with Clyde, I asked Clyde to identify what was most

important to him. When Clyde said the big program was going to start

in ten weeks, it was clear the date was the driver.

Early in the project, everything seems possible, especially if no one has

tried to estimate anything. Your sponsor may say, “We want this project

to have these five features, be done by August 1, and have no critical

defects. And we want you to bring it in under a million bucks. You have

these six people. OK?”

Don’t say OK.

Once you estimate the work, you can see whether those six people really

can do that work for the money and time. If they can, great. But more

likely, it’s not possible to do everything your sponsor wants in the time,

for the money, with the people, and at the quality they desire, given

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=23

DECIDE ON A DRIVER FOR YOUR PROJECT 24

your work environment. In that case, your sponsor needs to make some

hard decisions. Make decisions based upon what’s driving this project

for your organization: the release date, the feature set, the cost, who’s

assigned and when they’re assigned, and the practices and techniques

you’ll use.

Sponsors who don’t decide what’s driving their project push that deci-

sion down to the project manager. If the project manager doesn’t decide,

the project team will decide. But they won’t decide with one mind. And

they won’t necessarily make the choice that the sponsor would have

wanted them to make. Instead, each person—regardless of his or her

role on the project—will make an individual decision. Some will opti-

mize for the release date, throwing any concerns about low defects out

the door. Some will optimize for schedule by implementing only one

thing—one thing in totality with a full regression test suite—and leav-

ing all the other features undone. Some will optimize for feature set,

implementing as many stubs as possible and filling in where the testers

find problems, until they run out of time. Each person will do what he

or she thinks is right. Without a decision from the project sponsor (or

the project manager), each person will make a different decision.

One approach is to develop a ranked list [Hal07], explaining it’s like

Sudoku. List the possible drivers down the left side and leave a space

on the right to fill in a number.

Use a Matrix to Articulate the Project Priorities

Here’s Clyde’s ranked matrix.

Project Priorities Rank

Cost to release 5

Release date 1

Feature set 2

Low defects 3

People 4

Work environment 6

In this project, the release date was the primary driver. If we had missed

the release date this year, we would have lost all the value of the project.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=24

MANAGE SPONSORS WHO WANT TO OVERCONSTRAIN YOUR PROJECT 25

But the features were also important—the release date without enough

features was also valueless. And, given that the product was in a reg-

ulated industry, the defect levels had to be low. The people were next,

because they had to be available in ten weeks for the next program.

The cost of the project was less important, because the value of the

project was so high. The work environment was last, because I had the

flexibility to change things to finish this project on time.

Even though I had the priorities in order, we didn’t have much flexibil-

ity. But knowing what was driving the project helped me define success

criteria and choose a life cycle. The project team could create release

criteria and use these drivers to make reasonable choices about their

work. And yes, we met the requested deliverables for this project.

1.5 Manage Sponsors Who Want to Overconstrain Your Project

Most of the time, the conversation about what success looks like is not

easy. You can see that I had to push Clyde to make some choices. That

is typical.

I bet you’ve either been a project manager or worked on a project team

who was told the feature set, low defects, and schedule are all the same

priority—all number one. You can’t add more to the project. And, the

cost is fixed. And you have to use the company-mandated process,

offices, or furniture, or you have some other work environment issue

that makes the project work difficult to perform. Nobody can make a

project like that succeed unless there’s no technical or schedule risk

in the project. But you have some approaches that can help you clarify

those supposedly fixed constraints.

You saw the matrix of project drivers in Section 1.4, Use a Matrix to

Articulate the Project Priorities, on the previous page. This approach is

most appropriate if the sponsor is ready to make choices. It might help

a reluctant sponsor to be more decisive. You may have to rough out the

rankings yourself and present them to your sponsor. For example, you

might have several sponsors who don’t agree on the relative ranking,

or you might have a sponsor who is reluctant to decide. In this case,

make the decisions and show them to your sponsor. She might be more

willing to correct your rankings or sign off on them than to create her

own.

You have a couple more approaches: to imagine the future and to use

context-free questions to elicit what’s really driving your project.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=25

MANAGE SPONSORS WHO WANT TO OVERCONSTRAIN YOUR PROJECT 26

Imagine the Future

Begin by asking the sponsor to imagine that you are three weeks from

the end of the project. Not all of the features are implemented. (Specifi-

cally discuss the one or two features this sponsor needs.) In addition to

the missing features, there are still significant defects and too many of

them. It’s clear you can’t finish the features and eliminate the defects

before the desired release date. What would the sponsor do then?

If the sponsor says to you, “I’ll have your head,” it could be time to

leave the organization. See Section 7.7, Know When It’s Time to Leave,

on page 148.

But it’s more likely the sponsor will say something like this, “Finish

the damn project. You need more people?” Follow up with, “Finish the

features or the defects?” The sponsor will typically say, “Those two fea-

tures and these defects.” Ask, “In that order?” More often, you need to

help the sponsor articulate which constraints are real constraints and

which constraints are the sponsor’s wishes.

A conversation including context-free questions can help you and the

sponsor identify the project’s drivers, constraints, and degrees of free-

dom.

Use Context-Free Questions to Identify Project Drivers

Project managers can identify the project requirements when they de-

termine the project drivers. It makes sense to use context-free ques-

tions [GW89] to help elicit those requirements. Context-free questions

are high-level questions that help elicit other people’s implicit assump-

tions about the project. Start with these questions:

• What does success look like?

• Why are these results desirable?

• What is the solution worth to you?

• What problems does this system solve?

• What problems could this system create?

Be careful to use these questions instead of more “why” questions. The

fewer “why” questions, the more you’re learning about the business

needs (and the less you sound like an obnoxious two-year-old). Also,

“why” questions are more likely to put the other person on the defen-

sive. Avoid “how” questions also. These sound like you’re asking the

sponsor to design the system.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=26

WRITE A PROJECT CHARTER TO SHARE THESE DECISIONS 27

Ask these questions out of a genuine desire to know about the project,

not to put anyone on the defensive. You can use these questions to

lay the groundwork for a useful collaboration with your sponsor, not a

difficult relationship.

These questions address the value of the system. When you ask the

sponsors these questions, keep the conversation collegial. Take notes

on paper, not on a computer, so that there’s no barrier between you

and your sponsor. Use these questions as a starting point in the con-

versation. The more information you gather at the beginning about the

project’s value to the sponsor, the more you’ll understand how to design

the project.

What Does Success Look Like?

by Justin, project manager

I’m a couple of months into managing a two-to-three-year project, when

my boss comes to me and says he wants to add a feature. Part of me says,

“Cool, this particular feature would be great.” Part of me says, “Uh-oh,

we’re two months into the project. If I train my boss that it’s OK to ask for

more features, either I need to change the way we’re working or I’ll be in

trouble.” I asked the question, “What does success look like to you?”

Imagine my surprise when I realized my boss thinks success is a

completely adaptable project. He’s pretty sure the requirements are going

to keep evolving until the last minute—maybe a week before we release. I

haven’t run a project like that before! But now that I know, I can figure

out how to do this.

1.6 Write a Project Charter to Share These Decisions

A project charter identifies the project requirements and constraints,

and it helps a project manager decide how to design the project. The

charter is the one place the entire project team and the sponsors can

visit to make sure they all agree on the decisions about the project.

Start every project with a project charter to help elicit some of what this

project needs to accomplish and the constraints on this project from

the people who want the project. Even if you don’t know everything you

need to know about the project, writing the charter helps uncover some

of the project issues. The project charter helps you and the project team

understand what some of the risks are, what success is, and the ways

you and the team can consider organizing and steering a project.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=27

WRITE A PROJECT CHARTER TO SHARE THESE DECISIONS 28

If you’re managing an agile project (one using an agile life cycle, Sec-

tion A.4, Agile Life Cycles, on page 339), your charter can be quite short.

You might need only the project vision (so people involved with the

project can make good decisions) and the release criteria (so you don’t

end up gold-plating past the time the project could end).

Here is my project charter template:

• Vision

• Requirements

• Goals

• Success criteria

• ROI estimate

The project charter is short by design. The charter helps the project

team start. It doesn’t say how the team members will know they are

done. It doesn’t say how the team will organize the project. But it’s

enough to get started.

Vision

There’s a reason (or two or three) behind every project. What’s the rea-

son for this project? Use the vision statement to show what’s valuable

about this project. The easier it is for you to articulate the project’s

value early in the project, the more the project team is likely to tell

you whether the project makes sense—or whether you’re starting an

impossible project. If you can’t articulate the vision, chances are good

that you’re starting on an impossible project (because there’s no way to

end a project with no vision). A useful vision is compelling to the project

team.

Requirements

Sometimes the only requirement of a project is to release something by

some particular date. More often, the requirements are intermingled in

some way: “We need the blatz feature in a major release by February

20.” Think of your project drivers for this part, not the product’s list of

features.

Goals

Project goals are the things you’d like to accomplish with the project,

but they may not be something the customer or sponsor wants to back.

(For more discussion of goals, see Section 2.3, Goals, on page 38.)

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=28

WRITE A PROJECT CHARTER TO SHARE THESE DECISIONS 29

Joe Asks. . .

Who Writes the Project Charter?

Chartering is one early way to help a team jell. Involve as many
of the team members as possible in writing the charter.

But if you don’t have anyone on your project team yet, write a
charter yourself. If you have some people on the project, write
the charter with them. In the project kickoff meeting (see Sec-
tion 10.3, Project Kickoff Meetings, on page 198), walk through
the charter and make sure everyone understands what’s in the
charter and why.

Goals are not the same as requirements [DeM97]. Project goals are

things the project is not required to deliver. If you’ve been doing tradi-

tional phase-gate or waterfall development, you probably have substan-

tial technical debt (Appendix B, on page 343) in your product. Working

off technical debt in the form of redesign, adding more automated tests,

and developing smoke tests are all examples of possible project goals.

Sometimes, the customer has asked for something specific: “I’d love to

get an electronic signature if we can do that for free within the current

schedule.” As a pragmatic project manager, you can say, “OK, we’ll add

it to the goals. That way if Shirley and Jane have some time, they can

do it.”

Success Criteria

Success criteria are the things that define what the customers will be

able to do with the product when you are done. Success criteria are not

about defects; they are about capabilities (see [Rot02b] and [Wie05]).

Here are some examples of success criteria:

• Include features 1, 2, and 3 so we can sell to that specific market.

• Improve and measure performance so we can create marketing

material that compares our product to our competitor’s product.

• Our customers can open the packaging and load the software

without knowing how to access our site.

• Release in Q1.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=29

KNOW WHAT QUALITY MEANS FOR YOUR PROJECT 30

Projects Start Before You Think They Do

Most of the time, projects start before the official schedule start.
Maybe someone has done some prototyping. Maybe some-
one has estimated some features. Maybe the management
team has talked to the chief architect about what’s possible
and what’s not. That’s part of the project, even if you don’t
think it is part of the project.

Since the project starts before you think it does, don’t be wor-
ried about iterating on the project charter, the project plan,
and the project schedule. As a pragmatic project manager,
you spend the first part of the project trying to wrap your arms
around the project while the work has already started. In the
middle, you steer the project as you reevaluate the project’s
progress and risks. At the end, if you’ve been pragmatic, you
have little to do except to worry.

The project team has control over success criteria. As a project man-

ager, you’ll have to guard against success criteria that only other people

can fulfill (such as “Sell 50,000 units”). You and the project team have

no control over what other people do; you and the project team can con-

trol only what you do. Make success criteria something in your control.

ROI

Few of my clients measure return on investment (ROI). It’s too easy to

manipulate the numbers. However, if your management requires it and

you can estimate the benefit of the project, try calculating ROI. And

check it after the project is over to see whether you achieved it.

1.7 Know What Quality Means for Your Project

Understanding the project drivers, constraints, and floats is the first

step to understanding what quality means to your sponsors and cus-

tomers. The sponsors are the people who are paying for the project.

The customers are the people who use the product. Those people are

not necessarily the same—and neither is their definition of quality. And

yes, that makes life harder for you. But part of knowing what done

means is understanding what quality means for your project.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=30

KNOW WHAT QUALITY MEANS FOR YOUR PROJECT 31

Early Market

End of Life

Technology
Enthusiasts

Visionaries Pragmatists Conservatives Skeptics

The
Chasm

Time

Size of
Customer
Base

Mainstream

Figure 1.2: Moore’s Chasm

Weinberg says, “Quality is value to someone” [Wei92]. This definition

allows you to add more features and see how many more (and what

kinds) of “someones” a feature might attract. Shortening or extending

a release might attract (or not!) other “someones.” As you think about

your sponsors and customers, think about what they would like from

your project. That will give you options to increase/reduce the time to

release, the project cost, and the number of people, as well as allows

you to consider whether all your “someones” need this feature. If you

and the team know what these “someones” accept as quality, you can

continue to work toward that as they change their minds—and you’ll

still be successful.

Your customers have a different definition of quality depending on

where your product is in its adoption lifetime [Moo91], as shown in

Figure 1.2.

At the beginning of a product’s life, the size of the customer base is

small, but technology enthusiasts want to see what you have, so there’s

substantial pressure to release. The product doesn’t have to do much,

or be rugged, but it needs to do something well enough to attract more

customers.

Once you reach the early adopter market, each customer will have dif-

ferent requirements, whether you have a bazillion or three customers.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=31

KNOW WHAT QUALITY MEANS FOR YOUR PROJECT 32

Each set of customers wants your product to do something—not nec-

essarily what the other customers want. And all your customers want

their release, with their features, fast. Your product can’t be too awful to

use, but these people have a problem, and only your product can solve

their problem, so defects won’t prevent you from selling your product.

But once your product (or products like it) has hit the mainstream, the

pragmatists now care that you fix the defects in your product. If you’ve

created technical debt (see Appendix B, on page 343) in your product in

previous releases, now is the time to start paying it off. And because the

pragmatists have such tremendous buying power, they will pressure

your management to release often—even if not all the customers want

to install the release. You don’t have to add too many features in a given

release, but you can’t only make the software more rugged.

The conservatives will buy your product, but only under duress. And,

the conservatives will take any and every opportunity to complain about

your product if it does not do what it says it will or if it has too many

defects. Conservatives don’t want more features; they want the prom-

ised features to work. This is where you could release just fixes or a

more reliable/high-performance/rugged product.

Laggards and skeptics might or might not buy your product. Some-

times, companies call products in this space cash cows, because they

make more money on support contracts than they have to spend on

support.

Although there is substantial pressure for many releases early in the

product’s lifetime, there is even more pressure from more customers

for low defects later during the product’s lifetime.

Remember This

• Start every project with a charter.

• Expect to iterate on the project charter. The charter doesn’t have

to be perfect; it just has to exist to help the entire project team

with their planning.

• Know what quality means and what’s driving your project so you

and the team can make good decisions as you proceed.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=32

Chapter 2

Planning the Project
By now, you have a project charter. If your team wasn’t available to

write the charter with you, conduct a walk-through of the charter in

a project kickoff meeting (see Section 10.3, Project Kickoff Meetings, on

page 198). Once the team is familiar with the charter, you and the team

are ready to do some targeted planning and just a little scheduling.

Planning and scheduling are two different activities. Planning includes

writing a project plan with release criteria. Scheduling creates the

sequenced description of the work.

2.1 Start the Wheels Turning

The charter helps everyone plan just a little up front to point themselves

in a reasonable direction—or determine early whether there is no rea-

sonable direction. The project plan focuses the team on the desired

project results.

If you have a small enough team, say fewer than ten people, write the

project plan with them as a group. Have a conversation with your team

about where to head for the next couple of days or weeks, keeping the

project’s outcome in mind. If you have some requirements, the team

can start prototyping or developing the first iteration. If you’re using an

agile life cycle, use the project plan as the release plan.

More likely, you have only some of the people you need, or too many

people for the prototypes, or you don’t really know what you have to do.

In that case, ask some or all of the people to start fixing defects from a

previous release. See Section 13.1, Start People with a Mind-Set Toward

Reducing Technical Debt, on page 265.

PLAN JUST ENOUGH TO START 34

2.2 Plan Just Enough to Start

You’ve got a charter, but what is your plan? Your management still

wants to have an idea of when you’ll deliver which features into the

code base. How will you measure progress? When will the project be

done?

Your plan does not have to be perfect. In fact, there’s no way it can

be. Your plan only has to be good enough to start the project with a

chance of success. If you’re working on time-pressured projects (which

I do most of the time), timebox your planning activities. If you plan to

replan the project, you don’t need to worry about perfecting plans at

the beginning.

A timebox is a specific amount of time in which the person or team will

attempt to accomplish a specific task. As much as the person or the

team can accomplish in that duration is what you bring to the next

part of the project. If necessary, the person/team decreases the scope

to complete the timebox.

We Timebox Our Initial Planning

by Steve, senior director of project portfolio management

We typically have somewhere between two and five big projects and an

additional fifteen or so small and short projects going on at the same time.

For almost all of our projects, we need to start in order to see how many

people we really need and how long it will really take. Even when we do

initial planning for a new project, we keep the initial planning really short.

Our most recent big program is turning out to be almost two years, with

several releases. We timeboxed the initial planning to just three days. At

the end of three days, we had a project charter, a project plan with release

criteria for the first release, and a schedule for the first three weeks.

That’s it. But it was enough to start the project.

For our last couple of short projects (less than six months), we timeboxed

the initial planning to one day, including organizing a two-week schedule.

As the project team proceeds on those projects, we use the feedback from

the initial planning to plan more, as we need.

For those projects that need to predict when specific features are

available, we use those first few weeks of the project to perform an initial

forecast, and then we update it through the next few weeks. By the time

we’re at the eight- to twelve-week mark, we have a really good idea of

when we will be done with which features. We’re not perfect, but we don’t

waste time planning without data. We plan a little, gather some data, and

replan. It works like a champ.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=34

DEVELOP A PROJECT PLAN TEMPLATE 35

Even if you’re not working on a time-pressured project, if you take too

much time trying to get to just the “right” plan, it will become a time-

pressured project.

Tip: Make Your Planning Empirical, Not Predictive

Empirical planning, which means planning just a little and

then gathering information on actual progress to feed back

into future planning, works. Predictive planning, which is

attempting to predict the future, doesn’t work well unless you

have a crystal ball. Use empirical planning and scheduling as

much as possible in your projects.

You’ve probably heard the famous Eisenhower quote, “Plans are worth-

less, but planning is everything.”1 Your projects have too much un-

certainty and risk to bother planning everything in advance. Plan to

start and replan every few weeks, as in Section 5.6, Using Rolling-Wave

Scheduling, on page 95. No matter what life cycle you use, assume you’ll

be replanning. Don’t create a perfect plan; create one that works until

you replace it (soon).

Tip: Start with the End in Mind [Cov91]

As you start planning, think about how much you need to

write down. Release criteria (see Section 2.4, Define Release

Criteria, on page 42) can help focus your sponsor and your

project team. If you want to reduce planning time, make sure

you have release criteria and a risk list. Iterate on the plan-

ning as necessary. If you’re running an agile lifecycle project,

you won’t need any more up-front planning. [Coh06].

2.3 Develop a Project Plan Template

Organize your thoughts with a project plan, preferably one you can

reuse for more projects at your organization. Here’s my template for a

project plan:

• Product purpose

1. A speech to the National Defense Executive Reserve Conference in Washington, D.C.,

on November 14, 1957.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=35

DEVELOP A PROJECT PLAN TEMPLATE 36

• History

• Release criteria

• Goals

• Project organization

• Schedule overview

• Project staffing (staffing curve)

• Proposed schedule

• Risk list

Product Purpose

Briefly describe the product, why the organization wants to produce it,

what benefits accrue to the company, and so on. What’s the value of

this release, if it’s a follow-on release (three to four sentences)? If you

have written the vision in a charter, you might be able to use that here.

Sometimes the vision from the charter isn’t enough for a project. Or,

the vision applies to a program (a series or group of projects; see Sec-

tion 14.1, When Your Project Is a Program, on page 288). In those cases,

make sure the purpose for this project is clear.

Years ago, before TCP/IP was built into operating systems, I managed

a program for a hardware/software combination product. We included

a variety of features, each of which was its own project. I had a charter

for the program, where the program charter’s vision was something like

this: “Release this product in time for such-and-such trade show.” We

had about six project teams, one of which was networking team. They

had a purpose for their project: “Ensure the TCP/IP works as of the

first integration date and continues to work throughout the project.”

Their purpose was clear and was related to the program’s vision but

was much more specific.

Depending on the size and duration of your project (or program), each

project team (or subproject team) may have its own purpose. That pur-

pose aligns with the program charter’s vision but is not the same.

History

If you’re managing a follow-on release. such as Release 4.3 after Release

4.2, review the history of previous or related releases. The history can

clarify any known technical debt (see Appendix B, on page 343). The

data you can review is as follows: frequency of releases, number of

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=36

DEVELOP A PROJECT PLAN TEMPLATE 37

released defects, customer-reported problems, and anything else that

might affect how you determine what quality means or how you’ll man-

age this project.

Tip: The Less You Know. . .

The less you know about any part of your project, the more

likely you are to be surprised. This applies to technical debt,

a new architecture, a development or testing risk, or plan-

ning. Anytime you don’t have previous experience with a pro-

ject like this, the more surprises you’ll encounter. A little

planning and planning to replan will help.

If your customers are accustomed to one release a year and are not

asking for more (mainstream customers in Moore’s language, as in Fig-

ure 1.2, on page 31), you have several alternatives. The first alternative

is to resist senior management’s request for more frequent releases.

Instead of resisting, consider a different alternative: either use release

trains (see Section 14.3, Organize Multiple Releases of a Product into

Release Trains, on page 292) or use an agile life cycle to allow for more-

frequent releases. If you’re trying to open a new market or move into a

new market, organize the project so that you can push for even more

frequent releases.

Review the number and type of released defects so you understand the

level and kind of technical debt (Appendix B, on page 343) you are

starting with in the code base.

If the customers are reporting a large number of problems in one area,

review that to see whether it’s a documentation issue or a code issue

(or some other kind of issue). The more about the incoming technical

debt you know, the more opportunity you have to manage it early.

Release Criteria

Itemize the key product deliverables from the project. A good way to

identify these is to ask, “If we don’t do that, do we still have a release?”

Include functionality, performance, and quality requirements. See Sec-

tion 2.4, Define Release Criteria, on page 42 for more specifics.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=37

DEVELOP A PROJECT PLAN TEMPLATE 38

Goals

You might have known about some of the goals as you wrote the project

charter. By the time you’re ready to write a project plan, you probably

know more about the goals. If you didn’t know about any goals when

you wrote the charter, this is a good time to think about them.

You might have goals that fit in the following categories—product goals,

project goals, team goals, or organization goals:

• Product goals might be the ranked requirements that have not

been committed for this release. You might keep this list in a

product backlog (see Section 16.6, Build a Product Backlog, on

page 321).

• Project goals could be something such as a performance standard

that’s better than the requirement, or “Decrease the open defect

list at ship time from 50 open defects to 40 open defects.” Espe-

cially if you’re running a program, the goals for each subproject

may be specific to that project’s area. There may be specific tech-

nical debt a project team wants to pay off.

• Team goals could be “ Increase the percentage of automated smoke

tests for the product.” A team might also want to improve a specific

feature’s performance or reliability.

• Organization goals could be “Reduce the overall duration of pro-

jects to improve our organizational agility.”2

If your goals are detailed in your project charter document, you don’t

need them in your project plan. Choose one place or the other to specify

the goals.

Project Organization

Articulate how you expect the team will work on the project. Address

how you’ll organize the project’s work with a life cycle, some of the

key practices, and whether there are any decision makers who can

decide something about this project. If you know (or suspect) you need

some prototyping, explain that here. “Steve and Jenny will prototype

the architecture for that feature set. Bill will concurrently test. Because

of the time pressure, the project team will select techniques that allow

us continuous review of the code.”

2. I thank Bill Ramos for this example.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=38

DEVELOP A PROJECT PLAN TEMPLATE 39

Describe the general approach to the project, including such issues as

ramping up with the entire project team at the project start, hiring new

people, developing complete features including code and documenta-

tion, writing all the code and seeing what you can document in the

time, and the like.

The actual details of what you will include here depend on the life

cycle of the project and structure of the team. If you have one prod-

uct owner who makes all the product decisions, decide whether you

need to name that person. If you have multiple decision makers decid-

ing about features and trade-offs, list those decision makers and their

areas of responsibility.

If you’re using timeboxed iterations, explain how long each timebox will

be. Or, if you’re using release trains, explain how long the duration of

each train is.

Schedule Overview

Create a schedule overview with the major milestones and what people

can expect at those milestones. If you’re using iterations or increments,

explain how long the iterations (or increments) are and what you expect

at the end of each one. Don’t put in a work breakdown structure, but if

you have one, include a pointer to it for people who want more detail.

No matter what life cycle you’re using, if there’s a beta test or an early

release to the customer, show those milestones.

Work breakdown structure:

The work breakdown structure (WBS) is the organization of tasks,

showing their dependencies, durations, and owner. The higher

level the WBS (and the earlier in the project), the less you know.

Expect to evolve the WBS as you proceed.

Schedule Overview Makes the Project Real to My Managers

by Terry, project manager

I’m managing my second project now. My managers didn’t believe that

this one requires much more customer interaction than the last one did. I

developed a project overview with milestones to explain it to them. Here’s

what it looked like:

Date Milestone

July 1 Project initiation.

July 15 Show Lucinda the prototypes for the web interface. (cont.)

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=39

DEVELOP A PROJECT PLAN TEMPLATE 40

Date Milestone

July 30 Show Lucinda and kitchen staff prototypes for the kitchen

interface.

August 15 Deliver the web and kitchen interfaces internally.

August 30 Deliver early release to Lucinda’s five hand-picked cus-

tomers (beta test).

September 1 Start beta test.

September 30 End beta test.

October 30 Launch site including all customer orders and kitchen

interface.

Once my management could see what I was doing, they realized why I

asked for the time, people, and customer access I had requested.

For more complex projects, if you think the schedule is at risk before

you even start, consider offering several alternatives for the project so

your sponsors can see their choices. Figure 2.1, on the following page

is based on an organization where people are matrixed into a project.

Make sure you understand the value, not just the cost of each alter-

native. If you deliver a product that doesn’t meet the release criteria,

that’s not an alternative with sufficient value.

Project Staffing

Many project managers do not have control over who is assigned to

their project. If you acquire all the people for your project on the first

day of the project, don’t bother with a staffing curve. If you need to

request people from other groups or teams, this is the place to explain

how many of which people you’ll need when. See Chapter 7, Creating a

Great Project Team, on page 135 for how to do this.

Proposed Schedule

Outline the major milestones, as much as you understand them. If

you have a Gantt chart that reflects the original scheduling, provide a

pointer here. Of course, you’ll need to keep a working Gantt chart that

shows the current reality as you replan. Keep the working Gantt chart

separate from the project plan so it’s easy to update.

I tend to schedule with yellow stickies, so I rarely have a full Gantt chart

for my projects. I’ve been known to say, “See the wall in the project

room for the most current WBS.” (If you don’t have a project room to

post the Gantt, make sure you use a public area so everyone can see

the schedule. That way, the project team can alert you early to schedule

problems.)

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=40

DEVELOP A PROJECT PLAN TEMPLATE 41

6 person-months 60 person-months 50 person-months12 months 8 person-months
Features 1, 2, 3, 4,

5, 6

2 person-months 10 person-months 10 person-months4 monthsFeatures 1, 2, 3 3 person-months

2 person-months1 person-month 6 person-months6 person-monthsFeatures 1 and 2 2 months

Doc TimeTest TimeDevelopment TimeArchitecture TimeCalendar DurationAlternative

Figure 2.1: Project alternatives with a matrixed team

The more you use rolling-wave planning (see Section 5.6, Using Rolling-

Wave Scheduling, on page 95), the less detail you need to insert past

the first wave.

Tip: Beware of Early Detailed Schedules

Iterate on your schedules, building detail as you proceed.

See Chapter 4, Scheduling the Project, on page 64 for more

discussion. The earlier in the project you provide a detailed

schedule to your sponsors, the more likely they are to think

that there is little or no risk in your project. They will see the

projected end date and believe it’s the Real End Date for your

project.

Develop a Project Risk List

Keep at least the top-ten risks in your project plan. Monitor them fre-

quently, and update the list when appropriate. If you’re not sure you

have ten risks in your project, take the time to brainstorm risks with

your project team [DL03].

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=41

DEFINE RELEASE CRITERIA 42

2 High
Booting takes
longer than 2
minutes

Monitor booting
with each build

Aug 21Low (L, H)

50-50 (Medium)1 High (M, H) July 14

We don't know
if the algorithm
will be fast

enough until too
late in the
project

Add test
developers to
work with alg.
developers to
test the

algorithm alone

The severity if
the risk occurs

Plan to deal
with the risk

Number each
risk

Multiply the
probability times

severity

Date by which
you need to act

Name the risk
with a phrase or

sentence

Probability the
risk will occur

Risk Description Probability Mitigation PlanTrigger DateExposureSeverityNumbered Risk

Figure 2.2: Risk list

It’s never too early to start identifying and managing risks. Figure 2.2

is the risk table I use to start and examples from a real project.

As you proceed through the project, update the risk list. Use the prac-

tices in Chapter 8, Steering the Project, on page 156 and Chapter 9,

Maintaining Project Rhythm, on page 179 to help reduce the risks.

2.4 Define Release Criteria

Release criteria tell you what done means ([Rot02a] and [BWe01]). Some

project managers release software when some senior manager says so,

when the testers “approve” it, or when people feel it is right. The prob-

lem is everyone has a different opinion of what done means.

Release criteria are not about shifting blame from one group to another;

they exist to provide some objective measurement about when a prod-

uct is ready to release. Release criteria allows the sponsor/customer to

make a reasonable business decision about the quality and risks of the

product.

When you develop release criteria, first decide what’s critically impor-

tant to this specific project. For example, why is the company doing this

project? Why would the customers buy this product?

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=42

DEFINE RELEASE CRITERIA 43

Release criteria can also help you build whole-product responsibility

into the product release. For example, can the salespeople sell the prod-

uct that meets these criteria? Can the support staff support the prod-

uct? Can the trainers develop and deliver training? When you work with

people across the organization to define what success looks like, they

realize not only are they accountable for their part but also that they’re

pointing you toward project success as well.

Once you know what success means, you can define what’s most im-

portant for this project—the release criteria.

Use these steps for defining and using release criteria:

1. Define what’s important for this release so you can monitor release

criteria throughout the project.

2. Draft release criteria.

3. Make release criteria SMART: Specific, Measurable, Attainable,

Relevant, and Trackable. See Section 2.4, 3. Make Release Criteria

SMART , on page 46.

4. Gain agreement from the project team and senior management.

1. Define What’s Important for This Project

What’s critically important to this project is a combination of what the

organization needs and what the customers need. Customers don’t buy

products based on the number or lack of defects. They buy products

because they solve some problem the customer needs solved. When you

develop release criteria, keep defects or defect levels in mind—but make

sure your release criteria deal with more than defects. Think about the

problems you’re solving for your customers—whether those customers

are outside or inside your organization.

Sometimes the release date is most important. Sometimes, it’s a par-

ticular feature or set of functionality. More often, it’s a combination of

schedule, features, and few defects. It all depends on your customers

and their expectations, as in Section 1.2, Manage Your Drivers, Con-

straints, and Floats, on page 19.

Rita worked at a start-up company driven by cash flow. The company

was not fully funded, so it had a tremendous incentive to ship products

early in order to obtain enough cash flow to continue the company’s

existence. For the first three releases, the only release criterion was the

date the release had to go to customers so the company could legally

recognize revenue. Once the company made it past the first couple of

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=43

DEFINE RELEASE CRITERIA 44

years and was adequately funded, the company developed other criteria

including defect counts, test progress, and the states of code freeze (the

times when developers would stop working on the release).

Rita described it this way: “When we were a start-up, we just needed to

keep our heads above water. Our initial customers wanted pretty much

what we gave them but were willing to work with us. We were all blown

away, though, with last year’s release. All of a sudden, the customers

cared about defects, more than they ever had before. My management

demanded to know what kind of a test group I was running, and I felt

completely besieged. The only thing that saved my sanity was knowing

that I had checked with the entire project team and senior management

in advance to know that the release criteria we chose were what we

needed. Unfortunately, we didn’t realize how much demand we would

have for this product, and we now realize we can’t use only the date

or some defect or test numbers to assess the state of the release. We

need a much bigger picture to know when we’re ready to release the

software.”

2. Draft Release Criteria

You may find it useful to draft a set of strawman release criteria so

you have a vehicle to start the discussion. (If you have a test manager

working with you on the project, you can work with the test manager or

ask the test manager to draft the strawman release criteria.) Make sure

you create a balanced representation of time to market and what your

customers want, along with defect, performance, and reliability levels,

if that’s appropriate. You don’t have to guess all the criteria correctly

the first time; you just need to have something you can discuss as a

group.

If you do draft criteria, make sure you stamp “DRAFT” somewhere on

the page. You want the project team and the sponsor to know these are

draft criteria for discussion, not a promise already made to someone.

Rita first drafted a set of release criteria as a starting place to discuss

the release with the project manager and the rest of the project team.

These were Rita’s draft criteria:

• All code must compile and build for all platforms.

• Zero high-priority bugs.

• For all open bugs, workarounds documented in the release notes.

• All planned tests run, at least 98% pass.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=44

DEFINE RELEASE CRITERIA 45

• Number of open defects decreasing for last three weeks.

• Feature X unit tested by developers, system tested by the Test

group, and verified with customers A and B before release.

• Ready to release by June 1.

• All open defects evaluated by cross-functional team.

However, once she started talking to the project manager (PM), Rita

realized that her initial criteria were not exactly what the customers or

the company needed. Yes, the customers were concerned with defects,

but not to the same extent that Rita was. In fact, if a couple of the major

customers were satisfied with the release, then chances were good that

it was good enough for the rest of the customers.

Initially, Rita’s PM was surprised that she had tried to look at the

whole release from the customers’ perspective and come up with a bal-

anced idea of what would make a complete release. He’d expected that

Rita would be much more concerned with a traditional test manager’s

perspective on quality: low defects. But, Rita knew from her previous

projects at the company that low defects were just part of the story

when making a release decision.

Rita, along with the PM and the rest of the project team, revised the

release criteria:

• All code must compile and build for all platforms.

• Zero high-priority bugs.

• For all open bugs, workarounds documented in the release notes.

• All planned tests run, at least 90% pass.

• Number of open defects decreasing for last three weeks.

• Feature x unit tested by developers, system tested by the Test

group, and verified with customers A and B before release.

• Ready to release by June 1.

These criteria don’t address everything for Rita’s release, but they cover

what’s critically important for this release: release date, good-enough

software, and a specific feature tested and found working by two

specific customers. Rita was disappointed that only 90% of the planned

test group’s tests had to pass—she thought there was too much risk

with such a low passing number. But, after hearing what everyone

else said, she was willing to go along with the rest of the criteria because

the release date was so critical. Rita was also concerned about re-

moving the criterion about the cross-functional team evaluating the

open defects at the end of the release. However, the product manager

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=45

DEFINE RELEASE CRITERIA 46

reassured Rita that he had discussed the issues with the PM and that

the PM could speak for the marketing and support staff.

3. Make Release Criteria SMART

When you draft the release criteria, make sure they can be answered

by anyone on the project team in the same way. I’ve adapted the SMART

acronym—Specific, Measurable, Attainable, Relevant, Trackable—to

test that I have reasonable and objective criteria. The T for Trackable

helps the entire project team realize that when we create release crite-

ria, we need to be able to evaluate them throughout the project.

Each criterion should be specific for this product now for this project.

When you make a criterion measurable, you’re ensuring that you can

evaluate the software against the criteria. Release criteria are not the

place for stretch goals, so make each criterion attainable. Make sure

your criteria are relevant by evaluating this product against what the

customer wants and what management wants. When you make criteria

trackable, you can evaluate the state of the criteria during the project,

not just during the last week of the project.

“Search must return the first set of results within five seconds” is an

objective and measurable criterion. You can test that. “All open defects

reviewed by cross-functional team” is another example of an objective

and measurable criterion. Either the cross-functional team reviewed

the open defects or the team didn’t.

“Fast performance” is an ambiguous criterion. To change this into an

objective and measurable criterion, make it something like this: “Per-

formance scenario A (corresponding to Use Case A) to complete in less

than ten seconds.” Name the specific scenario so people can refer to it,

and provide a measurement that will allow the project team to know

whether they met that performance.

4. Gain Consensus on Release Criteria

Once you have reasonable release criteria, it’s time to gain consensus

on what you’ve developed. If people react negatively to your draft crite-

ria (“No, we couldn’t possibly do that”), learn why they are concerned.

Generating release criteria reveals assumptions and fears about the

project and the product. Try these questions when generating or gain-

ing consensus on release criteria:

• Must we meet this criterion before the release date?

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=46

USE RELEASE CRITERIA 47

• What happens if we do not meet this criterion before the release

date?

• Do we put our product or company at risk by not meeting this

criterion? Do we jeopardize people’s safety if we don’t meet this

criterion?

These questions help the entire project team stay focused on what’s

needed for this release.

Gain consensus on release criteria with any of these ways: drafting

the release criteria, discussing them, and coming to an agreement at

a project team meeting; drafting the criteria with the entire team; or

drafting them with the matrix managers involved with the project team.

Once you have draft criteria, make the discussion of them an item for a

project team meeting. I prefer generating release criteria with the entire

project team, because then the team owns the release criteria, not just

the managers or me. However, if you’re working on a large project or

have never used release criteria before and want people to understand

what they’re working toward, try generating strawman release criteria

in advance of a project team meeting.

Once you’ve gained consensus, you can use the release criteria to mon-

itor the project.

2.5 Use Release Criteria

Release criteria are either met or not met. You aren’t partway to meeting

a criterion—you haven’t met it. You’ll find that this binary approach

helps you when you’re discussing the state of the software with senior

management. If you say you’re partway there, they hear that you’re

done. If you say you haven’t met the criterion, they hear you’re still

working.

With your team, discuss progress toward release criteria during your

project team meetings. Combining this with a look at the project dash-

board (see Chapter 11, Creating and Using a Project Dashboard, on

page 212) lets the entire team assess the project’s state of doneness

during the entire project. If you have a formal system test phase, use

the criteria as part of the testing status report.

You may find that release criteria are an early warning sign that the

project team is not going to make the release. Manny, a project man-

ager, was halfway through a six-month project. Manny looked at the

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=47

USE RELEASE CRITERIA 48

progress to date and was concerned that the team was not going to

make the ship date. He decided to make the release more real to the

project team by generating release criteria with them.

Manny then used the release criteria each week during the project team

meeting to verify the project was making progress. It worked for a cou-

ple of weeks until one week during the release criteria evaluation, one

of the engineers said, “I’m not going to make it. I’ve tried and tried, and

I’m just not going to make that criterion for our ship date.” Manny said,

“OK, I need to go back to management and see what we need to do.

Before I do that, does anyone else think they’re going to have problems

meeting any of the release criteria?” Another engineer said, “I can’t get

performance that good between now and the time we have to release.

When we discussed the release criteria, I thought it was possible, but

now I realize it’s not going to happen.”

Manny was able to ascertain early data about his project’s progress

with release criteria. For this team, realizing they weren’t going to meet

the release criteria two-thirds of the way through the project instead of

at the end was a relief. The PM knew what the project reality was and

could work with management to see which trade-offs made the most

sense. In this case, Manny was able to renegotiate the release date so

that the product could meet the release criteria.

If all goes well, you’ll evaluate the release criteria as you proceed, and

you’ll meet the criteria when the project is supposed to end. However,

projects don’t always go well, and you won’t always be able to meet the

release criteria. When that happens, make sure you’re honest about

what’s happening.

Change Release Criteria When Necessary

Release criteria help avoid the problem of a moving target of done. How-

ever, there are circumstances when you can consider changing release

criteria: when you learn more about what done means for this project

and if you realize you can’t meet all the release criteria by the desired

release date.

If you learn more about what done means, ask yourself the earlier ques-

tions about the release criteria: Must we meet this criterion? What hap-

pens if we don’t meet the criterion? See Section 2.4, 4. Gain Consensus

on Release Criteria, on page 46.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=48

USE RELEASE CRITERIA 49

If you’re working on a project and can’t meet the release criteria, say

so. First, verify with your team why you can’t meet the criteria. Next,

explain to your management why you can’t meet the criteria. Have your

management explain the situation to the project team like this: “We

thought these other criteria were important, but we realize now that the

date is even more important than we thought. We’re going to release the

product, even though we haven’t met all the release criteria.” If this is

true, you can have them add, “We’re going to determine what prevented

us from meeting our criteria this time and create the next project so that

we don’t miss our release criteria.” If you don’t explain the reasoning

to the project team, the project team feels as if they are playing the

schedule game discussed in Section 6.1, Bring Me a Rock, on page 101.

Remember This

• Project planning is ongoing; this is just a way to start.

• Develop release criteria to define done for the project team, the

sponsors, and you.

• Your project plan doesn’t have to be perfect; it has to exist.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=49

Chapter 3

Using Life Cycles to Design
Your Project

Imagine you’re ready to start a daylong car trip to attend a reunion of

friends. You planned your trip in advance, marking where you want to

go on your maps. But just as you get in the car, one of your friends

calls to explain there’s a washed-out road and construction you need

to drive around. You still arrive at your destination—safely and in time

for the dinner—but you’ve taken a different route.

That’s how you can think about choosing life cycles. No life cycle is

perfect once you take it out on the road. You might have to stretch it a

bit or modify it here and there. A life cycle is an idealized approach to

organizing your project. Some life cycles will fit better with your team

(and the project) than others. Make sure your life cycle allows you to

change when the road is washed out or you encounter obstacles.

3.1 Understanding Project Life Cycles

A life cycle is the way you and the project team organize the work of

product development—it’s when you choose to define requirements,

design, develop, and test, as well as how concurrently. You might have

phases with gates or iterations. You could plan for a formal design

phase or choose to evolve the architecture and high-level design. You

could choose to integrate the testing as you proceed or have all the

testing at the end. You might choose to prototype for a while and then

engineer the features, or you could implement by feature and see how

the architecture evolves.

OVERVIEW OF LIFE CYCLES 51

When you organize the overall project, don’t idealize your situation. If

you’ve seen issues such as incomplete requirements in your projects

before, don’t plan for complete requirements up front this time. Choose

a life cycle that helps you uncover requirements as you proceed. Be

pragmatic—be aware of your project’s risks, and choose a life cycle

that meets the risks of your project and helps you deliver a successful

product.

Projects rarely proceed in a straight line from requirements through

release. Projects tend to go off track more than they stay on track.

Although you might be most familiar with stage-gate and waterfall life

cycles, they are not the only approaches to organizing a project. As you

think about planning your project, see whether the life cycle you’ve cho-

sen addresses your project’s risks. If your project’s risks don’t match

the life cycle, stop trying to make it fit, and choose another one.

You can’t just think about internal project risks as you consider life

cycles. Your customers and their expectations are part of your risks.

As you think about how to organize your project, also think about your

customers. What are their needs? What is their experience? How much

are they willing to work with you? (See Section 1.7, Know What Quality

Means for Your Project, on page 30.)

It would be lovely if you could plan on only one kind of customer with

one driver for quality—but you rarely can. You’ll need to figure out

which risks are most important to your customer. Choose a life cycle

that optimizes for those risks whether it be date to release, defects,

features, or cost—and manage the other risks with the practices and

people you choose for your project.

3.2 Overview of Life Cycles

Different life cycles optimize for risk differently. There are four major

kinds of life cycles: serial; iterative; incremental; and iterative/incre-

mental, which I’ll call agile from here on. (In truth, you don’t need

to follow the agile values as in the Agile Manifesto1 to use an itera-

tive/incremental life cycle. But it’s darn close to impossible to make

the agile life cycles work unless you follow the agile values.) See Fig-

ure 3.1, on the next page, to see how life cycles manage the possible

risks in projects.

1. See http://www.agilemanifesto.org.

Report erratum

this copy is (First printing, June 2007)

http://www.agilemanifesto.org
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=51

OVERVIEW OF LIFE CYCLES 52

Agile (such as
Scrum, XP)

Waterfall,
phase-gate

Spiral,
evolutionary
prototyping

Design to
schedule,
staged
delivery

Examples of

This Kind of

Lifecycle

Code and fix

1. Time to release

2. Feature set

3. Low defects

Unsuccessful

1. Time to release

2. Feature set

3. Low defects

Manages both schedule and technical risk

Difficult to do well without a colocated
integrated team

Successful

1. Time to release

2. Low defects

3. Feature set

Successful

Manages schedule risk

Can absorb small requirements changes
but not enough changes that affect the
architecture

Manages technical risk

Ever-evolving requirements

1. Features set

2. Low defects

3. Time to release

Successful assuming
the finishing parts are
planned and occur

Manages cost risk (if management uses
the phase gates)
Known and agreed-upon requirements
Well-understood system architecture
Requirements stable over the project
Project team stable over the project

Successful with
feedback

1. Features set

2. Low defects

3. Time to release

Prognosis for

Success
Project Priorities

Strengths and Necessary Conditions

for Success

Ad hoc

Iterative/
incremental

Incremental

Iterative

Serial

Lifecycle

Type

Figure 3.1: How life cycles manage risk

If you’re not sure of which life cycle is which, Figure 3.2, on the fol-

lowing page, is a picture of what the different life cycles look like if you

were to look at them as if you were building a Gantt chart.

In a serial life cycle, the team is supposed to be able to first obtain

all the requirements. Based on the requirements, the team moves into

analysis and design to determine the big picture of the system. Once

everyone agrees on the big picture, the team starts developing. After all

the development, the team integrates all the pieces, and then the final

test starts. In reality, one phase doesn’t need to finish before the next

phase begins, but the one-phase-at-a-time mentality is real in a serial

life cycle.

Serial life cycles take longer because they are supposed to be able to

predict how long it will take to implement features or find and fix defects

or integrate pieces of the system or manage requirements changes—

things are inherently unpredictable. Unless you have a working crystal

ball, it’s impossible to forecast everything you need to know about the

future. In a serial life cycle, you have to allow for extra time, such as

a final system test at the end of the project to make up for risks and

problems you could not have known about during the project.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=52

OVERVIEW OF LIFE CYCLES 53

Requirements Analysis Design Code Integration TestSerial

Iterative
Requirements

Prototype:
Analysis,

Design, Code

Prototype:
Analysis,

Design, Code

Prototype:
Analysis,

Design, Code
Integration Test

Incremental Some
Require
ments

Design,
Code,

Integrate &
Test

 Design, Code,
Integrate & Test

 Design,
Code,

Integrate &
Test

FInal
Integr
ation

FInal Test

Agile

Some
requirem
ents/

Planning
Game

Timebox Timebox Timebox Timebox Timebox
Repeat as
 needed

Analysis to
choose
overall

Architecture

Each timebox results in running tested features

Design,
Code,
Integrate
& Test

Figure 3.2: A Gantt-like look at life cycles

Iterative life cycles try to manage some of that prediction problem by

helping the project team see prototypes of pieces of the system as they

are created. In an iterative life cycle, the project team develops pieces

of the product in each pass (iteration). Most of the iterative life cycles

do not require that you have finished pieces of the product at the end

of each iteration. Iterative life cycles do not require concurrent testing

and integration. (When you build prototypes of the architecture, you

can’t predict the future well until you start building and integrating

features.)

Incremental life cycles look like a bit like serial life cycles for the require-

ments and analysis phases, although successful teams timebox the

requirements and analysis phases. They soon break into feature-based

teams. The teams build one feature, test it, integrate it, and then work

on another feature. Projects that use incremental life cycles have the

prediction problem until they move into the increments. Once they

move into increments, they can use feedback about their ability to build

features to determine where the project is headed.

Agile life cycles are a hybrid of the iterative and incremental life cycles,

but with small iterations and small increments. Agile life cycles start

a project with a little bit of planning—just enough to get started and

have an idea about what the product owner would like to finish for

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=53

OVERVIEW OF LIFE CYCLES 54

the release. The product owner might even specify which features they

want to slot into which iteration. But the teams don’t spend much

time on release planning. Instead, they move into planning a time-

boxed iteration’s (one to four weeks) worth of work. As the team works

in these timeboxes, implementing the most valuable features first, they

collect data about how quickly they can work, fix problems, understand

requirements, and so on. As they proceed, the team solicits feedback

from the product owner about how the features look and work. The

team replans for the next iteration based on their velocity and their

changed circumstances. Because the team actively seeks feedback on

their work and work process, this life cycle best incorporates feedback

about true project status, the rate of development, the rate of finding

and fixing defects, and the team’s assumptions.

Unless your project team actively plans to develop, test, and integrate

by feature (as in concurrent engineering or in agile), they use a design-

code-test-debug loop, as in Figure 3.4, on page 56. First the developer

designs the product, then codes it, then tests it, and then debugs it.

That work can take weeks or even months. Get a bunch of developers

together working on a product, and you can see how long it could take

before some code is tested with other code.

Tip: Code and Fix Is Never a Useful Life Cycle

Never use “code and fix” as your life cycle. Never, never, never.

Well-meaning people start with code and fix because they

think it’s faster than doing a planning game, prototyping to

know what you could do, or gathering some requirements.

It’s not. No matter what life cycle you choose, make sure

you plan at least a little at the beginning of the project. Dil-

bert summed this life cycle up nicely. The Pointy Haired Boss

says, “You guys start coding; I’ll get the requirements.”

You don’t need to know all of the requirements to start. Im-

plement by feature, timebox the iterations, and work with

your customer to make sure you’re developing what the cus-

tomer wants. But don’t fall into the trap that you can start

developing without having a customer or start a project with-

out planning. You can, but the chances of project success

plummet.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=54

SEEING FEEDBACK IN THE PROJECT 55

Prototype what we do
know about. Get
feedback. Select an

architecture.

Initial
pass at
require
ments.

Fully implement
3 features,
integrating as

we go.

Test
architecture.
Demo what
we have.

Keep
implementing,
integrating as

we go.

FInal
test.

Figure 3.3: A combination of iterative and incremental life cycle

Life cycles are an idealized approach to organizing a project. Just be-

cause you choose one life cycle doesn’t mean you have to follow it slav-

ishly. You can integrate pieces of another life cycle to deal with your

project’s risks.

For example, if you’ve ever had to manage the risk of choosing an archi-

tecture early, when you know you don’t know all the requirements (and

you can’t use an agile life cycle), Figure 3.3 might help. This combina-

tion allows the project team to prototype a little using iterations. Once

the team knows enough, the team moves into incremental development,

implementing, testing, and integrating as they proceed.

Figure 3.3 is a combination life cycle that uses parts of the iterative life

cycle (the prototyping), part of the incremental life cycle (the three fea-

ture full implementation and continued development), some of the ideas

from the agile community (initial pass at requirements and iterating on

requirements as the project proceeds), and a final test to manage risk

at the end of the project.

3.3 Seeing Feedback in the Project

The first time developers receive feedback on their code is during some

test of that code. And, if testing has not been integrated into the project,

that feedback arrives very late in the project.

Without feedback to the developers, you cannot easily assess your re-

maining project risks, assess the project’s state, or assess how quickly

the team can produce working software. You can’t know whether work

is actually done. This lack of feedback is why the serial life cycles es-

pecially are predictive or forecasting life cycles. The serial life cycles

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=55

LARGER PROJECTS MIGHT HAVE MULTIPLE COMBINATIONS OF LIFE CYCLES 56

Design

Code

Test

Debug

Figure 3.4: Design-code-test-debug loop

predict the future, without having sufficient data to check that the

future can be accomplished based on current work. Anything that the

team does to obtain feedback early about the product (not the descrip-

tions of the product, although that is helpful) makes the prediction

easier.

If you just look at a Gantt-like picture of the agile life cycles, you can’t

see the feedback loop the agile life cycle provides. Inside each timebox

are two feedback loops. The constant feedback is Figure 3.5, on the

following page. Developers test as they code, so feedback is immedi-

ate. The daily and iteration-based feedback looks like Figure 3.6, on

page 58. This constant feedback to the developers and the project man-

ager is at the heart of why the agile life cycles work.

3.4 Larger Projects Might Have Multiple Combinations of Life

Cycles

No single life cycle meets everyone’s needs. On projects with larger

teams or multisite projects, you might find that each team uses its own

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=56

LARGER PROJECTS MIGHT HAVE MULTIPLE COMBINATIONS OF LIFE CYCLES 57

Test

Code

Refactor

Start a feature

Build (at least daily)

Figure 3.5: Test-code-refactor loop

life cycle. (See Chapter 12, Managing Multisite Projects, on page 246

for more information.) On one project with about sixty developers and

twenty testers, the project life cycle looked like Figure 3.7, on the next

page.

The developers used an incremental life cycle. The testers used an iter-

ative life cycle. The testers chose to develop their tests this way so they

were working from breadth-first to assess the system state. The devel-

opers worked to finish each feature, integrating as they proceeded in

case the management team mandated an earlier ship date.

I’ve also seen multisite projects use a combination of life cycles. In

one case, developers in one site used evolutionary prototyping, while

the developers in another site used staged delivery. They agreed at the

beginning and at each quarter during the eighteen-month project what

their next deliverables would be and the criteria for those deliverables.

In another case, for a three-country project, the developers in one site

used two-week iterations, developers at the second site used staged

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=57

LARGER PROJECTS MIGHT HAVE MULTIPLE COMBINATIONS OF LIFE CYCLES 58

Build (at Least Daily)

System Demo After Each Timebox

Release

Figure 3.6: How agile life cycles incorporate feedback

Prototype
architecture and
select product
architecture

Initial
Definition of
Requirements

Design, code,
integrate and
test features
A, B, C; add
to smoke
tests where
makes sense

FInal
Integrati
on

FInal Test

Developer
Life Cycle

(Staged Delivery)

Tester
Life Cycle

Similar to Design
to Schedule)

Select
test

architectu
re

Develop
whole-
product

smoke tests

Develop
first pass
of system
tests to
verify
release
criteria

Develop
system

tests to test
features A,
B, C in

more depth

Design, code,
integrate and
test features
D, E, F, G, H

More stages of
Design, code,

integrate and test,
 including add

more smoke tests

More iterations of
adding more
detailed system
tests and adding
more tests to verify
release criteria

Figure 3.7: One large project’s life cycle: a combination of life cycles

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=58

LARGER PROJECTS MIGHT HAVE MULTIPLE COMBINATIONS OF LIFE CYCLES 59

delivery, and developers at the third site used four-week iterations.

They also defined their deliverables and criteria every month, not just at

the beginning of the project. The key with multisite projects is to define

what the handoffs will be and when those handoffs need to occur. See

Section 12.4, Define the Milestones and Handoffs for Each Team, on

page 254.

When Your Project Includes Hardware

If your project is to develop a new generation chip or board (new prod-

uct development), your company will have a set of ambitious require-

ments that the hardware team might not be able to fulfill in the time

allotted. You’ll need to wait until the hardware has gone to fabrication

before knowing precisely what can be done in hardware and what will

need to be done in software. You can often fix a small issue in soft-

ware with a software update. Hardware doesn’t have this luxury, so the

time and costs constraints might be different, and the costs of fixing

hardware after it ships means that software might have to accommo-

date the hardware schedule. You can implement by feature while you’re

waiting by using a staged delivery or agile life cycle and by possibly

using stubs. When you know what the hardware can or cannot do, you

might need to replace some of those stubs with hardware/driver calls

or with software. You don’t need to wait until the hardware is done,

but you will have a “serialness” to your project until the hardware is

complete enough to know which low-level features will be implemented

where. A successful hardware/software combination project requires a

combination of life cycles.

You can treat firmware as software or as hardware depending on the

context. If you’re building firmware as something to plug/download into

a system externally, you can probably treat that as software. If you’re

building firmware that’s embedded into a system and it’s not easily

changed, treat that as hardware.

If you’re integrating a system that includes other vendors’ components,

you will definitely need a combination of life cycles and a regular way to

manage risks during the project. For example, say you want to build a

state-of-the-art refrigerator that can order groceries for you online and

can assess the state of some of the perishable items.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=59

MANAGING ARCHITECTURAL RISK 60

You might buy the milk analyzer from Acme Analysis. But you buy

the meat analyzer from Meats-R-Us and the vegetable analyzer from

Veggies for Life Systems. In the low-end refrigerator, you include only

the milk analyzer. And in the high-end refrigerator, you also include the

meat and vegetable analyzers. You would run different projects as part

of one program (see Chapter 14, Managing Programs, on page 288) for

the low- and high-end refrigerators.

Before you agree to a date, or even think about a life cycle, negotiate

interim deliverables from your vendors. System integration from vari-

ous vendors is highly risky. Managing the risk means more than just

selecting a life cycle; it means planning for integration as you proceed

through the project. If your analyzer vendors have to deliver monthly

releases (even if they’re not releasable to your customers), you can eas-

ily use iterations and agile approaches to manage the risks.

If you find that you’re managing a systems integration project and your

company has not negotiated interim deliverables, you can try to nego-

tiate those deliverables now. But even if you can’t get your vendors to

agree, you can still use incremental and iterative approaches to your

project.

To manage the tricky part of the integration, I strongly recommend you

build incrementally, using either timeboxed iterations (the best way to

manage risk), such as in Figure A.6, on page 340, or using an incre-

mental life cycle, such as in Figure A.5, on page 338. Do not use a serial

life cycle—you can’t see the technical risk as you proceed through the

project. You will be able to see problems only at the end.

3.5 Managing Architectural Risk

No life cycle fully addresses a product’s architectural risks—that is the

risk that the architecture your project team has selected will be suffi-

cient for your needs. Until the code that represents the architecture is

written and integrated, it’s impossible to tell whether the architecture

works. I’ve worked with many project teams who chose a serial (water-

fall or phase-gate) life cycle because they were convinced that the serial

life cycle addressed the architectural risks. Unfortunately, it does not.

And because final integration and testing occur last in a waterfall life

cycle, the waterfall or stage-gate is actually the riskiest for managing

architectural risks.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=60

MANAGING ARCHITECTURAL RISK 61

If you really want to know about the architectural risks early and you

are constrained to a serial life cycle, you have several options:

• Iterate on prototypes that are close to “final” as early as pos-

sible in the project. Include testing of those prototypes. If you

try only quick-and-dirty prototypes (as in a spiral life cycle), you

won’t know whether the performance or reliability of your pro-

posed architecture is sufficient.

• Implement several features that will stress the architecture as

early in the project as possible. I prefer to use a timebox of no more

than three weeks to implement these features. See what kind of

architecture emerges from those features. Also note the kinds of

risks the feature teams encountered so you can see whether you

need to select another life cycle.

Let’s assume you try a three-week timebox to implement four fea-

tures in order to see whether a proposed architecture works. At

the end of the three weeks, the team realized it can implement

only two features easily. The team guessed wrong on their esti-

mates for what they could do in a three-week iteration. You might

want to continue using time-boxed iterations, or you might want

to repeat that three-week timebox with a different architecture to

see whether a different architecture changes the risk or the speed

of development.

The more you experiment in the beginning of a serial life cycle

(even though the life cycle doesn’t call for experimentation), the

fewer architectural and design risks you will encounter later in

the project.

• Timebox the entire architecture effort. Challenge the architects

and developers to develop at least three options for the archi-

tecture and tell you (the project manager) what works with each

option and what’s still at risk with each option.

The only way to really manage architectural risk is to implement some-

thing and test it. Any Microsoft PowerPoint architecture [SH06b] (where

the implementation is only in PowerPoint) is window dressing2 to give a

favorable impression and not worth the time.

2. Thanks to Jerry Aubin who suggested this term.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=61

PADDLING YOUR WAY OUT OF A WATERFALL 62

You might be working in an organization where the sponsors, senior

management, or PMO wants to see the architecture (or a picture of

the architecture) before you start on the project or where the risk of not

doing an architectural review is too high. In that case, I still recommend

you completely prototype a few features so that you have experience

with the architecture before you bet the project on it.

Be aware that during the project, you will need to address the risk of the

architecture not meeting your needs—and you want to do that earlier

rather than later. If you don’t, it can sink the whole project.

3.6 Paddling Your Way Out of a Waterfall

If you’re stuck with a serial lifeycle, here’s how to make it less waterfal-

lish and more flexible so you can adapt to reality:

• Plan to iterate on everything, including planning, requirements,

and prototyping.

• Prototype and show your customer/customer surrogate as much

as possible as early in the project as you can. The more feedback

you incorporate from people who are your customers or who rep-

resent your customers, the better off you are.

• Integrate testing into the project from the beginning. Work with the

testers to provide feedback before an entire system is available.

• Implement by feature, integrating and testing as you proceed.

• If you must deliver documents (the typical milestones at the end

of a stage in a serial life cycle), make sure the documents are not

your only deliverable. Exploring prototypes with the customer and

delivering working product will help provide the project team with

valuable feedback.

These approaches are not traditional serial approaches. But they work.

Don’t lie to your sponsors about how you’re managing the project; tell

them you’re managing the various risks. You can treat the project inter-

nals like the sausage makers. You don’t have to provide the gory details

about the insides of your project; they don’t show you how they make

sausage.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=62

MY FAVORITE LIFE CYCLES 63

3.7 My Favorite Life Cycles

I have a strong preference toward delivering pieces of functionality into

the code base sooner rather than later. In my experience, it’s not pos-

sible to design the definitive architecture until after the project team

writes, tests, and integrates several features. I prefer evolving the archi-

tecture and delivering features using Scrum [Sch04] as the project

management framework to take advantage of the visibility, inspection,

and adaptation it provides. Where possible, I add the eXtreme Program-

ming (XP) (see [BF01] and [JAH02]) practices, or I estimate the archi-

tecture and then deliver some features with an incremental life cycle

such as staged delivery.

If the project team is capable and interested in collaborating3 the way

an agile project requires, then an agile life cycle is my first choice. How-

ever, if the team can’t get enough attention from the customer or if

the team is not composed of people who are interested in collaborat-

ing the way an agile project requires, I tend toward a staged-delivery

life cycle, timeboxing the requirements and architecture phases. (Any

project without enough customer involvement will suffer. Agile helps

make that problem visible earlier than other life cycles.)

I rarely use a waterfall, even on short, straightforward projects. If I use a

spiral life cycle, I push the team toward something that looks more like

staged delivery so I have finished work, instead of pieces of incomplete

work.

Remember This

• Design your project using any life cycle or combination of life

cycles to make the project successful.

• Don’t be afraid to create your own life cycle to reflect your reality.

The “perfect” life cycles are models. You live in the real world.

• Use a stage-gate or waterfall life cycle only when you think you

can make it successful, not by default.

3. See http://www.stsc.hill.af.mil/crosstalk/2007/04/0704Derby.html and

http://alistair.cockburn.us/index.php/Agile_software_development:_the_people_factor.

Report erratum

this copy is (First printing, June 2007)

http://www.stsc.hill.af.mil/crosstalk/2007/04/0704Derby.html
http://alistair.cockburn.us/index.php/Agile_software_development:_the_people_factor
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=63

Chapter 4

Scheduling the Project
Planning and scheduling are two separate activities. In Chapter 2, Plan-

ning the Project, on page 33, you started the project planning. Here,

you’ll think about scheduling and estimating the project. As you orga-

nize the schedule—and when you reestimate the work—you might have

to modify the plan. That’s fine. Your original plan is just good enough to

start. Expect to refine the plan as you schedule (and reschedule). And,

don’t be afraid to refine the schedule as you replan.

4.1 Pragmatic Approaches to Project Scheduling

You planned just enough to start the project already. You need to sched-

ule enough to start the project. There’s no point to scheduling the whole

darn project when you know the project is going to evolve. If you’re

working with a customer who wants to see a project schedule before

they will sign a contract, be clear that the initial schedule is your best

first guess. It will change. And, have that customer read about accu-

racy and precision of schedules in the tip Estimates Need Accuracy, Not

Precision, on page 86.

A few years ago, I had a conversation with a project manager at a con-

ference. I said it took me anywhere from about half a day to a couple of

days to get started on a project schedule, and I wanted to shorten the

two days down to half a day.

The other project manager stood there with her mouth open. She abso-

lutely didn’t believe that I could schedule a project in half a day. I

explained that I didn’t try to schedule everything, just the next week

or so, and then I would build up the major milestones and the rolling-

wave schedule (see Appendix B, on page 343) over the next few weeks.

PRAGMATIC APPROACHES TO PROJECT SCHEDULING 65

“How do you know the end date?” she asked.

“I don’t, at least not precisely. But if I tried to plan forward to see where

the end date would be that early in the project without any data, I’d be

wrong. Why take the time to schedule in detail when you know you’ll

be wrong?”

She said, “Gee, I never thought of it that way.”

There are many ways to schedule a project. I think top-down, so I cre-

ate a first draft of the plan because that helps me create a first-draft

schedule. Other project managers start with a schedule draft first. Do

what feels most comfortable to you and appropriate for the project. But

don’t neglect either the plan or the schedule. Every project needs both.

Tip: Projects Require Both Plans and Schedules

As the pragmatic project manager, your job is to start the

project with just enough planning and to continue to plan

(and replan) as you proceed. Whatever you do, don’t ignore

either the plan, especially the release criteria, or the sched-

ule. You might not need a fancy schmancy Gantt chart for

a schedule; yellow stickies on the wall are fine for many

projects. But you do need to both plan and schedule.

Your schedule will bear some resemblance to the life cycle you choose.

But remember, a life cycle is a model of how the project could look.

When it’s time to create the schedule, use the life cycle as a guideline,

and make sure you’ve addressed the risks inherent in your life cycle,

no matter how you need to do that. You might add timeboxed iterations

and increments to phase-gate project schedules—as well as planning

to replan—because those actions made sense for the particular project.

Remember that a life cycle is a guide, not a straightjacket.

Scheduling and estimating are two different activities. Scheduling is

ordering and showing the interdependencies of tasks. Estimating is

guessing how many effort-hours a particular task will take. They are

linked, because how you organize the schedule might depend on a given

task’s estimate of the effort-hours and specific people required.

I wish I could wave my magic wand and say, “Here is the One Right Way

to schedule and estimate your project.” But I can’t. We generally need

to estimate things we’ve never done before.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=65

SELECT FROM THESE SCHEDULING TECHNIQUES 66

Estimation of the unknown is still an art. On the other hand, if you

know what life cycle you’re using, organizing the schedule is easier.

Tip: Timebox Initial Planning

Spend as little time as possible on up-front planning, espe-

cially if your project team is already assigned to your project.

Take just enough time to plan so your project team can start.

Timebox the charter to one hour. Timebox the project plan

to another hour. Timebox the first draft of the schedule to

an hour. The timeboxing will focus everyone on the few vital

pieces they need to start. Once people know what they have

to work on for the next week or two, you can return to the

plans and schedule and see what else you need to write.

4.2 Select from These Scheduling Techniques

I select from among these scheduling techniques when laying out the

project: top-down, bottom-up, and inside out, Hudson Bay Start, and a

short iteration.

Top-Down Scheduling

Top-down scheduling generally starts with milestones. Serial life cycles

tend to start with top-down scheduling, because the phases are so

clear. (Hint: if you must use a serial life cycle, make sure you use

deliverable-based planning as a technique to generate your milestones,

as discussed in Section 4.3, Deliverable-Based Planning, on page 75.)

Organize the project schedule into phases, iterations, or chunks. Lay

them out on a whiteboard or on stickies on a wall. Dwayne Phillips

recommends cards on a wall as another low-tech scheduling technique.

When you schedule with cards on the wall, each person creates cards

with the tasks they think they need to do. Then link the cards with

string [Phi04]. This technique is particularly helpful if you don’t know

where to start.

The team starts organizing the schedule from the highest-level mile-

stones and develops the tasks to support those milestones. As one

or more team members understand more about what each milestone

means, they break the milestone down into its component tasks.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=66

SELECT FROM THESE SCHEDULING TECHNIQUES 67

The smaller the task at the bottom level, the easier it is to estimate how

long the task will take.

Bottom-up Scheduling

Bottom-up scheduling starts with specific tasks. If you’re using an

incremental life cycle, it might make sense to start with bottom-up

scheduling. “We know we need to do this feature first, then do those

features, and then have a go/no-go decision. . . .”

The project team members, working alone or in cross-functional teams,

develop the milestones from the tasks. As the project manager, you can

ask questions about how things fit together. (The more technical you

are, the more you can help. If you don’t have domain expertise in the

product, don’t interfere.)

Inside-out Scheduling

Inside-out scheduling works best with people who think they need to

be completely adaptable. At one of my project management workshops,

one PM said, “First I make a mind-map [BB96] of everything I know

about the project. I might know some go/no-go review points. I might

know about certain features. But I don’t know about everything at the

same level, so I want to see everything before I start scheduling.”

Your mind-map might be crystal clear to you. But it might not be clear

to others on the project. Mind-maps communicate much more to those

present when it was created than to those who are just shown the

results later. If you and your project team are using inside-out schedul-

ing, make sure the team works together to generate the tasks and mile-

stones.

Hudson Bay Start

Imagine you’re managing a project that’s completely new to you and

the entire project team. You have no idea whether the environment you

have will support the tools. You don’t know how to estimate the project.

Consider a short iteration, such as a Hudson Bay Start.

The Hudson Bay Start approach was originated by the Hudson Bay

Company in the 1600–1700s in northeastern Canada. The Hudson Bay

Company outfitted fur traders. To make sure the traders hadn’t forgot-

ten anything they needed, they left Hudson Bay and camped just a few

miles away. By making camp just a few miles away, the traders ensured

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=67

SELECT FROM THESE SCHEDULING TECHNIQUES 68

they hadn’t forgotten any tools or supplies—before they abandoned civ-

ilization. With just a short start to their journey, they had a better idea

about their ability to endure the winter.

A Hudson Bay Start is a technique that allows the project team to push

something through the project’s environment. You want this to be as

small a thing as possible. (A “Hello World” program might be just fine.)

The idea is for the project team to see what it would be like to start

working in this environment with this product domain.

If you and the team can’t figure out what it would take to estimate any

piece, timebox a Hudson Bay Start. Start something you can complete

in four hours or less. (This thing doesn’t have to be real functionality.)

After the team has created something, debrief the activity. The team will

know more about how to estimate the tasks needed. If the team knows

only a little more, start with a short iteration, and then decide what to

do.

A Hudson Bay Start helps in several ways. First, the team gains some

confidence that they can accomplish something. Finishing something

helps them gain some insight when it comes to estimating. In addition,

the team has a little insight into how to organize some tasks. “Oh, if

we want to do those features in parallel, we’re going to have to make

another branch and merge back in. Yikes, that means staging integra-

tion. That will take longer than working on the mainline.”

When you hear conversations like this, where people articulate the

risks, then you can capture them in a parking lot (see Appendix B,

on page 343) to deal with later or as you schedule.

Start with a Short Iteration

Use a short timeboxed iteration when the team understands the envi-

ronment but isn’t sure how to estimate the tasks. A short iteration

helps people see how much they can accomplish in one or two weeks,

so their follow-on estimates are more accurate. You can use a short

iteration after a Hudson Bay Start, once the team understands how to

use the environment.

Timebox a short iteration (no more than two weeks—one week is even

better), and see what the team can accomplish in that time. By the

end of the iteration, the team and you will have a better idea about the

requirements, the risks, and what they don’t know.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=68

START SCHEDULING WITH A LOW-TECH TOOL 69

If you combine a short iteration with a short retrospective, the entire

team will learn more about what it takes to schedule this project.

4.3 Start Scheduling with a Low-Tech Tool

Back in the Stone Age, when I started managing projects, we didn’t have

electronic scheduling tools. We had blackboards, paper, and flowchart

templates. I used a blackboard to lay out the schedule for projects.

Blackboards worked well—if I made a mistake, I erased the sequence

and inserted it where I needed it.

But blackboards can become messy if you have to erase and rewrite

information. Even when I moved to whiteboards in the Neolithic Age,

the whiteboard can be hard to see—sometimes the old information is

still visible under the new drawings.

When yellow stickies came out in the Modern Age, I moved to yellow

stickies.1 It’s easy to write a task on a sticky, put the sticky up on the

wall, and discuss with the rest of the project team—sometimes quite

loudly—the sequence of tasks or who will do them or what the risks are.

And, if the task is in the wrong place—because the team sees another

way to organize the project—it’s easy to move the sticky from one place

to another.

Yellow stickies involve the whole team in scheduling. The team will

explain the risk as they proceed, providing you with valuable infor-

mation you can use for steering the project.

High-Tech vs. Low-Tech Scheduling

by Sandy, seasoned project manager

I’ve been managing projects for about fifteen years. I started when we had

scheduling tools, and I became an expert at the best-known tool. Sure, it

had problems originally rolling up subprojects, but I knew how to get

around that. And, we had a little problem with trying to track the details,

but I got good at figuring out how to outwit the tool. I had a little problem

with earned value calculations, but we moved to implementing by feature,

and that helped (see Section 11.2, Earned Value for Software Projects

Makes Little Sense, on page 218).

1. For those of you who are wondering why I didn’t move to an electronic scheduling

tool, the answer is easy—one didn’t exist for the operating systems I was using. Since it

didn’t exist, I couldn’t use it.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=69

START SCHEDULING WITH A LOW-TECH TOOL 70

Then I started managing a really large program a couple of years ago,

including about 300 people in six sites. I’m no dummy, so I brought all

the project managers for an initial planning meeting. I had my computer

hooked up to the projector, and we started developing the schedule.

Everyone was yelling at me, trying to make me see where tasks belonged.

I was a little stressed but was getting there. Then the power died.

Bob, one of the subproject managers, said, “Don’t go anywhere. I’ll be

right back, and we can continue.” He came back in about five minutes

with pads of yellow stickies and pens. He explained how we would

schedule and then everyone started writing their stickies. In about ten

minutes, we started posting the stickies on the wall and discussed what

each one meant and where we had issues.

We had an initial schedule in less than an hour. We took pictures of it, in

case the power stayed off and my computer ran out of juice.

At the end of the meeting, every subproject manager congratulated me on

how quickly we developed a schedule. Me! I gave all the credit to Bob. That

schedule was good for a couple of months, and when we had to update it,

we gathered the subproject managers together and did the same thing.

I was amazed by how well it worked. I still use scheduling tools, but I

always start with low-tech scheduling, and if we need a major replan, I

use low-tech scheduling now.

Many project managers prefer to start scheduling with an electronic

scheduling tool. If you need to lay out many tasks at once and you

think the sequence of those tasks are not going to change, maybe an

electronic scheduling tool works at the beginning of the project. But it

doesn’t involve the entire team in the scheduling activity. Using a tool to

generate a schedule shortcuts the discussion and doesn’t expose silent

dependencies and risks.

The project manager can type only one task at a time—and only the

project manager can create tasks. The scheduling tool can show you

only one page of information at a time, and the team might lose context

if they can’t see the whole schedule.

If you’re not using rolling-wave planning, then an electronic schedul-

ing tool might be OK once you and the team create the initial project

schedule. (You will lose the benefit of a Big Visible Chart or Information

Radiator; see Chapter 11, Creating and Using a Project Dashboard, on

page 212.) But starting with a tool says to the team, “I’m in charge of

the schedule; you’re not.”

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=70

START SCHEDULING WITH A LOW-TECH TOOL 71

If the project team owns the schedule, they will stay committed to it.

If you own the schedule, you’re likely to micromanage the team, not

manage the interdependencies of their tasks.

I hope I’ve convinced you to start with stickies or cards on the wall. If

you’re not sure how to do that, here are several techniques I’ve used for

different projects.

Basic Sticky Scheduling

Gather the entire project team together in a room with a long wall or a

long whiteboard. Hand everyone a pad of yellow stickies and a medium

or bold black pen. (I prefer to use three-inch by five-inch stickies so

they’re big enough to read and a felt-tip black pen.) If you know you’re

using a serial, iterative, or incremental life cycle, post the major mile-

stones on the wall so people can see the structure of the project. Ask

everyone to write all their tasks down on a sticky, one task per sticky.

As the team members write down tasks, they post them on the wall.

(You can see examples of this in Figure 4.1, on the next page, as well

as in Figure 4.2, on page 73.)

Assign one part of the wall as the parking lot (Appendix B, on page 343),

the place where the team will collect questions and assumptions that

you’ll need to resolve as part of the scheduling. I use flip chart paper

for the parking lot, so if I need to take the parking lot back to my office

to resolve, it’s easily transportable.

Now stand back, out of the way. The project team members will start

collaborating about the sequence of events, any prerequisites, assump-

tions, and questions.

As developers start writing their tasks, they will have questions for

requirements analysts, writers, and testers—who will have questions

for the developers. The project team starts to bond in a cross-functional

way before the project “starts.” (In reality, the project has already star-

ted—see the sidebar on page 30—there just are no other artifacts at this

time.) You can see what a short project might look like in Figure 4.1, on

the next page.

Once the team has written down as much as they can and resolved the

issues, it’s time for you to be involved. Expect to see these issues in the

schedule:

• The team has scheduled only the first few weeks of their work.

They can’t see much more detail than a few weeks out, so that’s

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=71

START SCHEDULING WITH A LOW-TECH TOOL 72

Figure 4.1: One project’s yellow sticky schedule

all they’ve scheduled. That’s OK, because you can use rolling-wave

planning (Section 5.6, Using Rolling-Wave Scheduling, on page 95)

to iterate on the schedule. And, it’s OK because you don’t want

people to provide detail that isn’t based in reality. More detail is a

waste of time.

• You might see long sequences of serial tasks. Expect this in a serial

life cycle. But if you’re seeing this in an iterative or incremental life

cycle, ask the team whether something is preventing them from

working more in parallel. See Figure 4.2, on the next page, to see

exactly the same project as Figure 4.1—except organized in a more

serial way.

• You might see long sequences of many parallel tasks. You have to

worry about this only in a serial life cycle, which does not—by its

nature—lend itself to parallelism. However, it’s a risk to the project

in any life cycle other than agile. The risk is that people will fall

out of sync and extend the critical path where you did not expect

the critical path to be.

Once the team has created the schedule, the team is ready to estimate

how long each task will take.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=72

START SCHEDULING WITH A LOW-TECH TOOL 73

Figure 4.2: Another project’s yellow sticky schedule

Sticky Scheduling with Arrows

One of my clients starts with yellow-sticky scheduling as described

here, but once the schedule is “set,” they draw arrows from one sticky

to another. The arrows help them in several ways. The first is that if a

sticky falls down, they know where to put it back. The second is that

after they do the initial yellow-sticky scheduling, they transition to an

electronic scheduling tool. A project coordinator transcribes each sticky

into a task into the tool, and the arrows help them keep track of depen-

dencies.

Sticky Scheduling for Each Group

If you’re stuck with a phase-gate schedule and can’t create a cross-

functional team to implement by feature, you might need the help of

a schedule to convince your management that there are other options.

I’ve used sticky scheduling for a week-by-week look at the schedule to

help management understand that organizing by functional team slows

the project down.

On a large whiteboard or on paper taped to the wall, draw vertical lines

down, one for each week. Use different colored stickies to show when

different people in different functional organizations are working on the

project.

Don’t forget to show the end of the project. The end of functionally

organized projects tends to be difficult. Because management thinks

the developers are free to start another project, they are less dedicated

to the project at the time the project needs them most—when it’s time

to fix defects.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=73

START SCHEDULING WITH A LOW-TECH TOOL 74

Sticky Scheduling for Features

Recently, I’ve started using sticky scheduling to show how each feature

will integrate with the others. If you are working on complex projects

where you have dependencies during the project for integration, you

might find it useful to plan an iteration’s worth of work with stickies.

Generate a sticky for each deliverable. Sometimes, a single feature will

have several interim deliverables. Put the stickies up on the wall. Ask

the project team to organize when they need which deliverable delivered

into the code base. Ask the team to add any hard dates; “If you don’t

deliver that piece then, we can’t finish before the end of the iteration.”

Especially if you’re working in short iterations, you don’t need to tran-

scribe the stickies into a Gantt chart. If you’re working in an incremen-

tal life cycle, you might need to tape the stickies up for a longer project

or use a Gantt to manage the dependencies.

Benefits of Using Sticky Scheduling

If you use sticky scheduling, you will not have a beautiful Gantt chart

that can show you the critical path. That’s good, because the critical

path for a software project runs through the tasks, the people, and

sometimes the equipment. And, I bet your critical path changes day

by day, depending on what people finished. Even if your critical path

doesn’t change daily, it changes weekly. If you don’t have a line on the

Gantt chart that purports to show you the critical path, you and the

team will have to think about it. Thinking about it more consciously

will help everyone to manage it.

In addition, a yellow-sticky schedule will not show you the end date.

That’s because you should never estimate a single-point end date

[DL03]. But since a scheduling tool does calculate the end date (and

it’s the earliest possible end date you can’t prove the project won’t be

complete by), people—especially senior management—believes that end

date.

If you’re running a multisite project, you can still use sticky schedul-

ing. If each team is responsible for a complete deliverable (a set of tested

implemented features; see Section 12.3, Make Sure Each Site Has Com-

plete Deliverables to the Project, on page 249), each team does its own

day-to-day scheduling. You gather the team leads or project managers

together to make sure they understand who is delivering what to whom

and when. Since you’re dealing with major milestones, you can use

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=74

START SCHEDULING WITH A LOW-TECH TOOL 75

videoconferencing or webconferencing to use the equivalent of sticky

scheduling.

Deliverable-Based Planning

Yellow-sticky planning lends itself well to deliverable-based planning.

As people think about what they have to deliver to the rest of the

project, they develop milestones based on deliverables, not on the end-

ing of phases.

Phase-based planning or functional-based planning assumes that

teams of people from a particular function are responsible for a piece

of the project. And you can assume a phase of the project is done

when those people say they are done. If you’ve ever worked on a project

that had a milestone such “requirements freeze” or “code freeze,” you’ve

worked on a phase-planned project.

The problem is that although those people try hard to complete their

deliverables, the freezes are rarely frozen, and the completes are mostly

incomplete. You end up with slushy milestones. The way to avoid slushy

milestones is to plan for the milestone as a rollup of the tasks before

it. If you know you have several areas of requirements, the milestone

“requirements freeze” is a rollup of “requirement 1 written and re-

viewed,” “requirement 2 written and reviewed,” “requirement 3 written

and reviewed,” and so on, until all the requirements are in the rollup.

You can use deliverable-based planning in any life cycle. Especially

if you must use a serial life cycle, use deliverable-based planning to

obtain feedback early about the project’s progress. If you can’t meet

requirements freeze, how can you know you’ll meet any of the later

milestones?

Tip: Late Projects Don’t Make Up Time; They Get Later

If you realize at the beginning of the project that the team is

not making the progress you want to see, decide what to do

differently. Late projects never make up time. They get later

and later and later. . . .

If you do think the project will make up time, you will find

yourself in the schedule game discussed in Section 6.15,

We’ll Go Faster Now, on page 131.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=75

START SCHEDULING WITH A LOW-TECH TOOL 76

Remember This

• Start scheduling with low-tech tools. If you really need a schedul-

ing tool, transfer the data later. Be aware of the costs associated

with losing the Big Visible Chart or Information Radiator.

• Schedule by deliverables, not by functions.

• Plan to iterate the schedule. A write-once schedule is not worth

the time you spent generating it.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=76

Chapter 5

Estimating the Work
You’ve arranged your schedule. It’s time to estimate how long each task

will take. You don’t have to settle for a SWAG;1 you have other options.

Choose the option that provides you the best estimate you need—not

the most precise estimate.

5.1 Pragmatic Approaches to Project Estimation

I have successfully used these estimation techniques: historical data,

Delphi, wideband Delphi, relative ranking and sizing, and spikes to

gather some data before estimating. I have not successfully used any

counting or computing techniques. See McConnell [McC06] for more

information about counting and computing techniques.

Historical Comparison for Estimates

If you’re managing a follow-on release similar to the previous one, you

might be able to estimate the duration of the project. “Well, the last

time, it took us eight people for six months. This looks about the same

size, so my first estimate is the same.” Just remember that projects

are not linear. If this project looks even just a little bit bigger than the

previous one, your historical comparison could be way off. Historical

data is even more useful with either Delphi or wideband Delphi.

1. A SWAG is a Scientific Wild Tush Guess.

PRAGMATIC APPROACHES TO PROJECT ESTIMATION 78

Delphi and Wideband Delphi Estimation

In Delphi estimation, the project manager gathers the team in one room

and explains the project. The teams asks questions, and then each per-

son repairs to his/her office to write their task list and time estimates,

also noting their assumptions [Wie00].

The team then gathers together and reviews the task lists, seeing where

tasks can be parallelized. The project manager adds up the estimates,

and that’s the project estimate.

If you don’t have access to the people who will be doing the work—the

real project team—wideband Delphi might be a useful choice. A small

group of experts takes the place of the project team. They generate task

lists and estimates. When they gather after generating their estimates,

they surface their task lists, assumptions, and risks.

Both forms of Delphi are better than the project manager attempt-

ing to estimate the project. However, they both suffer from the same

problem—that each person takes responsibility for estimating one piece

of the project, most often by architecture. You may have the same prob-

lems I’ve had with either Delphi technique—that the estimate is too low.

The only way I know how to manage that estimation problem is to sep-

arate sizing and duration during estimation (see Section 5.1, Separate

Sizing and Duration During Estimation, on page 86).

When You Don’t Trust the Team’s Estimate

Not everyone is a great estimator. Some people are overoptimistic

[Bro95] and underestimate by as much as 50% for any task. Some peo-

ple are pessimistic and add buffers for every single task. Some people

estimate small tasks up to three or four days well but can’t estimate

anything that’s longer than a week in duration. What’s a project man-

ager to do?

First, know your team. Decide how much feedback you want to give

each person about estimation when in the project. You don’t have to

solve all these estimation problems the first week of the project.

Next, eliminate any extra time buffers on each task. Ask each person

whether he or she has estimated with or without buffers. Explain that

you’re not trying to reduce the task time but that you want to make

sure you have the most accurate estimate.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=78

PRAGMATIC APPROACHES TO PROJECT ESTIMATION 79

If you’re using a serial or iterative life cycle, consider using Theory of

Constraints (TOC) [Gol04] to deal with the estimates. In TOC, everyone

is supposed to provide you with a reasonable estimate for the task. You

take the 50% mark and make the task that long in the Gantt, adding

25% of that original estimate into the buffer [Gol97]. When a task in the

critical path requires more time, you take time from the buffer to add

to that longer task. Then start managing your buffers. By measuring

your buffers as the team completes the tasks, you can tell whether

your overall estimate is good.

In an incremental life cycle or an agile life cycle, you’ll be gathering

data about what it takes to accomplish finished pieces of work. You

can compare those actuals to the estimate and learn as you proceed.

In general, don’t add more slack time to a task estimate. Do provide

a range of dates (see Section 5.1, Use Date Ranges for Estimates, on

page 84), a percentage confidence (see Section 5.1, Use Confidence

Ranges for Estimates, on page 82), or even three dates: best case, likely,

and the Murphy date (see Section 5.1, Use Three Dates: Best Case,

Likely, Murphy’s Date, on page 85).

[When Should I Add More Slack Time to an Estimate?] Pad estimates as

a last resort. Work with people to define an EQF (see Section 11.2, Track

Your Original Estimate with EQF , on page 220), and monitor it for their

tasks. Move to timeboxed iterations so people have less to estimate and

the pieces are smaller. Provide feedback about estimates—either from

you or from the team. But if you pad estimates, you run the risk of

inviting Parkinson onto your project or initiating Student Syndrome.

When people remain in blissful ignorance of their estimates, they never

learn to become great estimators.

Avoid the Serial Life Cycle Estimation Trap

Too often, project managers who use serial life cycles are supposed

to estimate and schedule the whole project at the beginning. It takes

them (and the project team members who are available) several weeks

to understand enough of the requirements and the system architecture

to make reasonable estimates. And depending on how new to the orga-

nization the project is, their estimates tend to be off. I’ve seen estimates

be off from 100% to 400%.

The trap is trying to estimate the entire project at the beginning. If

you’re stuck with a serial life cycle, you can’t estimate the project with

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=79

PRAGMATIC APPROACHES TO PROJECT ESTIMATION 80

Joe Asks. . .

When Should I Add More Slack Time to an Estimate?

People tend to be optimistic and underestimate the time
required for a task. It may seem like the best solution is to rou-
tinely pad these estimates. The problem with padding estimates
is Parkinson’s law: work expands to fill the time allotted.

Suppose your lead developer is very optimistic. When he esti-
mates sixteen hours, it’s not thirty, and it’s not twenty. But it is
somewhere in between. What do you do?

First, help the developer separate size from duration when he
estimates. See Section 5.1, Separate Sizing and Duration During
Estimation, on page 86. If his tasks tend to be large, ask your
developer to break the task into inch-pebbles (see Appendix B,
on page 343). He might say, “Oh, this task is sixteen hours; that’s
two days.” If he could really do eight hours of work in a day,
it might be. But he is interrupted more than anyone on the
project, so he doesn’t do eight hours of technical work in a
day. I estimate lead developers can accomplish about four to
five hours of technical work a day, depending on the environ-
ment. That makes his sixteen-hour task take three to four days
of calendar time.

If inch-pebbles don’t work, try a spike (see Section 5.1, Use a
Spike to Gather Data Before Estimating, on page 88). A spike
helps everyone see what the task will really take.

Ask the underestimator to use three dates (see Section 5.1, Use
Three Dates: Best Case, Likely, Murphy’s Date, on page 85) to
provide you with an estimate. That way the developer obtains
feedback about his estimations without feedback from you.

Talk to chronic underestimators, and help them realize that
what they can accomplish in calendar time is less than what
they estimate. To protect the project, consider using buffers or
moving to iterations.

Because iterations are short, everyone receives feedback on
their estimates within a few weeks of making the estimate. The
team will correct the other members of the team. “Last itera-
tion, you said that feature was a size of 3. It turned out to be a
size of 8. Tell me more about why you think this feature, which
looks a lot like that one is a 3.”

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=80

PRAGMATIC APPROACHES TO PROJECT ESTIMATION 81

any degree of accuracy. What you can do is start the project team doing

something, measure how long it takes to finish that piece, see how

many more pieces like that you have, and iterate on the estimation.

Especially if you’re working in a serial life cycle, use confidence ranges

(see Section 5.1, Use Confidence Ranges for Estimates, on the following

page) and date ranges (see Section 5.1, Use Date Ranges for Estimates,

on page 84) so other people understand how uncertain your estimates

are.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=81

PRAGMATIC APPROACHES TO PROJECT ESTIMATION 82

0%

20%

40%

60%

80%

100%

120%

1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 1-Sep 1-Oct 1-Nov

Completion date

P
r
o
b
a
b
il
it
y

Figure 5.1: Confidence range chart

Tip: The Schedule Is the One Way the Project Will Not Proceed

The entire project team collaboratively developed the sched-

ule. Everyone has confidence in the schedule. And then

something happens.

Don’t worry. The schedule is the team’s best guess today

about how the project will unfold. As soon as something hap-

pens, generally the day or two after the schedule is “com-

plete,” the original schedule is toast. That’s why I try to do

just enough scheduling and expect to use rolling-wave plan-

ning, so I can easily update the schedule as circumstances

change.

Use Confidence Ranges for Estimates

How sure are you of your estimates? At the beginning of the project, I’m

not sure at all. The only thing I know is that the project won’t follow the

schedule we’ve developed. Something will change. And that something

(or somethings) will change the estimate. Instead of using a single-point

estimate of the end date, try confidence ranges.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=82

PRAGMATIC APPROACHES TO PROJECT ESTIMATION 83

A confidence range chart looks like Figure 5.1, on the preceding page.

The range of probabilities provides you with a level of confidence. At the

beginning of the project, there is a 0 probability that the project will be

done.

At the 60% mark, July 1 is the earliest possible date that the project

might complete. That’s the earliest possible date you can’t prove the

project won’t be done.

The 80% date is mid-July, which is a more likely date at the beginning

of the project. Note how the slope of the line becomes shallower. It’s

close to impossible to pick an absolute release date at the beginning of

the project, which is why the probabilities for September, October, and

November are all in the 90–100% range.

But using a chart like this allows you to have a discussion with your

sponsor. “I have only 50% confidence that we can meet June 15 as a

release date. I know you want it then, but that’s not even my earliest

possible date I can’t prove we won’t finish.” And you can explain why

you have such low confidence in that date.

Especially if you’re using a serial life cycle, consider using a Cone of

Uncertainty, as shown in Figure 5.2, on the next page. The cone helps

explain why your estimate is not accurate at the beginning and when

you can make it more accurate. The Cone of Uncertainty reestima-

tion and improved accuracy depend on the project’s ability to meet the

phase milestones at separate times.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=83

PRAGMATIC APPROACHES TO PROJECT ESTIMATION 84

Charter Approved

Requirements Baseline

Architecture Defined

Design Complete

Code Freeze

System Test

+ 400%

+ 25%

Figure 5.2: Cone of uncertainty

If you have the early milestones, such as requirements freeze, design

freeze, and code freeze at the same time, the first time you can evaluate

the cone is at code freeze. You won’t be able to update your estimate

early enough.

If you’re using an iterative or incremental life cycle, you can also use

the cone. The more incremental your life cycle, the faster and the more

accurate you can be about your estimates because you have real data

to use to update your estimate.

If you’re using an agile life cycle, you don’t need the cone. You need to

measure only velocity and the rate of requirements change to predict

the release date.

Use Date Ranges for Estimates

If you’re asked to generate a gross estimate for a project and no one

on the project team can help you estimate, try using a range of dates

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=84

PRAGMATIC APPROACHES TO PROJECT ESTIMATION 85

with an explanation of when you can refine the estimate. Here’s how

I’ve used date ranges for a project: “Well, based on the three minutes

of information you’ve told me about this project, it looks like we could

deliver something in Q3. Since it’s now January 10 and I won’t get the

project staff for another week, let me do some iterations and planning

with the team and give you a better estimate February 1.”

After the team had started and we had learned what we could accom-

plish in a two-week iteration, we had more information. Here’s what I

told my manager. “We learned that Q3 was too optimistic. But some-

time in the October–early December time frame looks doable.” In April,

I updated my manager again. “Looks like late November to early Decem-

ber. I’ll know more in a couple more months.” In July, my update was

this, “Still looks like November 15 to December 1. When do you need a

more precise date?”

Using the date ranges helped save the project from a too-early promise

of an impossible date. However, if you say, “October to December” and

you work with managers who hear “October,” you’re better off with

explaining confidence levels. Or, you could use an agile life cycle, con-

tinuing to manage the backlog so that you could release as early as

management desires.

Use Three Dates: Best Case, Likely, Murphy’s Date

Some managers don’t like to hear an evolving date from their project

managers. In that case, you can use the three-date [DL03] technique:

best case, likely, and Murphy’s date.

The best case is the first date you can’t guarantee the project won’t

be done. When you generate a Gantt chart, the best case is the end

date the tool provides. Even if you’re managing buffers or have some

contingency, you’re sure something is bound to happen to make that

date impossible. But you can’t prove you can’t meet that date. That’s

what makes it the best-case date.

The likely date is the date that you derive when you add your fudge

factor or your buffers or however else you mush the estimate. You have

more confidence in this date, but maybe only an 80–90% confidence.

Murphy’s date is the date you expect if Murphy’s law2 happens to your

project over and over and over again. This is when the freak snow

2. Murphy’s law is this: whatever can go wrong will, at the worst possible time.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=85

PRAGMATIC APPROACHES TO PROJECT ESTIMATION 86

storms hit Florida, a typhoon destroys the data center in Southeast

Asia, or the power company has a transformer meltdown in the middle

of the last week before everyone goes on vacation. Those problems are

all fixable, within a few days to a week. Murphy’s date is not a complete

disaster, such as losing all the sources or your project team all quitting

on the same day.

To generate a Murphy’s date, you take your likely date and add some

fudge factor to it. Only you know how much of a fudge factor to add.

Tip: Estimates Need Accuracy, Not Precision

Each of these techniques so far stress accuracy of the esti-

mate by showing how imprecise the estimate is. Early in the

project, it’s impossible to know what date the project will

release—unless the project team is free to define what they

will release and how good it is.

Precision is the exactness of the measurement, the number

of decimal places.3 Accuracy is how close you are to the esti-

mate. What you care about for scheduling is accuracy—how

close your prediction of the task durations or schedule is, not

which hour of the day a task will complete or the project will

end.

Don’t be worried about how precise your estimate is; be more

worried about how accurate it is.

Separate Sizing and Duration During Estimation

People are not good at estimating tasks they’ve never done before. How

could they be? To manage the chronic underestimation problem, sepa-

rate the sizing of the task from the task duration.

Sizing is how big the task is. A gross sizing estimate says a task is

small, medium, or big. But gross estimation is inadequate for most

projects; you need a finer-grained estimate. And, you need to turn a

gross estimate into a duration for a task.

Cohn, in [Coh06], suggests using a Fibonacci series to generate a gross

estimate for a task. A task is of size 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, and

so on. If your team has a good track record estimating, use the series

3. See http://www.ayeconference.com/Articles/Estimateprecisionaccuracy.html.

Report erratum

this copy is (First printing, June 2007)

http://www.ayeconference.com/Articles/Estimateprecisionaccuracy.html
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=86

PRAGMATIC APPROACHES TO PROJECT ESTIMATION 87

up to 21, and add 40, 60, 80, and 100. The team will need to schedule

some pretask work (a spike; see Appendix B, on page 343) to determine

the real size. (With teams who have trouble estimating how large a large

thing is, use 21, 40, and 100 and not the intermediate numbers. Then

use a spike to break apart the task into smaller pieces.)

Once you have a relative size, using the Fibonacci series (or whatever

you choose), take the tasks estimated as “2.” Do all the “2” tasks look

like they’re about the same size? If so, now estimate duration for the “2”

tasks. If you think all the “2” tasks will take about ten person-hours,

you now know how long the “2” tasks will take. Divide the duration

for the “2” task by 2 to derive the duration for the “1” tasks. In this

example, our “1” tasks would take five hours. Ask yourself whether that

makes sense. If so, you now have the factor to use to multiply against

all the other relative sizings.

If your team doesn’t have much confidence in their larger relative siz-

ings, you know how much uncertainty there is in the duration and

therefore your schedule. (The more large tasks you have, the more

uncertainty you have.) And, if your team estimates all tasks as “13”

or greater, the team has not yet broken down the tasks into smaller

pieces—a significant risk to your overall schedule.

You’ll notice I suggested you estimate in person-hours, not ideal days.

That’s because everyone’s ideal day is different. A senior person who

spends lots of time coaching other people will achieve less (personally)

in a day than more junior developers who understand their parts of the

system but have many fewer interruptions.

Planning Poker

You want everyone on the team involved in estimating. And your team

has never received feedback on their estimates. How do you start? Plan-

ning poker [Coh06].

As a team, everyone determines the relative sizing for a feature in the

backlog (see Section 16.6, Build a Product Backlog, on page 321). You

might say, “OK, the feature is to add security to ordering.” Everyone

thinks for a few seconds, and then each person estimates how big that

task is by showing a number on paper. If there are six people on your

team, and everyone thinks it’s a 5, you’re OK. You write “5” as the size

of the feature. Instead, imagine one person thinks it’s a 13. Don’t take

the average; ask the person to explain their concerns. You might hear,

“The last time I did something like that, we found a bunch of exceptions

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=87

PRAGMATIC APPROACHES TO PROJECT ESTIMATION 88

Joe Asks. . .

Should We Estimate in Person-Hours or Person-Days?

Many people prefer to estimate in person-days, also known as
ideal days, and not person-hours.

But people do not finish eight hours of work in a workday. The
best I’ve seen is six hours of technical work in a workday. Some
of my colleagues report that with all their meetings and inter-
ruptions, the best they can do is up to four hours of work—
and that’s on a good day. Sit back and look at your project
team and your environment. Your team might be only able to
accomplish closer to two to three hours of technical work a
day.

All too often, when you and the project team estimate in ideal
days, you assume more hours in a day than you actually have—
setting you up for estimation failure.

we hadn’t understood at the beginning.” Ask for a show of cards again,

and see whether you accomplish limited consensus. (You need everyone

to merely live with a number, not perfect agreement.) If several people

think it’s an 8 and the rest think it’s a 13, ask for the number everyone

can live with. If you can’t agree, determine a spike task, do that, and

then reestimate.

Planning poker combines the best of Delphi and relative sizing. It in-

volves the whole team and allows a team to estimate the relative size of

a backlog quickly.

Use a Spike to Gather Data Before Estimating

Sometimes, you know the task is big. But you don’t know how big.

And you really don’t have any idea how to estimate it. “Big” is not a

good-enough estimate. In that case, try a spike (see Appendix B, on

page 343).

Here’s an example. Let’s say you’re part of the team working on improv-

ing performance for some part of your product. No one on the team

knows exactly what to do, so no one can tell you how long it will take.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=88

PRAGMATIC APPROACHES TO PROJECT ESTIMATION 89

The team can use a short timebox—here maybe a day or so—to inves-

tigate the actual tasks required. At the end of that timebox, the team

should have a good idea of what the initial tasks are for performance

improvement. The team may not know everything about improving per-

formance. They might need another spike for that.

Spikes can be shorter—if someone on the team is trying to estimate

the pieces of a task that looks as if it’s close to sixty hours, that per-

son might be able to spend just two or three hours (maybe with one

other person) to refine the large task and break the sixty-hour task into

smaller chunks of four to six hours each.

If your staff is unaccustomed to thinking in small chunks, spikes might

help them learn to break tasks into the smallest possible pieces.

Tips to Make Estimation Easier

Here are approaches that will make estimation and reporting your esti-

mates easier:

• Remember that an estimate is an approximation—a guess. The

bigger the guess, the more error you will have. Make sure when

you provide an estimation of the project completion “date,” you

provide a range of dates so your audience understands that your

estimate is a guess.

• Many software people are optimistic. They are trained to be opti-

mistic in school, where every project can be completed in one

semester (with a sufficient number of all-nighters). That training

will persist unless they learn to estimate small pieces and receive

feedback on their estimation.

• Tasks will take longer than you think they will.

• It’s easier to estimate smaller chunks of work.

• Decide how everyone on the team will estimate: in person-days or

hours. I recommend person-hours.

• You and your project team need to practice estimation and receive

feedback about estimation. Estimation without feedback is write-

only estimation4—it makes you feel good, but it doesn’t produce

long-term results and is ultimately rendered worthless.

• Plan to iterate on the estimates. If you realize partway through

the project that your estimates are too optimistic, take the time to

4. I thank Keith Ray for this phrase.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=89

PRAGMATIC APPROACHES TO PROJECT ESTIMATION 90

Don’t Waste Time Estimating When You Have a Tight Deadline

Dan, the CIO, was clear. “We need this project done by April
11.” April 12 was a Big Demo day, and Dan wanted to show off
his prize project. Cecile, the project manager, was accustomed
to working on projects that weren’t bound by time but required
a certain number of features before release. Cecile normally
started projects by estimating prototype and feedback time.
She was sure that approach was not going to work here.

Cecile decided that the project team could still work imple-
menting by feature but that she didn’t need good estimates
about how long each feature was going to take. What she did
need was the order in which the features needed to be imple-
mented so that even if they didn’t finish everything for the Big
Demo, they would deliver the most important features.

Cecile and the project team performed a gross estimation on
each feature but did not drill down to obtain detailed esti-
mates. They didn’t finish everything Dan wanted by April 11, but
they were close. And, they had only fully completed features—
not everything halfway done but most things all done.

Cecile and her team didn’t waste time estimating any more
than they had to estimate. They estimated the entire feature list
in about an hour. Cecile tracked how long each feature actu-
ally took to complete, so she would be able to predict how
much the team could complete before April 11. But she didn’t
waste the time they had for the project on estimation, when
she knew the deadline.

reestimate and replan the rest of the project. Late projects don’t

make up time; they get later. Even if your project doesn’t appear

to be late, take the time to reestimate.

• If you’ve been given a project deadline, you don’t need to estimate

anything at all. Rank the features so you implement features by

priority. For this case, I strongly recommend you use an agile life

cycle so that you can implement and get feedback quickly. If you

can’t use an agile life cycle, consider an incremental life cycle,

implementing by feature as you proceed.

• Timebox phases and tasks if you have an overconstrained project.

• Consider a spike if the task is too big (too much technical risk) to

estimate well.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=90

MILESTONES DEFINE YOUR PROJECT’S CHUNKS 91

5.2 Milestones Define Your Project’s Chunks

If you’re trying to estimate a project bigger than a couple of people

for a couple of weeks, define some milestones so you and the team

can understand what you’re trying to estimate. Use milestones that are

deliverables, not functional activities.

If you’re using a serial life cycle, remember to make sure that the end

of a phase is a rollup of all the deliverables that comprise that phase.

Tip: Use Deliverable-Based Planning for Tasks

Deliverable-based planning means you and the project team

create a schedule of deliverables, not functional activities.

If you’re developing a system that requires an architectural

prototype, you might have these deliverable-based mile-

stones: develop three alternatives for the architecture, review

alternatives, select one architecture to prototype, and archi-

tecture prototype complete (as the final milestone). An alter-

native plan might be to implement feature 1, implement fea-

ture 2, implement feature 3, evaluate current architecture,

decide on architecture for project, and architecture proto-

type complete. Both of these plans have a rolled-up milestone

called architecture prototype complete based on deliverables

to the rest of the project team.

When is a phase or task “complete”? Your team can’t deliver

on a milestone such as “architecture prototype complete”

without some deliverables to understand how to complete the

milestone. Either of the earlier alternatives would help the

project team accomplish “architecture prototype complete,”

and each accomplishes it differently. (The first alternative is

for iterative life cycles. The second alternative is for incre-

mental life cycles. Agile life cycles would also implement sev-

eral features before deciding on a “final” architecture.)

Use low-tech solutions to start a project schedule, especially if you’re

managing a project that seems to be short of time. The more time-

constrained the project, the more the project team needs to develop a

schedule each person can live with and attempt to meet.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=91

MILESTONES DEFINE YOUR PROJECT’S CHUNKS 92

Spending a few hours with the team in a conference room scheduling

with yellow stickies helps everyone see the implicit constraints.

Tip: Schedule Milestones (or Iterations) Midweek

It’s tempting to line up major (and minor) milestones to com-

plete on a Friday. That way, everyone can go home knowing

they’ve finished a major portion of work. But somehow, life

rarely works out like that.

The more serial your life cycle, the more dangerous a Monday

start and a Friday end are. A Friday end means that no one

will check when the finishing occurred until Monday morn-

ing. That gives people permission to work crazy hours over

the weekend to meet the Friday date. And, the more serial

the life cycle, the less you (or the team) can tell whether the

work is actually done, until you get to the testing phase, at

the very end of the project.

It’s a similar problem with iterations. If an iteration is sup-

posed to end on a Friday afternoon, but the product demo

isn’t until Monday morning, the team will often think, “Oh,

we can finish/fix this one thing over the weekend.” Especially

when transitioning to agile development, the team will not be

as accurate with their estimates, which means they will have

unfinished work at the end of the earlier iterations. You want

to know what the team can do in a reasonable amount of

time—not overtime. If you end an iteration on a Friday, you

unwittingly allow the team the weekend to finish.

When you schedule milestones or iterations to end midweek,

the amount of unfinished work is obvious (which is what you

want). You can steer the project because you can see what’s

done or not done. But if you can’t see what’s not done, your

options for steering narrow.

Choose Tuesdays or Wednesdays for major milestones or for

beginning/ending iterations. You’ll see true progress (or lack

thereof), you’ll reduce overtime, and you’ll be able to steer the

project, not be surprised by disaster at the end of the project.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=92

HOW LITTLE CAN YOU DO? 93

5.3 How Little Can You Do?

Too often, project teams think about how much they can do. They think

the project should be built around the mind-set of “How much can we

fit into this project?” Instead, consider the mind-set of “How little can

we do?”

How-much thinking carries these assumptions:

• People are not a scarce resource. We should put all of them to use

immediately, working like mad on the project.

• Schedule really doesn’t matter.

• Cost of development is not a driving factor.

How-little thinking carries these assumptions:

• Understanding the requirements is a scarce resource. We should

focus our energies on delivering something that shows we under-

stand the specific requirement and the value it has to our cus-

tomer.

• Schedule is critical, and we don’t have time to do it again or build

technical debt (see Appendix B, on page 343).

• Project cost is important, and we need to manage it.

Too often, project managers (and their senior managers) say that the

characteristics of how-little thinking are important, but they manage

according to how-much. The next time you or your management asks

how much, maybe you can ask how little. If nothing else, you can help

clarify everyone’s assumptions.

5.4 Estimating with Multitasking

Some of the members of your project team are not just assigned to your

project but to other projects too. How do you estimate how long their

work will take?

You don’t. You can’t. Don’t even try.

Multitasking is a guarantee that your project will be late. You can’t tell

by how much the project will be late, because you can’t know how much

time every person can spend on your project, and you can’t tell whether

the people who need to be on the project at the same time will actually

be there.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=93

SCHEDULING PEOPLE TO MULTITASK BY DESIGN 94

You cannot estimate the schedule if you have multiproject, multitasked

people. (Multitasking can waste anywhere from 20–90% of your time;

see [RG05] and [Wei92].) In my work, multitasking5 is the single biggest

contributor to late projects, projects that don’t deliver what they need,

and projects that don’t work as well as they need to work.

What you can do is talk to your sponsors. Explain, “If I don’t have the

people I need at the time I need them, I can’t deliver what you want,

in the time you want it, with the quality you want. Let’s talk about

how little you need.” (See Section 5.3, How Little Can You Do?, on the

preceding page.)

If your sponsors won’t budge (they want everything now, perfect, at

no cost), you get to say no—in a politically correct way, of course. See

Section 16.7, How to Say No to Multitasking, on page 327 for ideas.

5.5 Scheduling People to Multitask by Design

Maybe you’ve got some people who you need for your project but not

full-time. Say you need a DBA or a GUI designer, or someone else who

you need some of but not all of. Or, maybe you have several small

projects that require some developers and testers, but none of those

projects is really a full-time project. What do you do?

You can choose to have people multitask by design. For the people you

need a little time from over the course of the project, assign them on a

weekly basis to one project or another. Or, maybe your team members

normally pair. You could assign one pair to two projects. Now you have

people work in one-week iterations, starting an iteration on a Monday

and ending it on a Friday. Yes, this violates the idea of scheduling mile-

stones midweek (see the tip Schedule Milestones (or Iterations) Midweek,

on page 92). This works only if everyone takes the weekend off for their

necessary downtime and for the inevitable context switching.

You’ll pay a price—the people who multitask by design will take longer

to finish their jobs. That might be cheaper than hiring more people.

Just make sure they context-switch only over a weekend, not during

the week.

5. See the costs cited at http://www.umich.edu/~bcalab/multitasking.html.

Report erratum

this copy is (First printing, June 2007)

http://www.umich.edu/~bcalab/multitasking.html
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=94

USING ROLLING-WAVE SCHEDULING 95

5.6 Using Rolling-Wave Scheduling

Don’t try to plan the whole darn project at the beginning. You’ll be

wrong, and you’ll be wasting time you could be spending removing

obstacles so the project team can find their rhythm. Use rolling-wave

planning (see Appendix B, on page 343) to make the most of your initial

and ongoing scheduling and replanning activities.

If you’re accustomed to trying to schedule an entire project, rolling-

wave planning might feel strange to you. You won’t generate an entire

Gantt chart or know exactly what you’ll be doing three months from

now. But honestly, how good are you at predicting the schedule that

far out anyway? I’m not that good—things happen in a project. The

further out the milestone, the less you know about exactly how you’ll

get there. Because no matter how good the project team’s estimate was,

some events will prevent them from completing the project the way they

originally estimated.

A rolling-wave plan is a continuous detailed schedule that’s only a few

weeks long. As you complete one week of detailed schedule, you add

another week to the end of the schedule. With a four-week rolling-wave

schedule, you never have less than four weeks of detailed schedule, and

you never have more than four weeks of detailed schedule. You don’t

waste time trying to schedule something you can’t know enough about.

I choose a four-week rolling-wave schedule for two reasons. If I’m not

managing a project with defined two-week iterations, less than two

weeks is not enough detail for me to foresee risks. A schedule that’s

more than four weeks long tends to be wrong the further out we sched-

ule, so I don’t bother trying. You may find that your predictability is

even less than four weeks—that’s OK. Start the detailed task planning

where you know enough, and don’t bother trying to schedule more than

that.

If you’ve never tried rolling-wave scheduling, here’s how to start. Find a

large-enough room to organize the schedule on the wall or on a white-

board. Lay out your major milestones on yellow stickies, moving from

left to right, because time moves from left to right. Then ask the project

team to join you in the room.

Explain to the team that instead of trying to develop the entire project

schedule in detail all at once, you’ve identified when you want to reach

the major milestones, as noted by the yellow stickies on the wall.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=95

DECIDING ON AN ITERATION DURATION 96

Ask the question for the first milestone: “What will it take us to reach

this milestone?” Then ask the project staff to write down their tasks

and interdependencies on stickies, one task to a sticky.

Ask people to plan in inch-pebbles (see Appendix B, on page 343). Since

the project manager doesn’t assign inch-pebbles to people, each mem-

ber of the project staff has to understand his or her own tasks in detail

and develop inch-pebbles to complete those tasks.

If the project staff isn’t able to plan in inch-pebbles, ask them to tell

you how you will understand their progress. Thinking in inch-pebbles

is not easy for some people, and they will need time to learn how to

break their work into smaller pieces.

If you must make a Gantt chart, copy the contents of each sticky into

your favorite project scheduling tool. Each week, as you meet with each

person on the project team, you can ask them to tell you their next set

of tasks, and you can update the schedule. If the people need help with

their interdependencies, bring everyone together again.

As long as you keep each milestone in mind as you proceed, you’ll find

that the schedule is easier to maintain and that you spend less time

with the schedule, enabling you to spend more time with the project

team, seeing their progress and removing obstacles.

Rolling-wave planning isn’t a panacea for understanding the true state

of the project and planning how to achieve the next milestone, but it’s

a great way to start.

5.7 Deciding on an Iteration Duration

You’ve decided to manage the project using timeboxed iterations. But

how long do you make the iteration?

Make the iteration’s duration as much time as you can afford to waste.

If you can afford to waste a whole project, then you can use a serial

life cycle. If you can’t afford waste, then choose an iteration duration

of somewhere between one and four weeks. The shorter the iteration,

the easier it will be to rerank requirements and adapt to changes as

they occur. The longer the iteration, the larger the chunks people can

accomplish.

I don’t recommend iteration durations of longer than four weeks. It’s

too easy for the team to fall into Student Syndrome (see the tip Help

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=96

DECIDING ON AN ITERATION DURATION 97

Joe Asks. . .

How Can I Fit Large Tasks into Short Iterations?

Complex projects have large tasks. And breaking them into
tasks that team members can complete in four weeks or less
is challenging. But it’s worth doing.

When a team member tells me something will take more than
a few days to do, I ask what the deliverables are into the code
base. I want to know whether the team member is planning on
designing—and for how long—or whether the team member
will prototype. If Eric plans on designing first, I ask him how he
will know the design is done. If Eric is prototyping, I ask him how
he plans to evaluate the prototype.

More often, people tell me it’s just a really big piece of code.
That’s easy—they’ll deliver pieces of the feature into the code
base, so I work with the team member(s) to discuss which com-
pleted parts of the overall feature they’ll deliver first.

If you’re changing architectural infrastructure, make sure that
the team is continuously integrating as they proceed, and
select the iteration in which they’ll integrate the whole darn
thing. Be aware that you’ll look as if you’re losing velocity
until that team integrates with the whole project. (See the Joe
Asks. . . on page 219.)

Project Team Members Avoid Student Syndrome, on page 172) and for

the team to leave large chunks of work that they can’t easily estimate or

break apart into smaller, deliverable chunks. Iterations longer than four

weeks allow the team to avoid continuous integration (see Section 9.1,

Adopt or Adapt Continuous Integration for Your Project, on page 179),

which will make it difficult to see completed work as the team proceeds.

An iteration needs a minimum duration. If you can’t plan for an itera-

tion in under two days, don’t bother with anything under a three-week

iteration. You’re spending too much time planning and not enough time

doing. Make sure planning time isn’t too long for your iteration dura-

tion.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=97

ESTIMATING USING INCH-PEBBLES WHEREVER POSSIBLE 98

5.8 Estimating Using Inch-Pebbles Wherever Possible

Inch-pebbles Appendix B, on page 343 are the breakdown of each task

into very small pieces, no more than two days in duration, generally

only one day long (see [Rot99] and [McC96]). If you’re familiar with XP,

inch-pebbles are user stories. Inch-pebbles are either done or not done;

they are not some percentage complete. Collections of inch-pebbles are

the multiple-day or multiple-week tasks that teams normally create

when they define tasks in a schedule. In reality, inch-pebbles are a

way to define tasks that fit into small timeboxes—one or two days in

duration.

Every project can use inch-pebbles at some point to estimate tasks and

monitor progress. Inch-pebbles are especially useful if you have project

team members who forget tasks when they estimate. Creating inch-

pebbles pushes team members to remember all the steps they need

to take. Some of the most common forgotten tasks are managing the

software configuration management system and rework.

Especially in a serial life cycle, it’s easy to underestimate the amount

of rework required. Or a developer might forget about developer testing

when performing a SWAG estimate. Or a tester might forget the time

needed to set up the test environment.

Forgetting any of those things causes the project to either miss the

release date or miss the defect levels or feature set you wanted in this

release. Using inch-pebbles can help you avoid such problems.

Inch-pebbles are commonly used in agile life cycles (how else could a

team accomplish useful work in one week?). But in other projects, espe-

cially serial lifecycle projects, inch-pebbles are not commonly used. One

reason is that it makes no sense to develop inch-pebbles for the entire

project at the beginning. It makes sense to use inch-pebbles only as the

day-to-day and week-to-week planning, not as entire-project planning.

Inch-pebbles are useful when you know what you have to do. For many

of the project’s tasks, you know what to do. But what happens when

you don’t know what to do? What do you do then?

Creating and Using Inch-Pebbles When Tasks Are Unclear

If you’re managing new product development (a product that has never

existed in any way before) or a research project, you’ll need to adapt

the way you use inch-pebbles.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=98

ESTIMATING USING INCH-PEBBLES WHEREVER POSSIBLE 99

Instead of having timeboxes, use questions to know when a task is

complete. Whether you have a research project or new product devel-

opment, each kind of project has questions that need to be answered.

The project team or the people working on those tasks need to generate

specific questions and know how they will find the answers. Once the

team can answer those questions and the problem is not what to do

but how to get it done, the team can generate inch-pebbles for the rest

of the tasks.

How to Define Inch-Pebbles

Every person on the project defines his or her own inch-pebbles—each

person has personal responsibility for their contribution to the project.

The project manager does not define the pebbles. The technical lead

does not define the pepples. If the project manager, technical lead, or

architect tries to define inch-pebbles, the technical staff will resist using

them. That’s because the people defining inch-pebbles for others are

micromanaging. It’s not appropriate to micromanage people. It’s fine to

coach them if they don’t know how to generate the inch-pebbles, but

it’s not OK to tell people how to spend their time.

Tip: Avoid Micromanaging with Inch-Pebbles

No one likes to be micromanaged. After all, we’re profession-

als. It’s hard to believe at first, but inch-pebbles can actu-

ally free you from micromanagement. Because the project

team defines their tasks in small increments and a task is

either complete or not, there is no need for continual status

and task checking—for micromanagement. Project status is

obvious at any time in the project. (If you’re working with a

project manager or senior manager who inflicts help, inch-

pebbles can’t save you—but then nothing can.)

Why Use Inch-Pebbles?

The more serial your life cycle or the longer the tasks, the more inch-

pebbles can help. When you ask the team to schedule in inch-pebbles,

everyone understands the tasks and the interdependencies with the

tasks. In addition, inch-pebbles can expose dependencies. When a

project team uses inch-pebbles, they can take advantage of schedule

advances, those rare times that people are done with their work early.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=99

ESTIMATING USING INCH-PEBBLES WHEREVER POSSIBLE 100

And, inch-pebbles help create a more accurate schedule—at least for

the duration that people use inch-pebbles to develop a schedule.

All of these benefits reduce schedule risk.

Remember This

• Never provide a single-point date for an end date.

• The smaller the task, the easier it is to estimate.

• Look for estimate accuracy, not precision.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=100

Chapter 6

Recognizing and Avoiding
Schedule Games

Even if you’ve tried to do a good job estimating, planning, and schedul-

ing, you will still encounter sponsors, managers, and team members

who will game the schedule. Your job is to bring those game players

back to reality. But first you need to recognize the schedule games.

All sponsors and managers will push back against your schedule at

some point. These games occur even when you’ve created a reasonable

project schedule. Many of the ways in which they push back fall into

easily recognized patterns. The better you are at recognizing the game

they are playing, the better able you will be to steer the project to a

reasonable outcome.

6.1 Bring Me a Rock

Cliff worked with his project team for a week developing a schedule.

They’d completed a Hudson Bay Start (see Section 4.2, Hudson Bay

Start, on page 67) and were sure they had identified the major technical

risks. He explained the risks and the schedule to Norm, his boss. “Can’t

you bring it in earlier?” Cliff trudged off back to the team.

After another week reworking the schedule with the team, Cliff had

another date. He walked into Norm’s office and said, “If you give me a

couple more people here and here,” he pointed to specific milestones, “I

can take a month off the project.” Norm frowned, “Not good enough. I

need this project done earlier.” Cliff sighed and returned to the project

team.

BRING ME A ROCK 102

Figure 6.1: Bring Me a Rock

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=102

BRING ME A ROCK 103

The next week, Cliff brought another schedule to Norm, “OK, this is the

best we can do,” Cliff said.

Norm barely looked at the schedule before saying, “But it’s still not good

enough.”

Cliff explodes, “What DO YOU WANT?”

Bring Me a Rock (see Figure 6.1, on the preceding page) is the game

where, regardless of the schedule you develop, your sponsor wants the

project done in less time. All you know is that every date you suggest is

not a date your sponsor wants—your date is too far out [BWe01].

The Bring Me a Rock schedule game occurs when “they” want it faster

but don’t tell you when or why. If they told you when, you could tell

them what you can do. If they told you why, you and the project team

could probably develop some creative solutions to meet their desires.

The pragmatic manager has alternatives, including the negotiating

strategy that Cliff tried. But when negotiation fails—or looks like it will

never succeed—try these possibilities:

• Ask some questions before attempting to fetch more rocks: Would

you prefer a short schedule or a longer one? More people or fewer?

How about fewer features? Learning what’s important first will

guide you to a reasonable solution. Or, it will prepare you for a

negotiation.

• Discover the reasons for the desired date. Elicit the strategic rea-

sons for this project, and learn what success means.

• Make sure your sponsor understands the options you’ve selected

and why. It’s possible your sponsor has something easier and

faster in mind.

• Explain your confidence range for the date you provide. It’s pos-

sible your management doesn’t understand what your estimate

means, and it’s possible you don’t understand what they’re ask-

ing.

• Include release criteria with your date so you can ask specific

questions about how good/full the release has to be. What if we

implemented this feature with incredible performance, and ig-

nored that feature? Can our users live with more defects?

Bring Me a Rock doesn’t occur just once in an organization. More often,

it occurs with every project. If you keep encountering Bring Me a Rock,

consider adopting these practices:

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=103

HOPE IS OUR MOST IMPORTANT STRATEGY 104

• Develop a ranked product backlog. See Section 16.6, Build a Prod-

uct Backlog, on page 321.

• Implement by feature. The more specific progress your sponsors

can see, the less likely they are to muck around with the date.

• Use short timeboxes (less than four weeks duration) so your spon-

sor can see progress. If you can show valuable progress every cou-

ple of weeks, the date becomes much less important. You start to

discuss which features to implement when and how good they

have to be.

6.2 Hope Is Our Most Important Strategy

A few years ago, a senior manager called me and said, “We have a

project in trouble. We started off hopeful, but now it looks impossible.”

I asked a few questions and discovered they had never done a project

like this before. The project was bigger, in a different programming lan-

guage, on a new platform, and with a shorter schedule than any they

had ever done before.

The entire future of their company depended on a successful comple-

tion of this project that was bigger and more demanding than any they

had tackled in the past. Their only strategy was Hope (see Figure 6.2,

on the following page).

They hadn’t arranged for any training in the product domain or in the

language or for the new operating system. They had never managed to

release any substantial project in the time frame they were hoping they

could for this project.

Hope is not enough to deliver a successful project.1

Here’s what a pragmatic project manager can do:

• Recognize and write down where you have risks. You might have

technical risks (new language, new platform), schedule risks

(shorter schedule, too few people), or, most likely, both.

• Choose any life cycle other than waterfall. Why? Because you don’t

have any data that would allow you to be successful with the up-

front planning that waterfall requires. If you’ve never done any-

thing like this before, iterate on some prototypes, or iterate on a

few features, to see where your work takes you.

1. I first heard of this game from Esther Derby.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=104

HOPE IS OUR MOST IMPORTANT STRATEGY 105

Figure 6.2: Hope is our most important strategy

• Consider a Hudson Bay Start (see Section 4.2, Hudson Bay Start,

on page 67) to see whether you can create anything. This is espe-

cially good when you have new technology such as a language,

operating system, database, and the like. A Hudson Bay Start will

show you what you’re hoping for and will expose some of the cur-

rently unknown risks.

• Make sure that people have the technical functional skills and

solution-space domain expertise [Rot04b]. If necessary, train peo-

ple. It’s cheaper to train everyone on the project in a new language

than waste time.

• Plan to iterate on everything, especially planning and scheduling.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=105

QUEEN OF DENIAL 106

• Solicit help and information in areas where you might lack experi-

ence or expertise. Check with the project team about how to make

their status visible.

• Develop milestone criteria (your milestones can be iterations). Re-

view those criteria at management review meetings. Even if man-

agement or your sponsors don’t want management reviews, you

can conduct those meetings. Reviewing your progress regularly

against milestones will help if you aren’t sure how to make this

project work.

Hoping for a good outcome is not enough.

As a PM, your job is to plan, replan, and work to make the best outcome

occur. One way to do that is to adopt these practices:

• Use timeboxed iterations so you and everyone else can see project

progress.

• Chart the project’s progress in a velocity chart. You want to make

the progress (or lack thereof) as clear to everyone as possible. That

way, especially if you think you need to ask for help, you have data

to use.

6.3 Queen of Denial

Some bosses just won’t face up to reality. You can tell them, “We can’t

meet your schedule.”

They will look at you as if you haven’t said a word and tell you, “I’m

sure if you just put your mind to it, you’ll meet the date.” While you sit

there with your mouth open not knowing what to say, they will walk

away as happy as can be that their schedule will be met. You have met

Queen of Denial (see Figure 6.3, on the following page).2

Denial occurs for a few possible reasons. The most common one I’ve

seen is when the manager in question wants to encourage the project

team. Sometimes, people are in denial because they fear the project

won’t meet its deadline. They ignore what you’re saying; it’s the ostrich

effect. Sometimes, senior managers believe that when they set ambi-

tious/impossible dates, the project team will deliver sooner than they

thought they could.

2. I first heard of Queen of Denial from Benson Margulies.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=106

QUEEN OF DENIAL 107

Figure 6.3: Queen of Denial

Some possibilities to deal with denial are as follows:

• Investigate why your manager is in denial. Try some context-free

questions (see Section 1.5, Use Context-Free Questions to Identify

Project Drivers, on page 26) to understand the reasons behind the

project. For example, you could ask, “For this project, what does

success look like?”

• Write down your project’s risks and their potential impact. Use

High, Medium, and Low to discuss severity and exposure, not

numbers. The people who are gaming your schedule will game

your risk numbers.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=107

QUEEN OF DENIAL 108

• Show what you can do and measure the velocity (see Section 11.2,

Use Velocity Charts to Track Schedule Progress, on page 215) you

actually have on the project. Yes, iterations are your friend here.

And velocity charts might help explain what’s really happening.

• Make sure people on the project have the solution-space domain

expertise to perform the work.

If your manager thinks that denial is the way to encourage the project

team, suggest alternative encouragement techniques. Usually, that

means encouraging the manager to go do something else that would

either benefit the project team (negotiate a smaller list of requirements

for example) or move that manager’s attention to some other project.

The managers who think that encouraging the project team by denying

problems or potential problems tend to get in the way. Focusing their

attention on some other project is a useful technique for moving their

attention off your project.

Queen of Denial doesn’t have to be a disaster, as long as the PM isn’t

the one in denial.

One project team tried to convince the PM of the project’s reality. After

several failures, they gave up. They decided they would self-organize

and ignore the PM. They stopped attending project team meetings and

ignored everything the PM said. They built pieces of the project and

developed some data (but not velocity charts). After a few months, when

it was clear the project was not where the PM said it was, the PM was

fired. But the project team had lost so much time by that point, they

had many fewer opportunities to manage what they could deliver when.

Inevitably, reality comes face to face with denial at some point, which is

why Queen of Denial isn’t always a disaster so much as it is a schedule

game. When the manager does see reality, make sure you have some

part of the product working and some data to show that manager so

you can discuss what to do next. This is a good time to consider how

little can you do (see Section 5.3, How Little Can You Do?, on page 93)

so you can complete this project and plan better for the next one.

If you persistently encounter the Queen of Denial, integrate these ap-

proaches into your project management so people see what’s actually

happening:

• Use timboxed iterations, so you and everyone else can see project

progress.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=108

SWEEP UNDER THE RUG 109

Figure 6.4: Sweep Under the Rug

• Develop a ranked product backlog. See Section 16.6, Build a Prod-

uct Backlog, on page 321. That will allow the team to implement

by feature in value order. When your sponsor wakes up and real-

izes you aren’t going to make the impossible date, your team will

have completed features in rank order, so you’ll have something

valuable.

6.4 Sweep Under the Rug

A few years ago, I received a call to help a project in trouble. I started

in the middle of a release cycle and worked with the team to identify

what they could and should deliver and what should be postponed.

The project team was able to finish their list of deliverables.

Following the release, I suggested the team hold a retrospective to learn

what to do differently the next time. The VP didn’t think anyone would

learn from a retrospective.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=109

SWEEP UNDER THE RUG 110

He forgot why I helped in the first place and focused on only our suc-

cess. He said, “But the team did a great job. They did everything we

wanted in this release.”

That’s sweeping the problems—especially the changes in priority—all

under the rug; see Figure 6.4, on the previous page.3 No one on the

team believed they had done a good job. The VP was no longer cred-

ible. The project team was frustrated and tired. If they had known at

the beginning that not everything was necessary for this release, the

developers would have worked only on what was necessary.

Here are some ideas to avoid this game:

• Rank the features to implement for a specific release. (Ranking

means 1, 2, 3, 4, 5, 6, and so on.) See Section 8.3, Rank the

Requirements, on page 158.

• Implement by feature. Implementing by architecture begs for too

much partially completed work, none of which is all done. And

architecture evolves more during the project than most managers

realize. See Section 9.3, Implement by Feature, Not by Architecture,

on page 182.

• Develop release criteria so you have the conversation at the begin-

ning of the project about what is needed for release. See Sec-

tion 2.3, Release Criteria, on page 37.

If Sweep Under the Rug is a persistent problem for you, try these

approaches:

• Use a product backlog so your features are ranked by value. That

way you’re always finishing the most valuable—and therefore most

important—work first.

• Use timeboxed iterations, and implement by feature. You and team

will see progress, as well as providing the most valuable features

first.

These avoidance strategies all require conversations at the beginning

of the project with the project stakeholders. Those conversations are

difficult. But the payoff is that no one has to pretend the project was

successful when it didn’t deliver everything. Instead, the project can

focus on what’s required for success and do that—and only that.

3. I first heard of Sweep Under the Rug from Elisabeth Hendrickson.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=110

HAPPY DATE 111

Figure 6.5: Happy Date

6.5 Happy Date

Sometimes, I work with organizations where there’s an implicit agree-

ment not to discuss the schedule. I’ve seen this most often when man-

agement demands a date, and the project team says, “Sure, no problem.

Christmas it is!” But they don’t say which Christmas.

Eventually, when some Christmas comes around, or enough dates have

been missed, people start discussing the schedule—but not until the

project team has missed many milestones, possibly even the first few

desired end-of-project dates.

I worked with a project team once who hadn’t met a milestone or any-

thing else on their project schedules in more than five years. They

would repeatedly develop optimistic schedules with no confidence

ranges. Finally, after a senior management change, they were called

into a senior management meeting to explain the schedule.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=111

HAPPY DATE 112

It wasn’t until one manager said, “Look, I want to know when something

will be done. Let’s just start with one thing and go from there.” That was

when the project team realized they needed to change.

I have to admit, I have a difficult time understanding how people fall

into this schedule game for very long. At some point, no one can miss

the reality of the project. But, I certainly have seen persuasive man-

agers intimidate, cajole, or use political pressure to “convince” a project

manager or team that they could meet the Happy Date (see Figure 6.5,

on the previous page) the date the manager wants. Combine that per-

suasiveness with a culture of not discussing difficult topics, and you’re

ripe for the Dream Time/Happy Date schedule game.4

Happy Date is related to, but not the same as, Queen of Denial. With

Happy Date, some people in the organization (the project team or pro-

ject manager) placate other people (the stakeholders). In a sense, both

sets of people are in denial about the need to talk about the schedule.

The project team wants to placate the stakeholders. The stakeholders

are willing to be placated. In Queen of Denial, the stakeholders would

like to be placated, but the project team insists on explaining reality.

To prevent this schedule game, you need to work at the project level

and with the organization. For the project, do the following:

• Explain schedule ranges (see Section 5.1, Use Date Ranges for

Estimates, on page 84), especially if you’re not using an iterative

life cycle.

• Use an iterative life cycle, and explain what you’ll implement with

confidence ranges; see Section 5.1, Use Confidence Ranges for

Estimates, on page 82. (“We can do these ten features and maybe

these other three in the next month. We’ll let you know before the

end of the month.”)

• Use an agile life cycle with a ranked product backlog; see Sec-

tion 16.6, Build a Product Backlog, on page 321.

• Use short timeboxes, even in a staged-delivery life cycle, to help

people make progress, and make that progress visible.

• Measure more than just the milestone dates for the project. Single-

dimension measurements (as discussed in Section 11.1, Measure-

ments Can Be Dangerous, on page 212) are poison to seeing the

true project status. Use velocity charts so everyone can see

progress.

4. I first heard of Happy Date from Tim Lister.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=112

PANTS ON FIRE 113

Figure 6.6: Pants on Fire

But there’s just so much a project manager can do alone. This game

reflects an incongruent organization—one where everyone is willing to

placate one another and avoid conflict [Wei94]. Constructive discus-

sion (a.k.a. constructive conflict) can make an organization stronger.

Avoiding conflict and the necessary discussions makes an organization

weaker.

6.6 Pants on Fire

One day you arrive at work to an urgent email message from the Big

Cheese. Big Cheese says, “Stop working on that project. Start on this

one!”

You can be sure that if this happens once, it’ll happen several times.

Either you and the project team will bounce among several projects

or back and forth between two projects. Whatever the circumstances,
Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=113

PANTS ON FIRE 114

you’re multiproject multitasking, and so are all the people on your

project team. You know you’re not making progress on anything, and

the urgency of all the projects keeps going up and up and up. . . .

Pants on Fire (see Figure 6.6, on the preceding page) occurs when man-

agement is afraid or unable to choose to focus on one thing at a time.

It has several possible causes: the technical staff has a track record

of being late, there’s no corporate strategy, or the corporate strategy

hasn’t been broken down into sufficiently detailed tactics.5

Here are some actions you can take:

• Plan for short timeboxed iterations, and start something new on

an iteration boundary. To make this work, the iterations have to be

short enough to start something new, such as one or two weeks.

• If you can’t manage iterations, implement by feature, and use

staged delivery.

• Communicate the costs of this strategy to management so they

can weigh the benefit of satisfying the crisis of the day vs. the

assumed additional costs. Refer to Section 16.7, Managing Multi-

project Multitasking, on page 324 to see how to help your manage-

ment calculate cost and benefit.

• Help test the tactics against the strategy. Explain, “With this strat-

egy, we would have these results/consequences. Is that what we

want?”

• Modify your current estimation techniques so the project team

is more likely to meet their original estimated dates. If the team

can’t meet their estimated dates, management may think they

have no choice but to start working on something else. Make sure

people use inch-pepples (see Section 5.8, Estimating Using Inch-

Pebbles Wherever Possible, on page 98), and try continuous inte-

gration (Section 9.1, Adopt or Adapt Continuous Integration for Your

Project, on page 179) so the team has a chance to finish things.

• Sometimes, Pants on Fire occurs when the customer decides he or

she doesn’t need the product just yet. Management doesn’t want

the team to finish the product, so they want to move the team or

most of the team to another project. In that case, make sure you

work in short iterations and know at the beginning of the project

whether there could be a reason to postpone work. And, make sure

your management developed and is managing the project portfolio;

see Chapter 16, Managing the Project Portfolio, on page 315.

5. Tim Lister named this game in conversation with Elisabeth Hendrickson.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=114

SPLIT FOCUS 115

Figure 6.7: Split Focus

Pants on Fire wastes everyone’s time. But sometimes, management

either cannot change their management style or cannot believe that

multiprojecting wastes time. If you’re in a situation like that, consider

how you can create a projectwide environment that allows you and your

project team to work successfully.

6.7 Split Focus

One of my managers actually said this to me. “I’d like you to spend 50%

of your time on Project A, 30% of your time on Project B, and 20% of

your time on Project C. In your spare time, can you look over the report

for the Big Cheese?” I said, “What spare time?”

Split Focus (see Figure 6.7) is the multiproject multitasking game. It

occurs when the management team is unable to commit to a project/

program strategy. Instead of just saying yes or no or “when?” to each

project, they say yes to all projects.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=115

SPLIT FOCUS 116

Here are some actions you can take:

• Together with the program team, try some of the approaches in

Section 16.7, Managing Multiproject Multitasking, on page 324,

especially anything that helps the program team or the manage-

ment team make decisions about what to do first, second, and

third.

• If your management persists in wanting you and your project team

to work on several projects at the same time, move to one-week

iterations for each project, making sure you have releasable prod-

uct at the end of an iteration. I use one-week iterations so people

stay focused on the one project for a week at a time. At the end of

the week, when it’s time for the weekend and people will change

their focus anyway, people can stop thinking about the current

project and start on the next project.

• If you can’t manage iterations, implement by feature, and use

staged delivery. Make sure you have release criteria for each pro-

ject so you can finish the minimum work on each project.

• As before with Pants on Fire, communicate the costs of this strat-

egy to management so they can weigh the benefit of satisfying

the crisis of the day vs. the assumed additional costs. See Sec-

tion 16.7, Managing Multiproject Multitasking, on page 324 to see

how to help your management calculate cost and benefit.

• Make sure you’ve ranked the requirements, and finish something

quickly. Sometimes Split Focus occurs because some of your

stakeholders can’t believe you’ll finish anything quickly enough

for them. They think hedging their bets by having you work on

several things will help them get something faster. They’re wrong,

but they don’t realize that.

If you work for an organization addicted to Split Focus, plan to work

in one-week iterations. Yes, it’s hard. You will have to work with your

project team to break apart the requirements into small enough pieces

that they can make progress in one week. If you can’t help the team

move to short chunks of work in short periods of time, you and they

will never finish anything. The team slips constantly, as in the sidebar

on page 303. As the project manager, you can act to help people finish—

and help your management from falling into Split Focus.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=116

SCHEDULE EQUALS COMMITMENT 117

Focus Means a Single Focus

I once worked for a company that decided after a several-day
offsite strategy meeting that we were going to “focus on five.”

That isn’t focus.

Focus means to center all of the attention toward something.
Five strategic areas are four too many.

Unfortunately, it’s all too common for companies to spread
themselves too thin in order to be all things to all possible cus-
tomers. If that’s the problem where you work, move to short
iterations as quickly as possible so you can say to your man-
agement, “OK, we can start that next week, because we’ll be
finishing this in two days.” Even better, make sure your iterations
start and end in the middle of the week, such as a Wednesday.
That way if your managers have “a-ha” ideas over the week-
end, they’ll probably give you a couple of days to finish what
you were doing.

Your team will thank you for maintaining focus.

6.8 Schedule Equals Commitment

You and I know that the schedule is an estimate, a guess if you will. The

project schedule is your best guess about when the project team will

reach which milestones and when the project may complete. A sched-

ule is not a prediction; it is a guess. But some project managers have

sponsors who want that guess to be a commitment (see Figure 6.8, on

the next page).

If you are facing the commitment problem, ask these two questions:

• Do you care what the project team delivers?

• Do you care how good the product is?

A reasonable schedule discussion requires discussing the rest of the

project drivers, constraints, and floats: at a minimum the feature set

desired in that time and how good the feature set will be at that time.

If the people involved aren’t ready to discuss the schedule, the feature

set, and the defect levels, then any discussion of schedule being a com-

mitment is premature.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=117

SCHEDULE EQUALS COMMITMENT 118

Figure 6.8: Schedule Equals Commitment

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=118

WE’LL KNOW WHERE WE ARE WHEN WE GET THERE 119

One approach I like to use when senior managers demand a commit-

ment is to provide them with confidence levels. “I have a 90% confidence

level in August 1 as a release date. I have a 100% confidence level in

October 1 as a release date.” Explaining what has to happen during that

time, between the 90% and 100% confidence dates, helps me explain

what a commitment to the schedule means to me.

Another technique I like to use is the date-for-a-date discussion. “I can

tell you we’ll be able to release in the last half of the year. I can narrow

it down to a quarter at this time (and specify a date), and I can narrow

it down to a month here (another date) and then (at a later date) will be

able to provide you a final release date.”

But the best technique I know is to use timeboxed iterations (of between

two to four weeks—not longer) along with a ranked product backlog.

That way, you can release virtually at any time. You know that the

contents of each iteration works. You know you’ve implemented the

most important requirements first. And it’s OK if management wants to

release—because the product is ready. No one needs a commitment

from the developers; you need a commitment from the people who

decide on the requirements that they are telling you which require-

ments are needed when.

If someone demands you commit to a date, consider how you’ll organize

the project. Try iterations. Or, try date-for-a-date. Or, try confidence

levels with a date estimate. But don’t just commit to a date. That’s

inviting Murphy to hang out on your project. You’ll commit to a date,

but something will happen, and you won’t meet the date.

6.9 We’ll Know Where We Are When We Get There

A VP claimed he had Attention Deficit Disorder. He didn’t demand dif-

ferent dates. Instead, he kept changing the project’s goal. First, the goal

was a specific feature set. The velocity charts proved the team wasn’t

going to meet the date. He changed the goal to performance for some

specific features. But the performance was difficult to achieve. A few

weeks later, he changed his mind to focus on reliability.

Here’s what I found humorous: he didn’t have this problem when he

was a project manager. Nope, he made sure that each project he man-

aged had a goal. And he watched for any senior manager who wanted

to change that goal. But when he moved into senior management, he

had trouble allowing the projects to finish, staying focused on one goal.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=119

WE’LL KNOW WHERE WE ARE WHEN WE GET THERE 120

Figure 6.9: We’ll Know Where We Are When We Get There

This schedule game occurs when senior managers change the goals of a

project or have a great idea that changes what the project is supposed

to deliver or when someone derails the project. I’ve seen unseasoned

project managers derail the project in the same way that a senior man-

ager does. “Oh, look over there. Doesn’t that look like a great idea? Let’s

do that.” (See Figure 6.9.)

This game is different from Bring Me a Rock. In Bring Me a Rock,

the project goals don’t change over time; the sponsor wants a shorter

schedule. In We’ll Know Where We Are When We Get There, the sponsor

doesn’t change the date but changes the goal of the project.

This schedule game is sometimes called Chasing Skirts, a particularly

unpolitically correct name. It occurs when management can’t or won’t

decide on a product.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=120

THE SCHEDULE TOOL IS ALWAYS RIGHT 121

They’re like a guy who is always waiting for the next pretty girl to come

along. He will date this pretty girl for a while, but if another pretty girl

comes along, he will drop the first one and move on to the next one.

No matter what you call this schedule game, the effect is the same. The

project team doesn’t stay focused on a product the team could deliver.

The project changes focus. The last time I consulted on a project like

this, one of the senior managers said to me soothingly, “We’ll know

where we are when we get there.”

Not in my experience. Keeping a project focused on its goal(s) is the

fastest way to finish a project. Allowing a project to lose focus will pre-

vent it from finishing for a very long time, possibly forever.

Here are some ideas to consider:

• Make sure you have written a project vision, project goals, and

release criteria. Gain consensus on the vision, goals, and release

criteria. You know where you’re headed, what more you might be

able to do, and when you’re done. So does the rest of the organi-

zation.

• If your management won’t define the vision, you define it. Publish

it. Stick to it. If you can’t, finish the project immediately, and start

a new project with the new goals.

• If the project is “too long,” organize the project into iterations.

Evaluate where you are after each iteration. If you’ve accomplished

enough of the goals, end this project and start another. Use

shorter (no more than four-week) iterations.

Sometimes, none of these possibilities will help because management

interferes with the PM, working around the PM to assign other work to

the project staff. If that has happened to you, talk to your managers,

and explain how you will benefit them. If they don’t listen, or can’t stop

their behavior, remember you don’t have to stay there. See Section 7.7,

Know When It’s Time to Leave, on page 148.

Projects need crisp goals. The entire project team needs to stay focused

on those goals. Don’t let anyone allow your project to drift. You won’t

know when you get there. All you’ll know is that you’re not anywhere.

6.10 The Schedule Tool Is Always Right, or Schedule Dream Time

Barney was a PM in an organization where the execs understood only

the waterfall life cycle. They thought iterating was a waste of time. They

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=121

THE SCHEDULE TOOL IS ALWAYS RIGHT 122

Figure 6.10: Schedule Dream Time

expected to see a Gantt chart the first week of the project, that the PM

would manage to the chart, and that everything would be fine. And,

inevitably, if Barney had to report that the project was not on track,

some helpful senior manager would say something like, “Well, it says

on the schedule that you’ll be here. What’s wrong with you that you’re

not on schedule?”

The execs didn’t understand projects where people had to think and

react to what they had learned. They were convinced that the critical

path would never change and that the tasks would stay in roughly the

same order.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=122

THE SCHEDULE TOOL IS ALWAYS RIGHT 123

Here’s why: the execs were accustomed to reports of already completed

work/sales figures/whatever—data that reflected what had happened

in the past. But the schedule is a guess about how things will happen

in the future. This schedule game is also called Schedule Dream Time;

see Figure 6.10, on the preceding page.6

That variation is when the beauty of the Gantt chart blinds people to

the fact the schedule is just a guess (see Section 5.1, Tips to Make Esti-

mation Easier, on page 89). The Gantt chart lulls people into believing

the schedule and not checking on reality.

If you’re faced with these kinds of managers, consider these alterna-

tives:

• Develop a rolling-wave schedule (Section 5.6, Using Rolling-Wave

Scheduling, on page 95), where you’ve developed only the first few

weeks of detail plus the major milestones. When you don’t provide

detail past the first few weeks, people are more likely to believe you

can’t predict the future. Deliver a new and updated schedule with

completed tasks and the next rolling wave and updated milestones

every month. That way you can explain what has occurred and still

not be tied into a huge plan that can’t work.

• Use a low-tech scheduling technique, such as yellow-sticky sche-

duling (see Section 4.3, Basic Sticky Scheduling, on page 71) or

cards on the wall. Invite the execs in to review the schedule.

• Provide estimates with confidence levels (see Section 5.1, Use Con-

fidence Ranges for Estimates, on page 82) instead of a Gantt chart.

• Use timeboxed iterations, and schedule only one iteration’s worth

of work at a time. Measure your velocity. After three iterations,

you might know enough about your velocity to predict the rest of

the schedule.

The problem with the belief that the scheduling tool is always right is

that it assumes the estimated schedule is accurate. The problem is that

few schedules are accurate. Many are precise—“We’ll release Wednes-

day, at 3:32 p.m.”—but not accurate. That’s because the schedule is an

estimate. Making it look pretty doesn’t change that the schedule is an

estimate and has some margin of error.

This game isn’t the fault of a scheduling tool—the problem is in the

belief system of the people who use the tool. As a PM, you’ll need to

6. Esther Derby and I named this in a conversation.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=123

WE GOTTA HAVE IT; WE’RE TOAST WITHOUT IT 124

Figure 6.11: We Gotta Have It; We’re Toast Without It

determine the most effective techniques for scheduling your project and

for explaining that schedule to other people. It’s fine to use a scheduling

tool, if that works for you. Just don’t believe it because it happens to

make pretty charts.

6.11 We Gotta Have It; We’re Toast Without It

The boss calls Manny, the project manager: “Manny, we have to talk

about your project.” Manny responds, “Sure, what’s up?” “Well, if we

don’t add this one feature, we’re toast. Big Customer won’t buy this

release.” Manny sighs and says, “Let me talk to the project team—I’ll

get back to you.”

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=124

WE GOTTA HAVE IT; WE’RE TOAST WITHOUT IT 125

Manny hunkers down with the project team. They agree to fit this one

extra feature into the release, even though they have no hope of meeting

the schedule—which hasn’t changed.

Everyone here wants the project to succeed: the boss, the project man-

ager, and the project team. But without discussing trade-offs for the

project, they remove any hope of meeting the schedule. The project

(and the team) are toast.7

If you’re faced with well-meaning management and project teams, try

these alternatives:

• Negotiate for a different feature set. You can ask the question,

“What don’t you want in this release so I can see whether I can

find a way to fit this in?”

• Negotiate for more time. “If you’re willing to extend the release, we

can add this feature.”

• Negotiate for more money. “I see why you want it, but this addi-

tional feature will take two weeks longer to build than the other

features. We can’t just take one feature out and put this one in;

we need to rethink the entire release. Do you want me to do that

now? It’s going to take the team some time to estimate and replan

the release. Let’s make sure that is what you want.”

There’s a way to prevent We Gotta Have It. If you implement by feature

and regularly have the product available for release, you and your man-

agement can rerank the features for the next release. Preventing this

game works best with timeboxed iterations of no more than four weeks

in duration. With a four-week timebox, the longest anyone has to wait

is eight weeks.

If you use quarterly releases, such as release trains, the longest anyone

has to wait for a new feature is six months. That can feel like a long time

to many managers. And, if you release only every six to nine months,

the longest waiting period could be a year or more.

If you’ve seen We Gotta Have It in your organization, move to timeboxed

iterations so you can manage the demand. Or, consider release trains

(see Section 14.3, Making Release Trains Work for You, on page 293).

See Section 16.6, Build a Product Backlog, on page 321 for ideas about

how to use a backlog to manage the demand for more features and

avoid We Gotta Have It.

7. See http://www.stickyminds.com/s.asp?F=S11829_COL_2.

Report erratum

this copy is (First printing, June 2007)

http://www.stickyminds.com/s.asp?F=S11829_COL_2
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=125

WE CAN’T SAY NO 126

Figure 6.12: We Can’t Say No

Let’s agree that you have a reasonable schedule. But then things hap-

pen, and not everyone can accomplish what they said they could. In the

previous section, you saw the games that sponsors and managers play.

Here are the schedule games I’ve seen team members play. Again, your

job is to bring the team member back to reality.

6.12 We Can’t Say No

As the project manager, your management wants you to fit just one

more feature into the release. They’re playing “We gotta have it.” And

as a responsible project manager, you bring the request to the team.

You’ve told your management the team will assess the request and

you’ll return with a new date or cost for the new feature.

But as you start discussing the feature and the trade-offs with the

team, the team isn’t willing to say “no,” “not yet,” or “here’s what it

will take.” Instead, the team blindly accepts the extra work, without

discussing the cost in reference to time and money and the impact on

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=126

WE CAN’T SAY NO 127

current work (see Figure 6.12, on the previous page). Sometimes the

team does this out of a feeling of guilt and sometimes out of lack of

understanding of the actual time required to do the work.8

If you’re managing a team who can’t say no, you need to help them learn

to say no. But just saying no to upper management (or marketing, or

whomever is requesting more work in the same time) is not enough.

You can say no all you want. If people are determined to try to do the

extra work, consider these approaches to helping people manage the

additional work:

• Ask people on the team whether they can create a plan to make

adding this extra functionality work. Use yellow-sticky scheduling

and relative sizing to see how to make it work. If they can develop

a plan everyone can believe, then your job is to help make that

plan happen.

• Sometimes, the project team says, “We’ll suck it up and work

overtime.” If they want to work overtime, suggest timeboxing their

overtime and measuring the results. You could say, “OK, we’ll split

work into one-week iterations. We’ll work overtime for one week

and measure our velocity to see how much more we can do and

how tired we are. After that first week, we’ll have a normal week

and measure our velocity. Then we’ll compare velocities and any

open issues, such as additional changes or defects. If we don’t like

what we have, we’ll go to normal workweeks and we’ll see whether

there’s anything else we can do.”

• Sometimes, you can add people to do more work. (Not always.) If

other people in the organization have domain expertise and are

able to fit into this project team and the existing project team

wants those people, you can try adding those people to the team.

Do not add people who don’t know the product or the team al-

ready—that invokes Brooks’ law. (See Section 7.5, Know When to

Add More People, on page 145 for more discussion.)

If none of those alternatives works, you need to help the team say no.

You may be able to counter the team’s guilt or the desire to do what the

company needs with data. Velocity charts and iteration-content charts

are especially helpful here. If you don’t help the team learn to say no,

you’re all headed for a death march [You99] project. And no one wants

that.

8. See http://www.stickyminds.com/s.asp?F=S11829_COL_2.

Report erratum

this copy is (First printing, June 2007)

http://www.stickyminds.com/s.asp?F=S11829_COL_2
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=127

SCHEDULE CHICKEN 128

Figure 6.13: Schedule Chicken

6.13 Schedule Chicken

Schedule Chicken most often occurs in a serial status meeting.9 The

project manager asks each person how they’re doing. Everyone says

that they are right on schedule. In reality, no one is. Everyone is waiting

for someone else to blink and admit that he or she is not on schedule.

And rarely does anyone admit that he or she is not on schedule until

it’s too late.

A pragmatic project manager has several options:

• Avoid serial status meetings (see Section 10.1, Never Conduct Pub-

lic Serial Status Meetings, on page 196). Instead, use the ideas in

Section 10.5, Determining Project Status, on page 199 to determine

the real status.

• Break the tasks into smaller pieces so that everyone has a deliver-

able every day, two at the most. (See Section 5.8, Estimating Using

Inch-Pebbles Wherever Possible, on page 98.)

9. I first discussed Schedule Chicken with Dave Smith and Jerry Weinberg.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=128

90% DONE 129

• Implement by feature. The more people are focused on a deliver-

able piece that they can see once it’s done, the easier it is to see

how much progress they’re making. Sometimes people play Sched-

ule Chicken because they started late (see Student Syndrome in

the tip Help Project Team Members Avoid Student Syndrome, on

page 172). Seeing pieces of the product come together periodi-

cally helps everyone see the project’s progress, which in turn helps

them see when they aren’t making progress.

• Consider moving to iterations, especially in an agile life cycle.

Short iterations remove the need for weekly sitdown group serial

status meetings (which you should never have anyway). With daily

standup meetings, people can’t hide their real status.

6.14 90% Done

Too many knowledge workers—especially technical people—have never

been taught to estimate. Or if they’ve tried estimating, they’re too opti-

mistic, so they underestimate the work involved for a task. Or they’ve

received no feedback on their estimates, so they don’t know their esti-

mates are off. Or they didn’t anticipate all the subtasks involved in this

task, such as organizing the environment for testing or checking in the

code. In any case, 90% Done occurs when the team member thinks he

or she has accomplished 90% of the work but still has 90% of the work

left to finish (see Figure 6.14, on the next page).

I fell victim to 90% Done early in my career. I was writing a conversion

tool to convert a database from one format to another. I thought the

data was clean. It wasn’t. I thought I knew the formats for each field.

I didn’t. I thought I knew a lot about the requirements, but as I pro-

ceeded, one record at a time through the database, I encountered more

special cases, each of which changed the requirements.

I finally smartened up and developed a set of test cases that I could run

as I changed the code and made some progress in the conversion. (For

a more contemporary approach, you can read more about behavior-

driven development.10) When my manager asked me what was taking

so long, I showed him my status and explained about all the cases we

didn’t know about at the beginning.

10. See http://behaviour-driven.org/.

Report erratum

this copy is (First printing, June 2007)

http://behaviour-driven.org/
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=129

90% DONE 130

Figure 6.14: 90% Done

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=130

WE’LL GO FASTER NOW 131

You’ll need to coach [RD05] a bit as a project manager to eliminate 90%

Done:

• Help the person develop their inch-pebbles. You may have to sit

with the person to say, “What will it take to finish this? What are

all the pieces that go into this week of work?”

• Ask the person to make their status visible to you. That might

mean showing you all the cases their code is covering (as it was

in my example), a list of risks, a list of test cases, or some interim

version of the code that they can show you as they add to it.

• Coach the person how to track their estimate and see how well

they estimated at the beginning. See Section 11.2, Track Your Orig-

inal Estimate with EQF , on page 220.

Sometimes, people fall into 90% Done because they’re implementing

across the architecture. If you shift people to implementing by feature

and have them work in short iterations, they start trying to estimate

and complete smaller chunks of work. Their estimates will be more

accurate, and they are more likely to finish the work.

6.15 We’ll Go Faster Now

Imagine you’re managing an agile project, a staged-delivery project, or

some other life cycle that allows you to incrementally build the sys-

tem. You’ve been measuring velocity (or the features implemented), and

you’re not progressing as quickly as you’d like. And, for some reason,

the team is still optimistic about the release date (see Figure 6.15, on

the next page).

As a pragmatic project manager, you don’t want to be the voice of pes-

simism or cynicism. You do want to be the voice of reality and help the

project team discover the real status. After all, maybe they really can

pick up the speed. Approaches to manage unbridled optimism include

the following:

• Discuss the project velocity with the people on the project. Ask

for data: What have they seen or heard that leads them to believe

they’ll make more progress than they did before?

• Measure the estimation quality factor (see Section 11.2, Track Your

Original Estimate with EQF , on page 220). Pay special attention to

the reasons people think they are on or ahead of schedule.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=131

WE’LL GO FASTER NOW 132

Figure 6.15: We’ll Go Faster Now

• Measure everything the project team is doing. Make sure every

person is working on this project and on the tasks necessary for

the deliverable date. If anyone is working on any other project

or on tasks that are scheduled for a later release or for another

project, stop that now.

• If you have a hardware component to the project, measure earned

value (see Section 11.2, Earned Value for Software Projects Makes

Little Sense, on page 218) for that piece, and see whether that com-

ponent is on schedule. If that part isn’t on schedule (the earned

value is less than what it should be), replan the entire project.

• As long as you’re measuring velocity, you can keep an open mind

about overall project velocity until the team has completed the

third iteration. By that time, they are most likely at their typical

velocity.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=132

SCHEDULE TRANCE 133

Figure 6.16: Schedule Trance

6.16 Schedule Trance

The Big Cheese from headquarters is coming to visit next Tuesday. Or

you have a trade show in ten weeks. No matter what, you have an

immovable date and an ambitious or impossible feature set to complete

before that date. Maybe the team has been measuring velocity, maybe

not. You don’t see how the team can meet the date with the entire

feature set. It seems as if the team is in a trance about the date (see

Figure 6.16). Sometimes, this is a team’s response to Happy Date.

First create your project dashboard (see Chapter 11, Creating and Using

a Project Dashboard, on page 212), and measure your progress, starting

with velocity. Then consider these options:

• If you’re not using iterations now, break the rest of the project into

iterations, the shorter the better. If you have ten weeks before the

immovable date, break the project into no fewer than five iter-

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=133

SCHEDULE TRANCE 134

ations, preferably ten. One iteration a week will help you con-

tinually reprioritize what to do when. The goal of an iteration is

completed work on a feature or features, that is, completed devel-

opment, documentation, testing, and anything else your product

requires to make it complete. If your trade show requires online

help, the feature isn’t complete until the online help is done.

• Maintain focus within an iteration. Daily standup meetings may

help with this. The goal for the project team has to be on finishing

pieces. When you finish enough pieces, you’ve got a feature or

a product. Don’t let people on the team distract themselves with

other projects, future work, or technical debt (see Appendix B, on

page 343), unless that debt will prevent this iteration’s work from

completing.

• Start implementing by feature if you haven’t already. Even if this

leaves you with partially implemented architecture, don’t worry.

If a feature requires that piece of the architecture, the team will

finish it. If the feature doesn’t require it, no one will use it.

You can fix many of the schedule games with a “guerilla-agile” ap-

proach. If you organize the project into no more than four-week time-

boxes, implement by feature, integrate as you proceed, and measure

velocity, you can stop the gaming. And if you keep managing this way,

you will avoid most of the games entirely.

Remember This

• Schedule games will happen. Your job is to recognize them and

manage the project so you can still make the project succeed.

• Most of the time, people don’t play the games with malicious

intent.

• Even without malicious intent, schedule games can drag your

project to a standstill.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=134

Chapter 7

Creating a Great Project Team
You know what done means, and you’re working on organizing the peo-

ple and tasks to get to done. To accomplish that, you need the right

people on your team, and you need them to work well with each other.

You need to create a great project team.

There are two parts to creating a great project team: the first is to hire

or attract all the necessary people and talents, and the second is to

facilitate their ability to work together as a high-performing team.

7.1 Recruit the People You Need

You might not have the ability to hire new people.1 But you do have the

ability to specify the talents and skills you need on a team. Consider

these roles for your project team:

Typical Name Role on the Project

Architect Organizes and guides the entire system develop-

ment, including the test system

Developer Designs and writes product code

Tester Designs and writes tests, including test code

Writer Designs and writes product documentation

Business Analyst Gathers and writes requirements

Release Engineer Designs, writes, and maintains the build system

and any other scripts associated with the build sys-

tem

Project Manager Organizes the project’s work

1. If you can hire, take a look at [Rot04b].

RECRUIT THE PEOPLE YOU NEED 136

Your project may need additional roles, such as UI designer or firmware

developer. You need to know enough about the technical risks of the

project (see the sidebar on page 149) to know which roles are necessary.

Not all of these roles need to be different people. For example, your

architect might also be a developer as well as your test system architect.

Or, one of the testers might also be a test system architect.

Not all roles are as clear as you might like. Maybe you’re organizing the

development part of the project, but not the testing or the documenta-

tion parts of the project—you might work with a documentation project

manager and a test project manager. And, you might or might not man-

age the people on your project. (See Section 7.3, Managing a Matrixed

Project Team, on page 142.) The key idea is that every project has to

have people who can perform this work, whether they are defined as

one person or not.

If you don’t have the power to attract, recruit, or eliminate the people

you need or don’t need on your team, you might be in a job where you

are set up to fail. See Section 7.7, Know When It’s Time to Leave, on

page 148.

Tip: Beware of PowerPoint Architects

I’ve worked on several projects where the architect was like

a seagull. He swooped in, dumped a lot of poop in the form

of PowerPoint pictures of the architecture, and left as soon

as possible. He didn’t stick around for the hard part of the

project: making the product work in this architecture or

evolving the architecture so that the product could work by

the time of release.2

Not every project requires an architect. If you have no archi-

tect, your sponsors should recognize that your team needs

time to assess the architecture and see what patterns are

emerging.

It’s possible to have an architect who acts as a consultant to

the project. It is harder when you have a consultant-archi-

tect—Murphy’s law implies that the architect will be busy

on another higher-priority project when you need him or her

most.

2. As George Stepanek reminded me, seagullishness occurs when the artifact producer

does not remain on the project to see the artifact used or converted to product.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=136

HELP THE TEAM JELL 137

But if your architect is overly fond of drawing programs and

not fond of writing code and can’t really answer the develop-

ers’ questions about how to make the parts fit into a coherent

structure, you don’t have a real architect [SH06a]. Eliminate

that person from your project, and build time into the project

for assessing the architecture as you proceed. Add the lack

of architecture as an explicit risk to your project so you can

manage it.

Diversity of experience, personality, and role will help the project team

identify risks faster, which allows you to manage the risks better. The

riskier your project is, the more diverse a team you need.

7.2 Help the Team Jell

Project managers are not the only ones responsible for making the team

jell—but their actions or lack of action can prevent a team from jelling.

The best way I know to help teams jell is to have them work together—

and not on rope courses or laser tag. When people have a common goal,

make commitments to each other about their interdependent tasks,

and use an agreed-upon approach to the work, they are part of a

team. If you want your team to jell, help them determine some short-

term goals that they can accomplish only together. (That’s one reason

the approach discussed in Section 13.1, Start People with a Mind-Set

Toward Reducing Technical Debt, on page 265 works.)

But I Thought I Was Building a Team

by Christopher, project manager

I remember the day I was promoted to project manager. I had worked on

several projects where we didn’t really know each other well—even though

the projects lasted between six months and a year. When I became a

project manager, I wanted to invest in team-building activities.

I took my team out for drinks a couple of Friday nights. However, not

everyone could make it. Some of the guys had families they wanted to go

home to.

I tried a paint-ball day. One of the writers flatly refused to go. I think her

exact words were, “I don’t use guns—even play guns.”

I thought a darts tournament might be the ticket. But only three of us

were interested, not the whole team.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=137

HELP THE TEAM JELL 138

I was stumped. I asked the team in one of our project meetings what we

should do to create more of an atmosphere of teamwork. One of the

developers said, “This.” I didn’t understand and asked him what he

meant.

“Working together, solving problems—that’s what makes a team for me. I

don’t care about those other things, although I liked the beers on Friday

nights. But I need to see how people work, not how they play. Then I can

know more about how to work with them.”

OK, I can do that. I specifically made room in our team meetings for group

problem solving. I made sure everyone worked together in a variety of

ways to help them create and deliver interdependent handoffs. Now we

have a team.

It never occurred to me that people wouldn’t like the activities, but they

really couldn’t have cared less. Oh, they liked the fact that I cared enough

to want them to team build, but the activities weren’t the issue.

Teams Require Adequate Tools to Work Well

You can’t just throw tools at a problem and expect it to be fixed. But

good tools, with your guidance, can be invaluable in helping a team jell.

Remember, the tools themselves aren’t the answer, but you will benefit

from having both a software configuration management (SCM) system

and a defect-tracking system (DTS) in place.

The SCM is vital for helping a team jell. Without one, it’s impossible

to know the state of the source code. The developers will step all over

each other while developing, or they will insist that certain people own

particular areas of code that others are not allowed to change. Any one

of these will slow down your project. There is great, free SCM software

available. (I wrote this book using Subversion.)

A defect-tracking system can be as simple as index cards, if you’re

using an agile life cycle and you don’t have more than a few open defects

at any time. But if you have more than five to ten open defects at any

time, you need a DTS to make sure you know about the problems, how

long they’ve been open, and the current state of those defects.

Minimum Requirements for Software Configuration Management

Modern SCMs can branch, label, automatically merge multiple authors’

changes, and allow for developers to work in their own private work-

spaces (sandboxes). There are plenty of other great features in other

SCMs. But if your SCM can’t do the minimum, dump it and obtain a

new one.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=138

HELP THE TEAM JELL 139

Minimum Requirements for a Defect-Tracking System

A useful defect-tracking system needs to provide you with several views

into the database of defects: defects for this project and for this prod-

uct over time, priority and severity, state of defect, age of defect, and

the ability to attach other data to the defect report. When you can see

defects for the project and the product, you can see how many are

similar to each other and how many are different. You might realize

that additional documentation, tutorials, or customer training could

eliminate large numbers of defects. The priority refers to the devel-

oper/tester assessment of when the defect should be fixed. Severity

means the impact on the user. The state of the defect can be open,

closed, and reopened, to name just a few. Being able to sort on reopened

helps you determine whether developers are making progress (see Sec-

tion 11.2, See Whether the Developers Are Making Progress or Spinning

Their Wheels, on page 228). The age of the defect might provide some

information about how much time people can allocate toward fixing

defects. All of this information is management information that you

need to steer the project.

If your DTS can’t do these things, first review your schema. If you can’t

make the schema do what you need, dump it and obtain a new one.

But chances are good that you can.

Five Stages of a Team

Teams move through the five stages: forming, storming, norming, per-

forming, and adjourning when they have valuable work to accomplish

[WJ77]. People need a compelling vision, as in the project charter, to

move into norming (see Section 1.6, Write a Project Charter to Share

These Decisions, on page 27). If enough people on the team don’t believe

there’s any point to this project, they will never move into norming—

they just don’t care enough.

The forming stage occurs at the beginning of the team’s existence.

Storming is when the team starts to work together and tests each other’s

power in the group. If the team (or you) can facilitate themselves to

agreement on group behaviors, they will move into norming. In the

norming stage, the group can accomplish good work. As the group

cooperates more fully, the team will move into performing. When the

project is complete, the team adjourns.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=139

MAKE YOUR ORGANIZATION WORK FOR YOU 140

You Participate on at Least Two Teams

As a project manager, you are part of the project team respon-
sible for the project. And, you’re also on the project team of
other project managers who are trying to accomplish work in
your organization. You might not think you’re all on the same
side, but you are all on one team.

The best way I know to make sure you and your peers are coop-
erative is to treat your project manager peers (or in the case
of functional managers acting as project managers) as if you
are all part of one team—even if your management doesn’t
encourage that.

If the team has moved into performing, bring those people back together

for your project. If the team was not in the performing stage, you might

be able to nurture the next team past storming into performing.

You can facilitate the team’s progress through these stages, but only if

you have the time to spend attending to the project’s risks, problems,

and the interactions of the team. Make sure you’re not spending all

your time in meetings with people other than on your project team or

on the Gantt. If you need a detailed Gantt, ask for a full-time project

scheduling person to update the Gantt.

7.3 Make Your Organization Work for You

The most efficient organization for project completion is the project-

based organization. That’s where the multifunctional team reports to a

project manager, who manages the day-to-day work and manages the

team’s interaction with the rest of the organization.

But few project managers work in project-based organizations. Instead,

most project managers work in a functional or matrix organization. In

Figure 7.1, on the next page, you can see why the project manager

has trouble helping a team jell in a nonproject organization. Each team

member has a responsibility to the functional team, as well as to the

project team. This reduces the project manager’s power to make things

happen, as well as slowing work down.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=140

MAKE YOUR ORGANIZATION WORK FOR YOU 141

Project team Functional teamMatrix team

Titular Project
Manager Power

Speed of delivery

High Lower

Figure 7.1: Comparison of types of project teams

Enlist the functional managers in your work to help make the team

jell. You’ll work with people to make sure they understand their assign-

ments, not the functional manager. You’ll need to help the functional

managers understand that the team member’s first responsibility is to

the project, not the functional manager. And it means that you’ll need

to discuss the dangers of multitasking with the functional managers.

See Section 16.7, Managing Multiproject Multitasking, on page 324.

Managing a Functional Team As a Project Manager

Some companies organize their projects so that the developers are a

project team reporting to the development manager as the project man-

ager, the testers are a project team reporting to their test manager as

project manager, the writers are a project team reporting to the doc-

umentation manager as their project manager, and so on. This kind

of organizational structure leads to silos and reinforces the need for a

phase-gate life cycle.

If you’re one of these functional managers also managing your team’s

part of the project, decide whether you want this organization to con-

tinue. Your project will be slower to start, it will misestimate and be

off-estimate more, and it will be harder to successfully complete the

project. You will have many more defects because the project is handed

from one functional team to another and from one project manager to

another. The project manager who starts the project (either the require-

ments manager or the development manager) does not handle the pro-

ject from beginning to end and might have no responsibility for finishing

the project.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=141

MAKE YOUR ORGANIZATION WORK FOR YOU 142

You have some choices. You might be able to convince your colleagues

that organizing the project as a program will be better for you. Each

functional project manager then takes on several features or set of

requirements and uses a cross-functional team to finish the project.

It’s as if the entire project team moves from a functional team to project

team, as in Figure 7.1, on the previous page.

If you can’t convince your colleagues to change how they work, you’re

stuck with a difficult (some would say impossible) situation. See

whether you can get small groups of developers, testers, and writers

(whomever composes your project team) to work on features, even if

the organization does not directly support that cross-functional work.

If people seem determined to stay in their silos (both managers and

technical staff), see whether one person can be named the overall

project manager—someone who has project responsibility from begin-

ning to release. If nothing works, decide whether this is a place you

want to remain. See Section 7.7, Know When It’s Time to Leave, on

page 148.

Managing a Matrixed Project Team

When you manage a matrixed project team, each person on the team

has their own functional manager in addition to you as the project man-

ager. Your job is to assign tasks and make sure the work of the project

is being completed. One of the problems with matrixed teams is that the

team members’ managers sometimes think it’s just fine to multiproject

the team members. That means that person is no longer assigned full-

time to your project. You will need negotiation and persuasion skills.

Consider building a project portfolio (see Section 16.1, Build the Port-

folio of All Projects, on page 315) and discussing the delays created by

multiprojecting to help that manager realize that multiprojecting is not

useful.

Discuss with the functional manager who will give the team member

feedback and coaching. You (or your technical leads or the other people

on the project) will need to give feedback about how the person is doing

on your project.

But there may be other discussions, such as career development, that

the functional manager needs to provide. Clarify with the functional

manager who will discuss which topics with the team member.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=142

KNOW HOW LARGE A TEAM YOU NEED 143

Managing a Cross-Functional Project Team

When everyone on the project owes their allegiance to the project, you

have more responsibility as the manager. You need to know enough

about how everyone performs their jobs to be able to provide effective

feedback and coaching to each person on your team.

You might not manage everyone directly. In that case, your subpro-

ject managers and technical leads will have to know enough to provide

effective feedback and coaching.

7.4 Know How Large a Team You Need

The only thing worse than trying to complete a project with not enough

people is trying to manage a project with a too-large team and inad-

equate management infrastructure. You can manage a team of up to

nine people by yourself, although teams larger than six people tend to

break into subgroups naturally. If you have a team larger than nine

people, you need to have some technical leads or other project man-

agers, depending on the deliverables.

There’s a reason for the number nine. Cockburn [Coc01], explains that

when the team gets this large the team dynamic changes. Larger teams

are not intimate teams (Phillips, and Weinberg3) who have interdepen-

dent deliverables; they are groups of teams. Especially on multisite

teams, you’ll need to work even harder to help the team feel as if they

are a team [KS99] and not a group.

Technical leads are people who lead the development of a feature or set

of features. (If you must develop by architecture, they lead the devel-

opment of a piece of the architecture.) If you’re managing a web-based

application, there might be a feature-based team that provides a way

to log into a user’s account and access the user’s profile. The techni-

cal lead for that area needs to understand the performance, reliability,

database, and usability of the feature set.

If you have a large team—more than nine people—the team has already

created its own de facto subgroups. If you assign a technical lead to

each subgroup, you’ve likely managed the issue of a too-large team.

3. personal communication

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=143

KNOW HOW LARGE A TEAM YOU NEED 144

Responsibility and Authority

No manager ever has enough real authority to do what he or
she wants to do. There’s always someone with a bigger title.
(Even if you’re a CEO, you report to a board.) Even though titu-
lar authority is useful, it’s not enough.

If the project is strategically important to the organization, act
first (doing whatever the project needs), and ask forgiveness
later. You’ll know whether the project is strategically important
by how many people ask about the status and what levels of
people ask. The more people ask at the higher levels, the more
strategic the project is.

If the project is not strategically important, don’t waste your
time trying to accomplish it [RD05]. In reality, if the project is
important enough to the organization, you have the author-
ity to do just about anything you need to do. (You need the
self-esteem to do what you need to do.) But if the project is
not important enough to the organization, you can never get
enough authority to do what you need to do. Go to the project
portfolio, and work on a strategically important project.

Even if the project is strategically important, you might need to
use your influencing skills to obtain or have people accomplish
what you need. Build relationships to lay the foundation for influ-
ence across the organization before you need it. Then when
you need help, you can enroll other people to help you push
your agenda forward [CB91]. I’ve used sales, service, opera-
tions, and marketing people to help me move projects forward.

If you’ve been working in the organization for a while, you’ve
built influence across the organization. If you’re new, you’re
bright and shiny, and people want you to succeed (most of the
time). If you haven’t paid attention to your relationships (the
organization’s politics), do so. Politics is not a dirty word. Politics
is the way you can accomplish things in organizations, espe-
cially if you don’t have the resources to do it all yourself.

As a project manager, you have the responsibility to take
authority, rather than wait for someone to give you the author-
ity.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=144

KNOW WHEN TO ADD MORE PEOPLE 145

Joe Asks. . .

Can’t I Add More Testers or Writers?

You can add more people to the project anytime you want.
And adding more highly capable testers might help you assess
risk or offload some of the developers’ responsibility for finding
defects. Adding more writers might relieve the developers from
writing product documentation.

Just don’t fool yourself. Adding more people to a project after
it has already started will cost the project time.

7.5 Know When to Add More People

You can add people to the project at any time. But you might not be

able to add them successfully at any time.

Anytime you change the team composition, the team retreats at least to

the storming phase, if not the forming phase. And, if you hire additional

people, the overall productivity of the team decreases for a few months,

unless you’ve assigned one person as a buddy [Rot04b] for the new

hire. (The new hire has a productivity of zero, and everyone helping the

new hire has less productivity.) If you assign a buddy, only the buddy

suffers from a productivity decrease—and the new hire learns how to

work much more quickly.

If you’re at the beginning of the project, add as many people as you

need, as quickly as possible. Take the productivity hit all at one time.

If you’re in the middle of the project, add people carefully. Beware of

Brooks’ law [Bro95]: adding more people to a late project makes it later.

At the end of the project, avoid adding new people at all. The only time

to add people is if your project is hopelessly late and the current staff

can’t finish it. Add the people you need, and replan.

7.6 Become a Great Project Manager

You’ve heard the old joke about how to get to Carnegie Hall: prac-

tice, practice, practice. It’s the same with becoming a great project

manager.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=145

BECOME A GREAT PROJECT MANAGER 146

But there are requirements for becoming a great project manager: de-

veloping your interpersonal skills to work with the team and devel-

oping/maintaining enough technical skills to understand and manage

your project’s risks.

I categorize skills into interpersonal skills (the nontechnical qualities,

preferences, and skills); functional (technical) skills; domain expertise;

and tools/technology expertise [Rot04b]. See [WJC00] for a different

competency profile.

Developing Your Interpersonal Skills

A project manager’s interpersonal skills—how you interact with other

people—can make or break the project. Here are the interpersonal skills

most PMs require. As usual with lists like this, your mileage may vary.

• Listening skills. PMs need to hear what people are saying and ask

them questions about state.

• Negotiation skills. PMs need to ask for resources, trade resources,

and information.

• Writing skills. PMs need to be able to write down a plan so that

everyone understands the plan and the trade-offs. Bullet lists are

not enough.

• Oriented toward a goal. PMs need to be able to finish a project and

keep people focused on the goal.

• Interested in and respectful of the people who work on the project.

The PM doesn’t have to be everyone’s friend, but the PM has to

be able to see when people are struggling, when something isn’t

working, and when things are working.

• Able to manage ambiguity—to live with the ambiguity and make

decisions. Every project I’ve managed, not just the software pro-

jects, has had periods of ambiguity.

• Able to manage the details. Even if the PM isn’t a detail person,

the PM has to find a way to manage the details.

• Problem-solving skills. Project managers need to recognize which

problems need to be solved now, which can be postponed, and

how to solve problems. The Rule of Three [Wei85] is a powerful

problem-solving tool. (The Rule of Three says, one alternative is a

trap, two alternatives are a dilemma, and three alternatives start

everyone thinking about real choices.)

• Recognize and seek obstacles that prevent progress. Eliminate

them.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=146

BECOME A GREAT PROJECT MANAGER 147

• Ability to steer the project—to observe the current state, to note

what’s different from where you want the project to be, and to be

able to guide the project to the new state.

Developing Your Functional Skills

A project manager needs to use several technical skills while managing

a project (and learn before starting to manage projects):

• PMs don’t need to know the details of both the problem to be solved

by the project and how the problem is solved, but without one or

the other—some form of problem-space or solution-space domain

expertise—the PM doesn’t know enough to make good project deci-

sions. See the sidebar on page 149.

If you are a nontechnical PM, don’t try to cover up your gaps. Be

honest about them, hire smart people, and rely on those smart

people while you learn about the project’s technical issues. If you

are honest about your knowledge and show that you’re willing to

learn, your team will help you succeed.

• Understand different life cycles and which one(s) fit your project.

• Be able to schedule a project.

• Be able to estimate tasks or coach other people in their task esti-

mation.

• Know how to assess risk and manage it.

• Understand how to measure and report on project state.

• Know how to deal with what has been done and what hasn’t

been done, using either velocity charts or earned value (see Sec-

tion 11.2, Earned Value for Software Projects Makes Little Sense,

on page 218). If you have neither measurement, understand what

is checked into the SCM and the state of the code.

Developing Domain-Expertise Skills

A project manager for a software project needs to understand how peo-

ple gather and rank requirements, how to ask whether the design is

done, how to evaluate technical risks as well as schedule risks, what it

means to have an SCM and how to effectively use it, and what results

to expect from testers. The PM needs to be able to select from the varied

review activities to help the project team choose the review activities for

this project.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=147

KNOW WHEN IT’S TIME TO LEAVE 148

This doesn’t mean a PM needs to know how to perform these tasks, but

the PM needs to know how to organize the activities of the project so

that all of these things happen. To understand how to perform these

activities, the PM needs problem-space domain expertise and some

solution-space domain expertise.

Problem-space domain expertise is the understanding of the problems

the project needs to solve. Solution-space domain expertise is under-

standing how the system implements the solutions to those problems

[Rot04b]

The PM needs to rapidly gain an understanding of the domain, specif-

ically the problem space to understand the requirements (and to help

with ranking requirements) and the architecture part of the solution

space. If you don’t know what problem(s) you’re trying to solve with the

project, how can you know when the project is done? And, if you don’t

know the architecture, you can’t understand the technical risks. You

may not understand all the technical risks, but without understanding

the architecture, you don’t even know what questions to ask.

Note that there’s nothing about reading or writing code (or tests) in

here. While being a developer or tester might help someone learn the

dynamics of software projects, being a good developer or tester does

not imply that you will be a good PM. The functional skills are different.

Certainly, a PM can be more technical than this, but I don’t see how an

effective PM can be less technical than this.

Developing Tools and Technology Expertise

If you use yellow stickies, you might never need a project-scheduling

tool. But if you’re like most project managers I know, you do use a

scheduling tool. You need either enough knowledge about the tool to

bend it to your will or an assistant who knows.

7.7 Know When It’s Time to Leave

Part of being a great project manager is knowing when you’re not right

for the organization, the team, or the product. If you find that you’re in

any of these situations, you might not be the problem. Your organiza-

tion might be the problem, and the situation might be unmanageable.

You always have at least these choices: accepting the current state with

your eyes open, moving to another project in the organization, or chang-

ing organizations. It’s possible you can change the organization [Wei97].

Here are some warning signs for you to consider.
Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=148

KNOW WHEN IT’S TIME TO LEAVE 149

How Technical Does a Project Manager Need to Be?

The project manager does not have to be the technical expert
for the project. But the project manager needs to know enough
about how the technology under development will solve the
customers’ problems. And the PM needs to understand the pro-
cess the team is using to understand the project’s risks.

Project managers need to understand enough about the tech-
nology so that they can make trade-off decisions (or help prod-
uct owners make trade-off decisions) about what will actu-
ally make it into the release. The more the PM understands
the product under development, the better decisions they will
make—or guide the project team to better decisions.

Here are the two extreme situations to avoid: the unknowl-
edgeable PM and the PM who would rather be the architect.
I’ve worked with several organizations who thought that PMs
in other industries, such as event planning, would make great
PMs of software projects. Nope. Not a chance. The PM needs
to understand the process of the project. And in addition to
the process, understanding enough about the product and
the tools can help a PM assess risk and manage it during the
project.

In my experience, the PM as architect is just as bad. This PM
understands the process and the technology and ignores the
work of the PM. If the PM is focused on development instead
of managing the project, the project suffers as much (although
differently) as if the PM was ignorant of the project.

When You’re Not Right for the Organization

You have no choice about team members. Many project managers

manage projects where the team members move with them from project

to project. And once in a while, you have a team member who’s not

doing the work you need performed or can’t jell with the team. And you

can’t move that person off your team.

If you can’t obtain the people you need for your team, first check and

make sure you’ve explained why you need the people you need. If you

can associate costs or benefits with a position, do so. I once asked for

a release engineer and was told, “JR, we are not wasting money on a

release engineer. These developers know how to check in their own darn

code.”

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=149

KNOW WHEN IT’S TIME TO LEAVE 150

Joe Asks. . .

Does a PM Need a PMP Certification?

No. A certification shows that you knew how to study enough
for an exam and that you have experience working on projects.
It doesn’t say anything about how successful you were when
you worked on those projects.

Why am I so cynical about PMPs? Because the PMBOK
describes project management work as if it occurs in a serial
life cycle, with the PM large and in charge. (The PMBOK does
not require a serial life cycle, but many PMI-only-trained project
managers don’t know any better.) For many projects—most
software projects—it makes no sense to use a serial life cycle.
It makes no sense to use command-and-control approaches
when a collaborative approach makes more sense, takes less
time, and gives a better result.

This doesn’t mean there is no value in studying for a PMP certifi-
cation. The value is in the study and in applying those areas to
your project. But a PMP is no guarantee of PM ability. Far from
it.

I wasn’t worried about checking in—I was worried about the multiple

branches and multiple platforms. I asked everyone to log their time for a

week whenever they were stuck on problems with the SCM or had to do

their own SCM script writing, and so on. In one week, the project team

had spent thirty hours on SCM work. I explained this to my manager,

who didn’t believe it, so I asked the team to log their hours again. The

next week, the team had spent thirty-eight hours. My manager agreed

to let me hire someone as a contractor, who later became a permanent

employee. You might need to explain the need in person-hours lost to

the project.

But more often than not being able to hire someone, I see teams where

the project manager is saddled with a team member who can’t do the

work or has problems working as part of a team. If you’re in that posi-

tion, make sure you’ve first provided effective feedback [RD05]. Assum-

ing you have explained the results you want and you’ve provided feed-

back about the work or the person’s behavior, it does make sense to

move this person off your team.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=150

KNOW WHEN IT’S TIME TO LEAVE 151

Joe Asks. . .

How Many Projects Can a Project Manager Manage?

I’m always amazed when I meet project managers who look
as if they haven’t slept in days. “I’m managing three projects.
I’m not making enough progress on any of them. But my boss
thinks I should be able to manage at least three projects. How
many should I be able to manage?”

I wish I had the right answer. The best answer is “It depends.”
If you have an extraordinary team who knows how to work
together, who can resolve issues among themselves, who can
remove obstacles by themselves, who can negotiate for more
resources if they need them, and who have enough discipline
to monitor their work and steer the project without you, you can
manage that project team—because they don’t need you—
and one other normal one.

If you’re multitasking and trying to manage multiple projects,
know that you are shortchanging at least one of them, if not
all of them. A successful project manager can manage one
project at a time. You can make yourself nuts by trying to man-
age more, but you’re unlikely to be successful.

I’ve tried isolating people on a project team who weren’t working well,

and I have not been successful. Just keeping those people around

makes everyone else edgy—it appears as if the person in trouble is

being rewarded for not working on relevant work or for not being part

of the team.

You need to be able to move people off your team when they’re not

working out. If you can’t, consider your alternatives. Maybe it’s time for

you to move to a different project or, more likely, out of the organization.

Meeting attendance is political. If you can’t choose which meetings

to attend because a Big Cheese is watching who’s there and who’s not,

why are you wasting your time in this organization? Before you assume

someone is measuring meeting attendance, ask. You might be making

unwarranted assumptions. But if you’re not, take your skills and find

another job. Your current organization will be out of business soon

enough.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=151

KNOW WHEN IT’S TIME TO LEAVE 152

Your sponsor hangs you out to dry. You’ve asked the sponsor to imag-

ine the end of the project where things aren’t quite right, and your

sponsor says, “I’ll have your head.” I don’t know too many people who

work well when they think they’re being threatened or feel as if it’s all

their fault if the project doesn’t succeed.

Some project managers think this is an invigorating environment.

I don’t, but if you do, more power to you. You’ll need it. Be aware,

though—this is a command-and-control environment, not a collabora-

tive one. And collaboration makes for the most successful projects.

Your sponsor insists that people multitask and won’t take “no” for

an answer. You’ve explained the slowdown effects of multitasking. And

your sponsor still won’t decide which projects are top priority. And,

you’re on the hook for a successful project delivery.

If the people who are paid the big bucks won’t make the project port-

folio decisions, ask yourself why you’re accepting a no-win position by

managing a project that can’t succeed. You don’t have to do this. You

have other choices.

You’re supposed to contribute technically to the project. You’ve got

more than three other people on this project. And you’re still supposed

to write code, test, write documentation, whatever. Somehow, you’re

supposed to be a technical contributor in your spare time, when you’re

not managing the project.

Ahem. If you’re managing a project of more than three other people

and you are their manager as well as project manager, you don’t have

spare time [RD05]. (It is possible that with just two other people, you

can contribute a little technically—as long as you make sure your work

is never on the critical path.) If your staff is matrixed into your project

and they always work only on your project and meet their dates, maybe

you can contribute with up to five other people. (If you’re working on

an agile project, you’re the coach or Scrum master, and your team is

self-organizing and managing, you have many more hours in the week

to produce technical work.)

What I see is project managers not managing the project. They’re writ-

ing code, but they’re not managing the risks, they’re not attending

to the testing, they’re not generating the dashboard, and they’re not

assessing release criteria. If you work in a meeting-happy place, you’ll

need to add all the meetings to your list of work.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=152

KNOW WHEN IT’S TIME TO LEAVE 153

If you’re managing the project, helping people see the goal, removing

obstacles, and monitoring their progress, you don’t have time to con-

tribute technically [DeM01].

Management imposes silos. Imagine you’re the development manager.

You start the project, work hard, declare the development done, and

march onto the next project. Your peer, the test manager, starts the

testing work. He marches into your office two days later and says, “Your

developers didn’t finish their work. The project is not going to be done

in four weeks. I need all of your people to fix the defects.” But you had

to assign your staff to the Next Big Project. Now what?

Both of you are functional/project managers. Neither of you has re-

sponsibility for the entire project—and one of you (most likely the test

manager) will be blamed for the late release. But it’s not the testers’

fault—and it’s not the developers’ fault. When your management orga-

nizes the project into silos and you, the functional managers, allow it

to remain that way, it’s all of management’s fault.

I have some suggestions for actions you can try in Section 7.3, Manag-

ing a Functional Team As a Project Manager, on page 141. But the real

question for you is, Can you make your position work when the organi-

zation is oriented against results? Decide whether it’s worth your time

and energy to change the organization or to change your organization.4

All of your projects start with insufficient resources. You’re a good

person. Your manager says, “Nancy, we want you to start this project.

We can’t quite give you all the people or computers or space or pens

you need right now. In fact, we won’t give you the resources you need

until halfway through the project. But we have faith in you. Will you do

it for the team?”

Oh, it’s so tempting to be the heroine and save the company. But you’re

not doing the team any good when you roll over and accept less than

reasonable conditions to start the project. Starting a project with insuf-

ficient resources is unacceptable.

If you can’t help your management define what’s driving the project (see

Section 1.2, Manage Your Drivers, Constraints, and Floats, on page 19),

you aren’t right for this organization. This organization will continue

to take advantage of your good nature and push you into death march

projects. Don’t fall for it. Either change the project, organizing it against

4. Martin Fowler.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=153

KNOW WHEN IT’S TIME TO LEAVE 154

the reality of your drivers, constraints, and floats, or leave. Starting a

project with insufficient resources is a no-win proposition.

You hear “you’re not a team player” all the time. Your job as a

project manager is to think your project is the most important work the

organization has and to act that way. If you act in such a way to make

your project succeed (such as Section 8.4, Timebox Requirements Work,

on page 161) and you hear, “You’re not a team player,” then you might

not be what this organization needs.

Program managers might need to have a broader perspective than their

one project. But even program managers should not roll over and allow

the organization to steamroll them. You’re the project manager; you’re

in charge. You have the responsibility to make the project happen suc-

cessfully; see the sidebar on page 144. Fulfill that responsibility with

enthusiasm.

When You’re Not Right for the Team

You don’t know enough to manage this project. You don’t have to

have managed a project like this one before. But you do need to under-

stand how the team works and the problems the project is trying to

solve. It’s not easy to know when you don’t know enough to manage the

project. But here are some questions for you to ask yourself:

• Do you understand how the team works? If you don’t understand

the team’s workflow and the workflow is working for the team,

you might not know enough to manage the process risks for this

project.

• Do you understand the problems this project is trying to solve? If

you can’t understand the problems, you can’t help to create useful

release criteria. Even more important, you can’t assess the release

criteria as you proceed.

Your manager inflicts help on the team, and you can’t push back.

We’ve all worked with managers who want to inflict help. And some-

times you allow the manager to “help” the team, and you don’t push

back.

If you can’t keep that manager away from your team, you are not remov-

ing obstacles from the team. In fact, you’re increasing the obstacles the

team has to overcome to finish their work. You are not helping the team;

you’re hurting them.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=154

KNOW WHEN IT’S TIME TO LEAVE 155

Stand up for your team and create some distance so that the manager

tries to inflict help on you, not on the team. You don’t have to take the

help; all you have to do is listen, which may be bad enough.

You know too much to manage this project. You have tons of tech-

nical experience. And, you’ve managed projects before. But this project

is near and dear to your technical heart. Can you let go of the technical

work to manage the project?

If you can’t remove yourself from architecture or design so that you

can concentrate on managing the project, it’s time to choose. Either

manage this project or become one of the technical staff. But don’t try

to do both. You’ll frustrate the other senior developers by interfering

with their technical work, and you won’t be removing the obstacles,

managing risks, and helping people finish the project.

When You’re Not Right for the Product

You don’t have the solution-space domain expertise—and neither

does anyone else. You don’t always need solution-space domain exper-

tise to run a great project. But if you don’t have the technical depth in

your project team, then none of you understands the technical risks.

Decide whether you want to stay with this project.

If you do stay with this project, use an agile life cycle with short iter-

ations. You’ll need to prototype and implement by feature to know

whether the team is delivering anything useful.

Remember This

• The riskier the project, the more diverse a project team you need.

• Develop all your skills: interpersonal, functional, domain, and

nontechnical.

• Know when it’s time to leave.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=155

Chapter 8

Steering the Project
You’ve written the project charter, you’ve got a plan so people know

what done means, and you’ve got some kind of a schedule. The project

team is working. You’re officially in the middle of the project, where it’s

your job to steer the project to a successful conclusion.

If you haven’t defined your project dashboard (Chapter 11, Creating

and Using a Project Dashboard, on page 212), do that now. You’ll need

to take quantitative and qualitative measurements to make sure you

understand the project’s true state. Once you know the state, you can

make decisions about how to steer the project.

Steering the project includes looking for risks and managing those

risks. One way to look for risks is to organize the project so you can

see the project’s rhythm. Anything that disrupts the rhythm is a risk

that has occurred. Anything that threatens to disrupt the rhythm is a

potential risk. By managing risks as proactively as possible, you can

help the project stay on track.

8.1 Steer the Project with Rhythm

Every project has a natural rhythm. Some projects churn, making

progress slowly. Others seem to have rocket boosters—every time you

turn around, the team is accomplishing more work. All projects have

a rhythm, which changes over time. Your job is to see your project’s

rhythm, and see whether any practices could help your project build

and maintain a reasonable rhythm so your project can succeed.

CONDUCT INTERIM RETROSPECTIVES 157

The more serial your life cycle is, the more your project’s rhythm will

vary by phase [Rot04a]. In the earlier stages, the project might seem to

undergo lots of churn, and you’ll wonder whether you can ever define

the requirements or whether the design will ever stop changing. For

projects that “mysteriously” jell, sometime during implementation the

rhythm becomes clearer and more focused, because the decisions have

been made and you’re implementing them; assuming you have ade-

quate staff, the project marches along to its conclusion. For projects

that don’t jell, you might stay in churn throughout the life cycle, never

finding a comfortable rhythm.

In agile life cycles, you might notice churn during iteration planning.

But iteration planning doesn’t last more than a few hours, so the team

finds its drumbeat rhythm once they start an iteration. (If you have

an agile life cycle that doesn’t find its drumbeat rhythm, chances are

good that the team is not following the agile values or using the agile

practices.)

I’ve seen these problems break a project’s natural rhythm:

• Not knowing which requirements need to be finished first

• Allowing the requirements-gathering part of the project to take too

long

• Allowing GUI changes all over the GUI at any time so that the GUI

folks didn’t know what they needed from the rest of the project

• Not having a picture of the overall architecture to see where this

part fits in

• Not staffing a particular part of the project with people in time for

them to succeed

If you see your project struggling to find a steady rhythm, consider the

management practices here. Also see Section 16.5, Start Projects Faster,

on page 319 and Chapter 9, Maintaining Project Rhythm, on page 179

for more ideas.

8.2 Conduct Interim Retrospectives

Discovering Why Our Estimates Are All Off

by Stanley, beleaguered project manager

I was stumped. We kept having the problem that we didn’t meet our

estimates—for anything. We couldn’t keep to our timeboxes. It didn’t

matter how small the estimate was, we didn’t meet one. I thought it might

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=157

RANK THE REQUIREMENTS 158

be a systemic problem, so I decided to hold a retrospective before the

project was done—just to look back at the past few weeks.

At the interim retrospective, several people explained they had been

approached by people in marketing and sales to add “just one more

thing.” I didn’t have to say a word. Stella, my technical lead explained, “If

we take changes without adding them to our backlog, we will never finish

what we said we would. We have to make sure Stanley sees those

requests.”

During the action planning part of the retrospective, the team devised

several ways of making sure I received the requests—including walking

the person who asked most often for “one more thing” to my office. And, I

realized I had to publish the product backlog more frequently; I couldn’t

just depend on people to go look for it.

Without an interim retrospective, I would never have discovered why our

estimates were off. Oh, maybe I would have late in the project. But then

the whole project would have been a disaster. This way, I could manage

the rest of the project much more proactively.

Retrospectives are a great way to consider what happened on your

project and to plan for future projects. Conducting a retrospective at

the end of the project is good. And you can use that learning for the

next project. But you can conduct retrospectives at any time during

the project to learn what to do differently tomorrow.

Agile lifecycle projects need retrospectives at the end of every iteration.

Serial, iterative, and incremental lifecycle projects need retrospectives

when they meet major milestones. If you have more than one month

between major milestones, you can conduct an interim retrospective

anyway to see how work is proceeding.

I recommend Derby and Larsen’s book [DL06] for a wide variety of ways

to conduct interim retrospectives.

8.3 Rank the Requirements

We Have Ultrahigh Requirements!

by Patricia, business analyst, par excellence

We have a new product manager, Tommy. He’s enthusiastic. He hates to

say no to our customers. He promised all of these requirements to the

customers in the next release. I couldn’t keep up with him—he was

partially describing these requirements and then never had time to

discuss them with me.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=158

RANK THE REQUIREMENTS 159

Interim Retrospectives Pay

Pete was a project manager for an eighteen-month stage-gate
project. The plan was to gather enough requirements for six
weeks to know enough to start prototyping the architecture.
But at six weeks, they were nowhere near finishing enough of
the requirements to start on prototyping. Pete decided that
instead of allowing the requirements phase to continue (“Four
more weeks, we just need four more weeks,” said the require-
ments analysts), he would conduct an interim retrospective.

At the retrospective, the team learned all the reasons why they
hadn’t finished enough of the requirements to be able to start
prototyping architecture. And, they learned that if they pro-
ceeded the way they had been working, four weeks would
not be enough to gather “enough” requirements—they would
need at least twelve more weeks. The retrospective at six weeks
into the project saved the project from an estimated three-
month delay and convinced the project team to choose a dif-
ferent life cycle and commit to it.

The last straw came last week. He decided that we wouldn’t have High,

Medium, and Low requirements. No, we had Ultrahigh, Critical, High,

Medium, and Low requirements.

I explained I was working as fast as I could. I would be happy to work on

any of his requirements in any order, as long as they were ordered by

number. “Tell me which one is #1. I’ll work on that one first, I’ll hand it to

the developers, and then I’ll work on #2.”

He enthused, “Great idea! Here, all these are #1!”

“Tommy, maybe I wasn’t clear. You have to pick one #1 requirement. Just

one.”

“But then I’ll disappoint some customers.”

“I’m sorry that you promised so much to so many people. But we can do

only one #1. And one #2. I’m sure that if you think about it, you can

choose.”

Sure enough, he did. He ordered everything. The next week, he wanted to

reorder, but by then we had actually started working on the first set, so

he didn’t interrupt us. That was a good thing too, because I was ready to

kill him. You’re not recording this, are you?

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=159

RANK THE REQUIREMENTS 160

If you’re lucky, you have all the requirements in one place, and you

know which ones to implement first, second, and third. But if you’re

like most of the project managers I know, you have requirements in a

requirements document and in the defect-tracking system. You have

them arranged in high, medium, and low priority.

Color me cynical, but here’s what I see happening on projects. There

are so many high-priority requirements that you might never get to the

Medium requirements, and you certainly don’t get to the Low require-

ments. You’ve got this big bucket of High requirements with no way to

differentiate which one to do first.

And for the next project, your requirements givers know that you’re

in danger of not completing all the High requirements, so they make

a higher-than-High category: Critical. Somehow, many of the require-

ments migrate into the Critical category. You might still have a few High

and a few Medium. But now, you can’t finish all the Critical require-

ments in the time. What do you do?

Ranking the requirements, assigning each of them a unique number

that starts with 1 helps people see what the team will implement when.

Even if you don’t implement by feature, you can complete features in

the ranked order.

You have several choices for ranking requirements:

Try pairwise comparison. With pairwise comparison, you take each

requirement and compare it to each other one, asking “Is this one

higher or lower priority than that one?” As you determine which re-

quirement is ranked higher relative to other requirements, that one

becomes #1. The next highest-ranked requirement becomes #2.

Pairwise comparison is hard. You’ll run into the same problem as you

did when trying to decide on a driver for your project (see Section 1.4,

Decide on a Driver for Your Project, on page 23). You’ll need to gently—

but firmly—explain that there is only one #1 priority. And there is only

one #37.

Do criteria ranking. If you’ve tried pairwise comparison and aren’t

making progress, it could be that the group needs to articulate the val-

ues and priorities behind their decisions. Articulating the values helps

everyone weigh the options explicitly so they can decide.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=160

TIMEBOX REQUIREMENTS WORK 161

Generate subjective criteria by brainstorming a list of possible criteria,

grouping like items, and assigning a category name. The category name

becomes the criteria you will evaluate against. Some criteria I’ve used

in the past are as follows:

• Architectural impact of feature

• Estimated time to implement

• How important this feature is to Very Important Customer

• Availability of specific people to implement or test the feature

Assign relative weights to each criterion. The facilitator asks these ques-

tions: Of the items on this list, which is highest? Is there anything else

on this list as high as (this one)? Of the items on this list, which is

lowest? Is there anything else on this list as low as (that one)?

Once you know the relative ranking, assign weight. The lowest ranking

has a weight of 1. Each higher ranking has a weight that’s twice the

previous one. Assuming each ranking is unique, you’d have weights of

1, 2, 4, and 8. (You can have multiple criteria that are High, Medium,

and Low, and weight all the Lows as 1, all the Mediums as 2, and all the

Highs as 4.) Then score each alternative against each criteria using a

0–10 scale, where 10 is most favorable. See Figure 8.1, on the following

page.

Develop and maintain a running requirements log: a product back-

log. You might find it challenging to rank the requirements when there

are a boatload of them—I certainly do. If you can, rank the require-

ments as you hear about them. Try keeping a spreadsheet or a log of

requirements. If you’re not using an agile life cycle, keep a quarterly

log of what you’ll do this quarter and what you think you’ll get done

in the next three or four successive quarters. See Section 16.6, Build

a Product Backlog, on page 321, especially the picture of the quarterly

backlog.

8.4 Timebox Requirements Work

Requirements Go On and On and On. . .

by Rhonda, CIO

My job is to make sure we finish our projects so the business can receive

the value. We had a critical project that was taking too long. It was

supposed to be a six-month project. Two months into the project, Sam,

the project manager, came to me. “I’m ready to tear my hair out. I can’t

stop getting requirements. Marketing keeps adding more and more

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=161

TIMEBOX REQUIREMENTS WORK 162

Criterion Weight Alternative # 1 Alternative # 2

 Score Weighted

Score

Score Weighted

Score

Architectural Impact of

Feature

1 10 10 3 3

Estimated Time to

Implement

4 3 12 10 40

How Important This is

to Very Important

Customer

8 1 8 10 80

Availability of Specific

People

2 10 20 7 14

 ---------- 66 -------- 137

Figure 8.1: Criterion evaluation

requirements, and they don’t finish any of the ones we have, so I don’t

even know how to get started.”

I knew how to fix that. I called the marketing VP and explained his folks

had one more week to define requirements. Whatever was fully defined, we

would do. If it was only partially defined, we wouldn’t do it. That simple.

He tried to give me the runaround, telling me his guys were out of the

office. I offered to close the requirements today if his people couldn’t use a

week. “No, we’ll figure it out.”

We didn’t do everything they wanted—but we did what they needed.

If you must have a requirements phase, timebox it. Otherwise, the

requirements elicitation and definition can expand to take the entire

project. I once worked with an organization that was trying to reduce its

project duration from eighteen months to six months. But the require-

ments still took four months. They couldn’t do anything useful in the

two months they had left.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=162

TIMEBOX REQUIREMENTS WORK 163

After some digging, I understood what was going on. The marketing

department was too busy to meet with the system analysts, so they

would postpone the requirements meetings. The analysts would explain

that they weren’t done with the requirements yet, so they would get

more time from the project manager. But then there was no urgency for

marketing to finish explaining what they wanted for requirements.

The project manager decided to timebox the initial requirements work

to two weeks. Marketing grumbled and at the end of the two weeks

sent around several memos explaining why the release was going to

be so terrible for the customers. Because the developers had the most

important requirements, they could start working on the product. After

three weeks, they had a prototype of the original requirements, and

marketing had continued to work with the system analysts to define

the next set of requirements.

They were able to move to four-week iterations, with marketing taking

as long as they needed to define any given requirement. But the project

team knew what they were supposed to implement in the next iteration.

Even if you don’t move to iterations, timebox the initial requirements

gathering and definition. I’ve done this in several ways:

Timebox initial requirements and continue to gather more require-

ments. In this option, you can select a reasonably short period of time

(no more than 10% of the project’s total duration) and ask for the most

important requirements. The danger is that you will get the most impor-

tant requirements for the customer, but not necessarily the require-

ments that will drive critical architecture decisions.

Timebox all the requirements definition work. This option is person-

ally more dangerous to the project manager. Be ready to hear “you’re

not a team player” and other such nonsense. You can explain, “I’m

doing the best I can to make sure we deliver the product you want. If I

let requirements take as long as they took last project, we won’t deliver

on time. If the release date is not important to you, we don’t have to

do this, but the last time, you were quite concerned about the release

date.”

When I’ve used a timebox for all the requirements work, the project

team works with the requirements people to define and refine the

requirements. At the end of the timebox, the team implements the re-

quirements that are complete—and only the completed requirements.

This approach works well for short projects where you are tied to a

serial life cycle.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=163

TIMEBOX ITERATIONS TO FOUR OR FEWER WEEKS 164

8.5 Timebox Iterations to Four or Fewer Weeks

We Can’t Finish Our Iterations

by Topher, project manager

We’ve been trying to use four-week timeboxes for about six months now.

But we just can’t finish everything we estimate we can do in those four

weeks.

At the end of the first iteration, we had a few days more of work, so we

extended the iteration to five weeks. The next iteration, we had more

work, too, so we extended the iteration to six weeks. We got up to

eight-week iterations, and we still weren’t finishing the work we’d planned

for the iterations.

We finally decided to divide by two. That is, make the iterations only two

weeks, and see whether our estimates were any good. Turns out, our

estimates were good, but because we have support work to do in addition

to the development work, we didn’t have as much time as we thought to

work on development work during an iteration. Our task estimates were

fine; our workday estimates were off.

We would never have understood this if we hadn’t moved to shorter

iterations.

Maybe you’ve moved to iterations. But the iterations are eight weeks (or

more). And now you’ve got other problems. The testers can’t finish the

testing in your iterations. Or the developers always estimate too much

for what they can do in an iteration. Or, you’re using a spiral life cycle

that doesn’t plan for finishing a feature.

The longer your iterations, the harder it is to maintain a project rhythm.

You’ve probably seen this in a serial lifecycle project, where the whole

project is an iteration. If you’re having trouble maintaining project

rhythm, move to shorter iterations until you can maintain a rhythm.

This might seem counterintuitive to you. “If I’m having trouble with a

six-week iteration, how will going to a four-week iteration help?” The

answer is more frequent feedback. The smaller the periodicity of itera-

tions, where the project meets a specific milestone (ideally releasable

software), the easier it is to see how to start and end an iteration.

That’s why a Hudson Bay Start (see Section 4.2, Hudson Bay Start,

on page 67) works. If you can’t maintain the project rhythm, either peo-

ple are not estimating well, they’re trying to do too much at one time,

they’re actually working on several projects, or they don’t know what to

work on first—or some other reason particular to your project. Shorter

timeboxes will make the problems more obvious so you can solve them.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=164

USE ROLLING-WAVE PLANNING AND SCHEDULING 165

Tip: Use the Divide-by-Two Approach to Reduce Iteration Size

If your iterations aren’t succeeding, try the divide-by-two

approach. Divide your iterations by two. If they’re six-week

iterations, make them three weeks. If they are four-week

iterations, make them two weeks. If they’re two-week iter-

ations, make them one week. Smaller iterations help you

gather feedback faster about what people actually do in that

timebox.

Once you know what people are doing in the timebox, you’ll

know whether it’s an estimation problem, a multitasking

problem, or some other problem. You can then remove that

obstacle. But longer iterations mask the problems.

8.6 Use Rolling-Wave Planning and Scheduling

Planning Just a Little Provides Me with More Flexibility

by Donald, project manager

We’re stuck with a serial life cycle. We have very strict phase gates and

have a management review for each of them. But in between the phase

gates, we use timeboxes and iterate on prototypes to know how good our

estimates are.

We’re in the design phase. And we realize that we can’t get the

performance we need out of that particular component. It’s not going to

happen; it violates the laws of physics. It’s time to replan what we can do

and release a slightly different product.

I’m not worried about the schedule. I plan in detail for only four weeks at

a time. I’ll have to throw out part of my planning for the next few weeks,

but I’ll be able to replan without too much trouble. I’m worried about the

product, but that’s another problem.

At some point during your project, some risk occurs that changes every-

thing from here on out. Software projects unfold in unforeseen ways.

One task might complete faster; another task might take longer. If you

plan to replan—to iterate the planning—you can improve the over-

all project schedule. Iterative planning and scheduling can help you

on projects with technical risk or schedule risk—when you don’t have

enough product knowledge or historical data to plan the schedule with

certainty or when the project is too long to plan with certainty.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=165

USE ROLLING-WAVE PLANNING AND SCHEDULING 166

Replanning for serial lifecycle projects. For serial life cycles, first

define the phases or major milestones. Make sure you choose mile-

stones that have specific meaning for the team or define what the mile-

stones mean. For example, if you have “requirements freeze,” specify

what that means for your project. Once you’ve defined the milestones,

attach milestone criteria to each milestone. That way you’ll know when

you’ve achieved the milestone. Don’t try to plan everything. Just plan

the next three to four weeks in enough detail that everyone knows what

to do and how they’ll get through the next few weeks. (If you know of

some specifics you’ll have to do in certain parts of the project, such as

demos, trade shows, or beta, list those in your milestones, too.)

All you have to do is monitor the project progress, keeping in mind the

milestone criteria. Milestone criteria are the necessary achieved tasks

to meet the specific milestone. For example, I’ve worked with teams

who used “requirements freeze” in serial lifecycle projects who used

criteria such as “requirements for foo feature complete and reviewed.”

In a serial life cycle, you’re unlikely to meet any criteria such as “freeze”

or “complete,” because you can’t know whether earlier phases really are

complete until you have working code that represents the requirements

or design.

As the project team accomplishes tasks, you can add more tasks to the

end of your current detailed plan. If you’re on week 3, and you have a

four-week rolling-wave plan, you’ll be planning week 7 while you’re in

week 3. It’s a little harder to iteratively plan a serial life cycle, because

too often you can’t assess progress until you’re close to a milestone.

That’s why you need the milestone criteria.

Serial life cycles pose a special problem with rolling-wave planning.

Since you’re working with phases (requirements, analysis, coding, and

so on), it’s very seductive to plan as much detail as you can at the

beginning. Instead of planning the details, plan just the next few weeks

in detail.

As you complete an early phase, start filling in more details for the next

phase. Look for technical debt in your project as you proceed—later

phases that take longer than you thought can be a sign of technical

debt. The more technical debt you have, the longer the later phases will

take.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=166

USE ROLLING-WAVE PLANNING AND SCHEDULING 167

Once you’re well into the coding and testing phase, you can plan the

final testing and any end-of-the-project activities, such as early re-

leases, betas, and any other major activities before actual release.

You’ve used rolling-wave planning to build your schedule. And, in a

serial life cycle, you’ll want to create milestones that say “replan” as

you finish a phase. Build the replanning activities into the original

project schedule. Use what you know about this project (especially

using interim retrospectives) to update the project plan and schedule.

This way the project team realizes the project is under control, but

the project team and the project manager can continually assess and

manage the schedule risks.

Tip: Build Replanning into the Project Schedule

Unless you’re using an agile life cycle, make your replan-

ning activities explicit. And make them often enough that the

schedule doesn’t fly away from you without you realizing it.

Replanning for iterative, incremental, and agile lifecycle projects.

Since all the other life cycles have either iterations or increments (or

both), it’s much easier to replan those life cycles than to replan a serial

life cycle.

Iterative life cycles that don’t deliver finished code into the code base

each iteration can use the same replanning approach as serial life

cycles. You’ll have different milestones, such as “prototype 1 explored

and results published,” but the idea is the same.

Incremental life cycles can use a similar approach as serial life cycles to

replanning at the beginning where they tend to have phases. Once the

increments start, you’ll find it easier to build the rolling-wave schedule,

because you’re not waiting for a phase to be complete; you’re waiting

for finished (developed and tested) code to be checked in.

Agile life cyles use the idea of rolling-wave planning as a default, be-

cause each iteration is a timebox. You have to plan only enough to

start the iteration, monitor progress through the iteration, and make

sure the iteration ends with completed work.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=167

CREATE A CROSS-FUNCTIONAL PROJECT TEAM 168

Joe Asks. . .

Is There Ever a Time to Avoid Iterative Scheduling?

Iterative scheduling is not for everyone on every project. It is
most useful under these conditions:

• When you have an idea of what needs to be done but
not a clear idea of how to do it

• When you are pressed for time and want to take advan-
tage of project advances

This leaves out research-type projects or the research phase
of a project. To use iterative scheduling on research projects,
develop questions you can ask at the end of each timebox.
Then you can use iterative scheduling to replan the next time-
box. Instead of product deliverables, you’ll have answers to
questions—or more questions—a different kind of product deliv-
erable.

8.7 Create a Cross-Functional Project Team

Silos Kept Us in the Dark

by Brian, development manager

I’m the development manager for a large transaction processing product.

We have a GUI front end, a bunch of middleware, and plenty of databases

on the back end.

All the developers worked together to design and develop the product. I

managed the project. Then we handed it off to the testers. The test

manager, Nancy, took over responsibility to release the product.

Once my guys were done with development, we started on the next

project. And then we’d get all these requests from the testers to fix things.

Lots of interruptions. And, the customers complained when they started

using the product too—they found things neither development nor test

had found.

For the next project, Nancy and I sat down and talked. What did we have

to do to make sure we finished the project without all these interruptions?

We decided we’d integrate the testers into the development team. Nancy

took over as project manager. She’s better than I am at tracking all those

details.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=168

SELECT A LIFE CYCLE BASED ON YOUR PROJECT’S RISKS 169

What a surprise! The developers liked working with the testers. And the

testers really liked working with the developers. The testers thought of

problems during design the developers didn’t consider. And some of the

developers liked showing off their devious minds, helping the testers

develop tests. And, when we launched, so few of the customers

complained that we were able to devote all our time to the new project.

We’re done with the business of handing off pieces of the product from

one person to the next. No more silos for us. We work only in

cross-functional teams now.

In Chapter 7, Creating a Great Project Team, on page 135, I suggested

a number of roles you want filled on your project team. The team mem-

bership is cross-functional. Cross-functional teams have several bene-

fits:

• Cross-functional teams finish work faster [Mey93]. Single-function

teams finish their individual parts faster, but there’s no review or

verification that what they’ve done is any good. The entire work

product is not complete. Project teams receive no points for com-

plete requirements; they receive points for implementing a feature

in toto.

• Cross-functional teams provide a diverse project team. The testers

are looking for ways to build in testability. The writers are check-

ing with the developers and testers about how to express how the

project works. The analysts are refining the requirements and pos-

sibly participating in building acceptance tests.

8.8 Select a Life Cycle Based on Your Project’s Risks

The Standard Process Doesn’t Work for Us!

by Cynthia, project manager

We’re part of a large company—you could call us an institution, and you’d

be pretty darn close. We have a project management office (PMO), and

they’re the ones who define all our project management processes.

A few years ago, they defined the way we would run a “standard” project.

A standard project is big—more than 100 people and usually a couple of

years long. Of course, none of us project managers had ever successfully

run a standard project they way the PMO defined it.

We decided to look at our projects differently. We’re smart enough that we

can generate the documents and metrics for the PMO, and still manage

our projects they way we need to, to achieve success. We have big and

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=169

KEEP REASONABLE WORK HOURS 170

small projects, short and long projects, projects with significant technical

risk, and some with no technical risk. And, when we have to manage

costs, we actually can.

Now, even the PMO says, “Look at your risks and choose a life cycle.

Choose practices that make sense for your team and your life cycle.”

We’ve been succeeding, partly because we don’t do those humongous

projects anymore. We start smaller and stay smaller, and we use

iterations, timeboxes, and increments as they make sense. And we work

with our teams to help them choose practices that work for us, depending

on our circumstances.

The biggest thing that helped me was realizing we didn’t have manage all

projects with a serial life cycle. I had choices! And once I could choose the

life cycle, it was easy to choose practices, too.

In Chapter 3, Using Life Cycles to Design Your Project, on page 50, you

saw the apparent risks and effective risks each life cycle manages. The

lifecycle choice is one of the first choices a project manager makes and

has a lasting effect on how you organize the project. Think before you

decide. If you’re not sure, start with an agile life cycle because it gives

the project the most flexibility early in the project.

8.9 Keep Reasonable Work Hours

Dinner Every Night on the Company Was Not Reasonable—For

Anyone

by Justin, director of development

We had about 150 people working on this next release—of course, it was

critically important to the future of the company. We’d just about stopped

making forward progress. My boss, the VP, said it was time to have dinner

every night at the company.

The plan was this: Every night at 7 p.m., one of the directors would

arrange catering for all the people working on the release. We’d get

together and have dinner, and people would stay at work and get more

done.

It worked for about a week. Then, some people started coming in at 10 or

11 a.m. One guy started coming in at noon. And, people ate dinner and

left. I would walk around during the day and see people balancing their

checkbooks and calling their spouses or parents. One guy was arranging

his kid’s play dates for the weekend.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=170

USE INCH-PEBBLES 171

We finally stopped and made everyone just work forty hours a week. All of

a sudden, the quality of the code and tests went up! And we started

finishing more, too.

It’s tempting when you see lots of problems to ask the team to work

overtime. But the more overtime people work, the less work they accom-

plish [DL99]. Here’s why.

People can accomplish at most six hours of technical work a day. For

short periods of time—up to one or two weeks—some people might be

able to accomplish another hour or two a day. But most people cannot

manage sustained overtime.

When they do work sustained overtime, they lose the rhythm of their

day, spending more time in the coffee room, more time at lunch, more

time calling their friends or mothers, more time surfing the Web, more

time balancing their checkbooks, and more time paying attention to

their human existence. It doesn’t take long before the nonwork people

are doing complete dwarfs their project accomplishments.

If you find that your project is not proceeding fast enough, think about

the tips here to build and maintain the project’s rhythm.

8.10 Use Inch-Pebbles

Joe Can’t Estimate More Than One Week of Work

by Adrian, development manager

I have a really talented guy, Joe, on my team. Joe does great work—his

architecture of that piece last year was phenomenal. Joe can estimate

little pieces, but he can’t estimate big tasks. Whenever he does estimate

large projects or tasks, he’s off—underestimating—by an order of

magnitude or more.

In this last project, Joe and his team were in charge of a big piece. It was

a big lump. Because the tasks were too big, Joe couldn’t see all the

pieces. He would estimate only the pieces he could see. And we had some

tasks that were like icebergs. The only thing you could really understand

before getting into the task was the very tip of the task. It wasn’t until you

were into the task that you could see all of it.

Now that we break every task down into inch-pebbles (sometimes using

spikes to do so), Joe is a much better estimator. And I’m not applying

some random fudge factor to everyone’s estimate.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=171

MANAGE INTERRUPTIONS 172

Projects lose their rhythm when too much time elapses between accom-

plishments. Team members can’t see the end of this task, so they lose

their urgency and rhythm. Inch-pebbles help each person maintain

their own rhythm and help the project stay on track.

Tip: Help Project Team Members Avoid Student Syndrome

Student Syndrome (see the tip Help Project Team Members

Avoid Student Syndrome) occurs when people wait until

the last possible moment—and sometimes beyond that mo-

ment—to start working on a task [Gol97]. Student Syndrome

most often occurs when people estimate tasks in weeks, not

days or inch-pebbles.

Student Syndrome breaks the project’s rhythm by introduc-

ing delays into the project. When Tom hasn’t finished his

work and Jerry depends on that deliverable, Jerry now has a

wait state.

Manage Student Syndrome by coaching team members to

estimate their tasks in inch-pebbles or by using timeboxed

iterations. Either way, everyone has a deliverable every day

or so, which helps avoid Student Syndrome. Many people

feel a little bit of pressure to deliver their pieces and not keep

other people waiting—they don’t want to let their peers down.

When people can see their progress, they’re more likely to

keep making progress, allowing everyone to keep reasonable

work hours.

8.11 Manage Interruptions

Interruptions Are Obstacles for Us

by Josh, VP, engineering

I’ve grown this organization from the original seven developers to the few

hundred developers, testers, writers, release engineers, and assorted

other folks in the past ten years. And the one thing it took me a while to

learn was that interruptions were a big problem for us, especially when

we were a small organization.

I always knew interruptions were a problem. But it wasn’t until one of the

project managers, Ted, showed me the list of all the interruptions his

team had encountered over the previous week that I realized how much

interruptions cost us. I solved the problem by managing the project

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=172

MANAGE INTERRUPTIONS 173

portfolio, by moving to timeboxed iterations, and by paying much more

attention to how we bring people into the organization and onto projects.

We’re not perfect yet, but our interruptions no longer overwhelm our

projects.

Interruptions destroy a project’s rhythm. Any one interruption might

be OK, but all of them make a person feel nibbled to death by ducks.

People can lose up to 40% of their time because of interruptions [RG05]

There are two types of interruptions: other projects and people.

Manage Other Project Interruptions

Your job as project manager is to protect the iteration’s work. If you’re

using a serial life cycle, the iteration is the whole darn project. If you’re

using timeboxes, the iteration is the timebox duration. In an iterative

life cycle, the iteration duration can vary but is related to the work to

be finished. In an incremental life cycle, there is no iteration per se; the

“iteration” is the duration for a given feature.

Postpone all other project interruptions for your project team until your

iteration ends. Once it ends, you can postpone the start of the next

iteration to deal with the interruption.

Sometimes other people don’t realize what their interruptions are cost-

ing your project. Keep a one-week log of all the interruptions, and let

people know the cost of those interruptions. Be factual, not blaming—

your job is to educate and inform.

Manage People Interruptions

You want people on the project to ask questions when they have them.

Otherwise, they can’t make progress. But every time one person asks

another person a question, the second person is interrupted. And in

cubicle heaven, everyone around the answer-person is interrupted.

What do you do?

You have several choices. My first recommendation is that you encour-

age pair programming (or pair requirements development or pair test-

ing) so that people work together to learn a part of the system. If pairing

doesn’t work, make sure people have private spaces they can use where

they can talk and not disturb others. If you can’t manage private offices,

make a project “war room,” where you’ve posted project artifacts such

as the dashboard, architecture documents, and the like.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=173

MANAGE DEFECTS STARTING AT THE BEGINNING OF THE PROJECT 174

Make sure there are workstations so people have access to the code

base and any other electronic documents so people can talk about the

same artifact together.

If you’ve never asked the Furniture Police [DL99] for help before, this

might be difficult for you. But the Furniture Police are people too.

Review the sidebar on the following page to see what you might do.

I’ve found bribery in the form of brownies and beer1 works (not always

at the same time with the same people).

8.12 Manage Defects Starting at the Beginning of the Project

Defects? We Don’t Have No Stinkin’ Defects

by Edward, program manager

Let me tell you a story about a time before I got “defect-religion.” I was

new to software development, even though I had managed other projects,

mostly in sales, for a while. The developers were merrily developing away.

The testers were complaining they couldn’t make the builds work. When I

asked the developers, each of them said, “It works on my machine.” I

thought the testers were just babies.

Our senior manager got sick and had to take extended sick leave. Since I

was the only person in our group who had a chance of managing the

organization, I started doing the senior management role. The project was

supposed to take only another two months, so I brought in a consultant,

Janice, to manage the project.

The first thing Janice did was to start listing the defects. She even made

the developers use a defect-tracking system. They all came to me and

complained. I went to see Janice to ask her about the system. She

explained that the developers had ignored all the defects since the

beginning of the project. When they did think of them, they think of the

one they just fixed, not the ones still left to fix. Janice said, “We will never

finish this project if we don’t pay attention to the defects. In fact, one of

them just said this to me: ‘Defects? We don’t have no stinkin’ defects!”’

Then Janice told me that she thought we had several hundred open

defects. She told me, “These defects are preventing us from moving

forward with testing. And they will prevent our customers from using the

system. To be honest, I think the defects are preventing several

developers from developing their code, too.”

1. Be aware of your organization’s policy on alcohol at work. Few organizations have any

policies on sugar.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=174

MANAGE DEFECTS STARTING AT THE BEGINNING OF THE PROJECT 175

Prepare for Influence

As long as you’re willing to give up the illusion of command-
and-control, learning to influence is easy. It might require a
change of mind-set on your part. Here are some tips to con-
sider:

• Remember that you don’t own the whole problem by
yourself. Sometimes as a project manager, you think you
must have all the ideas and answers. You don’t. On a
project, the release date, the feature set, or the level of
defects is everyone’s problem. Don’t take a problem as
only yours. You have the responsibility to make sure the
team solves the problem, not to dictate how.

• Think of the value you bring to the organization. Once you
know your value, you can start thinking about what that
value means to other people [CB91]. That value helps you
ask people to help you and know what you can give them
in return.

• Discover the other person’s or team’s WIIFM (which stands
for what’s in it for me?). Some people are motivated by
doing interesting things, some by public or private recog-
nition. Many people want to do a great job and know that
what they are doing contributes to the overall project suc-
cess. Most often, a team on a multisite project has a par-
ticular motivation. Learn what that is.

• Suggest that you and the person (or team) own the prob-
lem jointly. That way, you can be friendly and open to the
other person’s ideas and concerns. If you tell other people
what to do, they can develop a bazillion reasons why your
answer is wrong. If they develop the answer themselves,
they are much more likely to implement it.

• Listen to the team. Your team will tell you what they need
to be most effective. If you’re asking people to work in a
different way, they might need a different workspace or
more equipment or something else.

• During a discussion, allow others time to think. Make sure
you’re not pushing your ideas without giving others a
chance to really consider and question those ideas. Some
people might need more time to provide valuable input.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=175

MANAGE DEFECTS STARTING AT THE BEGINNING OF THE PROJECT 176

Prepare for Influence (cont.)

• Don’t be overly tied to your ideas. Once you’ve agreed
to work collaboratively, which is what you do when you
work through influence, others might be able to improve
on your solutions. Be sure you don’t get in their way. Some-
times, we all find it difficult to let go of ideas that have
served us well in the past. Remember that you can use
your ideas as a starting place for a particular problem.

Joe Asks. . .

How Do I Manage Interruptions When We Have Operations
and Development?

It doesn’t matter what life cycle you use. If you’re trying to
develop a product and operations work keeps popping up,
your estimates are wrong. (It’s the same problem with sup-
port and development.) The operations interruptions will kill your
project.

Here are some ideas:

• Take some people out of development and assign them
to operations full-time for a week or two at a time. Rotate
people through the operations work.

• Assume that everyone can work only two or three days
per week on development and the rest of the time will be
on the ad hoc tasks. Each person has the responsibility to
not multitask on the same day.

• Add more people to the team, people who like the fire
fighting associated with the ad hoc tasks. Their first respon-
sibility is to the ad hoc tasks, with a secondary responsibility
to the project.

• Start a group of people whose job is operations.

• If you’re using iterations and estimating using relative sizing
and duration, estimate each operation’s piece and add
it to the product backlog.

Whatever option you choose, you need to account for the
operations work and the development work.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=176

MANAGE DEFECTS STARTING AT THE BEGINNING OF THE PROJECT 177

Janice and I talked some more. She convinced me there was a problem.

She was right—the defects we had accumulated over the project

prevented us from meeting our original two-month deadline. It took us

another four months to release. But we did, and our customers were

happy. I don’t wish away defects anymore.

Many project teams take a laissez-faire approach to defects during the

project and start to seriously manage defects only at the end of the

project. And if you’re using a serial or iterative life cycle, you might not

have any coding defects to review at the beginning of the project.

But if you don’t start managing defects at the beginning of the project,

they will manage you. The project will increase its technical debt (see

Appendix B, on page 343), and you won’t even know until the end.

You’ll have too many defects to fix at the end, and you won’t be able to

fix them all.

You have several choices. If you can, move to an agile life cycle, where

the developers and testers are developing and testing simultaneously.

The team will report fewer defects overall, you will know about the

defects faster, and you have the immediate choice of how to deal with

them.

If you can’t move to an agile life cycle, move to an incremental life cycle,

and make sure the developers use continuous integration (Section 9.1,

Adopt or Adapt Continuous Integration for Your Project, on page 179) as

they proceed. Make sure the testers can test in a variety of ways to

evaluate the features as the developers finish them.

If you’re stuck using a serial life cycle or an iterative life cycle, start

a culture of looking for defects from the beginning of the project. That

means reviewing documents and tracking problems to make sure they

are fixed.

When you organize defects in the defect-tracking system, consider how

you want to categorize the defects. You can assign each defect a severity

and priority. And, you don’t want to play the promotion/demotion game

(see Section 15.4, Avoiding the Promoting/Demoting Defects Game, on

page 308) for defects late in the project. Severity is about the technical

ramifications of the problem. If severity is high, the system can’t run or

delivers incorrect results. Priority is about the business impact of the

problem. If the priority is high, the customer will be adversely affected

by the problem.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=177

MANAGE DEFECTS STARTING AT THE BEGINNING OF THE PROJECT 178

High Low
High (our

customers will be
confused!)

Name is address;
address is name

This iteration17

When to Fix?ExposureSeverityPriorityShort DescriptionDefect #

Figure 8.2: Defect table for evaluation

Some project teams use a table similar to the risk analysis table when

trying to evaluate defects. The defect in Figure 8.2, is an example of a

problem that’s not a huge technical problem (Low on the severity scale)

but so confusing that it’s High on the priority scale.

The “When to fix?” field in this table might be in the table or the defect-

tracking system. I’ve seen teams use dates, releases, and iterations suc-

cessfully in this field.

Remember This

• You, as the project manager, take the lead on considering which

management practices to adopt or adapt.

• Evaluate your project’s issues, and decide on the practices to

adopt/adapt based on your issues.

• Look for management practices that will establish and maintain

your project’s rhythm.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=178

Chapter 9

Maintaining Project Rhythm
In addition to steering the project with management practices, you can

also make great gains when you invite the team to change their techni-

cal practices. This chapter contains a collection of practices that might

benefit your project. You and your team will have to judge whether you

can adopt or adapt these practices to work in your context. Don’t man-

date these practices. If you think they can help, introduce them to your

team, and invite your team to try them.

9.1 Adopt or Adapt Continuous Integration for Your Project

Continuous integration occurs when a developer writes some code for

a short while—no more than a couple of hours—compiles it, tests it,

has it reviewed, builds, runs the smoke test, and verifies the changes

haven’t broken the system, and checks it into the code base.1

Continuous integration buys the developers immediate feedback on

their work. They tend to start thinking in smaller pieces (which allows

them to proceed faster) and to recognize the integration risks earlier in

the project. Continuous integration helps developers produce a little bit

every day, helping the project team members find their natural rhythm.

Staged integration occurs when a developer waits to check code in until

he has finished an entire piece of code. Some developers integrate once

a week. Unfortunately for some projects, developers integrate only once

a month or two. Staging the integration breaks a project’s rhythm. Peo-

ple who are designing and coding new pieces are interrupted by build

problems. They are forced to remember lots of little details from the

1. See http://www.martinfowler.com/articles/continuousIntegration.html.

http://www.martinfowler.com/articles/continuousIntegration.html

ADOPT OR ADAPT CONTINUOUS INTEGRATION FOR YOUR PROJECT 180

Frequent Builds Are for Developers and Project Managers

If you introduce the idea of daily builds, your testers might com-
plain, “We can’t use the builds that fast. We can use only one
build a week.” Frequent builds, such as every hour or even just
every day, are not for the testers. Frequent builds are feedback
for the developers and a piece of project status for the project
manager.

If the testers can run their tests to take advantage of a daily
build, that’s wonderful. But even if they can’t, the developers
will obtain valuable feedback by trying to maintain the rhythm
of a daily working build.

beginning of the project until they start integrating. And when they for-

get, integration slows the project down because the team finds defects

and has to remember all the details of code they might have written

months ago. That’s a form of multitasking that’s particularly insidious.

People are working on the same project—possibly even related tasks—

but because they are no longer working at the same level of abstraction

(design is a higher level of abstraction than debugging) and because

they are no longer working on the same feature, they have to change

context. All the context switching costs occur here (see Section 16.7,

Explain the Cost of Multitasking Technical Work, on page 325), including

losing the next great idea for the feature under design and the potential

for injection of defects into the design.

When you can’t integrate your changes into the code base, you can use

a variant of continuous integration. Say you’re managing a project team

that’s extending the design of an already-existing product. Your team is

working on a piece of the product that is the base of the entire product.

If your stuff doesn’t work, nothing works. You don’t want to check into

the code base and break the entire product for the three months it’s

going to take you to add and replace functionality in the product. What

do you do?

You do the next best thing. You make a branch off the main code base

and have your developers do all their work on the branch. Every time

they check in some code, they also update their branch by syncing

with the main line. Your developers are always working off the latest

and greatest code base, and they’re integrating with it. When they’re

done with their work, they merge everything back into the main line.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=180

CREATE AUTOMATED SMOKE TESTS FOR THE BUILD 181

This is an adaptation of continuous integration. Use this when you have

to rewrite an already-existing piece of code and don’t want to break the

system while the changes are under development. This also works if

you are managing a project that provides common services to a group

of products, such as a library or a platform.

9.2 Create Automated Smoke Tests for the Build

Whether or not you use continuous integration, create some automated

smoke tests for the build. Smoke tests merely verify the build is not

broken. Don’t let me dissuade you from adding as many regression

tests as you like, but the idea behind a smoke test is to know whether

the build is useful to anyone.

Automated smoke tests help the project team know whether anyone

has broken the build. If you know as soon as a build is complete, you

can do something about it. If you have to rely on another developer or

tester to know whether the build is broken, you can’t act as quickly as

you might like to fix the build.

Don’t Let the Smoke Out!

by Meredith, senior tester

As a tester, my job is to find problems. And, I’m really good at it. I have a

motto, “Don’t let the smoke out.”

I was on a new project at my company. The developers had never worked

with a professional tester before. They were astounded when I walked up

to one of them with a list of fifteen defects, and said, “You wanna talk

about these, or do you want me to submit them to the defect-tracking

system?”

I explained that each of these defects could have been found by an

automated smoke test. None of them required my specialized training and

experience. I didn’t want to waste my time on defects that were easy to

find. I wanted to find the nasty defects—the intermittent problems,

scaling problems, and reliability problems. I wanted to sink my teeth into

the code and shake the damn thing until the defects fell out onto my feet.

The developer paled and caught his breath. “Uh, yeah, I want you to do

that too. What do you need from me?”

I explained about my motto, “Your job is to keep the smoke in. My job is

to make this puppy bleed all over the floor. Got it?” He agreed. I think I

heard him tell the other guys I was a bit bloodthirsty. But, heck, that’s

OK with me.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=181

IMPLEMENT BY FEATURE, NOT BY ARCHITECTURE 182

I checked in my tests to start the automated smoke test framework. Little

by little, the developers added to the smoke tests. Whenever I found a

problem that the smoke test could have found, I marched up to the

developer who’d put that defect in and gave him the “Don’t let the smoke

out” talk. Pretty soon, every time people saw me headed over toward the

developer cubes, someone would yell out “Who let the smoke out?”

We work really well together now. These developers are really good at their

jobs. And they help me be good at my job. And the product kicks ass.

(Can I say that?)

Keeping the build working helps establish and maintain project rhythm.

Knowing as soon as a build is broken helps you bring the project back

to its former rhythm—or understand what is preventing the project

team from maintaining rhythm.

In fact, if you’re managing a project that is supposed to release on mul-

tiple computers, databases, or firmware, make sure your team always

compiles and builds for all platforms every day. If you don’t, you’ll have

a rush at the end of the project to fix problems you’ve found only then.

It’s easier to deal with incompatibilities early in the project so develop-

ers can keep them in mind as they continue to develop.

9.3 Implement by Feature, Not by Architecture

Implementing and Testing Feature by Feature

by Harvey, Vijay, Dao, Randy, Ken, and Mabel, the alarms feature team

I’m Harvey, the lead for the team. Vijay, Dao, Randy, and Ken are the

other developers. Mabel is our tester. We all have specialties, in the GUI,

the platform, the hardware integration, and so on. Mabel knows it all.

(Laughter in the background.)

At first, we tried to write architecture and design specs to tell each other

what we were doing. We would each implement our piece of the

architecture and put it all together at the end. Nothing worked the way we

expected it to work. That’s because even though we had specs, we

changed things a bit as we developed our components.

Mabel had heard about implementing by feature and talked to me. I asked

everyone whether they were willing to create a feature-based team—well,

really a set-of-features-based team. We would do all the alarms, one at a

time, from the front to the back. Mabel would test.

It wasn’t easy to start, but once we got going, it was amazing how fast we

added features. We didn’t have to add lots of code and try to integrate it;

we just added what we needed for each alarm and tested that. Mabel kept

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=182

IMPLEMENT BY FEATURE, NOT BY ARCHITECTURE 183

track that we didn’t screw things up at the system level—we kept track at

each alarm’s level.

We were done so fast that we got other feature sets to do. Now, some of

the other groups are trying to do what we did. The whole project is much

faster. And, our customer gets to see what we’re doing as we do it, so we

get feedback.

Many project teams are organized as architectural teams: such as plat-

form, middleware, GUI for a web-based product. But implementing by

architecture means that you don’t know whether the features will actu-

ally work once you integrate the whole darn product. It’s difficult to

do continuous integration when implementing by architecture because

you can’t build and run tests—no features are actually complete at the

beginning of development; they tend to be finished at the end. In addi-

tion, you can’t count anything as done.

All you’ve done is create “waste” [MP06]; you haven’t created anything

of value. Once something is done, you can count value. But until some-

thing is done, you can’t count it.

Implementing by architecture can break your project’s rhythm, because

you have lots of partially implemented features. You don’t see com-

plete features until the end of development—too late for feedback to

the developers. When you implement by feature, the development team

implements just what they need for a given feature all the way through

the architecture. If you have a web application, you organize a small

feature-based cross-functional team of enough platform people to do

the platform work, enough middleware people to do the middleware

work, and enough GUI people to do the GUI work just for this one fea-

ture. If you have people with different interests and technical skills,

such as GUI or firmware skills, those people use their skills feature by

feature. (You may have to help them organize the project to use their

time well.)

Project teams who believe in Big Requirements Up Front and Big Design

Up Front have trouble moving to implementing by feature. In those

cases, explain what a feature would look like (how small it is), and help

them see how little they can do (Section 5.3, How Little Can You Do?,

on page 93) and still have a feature with enough architectural integrity

that it will work even when they implement the next feature. Remind

these teams that they are familiar with debugging by feature and testing

by feature.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=183

IMPLEMENT BY FEATURE, NOT BY ARCHITECTURE 184

Architecture Reflects Organization

You may have noticed that the product’s architecture reflects
the organization of the teams that created the product. The
bigger the product (in size and complexity), the more obvious
this is. This is Conway’s law [Bro95]: any piece of software reflects
the organizational structure that produced it.

The more architecture-oriented your project team is, the more
components the product will have. That prevents people from
finishing work together, slowing the project. Not only will they be
less likely to work together to complete features, they will lose
the opportunity to refactor the system into a larger cohesive
piece as they proceed. The organization prevents them from
doing so.

If you’re seeing very small pieces of code with just one or two
people working on that piece or a whole mess of code that
seems to be coupled to other pieces or doesn’t appear to be
cohesive, look at the organization. Both of these extremes will
break the rhythm of the project—in fact, the project may not
have a rhythm at all. And surprisingly enough, by fixing the orga-
nizational structure, you can fix the project.

Some people will still object, saying they need to know how the whole

architecture works before they can think about one small feature. In

that case, it’s helpful to have a draft architecture (see Section 3.5, Man-

aging Architectural Risk, on page 60) but not commit to the architecture

until the team has implemented several features.

Implement the Highest-Value Features First

When implementing by feature, implement the most valuable features

first. Leave the riskiest features until later. If you’re lucky, you won’t

have to do them. If you do, the developers and testers know much more

about the entire system, so they will be able to maintain their rhythm.

Some teams are afraid to implement by feature because they don’t know

which features to do first. Some people on your team will want to imple-

ment the riskiest features first. Some will want the most valuable fea-

tures first. If you’re in this position and no one will rank the require-

ments, it’s hard to know which features are the most valuable.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=184

IMPLEMENT BY FEATURE, NOT BY ARCHITECTURE 185

Without the customer or customer-surrogate input, you, with help from

the team, take the responsibility to develop and publish a product back-

log (see Section 16.6, Build a Product Backlog, on page 321). You’ll

decide which features you’ll implement in which order.

But if you do work with people who are willing to make the decision

about the value of features, implement by value—even if that puts the

architecture at risk.

The more valuable the features are and the more finished you can make

those features, the more flexibility you’ve bought yourself and the team

for this project. You might be able to release early (if the riskier features

can’t fit into this architecture), which is valuable for many of your cus-

tomers. Postponing riskier and less valuable features maintains your

project rhythm and reduces risk for this release.

Debugging by Feature

Some groups insist on implementing by architecture. And when it’s

testing time, the testers test by feature. In that case, your group will

end up debugging by feature, even if they didn’t build the product that

way.

You’ll need a cross-architecture group (or access to everyone) to debug

by feature. If you haven’t already created cross-architecture teams,

your project’s rhythm is disrupted. However, you can’t fix the problems

without the cross-architecture teams.

If you find yourself debugging by feature at the end of the project, con-

sider implementing by feature from the start. You’ll have less project

disruption and a more even rhythm.

Testing by Feature

Testers test the system by feature, sometimes because that’s how the

requirements are written and sometimes because that’s how the testers

have access to the system. When testers report problems, they rarely

report against small architectural components in isolation. Instead,

they report a problem during a test case, “When I tried to open a bank

account, I could see the data go through the middleware to the DB,

but I didn’t see the return acknowledgment.” The tester has reported a

problem with the middleware but not precisely where.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=185

IMPLEMENT BY FEATURE, NOT BY ARCHITECTURE 186

Joe Asks. . .

How Can I Implement by Feature When My Product Has a
Hardware Piece?

If your product has a hardware component, you might not be
able to fully implement by feature from the beginning of the
project. But here’s what you can do.

Plan to iterate on prototypes as the hardware team finalizes
their design. You might be able to implement pieces of fea-
tures, with stubs taking the place of actual hardware imple-
mentation. But be aware that any code you develop is really
a prototype, not final code. If the hardware folks can supply
you a simulator or emulator, your code will be much closer to
final code.

The hardware folks will have ambitions for their work that they
may not be able to fulfill. Until the hardware is in physical form,
you won’t know whether they are able to implement those fea-
tures in hardware or whether the response is fast enough for the
design you thought the software could take. Plan to iterate on
prototypes.

You can make those prototypes as good as you can make
them—if you don’t care about the cost of software develop-
ment. And for many hardware/software combination projects,
you don’t care about the cost of software development. But if
you do care about software development costs, make sure you
don’t spend any more time on the software prototypes than
necessary.

Once the hardware is in initial physical form, you have a firmer
idea of what can be done in hardware and what needs to be
done in software. You can start implementing by feature. Imple-
ment as little of the hardware/software interface as needed for
each feature—you’ll have less to debug, and it will be clearer
where the defects lie.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=186

GET MULTIPLE SETS OF EYES ON WORK PRODUCTS 187

Developers are accustomed to taking these reports (whether they are

debugging or testing reports) and backtracking to determine how the

feature interacts with the architecture to understand the problem. Im-

plementing by feature helps the developer see these potential problems

as the developer designs and writes the code, not wait until the end of

development to see them.

9.4 Get Multiple Sets of Eyes on Work Products

Invite your team members to review each other’s work. It doesn’t matter

what approach you use for review—pair programming, buddy review,

peer review, walk-throughs, or formal code inspections—every part of

your project will benefit from being reviewed. Offer your project team

a variety of possibilities. These possibilities are in a particular order:

least ceremony to most ceremony. In my experience, these are also most

effective and sustainable to least effective and sustainable.

Pair programming. Before you assume “No one here will do that,” offer

pairing as an alternative. (And remind people that they’ve already done

pair debugging.) I’ve asked for volunteers who could choose to pair.

I suggested they check out a variety of resources, such as [WK02],

[SH06b], and http://www.pairprogramming.com before they start.

Without fail, some people want to try pairing. They learn how and

become much more productive than either of them alone.

There’s a huge benefit to pair programming, aside from the fewer defects

and faster code development. The benefit is having two people who

are completely familiar and comfortable with one piece of code. And,

assuming people switch off to work with different people as pairs, they

will all become familiar with the parts of the system the team is working

on. And, there’s no delay in feedback to either author.

It doesn’t matter what life cycle you use. You can always use pairing as

a technique to get multiple eyes on the code.

Buddy review. Buddy review does not have the same learning benefits

as pair programming does. Yes, each person will learn about that area

of the product, but not in the same depth as the author. There’s a small

amount of delayed feedback to the author—the duration of time it takes

to complete the review.

Report erratum

this copy is (First printing, June 2007)

http://www.pairprogramming.com
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=187

PLAN TO REFACTOR 188

Peer review. Peer review is the same idea as buddy review (give your

code to someone else), but most people tend to review a whole file or

several files (an entire module) at a time. Reviewing large chunks of

code is much harder—it’s harder to make the time to review, and it’s

harder to keep all the ideas in your head.

Peer review does not have the same learning benefits as buddy review

does. In my experience, too often this is a review for style, not content.

The feedback delay to the author can be as long as a week.

Walk-through. In a walk-through, a number of people gather in one

room. The author proceeds to explain the work product, walking

through the document. There is little, if any group learning. There is

often substantial feedback delay to the author—the time it takes to

organize the meeting.

Formal inspection. Formal inspections, if done right, can help the

group learn the work product under discussion. But I have yet to see

formal inspections as a sustainable practice in organizations. Even

those who start with inspections have difficulty maintaining the mo-

mentum of inspections.

Maintaining inspections is difficult because the inspection of someone

else’s code disrupts every person’s rhythm individually and the project’s

rhythm. To perform a Fagan-style inspection, people must context-

switch out of their tasks, read the work product in detail, and be ready

to comment on what they see. My rule of thumb is that it takes several

hours to a day to prepare for a two-hour inspection meeting.

9.5 Plan to Refactor

Refactoring is the simplification of code, whether that code is produc-

tion code or test code. Refactoring is not redesign; it’s just simplifica-

tion. The refactored code doesn’t change its contract; it’s simplified.

My Code Goes Away

by Hal, junior developer

I’m only on my second project since school. On my first project, my

manager listened to my estimates for coding, and said, “OK, since you’re

new here, why don’t we add some time at the end for you to integrate

what you’ve learned into the code?” I thought he was nuts, but that was

OK. I worked hard, met my deadlines, and then had to change things as I

got feedback on how the whole system really worked. I needed all of that

extra time and a little more. What really surprised me was this: I didn’t

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=188

PLAN TO REFACTOR 189

Integration starts here
Start of development

Test starts here

Figure 9.1: Typical code growth in a serial life cycle

write more code to fix problems; I simplified things and removed code. My

code went away.

For this project, I’m using continuous integration, and I’m refactoring as I

go. Simplifying and cleaning up as I go—not changing the design—is

really helping me see what I’m doing and how quickly I’m proceeding.

And, my code is still going away.

If you’ve ever tried to count lines of code as a project proceeds, you’ll

see an S curve of code growth in a serial lifecycle project or any project

where integration and test occurs at the end of the project (see Fig-

ure 9.1). Note the reduction in code size starting after integration and

test; that’s refactoring. (Yes, it may also be some redesign, but in my

experience, it’s primarily refactoring.) If you don’t plan for refactoring

at the end or if you can’t pay down your technical debt from the serial

life cycle, the code size stays high. That reduction at the end does not

occur.

In an agile lifecycle project, you tend to see something more like Fig-

ure 9.2, on the following page. The code grows much more slowly be-

cause the developers are building only what they need now for this

particular feature. And because they refactor as they proceed, the don’t

have that push at the end to fix a huge number of defects. (For many

defects, removing code is the answer.)

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=189

UTILIZE USE CASES, USER STORIES, PERSONAS, AND SCENARIOS TO DEFINE REQUIREMENTS

190

Start of development
End of the project

Figure 9.2: Typical code growth in an agile life cycle

You can plan to refactor as you go. You can plan to do it at the end. But

if you want to release a product with as few defects as possible, you

will need to refactor. If you plan to refactor as you go, the refactoring

cost is very small. If you plan to refactor at the end, the cost is very

high—and too often, you’ll think you don’t have time to do so. Or, your

management directs you not to refactor. The high cost arises from the

delayed feedback to the developers and the difficulty in knowing what to

refactor and how, because the developers are no longer thinking about

this piece of code.

9.6 Utilize Use Cases, User Stories, Personas, and Scenarios to

Define Requirements

One good approach to reducing unnecessary code growth is to think

about who is using the system and how to develop what the user needs.

Too many projects attempt to define requirements by defining func-

tional and nonfunctional requirements. But these requirements don’t

explain how a person will use the system or under which scenarios

this functionality has to perform. Use a requirements approach that

provides the project team with the context to understand the require-

ments.

Who Wants That Checking Account?

by Clarissa, senior manager

My project team was stuck. They had partly implemented a whole bunch

of features, but nothing was working. I called a meeting to determine

what to do.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=190

SEPARATE GUI DESIGN FROM REQUIREMENTS 191

At the meeting, I asked which users were top on their lists for finishing

the work. They looked at me with blank faces. “Look people, we are a

bank. We want to capture the eighteen-year-old off to college for the first

time, the suburban mom with other assets, the seventy-year-old

grandmother, and the fifteen-year-old who has been mowing lawns. We

have different accounts for each of these people. We want to capture their

business if they walk in. Have we thought about what we need to do for

each type of customer?”

They had been so focused on the internals of the system that they had

forgotten about the people who would use the system or be served by the

system. We rank-ordered the people we wanted to capture, which helped

them finish defining the requirements and finish pieces of the system.

It’s always the people, isn’t it?

The developers, testers, and writers all understand how to develop, test,

and write about the system when they understand the context of the

requirements. If they don’t understand, they can ask better questions

about the requirements than if the requirements are stated only in

functional and nonfunctional requirements.

9.7 Separate GUI Design from Requirements

Requirements are the problems you want the system to solve. GUI

design is how the GUI guides the customer to use the system to solve

those problems. It’s amazing how many projects fall into the paralysis

of GUI design in the guise of requirements. If your project takes forever

to get out of requirements, see whether the problem is partly the GUI

design.

The GUI Is Design, Not Requirements

by Karen, program manager

I started at a new company, trying to rescue a project stuck in

“requirements hell.” The requirements document was already 300 pages,

and it wasn’t even close to done.

When I started reading it, I realized why. All the GUI design was in the

requirements document. Instead of designing the GUI in the design part

of the project, the business analysts and GUI designers were trying to

define the GUI requirements in the requirements document. They were

using high-powered graphic design tools and developing the GUI in the

requirements document.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=191

USE LOW-FIDELITY PROTOTYPING AS LONG AS POSSIBLE 192

When I asked why, they looked at me, and said, “These are the GUI

requirements.” I suggested that they were actually looking at the GUI

design and that the design needed to be integrated with the problems the

application was trying to solve. The GUI design does not belong in the

requirements document.

They finally agreed to try it my way, and we were able to stop the

requirements hell. And, since I reorganized to implement by feature, we

were able to integrate the GUI design into each feature. We periodically

reviewed the entire GUI for consistency, but that’s not about

requirements; that’s design.

It’s tempting to start designing a GUI at the beginning of the project

and call it requirements. But if you do, your project will never find

its rhythm. It will stay mired in requirements until it’s too late to do

anything the customers want—although you will have a gorgeous GUI.

9.8 Use Low-Fidelity Prototyping as Long as Possible

Low-fidelity prototyping allows people to comment more fully on the

problems to solve. Higher-fidelity prototyping narrows feedback.2 At the

beginning of the project, you want bigger-picture feedback, not narrow

feedback. Paper prototypes are like sticky-note scheduling: they keep

the team involved, and people are more willing to consider options on

paper than they are in electronic versions.3

Paper Prototypes Save the Day

by Karen, program manager

After we got out of “requirements hell,” I realized the UI designers were

behind. I investigated and discovered they weren’t using paper

prototypes—they were using beautiful images of the new logo and all the

graphical content. They hadn’t started designing the workflow first; they

had started designing the graphics first.

I explained how paper prototypes help people see and comment on the

workflow. There’s plenty of time to get the logo and other graphics just

right—but the workflow can change the architecture. If you get the

workflow right, there are many fewer changes to the GUI at the end of the

project.

The UI designers were suspicious but agreed to try paper prototypes.

Then they moved to wireframes. Finally, they integrated wonderful

2. See http://headrush.typepad.com/creating_passionate_users/2006/12/dont_make_the_d.html.
3. See http://www.uie.com/articles/prototyping_tips.

Report erratum

this copy is (First printing, June 2007)

http://headrush.typepad.com/creating_passionate_users/2006/12/dont_make_the_d.html
http://www.uie.com/articles/prototyping_tips
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=192

USE LOW-FIDELITY PROTOTYPING AS LONG AS POSSIBLE 193

graphics with their graphics tools. They had many fewer workflow

changes at the end of the project, because everyone understood how the

system was supposed to work. They still had tweaks to the actual

graphics, but those changes didn’t change the underlying product. We

actually released on time.

Low-fidelity prototyping isn’t just for the GUI. I once worked with a

project team who was debating several architectures to deal with some

tricky timing issues. We used a large conference room and arranged

ourselves into the several queues we were considering, with pieces of

paper representing the data we were transforming and moving. The

project manager started the simulation, calling out the sequence of

events—when and where we had to transform or move data. We dis-

covered some timing and resource contention issues we had not antic-

ipated. After the people simulation, we also developed electronic proto-

types. But we had much more knowledge about where the risks were.

Remember This

• You can invite your team members to consider some of these prac-

tices, but you can’t make them perform any of them.

• If you have to use all your influence for only one practice, consider

continuous integration.

• The practices you adopt/adapt will help maintain your project’s

rhythm, allowing your projects to start and finish faster.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=193

Chapter 10

Managing Meetings
As a project manager, you could spend your whole day in meetings.

There is nothing inherently wrong with that as long as you are careful to

attend or call only those meetings that are of real value. Unfortunately,

you won’t always be able to be the person who can determine what’s

valuable. In this chapter, you’ll learn to tell the difference between good

and bad meetings and learn how to spend more of your time in produc-

tive meetings and less in those that seem to serve no useful purpose.

Too many project managers waste time in meetings. Your time, and

your project team’s time, is too valuable to waste in meetings. Don’t

just run from meeting to meeting; decide whether any given meeting is

worth your time. You’ll need to decide which meetings to call, which to

attend, which to delegate, and—most important—which to ignore.

Tip: Seek and Destroy Time-Wasting Meetings

As you organize your project, look for time-wasting meetings.

If you find one, cancel it. It’s the simplest and most effective

way to focus the team on the project [DeM01].

10.1 Cancel These Meetings

Your job as the project manager is to protect your team from outside

influences and interruptions while helping them make progress toward

a reasonable deadline. You can help your team by protecting them from

meetings they don’t need to attend. Cancel meetings that are of no value

to anyone, and excuse team members from meetings in which they will

neither give nor receive any value. You might encounter some resistance

CANCEL THESE MEETINGS 195

Joe Asks. . .

Is This Meeting Worth It?

Look around the room at the next meeting you attend and cal-
culate the cost of that meeting. Suppose you have a dozen
people attending, half of whom make around $80,000 a year.
Well, $80,000 a year is roughly $40 an hour. Those six people are
costing $240 for the hour they are in the meeting. That’s not
counting the time it will take them to get back to work after the
meeting and the time it took them to get to the meeting.

Add the cost of the rest of the people at the meeting—don’t
forget to add the cost of your own time. Did the meeting
provide at least that value to the company? We aren’t even
accounting for the lost value of the work the attendees might
have provided had they not been in the meeting (lost opportu-
nity cost).

from some team members who think you are judging them as not being

important enough to attend the meeting. Stress instead that you think

they are too important to attend the meeting.

While you are reducing the time at nonproductive meetings for your

team members, don’t forget to look for meetings that you can be ex-

cused from as well. After all, if you are in the back of yet another

meeting in which you aren’t really listening and you have nothing to

contribute, you aren’t doing the work you were hired to do.

Avoid Meetings That Don’t Require You to Solve Problems

Lots of organizations have a bazillion “status-y” kinds of meeting every

week. If you don’t have to participate in making a decision or solving a

problem at a specific meeting, you don’t have to attend that meeting.

Really. I wouldn’t lie to you.

Some of you are thinking, “Huh, JR. Not in my company. You don’t

show up at a meeting, you’re no longer working on something impor-

tant.” It’s possible that in your organization, project managers are pro-

moted based on the face they show the organization, including the

meetings. In that case, decide whether you want to change the culture,

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=195

CANCEL THESE MEETINGS 196

continue to waste time at meetings, or leave. See Section 7.7, Know

When It’s Time to Leave, on page 148.

But more often, the meeting started for a good reason (a few years ago),

and that reason is over. The only thing left is the meeting. You can be

courageous and explain that you need to be with the project, so you’d

love to see the minutes of the meeting, but you don’t need to be here.

Try it once. See whether it works. If it does, you can continue to pick

and choose meetings to attend. If not, wait a while and try it again.

Your job as a project manager is to assess and guide your project to

a successful conclusion, not to sit in meetings that prevent you from

doing your job.

Never Conduct Public Serial Status Meetings

Never hold a serial status meeting. Never.

A serial status meeting occurs when the project manager sits there

and listens to each person explain what he or she did last week and

what he or she will do next week. It’s boring for everyone except the

person talking and the project manager. Serial status meetings waste

team members’ time. They encourage people to “multitask” at them:

reading email, IMing someone else, surfing the Web...all work that is not

advancing the state of the project. The team members are not paying

attention to anything anyone else is saying, and they are not paying

attention to the meeting. Serial status meetings aren’t meetings; they’re

ceremonies [DL99].

If you’re holding project team meetings that don’t solve problems, you’re

holding project team meetings that delay the project. Stop now, and

reconfigure your meetings.

“But, JR, my team members really like knowing what other people are

doing.” In my experience, on small projects, people already know what

everyone else is doing. And in bigger projects, no one cares about the

small status; they do care whether other people are going to meet their

deliverables.

If you’re convinced your team members like the status meetings, first

conduct one meeting with no status component. Then use ROTI [RD05]

or ask people—anonymously—to tell which kind of meeting they prefer.

If they still like the status meetings, go ahead and keep them. Remain

aware of how long your status meetings take, and make sure they still

retain value for your team over time.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=196

CONDUCT THESE TYPES OF MEETINGS 197

Avoid These Meetings

Here are the meetings to avoid:

The meeting that no longer has a reason to exist. Some meetings

have existed since time immemorial. The original meeting owner has left

his or her original job, and the original purpose is long gone. The only

thing left is the meeting. Don’t go to those meetings. Usually, people

won’t even realize you’re not there.

Meetings with no action items. One of your colleagues calls meet-

ings at the drop of a hat. Everyone sits around the table and dis-

cusses issues. You might even decide something. But there are no

action items. You don’t have to go to those meetings. How could anyone

know whether you didn’t attend?

Your manager’s serial status meetings. OK, this one takes a little

nerve on your part. Your manager is still holding serial status meetings.

And since all of you are managing independent projects, you really don’t

care what Jim-Bob is doing.

Skip the meetings, and send your status in email instead. It’s worth

giving your manager feedback about the value of the meeting for you.

Any meeting where you’re prevented from bringing your laptop.

Ellen explained about a particular meeting at her company: “These

meetings are sooo boring. I’m not supposed to bring my laptop or my

PDA. I’m supposed to sit there, pay attention, and not look bored out of

my skull.”

Have a one-on-one meeting with the person who runs that meeting, and

explain that you need your laptop to solve problems. Provide feedback

to that person, explaining that you’re most effective at helping when

you have all the tools of the trade. If that person says she needs to hear

status from everyone, explain the alternative ways to obtain status (see

Section 10.5, Determining Project Status, on page 199).

10.2 Conduct These Types of Meetings

Whatever kind of project manager you are, you can expect to hold these

kinds of meetings for or with your project team:

• Project kickoff meetings.

• Release planning meetings.

• Status meetings which report status to management.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=197

PROJECT KICKOFF MEETINGS 198

• Project team meetings.

• Iteration review meetings.

• Project retrospectives. See Section 15.4, Plan for a Retrospective,

on page 309.

10.3 Project Kickoff Meetings

The project kickoff meeting is your first project team meeting. With just

a little care, you can set a positive tone for the whole project.

If you haven’t yet written the project charter, you can use the project

kickoff meeting to write the charter with the team. You have the an-

swers to what’s driving the project (see Section 1.4, Decide on a Driver

for Your Project, on page 23), and you can use the kickoff to write the

charter as a team (see Section 1.6, Write a Project Charter to Share These

Decisions, on page 27).

If you have written the charter, hold a walk-through of the charter.

This helps people see how to start reviewing work products, as in Sec-

tion 9.4, Get Multiple Sets of Eyes on Work Products, on page 187.

10.4 Release Planning Meetings

If you’re running an agile project, you’ll hold a release planning meet-

ing instead of a project kickoff meeting. The release plan shows every-

one (the team, sponsors, and customer) how you expect the project to

evolve. You’ll plan which features you expect to deliver in an iteration.

Since you’ll rerank the product backlog between iterations (see Sec-

tion 16.6, Manage the Product Backlog, on page 323), the details will

change. At the beginning of the project, this is your best first guess.

First, the project team estimates the relative size using planning poker

(see Section 5.1, Planning Poker, on page 87). The team estimates its

velocity and predicts how many iterations they might need and what

they think will be in an iteration. Especially if the team is new to work-

ing in iterations, delivering potentially releasable software, their initial

estimate of what they can accomplish in an iteration may be off. That’s

OK—you’ll be measuring velocity as you proceed through an iteration.

You’ll know whether you need to do another release plan at the end of

an iteration or wait until you’ve finished a few iterations to replan.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=198

STATUS MEETINGS 199

Once the team has estimated the relative size, the customer/product

owner ranks the features. The team organizes those features into iter-

ations. The team and customer might take a few iterations to plan for

which features in which iteration. You might have to help the team and

customer focus on just the first couple of iterations, and you should

also plan to replan.

At the end of a release planning meeting, you should have these work

products: some definition of done; a potential release date; and a back-

log of sized features, possibly organized by iteration [Coh06].

10.5 Status Meetings

Status meetings come in two flavors: those between you and the mem-

bers of the project team in a one-on-one meeting and those between

you and management. You probably noticed in the earlier list that I did

not include team status meetings. That’s because public status meet-

ings that are not daily standup meetings are serial status meetings and

a waste of time (see the tip Seek and Destroy Time-Wasting Meetings,

on page 194).

Determining Project Status

Here are the techniques I recommend you consider for obtaining project

status from team members:

• Daily standup meetings (see Section 10.5, Daily Standup Meetings)

• Weekly one-on-one meetings between you and each project team

member (see Section 10.5, One-on-One meetings, on page 201)

• Weekly email status reports (cf. Section 10.5, Obtain Weekly Email

Status Reports from Team Members, on page 203)

Daily Standup Meetings

If you’re using an agile life cycle, you most likely use a daily standup

to see project status. In fact, any project team can use a daily standup,

as long as the team members have created small enough tasks to do

so. If you’re not using inch-pebbles (see Section 8.10, Use Inch-Pebbles,

on page 171) or other techniques to decompose any task into its one-

or two-day components, standup meetings make no sense. Your best

bet is to use one-on-ones to help the project team members decompose

their tasks. The longer the task, the more likely you’ll run into the 90%

Done schedule game (see Section 6.14, 90% Done, on page 129).

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=199

STATUS MEETINGS 200

Here’s how a daily standup meeting works. Everyone on the project

team gathers in one area at a specific time for up to fifteen minutes.

Everyone stands up. (If you hold the standup in a meeting room, people

will sit down, and the meeting will take an hour.) Each person, when

it’s their turn, answers these questions:

• What did I finish yesterday?

• What am I planning to do today?

• What are my obstacles?

You can see that it doesn’t take much time to hold these meetings.

Since there’s only one day’s worth of accomplishment, it’s not a prob-

lem to conduct these meetings in fifteen minutes or less. If you’re hav-

ing trouble keeping to the fifteen-minute time slot, see Section 10.9,

Troubleshooting Meetings, on page 206.1

Some of you are saying, “OK, that sounds great in theory. But I have

twenty-four people on my project. How the heck do I do this with

twenty-four people?” If you have team leads or subproject managers on

even larger teams, they do this with their people and report obstacles

to you.

“Ah, but all twenty-four people report directly to me.” I’m sorry to dis-

appoint you, but you are not capable of directly managing twenty-four

people. Your team has separated into smaller groups on their own

(which is fine). Ask yourself these questions: What do I gain by hav-

ing all those people report to me directly? Can I organize differently to

make obtaining status and helping the team move through their work

better? Too often, when project managers do not have technical leads,

they become the bottleneck on the project—they are responsible for too

many decisions.

I recommend you have no more than six people report to you on a

project. (See the discussion in Section 7.4, Know How Large a Team You

Need, on page 143.) Once about eight people are on a project, they tend

to self-organize into smaller teams, whether those teams are functional

or cross-functional. Let the team self-organize, and you can reap the

benefits of easier communications.

“But how will I connect with everyone?” Unless you’re on a project with

short (one-to-two week) iterations, it’s worth conducting one-on-one

meetings with everyone weekly or biweekly. Otherwise, the team leads

1. Also see Jason Yip’s article at http://www.martinfowler.com/articles/itsNotJustStandingUp.html.

Report erratum

this copy is (First printing, June 2007)

http://www.martinfowler.com/articles/itsNotJustStandingUp.html
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=200

STATUS MEETINGS 201

will be talking with each person daily, providing feedback and small

course corrections.

One-on-One meetings

If you’re managing a serial or iterative life cycle, or even early in an

incremental life cycle, you’ll need weekly one-on-one meetings with

everyone on the project. In other words, the longer you try to forecast

the project, the more you need weekly one-on-ones to verify the project

state. (If you’re heading a large project or programs, each project lead

has these meetings, and you meet with the leads individually.) For agile

life cycles, the project manager does not need to meet with people; the

manager does. If you are also the functional manager, see [RD05] for

the other parts of the one-on-one meeting.

When you’re a project manager for a matrixed team, be careful about

the issues you discuss in one-on-one meetings. Use your one-on-one

meetings for project status, not career development. Expect to provide

feedback and coaching about how this person is working on the project.

Just be careful that your one-on-one doesn’t duplicate the functional

manager’s one-on-one. Talk to the functional manager in advance. Set

goals and boundaries for each of you. Periodically meet with the func-

tional manager to make sure you’re still coordinated.

Here’s the format of the one-on-one meeting when you’re not the people

manager also:

• Greeting. Make sure you say “hello” when a person walks into your

office. Use the greeting to context switch into the one-on-one. Turn

off your cell phone, and turn away from your computer.

• Discuss status and progress. Review the person’s inch-pebbles

here. If you’re coaching the person about how to develop inch-

pebbles, this is the time to coach. The more serial the life cycle,

the more you want to see indications of visible progress. It’s too

easy for people to become stuck and not realize it.

• Discuss their obstacles. You might have to help people realize they

have obstacles. I once worked with a project team who had become

so accustomed to the idea that setting up an environment took

several hours, they didn’t realize that was an obstacle.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=201

STATUS MEETINGS 202

• Review all action items—yours and theirs. If you had some action

from a previous one-on-one meeting, report on your progress.

Take notes during your one-on-ones so you have a record of your

action items and issues that arose.

The purpose of the one-on-one is for you to see visible status and for

people to be able to tell you that they need help. If you do only pub-

lic status, people will tend to keep pushing on their own to finish the

task—even if they are stuck. The project is headed toward the Schedule

Chicken game (see Section 6.13, Schedule Chicken, on page 128). Pri-

vate, one-on-one status meetings help you see when people are stuck.

And the best way to see whether people are stuck is to see their work

progress.

Seeing Visible Progress

Ask people to explain the status of their work, including what they’ll

do next week and how they’ll track status. Request that people think

of their tasks as to-do lists with inch-pebble-level work. Explain that

you won’t put their inch-pebbles into the project schedule. All the inch-

pebbles make the schedule too complex, and your job is not to baby-

sit each person’s work. Explain that your job is to understand when

people are making progress and when they are not. Inch-pebbles are a

technique for people to monitor their own state and let you know.

Ask people to monitor when they are stuck and to tell you whether

they need help in some way. Asking for help is fine. Floundering is not.

If someone is working on a big work product, ask them to consider

what they want to show you: marked-up interim designs, performance

measurements of algorithms, number of scripts they threw away, or

something that shows you progress. Since the team members deter-

mine their tasks, their deliverables, and when they need help, you’re

not micromanaging them.

Every so often, you’ll run across a team member such as Dave, who

thinks his work requires privacy to complete. When that happens, tell

Dave that you don’t know how to manage the project adequately with

his need for privacy. Ask what he is willing to show you or give you so

you can see his progress. That doesn’t always work, so ask him when

his deliverables will be complete.

If Dave gives you a date of more than two weeks, explain that that’s

too long. In many projects, you might be able to afford for one person

to be off by one week, but I’ve never worked on a project where any

one person could slip a deliverable by more than two weeks without

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=202

STATUS MEETINGS 203

affecting the entire project. If you’re willing to give Dave the benefit of

the doubt, ask whether he can develop deliverables that are fewer than

two weeks in duration. Maybe you can wait to see the status at the end

of those two weeks. (If a team member can successfully deliver work

every two weeks, I’m still nervous, but I can manage my nervousness.)

Once Dave misses a deadline, negotiate a different way to track tasks

and status. You need to know that people are making progress.

When you explain why you need information and the level at which you

need the information, most team members will be willing to work with

you. You’ll obtain visible progress about the project state.

Obtain Weekly Email Status Reports from Team Members

If you’re using an agile life cycle, you don’t need weekly status reports

from the team. You already have all the information you need in the

standup meeting. And since you can use the standup meeting to gen-

erate the project dashboard, you don’t need any more information.

For the other life cycles, I ask for all the same information in an email

status report as in a standup meeting. In addition, I request the next

few weeks worth of inch-pebbles. Yes, this is asking people to perform

rolling-wave planning. And, you will find that it works. Forcing people to

decompose big tasks into smaller deliverable pieces and to look ahead

just a few weeks will help them (and therefore you) understand whether

the project is headed toward success—or disaster.

Here’s my status report template.

Email Status Report Template

Accomplishments. Bullets or a brief paragraph (two to three sentences)

of accomplishments for the past week.

Future Milestones:

Task Description Planned Date Expected Date Actual Date

On projects where outside events keep changing what project team

members do, add another column on the right: How Many Times This

Estimate Has Changed.

Obstacles. Team members add their obstacles to completing work. Ex-

pect to take action items from this list.

Report Status Weekly to Your Team

On serial, iterative, and incremental projects, send out an email every

week explaining the state of the project. Collate everyone’s status report
Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=203

REPORTING STATUS TO MANAGEMENT 204

to you, except for their obstacles. That way you provide transparency

into the project and don’t need serial status meetings. Explain where

the project dashboard (see Chapter 11, Creating and Using a Project

Dashboard, on page 212) is and what the numbers mean. Make sure

you keep people focused on the end goal and aware of interim mile-

stones.

On agile projects, status is much more obvious to everyone on the

project. Since there’s a standup meeting every day where everyone

explains what they’ve completed, obstacles they’ve run into, and what

they’re going to do, you don’t need to send a weekly email to the team.

If you have to prepare a report to management on project state, email

that to the project team also.

10.6 Reporting Status to Management

One of the best ways to keep your sponsors involved in your project is

to send them a periodic status report. Even if you have micromanag-

ing managers, maybe supplying them with data on a regular basis will

prevent them from trying to micromanage you.

If you’re managing with timeboxed iterations, you need to send a sta-

tus report only at the end of the iteration to management, if you can’t

convince them to attend your end-of-iteration demo. Because every-

one can see the product at the end of an iteration, a status report is

not as necessary as with other life cycles. For the other life cycles, con-

sider sending the status report weekly or biweekly. If your management

is unaccustomed to timeboxed iterations, consider sending an interim

status report for three- or four-week timeboxes.

Start with a summary of the project dashboard, such as the weather

report. Include a few bullets of accomplishments, especially if you’ve

met a particular interim milestone. Refer them to the dashboard, and

invite them to ask you questions if they have any.

If you work for a senior manager who loves all the detailed data, make

sure you send all the supporting data from your project dashboard. You

might need to indulge this manager with a periodic meeting to discuss

the data. Don’t think you can avoid this manager’s need for data. You

can’t. Your best bet is to gather the data and plan on discussing it with

the manager.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=204

PROJECT TEAM MEETINGS 205

10.7 Project Team Meetings

Keep your project team meetings problem-solving meetings. If you have

an agenda item for discussion, make sure that the item serves to solve

or prevent a possible problem.

Here’s an agenda template that serves the purpose of helping people

stay focused on problem solving, not status.

Project Team Meeting Agenda

Title line: Agenda for (project) team meeting, date, time, location.

Expected attendees: Name them all.

Major milestone review: For any life cycle other than agile, listing the

major milestones and when you expect to meet them can help people

see the context even while they’re working on their piece. If you choose

to ask about EQF (see Section 11.2, Track Your Original Estimate with

EQF , on page 220), this is the place to do so. Add the duration you

expect to spend on this item.

Problem of the week: If you have particular problems you need the team

to solve, this is the place to list them. Add the duration you expect to

spend on each item.

Any obstacles? Ask for equipment needs, any other obstacles that may

have arisen since your one-on-ones. Include the duration for this item.

New business? Ask whether there are other topics people want to dis-

cuss. Include the duration for this item.

Review old action items: Use a simple list of action items: date due,

person responsible, and what the action is. Include the duration for

this item.

Next Meeting: Specify the date, time, location.

Pending items/parking lot: Include a list of items you and the team

doesn’t want to forget but don’t need to address yet, organized by date

you need to start paying attention to each item.

This agenda has only those items that the entire team needs to discuss.

If you have a problem that you think is for the entire team but you

discover can be solved by a couple of people, thank them for dealing

with this later, and move on to the next topic.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=205

ITERATION REVIEW MEETINGS 206

You can always end the meeting early. It’s possible you don’t have an

hour’s worth of meeting issues. That’s great. Start the meeting on time

and end early. People will thank you—they will feel as if they have an

extra half hour in their day.

Don’t forget to send everyone a list of all the action items after the

meeting. As people finish their items, they reply to that email explaining

what they did and when.

10.8 Iteration Review Meetings

At the end of an iteration, the team shows the working product to the

product owner. Yes, that’s a demo. The idea behind agile is that you

inspect and adapt [Sch04] as you proceed. That’s why you need to demo

the product to your product owner.

In addition, the team discusses the velocity charts and anything else

the team creates as part of their project dashboard. Finally, the team

holds an interim retrospective to learn from what happened during this

iteration.

If you use agile approaches, you can shortcut all the meetings and man-

age with just the release planning, daily standups, iteration reviews,

and retrospectives.

10.9 Troubleshooting Meetings

Here are some problems your meetings might encounter and how to

troubleshoot them:

Your daily standup takes more than fifteen minutes. Make sure

people are standing up. Once people sit down, the meeting takes longer.

Make sure people report on finished work. If people report on work in

progress, they’re not decomposing the requirements into small enough

features, or they’re not breaking their tasks down into inch-pebbles.

No one arrives on time for your meetings. If this is just a problem for

your project, renegotiate the time of the meeting. Maybe you’ve inter-

rupted people’s flow by having the meeting at this time. I once held all

project team meetings over lunch (because the team requested a lunch

meeting). I called the meeting for 12:15 and explained I was starting at

12:15 whether they were there or not—and we would be done by 1:00

p.m. That worked for the project team.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=206

TROUBLESHOOTING MEETINGS 207

Usually, this is not a project problem, but an organization’s problem. I

start the meeting when I say I’m going to, and if there’s no one there, I

get to make all the decisions, including the people who were assigned

problems we needed to solve. (Yes, this is a bit high-handed.)

Make sure you’re doing your part by sending out meeting agendas at

least twenty-four hours in advance of the meeting and sending minutes

with action items within twenty-four hours of conducting the meeting.

Make sure you’re not wasting people’s time at the meeting. If you’re

including serial status information at your meetings and you’re not

holding one-on-ones, you are wasting people’s time. You can ask peo-

ple whether their return on time invested [RD05] is enough to keep

the meeting going. Maybe you’re trying to meet too often, or you’re not

solving project problems.

Make sure your team members are not boycotting your meetings be-

cause they are a waste of time. See the tip Seek and Destroy Time-

Wasting Meetings, on page 194.

No one completes their action items for the next meeting. Make

sure you’ve sent the minutes from the last meeting within twenty-four

hours of that meeting. If you have a section with action items, make

sure each item has a name and a date associated with it.

For the next meeting, send the agenda at least twenty-four hours in

advance. That will remind people they have open action items.

People who are not part of the project want to attend your team

meetings. The reason for articulating the attendees for a project team

meeting is to help people realize who will be making decisions about

the project’s issues. When other people want to attend your meetings,

first discover why, and then create a role for that person.

If you have a senior manager who wants to “help” your team accomplish

more work faster, show the manager the project dashboard. Make sure

that manager understands your velocity and how people are assigned

to the project. If your team is multiproject multitasking, the manager

can help by developing the project portfolio and managing the priorities.

If that manager still wants to “help” by “motivating” the team, help the

manager understand that for knowledge workers, motivation is intrin-

sic, not extrinsic [Koh93]. If the manager still wants to say something,

give that manager a timeboxed few minutes to say something in the

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=207

MANAGE CONFERENCE CALLS WITH REMOTE TEAMS 208

meeting. Then allow the project team to solve the problem of speeding

up the project—without the manager in the room.

None of these actions is easy, and they will require all of your negotia-

tion, influence, and perhaps appeasing skills. But remember, your job

is to protect the team from outside interference. Do what you need to

in order to protect the team.

If you still have a manager (or other people) who wants to observe

your meetings, create an Observer role for those people. Arrange chairs

behind the chairs around the conference room table, and direct the

Observers to sit there. Remind the Observers that they may observe

and write down their observations, but they are not to interfere. I make

this offer, “If you can’t stand it and need to say something, write me a

note. Here are index cards—you can pass me a card with your question

or comment.” If Observers can’t remain quiet, you are well within your

rights as meeting owner/facilitator to ask that person to leave.

You might want to invite other people to your meetings to obtain their

input on decisions or gather data that will help your team to make good

decisions. If that’s the case, clarify the other person’s role and how you

will use input from that person in advance of the meeting.

10.10 Manage Conference Calls with Remote Teams

You might not be able to conduct in-person meetings with your team. If

you need to hold teleconferences, this section has tips that might help

your calls.

Conference Call Hell Is Now Heaven

by Wendy, project manager of a worldwide project

I’d had it. I had been running these conference calls for a month, and I

couldn’t have a conversation because Jack was eating lunch, Pierre was

eating dinner, not all the people were on the call when they needed to be,

and more. It was a disaster. I finally laid down the law.

First, I got my managers to buy reasonable speaker phones and headsets.

Can you believe one guy was supposed to use one of the half-duplex

speaker phones? Unbelievable.

Then, I worked on my facilitation skills and made stronger agendas. Then,

I explained how we were going to treat each other on the call. Every site

would have a facilitator, and people would switch that position every

week. I asked one of our admins to take notes so we could review action

items every few minutes.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=208

MANAGE CONFERENCE CALLS WITH REMOTE TEAMS 209

I started to enforce the rules of “only one voice at a time” and “no aural

eating.” Everyone had a good time teasing me about that. But it’s

working. Our calls run much more smoothly now.

Here are some helpful hints for running conference calls. Some of these

hints may be difficult for you to institutionalize. Persevere. Gently.

General Facilitation Guidelines

When you facilitate a conference call of more than two people, try these

guidelines:

• Make introductions; ask all sides to announce their name and

their role.

• All participants should agree that facilitation is necessary.

• Use the “one conversation at a time” rule. If one person is speak-

ing, let that person finish. If you have a pauser on the line, ask

whether that person is done before speaking.

• Say who you are when you speak.

• Say the name of the person if you are addressing someone in par-

ticular.

• No eating (especially no eating something noisy or in noisy pack-

aging). If you can meet only during someone’s dinner or lunch

time, request that person mute their side of the call while they are

eating.

• If you are interpreting to another language, lay down the ground

rules (interpret after each complete thought), and don’t be afraid

to enforce them.

Logistics

Aside from facilitation, make sure everyone on the call has checked

these logistics.

• Make sure you have a mute button that doesn’t play music and

really mutes you. I was once on a call when someone said, “That

Johanna, she’s a tough cookie, isn’t she?” I agreed. The other per-

son was quite embarrassed.

• Use a good speakerphone with full duplex sound.

• If you’re initiating the call, make sure everyone at your site is in

the room before calling the other groups.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=209

MANAGE CONFERENCE CALLS WITH REMOTE TEAMS 210

Plan the Call in Advance

Your conference calls might need just a little extra planning. Decide

what to do in these circumstances.

• What happens if not everyone calls in, and you don’t know where

they are? One of my clients has a rule: if not everyone is there

after fifteen minutes, reschedule.

• What happens if you can’t reach the other teams or someone

needs to call you? Give the other teams a cell phone number to

reach you in addition to the conference call number.

• People need to know what you want to discuss. Send out an agen-

da in advance that everyone can see—this is even more critical

than in a face-to-face meeting. During the meeting, if you have to

modify the agenda, make sure everyone understands where you

are in the current agenda.

• Make sure everyone knows the topics under discussion. Aside

from choosing the topics in advance, you’ll need to keep topics

focused. You’ll need to plan in advance to organize the attendees

to make sure you have the right people to discuss those topics.

• Publish a meeting objective, and make sure the meeting objective

is clear.

• Vary the order of participants (who speaks first, and so on), espe-

cially for regularly scheduled calls.

• If there is no good reason to meet, cancel the meeting (beware the

meeting that won’t die).

• Have an end time. Stick to it.

• Use collaboration software when it makes sense to do so.

Meeting Facilitation

It’s harder to facilitate meetings across physical locations and time

zones. Consider these suggestions for facilitating:

• If someone joins the call late, have someone else, not the facil-

itator, summarize what has happened so far and say who is on

the call. The facilitator can stay on track and only the two people

(the late person and the person explaining what’s happened) are

distracted.

• Use mirroring (repeating what the person said).

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=210

MANAGE CONFERENCE CALLS WITH REMOTE TEAMS 211

• Use focused conversations [RBS00], a technique that helps people

separate the objective data, reflective data, their interpretations,

and their decisions.

• Monitor all discussions so you know when the discussion is too

detailed. Know when to cut off specific questions.

• Ask for people who do not agree (in other words, “Does anyone not

agree or not understand?”). Do not assume silence means agree-

ment.

• Be sensitive to when other people have lost the conversation.

• Organize the agenda by topic. When that topic is complete, con-

firm completion.

• Be aware that it is much harder to understand a non-native

speaker over the phone.

• Check that people have not been cut off in the middle of the con-

ference call. I like to also have everyone’s cell phone number so if

that person isn’t talking, I have another way to reach them.

• Summarize partway through and at the end.

• List action items at the end of call.

• Announce when the meeting is over.

Your Work After the Teleconference

You still have some work after the conference call.

• Always send a summary of any decisions made along with action

items to all participants as follow-up afterward.

• Make sure you know when the call has really ended. Check to see

whether the speakerphone is still on.

Remember This

• You can decide whether a meeting is useful and worth your time—

or any of your project team members’ time.

• Avoid serial status meetings like the plague.

• Monitor your meetings for how well they meet the needs of every-

one involved.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=211

Chapter 11

Creating and Using a Project
Dashboard

Most of the questions you answer come down to some variant of this

question: “Where are we?”

This could come from senior management trying to figure out whether

you’re going to hit a deadline or from the project team asking about

their status. It soon feels like they’re in the backseat of your car on a

long trip asking, “Are we there yet?”

The key to understanding a project is to make regular measurements—

both quantitative and qualitative—and display the measurements pub-

licly. When project managers display these measurements as part of the

project status, teams are able to adjust their work and proceed more

successfully.

This collection of measurements comprises your project dashboard.

Taken together, the project measurements display your velocity, dis-

tance, consumption, and location—much as a car dashboard does.

Creating a project dashboard provides feedback to the team and reports

status to other interested people. Use a Big Visible Chart or Information

Radiator [Coc04] so that everyone can see the project’s progress.

11.1 Measurements Can Be Dangerous

Measurement involves three big problems: the project team spending

too much time on measurement to the detriment of the work, gaming

the system, and measuring the people instead of the project.

MEASUREMENTS CAN BE DANGEROUS 213

It’s easy to spot and fix people spending too much time measuring. Are

your project staff members generating paperwork and measurements

rather than performing the work? The measurements in this chapter

are all obtainable by you, the project manager. Most of the project staff

shouldn’t have to help you obtain project measurements. You might

need help from someone who manages the SCM or the DTS. (If you

need to measure performance or reliability, you might need developers

or testers to help you measure that.) If you need help from more than a

couple of people, work on your project infrastructure support. The goal

of the dashboard is to use the data to assess the project state, not to

spend time creating the dashboard.

It is often harder to spot people gaming the system, but the cause

is often that only a single factor is being measured. You’re likely to

see schedule games (see Chapter 6, Recognizing and Avoiding Schedule

Games, on page 101) and other behavior that doesn’t help the project

progress. There’s a famous Dilbert strip where the boss says he’ll pay

each developer some amount of money to fix defects. Wally, one of the

characters says, “I’m going to write me a minivan.” Wally is planning to

write a whole lot of defects and then fix them. If you measure only one

thing, you encourage people to optimize for that one thing. Make sure

you have multiple measurements for assessing project progress.

When you choose measurements, make sure you measure the project

and the product, not the people [Aus96]. If you measure anything that

can be traced directly back to one person or another, you are measuring

people, not the project or the product. Measuring people begs them to

game the system, preventing you from understanding the project’s state

and possibly preventing the project from completing. Never measure

people.

It’s easy to measure some facets of a project, such as the project start

date, the current date, and the desired release date and say, “We’re X

percent of the way along,” because the project team has used that per-

centage of time. (See Section 11.2, Earned Value for Software Projects

Makes Little Sense, on page 218.) If all you measure is the schedule,

you’re guaranteed not to meet the desired deadline.

In fact, measuring any single dimension can’t give you a full enough

picture of the status of your project. If you’re driving a car and look

at the mileage for this tank of gas but don’t look at your miles per

gallon and the miles left to drive, you still don’t know whether you have

enough gas to get you to your destination.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=213

MEASUREMENTS CAN BE DANGEROUS 214

To obtain a true picture of the your project’s state, choose at least four

out of six dimensions of the project drivers, constraints, and floats from

Section 1.2, Manage Your Drivers, Constraints, and Floats, on page 19 to

measure and display on your project dashboard. Those four dimensions

capture the areas you are most likely to be able to modify during the

project. And if you don’t measure them, you can’t see what to change

to make your project succeed.

Tip: Use Multidimensional Measurements to Assess Project

Progress

There are any number of references that say, “You get what

you measure.” And, as you saw in Section 11.1, Measure-

ments Can Be Dangerous, on page 212, it’s possible people

will want to game the measurement. Since you will get exactly

what you measure, make sure you measure enough infor-

mation about the project to provide an honest assessment of

project progress.

Rob, a VP of engineering called me, confounded. “JR, those freaking

testers! They can’t do anything right.” Rob’s project had 1,500 devel-

opers and about 350 testers. I had met a few testers before, so I said,

“That’s funny, the people I met seemed to know what they were doing.”

“No way,” Rob quipped, “the developers meet every single milestone. The

testers don’t meet any. I need you right away to do an assessment.”

Well, developers meeting every milestone is a suspicious statement. I

know a lot of developers. And even the best don’t always meet their

schedules. I started the assessment with an open mind. Maybe all

1,500 developers really are incredible.

But here’s what I discovered. The developers have to report only dates to

the project managers. That’s it. And the project managers measure only

dates from the developers and defects from the testers. There’s no mea-

surement of anything else on the project. When I talked to developers

about their work, it all became clear. Danny grimaced and explained,

“I have to start the feature when the Gantt says to; otherwise, I get

marked down on my performance evaluation. I put stubs in, so I ‘fin-

ish’ it on time. When the testers report a problem, I fix the problem.”

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=214

MEASURE PROGRESS TOWARD PROJECT COMPLETION 215

Joe Asks. . .

Can I Ever Start Measuring Over?

You can. I don’t recommend it, because generally the system
(the process and the people) that’s creating problems—such
as starting the project a month late—doesn’t recognize the sys-
tem is doing this. Without a chart to show why you’ve been
behind since the beginning, you won’t be able to change the
system of how projects start.

Instead of remeasuring, draw a line on the chart with something
like “Original Start Date” and “Actual Start Date.” Then show
the triggering event that led to the “Actual Start Date.” (See
Figure 11.7, on page 225.)

Rob’s organization has broken projects (and products)—projects that

don’t deliver what Rob needs. As long as he persists in single-dimension

measurement for a group of people (dates for developers and defects for

testers), they will have broken projects. The only cure for Rob is to have

the project managers measure all around the project so that they can

tell more accurately where the project is.

11.2 Measure Progress Toward Project Completion

By using several measurements from the drivers, constraints, and

floats, you can measure the team’s progress toward project comple-

tion. Project completion is a function of how accurate your original esti-

mate was and how much progress you’ve made. But measuring only the

schedule progress is not good enough. The only accurate way to mea-

sure progress for a software project is to measure how many features

the project team has completed, how good those features are, and how

many features are left to implement.

Use Velocity Charts to Track Schedule Progress

If you’re implementing by feature, a velocity chart (such as Figure 11.1,

on the following page) is a great progress indicator to how much progress

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=215

MEASURE PROGRESS TOWARD PROJECT COMPLETION 216

0

10

20

30

40

50

60

70

1
-J
a
n

1
-F
e
b

1
-M
a
r

1
-A
p
r

1
-M
a
y

1
-J
u
n

1
-J
u
l

1
-A
u
g

1
-S
e
p

1
-O
c
t

1
-N
o
v

1
-D
e
c

F
e
a
t
u
r
e
s

Features Left

Features Done

Total Features

Figure 11.1: Velocity Chart for a Project

the team has made on the project.1 And it can give you an indication

about how much work is left.

Here’s how you make a velocity chart. Add up the number of features—

that’s your total features. As you finish a feature, add 1 to the number

of features done, and decrease the number of features left. If you have

to add more features during the project, add those extra features to the

total features. Even if your features aren’t normalized to be the close to

the same size, this chart will help.

If you use inch-pebbles and you’re not implementing by feature, track-

ing inch-pebbles (Section 8.10, Use Inch-Pebbles, on page 171) can help

you know where you are. But that won’t be as accurate as implement-

ing by feature. Whatever you do, don’t just ask people whether they’ve

met their milestones without looking to see how good the stuff is that

they are producing.

1. See http://www.xprogramming.com/xpmag/jatRtsMetric.htm.

Report erratum

this copy is (First printing, June 2007)

http://www.xprogramming.com/xpmag/jatRtsMetric.htm
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=216

MEASURE PROGRESS TOWARD PROJECT COMPLETION 217

Tip: Velocity Charts Are the Single-Best Chart

If you can make only one chart, choose a velocity chart.

Velocity charts use three measurements (requirements, com-

pleted work, and date), all on one chart. They don’t provide a

picture of defects or cost, two more measures you might like

to see. But they provide an overall picture of progress on one

chart.

Because you’re measuring several trends on one chart: total

requirements and completed work, including all the testing

and documentation and whatever else your project requires

over time, it’s the single-best chart. If you’re working with-

out implementing by feature, the chart shows no completed

work, which is exactly the state your project is in. Velocity

charts are your friend.

Use an Iteration Contents Chart to Track Overall Progress

In addition to a velocity chart that tracks implemented features over

time, you might want a finer-grained look at what’s going on in each

iteration. (Even if you’re not using timeboxed iterations, generate this

chart over a fixed time period. That will help you see when requirements

changes and defects arrive in the project.)

In Figure 11.2, on the following page, you can see how the release’s con-

tents change over time. In this project, the team started with a velocity

of six features per iteration. By they time they got to the ninth iteration,

they were down to two features, plus two changes and four defects. At

that point, the project manager realized things could only get worse

and stopped changing the iteration’s backlog during the iteration. That

allowed the team to make much more progress in the last three itera-

tions.

Until the project manager generated this chart, no one had any idea

about the cost of the changes during an iteration and the introduction

of defects those changes caused.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=217

MEASURE PROGRESS TOWARD PROJECT COMPLETION 218

Iteration Contents

0

1

2

3

4

5

6

7

8

9

Iteration

Defects

Changes

Features

Figure 11.2: Iteration contents chart for a project

Earned Value for Software Projects Makes Little Sense

Earned value is a measure of the value of work performed to date.2 But

because software is ephemeral and ever-changing, it’s close to impos-

sible to calculate the true earned value. If you can’t clearly define it,

you can’t really measure it. Resist the attempts from your organization

to have you report on earned value. For a tangible product, it’s easy

to calculate earned value. If you’re building a table, you can calculate

the cost of the materials and time to see whether the legs and the top

have value even before you put the table together. But earned value is

different for software.

Here’s an example. Say you have five requirements to complete in ten

weeks. Imagine that you and the project team believe it will take the

entire team two weeks per requirement. And, imagine you have five

people on the team. Your estimate is ten effort-weeks per requirement,

a total of fifty effort-weeks. Imagine the team has finished the first three

requirements, including testing them, as in Figure 11.3, on page 220.

2. © 2007 R. Max Wideman, http://www.maxwideman.com; reproduced with permission.

Report erratum

this copy is (First printing, June 2007)

http://www.maxwideman.com
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=218

MEASURE PROGRESS TOWARD PROJECT COMPLETION 219

Joe Asks. . .

How Can We Have No Completed Work?

You’ve been working hard for months on your project. No one
has been slacking off. But when you try to use a velocity chart, it
shows you no (or virtually no) completed work. How is that pos-
sible? It’s possible—and even likely—if you’re using a serial life
cycle or implementing by architecture in any life cycle, without
planning how to finish features.

When a project team uses a serial life cycle or implements by
architecture, they have lots of partially completed work. Par-
tially completed work is called waste in the lean community. It’s
waste because it’s not done. Because velocity charts show you
completed work, you can tell whether the team is producing
waste or a completed product.

The more you use incremental, or even better, agile techniques,
the more your velocity chart will show what you’ve done. Being
able to show the project team what is done helps maintain the
project rhythm and helps people accomplish more.

The customer sees what the team has done so far. “Looks great, but I

really need it to do foo over here and blatz over there.”

The “foo” and “blatz” features will cost another two team-weeks each.

Your original calculation was that you had 60% of the work done in

60% of the time. You were on track. You are now not even close to on

track. But you have feedback from the customer earlier than the end of

the project, and you can give the customer what the customer wants.

How much value do you have? I don’t know how to answer that ques-

tion, because it doesn’t account for the fact that the customer didn’t

realize what he or she wanted wasn’t enough for the time allocated

for the project. The initial measurements were wrong. Your project has

some value. Maybe the work to date has even more value than you

thought because the customer realized early that the requirements

weren’t quite right. But you are no longer 60% done; you’re at some

other percentage.

Some organizations like to use “Percent Complete.” I don’t agree with

that either. All too often this refers to only the development piece, but

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=219

MEASURE PROGRESS TOWARD PROJECT COMPLETION 220

0

1

2

3

4

5

6

7

8

9

1 2 3 4

Week

F
e
a
t
u
r
e
s

Features Left

Features Done

Total Features

Figure 11.3: A six-week velocity chart

not the testing part. Pieces of the product that haven’t been tested

aren’t complete. Using “Percent Complete” begs people to start with

schedule games such as the one covered in Section 6.14, 90% Done, on

page 129.

If you want to know your progress, use a velocity chart showing run-

ning tested features. A velocity chart shows the team’s actual progress

against the planned progress. And it shows that change happens to a

project and how much change is occurring.

So, just say no to earned value. Use velocity charts instead.

Track Your Original Estimate with EQF

Tom DeMarco in [DeM86] described a measure called estimation quality

factor (EQF). EQF helps you understand how good the initial estimate

was. At periodic intervals during the project, the project team answers

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=220

MEASURE PROGRESS TOWARD PROJECT COMPLETION 221

Project 1 EQF

15-Jun

5-Jul

25-Jul

14-Aug

3-Sep

23-Sep

13-Oct

2-Nov

22-Nov

1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 1-Sep 1-Oct 1-Nov

Date of Estimate

E
st
im

at
e
d
 E

n
d
 D

at
e

Figure 11.4: Estimation quality factor

this question: “When do you think we’ll be done?” Each data point is

the consensus agreement on when the project team believes the project

will be finished. At the end of the project, draw a line backward from

the release date to the beginning of the project. For an example, see

Figure 11.4. The area between the line you drew and the when-will-

we-be-finished line is how far off your estimation was. This is a great

technique for people to use as feedback on their individual estimates.

But even if you don’t use it for feedback, it’s a great technique for the

project manager to see what’s happening.

Maybe you’re concerned: there’s a penalty in EQF for discovering new

requirements later. That’s true. EQF is not a perfect measure. But if

you’re not going to use an agile life cycle, late requirements (or late-

learned requirements) do bring a penalty. I’d rather see why the project

is suffering from a delay than not know why.

If you’re using an agile life cycle, your velocity charts will provide you

a quantitative answer, rather than a qualitative answer. But if you’re

not using an agile life cycle, EQF is a great qualitative measure of how

close your estimate is.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=221

MEASURE PROGRESS TOWARD PROJECT COMPLETION 222

15

16

17

18

19

20-Feb

21-Feb

22-Feb

1
-F
e
b

2
-F
e
b

3
-F
e
b

4
-F
e
b

5
-F
e
b

6
-F
e
b

7
-F
e
b

8
-F
e
b

9
-F
e
b

1
0
-F
e
b

1
1
-F
e
b

1
2
-F
e
b

1
3
-F
e
b

1
4
-F
e
b

1
5
-F
e
b

1
6
-F
e
b

1
7
-F
e
b

1
8
-F
e
b

1
9
-F
e
b

2
0
-F
e
b

2
1
-F
e
b

Date of Estimate

E
s
t
im
a
t
e
d
 E
n
d
 D
a
t
e

Figure 11.5: Tommy’s estimation quality factor

Figure 11.4, on the preceding page is a chart of an EQF for a project

that was originally supposed to be nine months long. For the first cou-

ple of months, when the project manager asked when people thought

they’d finish, they said September 1. And for a couple of months, they

were optimistic, thinking that they might finish early. But during the

fifth month, team members realized they didn’t know enough about

some of the requirements. What they discovered changed the archi-

tecture and pushed out the date. For the next few months, they still

weren’t sure of the date. They realized in the last three months of the

project that, because of the changing architecture, they were encoun-

tering many defects they hadn’t anticipated. Evaluating EQF, a quali-

tative metric, was helpful to the project manager and the project team

as a check against the progress charts.

EQF isn’t just for software projects. A person can use this technique

when performing any project work. I used it when writing this book.

You can use it with developers (or testers or writers or whomever) to

coach them about their estimation.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=222

MEASURE PROGRESS TOWARD PROJECT COMPLETION 223

Tommy was working on a feature that he thought would take him three

weeks to complete. He made sure he had several deliverables each

week, his inch-pebbles. As he completed an inch-pebble, he updated

his EQF for the feature. See Figure 11.5, on the previous page. He

thought he was lucky with delivering the pieces early. He didn’t change

his EQF until about halfway through the feature, even though he had

managed to complete most of his deliverables early for the first part of

the feature.

As Tommy proceeded, he didn’t quite make the progress he thought he

would. He was still on track for his original estimate but was not going

to meet the earlier date.

Schedule estimates are just guesses, so anything you can do to show

and then explain why your schedule varies from the initial plan will be

helpful to anyone who wants to know “Where are we?”

More Measurements Tell the Rest of the Story

Project completion measurements might be all your managers want to

see, but if you’re a project manager or a technical lead on a project

team, I’m sure you’d like some early warning signs that the schedule

might not be accurate. To keep my finger on the pulse of a project, I

monitor several measurements:

• Schedule estimates and actuals, aside from EQF. If you use veloc-

ity charts, you get this as part of velocity.

• When people (with the appropriate capabilities) are assigned to the

project vs. when they are needed.

• Requirements changes throughout the project. If you use velocity

charts, you get this as part of velocity.

• Fault feedback ratio throughout the project if you’re not using an

agile life cycle. See Section 11.2, See Whether the Developers Are

Making Progress or Spinning Their Wheels, on page 228.

• Cost to fix a defect throughout the project, especially if you’re not

using an agile life cycle.

• Defect find/close/remaining open rates throughout the project.

Note that these are assessment measurements, not measurements that

are trying to find the problems in the project. These measurements will

expose problems but might not be sufficient by themselves to see the

real problems. The power from the measurement comes from looking at

all of these measurements together.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=223

MEASURE PROGRESS TOWARD PROJECT COMPLETION 224

31-Dec

19-Feb

10-Apr

30-May

19-Jul

7-Sep

Pr
oj
ec
t
S
ta
rt

In
iti
al
 P
ro
je
ct
 P
la
n

D
es
ig
n
co
m
pl
et
e

C
od
e
co
m
pl
et
e

S
ys
te
m
 t
es
t
st
ar
t

B
et
a
st
ar
t

S
hi
p

Milestone: Planned

Milestones: Actual

Figure 11.6: Schedule estimates vs. actuals

Measure the Schedule When That’s All You’ve Got

Maybe you’re in an organization wedded to a serial life cycle. Or, you’ve

just joined the project, and things are not going well, according to your

boss. First measure the schedule to see what’s happening.

That’s right. Note that I’m not telling you to measure only the schedule,

I’m advising that this is the first measurement to which you should

commit. But don’t just use Gantt charts. You have many tools avail-

able. For example, look at when the project team expected to meet a

particular milestone and when they actually met that milestone, as in

Figure 11.6. If the project team starts the project late (no matter what

the first milestone is), that project is not going to meet the desired end

date.

Time lost is never going to be regained.

Figure 11.6 shows what happened with one project. This project is a

modified waterfall life cycle (the next phase can start without the pre-

vious phase being complete), but there are no iterations. Notice that

the project started a full month late. When the project manager posted

this chart, he also said this to senior management: “Don’t expect us to

pull in the schedule by a month. We started late; we can’t make up the

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=224

MEASURE PROGRESS TOWARD PROJECT COMPLETION 225

31-Dec

19-Feb

10-Apr

30-May

19-Jul

7-Sep

27-Oct

Pr
oj
ec
t
S
ta
rt

In
iti
al
 P
ro
je
ct
 P
la
n

D
es
ig
n
co
m
pl
et
e

C
od
e
co
m
pl
et
e

S
ys
te
m
 t
es
t
st
ar
t

B
et
a
st
ar
t

S
hi
p

Milestone: Planned

Milestones: Actual

Milestone Based on
Actual Start

Figure 11.7: Schedule estimates vs. actuals with real start date

time.” To the project team he said, “I’d like you to work as intensely

as you can, without working overtime and getting tired. We don’t have

time for you to make mistakes. Do the best job as quickly as you can,

and we’ll keep tracking where we are.”

As a pragmatic project manager, you might even want to show the

project team how well they are progressing, assuming they started on

time rather than always being a month late. To see how it might look,

see Figure 11.7.

Chart When Qualified People Actually Work on the Project

It’s altogether too common for projects to start starved of resources.

Most often the resources the project is missing is the people. And, peo-

ple are the one resource a software project requires to proceed. But

not just any people—people who are capable of performing the work

required on this project.

Planning to start a project with a small team and adding people later is

OK—if you plan for it. That’s a project where the plan says, “We need

this many people right now. We’ll need more later.” That’s not the same

as starting a project starved of the people you need. I’ve started projects

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=225

MEASURE PROGRESS TOWARD PROJECT COMPLETION 226

0

2

4

6

8

10

12

14

16

1-Jan 1-Feb 1-Mar 1-Apr 1-May 1-Jun 1-Jul 1-Aug 1-Sep 1-Oct 1-Nov 1-Dec

P
e
o
p
le People Planned

People Actual

Figure 11.8: People scheduled for the project and actually assigned to

the project

where I had people prototyping and when I had technical leaders on the

project. I’ve started projects where I asked the developers to fix defects

when I was missing technical leaders. I’ve started projects using short

iterations when I had developers but no testers. In each case, we had a

plan to integrate the rest of the project team when it was time for them

to join the project.

But starting a project starved of people is asking for trouble. (Start-

ing a project without enough computers or desks or other resource

might be acceptable if the people can manage the problem of the scarce

resource.) You need to know how many people you have and whether

those people can get the work done.

If you’re in this position, use timeboxed iterations, and measure itera-

tion velocity. You can show the data to the team and keep explaining

the data to the people who haven’t freed the necessary resources yet. If

this happens to you repeatedly, read Section 7.7, Know When It’s Time

to Leave, on page 148, and decide whether this job is worth it.

Figure 11.8 is a staffing history from a real project. The people needed

in the second month were still working on their previous project (that

project had slipped). Instead of waiting to start the project, senior man-

agement told the PM to start, and he did. By the third month, the

project was staffed with only four people, instead of the ten required.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=226

MEASURE PROGRESS TOWARD PROJECT COMPLETION 227

Given this information, the project manager and team could have

changed how they worked. But they were being told that the other peo-

ple would start “any day now”—and the PM and team believed it.

By the six-month mark, the project was fully staffed. But the velocity

was very far behind. To catch up, the PM asked for and received more

people—testers. (This was a serial lifecycle project.) The testers found

lots of defects, so the PM asked for more developers. The developers

created more defects, and the testers found more defects, until finally

they got to a reasonably stable point.

This chart measures the trend of the people assigned to the project, not

the total number. If you add up the total numbers, the actual person-

months used by the project was about 1/3 more. And since people cost

is not always a constraining driver for a project, that might have been

fine. The real problem is that the project team delivered only about 2/3

of the desired feature set, and the system was not particularly stable.

If you’re faced with a situation of not enough people on your project,

make sure you don’t fall into the same trap as this PM did—thinking

you don’t have to redesign your project. Because this project had so

many people still assigned to it at the end, the next project was ready

to be starved of people. But the PM had learned from this project and

asked the two developers available for the next project to implement

by feature in one-week iterations. When you’re faced with insufficient

numbers of people to complete the project as you designed it, change

the project design. For me, that almost always means moving to agile

development, because it gives me the maximum flexibility with the peo-

ple I have.

Determine the Rate of Change on Your Project

If you’re using a serial life cycle, you might not be able to produce

velocity charts that mean anything because you’re stuck in the dynamic

of having too much partially completed work but not enough actually

finished (see the Joe Asks. . . on page 219). Although I still recommend

velocity charts, you might need to split the chart into its component

pieces. In that case, you can use a requirements change chart, such as

in Figure 11.9, on the next page.

I was the project manager in a situation like this. I had arrived in

the middle of a serial lifecycle project. I couldn’t measure velocity; we

had too much partially finished work. But I could start measuring

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=227

MEASURE PROGRESS TOWARD PROJECT COMPLETION 228

0

5

10

15

20

25

30

35

40

45

1 4 7 10 13 16 19 22 25 28 31 34

Week

N
u
m
b
e
r
o
f
C
h
a
n
g
e
s

Major Reqts Changed

Minor reqts Changed

Figure 11.9: Requirements change chart

requirements changes. In this project, I had a simple criterion for decid-

ing whether the requirements change was major or minor, based on

the principle that interface changes between modules tend to create

defects. A minor change affected one module, and a major change

required changes to more than one module.

In Figure 11.9, there are lots of small changes—something most of us

expect on projects. But we also encountered some major requirements

changes late in the project (week 22). When I saw these requirements

changes, I was able to explain to senior management that either the

project would be later than we expected or the number of defects would

rise. But with these changes, it was clear that the original date and the

original feature set with the small number of expected defects was not

possible.

See Whether the Developers Are Making Progress or Spinning

Their Wheels

Once the project team is writing code, you can measure the fault feed-

back ratio (FFR). The FFR is the ratio of the number of rejected fixes

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=228

MEASURE PROGRESS TOWARD PROJECT COMPLETION 229

FFR and Closed Defects

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Week

N
u
m
b
e
r
 C
lo
s
e
d
 D
e
fe
c
ts

0%

10%

20%

30%

40%

50%

60%

F
F
R Defects closed

FFR

Figure 11.10: Fault feedback ratio

(fixes that don’t actually fix the problem) to the total number of fixes.

In my experience, an FFR of 10% or more says that the developers are

having trouble making progress.

Because successful agile projects tend to use test-driven development

and pairing and unit test development for every line of code, the FFR

tends to be quite low. But projects that don’t use continuous integration

and continuous code review tend to build up defects and substantial

technical debt (see Appendix B, on page 343). That’s when it’s useful to

measure FFR (as in Figure 11.10), taking a look at how many defects

the developers can actually close, compared to the number of rejected

fixes.

In Figure 11.10, when the developers reduce the FFR, the overall num-

ber of successfully closed defects increases. And, when the FFR

remains high, you can be sure that the developers will fix fewer defects

until they fix the defects that are preventing them from making

progress.

Measure the FFR on a weekly basis, and use it as data to initiate a

discussion with the developers and testers. If you see a week where the

FFR is high, first check to see how many total problems were fixed that

week. If only four problems were fixed and one was rejected, the devel-
Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=229

MEASURE PROGRESS TOWARD PROJECT COMPLETION 230

opers and testers are probably OK. But if you see twenty defects fixed

and five of them were rejected (25%), it’s more likely that somebody,

or a few somebodies, are having trouble. In Figure 11.10, on the pre-

ceding page, notice that the FFR starts to get high around week 6 and

stays at more than 10% until week 13. Once the project team hit the

second week of high FFR, the project manager instituted peer review on

all fixes. That helped, but there was a delay between the start of peer

review and the reduction of FFR back to numbers where the fixes didn’t

interfere with progress.

To identify trouble areas, first ask the developers whether they are run-

ning into trouble with their fixes. I generally phrase the question this

way: “When you fix something here, does a problem pop up over there?”

I’ll ask other questions, all leading to asking the developers whether

they need any resources to fix this problem. If I hear that the develop-

ers want to redesign a module, we discuss the issues for that redesign.

My next question is for the testers: “Are you able to define all the con-

ditions that create this problem?” I start with those questions to see

whether the developers are fixing one piece of the problem at a time

or whether the testers understand the system sufficiently to test thor-

oughly enough.

FFR is a late measure that allows you, as the PM, to ask questions to

help the project team solve the problem. Although you can use FFR on

any work product, people don’t tend to reopen defects in design docs

or requirements docs. Since you can’t measure FFR until there is code,

the earlier you start measuring FFR, the more feedback you can get in

a serial life cycle.

Measure How Much It Costs You to Find and Fix Problems

If you’re using any life cycle other than one with no more than four-

week iterations, a key measure is the cost for the project team to find

and fix problems. You’ve probably seen “industry-standard numbers”

that look something like this:.

10,000

Post-Release

100 1000101Cost

TestCodeDesignRequirementsPhase

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=230

MEASURE PROGRESS TOWARD PROJECT COMPLETION 231

.25 Person-days.25 Person-days .5 Person-days 8 Person-days.5 Person-daysProject 2 cost

18 Person-days

Post-Release

.5 Person-days 1 Person-dayNot measuredNot measuredProject 1 cost

TestCodeDesignRequirementsPhase

Figure 11.11: Actual Cost to Fix a Defect From Two Projects

The idea here is that it costs you 1 unit to fix a problem in the require-

ments phase; 10 units to fix a problem in design; 100 units in code;

1,000 units in test; and 10,000 units in post-release. We usually think

of units as dollars or some other form of currency.

I’ve measured cost to fix a defect,3,4 and the numbers I find are differ-

ent. Figure 11.11 shows costs from a couple of projects. Project 1 did

not search out defects as they occurred and remove them. The Project

1 team only halfheartedly looked for problems during code. Most of the

problems were detected in test. Project 2 took a very proactive approach

and actively looked for defects from the start of the project.

Remember, it’s not just the cost per defect; it’s the cost per defect

times the total number of defects. If you’re not looking at the overall

cost, you can’t know where to spend your time. Based on cost to fix a

defect from previous projects, you might decide to be proactive and use

inspections of key project documents, test-driven development, or pair-

programming from the start of the project. Or, you might choose to act

just for more challenging defects. Or you might decide to monitor cost

to fix a defect and take a more reactive response, such as peer review

of fixes or inspection of all code.

If you haven’t performed any proactive defect-finding activities, the cost

to find a defect is fairly small. But the cost to fix can be high, and the

overall cost to fix all the defects is very large, because you’re guaran-

teed to have more defects if the project team does not have a proac-

tive culture of finding and fixing defects. If you have been proactive by

3. See http://www.jrothman.com/Papers/Costtofixdefect.html.
4. See http://www.stickyminds.com/s.asp?F=S3223_COL_2.

Report erratum

this copy is (First printing, June 2007)

http://www.jrothman.com/Papers/Costtofixdefect.html
http://www.stickyminds.com/s.asp?F=S3223_COL_2
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=231

MEASURE PROGRESS TOWARD PROJECT COMPLETION 232

using techniques such as test-driven development, pair programming,

inspections, or peer reviews, the cost to find a defect can be higher—

because you’ve already looked for defects. The cost to fix a defect tends

to be much lower when a project team finds defects early. And the over-

all number of defects is lower, lowering your total cost to fix defects for

a particular release.

I monitor cost to find and fix so I can see whether the developers or

testers are surprised by what’s in the code base. I have a couple of rules

of thumb, assuming the developers have not been proactively looking

for defects:

• The longer it takes developers to fix a problem, the more likely it

is that the developers are afraid of touching parts of the system. It

might even be the case that the developers don’t understand parts

of the system.

• The longer it takes the testers to find problems, the less they know

about the product or the less they know about multiple techniques

to test the product.

The higher your total cost to fix a defect, the more defect risk manage-

ment you’ll need to do: when to stop accepting fixes for a release and

what to fix.

Understand Whether the Developers and the Testers Are Making

Progress with Defects

Almost every project measures defect trends. I’ve seen some intricate

defect trend charts, but my favorite chart shows just three things:

number of new defects found per week, number of closed defects per

week, and number of remaining open defects per week, as shown in Fig-

ure 11.12, on the following page. I specifically do not chart defects by

priority because the project team and senior management become too

willing to play the promotion/demotion game (see Section 15.4, Avoid-

ing the Promoting/Demoting Defects Game, on page 308). Besides, the

developers have to read through all the defects, even if they are sup-

posedly a lower priority. I just count all the defects.

I count the number of remaining open defects so I can see when the

close rate passes the find rate, enough so that the number of remaining

open defects starts to decrease. I look for the knee of that remaining

open defects curve, knowing that as the slope of the remaining number

of open defects goes negative, the risk of release lessens.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=232

MEASURE PROGRESS TOWARD PROJECT COMPLETION 233

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Week

D
e
fe

c
ts New defects found

Defects closed

Defects open

Figure 11.12: Defect trends over the course of a project

Display the Testing Progress

Once testing has started, you can chart the progress of the testing. I

recommend you integrate testing into development, no matter what life

cycle you choose. See Chapter 13, Integrating Testing into the Project,

on page 265 for suggestions.

In Figure 11.13, on the next page, you can see how the number of

planned tests continues to increase over time. That’s because the re-

quirements kept changing. And, you can see that the number of tests

the team was able to run steadily increased, as did the number of tests

passing. But there’s a significant gap between the number of tests pass-

ing from the number of test run.

This graph is from a real project; it was for a new release with new

functionality. The team started with 900 tests already available as auto-

mated regression tests. But only 600 of them passed by the time the

testers started. Those regressions occurred because the team would not

use continuous integration and used staged integration at the begin-

ning. When they saw the chart and realized how much work they had

created for themselves, they started to move toward continuous

integration.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=233

MEASURE PROGRESS TOWARD PROJECT COMPLETION 234

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Week

T
e
s
t
s # Tests Planned

Tests Run

Tests Passed

Figure 11.13: Testing Progress

The test progress chart is useful as a measure of test progress. But

it’s also an indication of (possibly unanticipated) requirements changes

and an indication of how well the developers are integrating as they

proceed.

If you’re using an agile life cycle, where the testing for a specific feature

occurs within the iteration that the feature is developed, you might not

need a chart like this. But if your project team has trouble keeping the

testing in an iteration, a chart like this might help, especially if you

graph it by iteration. When you use iterations and add new features for

an iteration, expect the number of “Tests Planned” to jump in a straight

line at the beginning of an iteration.

Display Qualitative Data

It would be easy if all the project data could be displayed on trend

charts. But you need a different kind of chart, especially when you’re

trying to explain the status of something.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=234

MEASURE PROGRESS TOWARD PROJECT COMPLETION 235

Build 150

Next Planned
Test

Projected last
build for this
iteration: Build

165

Build 147 for
customer
acceptance

Build 150

Overall Status

Partway done
with this
iteration's

development,
seems to be on

track

As of Mar 3,
10:08 am

Mar 2, Build 142Feature 14
Passed all

regression tests

Performance
scenario 3

Mar 1, Build 140
Fail. Waiting on
Jeff and Andy to

fix.

Feature Set 1 PassMar 3, Build 145

StateLast Test Date
Feature
or Area
or Module

Figure 11.14: Test dashboard

I’ve used progress charts like the one in Figure 11.14, when trying to

explain the progress of algorithm development, performance scenarios,

and testing,5 especially for longer iterations or serial life cycles.

Chart the Practices Agreed to by the Team

In Chapter 9, Maintaining Project Rhythm, on page 179, I suggested a

number of technical practices the team could adopt or adapt. When

the team agrees to use practices, you might find it helpful to let the

team chart their practices. Don’t chart the practice adherence yourself.

Your project team members are adults. Treat them as adults. If they

don’t perform the practices, you need to understand why. That’s the

management part of project management.

5. See http://www.stickyminds.com/s.asp?F=S7655_COL_2.

Report erratum

this copy is (First printing, June 2007)

http://www.stickyminds.com/s.asp?F=S7655_COL_2
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=235

MEASURE PROGRESS TOWARD PROJECT COMPLETION 236

Staged Delivery Practice Radar Chart

0

2

4

6
Buddy Review

Builds Fixed Within a Few

Hours

Implement by FeatureRolling-wave Planning

Develop Automated

Smoke Tests

Figure 11.15: Staged-delivery practices chart

Most likely, there is something preventing them from performing the

practices. Your job is to remove that obstacle. Have them chart their

practice adherence during a retrospective (see Section 8.2, Conduct

Interim Retrospectives, on page 157).

Figure 11.15, is what a practice chart might look like for a staged-

delivery project. This team chose five practices they wanted to use to

help them succeed on their project: buddy review, builds fixed within

a few hours, implement by feature, rolling-wave planning, and develop

automated smoke tests. They’re doing well on buddy review, implement

by feature, and rolling-wave planning. They’re not succeeding as well

with automated smoke tests and fixing builds within a few hours. When

you look at this chart as a PM, your job is not to flog people to do better.

Your job is to discover what’s preventing them from succeeding.

Here’s what Tina did when she looked at this chart. She called a project

team meeting where solving this was on the agenda. She gave everyone

sticky notes and a pen. “Something is preventing you from developing

automated smoke tests and fixing the builds.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=236

MEASURE PROGRESS TOWARD PROJECT COMPLETION 237

Agile Practice Chart

0

2

4

6
Pair Programming

Test Driven Development

Maintain Velocity Within

an Iteration

Test All Features Within an

Iteration

100% Unit Test

Development

Figure 11.16: Agile practices chart

Write down what you need in order to develop automated smoke tests

and to fix the build within a few hours. One idea per sticky. When you

have your stickies, post them on the flip chart that says automated

smoke tests or fix build.“

Once everyone was done (about seven or eight minutes later), Tina read

the stickies aloud. She asked the team to affinity-group them by looking

for related ideas and grouping the organized ideas [RD05]. It was clear

the problems were related (for this team). And, surprisingly enough, the

problem was with the source control system for the automated smoke

tests. Tina made that a new requirement for the project (not a goal) and

assigned her two most talented people to the task. Within a couple of

weeks, they had reorganized the smoke tests and the build so that peo-

ple could independently check in their changes and additions without

stepping on each other’s toes.

Tina would never have known what the problems were unless she’d

asked the team for their obstacles.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=237

DEVELOP A PROJECT DASHBOARD FOR SPONSORS 238

Figure 11.16, on the preceding page, is what a practice chart might look

like for an agile project.6,7 This chart has some data that might seem

strange to you. How can people rank themselves high on test-driven

development but low on 100% unit test development? When Charlie

asked that question at the team retrospective, Mario explained, “Well, I

use test-driven development to start. And then I get excited and forget

to always write a test first. I ranked myself high on test-driven but lower

on 100% unit test development. I figure I’m at about 98%. That’s good,

but there have been a few times when if I had really done all the tests

first, I would have found some problems earlier.”

Team practice charts open the door for conversations about the prac-

tices the team has chosen, what’s working, and what’s not working.

Your job is to understand how to interpret the charts, help the team

learn what’s causing the problems, and remove those problems.

Measurements for Agile Projects

If you’re using an agile life cycle, with iterations of no more than four

weeks and with all the people assigned to the project and not reassigned

during an iteration, and if you complete the iteration’s work within the

iteration, including finding and fixing all the defects introduced in that

iteration, you might need only velocity charts, testing progress charts,

and the iteration contents chart. Ask the team whether they want to

track their practices.

11.3 Develop a Project Dashboard for Sponsors

Your sponsors (or whomever you report project status to) might have

their own preferences for status. With any luck, it will include your

project dashboard. But if your sponsors don’t want to see everything,

collect the dashboard as feedback for the project team. Your sponsors

want to know when you’ll be done. And the way to help them under-

stand that is to show them your risks and the project’s progress toward

meeting release criteria.

Display the Risk List

You started developing the risk list when you wrote the project plan (see

Section 2.3, Develop a Project Risk List, on page 41). The risk list will

change as you progress through the project.

6. See http://www.xprogramming.com/xpmag/BigVisibleCharts.htm.
7. See http://xp123.com/xplor/xp0012b/index.shtml.

Report erratum

this copy is (First printing, June 2007)

http://www.xprogramming.com/xpmag/BigVisibleCharts.htm
http://xp123.com/xplor/xp0012b/index.shtml
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=238

DEVELOP A PROJECT DASHBOARD FOR SPONSORS 239

Medium2

'Supply chain'
thing will

change entire
db design if it
occurs before

Sept 1

Sept 1High Medium, HIgh

Continue to talk
to Lucinda
about the

disruption these
changes could
make. Give her
a date for when
we can take
changes.

1. Explain
schedule to
Lucinda

2. Keep her
apprised of
progress.

3. Warn her 1
week in
advance.

High,HighHigh1

Lucinda and her
staff won't be
available for

prototype review
when we need

them

May 1High

Mitigation PlanTrigger DateExposure
Severity If It
Occurs

Probability of
Occurrence

Explain the RiskNumbered Risk

Figure 11.17: Initial risk list

The risk list is the list of things that could prevent the project team

from meeting the project’s drivers, constraints, and floats. Although I

have met some sponsors who want to take an ostrich-like approach to

risks, more sponsors realize that ignorance is not helpful.

One of my project management classes decided they wanted to see a

constellation of risks, as in Figure 11.18, on the following page. They

found it useful to see how many risks were in the upper part of the

chart and how many were in the lower chart so they could see a big

picture of the risks. I know of at least one senior manager who prefers

to see the constellation risk list first, before diving into the data below.

Display Progress Toward Meeting Release Criteria

Progress toward release criteria can help your sponsors see your pro-

gress, as in Figure 11.19, on the next page. If they haven’t wanted

you to use increments or iterations, they will not be able to see much

progress toward release criteria until the end of the project. If you want

to move toward more iterative or incremental (or both!) development,

start tracking progress toward meeting release criteria. (Yes, this is a

form of guerilla process improvement.)

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=239

DEVELOP A PROJECT DASHBOARD FOR SPONSORS 240

Probability of Occurrence

Severity of Occurrence

High

High

Low

Low Medium

Medium

(two)

(four)

(three)

(one)

Figure 11.18: Constellation risk list

Build 121,
Module A
reviewed

Build 123,
Modules B, C
reviewed

All online help
reviewed

Build 125,
Module D
reviewed

Build 127, All
except Module
G reviewed

Build 125 pass

Build 123,
pass, but

defects x, y, z
discovered

Reliability
Criterion #1:
run for 13
hours

Build 121, fail Build 127 pass

StatusStatusStatusStatusCriterion ...

Figure 11.19: Release criteria

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=240

USE A PROJECT WEATHER REPORT 241

11.4 Use a Project Weather Report

Sometimes, your sponsors or management (or even clients) want to

know how things are going daily. That’s micromanagement. But, peo-

ple tend to micromanage when they don’t have data or when they have

data they can’t understand. If the data in your project dashboard is at

too low a level for these folks, they will keep asking you for informa-

tion. Remember, senior managers think in high-level bullets, and not

too many of those bullets. I’ve used a weather report8 for reporting sta-

tus to those folks who want details but not at the level of the project

dashboard.

Most often, I’ve seen these managers micromanaging during the final

testing, so I’ve seen weather reports more often based on data from

the testers. However, if your managers are trying to micromanage your

project, generate a “balanced scorecard” (looking at the whole project)

weather report in addition to the project dashboard.

Project weather reports assess the state of the project to compare where

it is to where it should be. I’ve seen project managers use the traffic-

light model—red, yellow, and green—to denote the project’s state. The

traffic-light model shows today’s state and is easy to understand. But

for many projects, there are more nuances than a three-state traffic-

light model can supply.

Also, I’ve met a number of sponsors who want to know when the light

will turn green. Never is a politically incorrect—although accurate—

response. I’ve also met many project managers who either chose or

felt forced to choose to game the traffic light. They only had yellow

and green projects until the last week of the project, when the project

suddenly became red.

Projects tend to continue in the direction the team is heading—unless

the team or project manager takes specific action to change direction.

The weather-report model assumes that unless the project manager

and the team take some action, the weather will not get better. It’s

more difficult (but not impossible) to game the weather report, because

there are more states.

8. See http://www.stickyminds.com/s.asp?F=S10522_COL_2.

Report erratum

this copy is (First printing, June 2007)

http://www.stickyminds.com/s.asp?F=S10522_COL_2
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=241

USE A PROJECT WEATHER REPORT 242

Most senior managers want to see a weekly project status. Most of

those managers don’t want to wade through your project dashboard—

they want your quick assessment of project state. And, that assessment

needs to help you and your audience see where the project is and where

it’s headed.

A weather report gives you a quick perspective about the project—

where the project is vs. where it should be—the project “weather.” If the

weather declines over time and nothing is done to resolve the issues,

one could predict that the project will continue to get worse (forecast

future project weather).

Define Weather Report Icons with Care

Since the traffic-light model of project status doesn’t have enough

states, make sure you define what each weather report icon means for

your organization. You can tailor the definitions to your organization’s

needs. Here’s a set of definitions that works for one of my clients:

Sunny

The project schedule is on target.

Partly Cloudy

There is minor project schedule concern, but the schedule

can be met.

Overcast

There is schedule concern; the schedule can be met with

extra efforts.

Cloudy

The current schedule or feature set is highly risky.

Rainy

The schedule or feature set cannot be met under current

project conditions.

Severe

We cannot meet the project schedule or the desired feature

set.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=242

USE A PROJECT WEATHER REPORT 243

Why do I recommend you use Rainy and Severe? Rainy means “Hey,

senior management, let’s talk. We can’t do what you want, but we still

have room to maneuver. We can drop some features, possibly add more

people (see Section 7.5, Know When to Add More People, on page 145),

extend the schedule, or somehow replan this project.” Severe means

“We blew our opportunity to replan this puppy. We will keep working

until you pull the plug.”

A Tale of Traffic Lights and Weather Reports

Ben was a project manager on a six-month project that had more than its

share of problems. Of the twenty people on the project, one had suddenly

gotten married. One pregnant developer had to be on partial bed rest. One

tester broke his leg skiing. And of course, the customer for this project

was a Very Important Customer, who wanted several more features.

Ben described the project state as yellow for the last three months. They

had another six weeks left in the project. Ben explained to the Very

Important Customer and to his management that the project was at risk

for a couple of the new features. Yes, the project team was working hard.

They were doing everything in their power to finish on time, but they

weren’t sure they could make it. Every status meeting, Ben’s manager

and Very Important Customer slapped him on the back, assuring Ben

they had faith in him.

Ben decided to try using a weather report at the next status meeting. He

described the project as Cloudy. “Cloudy? Do you mean you can’t do this

for me?” boomed the Very Important Customer. Ben’s manager suggested

a quick break and took Ben aside, “Ben, what do you mean? The status

has been yellow all along. You always manage to make something happen

with the yellow projects.”

Ben explained that although other projects had been yellow before, they

hadn’t been this close to not being done. “And we need some good luck.”

The Very Important Customer asked what else Ben needed and offered

the use of his lab and testers as early as next Monday if that would help.

Ben explained that it would because they could start testing the

already-completed features and continue to test in parallel with

development. They made the date, missing only one of the extra features

the Very Important Customer desired.

In this case, traffic lights lulled the sponsors into believing Ben was just

being pessimistic, instead of realizing what the issues were. Here, the

weather report assisted the sponsors into a discussion of what the issues

were and how to solve them. By changing the status representation,

weather reports can do the same for you.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=243

USE A PROJECT WEATHER REPORT 244

Say you’re on a project that has few risks and is proceeding on sched-

ule. You’d give that project a full sun.

But imagine your risk list is increasing daily, and you’re not sure if

two features will be completed on time. Although the schedule hasn’t

yet slipped, you are sure it will. Say it’s early in the project, and your

test team cannot run—never mind run successfully—the number of

tests they thought they could. You’d probably give the project a Partly

Cloudy designation. After several weeks of Partly Cloudy, you might

move to Cloudy if the developers and testers are still not making enough

progress.

And if the project risk list is increasing, the developers are spinning

their wheels, and you’re finding more and more defects, you might

select Rain.

The weather-report model uses assessment of the project data to pre-

dict project progress, as if the project had a season. The prediction

arises from our experience with the weather; seasonal weather doesn’t

change much day by day. Even if there are days with rain, snow, or

abnormally high or low temperatures, the weather generally continues

on as expected for the season. A project progresses in the same way.

You might encounter a problem you can fix on a project, but if you

encounter problem after problem, you’re not going to stay with your

original assessment. As weather icons change (or remain the same),

readers will be more aware of the project’s status and might want to

understand the dashboard data in more depth.

Build Credible Weather Reports

Weather reports can lose credibility if they change dramatically from

week to week, unless something dramatic has changed for the project.

Problems that could change a weather report in one week include los-

ing a significant percentage of people to other work, a vendor missing

a deadline, or realizing late in the project that the architecture won’t

support the planned feature set.

Another way to hurt credibility is to use less-than-professional weather

icons, especially if your managers care about how things look. In the

same way your project dashboard needs to be clear to your readers, the

weather report icons need to add to your credibility, not diminish it.

If you’re already gathering a variety of project data—schedule data,

velocity charts, defect trends, test coverage, people assignments, and

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=244

USE A PROJECT WEATHER REPORT 245

risk lists—then the weather report is your best assessment of the over-

all picture. If you’re not collecting that data, resist the temptation to

use a gut feeling for the weather report. Instead, use progress toward

release criteria for the weather report.

Publish Weather Reports Weekly

The goal of the weather report is to help people understand the project

assessment and avoid surprises. Projects with more than two months

left should have a weekly weather report. At some point—if the project

state is still changing rapidly—or near major milestones, the weather

report might need to increase to a couple of times a week.

Weather reports are one more tool in your project status arsenal.

Choose a project dashboard as your first measurement and status

reporting technique, but use whichever approaches will fit your organi-

zation and context.

Remember This

• Use velocity charts and iteration content charts as your first

choice.

• Data is a tool for your use, not an end in itself. Remember, the

charts should serve you.

• If you can’t acquire data you think you need, you have a bigger

problem than the data. Fix that problem first.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=245

Chapter 12

Managing Multisite Projects
Your project is bigger than seven or eight people all sitting together.

In fact, you’re managing several teams in several locations. Those loca-

tions could be as varied as down the hall, on different floors, in different

buildings within a few miles of each other, or in multiple countries with

multiple time zones and multiple cultures. Welcome to the world of geo-

graphically distributed projects: multisite projects.

Once your project has more than one site, the communication alone

makes the project much more complex. And the more global your pro-

ject is, the harder it is. Not only are the time zones different, but the

culture for each team is different.

You might not have a global project. You might be lucky enough to have

two teams separated by just one floor. Don’t fool yourself—you have

a geographically dispersed project. Any project where the people are

separated by more than 30 meters (about 32 yards) is a geographically

dispersed project [SR98].

You might not have the same cultural problems as teams across mul-

tiple physical sites or time zones, but you do not have a collocated

team. (If part of your team is an elevator ride or stairs away from the

rest of the team, you have a geographically dispersed team [TCKO00].)

Anytime that the distance or time zone discourages or prevents peo-

ple from communicating, you are separated. You’ll need to manage the

team, cultural differences and all, as a multisite project.

WHAT DOES A QUESTION COST YOU? 247

12.1 What Does a Question Cost You?

Cockburn suggests the costs for even walking down the hall are very

high.1 You might never have thought about it this way, but you might

be literally paying a price for having teams split among several loca-

tions. Let’s assume a developer (fully loaded) earns $500/day. That’s

$1.04/minute. How much does it cost that developer to get a question

answered? (The costs are similar for other team members, but teams

tend to have more developers, so the example is developer-centric.)

In a collocated team, the cost is reasonably low. When a developer has

a question, they either work with the person who can answer the ques-

tion or sit down the hall from the person who can answer the question.

If the developer is working with the person who can answer, there’s no

lag time for the answer. The cost of a question is $0. Imagine the devel-

oper needs a question answered from someone down the hall. Getting

up, walking over to the other person, asking the question, and getting

the answer takes three minutes. That’s a cost of two minutes for one

developer to walk and ask the questions, plus one minute for the other

developer to answer, a cost of $3.12. If the team has ten questions a

day, that’s a total of thirty minutes a day lost to the project and a cost

of $31.20. (I’m not factoring in the additional time lost because of inter-

ruptions on either developer’s part. See Section 16.7, Explain the Cost

of Multitasking Technical Work, on page 325 for more on that cost.)

But as soon as the people have moved to another floor, two things hap-

pen. The cost of asking the question escalates. First, the walking time is

longer. Because the walking time is longer, developers wait much longer

to ask questions. Or they muddle through with their assumptions, not

checking with anyone. Even if we don’t account for the cost of the ques-

tions that are not asked, the questions that do tend to get asked are

more complex. The questions need to justify the effort of walking to the

other floor to find the answer, so the questions take longer to answer.

As a result, the time to answer a question is closer to three minutes.

Instead of a developer dealing with a two-minute interruption, the new

developers have an eleven-minute interruption. And the person with the

answer has a three-minute interruption. The cost is fourteen minutes,

a total of $14.56 per question. Let’s assume that developers ask only

five questions a day. The total time lost from the project is 70 minutes,

at a cost of $72.80/day.

1. See http://alistair.cockburn.us/index.php/Harnessing_convection_currents_of_information_060.

Report erratum

this copy is (First printing, June 2007)

http://alistair.cockburn.us/index.php/Harnessing_convection_currents_of_information_060
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=247

IDENTIFY YOUR PROJECT’S CULTURAL DIFFERENCES 248

Over the course of a week, that’s 350 minutes, almost six hours—

darn close to a person-day of work. The monetary value of that time is

$364. Every week. Without even trying, this project is losing a person-

day every week. The actual time loss estimates here are conservative.

There’s a good chance that your project is losing even more time and

money.

Maybe you’re saying, “Oh, we just IM everyone. We don’t need to see

people.” Sure, some of the questions can be answered with IM. But not

all. And not the ones that take a long time to answer.

If you’re a project manager, do whatever you need to do to move the

entire team together.

12.2 Identify Your Project’s Cultural Differences

The cultural differences might not be obvious if all the sites are in

one country, but they exist. I once managed a project where we had

a Boston team and a Los Angeles team. We were all part of the same

company, but the practices each team used was different. Both teams

did nightly builds, but in Boston, everyone checked in their code every

day (continuous integration). In Los Angeles, they checked in their code

when it was ready for other people to use (staged integration). The dif-

ference became most obvious when one of the Los Angeles develop-

ers was frustrated with one of the Boston developers. “How could you

release code into the code base that you know doesn’t work?” The reply

was, “How can you make us wait to see what you’re thinking?”

Same company. Same products. Different expectations of behavior.

That’s one of the many ways cultural differences appear.

Expect cultural differences in what people believe they can discuss, in

what’s rewarded, and in how people treat each other. The example of

continuous vs. staged integration is an example of what’s rewarded by

the functional managers and how people treat each other. In Los Ange-

les it was unacceptable to promote “unfinished” code into the common

code base. In Boston, it was unacceptable to hang onto your code for

more than a day before checking it in. Cultural differences appear even

within the same social culture. Different teams in different locations

develop different customs—their own culture.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=248

BUILD TRUST AMONG THE TEAMS 249

When you manage a multisite project, be prepared for all kinds of cul-

ture clashes. Remember, the entire project doesn’t have to use all the

same life cycle, approaches, and practices, but the entire project team

must use complementary life cycles, approaches, and practices.

12.3 Build Trust Among the Teams

The most important management technique for multisite projects is to

help the teams learn to trust each other.

Teams who have common commitments and interdependent deliver-

ables learn to trust each other as they complete their deliverables and

follow through on their commitments. Your job is to help each team

develop their commitments and define their deliverables. You can man-

age the schedule and delivery of interdependent pieces in three ways:

make sure each site has complete deliverables to the project, make sure

your teams can cooperate with each other, and help people meet each

other in person.

Make Sure Each Site Has Complete Deliverables to the Project

When you organize the project, assume each site will complete some

unique set of features. Yes, the deliverables are interdependent—they

all need to exist in the final product—but each team has responsibility

for a functioning deliverable. If you have some developers in one place

and testers in another place trying to create working software, you are

likely to be disappointed. The necessary communications take too long

or don’t exist at all. Single-function teams in different sites have this

problem.

In addition to not creating single-function teams, don’t create team

“bits” of developers (or testers or writers or whomever) in multiple

places. If you have two developers in Chicago and two developers in

Paris, you’ve got team “bits.” It is too hard for people to collaborate on

interim deliverables when they’re spread over multiple sites. That guar-

antees blaming each other when things don’t work. It is even worse

when you have developers in one location, testers in a second location,

and writers in a third location.

Make sure that each site has a complete team, which can deliver a

complete deliverable to the project—fully running and tested features.

If you don’t have enough people in one place to make a team, think of

ways for each person to stay in close contact with the rest of the team.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=249

BUILD TRUST AMONG THE TEAMS 250

Joe Asks. . .

Developers in One Site, Testers in Another?

Your management has decided your testers will be separated
from your developers. What do you do to succeed?

Organize groups of people across the sites who are responsible
for features. “You three developers from Milwaukee and you
two testers from Bangalore—you folks are responsible for this
widget.” You’ll need to help the teams build trust and under-
stand how to work together. It’s hard.

If you have any choice, reject this option. Opt for cross-
functional teams in each location.

Staying in Close Logical Proximity

by Guy, software developer, Switzerland

I’m the only developer in a sales office. I’m working on a project because I

have specific skills that the team needs. But I’m the only one here. We

have people in Paris and London, too.

To combat my “solo-ness” and make me more of a part of the team, we

have an open Skype connection to each other all the time. We each have a

camera, so everyone can see what we’re doing. It took me a while to get

used to be on camera all the time. It’s not perfect, but it’s better than

nothing.

We stay in close logical contact, if not physical contact. That certainly

helps me deliver my parts. It would be close to impossible without our

contact.

Make Sure Your Teams Can Cooperate with Each Other

As the project manager of a multisite team, your job is to make sure the

system doesn’t keep people from cooperating. As soon as the teams are

in competition with each other—especially if they’re concerned about

keeping their jobs—you’ll be lucky to get any product out the door.

Help People Meet Each Other in Person

If it’s financially feasible, bring everyone on the project together at one

site for a few days of working together. In addition to working together,

include some social activities, such as meals, so people from one site

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=250

BUILD TRUST AMONG THE TEAMS 251

Interdependent Teams Cannot Be in Competition with Each
Other

I once worked with an organization who was trying to reduce
the cost of development. They decided the best way to reduce
cost was to use lower-cost developers in another part of the
world. They had four development teams across Europe and
Asia. The European managers were told that if they missed their
deadlines, all the work would move to Asia.

The European managers weren’t stupid. First, they cherry-
picked the features, making sure they took the features they
knew they could complete in a short time. The Asian manager
realized this after the second time they met to divide up the
features, and he was able to obtain some of the not-impossible
features.

The European managers started encouraging their architects
to design by whiteboard (only) and email small fuzzy pictures
of the whiteboard to the Asian developers. The European archi-
tects fulfilled the corporate dictum, “Send copies of your archi-
tecture to every site,” but they ignored the intent of the dictum.
Even increasing the size of the picture still left the Asian team
confused by the architecture design.

The VP was concerned by the project’s slow pace. After talk-
ing to the managers, I explained to the VP what one of the
managers had said, “I won’t help the Asian project team if you
insist at putting my developers at risk. I’ll make sure we do what
we need to do, and that’s it. You want cheaper development?
Stop pitting us against each other.”

This problem was obvious to an outsider. But it was hard to see
from the inside, primarily because no one trusted anyone else.
Putting teams in competition to keep their jobs is a no-win situa-
tion. It destroys trust, encourages people to think of themselves
first (and only), and reduces the project’s output. Sometimes,
the output is not just zero; sometimes people destroy already-
achieved features because they were “fixing” something.

Make sure your multisite teams have a common goal—that of
the project or program. Never pit team against team.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=251

USE COMPLEMENTARY PRACTICES ON A TEAM-BY-TEAM BASIS 252

have a chance to learn about the humanity of the people from other

sites. This is different from mandatory fun, as in Section 7.2, Help the

Team Jell, on page 137. This time together will help the team commu-

nicate better when they return to their home sites.

If you can’t bring the entire teams together, bring the project managers

and technical leads together. The more people, the better. But even a

couple of people from each site who meet each other and learn about

each other are more likely to trust each other after a few days of work-

ing together than people who don’t take the time to meet. And, once

everyone has met each other, continue to allow periodic travel to and

from different sites to maintain that relationship.

You’ll need to visit each site periodically as a project manager of a mul-

tisite team. You might not need to visit each site every week, or even

every month. But make sure you spend some time at each site. I like to

conduct project/program team meetings from each site, just so people

can see me as I run the meeting. It helps them “see” me when I’m back

at my home office.

Once you’ve started building trust, you can help a multisite project

succeed. But if you haven’t started the project thinking about how to

build trust, you’re going to need a lot of luck (and a few miracles) to

make your project successful.

People need to meet so they have a context for how people talk in IM

or in email. Imagine you see this question in email: “Anything new with

you this week?” Try an experiment. Put a different emphasis on each

word. With the emphasis on anything, people might hear sarcasm or

frustration. With the emphasis on new, people might hear frustration

or impatience. With the emphasis on you, people might hear you per-

sonally or the project team or your part of the world. The farther away

people are, the more likely they are to misunderstand you; they can’t

hear the context of your conversation.

12.4 Use Complementary Practices on a Team-by-Team Basis

Complementary practices include the project’s life cycle and any devel-

opment, testing, or other management practices the team uses. It does

not work for one team to use a waterfall life cycle, delivering everything

at the end, and to have another team use an iterative life cycle, looking

for periodic feedback.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=252

USE COMPLEMENTARY PRACTICES ON A TEAM-BY-TEAM BASIS 253

Joe Asks. . .

Do I Have the Authority to Ask Each Team to Work in a
Specific Way?

You might not think you have the authority to make sure the
team is using complementary life cycles and practices. You do.
You have to—you’re the project manager. If you don’t think you
can ask people to work in a specific way, ask for results. “I don’t
care how you accomplish this, but we need that feature devel-
oped, integrated, and tested so the Manchester folks can use
it in two weeks.”

Use Complementary Life Cycles

First make sure each subproject team is using complementary life

cycles. Don’t use a serial life cycle for a multisite team. It’s too hard

to obtain feedback early about the project, and the early milestones

are too easy to game. Serial life cycles for multisite projects encourage

schedule games such as the one discussed in Section 6.13, Schedule

Chicken, on page 128.

I’ve been successful when each team used a staged-delivery life cycle

across the project. I’ve also been successful with some teams using

early iterations to prototype and obtain feedback and then moving into

some form of incremental development. For one project, we timeboxed

an eight-week iteration called “Prototype Exploration.” Each project

team prototyped some of their major features. We then spent two weeks

evaluating the prototypes and the architecture that emerged from their

prototypes. We moved into three-week timeboxes to implement and test

each feature, continually integrating at the end of each timebox. This is

a combination of an iterative life cycle (the prototype exploration part),

followed by an agile life cycle (the timeboxes part).

A colleague is managing a project where the U.K. team is using two-

week XP iterations, the Israeli team is using four-week Scrum iter-

ations, and the California team is using a staged-delivery life cycle.

They have to carefully manage who implements what when (which they

do using the concepts in Section 16.6, Build a Product Backlog, on

page 321), and it’s working for them.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=253

USE COMPLEMENTARY PRACTICES ON A TEAM-BY-TEAM BASIS 254

I don’t know how to make multisite projects meet the desired release

date with all the features using a serial life cycle, unless you don’t care

about defects. If you care about time to release, the feature set, and

the level of defects, don’t use a serial life cycle. At least use iterations,

if not some combination of iterations and increments. Especially for a

multisite project, the developers and testers need feedback as early as

possible.

Define the Milestones and Handoffs for Each Team

Each project’s life cycle doesn’t have to be identical, but the outputs

of each group must match the expectations of the other groups. This

matching of expectations reflects complementary practices among the

project groups.

As you organize the schedule, make sure everyone agrees on the mean-

ing of important terms and milestones.

Define Each Term’s Meaning

Project terms vary from team to team as much as practices do. Many

teams have their own interpretations of terms such as fix, verify, feature

freeze, and code complete. You don’t have to be part of a multilanguage

team to have trouble with terms.

I once managed a second-line support group for a multisite global

team, in which there was some confusion about the term fixed. The

job of the Boston-based group was to fix the defects that the first-line

support group could not fix and that were time-critical for our cus-

tomers. We had a recurring problem with two of our European first-line

support groups. The Europeans repeatedly promised imminent fixes

to very high-profile customers, because they thought the defects were

fixed. However, the defect fixes were not complete. The Boston group

was using the notation “Fix” for defects that had been investigated, the

cause known, and a fix was in test. “Verified” was the notation for fin-

ished fixes—fixes that had been tested and verified as actually fixing

the problem and not breaking anything else. It never occurred to our

European counterparts that “Fix” was not truly fixed. Just as it never

occurred to the Boston group that “Fix” was a final state, instead of

“Verified.”

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=254

USE COMPLEMENTARY PRACTICES ON A TEAM-BY-TEAM BASIS 255

Other terms some teams have found confusing are any project mile-

stones containing the words freeze or complete, such as feature freeze,

code freeze, and code complete. (This is another good reason not to use

a serial life cycle.) I once worked on a project where the U.S. developers

thought code complete was the first time they froze the code to create

a build. The Russian developers thought code complete was the last

freeze to create the final build to generate the production master. The

technical leads kept arguing during schedule development, until they

realized they weren’t using the same terms.

Define What the Milestones Mean

Not only does the project team have to agree on what the project’s terms

and milestones are, you’ll need to make sure everyone agrees on what

the milestones mean. Many years ago, I was a program manager, try-

ing to bring together project components from Boston, Los Angeles,

and Japan. The technical leads and I were working on the schedule.

Everything was smooth until we tried to agree on the first milestone:

feature freeze. To the Boston team, feature freeze meant that the low-

level design was complete. However, to the Los Angeles team, feature

freeze meant that they had a good idea of the high-level design. The Los

Angeles group couldn’t understand why Boston would want complete

module interface designs—Los Angeles wanted maximum flexibility to

add features to the product as late as possible. The Boston and Japan

teams wanted to define the features early, and freeze the interfaces

as early as possible, to allow for the customization of the product for

Japan.

I brought the technical leads together to talk about what each group

needed and when. Initially, the Japanese technical lead was reticent

to express his views, concerned that he was pushing his perspective

on the entire team. We revisited the project requirements: release the

English and Japanese versions of the product within the same calendar

month, and create a public API for the English language market. We

didn’t have time to retrofit features in for the Japanese market.

Instead of pushing for a resolution, I asked each team lead to talk about

their problems and what solve their problems. The Boston team needed

to freeze the API in time for the Japan team to develop their customiza-

tions and for the writers to document the product. The Los Angeles

team needed to create enough product infrastructure that they wouldn’t

have to change the API for the next release. The Japanese team needed

to modify the GUI and the data structures for the Japanese market.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=255

USE COMPLEMENTARY PRACTICES ON A TEAM-BY-TEAM BASIS 256

The later Boston and Japan defined the features, the harder it was for

the Boston and Japanese developers. The earlier the Los Angeles team

defined the features, the harder their job was. Once we realized that we

were all on the same project but we had different goals, we were able to

better articulate what we wanted at which time.

As a project team, we were able to develop our major milestones to-

gether by focusing on interim results (what did each group absolutely

need by when?). It took us about a week to come to a consensus about

what each milestone meant, especially “freeze” milestones, and how we

knew we’d met those milestones. Not everyone liked the whole schedule,

but we could all live with it.

I call this technique of defining milestones by the results you want

discuss and publish. Some teams chose to define interim milestones in

addition to the milestones defined in the overall project plan. When the

teams agree on what each project milestone means, you can develop a

joint project schedule and understand what you have to do to achieve

those milestones.

Define How the Team Will Know the Team They Met a Milestone

When managing multisite projects, don’t mandate how each team

should work to achieve their deliverables. Clarify the results you want.

Already-established teams generally have some built-in practices,

including work product review, configuration management, product

build, product test, and others. For example, although I strongly believe

in nightly builds and smoke tests, I don’t demand each project team

perform nightly builds. Instead, I focus on defining the results I want

and managing the risk of achieving those results. I ask for Big Visible

Charts, posted on an intranet site that every team can access.

Say you’re managing a project with three sites: Manchester (England),

New York, and San Francisco. You’ve got your hands full with the time

zone problems, but you and the team leads have agreed on a stan-

dard time to have conference calls. You’re using four-week timeboxes

to complete features. And you’ve worked with the New York team before.

You’re a little concerned that they don’t know how to finish the testing

within the timebox. You need an approach that will help you and each

team know that they’re finishing the work within the timebox.

Since you want to manage by looking for results, not what people have

done, you can ask the team leads to explain their testing status on

specific days of the week, so you—and that particular team—can know

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=256

USE COMPLEMENTARY PRACTICES ON A TEAM-BY-TEAM BASIS 257

whether their testing is maintaining the same pace as development. You

can also ask the team to publicly post their test status with a testing

dashboard. See Section 11.2, Display Qualitative Data, on page 234 for

one approach to show progress.

When the team is responsible for some Big Visible Chart, the team is

more likely monitor it and their progress.

Tip: Manage for Results

For any team, manage for results, not for approaches or prac-

tices. This is especially critical for multisite teams, where you

can’t manage by walking around and listening [RD05].

Use retrospectives to help people assess their practices and

decide what to continue or change. But don’t mandate a par-

ticular way of working. Be clear on the results you want.

Discuss How the Team Will Review Work Products

After you agree on the milestones, attack the subject of technical re-

views. All projects benefit from reviews. If people aren’t collocated, you

might have to suggest a variety of approaches to reviews. (I have never

seen pair programming work across physical locations. Sure, it can

work once in a while, but I haven’t seen it as a sustainable practice

where some people are in one location and other people are in a sepa-

rate location.)

And especially on multisite projects, technical reviews provide an addi-

tional communications framework and a context in which to discuss

the project issues. Some people are uncomfortable talking about the

projectwide issues. Those people might be less reluctant to discuss the

technical side of the project, and requirements and architecture reviews

provide a framework for them to air issues. Given your life cycles, con-

sider how to schedule requirements and architecture reviews for the

project. Don’t forget about other documents if you have them, such as

design or functional specs, and especially code.

This is why an agile life cycle is so helpful for multisite teams. The life

cycle enforces the idea that reviews are necessary, as well as makes

sure all development (including testing and documentation) is com-

pleted during timebox.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=257

USE COMPLEMENTARY PRACTICES ON A TEAM-BY-TEAM BASIS 258

Understand the Effects of Time Zones on Team Progress

In the early days of multisite teams, many senior managers
thought, “I have teams working across the globe. They can
make progress on my project twenty-four hours a day.”

Don’t drink the Kool-Aid. It is possible to make some progress
with teams all over the world, assuming your project is not
responsible for considerable innovation and the cost of devel-
opment doesn’t matter.

The more innovation required, the more accessible the project
team members need to be. If Dan (in San Mateo) has a great
idea at 11 a.m. and wants to share that idea with Vijay (in
Bangalore), it’s 12:30 a.m. the next day. Dan and Vijay they
need to find time to discuss it together. Dan is not going to call
Vijay then. He’s going to wait. That costs the project time and
money; see Section 12.1, What Does a Question Cost You?, on
page 247.

The more critical time to release is, the worse the effect of time
zones on your project. If you are stuck with teams all over the
world, move to short iterations with each team responsible for
their deliverables, so they have as few questions as possible.

The more time zones in your project and the more cultural dif-
ferences in your project, the harder it is to make multisite devel-
opment work.

On multisite projects, people across sites rarely have the ability to even

informally pair. If you create a review mechanism anyone can use,

you’re more likely to have a solid product than if you don’t.

If you initiate technical reviews at the beginning of the project, the indi-

vidual project groups are more likely to continue with technical reviews

for their pieces of the project. I do this by having charter, plan, and

schedule reviews at the beginning of the project. Even if you don’t want

to have the project teams review all of your work, hold a programwide

review of release criteria. Ask them how they will turn the program’s

release criteria into their release criteria for their part of the project.

When you encourage your project team to review your work, you are

creating an environment that encourages other people to ask for review.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=258

USE COMPLEMENTARY PRACTICES ON A TEAM-BY-TEAM BASIS 259

That environment is great for any project and is especially useful for

multisite teams. The more work product review, the more people are

likely to understand how their piece fits into the whole and how the

whole product is supposed to work.

You might find that your multisite project requires more formal require-

ments and architecture reviews than other projects; the formalism

helps reduce the risk of communications problems. Some people might

not comment except in a formal review mechanism—some people might

not realize you want them to comment unless you have a formal review

mechanism. Even if people are willing to comment on requirements and

architecture, if you don’t make time in the project, the people from vari-

ous teams will not be able to comment. After all, on an multisite project,

you’re not going to run into each other in the cafeteria.

You can use formal requirements and architectural reviews to ensure

that everyone on the project understands the project objectives. The

formal reviews should include at least one technical representative from

each project team. These participants agree that the requirements are

correct and can be implemented by the team.

For iterative and agile life cycles, I request that the requirements and

architecture discussion be limited to this iteration’s requirements and

architecture. For incremental life cycles, I request that the discussion

be limited to this deliverable or set of deliverables across the project

(this staged delivery piece) and that the team will review the next piece

before implementing the next piece. Ask the teams to focus on reviewing

the interfaces, not the internals of the feature.

Review and inspection of documents across the world (or even just

thirty miles away) is not easy. I have encountered problems with email-

only reviews and inspections of requirements and architecture docu-

ments in these areas:

• The people who first read the work product “direct” the discus-

sion. Some people are too shy to bring up their issues electroni-

cally. Those shy people don’t participate, reducing the value of the

review.

• Some people don’t read the product once other people start com-

menting. They assume someone else will take care of the issues.

• It is difficult to get people to agree on a consistent commenting

style. If you can arrange an early entire project-team meeting in

one location, this is one problem the team could address.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=259

LOOK FOR POTENTIAL MULTISITE PROJECT AND MULTICULTURAL PROBLEMS 260

What’s different about these problems in multisite projects? The more

sites and the more time zones apart the participants are, the more

the cultural differences show. And, the harder those difference are to

resolve. Also, people tend to use written documents, including email, as

a CYA (which stands for cover your tush) technique, instead of a helpful

review. If you want to resolve issues without threatening anyone, talk

to the other person. Again, time zone issues make this difficult.

The cultural differences (specifically what people feel free to discuss and

therefore the focus of the discussion) cannot be bridged without some

audio contact. I prefer face-to-face discussions, but when that’s not

practical, videoconferences might work. For a team with a successful

history, conference calls might be adequate. In my experience, the way

people use and understand language to write specs and their comments

tends to prevent effective email reviews. This is especially true when

most of the project teams are native English speakers and a minority

are not native English speakers. I prefer to get the technical people

together in person to review requirements and architecture documents.

I find that the travel cost is significantly less than the potential risk of

product failure.

If you’re working on a very short project and are willing to take the risk

of inadequately meeting the needs of some potential customers, con-

sider some of the Internet-based tools for meetings, coupled with an

excellent audio connection. Make sure the moderator is a skilled meet-

ing facilitator, especially when it comes to conference calls. (See Sec-

tion 10.10, Manage Conference Calls with Remote Teams, on page 208.)

12.5 Look for Potential Multisite Project and Multicultural

Problems

Multisite projects might well have their share of technical problems.

Multisite projects tend to be larger and require program as well as

project management. In my experience, any strictly technical or prod-

uct problem solving is secondary to managing the people interaction

issues. When managing multicultural projects, look for problems in

these areas:

• The teams in each site might define their milestones and hand-

offs differently. That leads to the teams misunderstanding their

commitments and handoffs to other groups. Sometimes the dif-

ferent definitions are because of a lack of understanding of the

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=260

LOOK FOR POTENTIAL MULTISITE PROJECT AND MULTICULTURAL PROBLEMS 261

actual words. Sometimes, people differ on their meaning of com-

mitment—is a commitment a best-effort agreement, or will the

team do whatever it takes to meet the commitment? Whatever the

cause, different meanings for milestones can be overcome with

complementary product development practices, especially in pro-

ject planning, project scheduling, and technical review.

• Expect to see uneven project communications and reporting of

project state, especially at the beginning of the project. Not being

able to see what other people are doing can lead to lack of trust

in other teams. If you don’t know what other people are doing,

you might not think you can trust them. Especially when geogra-

phy and culture separate teams, this lack of trust can be a huge

obstacle to project success.

• Especially with teams whose native languages are different, you

might not know what other people are saying. Language differ-

ences and everyone’s relative ability to use one common language

can create many problems in a project. What language are you

using as the default language? What kinds of ambiguities do you

have in that language? How fluent are all the project participants

in the project’s language? Is everyone willing to talk to everyone

else, or are there cultural mores that make some people uncom-

fortable talking to certain teams or team members? Make sure that

the language you use for written and spoken communications is

adequate for everyone.

• There can also be communications problems with regard to hol-

idays, vacations, and overtime. Be specific about what vacations

mean, the impact of everyone’s national holidays on the project’s

schedule, and general expectations about overtime—these will all

affect how the project participants work with each other and report

on project state.

• Make sure everyone knows what the “end of the day” or some other

time for a deliverable is. For example, 5 p.m. in Boston is 2 p.m.

in California and some other time in Taiwan or India, depending

on the time of year.

• Uneven ability to use common tools, such as the configuration

management system, defect-tracking system, and the project’s

intranet. The tools encourage sharing designs, source code, tests,

and other project information. When some members of the project

team can’t use the project resources, they might resent the people

who can use those resources. In addition, they might stop trying

to share their work with the rest of the project team.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=261

AVOID THESE MISTAKES WHEN OUTSOURCING 262

Interim retrospectives (see Section 8.2, Conduct Interim Retrospectives,

on page 157) can help identify—and solve—these problems and others

that are particular to your project. If you can’t bring everyone together,

use retrospectives at each site, and gather the site project managers to

solve the cross-site problems together.

12.6 Avoid These Mistakes When Outsourcing

I wanted to call this section “How to Outsource Successfully.” But I

can’t. I can’t claim to have experienced true success on outsourced

projects. I have managed outsourced projects where we met the date

but did not save money. I’ve managed outsourced projects where we

saved the money but did not deliver what the customers really wanted.

And I’ve rescued too many outsourced projects where the defects over-

whelmed the project team, the schedule was wishful thinking, and the

project cost 200–500% more than the hoped-for budget.

If you have to use an outsourced team as part of your project, keep

these tips2 in mind:

• Train the outsourcing staff. The outsourcing staff needs to know

how the product works, both from the internals and from the per-

spective of knowing the problems the customer wants to solve.

• Qualify the vendor. Does the vendor have domain knowledge? Is

it financially viable? Are there contractual safeguards in place to

keep control over the intellectual property you give it?

• Assign one of your best project managers as your internal project

manager. Sure, the outsourcer has a project manager. That person

will need to talk to people in your office to make sure their team

understands deliverables and handoffs around the organization.

• Develop a trusting relationship with a manager or the project man-

ager at the outsourcer to help you understand the reality of what’s

happening in the project.

• Plan for your in-house staff to shift their work hours, as well as

the outsourcing staff, so that people can make time to talk to each

other. If you don’t shift enough people to work earlier or later in

the day, then someone across the world who has a problem won’t

have someone to talk to. Too often, when an engineer at least eight

time zones away needs information, no one is in the office, and no

2. http://www.computerworld.com/managementtopics/outsourcing/story/0,10801,84847,00.html.

Report erratum

this copy is (First printing, June 2007)

http://www.computerworld.com/managementtopics/outsourcing/story/0,10801,84847,00.html
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=262

AVOID THESE MISTAKES WHEN OUTSOURCING 263

one can be reached. Instead of round-the-clock work, the work is

stopped until the engineer can determine the answer.

This is a lot to ask of people. You’re asking people to change their

work hours to accommodate people who might be taking away

their jobs or who have taken away the jobs of people who used to

be down the hall. Don’t expect your staff to agree to this and stick

around—unless the economy is so bad they can’t find another job.

• Document the requirements. If your native technical staff can’t

read your mind about what you want in the product, how can

geographically distant, non-native English speakers understand

your requirements?

• Develop an appropriate change process. Especially if you have

development occurring in multiple sites around the world, you

need a clear change process to make sure only the changes you

want are allowed.

• Select outsource projects with nonvolatile requirements. If your

requirements change frequently and you need to check out the

evolving product with the user, development across the world

makes that much harder.

• Plan for each project to take longer and cost more, especially at

the beginning of an outsourcing relationship. My rule of thumb is

to increase the estimated time by 30% for the first project. Then

monitor the project to see whether you need to increase that esti-

mate.

• Insist that the outsourcing company keep the same team for your

project’s duration. Otherwise, the time you spent training their

people on your product is wasted, and you’ll have to start the

training process again.

• Make sure you have the tools, information systems, and processes

in place to support the outsourced teams. They’ll need access to

the source code, defect-tracking system, database or other plat-

form applications, builds, and so on—the same project tools that

the internal teams need.

• Verify that the people who said they’d be working on the project

are the ones actually working on the project. U.S. firms have

been using the bait-and-switch approach to contracting for years.

Senior staff sell the project and then proceed to the next potential

sucker—er, client—while new college grads and other underexpe-

rienced staff work on your project.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=263

AVOID THESE MISTAKES WHEN OUTSOURCING 264

Well, guess what? The non-U.S. outsourcing firms have learned

the same technique. If you don’t verify who is working on your

project, your project could be the learning ground for their staff to

build their resumes.

Remember This

• Any team that’s not collocated on the same floor within about

thirty feet is a multisite team.

• Managing multisite teams takes longer and more facilitation skills

than collocated teams.

• If you can’t build trust with remote teams, your project cannot

succeed.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=264

Chapter 13

Integrating Testing
into the Project

Testing is more than system testing or unit testing. There’s a whole

range of testing you need to consider for your project. You might need

unit testing with stubs if you have product with firmware or hardware

or a number of other systems to integrate. You might need several-

features-together testing before final system testing. Because each pro-

ject is unique, you’ll need to think about the testing required. Use your

project’s risks to decide what kinds of testing you need.

I’m suggesting that you, the project manager, initiate the planning for

testing. If you don’t plan to integrate testing into the development, it

won’t happen. You’ll end up with testing as a separate set of project

tasks and tasks that will start later, take longer, and turn whatever life

cycle you have into a serial life cycle, extending the project and delaying

feedback to the developers. Concurrent development and testing will

help you integrate testing from the beginning of your project.

13.1 Start People with a Mind-Set Toward Reducing Technical

Debt

It’s the first day on a new project, and your team is assembled and ready

to go. You have everything in place—everything except the require-

ments. You can start the project team fixing defects from a previous

release. It doesn’t even matter whether the product they are working

on is a predecessor of the one on which they will be working.

REDUCE RISKS WITH SMALL TESTS 266

The key is to help the developers and testers start the project thinking

about the consequences of taking shortcuts in their practices.

If you’re working on a follow-on release, the team’s work will pay down

technical debt (see Appendix B, on page 343). If you’re working on a

new product, you can assign some of the team to prototyping activities

and some of the team to use their defect-fixing activities as a way to

learn what temptations to avoid in this project.

If you decide to pay down technical debt first, explain your goal to the

project team. “We took a lot of shortcuts on the last project, and it bit

us in the tush. As you fix things, see which practices we want to make

sure to use on this project so we aren’t bit again.” You can even hold a

short retrospective [DL06] before the team starts the new work in order

to incorporate what they’ve learned from fixing problems.

13.2 Reduce Risks with Small Tests

Your project isn’t easy. You’ve got serious technical or schedule risk.

The wider variety of testing you use on your project, the more you can

reduce risks. If you need to choose just one type of test to begin with,

make it unit tests. The best way to implement unit tests is with test-

driven development (TDD), but if you can’t get your team to write their

tests before they write the production code, at least get them to write

the tests soon after writing the code.

The reason to choose TDD over any other kind of testing is simple: TDD

is actually more about design than it is about testing.

TDD has been around since the 1970s [Bro95]. It’s more accepted and

practiced on projects now, because it’s one of the core practices of XP.

But you don’t need to be practicing XP to use TDD. Any life cycle can

benefit from using TDD. See Section 13.3, TDD Is the Easiest Way to

Integrate Testing into Your Project, on the following page for more details.

Developers Write Code and Defects

Developers write code. (They also architect, design, and elicit require-

ments.) But some of them forget they also write defects. If a developer is

having a bad code day, it’s possible for a developer to write many more

defects than lines of working code [HT03].

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=266

TDD IS THE EASIEST WAY TO INTEGRATE TESTING INTO YOUR PROJECT 267

If your developers wait until the end of the project to find their defects,

they’re ignoring the earliest and cheapest feedback available to them:

unit testing their code. Unit tests, developed either just before writing

the code (test-driven development) or just after writing a few lines of

code, are the cheapest way to find and fix defects. It’s also a great pre-

vention technique for preventing more of the same defects (and waiting

until the end of development is expensive; see Section 11.2, Measure

How Much It Costs You to Find and Fix Problems, on page 230).

Even with the great compilers we have today, it’s possible for developers

to make coding mistakes. Unit testing will find coding mistakes, and not

just those caught by design environments or compilers.

Maybe your developers are saying, “Hey, we’re using a real high-level

language, so we’re not able to have memory leaks or any of those foolish

mistakes. We don’t need to unit test.” The higher level the language,

the more the developer can make logic mistakes. The worse the logic

mistake, the harder it is to find it on the system testing part of the

testing continuum. It’s much easier to find those mistakes with unit

testing.

There’s an even better reason to develop unit tests, especially when

a developer uses test-driven development. Those unit tests help the

developer design the system, not just discover defects. The act of writing

a little test before writing the code helps the developer see what to do

in the code more clearly.

Unit tests find defects and help a developer design the system more

cheaply than any other debugging mechanism.

13.3 TDD Is the Easiest Way to Integrate Testing into Your Project

You think integrating testing with development is a good way to go. And

you’re not sure whether your testers can manage to keep up with the

developers. But you know that if you don’t somehow integrate testing

with development, your project is not going to be successful. There is a

solution.

TDD will help you (the project manager and the project team) integrate

testing into the project. In fact, if you can’t depend on having dedicated

testers and dedicating testing machines, test-driven development will

dramatically reduce the testing risks on your project.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=267

TDD IS THE EASIEST WAY TO INTEGRATE TESTING INTO YOUR PROJECT 268

TDD follows this flow:

1. The developer (or pair of developers if pair programming) creates

a test for a new feature that has not yet been written. That test

should fail, because the code to implement the feature doesn’t

exist yet.

2. Then the developer/pair adds the simplest code that can make the

test pass.

3. The developer/pair reruns the test. If the code does pass the test,

the developer refactors to simplify the code. If the code doesn’t

pass the test, the developer fixes the code. During the fixing, the

developer refactors the code, revising it to make it simpler, faster,

more maintainable—preventing technical debt.

4. As the developer/pair continues, the developer/pair runs all the

tests to make sure they have not introduced any regressions. The

developer/pair follows this loop until all the features are imple-

mented.

Test-driven development is developing from the inside out. Does that

mean you can’t design up front? No, but it doesn’t make sense to

do highly detailed design (also known as big design up front [BDUF]),

because the developers will be able to take advantage of symmetry in

the code (which they will see when they refactor) and the evolving,

emerging design. In my experience, emergent design is simpler than

what you think the design will be at the beginning.

Projects with any life cycle can use test-driven development. If you’re

using a serial life cycle, you can ask the developers to use test-driven

development to reduce the risk of finding too many defects at the end.

Of course, if you’re using an agile life cycle with two-week or less iter-

ations, you’ll need to use test-driven development to meet the goal of

releasable software at the end of an iteration.

If you want to reduce risk in your project, start with TDD on the high-

est-risk areas. If you want to increase the value of your eventual prod-

uct, start with TDD on the highest value areas. Talk to your developers

and testers about whether to start with the highest risk areas or the

highest value areas. See Section 9.3, Implement the Highest-Value Fea-

tures First, on page 184.

If you’re exploring prototypes at the beginning of a project, it’s possi-

ble you might not need TDD. But I don’t recommend it, especially if

your developers don’t throw away their prototypes. In my experience,

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=268

TDD IS THE EASIEST WAY TO INTEGRATE TESTING INTO YOUR PROJECT 269

Joe Asks. . .

How Can I get My Developers to Use TDD?

TDD looks like a project-saver to me. How do I get my develop-
ers to use it?

First, make sure you’re not measuring developers just on meet-
ing their dates. When anyone tries a new practice, it will take
them a little longer to accomplish work because they’re trying
something out of their normal routine. The time you lose in the
coding phase in a serial life cycle, you’ll more than gain in the
testing part of the life cycle. But make sure the developers have
the schedule flexibility to try a new practice.

Second, offer articles, blog entries for reading, and training. Do
not expect people to adopt a new practice without any train-
ing. And if you’re worried about the cost of training, measure
your cost to fix a defect. (Review the last project, during the
final testing phase and post-release. My rule of thumb is that the
cost of training is generally lower than one post-release defect
and much less than ten to twenty prerelease defects.)

Then, ask for volunteers. Do not make TDD a mandatory prac-
tice. Say something like this: “I am worried about the risk of find-
ing too many defects at the end of the project, when we have
fewer choices about what to do. I hear that TDD can help us
with this. Anyone want to try it for a couple of weeks and see
what happens?”

You might not get any volunteers at first. If not, be prepared to
measure velocity (see Figure 11.1, on page 216) and defects
(see Figure 11.12, on page 233). Remember, you can’t count
anything as done in the velocity chart until it’s complete, meet-
ing milestone criteria. Show the project team the charts on the
Big Visible Chart you’ve set up.

At the end of the project, especially if the defect counts are
too high, you can institute TDD as part of your practices before
checking fixes into the code base. Once the developers have
tried it once, they are much more likely to do it again on the
next project.∗

∗. For more information about TDD, see http://www.testdriven.com and
http://behaviour-driven.org.

Report erratum

this copy is (First printing, June 2007)

http://www.testdriven.com
http://behaviour-driven.org
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=269

USE A WIDE VARIETY OF TESTING TECHNIQUES 270

developing the tests first helps drive algorithm and structure design in

the code. The more data the developers have about the code, the better

their decisions will be—and the lower the project risks will be.

Unit Testing Is Not a Panacea

Even though unit testing is the fastest and cheapest way to find defects,

unit tests are not all created equal. The key is that developers must

unit test all their code to reap the benefits of unit testing. You can use

a code coverage tool to measure this. Often even talented, well-meaning

developers are not providing the range of tests needed to truly exercise

their code. When developers don’t see unit testing as being part of their

job, the unit tests they write are worse than none at all. You have the

false sense that the code is being tested when it isn’t.

Bryan was a developer who didn’t believe in unit testing. But the project

team decided everyone had to write tests. Bryan wrote tests. If he

needed four tests for a given piece of code, he wrote four tests. He

wrote four of the same tests. He didn’t write the four tests to exercise

the code; he wrote one test four times, varying data values. (For some

code, varying data values would be helpful; in this case it was not.)

Bryan had another trick when it came to fixing defects. He would write

a unit test for pieces of the code, except for the part he had fixed.

Eventually the project manager booted him off the project. Don’t think

that just because your developers say they’re unit testing, they actually

are.

Don’t audit your developers or punish them for not unit testing. Make it

worth their while to unit test. Introduce them to TDD. Explain why you

want unit tests. Track the cost to fix a defect and explain how many of

those found defects could have been caught in unit testing. In Bryan’s

case, the project manager could have asked people to peer review code

and unit tests. Bryan would have received feedback from a peer much

earlier. Use your influence so developers want to unit test.

13.4 Use a Wide Variety of Testing Techniques

Testing illuminates the risks in your project and reduces technical debt

(see Appendix B, on page 343). The more encompassing the testing

(the more at the system level), the more it illuminates overall prod-

uct risks. The more focused the testing is on a certain piece (the more

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=270

USE A WIDE VARIETY OF TESTING TECHNIQUES 271

Unit level testing
class or function

Component testing
(a cohesive group of
related pieces)

Feature (or module)
testing

area testing
(a related set of

features)

integration testing
(a few features)

system testing
testing the system

as a whole

smoke testing tends to be about here

Work product review

Unit
perspective

System
perspective

Figure 13.1: A continuum of testing

transparent—white box—the testing is), the more it reduces technical

debt.

I encounter too many project teams where the only testing is system-

level testing from manual black-box testers. Our systems are too com-

plex for manual black-box testing to be your only testing technique.

When I talk about integrating testing into the project, I mean all kinds

of testing, not just what the testers do. In Figure 13.1, you can see there

are many types of testing.

Unit level testing, a developer job, is testing that the few lines of code

the developer will write, or just wrote, works. In my experience, it’s

difficult for developers to maintain 100% unit test coverage unless they

write the tests first.

Component testing occurs when the developer organizes a few units

together to see whether they work as advertised. Again, component

testing is easier to do (and know that your team has done) if they use

test-first development.

Feature testing is when you test a feature in totality. If you’re not imple-

menting by feature (why not?), this could also be module testing. I pre-

fer that developers perform feature testing first so they can verify that

the feature does what it’s supposed to do (positive path). Then I ask the

testers to test to see that the feature doesn’t do anything else (negative

path).

Area testing, to see how a number of features intersect with each other,

tends to be a tester job, not a developer job.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=271

USE A WIDE VARIETY OF TESTING TECHNIQUES 272

Joe Asks. . .

Why Should I Care About Unit Test Coverage?

You might think 100% unit test coverage (basis path coverage,
covering each decision) seems like a lot to ask, especially for
developers who haven’t used TDD before. But 100% unit test
coverage provides benefits to the developers and the rest of
the project:

• If you need to refactor a scary piece of code, you already
know your tests will tell you whether you’ve made a mis-
take.

• Unit tests promote better interfaces, because the devel-
oper has to use her own interface to test the code. ∗

• The cost to find and fix a defect becomes quite small.

• Finally, 100% unit test coverage allows the original devel-
oper to move on to other assignments, because it’s clear
how the code works from the tests.

Even with 100% coverage, the code might have logic mistakes.
You won’t know what the code is missing. But you’ll know more
about the code than if you don’t have any tests or just a small
number of unit tests.

∗. See http://haacked.com/archive/2004/12/06/1704.aspx.

Integration testing tends to happen in multiple steps. If the developers

are using continuous integration, you’ll get positive-path integration

testing for free. You might not learn whether there are subtle side effects

until the testers get their mitts on the code.

Developers write smoke tests, which are tests that verify that the sys-

tem can do something after a build.

Testers develop and run system-level tests.

Work product review (buddy review, peer review, inspection) can occur

at a variety of levels. People who are technical peers can review each

other’s work, whether those people are developers or testers.

Testing is about reducing the risk of unknown problems in the product.

To reduce the risk, make sure every team member understands what

Report erratum

this copy is (First printing, June 2007)

http://haacked.com/archive/2004/12/06/1704.aspx
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=272

DEFINE EVERY TEAM MEMBER’S TESTING ROLE 273

his or her testing role is, use a wide variety of testing techniques, and

make the testing as concurrent as possible with the development.

As you define how each team member will test the product, consider

the testing continuum. The developers will perform much of the testing

from the leftmost side (unit testing) through integration testing. If you

have a release engineer or testers who can write great smoke tests, it

might be worth having those people write smoke tests.

13.5 Define Every Team Member’s Testing Role

It’s too easy for developers to think their job is restricted to designing

and writing code. They don’t see a need for testing along the way. If you

don’t care how good the code is, I can write all the code you need. In

an afternoon. With one hand tied behind my back. But would that code

work? Not a chance.

I bet you care whether the code works. And I bet your developers do

too. Too many developers are unaware that when they write code they

also write defects. The way to write fewer defects is to have continuous

review of the work products and to find the defects faster.

If everyone is testing all the time, why do you need system testing?

System testing helps the team see the problems that don’t appear until

the system is built with all the pieces. Without system testing, it takes a

tremendous amount of team discipline to continue all the other testing

activities. How much risk can you take? Is your team ready to accept

the responsibility for finding all their own problems? Not many teams

are.

Managing a Project with (Virtually) No System Testing

Big Cheese Manager called the project team together. “We need a new

release with these new features in four months. Make it happen.”

The team got together and as a rough estimate suspected they had eight

months of work. They had no idea how to finish the project in four

months with the people they had.

The project manager begged for more developers—no extra people were

available. He begged for more testers—no testers were available. He

returned to the project team and said, “We have to change what we’re

doing, because we aren’t getting more people.”

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=273

DEFINE EVERY TEAM MEMBER’S TESTING ROLE 274

The developers decided that they would code review all the code and write

automated unit tests for all the code. The single tester maintained the

automated regression tests that already existed for the product.

At first, the developers wrote unit tests after the code. But every so often,

the developers forgot to write all the tests, which they discovered during

code reviews. The developers decided to try TDD.

The project team was able to deliver a product in five months (not the four

that the Big Cheese had promised). And, they all spent time developing

more automated system tests post-release.

The product won an award and generated enough revenue to prevent

layoffs. This project team continued their TDD and code review practices.

The reason this team succeeded was because the developers were

orthodox about their testing and review practices. (And there was no GUI

for the product. A product with any significant GUI would have been quite

difficult to develop and test with just developer testing.) If the developers

had relaxed their practices at all, they would not have succeeded.

System testing is still necessary. If your project team cannot match the

rigor that these developers used, you will need system testing. If you have

a system with a substantial GUI, you will need system testing. And if you

want to reduce overall technical risk, you’ll need system testing.

Can Your Testers Do the Job?

Testing a complex system is just as difficult as creating one. Just creat-

ing unit tests that test each path or object individually is not sufficient

testing for a complex system. You might also need product experts to

test the system. Sometimes you need people who understand the design

of the system, even if they don’t have any coding background. Some-

times you need fabulous exploratory testers, people who want to see

how they can break the software. And, sometimes you need testers who

can develop maintainable automated tests. The larger the system, the

more likely the system will hang around for more years than anyone

can believe, and well-designed, well-developed automated regression

tests that don’t require much maintenance can save you money.

If you think that testers exist only to find defects in the code, you’re not

receiving the full value of your testers, and any new testers you hire

won’t be able to keep up with the developers. You’ll have a second-class

test group. Take a moment to take the survey in Figure 13.2, on the

next page.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=274

DEFINE EVERY TEAM MEMBER’S TESTING ROLE 275

For agile projects: Do your testers work only with the product owner to
develop tests, because they don't understand the internals of the product
enough to work with the developers to help build more complex tests?

For non-agile projects: Do your testers work with developers on the code
only after the product is built, either because they're not brought into the

project early enough to work with requirements and design or because they
don't know enough about requirements and design to supply feedback?

Are your testers routinely excluded from requirements or design meetings?

Are all your testers interchangeable, i.e., they have such similar skills it
doesn't matter who works on which projects?

Is the testers' per-person training budget significantly less than the
developers' budget?

Are product testability requirements postponed or ignored?

Are your testers' requests for tools postponed or ignored?

Do your tests resort to eavesdropping to hear information about the product?

NoYes

Figure 13.2: Are your testers second-class?

If you answered “yes” to even half of the questions in Figure 13.2, your

testers are second-class. They are excluded from key discussions and

prevented from obtaining the tools and product expertise they need

to do their jobs. The project team probably doesn’t do it intentionally.

Usually, the testers don’t know enough about the technical side of test-

ing, they don’t have the knowledge or skills to test the product ade-

quately, and management is afraid to “waste” money hiring people who

have other expertise, because the managers can’t perceive an adequate

return on their investment.

But if you’re serious about saving time and money on your project and

if you’re serious about managing technical risk, you need first-class

testers.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=275

DEFINE EVERY TEAM MEMBER’S TESTING ROLE 276

First-class testers are sufficiently creative to assess the design and

architecture of the system before the code is written. While the code is

under construction, first-class testers design and implement their test-

ing harnesses, both automated and manual, creating tests that stress

the system in ways the developers do not expect. First-class testers can

measure what they’ve tested, assess the risk of what they’ve tested,

and know whether they’ve tested enough of the system to help you

understand the risks of product release. First-class testers keep up

with developers, assuming the developers are using continuous inte-

gration and not checking in a week’s worth (or more) of code at one

time.

First-class testers have a peer relationship with developers. They work

as partners, not as adversaries. Great testers alter the way the devel-

opers create the product.

When the testers understand the product and find problems early, the

developers tend to be more interested in creating a product with fewer

defects for the testers to find. Why? Because the testers are their peers,

and peer recognition is a significant motivator for developers and other

technical staff.

When testers develop appropriate tests that detect more problems early,

the developers have more flexibility in choosing how and when to fix

them. When testers can’t detect problems early, the developers are

faced with the dilemma of having to choose which one or two of ten

significant problems found in the last scheduled week of the project

they should fix. No matter what they choose, the developers will be

unhappy with their result.

You might think that because developers want to be proud of their prod-

ucts, they would look for problems early and fix them early. Many of the

developers I’ve met do. However, the developers are not testers, looking

at the big picture of the whole system. Developers usually can’t see

their own defects, so they can’t detect all the problems in their work

products. And, the larger and more complex the system, the less likely

the developers will see their defects.

When testers help developers see their problems early, the developers

are more likely to include the testers in other requirements and design

discussions. The developers are more likely to build testability into the

product by defining APIs or other hooks for testing.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=276

WHAT’S THE RIGHT DEVELOPER-TO-TESTER RATIO? 277

Testers need to know about or have the ability to learn about these

kinds of testing: boundary condition testing, equivalence partitioning,

combinatorial testing, exploratory testing, and testing the product from

end-to-end, not just testing requirement-by-requirement.1 You can

train people on test techniques if they have the ability to understand

the product design or look into the code and read it. You can’t train

people on these test techniques if they don’t have the ability to under-

stand product architecture and design or the ability to read code. They

need one or the other. Both is even better.

First-class testers do more than find and report defects; they supply

information about the product to the entire organization. Sometimes

that information includes test results, defect reports, or data about the

system’s performance. Sometimes, the information is feedback about

requirements or design. The more information your testers provide to

the developers, the requirements people, the writers, and anyone else

involved in product development, the more valuable they are. Properly

done, testing will reduce your cost to market, the risks of releasing with

outrageous defects, and the cost of ongoing maintenance.

If your testers are not first-class testers, you will need to manage the

risks of finding too many defects too late in the project. Try using short

iterations, with test-driven development. Hire someone who can help

develop automated system-level tests, and use the testers you have

for exploratory testing. And think about what you will do for the next

project. You have a project team who will take too long to complete their

work.

13.6 What’s the Right Developer-to-Tester Ratio?

It doesn’t matter whether I teach, coach, or assess projects. Almost

everyone has this question: “How many testers do we need?” The short

answer is enough to be able to assess the state of the product.2

Testing is another technique for managing risk—the risk that the prod-

uct you’re developing somehow won’t meet the customers’ needs or the

risk that you can’t get enough testing done to assess the product state.

Developers can (and should) certainly perform some testing, but devel-

opers are blind to the defects they create.

1. For more information about testing techniques, see [CK02].
2. See http://www.jrothman.com/Papers/ItDepends.html.

Report erratum

this copy is (First printing, June 2007)

http://www.jrothman.com/Papers/ItDepends.html
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=277

WHAT’S THE RIGHT DEVELOPER-TO-TESTER RATIO? 278

Too often, managers are looking for some kind of industry standards

to justify their claims, so they can influence their senior managers.

There are some resources available, including [CS98] and the software

engineering FAQ.3 These resources discuss developer-to-tester ratios

from 1:1.5 to 10:1, including organizations, such as Microsoft, that

have ratios that are 1:1 [CS98]. With such a wide variability, you can’t

just choose someone else’s ratios, you have to analyze your situation

and derive an appropriate number of testers for your situation. That

analysis needs to consider the following:

• The requirements, product size, and complexity of the product.

The more complex the product, the more complex the testing.

• How your organization develops products, and your customers’

tolerance for defects and ship delays. The more serial your life

cycle, the more testers you will need unless the developers are

highly proactive about finding defects.

• Your development and test staff’s abilities and responsibilities and

when they are assigned to the project.

Since these issues are different for every organization, you and your

organization have to analyze the choices you’re making for products,

process, and people. You might be able to apply the same analysis

again, as a rule of thumb on future projects, if you continue to make

the same choices and if your products and processes don’t change.

How Product Risks Affects the Ratio

Product complexity affects the number of testers. The more complex the

product, the more testing you need. Testing is not necessarily testers.

Some testing can be automated and easily done by developers. But see-

ing how the whole system works together is best done by professional

testers.

Figure 13.3, on the next page is one way to look at product complexity.

You might have other product risks. I’ve seen problems with systems

that had outgrown their architecture—it was close to impossible to add

more features without causing problems in the system. As you assess

your product, place an X in each column where you think you have

risk. The more Xs, the more testing you’ll need.

3. See http://www.faqs.org/faqs/software-eng/testing-faq/.

Report erratum

this copy is (First printing, June 2007)

http://www.faqs.org/faqs/software-eng/testing-faq/
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=278

WHAT’S THE RIGHT DEVELOPER-TO-TESTER RATIO? 279

Data-dependent GUI

No well-defined API

Complex, real-time

Large system

In Your System?Product Risk

Figure 13.3: Potential Areas of Product Risk

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=279

WHAT’S THE RIGHT DEVELOPER-TO-TESTER RATIO? 280

How Project and Process Risks Affects the Ratio

The more serial the life cycle, the more testers you will need. That’s

because even if the project team has been reviewing documents, the

developers have not been receiving feedback on the code (because it’s

not built yet). The team will need more eyes and more time at the end

to see how the whole system works together.

The more the team uses feedback as the product is under develop-

ment, such as test-driven development, unit testing, pair programming,

reviews, or inspections, the fewer testers you will need. The less the

team uses these practices, the more testers you will need because the

developers have not obtained feedback about their code.

The more the developers have used inch-pepples (see Section 8.10, Use

Inch-Pebbles, on page 171) and the more they implement by feature (see

Section 9.3, Implement by Feature, Not by Architecture, on page 182),

the more they understand what they’re doing. The more the developers

understand what they’ve done and what they have yet to complete, the

fewer testers you need.

If you’re using a serial lifecycle, several project and process risks will

demand you add more testers, as in Figure 13.4, on the following page.

Put an X next to any technique in this chart that you are not regularly

using. The more Xs, the more testers you’ll need.

How People and Their Capabilities Affect the Ratio

The more capable your developers, the fewer testers you need. The more

capable your testers, the fewer testers you need. If you hire developers

who don’t test their work or if you hire all one kind of tester and they

can’t test the product in depth, you will need more testers.

Not only can one developer impact the number of testers needed, but

also variation in abilities is a key issue for determining the number of

testers needed. DeMarco and Lister [DL99] discovered significant vari-

ation in technical team members’ capabilities during their coding war

games.

Productivity does not always correlate positively with experience. Good

developers and testers are not always the oldest ones or the ones with

the most experience. Productivity has much more to do with self-

discipline and understanding, as well as solution-space domain exper-

tise. There is considerable variation in people’s abilities.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=280

WHAT’S THE RIGHT DEVELOPER-TO-TESTER RATIO? 281

�
e have and use a daily build and smoke test.

We always review open defects in a cross-functional
team to assess impact.

We maintain a daily build rhythm.

We have a test infrastructure for automated system
testing.

We have and use a unit test infrastructure for
automated unit testing.

We implement by feature.

We evaluate each feature's design.

We know how to evaluate the product architecture as
the project proceeds.

We consistently define and manage our
requirements.

Place an X in this column if
you don't reliably do these on

your project
Project and Process Risks

Figure 13.4: Potential Project and Process Risks

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=281

WHAT’S THE RIGHT DEVELOPER-TO-TESTER RATIO? 282

The people on the test team have limited testing
ability and provide developers with limited feedback.

We haven't built feedback into the development
team's practices.

Our testers don't have a lot of experience with this
kind of product.

Our developers don't have a lot of experience with
this kind of product.

In your project?People Risks

Figure 13.5: Potential Areas of People Risk

Consider the people risks in Figure 13.5. The more Xs, the more testers

you’ll need.

I’ve worked on projects where we had ratios of one developer to one

tester, and we didn’t have enough testing. I’ve worked on projects where

we had ratios of six developers to one tester, and we had enough testing.

There is no one right ratio.

But you can ask yourself and the project team these questions:

• How do I estimate the effort needed to test this product here?

• What kinds of testing do we need for this product?

• How many of what kinds of testers will it take to do that work

here?

• How do I know how many testers it will take to keep up with devel-

opment for this project?

Review your product attributes. Add up your Xs, and see how risky

your project is. Then review how your team develops the project. Can

you check off any of the proactive defect-finding activities? If so, that

reduces the risk of insufficient testing. Then look at the pressures on

your project.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=282

MAKE THE TESTING CONCURRENT WITH DEVELOPMENT 283

Do you have substantial pressure to ship by a certain date, or are your

customers intolerant of shipped defects? That increases the risk and

implies you should have more testers.

Then review the team’s capabilities on the project. Do your developers

know how to create product in a low-defect way? Do they understand

the product? How flexible are your testers? Can they change how they

test according to where in the project they are and the kind of product

they’re testing? If you can’t check off any of the people attributes here,

you have substantial risk and will need more people.

There is no One Right Answer for the developer-to-tester ratio. Analyze

the problem before you can give an answer. It all depends—and what

it really depends on is the analysis you perform of the risks and trade-

offs.

13.7 Make the Testing Concurrent with Development

Since testing illuminates the risks in a project, the sooner everyone sees

those risks, the better. In a serial life cycle, bring the testers in during

requirements. Ask for their feedback about product requirements. In

an iterative life cycle, ask the testers to help evaluate prototypes. In an

incremental life cycle, have the testers start testing features as soon as

there are any to test. And in an agile life cycle, make sure the testers

work with both the developers to develop the technology-facing tests

and with the product owners to develop customer-facing tests.4

13.8 Define a Test Strategy for Your Project

If you have a test manager or a test lead, defining the strategy is that

person’s job. You’ll need to review it and make sure you agree with that

person’s assessment of the risks.

Decide whether you need a formal system test phase for your product.

If you work in a regulated industry and you use an agile life cycle,

you can integrate formal system test into every iteration. You’ll need

to explain to your auditors how you’re working. In any other life cycle,

you’ll need some system-level testing at the end, because that’s where

the integration occurs. Only you know how formal you need that last

testing part to be.

4. See http://www.testing.com/cgi-bin/blog/2003/08/21#agile-testing-project-1.

Report erratum

this copy is (First printing, June 2007)

http://www.testing.com/cgi-bin/blog/2003/08/21#agile-testing-project-1
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=283

SYSTEM TEST STRATEGY TEMPLATE 284

13.9 System Test Strategy Template

Here’s a system test strategy template:

• Product revision and overview

• Product history

• Features to be tested

• Features not to be tested

• Configurations included and excluded

• Environmental requirements

• System test approach

• System test entry criteria

• System test exit criteria

• Test deliverables

• Other documents referenced

Product Revision and Overview

Describe the product and revision designator. Describe briefly how the

product works. Reference other documents as needed.

Product History

Include a short history of previous revisions of this product that is

three to four sentences. Include defect history. (The defect history will

indicate the level of technical debt.)

Features to Be Tested

List all features to be tested. Organize the list in the way that makes

most sense: by user features or by architectural area. If you can ref-

erence a requirements document, do so, but don’t list all the require-

ments here.

Features Not to Be tested

If you know of features you don’t have to test, list them here. This might

make sense only for small point releases.

Configurations Included and Excluded

List the hardware and software options you will be testing and not test-

ing in this project. If it makes sense, use a matrix to show what’s being

tested and what’s excluded.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=284

SYSTEM TEST STRATEGY TEMPLATE 285

Environmental Requirements

Note the specific test environment the testers need. They might need

an electrically isolated network, access to a very large server, special

firmware, or specific software.

System Test Approach

Explain how you will make sure the testing occurs when it needs to

occur. If you plan to use a different life cycle than the developers are

using, this is the place to mention that. If you plan to use combinatorial

testing as a way to cover the myriad of configurations, explain that here.

This is the place to mention your milestones to the rest of the project

team.

System Test Entry Criteria

The system must meet these criteria before the product can start formal

system test. Especially if you’re working in any life cycle other than

the agile life cycles, it’s too easy for the project team think they’ve met

their milestones. Then they arrive at system test and realize the product

doesn’t work. If you provide the minimum criteria of what the product

has to do to work as the system test entry criteria, the testers won’t

think they’re in formal system test when they’re not. (They can still

test; it’s just not formal system test.) Make the system test entry criteria

SMART, as you did in Section 2.3, Release Criteria, on page 37.

System Test Exit Criteria

The system must meet these criteria before the product can end formal

system test. Your system test exit criteria might be your release criteria

(see Section 2.3, Release Criteria, on page 37) if you plan to release

as soon as system test is over. (Some organizations have an additional

user acceptance test step before release.)

Test Deliverables

If you keep artifacts from testing, such as logs, automated tests, plans,

or metrics, itemize them here.

Other Documents Referenced

You might need to reference requirements or other specifications in the

strategy.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=285

THERE’S A DIFFERENCE BETWEEN QA AND TEST 286

13.10 There’s a Difference Between QA and Test

I’m not talking about integrating QA into the project. QA means quality

assurance, which is a process improvement and process measurement

activity. Although many testing groups are called QA, they are not. They

are test groups.

Isn’t this just a word problem? Why am I so concerned about this?

Process improvement is a management activity. It’s possible to have

a QA manager who performs the process measurement and manages

the testing. But it’s much more likely that the person titled QA man-

ager manages the testing only. Titles with an incorrect meaning lull

senior management into thinking they have covered that activity—such

as process improvement and measurement—when they haven’t. That

doesn’t help anyone in the organization.

You need to be able to tell the difference between testers and QA staff.

The key to the distinction is that QA team members have the ability to

change the product development process.

You know you’re working with a QA group when the QA group or man-

ager has the following:

• The authority and cash to provide training for developers (or writ-

ers or testers or release engineers or business analysts—anyone

in product development) who need it

• The authority to settle customer complaints or to drive the han-

dling of customer complaints, especially in the ranking of require-

ments for the next release of the product

• The ability and authority to fix defects

• The ability and authority to either write or rewrite the user manu-

als

• The ability to study customer needs and design the product ac-

cordingly

• The ability to measure the product development process over sev-

eral projects, compare results, and explain those results—and not

be fired for it

• The ability to study the current product development process and

the authority to change it

The QA manager or group might not directly perform this work; they

have the ability to staff and schedule the work.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=286

THERE’S A DIFFERENCE BETWEEN QA AND TEST 287

QA manager and QA engineer are important roles. Unfortunately, orga-

nizations are more willing to provide the titles rather than the authority

and responsibility people with these titles deserve.

Testing is an honorable, creative profession. Great testers are just as

rare as great developers. And, they’re just as necessary for a successful

project. Don’t be fooled by titles.

Remember This

• If you plan to integrate testing into the project, you will.

• Use test-driven development to improve the design of the product

as well as improve the code.

• Consider a continuum of testing approaches for the project.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=287

Chapter 14

Managing Programs
You might be saying to yourself, “Fine, JR. I can do this kind of project

management for my simple projects. But I don’t manage simple projects

anymore. I manage bundles of projects that all have to release at the

same time. Or, there’s a strategic reason for a series of projects. This is

a logistical nightmare. Got any ideas for those projects?”

Sure I do. What you’re describing is a program, and your job is program

management.

14.1 When Your Project Is a Program

Here’s a useful definition of program management:1

Program management:

Coordinating several subprojects or a series of projects to meet

some specific business objectives.

Project management is tactical. The project manager’s role is to com-

plete this project, without regard to other projects underway. But the

program manager’s role is more strategic. Because the program man-

ager coordinates several subprojects or a series of projects, the program

manager must continually review the strategic business objectives of

the program to make sure each project follows those objectives. And,

if objectives change, the program manager decides (with the relevant

project managers) what to change in the projects. The project manager

will decide how to change.

1. © 2007 R. Max Wideman, http://www.maxwideman.com; reproduced with permission.

http://www.maxwideman.com

ORGANIZING MULTIPLE RELATED PROJECTS INTO ONE RELEASE 289

Here’s an example. Let’s assume you’re the program manager for a new

online business. Your site will allow people to buy and sell tangible

products and software. You might find it easiest to organize the project

into several subprojects such as buying tangible products, buying soft-

ware, selling tangible products, and selling software. In addition, you

might need to have marketing literature and a sales plan available at

the same time to be able to market the product to both buyers and sell-

ers. All of those projects are part of a program with a common objective:

the successful launch of this new site.

Imagine the subprojects are making progress. Assume that midway

through your development, the buyer subprojects are working, but

you’re having trouble calculating taxes on the seller subprojects. Your

lawyers can’t decide who is liable to pay the taxes where—in which state

or country. And, the performance of some of the scenarios for buying

software is not fast enough.

The program manager makes the decision (along with corporate man-

agement) about whether to hold up the entire program until lawyers

understand the tax implications or whether it’s worth releasing just

the buying part of the site and adding the selling part later. If you’re

one of the buying project managers, you don’t care what the program

manager decides, unless that decision changes how you integrate your

project with the whole program.

Program managers might decide on the interdependencies between pro-

jects when they manage strategically. Some of those interdependencies

are deliverables. Most often, those interdependencies are how to allo-

cate people and money among the project portfolio. To manage the peo-

ple and money allocation, see Chapter 16, Managing the Project Portfo-

lio, on page 315.

14.2 Organizing Multiple Related Projects into One Release

Managing a program is similar to—but bigger than—managing a pro-

ject. Especially when you’re trying to bring people and deliverables

across the organization (and not just across the technical organiza-

tion) together, you’ll need influencing and negotiation skills. But the

first thing you need is a plan.

I’ve use a template similar to this program plan in a variety of situations

where I wanted to make sure the entire program was focused on the

deliverable and how to make their part of the deliverable work.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=289

ORGANIZING MULTIPLE RELATED PROJECTS INTO ONE RELEASE 290

Here’s a program plan template:

• Overview

• Features

• Program requirements

• Program goals

• Market evaluation and marketing plan

• Sales plan

• ROI and product lifetime

• Schedule overview

• Staffing curve

• Training plan

• Service/support plan

• Other plans

Overview

Provide a brief overview of the product. Why are you developing the

product? What purpose will the product have in the business scheme

of the company?

Features

Discuss the significant features of the program—the high-level product

requirements and goals. Include internationalization issues. If you’re

working on several models of a product, explain what differentiates

each model or where people can learn about that differentiation.

Program Requirements

Just as a project can have requirements and goals, so can a program.

Program Goals

These are more likely to be corporate goals.

Market Evaluation and Marketing Plan

Include the estimated product lifetime, revenue curve over lifetime, esti-

mated support cost, and the cost of doing nothing.

Sales Plan

Answer these kinds of questions: expected sales cycle, expected sales

path, and so on.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=290

ORGANIZING MULTIPLE RELATED PROJECTS OVER TIME 291

ROI and Product Lifetime

Include estimated program costs, estimated current and future costs

without this program, estimated future costs after the program, and

estimated ROI.

Schedule Overview

Block out the major milestones in the schedule. If you have demos or

trade shows, note those. I like to add the risk of making those dates.

Staffing Curve

If you are competing for scarce people and capital resources across the

organization, define those needs now. Estimate the total number people

required.

Training Plan

Whether you need to train internal or external people, note that here.

Service/Support Plan

If you have service/support issues, note them here.

Other Plans

Your program might need an operations plan, hardware plan, deploy-

ment plan, and more. Add those issues into the program plan some-

where.

Developing your program plan will help you recognize the risks. You’ll

find it easier to manage risks if you have a separate program risk list.

I find that my first-draft program plans tend to be about five pages

long, and my initial risk list is a couple of pages long. As the program

becomes clearer, the plan is longer, and the program risk list becomes

shorter. Some of the risks migrate to the projects; some are addressed

in the program and subprojects.

14.3 Organizing Multiple Related Projects Over Time

With multiple related projects over time, one of the hardest things to do

is track which requirement is going into which release. Using an agile

life cycle will make your life infinitely easier, because the product will

be potentially releasable at the end of any iteration. Then it becomes a

business decision about what to release when.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=291

ORGANIZING MULTIPLE RELATED PROJECTS OVER TIME 292

If you can’t use an agile life cycle, try release trains to deal with the

actual releasing and a backlog of product requirements for managing

the continual change of requirements in future releases.

OK, I’ll come clean. A release train is a three-month iteration. And

this backlog is what agile life cycles use, except that they tend to have

smaller chunks to consider because the customer or customer surro-

gate can see the product at all times. What I’m actually telling you is to

use agile practices, except you’ll have more risk because the timeboxes

are longer.

Organize Multiple Releases of a Product into Release Trains

Release trains2 are a way to organize features into a quarterly timebox

so you can time periodic multiple releases of the product.

If you’re a project manager who knows you will be releasing products

periodically, you can use release trains. And, if you’re a program man-

ager, you can use release trains to manage the strategy of which fea-

tures you release when.

Release trains decouple releases from projects. The train is a quarterly

plan to ship products, generally on the same day of the same month in

a quarter (such as the tenth of the second month). Completed projects,

which can be as small as one feature, would be eligible to be loaded on

the train and be shipped. Incomplete projects are not shipped. To make

release trains work, it’s easier to divide work into smaller projects.

If you have the schedule game problem discussed in Section 6.11, We

Gotta Have It; We’re Toast Without It, on page 124, release trains can

help. Release trains change conditions in only one dimension for a given

project. Instead of having to cram lots of features into one release, you

can organize concurrent projects to achieve all the “gottas.”

Some project managers have used release trains to separate the work

of adding more features and improving performance. You can group

the features and performance work into separate chunks of work and

then schedule a release for each chunk. Start the releases at the same

time so you’re still working on the same product, just with different

deliverables at different times.

With release trains, you schedule a large number of independent pieces.

Release trains allow you to manage several incremental projects con-

currently. As each piece is ready, they are loaded onto the train and

2. See http://www.jrothman.com/weblog/2003/08/release-trains-help-manage-resources.html.

Report erratum

this copy is (First printing, June 2007)

http://www.jrothman.com/weblog/2003/08/release-trains-help-manage-resources.html
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=292

ORGANIZING MULTIPLE RELATED PROJECTS OVER TIME 293

released. The slower pieces don’t prevent the faster ones from being

part of the product or from shipping. If you need to change which pieces

release first, you have more flexibility.

Making Release Trains Work for You

Release trains aren’t difficult, but you need some project and program

conditions to make them work.

• The program manager must work with the people who define the

project portfolio; see Section 16.1, Build the Portfolio of All Projects,

on page 315. The program manager manages the overall product

release criteria, the project managers, and whatever corporate-

level issues need managing to make each release successful. The

program manager determines whether something is going to miss

a particular train and whether it should be postponed until the

next train. Anything that misses a train returns to the product

backlog (see Section 16.6, Build a Product Backlog, on page 321).

The program manager helps each project maintain its cohesion

and reduces coupling between projects.

• Project managers manage each project; program managers man-

age the trains. Each project is a significant effort so requires at

minimum a technical lead and more likely a project manager to

make sure the developers and testers (and the other necessary

staff) estimate and deliver their work on time. The project manager

has to ensure the developers do no more than necessary. YAGNI

(which stands for you aren’t going to need it) isn’t just for agile

projects; it’s for all projects [JAH02]. The project managers have

to be technical enough to understand the inevitable trade-offs and

discussions of what’s in and what’s out.

• You’ll need great SCM, both in the tool and how the release engi-

neers use the tool. You might need as many as four simultaneous

code lines (one for every release train in a year), and the developers

still need to manage to build exactly the sources they need. The

release engineers will have to merge the code lines into the main-

line too, in case you need to make a patch separate from the next

release. (Avoid that, unless the lack of a patch means corporate

death.)

• Everyone (developers, testers, project managers, and any other

project staff) needs good estimation skills, so you can meet your

projected release date for each train.

• The team will need enough automated tests for regression test-

ing. A release train is a combination of an iterative life cycle, with
Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=293

MANAGING PROJECT MANAGERS 294

increments for each release. You’re guaranteed to change the same

modules again and again. If you don’t have enough automated

tests (sorry, I don’t have a number I can give you), you won’t be

able to release on schedule.

You’ll need all of these to create successful release trains.

Release trains help you manage all your resources, because you can

group similarly sized or similar-impact projects together into one pro-

gram. Because there’s one program manager whose job is to satisfy the

execs or other corporate stakeholders, one project doesn’t “win” over

another project. The suboptimization that can occur at the project level

can’t occur in the program, or the program doesn’t allow the train to

release on time.

Organize Multiple Releases of a Product Without Release Trains

If you don’t want to use agile life cycles or release trains, you will find it

difficult to manage multiple releases. I don’t know how to make serial

or iterative life cycles work—and still meet the desired release dates.

If you don’t have release dates you are supposed to meet, maybe you

can make the other life cycles work. But unless you’re using some sort

of incremental or agile life cycle, the sequence of releases falls apart

quickly. The risks of not being able to release anything are too high. You

just don’t have enough feedback built into the projects and therefore

the program.

14.4 Managing Project Managers

Whether you’re managing a program to bring many subprojects to-

gether in one release or releases over time, you’ll be managing project

managers.

When you’re managing project managers, make sure to manage by

deliverable. Also, consider managing by exception. That is, assume

people are responsible and handling problems until they tell you they

aren’t. You’ll need to build trust with your project managers and make

sure you understand what they’re doing. See [RD05] for more details.

There’s always a problem when you manage by exception—that of

overly optimistic project managers or those who are not measuring their

projects enough. You’ll need to review their project dashboards with

them in order to make sure they are making progress. Review their risk

lists to see whether they are managing their risks.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=294

MANAGING PROJECT MANAGERS 295

Encourage your project managers to use agile or incremental life cycles

so everyone can see frequent feedback. Don’t rely on forecasting—or

allow your project managers to do so; rely on feedback.

If you’re stuck with a serial life cycle for the program and you’re not

willing or able to work with the project managers to use timeboxes or

incremental delivery, good luck. You’ll need it.

Obtaining Status from Project Managers

It’s even more important as a program manager to avoid serial sta-

tus program team meetings. You’ll have enough problems to solve as a

group. Don’t waste time obtaining everyone’s status. And since you’re

bringing together many deliverables from across the organization, your

managers might want to see a Gantt chart. You need a program/project

coordinator person, someone to manage the Gantt. You can still start

with yellow stickies (and I recommend you do), but you will be reporting

status to people who want to see Gantts. You need someone who can

play with the scheduling tool while you do the hard job of managing the

program.

Tip: Manage Cross-Program Schedule Changes with Stickies

If you need to change the program’s schedule, use stickies

so everyone can see who’s doing what when. You might be

able to use a Gantt chart for verifying program progress. But

using a Gantt to change the schedule is not enough. Make

the schedule a Big Visible Chart. Manage it that way.

You can still ask your project managers to ask their people to develop

inch-pebbles. Your job, along with your project managers, is to develop

the schedule of handoffs so everyone can see the interdependencies.

The project managers manage how their team members achieve those

deliverables. Your job is too look for obstacles and remove them.

Ask your project managers to send you a status report once a week,

outlining their progress toward their deliverables. If your project man-

agers are using an agile life cycle, all you need to see is their velocity

charts (Figure 11.1, on page 216) and their iteration contents charts

(Figure 11.2, on page 218)

If some of your project managers are using an incremental life cycle,

they can’t provide you with those charts until they start developing and

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=295

CREATING A PROGRAM DASHBOARD 296

testing. Make sure they timebox the precoding parts of their projects so

you can see delivered value as early as possible.

Review the project managers’ risks lists with them weekly, or as often

as they need you to do so. Monitoring their risk lists will provide you

the information you require to remove obstacles across the organization

and to manage by exception so you’re not micromanaging. You’ll also

have the information you need for your risk list.

Once you’ve started collecting status, you can create a program dash-

board.

14.5 Creating a Program Dashboard

If you’re managing a program, you’ll want to see all the data for the

projects. You might need to collect some of that data into one program

dashboard.

Measurements for Interdependent Projects

The measurements in your project dashboard (see Chapter 11, Creat-

ing and Using a Project Dashboard, on page 212) are the ones you’ll

need, because you’re organizing people’s efforts across the organization

to create one deliverable. You might need to integrate several subpro-

jects’ measurements to create a program dashboard you can use. One

program manager used a storyboard-like mechanism to describe his

program’s progress.

Storyboards to Describe Program Status

by Eric, senior program manager

I’m managing a large program. We have seven subprojects, of which three

are hardware that we’re integrating into the product. To show progress, I

decided pictures and a storyboard might be the right approach.

I commandeered a wall in my hallway. Our project teams were all over the

building, so I figured anywhere I put the pictures was OK, as long as they

were in one place.

We drew ten pictures at the beginning of the project, to show where we

wanted to be at the end of each iteration. (We used timeboxed iterations.)

The pictures weren’t beautiful, but they conveyed where we wanted the

state of the product at the end of each iteration. We put those pictures

about halfway up the wall, labeled “Planned Progress.”

As we finished each iteration, we took pictures of the product, in whatever

state it was in. Some of those pictures weren’t too clear to people who

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=296

CREATING A PROGRAM DASHBOARD 297

didn’t understand the internals too well, so we annotated the pictures. We

labeled those pictures as “Actual Progress.” We put the actuals above the

planned pictures. Below all the pictures were the velocity charts and

iteration content charts for each subproject. If you looked at the top line,

you could see what we had actually done. You could see where we hoped

to be at the end of each iteration, and you could see the charts below.

We finished the third iteration and realized we had underestimated the

time to integrate some of the hardware. We reestimated and put a sticky

at the beginning of the fourth iteration, saying, “Understood integration

here.” A bunch of managers asked me about that, but once I explained,

they understood. Since that happened on most of our projects, they

weren’t surprised. They were surprised to hear about it as early as they

did.

By the time we finished the eighth iteration, marketing decided to drop a

couple of features from the next iteration—a surprise to all of us. But

because they had seen the product as it evolved, and could see each

iteration’s progress, they realized these features just weren’t important.

We didn’t quite make the ten iterations—we had a last shorter iteration to

finish the work we hadn’t finished in the tenth iteration. But we were able

to end the eleventh iteration early.

Showing progress with pictures made our progress visible to the rest of

the organization.

Measurements for a Series of Projects

Aside from the measurements in Chapter 11, Creating and Using a

Project Dashboard, on page 212, make sure you perform retrospec-

tives (see Section 15.4, Plan for a Retrospective, on page 309) to know

what you want to measure in the future. For example, ROI might be an

ongoing measurement, as well as cost to fix a defect or cost to support

a release. If your projects have trouble meeting their schedules, first

examine the life cycle each is using, and then consider using the sched-

ule charts (see Figure 11.6, on page 224). If the projects are using agile

life cycles, review their velocity charts (see Figure 11.1, on page 216).

Remember This

• Program management incorporates a strategic view of the product,

not just a tactical perspective.

• Make sure you can see visible progress from all the project teams.

• Determine which measurements make sense for your program.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=297

Chapter 15

Completing a Project
You might need to perform several activities to complete the project:

requesting an early release, conducting a beta test, and shepherding

the project through to actual completion. And whatever else you need

to do to end a project, don’t forget the retrospective.

15.1 Managing Requests for Early Release

If you’ve been using an agile life cycle (and keeping up with the test-

ing as you proceed), you don’t have to worry about a request for early

release—the software is always releasable at the end of an iteration.

Customers might not want to pay for it if it doesn’t have enough fea-

tures, but making the product releasable is not an issue.

For other life cycles, you need to know far enough in advance that

there will be a request for an early release. Look back at your most

recent project or, in a large organization, at other people’s most recent

projects. Did they have requests for early releases? If so, chances are

good that you will too.

To manage early releases, it’s OK to cheat. Sure, you’re supposed to

be using a serial life cycle, but nothing during the coding phase says

that you can’t implement by feature, do continuous integration, and

test each feature as it’s done. Does it matter whether you’ve turned

your serial life cycle into a staged-delivery life cycle? Only you know the

answer to that question. But in all the organizations I’ve assessed, the

answer has been a resounding “no!”

MANAGING BETA RELEASES 299

If cheating doesn’t work in your project because the developers can’t

implement by feature, you can still ask the developers to use continu-

ous integration and the testers to start testing by feature.

If those alternatives won’t work for your project, you’ll need to plan for

two endings for your project. The first ending will be the early release.

The second ending will be your actual release. This alternative is expen-

sive. Avoid this by talking with the project team and explaining that

they will go nuts-o if you really have to do this. (People dislike the

Crossing the Desert Syndrome; see Appendix B, on page 343.)

15.2 Managing Beta Releases

You have several decisions to make with beta releases: how many re-

leases do you anticipate, how finished does the product have to be, and

who are the customers who will use the beta releases? And of course,

all the answers to these questions depend on the beta duration and

purpose.

Try organizing the beta into a subproject. If you’re using an agile life

cycle, estimate in the release plan which iteration you’ll use to start

beta—and update the release plan as you know more. If you’re using

any other life cycle, estimate when you’ll start beta, and update that

estimate as you proceed.

Here’s my beta test template:

• Beta purpose

• Beta customer selection

• Beta entry criteria

• Beta exit criteria

• Overall beta schedule

Beta Purpose

Briefly describe the product version, why you want a beta test, what

benefits accrue to the company, and so on.

Beta Customer Selection

This includes how will you select beta customers, the initial customer

list, and who is responsible for customer paperwork.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=299

WHEN YOU KNOW YOU CAN’T MEET THE RELEASE DATE 300

Beta Entry Criteria

This is milestone criteria so you know you’re ready for beta test. This is

similar to release criteria or system test entry/exit criteria.

Beta Exit Criteria

This is milestone criteria so you know you’re ready to end beta test. How

will you know you’ve reached the end of the beta period? If you need

customer references, make sure asking for those references is part of

the beta schedule.

Overall Beta Schedule

Define who the beta coordinator is, or assign a person for each week.

Define who will answer beta customer phone calls and email. Here’s an

example schedule overview.

Week General Task

Week 1 Verify installation with customers.

Week 2 Make sure customers have tried features 3 and 4. Ask about

performance.

Week 3 Start asking for references.

15.3 When You Know You Can’t Meet the Release Date

Despite your best efforts, you realize somewhere toward the end of the

project that you’re not going to meet the release criteria in the desired

schedule. In that case, it’s time to determine what you have left to do

and replan the rest of the project.

First, verify that the project’s release criteria are still valid. Can you do

any less? (See Section 5.3, How Little Can You Do?, on page 93.) Do you

need to do more? Remember, the release criteria are the few minimal

criteria that make the release useful to customers.

Next, decide how long you need to finish the minimal required set of

features. If the team has not been developing by feature, integrating and

testing as they proceed, it’s time to start. The more you can help people

develop, integrate, and test feature by feature, the less time you’ll need

for the slip.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=300

WHEN YOU KNOW YOU CAN’T MEET THE RELEASE DATE 301

“Take No Small Slips”

(The title of this section is from Peter Fagg, as quoted by Fred Brooks.)

You need to know how far behind the project team is. If you have

been implementing by feature and have measured velocity, learn what’s

keeping people from finishing their work. Chances are good that they

are multitasking or are being interrupted with questions from other

projects. Once you’re late, you can work with the team and the rest of

the organization to make sure they stay focused on this project. You

and the team can derive a new schedule fairly easily.

But if the team has not been implementing by feature, you don’t have

data about how quickly the team can work and what’s left to do. In that

case, you need to slip the release date enough so the team can finish

their work.

No matter what, do not take a small slip. Small slips lead to Cross-

ing the Desert Syndrome (see Appendix B, on page 343). If you’ve ever

worked on a project that slipped a week every week, you know how

awful that is. People need an aggressive schedule, not an impossible

schedule.

Committing to a New Date

Once it’s clear you’re not going to meet the original schedule, you need

to replan. You’re not going to take any small slips, because you know

how disastrous that can be. How do you arrive at a new schedule to

which the project team can commit?

First decide whether you need to commit to a new date. Have you

already implemented the most valuable features? Can you declare vic-

tory and finish this project? Do so, if you can.

But if you do need to finish the features you’ve started, it’s time to

replan.

Invite everyone on the project to a replanning meeting. (If you’re run-

ning a program, ask the independent groups to plan independently and

bring their dates. If you have only interdependent groups, invite every-

one.) Ask everyone to use sticky schedule (see Section 4.3, Basic Sticky

Scheduling, on page 71) to generate their task lists. Wherever possible,

estimate using inch-pepples (see Section 5.8, Estimating Using Inch-

Pebbles Wherever Possible, on page 98).

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=301

WHEN YOU KNOW YOU CAN’T MEET THE RELEASE DATE 302

Crossing the Desert Syndrome Can Kill Your Project

Everyone has put in tons of overtime. Tempers are frayed. You’re
not sure of the last time Frederick showered. But you’ve made
beta. You still have to reach the end of the project.

When people focus on an interim milestone, they lose track of
where the project is headed. They work too many hours, turning
a project that won’t meet its schedule into a death march.

When you realize the project is not going to meet the desired
date—whether that date is an interim milestone or a release,
it’s time to replan and reschedule. You might need to remove
some features from the list. You might decide to drop some reli-
ability or performance goal. And you might decide to slip the
interim and release dates.

Your choices will depend on what success means to your
project and who your customers are. If you use your success
and release criteria, you can still make a good decision. Your
management might not like the decision, but it will be the best
decision you can make.

Whatever you do, don’t allow the project team to exclusively
focus on an intermediate milestone. They will. And you will have
to deal with Crossing the Desert Syndrome. Not fun.

After you’ve defined the tasks, it’s time to estimate. If you really want

people to commit to a definite date, separate the sizing (how big the

task is) from the duration (how long the task will take); see Section 5.1,

Separate Sizing and Duration During Estimation, on page 86.

People will resist sizing some of the tasks. “We’ve been working on that

driver for weeks. We don’t know what’s wrong. I’m not giving a date.”

This is where understanding the problem you’re trying to solve is help-

ful. You might be able to help develop some questions to know when

a particular task is stuck or done. And if you’ve been implementing by

feature all along, you might have some historic data from this project

to use for estimation.

At some point, you’ll have estimations of durations. Add them up, and

see where the project looks like it will end. Apply some intelligence

to the estimate. Do you have people who are multitasking on other

projects? Increase the estimate. Do you have people who have never

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=302

WHEN YOU KNOW YOU CAN’T MEET THE RELEASE DATE 303

Slipping a Week Each Week Is Hell

Early in my career, I was on a project that slipped a week every
week for four weeks. At the end of those four weeks, the entire
project team was frustrated. We had no idea when this hell
would ever end.

The project manager gave up. “I don’t know how to estimate
when we’ll be done. Everything we’ve done for that device
driver just hasn’t worked. How can I know when it will be done?”

We’d slipped into the 90% Done schedule game (see Sec-
tion 6.14, 90% Done, on page 129). And because we were at
the end of the release, the pressure was very high to finish now.

We decided that we needed to change who worked on what.
The problems need fresh eyes. Once we did a reassignment
and a short Delphi estimation (see Section 5.1, Delphi and
Wideband Delphi Estimation, on page 78), we developed a
new schedule. We thought it would take another three weeks.
We decided we would commit to six weeks.

We finished in four weeks. Even though we had fresh eyes
on the problems, some of the problems were quite difficult to
solve. And if we had maintained the three-week estimation, we
would have been down in the morale dumps again, wondering
whether there was a way to end this project.

received feedback on their estimates now, and you’re not sure you

trust their current estimates? Explain, “Tom, you’ve just started to

receive feedback on your estimates. You’ve improved since the start

of the project. Are you willing to bet your paycheck on this date?” (See

Section 5.1, When You Don’t Trust the Team’s Estimate, on page 78 for

more details.) Don’t ask people to bet their paychecks; use that as a

gauge of how good your new estimate is.

When you add up the durations, make sure that the sum of the time

estimates is no more than a few weeks out; otherwise, your risk is

quite high. (After all, your estimates until now have helped you into

this pickle. Don’t trust the same kind of estimate to get you out of the

pickle.)

At the end of the project, people want it to be over. And they want to

tell anyone with manager in their title how quickly the project will be

over. You aren’t really betting Tom’s paycheck; you are asking him to

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=303

WHEN YOU KNOW YOU CAN’T MEET THE RELEASE DATE 304

consider the ramifications personally. This will help you derive a better

estimate—one that the team is much more likely to meet. And at the

end of the project, if you need to slip, this more conservative estimate

will allow the team to finish properly, instead of rushing and increasing

technical debt (see Appendix B, on page 343).

Estimating System Test Time

The final system test includes several steps: testing the product, finding

defects, and verifying defects. Your first step is to separate these tasks

when you estimate the duration of final system test.

If you do test-driven development and have integrated system testing

into an iteration, there is rarely even an iteration’s worth of at-the-end

testing. If you’re new to agile development, you might need to plan for

one iteration at the end for final system test and customer acceptance

test. Once the team has more experience with finishing features in an

iteration, they can plan better.

But if your team is not using test-driven development and if the testers

are not able to find problems until the GUI has settled down, you will

need more system test time at the end of the project than you might

want. And that time will be difficult to predict.1

The more serial your life cycle is, the more final testing time you will

need. The more incremental your life cycle is, the less final testing time

you need and the more interim regression testing you will need. By

incremental, I mean continuous integration, TDD, and testing during

development.

Here’s the question you want to be able to answer: How long will one

cycle of “complete” testing take? It’s not possible to do “complete” test-

ing, so your version of complete is the tests you planned to run and

any other exploratory tests or other tests you need to run in one cycle

of testing to provide enough information about the product under test.

I realize that’s vague and depends on each project. I don’t know how

to be more explicit because this is a project-by-project estimate. If your

developers work to reduce the defects as they proceed by adding unit

and integration tests, the cycle time can decrease a bit from the first

cycle to the last—because the testers know how to set up the tests

better and the product has fewer defects, which allows the testing to

proceed faster.

1. See http://www.stickyminds.com/s.asp?F=S8918_COL_2.

Report erratum

this copy is (First printing, June 2007)

http://www.stickyminds.com/s.asp?F=S8918_COL_2
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=304

WHEN YOU KNOW YOU CAN’T MEET THE RELEASE DATE 305

Joe Asks. . .

Can’t the Developers Fix As the Testers Test?

They can. And I hope they do. But if you’re in the position of
managing a project where the developers didn’t continuously
integrate, use TDD, or review each other’s work products, they
are going to be slower at fixing the defects than you want.

Only you and the project team know how concurrent the
development and testing can be.

Once you know how long a cycle of testing takes, estimate how long it

will take the developers to fix the problems. Start with this data: the

number of problems found per cycle in the last project, your gut feel for

how many more/less you should find per cycle in this project, and cost-

to-fix-a-defect data prior to release. I once worked on a project where

in the previous release we found 200 problems in the first test cycle.

It took the developers half a person-day each to fix the problems, and

we had ten developers. Our initial estimate was ten working days to

fix problems—at the end of the first testing cycle. That’s a long time.

It was agonizing—we thought we’d never finish fixing problems. (Hint:

collect this data, and use it at your retrospective to help people choose

alternative practices for the next project; see Section 15.4, Plan for a

Retrospective, on page 309.)

You have an estimate of the test cycle duration and a first guess at how

long it will take to fix the defects exposed by that testing. All you need

to do is know how many cycles of testing you need.

Each product and release is unique and will require its own number

of testing cycles. The more proactive about looking for defects and the

more incremental the developers are, the fewer cycles you’ll need. The

less proactive and the more serial the developers are, the more cycles

you need. I’ve heard numbers that range from three or eight or thirty

cycles of testing.

The way to talk about testing cycles, especially with people who want

the testing done three months ago, is to supply a time per cycle and

an estimate of the number of cycles. “It will take us six days per cycle

for testing. I estimate three days between test cycles for all the prob-

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=305

WHEN YOU KNOW YOU CAN’T MEET THE RELEASE DATE 306

lems to be fixed—that’s a total of nine days per test-and-fix cycle. Right

now, I think we need four cycles, a total of 36 days, the better part

of two months, assuming everyone stays on the project. We’ll have to

reevaluate as we proceed.”

Managing the System Testing When You Don’t Have Enough Time

You’ve made your case for more testing time. And your sponsor says

“no.” Now what?

Consider timeboxing as an approach to manage your time constraints.

Imagine that you’ve planned for three months of testing. And your man-

agement says they want to release in six weeks. Here’s how to work with

the testers or test manager to timebox the testing:

1. Review the original test plan. The testers had some idea of what

and how they had planned to test. Make it clear to your man-

agement and other stakeholders that the testers are not going to

accomplish everything in the original plan, and determine what

you can complete.

2. Start by defining the testing plan of attack in the first week. Define

how you’ll discover what pieces of the product you will attempt to

test and how you’ll test them. You might choose exploratory test-

ing for discovering what to test, and you might need combinato-

rial test techniques for how you’ll test. At the end of this week,

you will have a ranked list of what you’ll test in the product and

how you’ll test it. Consider testing by value, that is, first testing

the most valuable parts of the product, not necessarily the riski-

est. See Section 9.3, Implement the Highest-Value Features First,

on page 184.

Part of defining your attack plan is to explain the three major risks

of timeboxing testing: first, you might find something critical dur-

ing testing that the developers won’t have time to fix; second, you

might miss something critical that the customers will find signif-

icant; and third, you might encounter a blocking defect that will

prevent you from testing a particular area. Everyone must under-

stand that the test team won’t know everything about the product,

and the organization could be releasing a product different from

the one everyone anticipated.

3. During the next three weeks, develop tests and continue to refine

the test plan. Develop tests and test for specific work flows (or

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=306

WHEN YOU KNOW YOU CAN’T MEET THE RELEASE DATE 307

areas of the product) one at a time, according to your ranked

list. You don’t sit around waiting for something to test; instead,

you test a workflow or piece of the product from beginning to end

before starting a new workflow or product area. For example, if you

are testing a banking system, you might test from opening a spe-

cific account type to verifying the account is in the database and

is active. You don’t test just opening different kind of accounts;

you test one specific kind of account from beginning to end. In

other words, if you are testing a biomedical device, you test that

the device can accept a specific input, perform the computation,

and generate the expected output—just one specific input. Again,

you don’t test all inputs and all outputs; you test each end-to-end

result serially. (This is testing by feature.)

As you’re refining the test plan, you’re confirming scope as you

proceed. Every time you realize there’s something else you can’t

test, you list that piece in the not-to-test category and assign a

risk to not testing it. As you complete testing, you update the test

reports with your completed plans and tests.

4. Evaluate your progress at the end of every week of testing, and

report test data. (Think of this as an end-of-iteration review meet-

ing.) If you can verify fixes as you test, plan to continue testing

and verifying through the fifth week. If not, plan on completing

the testing—as far as you can go—in the fourth week.

5. You’re now at the fifth week. If you haven’t been able to verify fixes

yet, this is the time to do so. As you verify fixes, you’ll perform

whatever regression tests you have created to make sure the fixes

didn’t break anything. If this takes you the full two weeks, you’re

done. If you have another week, you can attack more features,

employing the end-to-end testing you’ve done before.

6. In the sixth week, you verify the last of the fixes and report on your

progress and what you know and don’t know about the product.

I’m certainly not recommending you utilize only six weeks for testing

on a project. The time you need for testing depends on what’s in the

project and how well the product is built. But, if you’re ever caught

in a pickle, where you don’t have enough time to test everything, use

timeboxing to help you evaluate how little you can do and still deliver a

valuable result to the organization.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=307

SHEPHERDING THE PROJECT TO COMPLETION 308

Joe Asks. . .

Why Is System Test Taking So Long?

A long system test period at the end of a the project is a result
of not integrating testing into the project as the project pro-
ceeded; see Chapter 13, Integrating Testing into the Project , on
page 265. You might have had good reasons for not integrat-
ing testing into the project earlier—but you will need to plan for
more testing now, at the end of the project.

15.4 Shepherding the Project to Completion

Assuming you’re on track, now all you have to do is finish the project.

Managing the End Game

Your project looks like it will be on time (or close). The testers are keep-

ing up with the developers. You’re tracking the release criteria, and it

looks like you’ll meet all the criteria at the desired release date. Is there

anything else you need to do?

Keep gathering data about defects, and make sure you don’t play the

promotion/demotion defect game just to meet the release date. If you

choose to take on more technical debt (see Appendix B, on page 343) in

your project to meet the date, fine. But make that a conscious decision.

If you’ve been steering the project, your only remaining tasks are plan-

ning for the retrospective and a celebration.

Avoiding the Promoting/Demoting Defects Game

Every morning at 9 a.m., the product manager (Tim), the software

project manager (Dan), and the program manager (Sue) gathered in

a room to do “defect triage.” It was their job to assess each defect and

make sure the necessary ones were fixed in the release.

Dan started the discussion by passing around the current list of known

open defects and the defect trend chart. “We found ten more defects

yesterday. We fixed only three. We now have 547 open defects, and

we’re two weeks from the date. We are not in good shape.”

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=308

SHEPHERDING THE PROJECT TO COMPLETION 309

Sue said, “Let’s see about that.” She and Tim reviewed the defects and

start circling the high-priority defects. “None of these is really high. We

can wait and fix them in a point release next month. And these marked

High severity—they’re not really high either. Make all of those Medium.”

Sue and Tim conferred for another minute or so. “And these Medium

priority and severity—we can make them Low. We have only one open

High severity. You can fix that by the end of next week, right?”

Dan sat there, stupefied for a moment. He recovered. “Maybe I haven’t

been clear. We’re finding more defects than we can fix in a day or a

week. You can call those Low priority or severity, but our customers

will know they’re not Low, and they’ll be angry. Then you’ll put more

pressure on me to do a point release in less than four weeks. Is the

problem that we need to meet this date?”

Tim nodded. “We really can’t miss this date.”

Dan replied, “OK, here’s what we’ll do. Instead of changing priorities

and severities, let’s deliver a set of release notes with a section called

known problems. We’ll rank them and let our customers know when

we’ll fix them. How does that sound to you?”

The three of them discussed Dan’s idea, and they agreed to the known

problems instead of changing the severities and priorities of the open

defects. Another defect demotion game averted!

Plan for a Retrospective

Always conduct a retrospective at the end of a project. Even if you

have been conducting interim retrospectives (see Section 8.2, Conduct

Interim Retrospectives, on page 157), make sure you hold a retrospec-

tive at the end of the project. Although trading off facilitators during

the project might work for interim retrospectives, find someone else to

facilitate the final retrospective. You and the entire project team are

too close to the deliverables and the work to facilitate the retrospective

yourselves.

A retrospective is not a “lessons learned” gripe session. And it’s not a

post-mortem, because let’s hope no one died while making this product.

It is a structured meeting, designed to look back at how the project

proceeded, what people learned, and how they felt about working on

that project. A well-designed and facilitated retrospective can save you

weeks of work on your next project.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=309

SHEPHERDING THE PROJECT TO COMPLETION 310

Derby and Larsen [DL06] have a five-step approach to the retrospective:

1. Set the stage.

2. Gather data.

3. Generate insights.

4. Decide what to do.

5. Close the retrospective.

If you’ve managed a project of three months or more, I strongly recom-

mend you spend an entire day reflecting and learning about the pre-

vious project—especially if many of these same people will be working

together on the next project. And yes, that’s an entire day for everyone

who worked on the project. Longer projects need even long retrospec-

tives.

A day might seem like a lot of time to spend, especially if you had a

project of more than twenty people and more than one site. It’s possible

to organize smaller retrospective by teams, gathering all the teams at

one site together. But the more you break the teams apart, the less use-

ful data you will gather that could benefit the entire project or program.

But you have a large or a multisite project. How do you do a retrospec-

tive with everyone on the project?

Carefully. But you still need to do it, assuming you want to harvest the

learnings from the project. First see whether you can bring everyone

together to do a retrospective at one site—a separate site from any one

team’s site [Ker01]. Use the same technique as you used for the interim

retrospectives in order to facilitate a retrospective in each location or

with each team, and ask the managers to solve cross-team problems.

Have each team select someone to represent their learnings, and have

those selected representatives do a sharing/learning and look at cross-

site problems (that aren’t management problems).

Another alternative is to do a virtual retrospective with all the teams.

Set up a webcam so everyone can see each team’s room. Use a wiki

(because multiple people can write to it and everyone can read it) to

gather information. Have multiple conference call lines available for

people to call in for small group work. Use Cardmeeting.com for people

to cluster and group ideas.2

2. From a private conversation with Esther Derby and Diana Larsen.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=310

SHEPHERDING THE PROJECT TO COMPLETION 311

Remember, some of the problems will be between the people at different

sites. Managers can’t solve those problems. You’ll need to bring the

people together in one physical location to address those problems.

Plan for a Celebration

People need rituals. Just as there was a kickoff for the project, make

sure you celebrate the end of a project too.

Parties or celebrations don’t have to be expensive or include everyone’s

families. Some of the best post-project celebrations I’ve attended were

some beer, wine, and cold cuts at the end of the day that the master

went to the duplicator. One of my clients has developers and testers

from many countries, and they celebrate by each bringing in some

native food to share. The company provides the (nonalcoholic) drinks

and cookies and ice cream for dessert. One small project team decided

to celebrate by playing laser tag for an afternoon.

Celebrations have to fit the people on the project. If you want to ac-

knowledge the project team’s participation in a larger setting, that’s

fine. But that’s not the project’s celebration of completion.

If you’re comfortable with giving a little speech at the celebration, it’s

nice to recap everyone’s participation on the project. One of my spee-

ches went something like this (with the names changed).

“I’ve gathered you all here for ice cream and cookies to celebrate Release

4.1. We did a great job. I know we gave appreciations at the retrospec-

tive already. I have just a few additional acknowledgments.

“Jared, your sense of humor kept us going. MaryAnn, somehow you

kept me on the straight-and-narrow for my meeting agendas and min-

utes. Patrick, I’m amazed that I can tell the mood you’re in by the way

you type on the keyboard—it’s a great warning sign for me when I’ll

be interrupting you. Bill, you do find the most amazing defects. Next

time, you’re reviewing my project documents, OK? Cyrus, you have the

nicest handwriting. When we do our sticky scheduling next time, can

you please write my stickies?

“Let’s not forget people who weren’t officially on our project. Although

Cindy wasn’t on our project, she helped me stay organized—thank you,

Cindy, for your admin support and for making sure I had my plane

tickets on time.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=311

CANCELING A PROJECT 312

Joe Asks. . .

Does a Failed Project Deserve a Celebration?

Of course. At least to celebrate the fact that project is over.

Before you decide the project was a failure, arrange for a ret-
rospective. I find that too often management—the sponsors,
senior management, or even the project manager—has failed
the project. Sometimes, the sponsor changes overall project
goals partway through the project. Sometimes the organiza-
tion demands a phase-gate life cycle but wants the project
to adapt to changes as if the project were using agile devel-
opment. Sometimes, the project manager gathered no mea-
surements, so the project team had no idea where they were.
Projects “fail” for lots of reasons; few of those reasons are
because of the technical staff’s inability to perform the tech-
nical work.

“That’s it. Let’s enjoy our desserts now and bask in the glory of having

completed work we can be proud of. We did a great job.”

That’s it. Make a point of saying something nice to each person. Avoid

saying, “Nice job, everyone.” That’s a thankless thank you. When you

say something specific to each person, they feel as if you’ve paid atten-

tion to their work throughout the project—which you have.

If you do decide to make a speech that’s more than the “Let’s celebrate

the release. We did a great job,” write it down and practice. You can even

use your notes. Your actions—preparing for the speech—are one more

indication to your team that you care about them as human beings. If

you work with these people again, they will remember that and respond

with trust and respect.

15.5 Canceling a Project

Canceling a project is one way to end a project. And it can be quite

difficult for everyone involved. One developer was so enamored of a

project that even after he was laid off from the company, he returned

on his own time to complete the project! You might think he was a

giving, helpful person—and you’d be right. But his continued work on

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=312

CANCELING A PROJECT 313

the project, even for “free,” cost the company time in support of his

“free” work.

If your company has canceled a project, then work to stop the project.3

Here are some ways to make sure the work stops:

1. First, explain to the people on the project why you’re canceling the

project and what happens to them. They want to know what work

they’ll be doing now.

2. Appreciate each person for the work they performed on this pro-

ject. If you have a small project team, use the meeting at which

you cancel the project to appreciate what each person has done

[RD05]. For a larger team or a program team, ask the subproject

managers or technical leads to appreciate the members of their

teams.

3. Give people time to clean up their work before starting on their

new work. That means checking in the code that’s checked out

with comments that explain the state of the code, noting on a

design which alternatives were under discussion, or noting which

tests were or were not completed. Cleaning up work is not the

same as finishing up work, so I recommend this step take less

than a day to perform. If you’re using an agile life cycle, this stop

might take a few minutes or an hour. For other life cycles, timebox

this to one day.

4. Cancel all periodic meetings associated with this project. Once

people clear their schedules of these project-related meetings, they

will see other time they have available for new work.

5. Assign someone to handle the inevitable questions about the can-

celed project, preferably someone high up in management. If a

technical person has the project information, he or she might start

working on it again. If a manager is assigned to be the point per-

son, the manager is less likely to start working on the project.

6. If you’re canceling a project that’s had even one week of work, take

the time to perform a project retrospective and see what people

learned from this project.

7. Start people on their new project as soon as they’ve cleaned up

their work.

3. See http://www.jrothman.com/Newsletter/kill-cancelled-projects.htm.

Report erratum

this copy is (First printing, June 2007)

http://www.jrothman.com/Newsletter/kill-cancelled-projects.htm
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=313

CANCELING A PROJECT 314

Canceling a project might not be fun. But if you cancel the project

cleanly, you won’t have to do it again—and you’ll be helping the com-

pany move forward to the next project in the queue.

Remember This

• Avoid Crossing the Desert Syndrome caused by focusing on inte-

rim milestones.

• Always plan for a retrospective at the end of the project even if you

do interim retrospectives.

• If you have to cancel a project, cancel it. No halfway cancellations.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=314

Chapter 16

Managing the Project Portfolio
If this is a book about managing projects, why is there a chapter about

managing the project portfolio? When I work with project managers,

they say things such as “My management can’t decide which project

they want first.” Or, they say, “My management wants everything now.”

Or, they say, “My management makes decisions about projects so late

that I start the project late.” Or, they say, “I can’t keep people just on

my project; they’re multitasking all over the place.”

Managing the portfolio, or helping your management to manage the

portfolio, might be a survival skill for you. If your management defines

its corporate (or unit) strategy and tells you which project to do when,

skip this chapter. But if your management doesn’t always make timely

decisions, this chapter can help.

Project portfolio management consists of three parts: building the list

of projects [RD05], evaluating each of them, and making the decisions

about which projects to fund and staff. Once you have a portfolio, you

can manage it by keeping a running product backlog [Sch04] for each

product. The backlog allows you to start and end smaller, more frequent

projects, increasing throughput.

16.1 Build the Portfolio of All Projects

Not every organization knows which projects are active, which projects

are supposed to be active, or which projects are planned for when. The

first step is to build the portfolio of projects.

BUILD THE PORTFOLIO OF ALL PROJECTS 316

Figure 16.1: Project portfolio

Gather the list of all the projects in your department. Note when man-

agement thinks the projects have started or are planned to start and

when they are supposed to end. Organize them in a grid, month by

month.1 If you used stickies on the wall, it would look something like

Figure 16.1. Yes, you can certainly use a spreadsheet or a grid and

make the portfolio look nicer. But if you want to be able to change it,

use the most low-tech tool you can so you have the flexibility to change

it easily.

Once you have a portfolio, you can evaluate the projects, both qualita-

tively and quantitatively.

1. See http://www.jrothman.com/weblog/2006/03/courage-required.html.

Report erratum

this copy is (First printing, June 2007)

http://www.jrothman.com/weblog/2006/03/courage-required.html
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=316

EVALUATE THE PROJECTS 317

16.2 Evaluate the Projects

If you have some idea of start and end dates—even wished-for start

and end dates—you can start evaluating the projects. You’ll want both

qualitative and quantitative evaluation.

Qualitatively Evaluate the Projects

Ask these questions for qualitative evaluation2:

• How does this project fit in with all the others?

• What is the strategic reason for this project?

• Is there a tactical gain from completing this project?

• To make this project successful, are we ready to adequately fund

it?

• To make this project successful, are we ready to adequately staff

it?

• Do we know what success looks like for this project?

If you can’t determine an answer for all these questions, it’s time to ask

whether the project should be in the portfolio. Sometimes, companies

keep projects they can’t adequately staff in the portfolio, but decide

when to start them so the projects are not inadequately staffed for the

entire duration.

Quantitatively Evaluate the Projects

Here are questions to ask for quantitative evaluation:

• When will we see any monetary return from this project?

• What’s the expected revenue curve for this project?

• What’s the expected customer acquisition curve for this project?

• When will we see retention of current customers from this project?

• What’s the expected customer growth curve?

• When will we see reduction in operating costs from this project?

• What’s the expected operating cost curve?

Many of my clients find these questions adequate in making decisions

about the portfolio, but if your management wants more data, refer to

[Coh06] where there is a great section on determining the monetary

value of projects.

2. See http://www.jrothman.com/Papers/Cutter/Projectportfolio101.html.

Report erratum

this copy is (First printing, June 2007)

http://www.jrothman.com/Papers/Cutter/Projectportfolio101.html
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=317

DECIDE WHICH PROJECTS TO FUND NOW 318

After evaluating the projects, you can make decisions about them. Be-

ing able to make decisions about the possible projects in the portfolio

is not easy. But, that’s why senior management is paid the big bucks,

right? And, not making a decision about the projects is also a decision—

and one that’s more costly than making a decision that’s reversible.

16.3 Decide Which Projects to Fund Now

The qualitative and quantitative questions allow you to have a conver-

sation about which projects to fund now and which projects to fund

later. It will be clear from the questions and their answers that some

projects should be funded now. And some should be funded only if the

company has more money than they know what to do with. But your

managers might run into trouble deciding among some projects—which

really should be funded now and which should be funded later—and

when could you change those decisions?

Here’s where using agile life cycles (see Section A.4, Agile Life Cycles, on

page 339) and building (and using) a product backlog (see Section 16.6,

Build a Product Backlog, on page 321) can really help. If you develop in

iterations and always develop the highest priority requirements first,

you can change priorities as often as you finish an iteration. (I’m not

recommending that you do so but that you could.)

16.4 Rank-Order the Portfolio

You have your evaluated project list, so you can rank-order the projects.

If you know which ones you want first, second, third, and so on, you

can staff them in that order.

Ranking projects is similar to ranking the project drivers (see Sec-

tion 1.4, Decide on a Driver for Your Project, on page 23). At some point,

one project is more important than the others. If your management is

having trouble deciding, list all the projects in a spreadsheet. Across the

columns, ask the questions. Meet with your managers, and facilitate

their discussion about the answers to those questions. Once they’re

done, you have a ranked list of projects. You know where your project

fits. Once you have a ranked portfolio, you can deal with the problems

of starting the projects faster.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=318

START PROJECTS FASTER 319

Joe Asks. . .

How do I Decide When Two Projects Really Are the Same
Priority?

Here’s a common organizational problem. You have two
projects, each with a different focus, that you want to fund at
the same time. You don’t have enough people to staff two dif-
ferent projects. The projects are not similar enough to be part
of one program. Now what?

It’s time to go back to the corporate mission. If you have
two different projects, each that requires the same staff, your
senior management needs to articulate their mission. Once
they decide on a mission, the decision will be clear.

16.5 Start Projects Faster

Typically, long start-up times are a problem of decision making, life-

cycle choice, and requirements definition. As a project manager, you

might not be able to solve all of these problems. But if you can identify

them and point people to the causes and possible solutions, you might

be able to start your projects earlier.

Project Decisions Take Too Long to Make

If it seems as if your projects never get started, your management might

have a problem with decision making. Make sure your decision making

includes all of these steps:

1. Defining the desired outcome, such as ranking the projects in

order, so everyone knows the relative importance of each project.

2. Establishing the boundaries around the decision, such as charter-

ing analysis of the projects and including who will make the final

decision. If you have one person who will decide when to start

and staff projects, you need to work with only that person. But

if you have a committee, what happens when one person on that

committee thinks he or she can veto a decision? Knowing who will

make the decision is key to generating a quick decision.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=319

START PROJECTS FASTER 320

3. Identifying the options so that the group can make a decision. I’ve

met managers who didn’t want to select an alternative (do this

project or that project), so they refused to make a decision to rat-

ify that alternative. The Rule of Three [Wei85] helps people real-

ize there isn’t just one alternative but that with multiple ways to

approach the decision, it might be possible to realize what every-

one wants. One management team, after years of not being able to

make decisions about determining the relative importance of any

project, realized they didn’t have to decide on one or the other,

but they did have to decide when to finish each project. That freed

them to allow intermittent prototyping on several projects simul-

taneously but to assign staff full-time to only one project.

4. Selecting from among options, including identifying the decision

criteria about how you (or your management) will make the deci-

sion. It’s not always easy to choose from among projects. See Sec-

tion 16.2, Qualitatively Evaluate the Projects, on page 317 and

Section 16.2, Quantitatively Evaluate the Projects, on page 317 for

questions to ask about how to evaluate those projects.

5. Implementing the decision. Even if you’ve managed to rank the

projects, determine the boundaries around the decision, identify

the options, and select an option, if no one says, “Yes, start this

project!” it won’t start. And then two or three weeks later, you’re

surprised when a new project lands in your lap. If you find your-

self surprised by projects and feeling as if you are late before you

even start, work with your management to help you know when

project decisions are being discussed. You don’t have to attend the

meeting; you need to know the outcome of the meeting.

Senior management teams might have trouble determining the strate-

gic outcome they desire. You might see this as an inability to decide

among projects. You might even see the schedule games discussed in

Section 6.6, Pants on Fire, on page 113 and Section 6.7, Split Focus, on

page 115.

This might occur because some management teams have trouble defin-

ing the boundaries around their decisions. Some management teams

have trouble identifying the options. More teams have trouble selecting

from among the options and might try to partially fund all the projects,

thinking that some progress on all projects is better than funding some

projects and not funding others.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=320

MANAGE THE DEMAND FOR NEW FEATURES WITH A PRODUCT BACKLOG 321

If your management has trouble deciding which project to start when,

you can help. Try the pairwise comparison technique (see Section 8.3,

Rank the Requirements, on page 158): looking at these two projects,

which project do you want more than the other? Compare all the pro-

jects to each other, and you’ll end with a relative ranking of all the

projects.

16.6 Manage the Demand for New Features with a Product

Backlog

Part of managing when you’ll start which project is managing the de-

mand for new features. If you fall prey to any of the schedule games

(especially the one discussed in Section 6.11, We Gotta Have It; We’re

Toast Without It, on page 124), it’s time to offer your management the

opportunity to manage the demand for new features on a regular basis.

Build a Product Backlog

There are two parts to building a product backlog: what you’ll accom-

plish in this release and what you’ll list for a future release.

A running list of requirements requests—a product backlog—is differ-

ent from managing the requirements of the current release. When you

commit to some number of requirements for the current release, your

customers are depending on you to deliver them. And, whether you’re

protecting the iteration from any changes or the release from too many

changes, your customers will have some pent-up demand for the next

set of features. A running list separates the current release’s require-

ments from future releases.

The product backlog is a release-by-release ranked list of requirements

(or things that could become requirements in the future) [Sch04].

These “requirements” don’t have to be fully formed and valid require-

ments. They can be user stories or a promise to talk about the require-

ment later. But the word needs to mean something to the developers.

Figure 16.2, on the following page, is what a quarterly list might look

like. Few things on this list look like requirements, except for the named

defects. Note the dark line in Q1. Everything above the line is needed

in Q1. Everything below the line is negotiable for Q1. If the project

team can’t understand it or finish it for Q1, those “requirements” will

be addressed for Q2.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=321

MANAGE THE DEMAND FOR NEW FEATURES WITH A PRODUCT BACKLOG 322

Figure 16.2: Project portfolio

You might find it helpful to keep a product backlog (some people call

these backlogs product road maps) at several levels. The extended view

is four to six quarters of information. Expect that to change relatively

frequently. The midrange view is three to nine months. Again, you’d

expect the information past the current quarter to change frequently.

The short view is zero to three months. Depending on your life cycle,

you can either expect change or manage change.

If you’re using an agile life cycle, you don’t care how often people change

features past the current iteration you’re in. The only thing you need

to do as a project manager is to protect the contents of the current

iteration from change. Anything can be moved around past the cur-

rent iteration. Only the size and duration might cause your sponsors

or managers to change their minds about what could be in which iter-

ation. Use planning poker to quickly estimate the size of a number of

items in the backlog (see Section 5.1, Planning Poker, on page 87).

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=322

TROUBLESHOOT PORTFOLIO MANAGEMENT 323

If you’re using an incremental life cycle, especially one where you time-

box requirements and architecture work, you can accept change once

you’ve started developing chunks, even if the chunks aren’t all the same

duration. Then your sponsors and managers can make decisions based

on size, duration, and the availability of certain people.

If you’re using an iterative or serial life cycle, you can use a quarterly

backlog as long as you keep your releases relatively short or you mod-

ify your life cycle to produce chunks during the prototype or coding

phases.

Manage the Product Backlog

You manage the product backlog by discussing it periodically, either

as a program team or as a management team, depending on how your

organization works. (If you have a product owner or product manager,

that person might decide what’s in the product backlog or facilitate the

discussion of the backlog.) During the discussion, you allow reranking

of all the features in the backlog as often as necessary. For an agile life

cycle, that means you review and rerank the product backlog before the

next iteration starts in order to finalize the backlog for the iteration.

If you’re using a serial life cycle but managing to implement by feature

and keeping the duration of the release to three to six months, you

probably want to discuss the product backlog every month or so. Before

planning the next release, discuss as often as you want, and decide

before the release starts what’s above the line.

You can change the ranking of the items in the product backlog at

any time. You protect only an iteration’s backlog contents. Once you’ve

started an iteration, you don’t change the contents of the backlog for

this iteration; any future iteration or release can be changed at any

time.

16.7 Troubleshoot Portfolio Management

You’ve tried. You generated the list of projects and a quarterly backlog

for each product. And you still have two projects that your managers

rank #1. You have a limited number of people. You don’t really want

them all to work on both projects at the same time, but you don’t see

another option. It’s time to see whether you can put a price or value on

the multitasking that people will have to do.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=323

TROUBLESHOOT PORTFOLIO MANAGEMENT 324

Managing Multiproject Multitasking

In Section 5.4, Estimating with Multitasking, on page 93, I told you not

to allow multitasking. If you really want speed, don’t allow multitasking.

But speed isn’t the only variable. Sometimes multitasking can benefit

the organization.

Let me be clear. The more multiproject multitasking you allow (or even

worse, encourage), the longer your projects will take. But sometimes,

because of revenue concerns, customer experience, or the ability to

keep a particular customer, your company will ask you to change pro-

ject priority. If you make decisions with thought and understand the

trade-offs, you can manage the multitasking. You won’t obtain the ben-

efit of finishing the project you shift people from. But you will obtain

the benefit of completing a different project.

Say you’re managing a program that won’t be released to the customers

for another two months. You’re making progress, and you’re on track

to meet your deadline. Imagine that one of your developers is needed

for a Crucial Fix to an already-existing customer. You know that losing

that developer will prevent you from meeting your deadline. As a project

manager, you don’t want to let this person move to the Crucial Fix. But

as a relatively senior manager in the company, you realize that turning

a happy customer into an unhappy customer is a Bad Idea. What do

you do?

As long as you don’t bounce any members of the project team back and

forth (as in Section 6.6, Pants on Fire, on page 113) between projects

incurring cognitive overload,3 look at the relative value of each piece

of work. You might decide that keeping your already-existing customer

happy is the highest priority. (Your context might not be about cus-

tomers; it could be about revenue.) You might decide that finishing the

program on time is the highest priority. But whatever you do, decide.

Asking the developer to work part-time on both programs is a guarantee

that nothing will get done fast.

Convincing Management That Context Switching Is a Bad Idea

Managers, especially senior managers, don’t believe context switching

wastes time because all they do is context switch. Senior managers fre-

quently have several projects in the air, most of them waiting for input

from other people. But that’s not how technical projects work. Most

3. See http://seattletimes.nwsource.com/pacificnw/2004/1128/cover.html.

Report erratum

this copy is (First printing, June 2007)

http://seattletimes.nwsource.com/pacificnw/2004/1128/cover.html
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=324

TROUBLESHOOT PORTFOLIO MANAGEMENT 325

Task1 Task2

End of Week 1 End of Week 2

Figure 16.3: Two tasks, no multitasking

of the time, technical people are not in wait states but can continue

to work productively on projects. Senior managers don’t understand

or remember that the work technical people perform is substantively

different from the work they perform.

To reach managers and convince them that context switching is a bad

idea, make sure you speak their language. First, set the stage by ex-

plaining the cost of multitasking technical work. Next, make sure you’ve

developed a project portfolio, so you and your manager can discuss the

relative priority of each project. Once you do understand not just the

cost but also the value, block out the work, and keep your management

apprised of the status.

Explain the Cost of Multitasking Technical Work

Managers expect to work on several projects and be in wait states for

several of them. And, managers typically have assistants to help man-

age the projects, work on the projects, and monitor the manager’s time.

But technical staff don’t have assistants. They feel the costs of multi-

tasking much more strongly than a manager will.

In Figure 16.3, you can see a picture of two tasks, each of which takes a

week to complete. If you work on one task at a time until it’s complete,

Task 1 finishes at the end of week 1. Task 2 finishes at the end of

week 2.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=325

TROUBLESHOOT PORTFOLIO MANAGEMENT 326

End of Week 1 End of Week 2

Figure 16.4: Two tasks with multitasking

But consider Figure 16.4, which happens when multitasking. Assume

that Alice, the person assigned to these two tasks, is working on Task 1

for an entire day and Task 2 the next day. And, let’s assume Alice has

no other interruptions.

The earliest Alice can complete any task is near the end of week 2,

when Alice completes task 1. Sometime early in week 3, Alice completes

task 2.

The more tasks Alice has (questions, other projects, whatever), the

longer it will take Alice to finish anything. That’s because Alice incurs

costs each time she switches tasks. The costs for your developers in-

clude the following:

• Stopping the work you’re doing. The stopping cost is the time it

takes to mark your place, save your work, and so on. You haven’t

stopped thinking about what you’re doing, but when you stop to

take a phone call or answer a question, there’s a stopping cost. If

you’re in flow, this is surprisingly high.

• Swapping out what you’re working on. The swapping out is the

act of clearing your mind of the work you had been doing so you

have room to swap in the new work. If you were in flow or concen-

trating deeply, this can take anywhere from five minutes to thirty

minutes. Sometimes, it can take even longer.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=326

TROUBLESHOOT PORTFOLIO MANAGEMENT 327

• Swapping in the new task. Swapping in depends on the complexity

of the work and how long it has been since you last touched the

task. The more complex and the longer the time since you last

touched the task and the more people you have to talk to, the

longer it takes.

• Waiting for someone else to stop what they’re doing to talk to you

about your new task. There’s a multiplicative effect of waiting for

other people to be available when you have to pick up a new task.

• Swapping the original task back in. Depending on how complex

that task is, it can take a few seconds to an hour to wrap your head

around what you were doing. (And from a project management

point of view, this is when the defects creep in—because it’s so

hard to remember all the little details you had when you stopped.)

Once you’ve articulated the cost of multitasking, make sure you under-

stand the relative priority of each project. Review your project portfolio

with your manager. If you ask the qualitative and quantitative ques-

tions, do you still receive the same answers? If so, then nothing has

changed, and your manager will agree to not staff the new work. But

maybe things have changed, and it is appropriate to change priori-

ties for now. Develop an agreement with your manager for how long

you need to move people from one project to another and when you’ll

revisit the decision. Then make sure you’re using an incremental or

agile approach to the project so you have the maximum flexibility.

How to Say No to Multitasking

You and your manager recognize that the desired work does not have

more value than the current work—at least not now. And either you or

your manager is having trouble saying no to more work.

Sometimes it’s politically incorrect to say no. Sometimes you feel like

a heel because you want to say no. And there are some organizations

in which it’s not just politically incorrect—it’s career suicide. You have

many ways to say no to more work, without actually using the word no.

I’ve used these and found them effective. Find some ways that work for

you. Otherwise, you’ll constantly be in the schedule game discussed in

Section 6.12, We Can’t Say No, on page 126.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=327

TROUBLESHOOT PORTFOLIO MANAGEMENT 328

“Not right now” and offer a new date. You can say, “I can’t fit that

in right now, but the team can start in April. Here’s when we could

start, and here’s when we could finish.” That helps your management

see your other priorities and helps them see what you could stop doing

if you really need to start this new work.

“Here’s what I’m doing—what should I stop doing?” A caution here:

make sure to say this nicely. If you say this sarcastically, you are not

helping yourself.

As you show your manager (or your manager’s manager) the list of the

all the work, explain the priorities. “We’re doing this project for Laura.

Tom and Betty are doing that project for Sidney. And, we have that

project for Allen. My team can’t do more—there just aren’t any more

people. Which project do you want us to stop?”

Build a product backlog with your manager. Sometimes, managers

ask you to do more work because they don’t know or can’t depend

on any work getting out of your group. In that case, you can move to

timeboxed iterations and build a product backlog with your manager

to discuss what the manager will see out of your group and when. See

Section 16.6, Build a Product Backlog, on page 321.

Prioritize the work with a project portfolio. If a more senior manager

asks you to do one more thing, causing multitasking, try this conver-

sation. “Jim, I know you have five or six ongoing projects now. But it

will take us longer to do the work if we multitask. And the feedback I

have from the product managers is that this release is really important.

Let’s prioritize the work with a project portfolio so I understand your

priorities.”

Take your product backlog, and break the work into iterations or rel-

atively short releases (no more than three months). You can plan a

project portfolio of what you’ll do when for which project. I’ve used a

technique of moving to one- or two-week iterations to finish pieces of

work for each project. You don’t have to try to do each project simulta-

neously; even moving to one-week iterations and finishing some work

for a given project is better than multitasking.

These are the risks/consequences of the request. Try pointing out

the business risks of the multitasking request. “John, we can do that.

And if we do that, the writers will be behind for this release because the

developers were off working on that other project. I don’t know if you

remember from last year, but Very Big Customer called our Big Cheese

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=328

TROUBLESHOOT PORTFOLIO MANAGEMENT 329

to explain that the undocumented workflow cost them tons of money

and time. I’m concerned we’ll do that again. Is that a chance we can

take?”

“When do you need this” Sometimes, the manager is asking you to

add more work to your portfolio, not actually start it now. It’s worth

asking, “When do you need this? I can put it on the backlog for the next

iteration.” If it’s an entirely new project, asking when the organization

needs it means you can respond, “I can slot it in here, after Ron finishes

this project. OK?”

If you try all of these, and your sponsor still doesn’t accept “no,” you

are headed for project failure. In that case, consider whether it’s time

for you to leave. See Section 7.7, Know When It’s Time to Leave, on

page 148.

Remember This

• Use a product backlog, no matter what life cycle you’re using.

• Develop a project portfolio to obtain a visual perspective on all the

projects, in process and planned.

• Learn how to say no.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=329

Appendix A

More Detailed Information About
Life Cycles

A.1 Serial Life Cycle: Waterfall or Phase-Gate

If your project has little technical risk, little schedule risk, a stable

project team, and no requirements risk, then consider a serial life cycle.

That means if you’re doing a short, small-number-of-people project

where the requirements are clear (such as a fix to a previous release),

this life cycle might be just what you want. See Chapter 11, Creating

and Using a Project Dashboard, on page 212 for ideas about how to

measure a serial lifecycle project so you gain insight as to the real state

of the project.

Apparent Risks Addressed by Serial Life Cycles

The following are the apparent risks addressed by serial life cycles:

• Feature set

• Knowing what to do when

• Cost risk

Serial life cycles optimize for the feature set. That’s because the require-

ments are defined at the beginning of the project in a serial life cycle.

In a serial life cycle, it’s clear from the schedule what phase you are

supposed to be in, so creating a project schedule at the beginning of

the project is easy. (Creating one that’s useful is more than difficult—

it’s usually impossible.) Even in stage-gate life cycles with sign-offs that

SERIAL LIFE CYCLE: WATERFALL OR PHASE-GATE 331

Requirements Analysis Design Code Integration TestSerial Lifecycle

At the end of each stage, there is a management review

Figure A.1: Gantt-like picture of a serial life cycle

allow one phase to start before the previous one is complete, it’s pos-

sible to know at a glance where the project is supposed to be. And,

because the project team spends time at the beginning of the project

generating requirements, it’s possible to schedule which features to

work on when at the beginning of the project.

If you use a serial life cycle, make sure you use deliverable-based

planning (as discussed in Section 4.3, Deliverable-Based Planning, on

page 75), where the deliverables are the milestones, not phase ends.

If you use phase ends as major milestones, without the rollup of the

deliverables behind those milestones, you might not discover until the

testing phase that your project is late.

Serial life cycles have a undeserved reputation for managing cost, be-

cause it’s possible to incorporate management reviews and reestima-

tions into the project plan. In reality, it’s easier to manage costs with

any other life cycle, because it’s easier to measure and see the project’s

progress.

If you look at the original paper [Roy70], the waterfall life cycle was

intended to be an iterative approach with feedback loops. Royce rec-

ommended that the team iterate on the analysis for the project and

then to implement, not to try to obtain all the requirements perform

the analysis up front.

Risks Hidden by Serial Life Cycles

Although people think the serial life cycles expose the following risks,

in reality the life cycle hides the risk until too late:

• Architectural risk. Many successful technical people believe that

they need to do a full definition of the architecture at the beginning

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=331

SERIAL LIFE CYCLE: WATERFALL OR PHASE-GATE 332

Who Still Uses Waterfall?

Given the growing popularity of agile practices and life cycles,
some of my colleagues have been saying “No one uses water-
fall.” But plenty of projects still do.

I know of some successful projects that use serial life cycles with
feedback. Those project managers use the major milestones as
opportunities to gather feedback on the project. Not only do
they obtain feedback from their management teams through
management review, but some of the PMs also conduct interim
retrospectives (see Section 8.2, Conduct Interim Retrospectives,
on page 157). Their projects aren’t as short as they could be,
but they do release software their customers want to use. Some
successful PMs use a waterfall life cycle.

But too many project managers who use serial life cycles don’t
take the opportunity to replan at every major milestone or
phase. If you must use a serial life cycle, make sure you man-
age the risks of not seeing the product grow as you proceed.

of the project. And they believe that providing that definition will

reduce architectural risk.

The problem with architectural definition up front (what the agile

community calls big design up front) is that you can’t actually

tell how the architecture will work until the developers implement

some of the features. And because the architecture is defined by

components, people tend to develop components, and they don’t

learn until integration that the architecture is not going to work.

• Testing risk. Some organizations believe that because the serial

life cycle has a testing piece after the development piece, the tes-

ters should not start testing until the code is done or partway

through coding. Nothing could be more wrong.

The formal part of final system testing is after coding, but if you

must use a serial life cycle, integrate testing and the testers at

the beginning of the project. See Chapter 13, Integrating Testing

into the Project, on page 265 for ideas. Testing is not just testing

code: it’s verifying requirements with requirements reviews and

inspections; it’s verifying architecture with architecture reviews

and so on. Any work product can be “tested”—it’s just not code-

based testing.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=332

SERIAL LIFE CYCLE: WATERFALL OR PHASE-GATE 333

If you’re developing a product in a regulated industry, you will

need a formal validation step—a part of the project that can trace

the requirements through the project’s process and that delivers

test logs and other artifacts that explain how well the require-

ments were met. Don’t confuse verification (testing the product as

you proceed to make sure the system works) with validation (test-

ing the process to make sure the product was developed in the

correct manner.) For verification, you want testers to work with

developers as closely as possible. For validation, you might need

more of an audit function. See Section 13.10, There’s a Difference

Between QA and Test, on page 286 for more discussion of what

you could obtain from a QA group.

A serial life cycle withholds feedback from developers until they

start coding, which is why there is so much schedule risk in serial

life cycles. Testing that late takes longer. Make that extra time

part of the schedule. If you require that the developers and testers

test all work products and ideas, the developers will have more

feedback than is otherwise built into this life cycle.

• Schedule risk. A serial lifecycle project with more than a few peo-

ple and more than a few weeks has little chance of meeting its

desired project schedule. The primary reason is lack of feedback

to the developers. Because no one can adequately test ideas until

the ideas have been codified, the developers don’t know whether

they have pursued an inadequate architecture until the coding

part of the project. In addition to lack of developer feedback, too

often the testers are still testing the last product, so they start

the project late. And, if the developers run into trouble, project

sponsors are too likely to remove time from the testing part of

the project in order to meet the desired date. The lack of testers

or testing reduces feedback to the developers, which prevents the

developers from being proactive, which causes the project to slip

or causes more defects, or both.

When to Replan with Serial Life Cycles

Take advantage of every phase milestone to replan the rest of the pro-

ject. Even if you have not used rolling-wave planning before, consider

it even with a phase-gate or waterfall life cycle (see Section 5.6, Using

Rolling-Wave Scheduling, on page 95). With rolling-wave planning, you

have an opportunity to replan each week, or as long as your planning

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=333

ITERATIVE LIFE CYCLE: SPIRAL, EVOLUTIONARY PROTOTYPING, UNIFIED PROCESS 334

Serial Life Cycles Seduce with Forecasting

Serial life cycles are seductive. When you create a Gantt chart
that looks like you know when events are going to occur, you’re
forecasting. You’re looking into a crystal ball and hoping you
see the future.

But projects are full of risk. Your carefully crafted schedule falls
apart as soon as people start to work on the project. Because
of the risks, the schedule is the one way the project will not
unfold. And, you can’t see it.

When meteorologists forecast the weather, they gather data
about the actual weather to improve their forecasts. But project
managers using serial life cycles can’t gather project or prod-
uct data until the coding phase of the project—too far along to
know that the project has been off schedule since the second
week.

If you must use a serial life cycle, beware that the forecasting
you and the team will perform, based on your estimates and
documents, might have no basis in reality. And, you won’t know
that until very late in the project.

timebox is. Even if you take advantage of replanning only at a phase

end, that will help you steer the project in a more reasonable direction.

A.2 Iterative Life Cycle: Spiral, Evolutionary Prototyping, Unified

Process

If you have customers who want to work with you and you can manage

the project team’s prototyping, these life cycles are useful when you

need to see the effects of a variety of features on the total product. The

spiral life cycle (see Figure A.2, on the next page) is helpful when you

want to prototype large pieces of the system and then engineer/finish

the product development. Evolutionary prototyping (see Figure A.3, on

the following page) can be helpful if you have more technical risk with

integration than you think a spiral life cycle can handle. The Uni-

fied Process (of which RUP, the Rational Unified Process, is the most

famous), shown in Figure A.4, on the next page, can be particularly

useful because the iteration timeboxing and integration helps manage

the schedule risk.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=334

ITERATIVE LIFE CYCLE: SPIRAL, EVOLUTIONARY PROTOTYPING, UNIFIED PROCESS 335

Spiral Life
Cycle

Requirements

Prototype:
Analysis,

design, code.
Check with
customer.

Replan based
on feedback

Prototype:
Analysis,

design, code.
Check with
customer.

Replan based
on feedback

Prototype:
Analysis,

design, code.
Check with
customer.

Replan based
on feedback

Integration Test

Finish the
prototypes:
Complete

the
developme
nt work

Use as many iterations as necessary to prototype.
In a spiral life cycle, the prototypes do not need to be complete.

Figure A.2: Gantt-like picture of spiral life cycle

Evolutionary
Prototyping Life

cycle

Use as many iterations as necessary to complete the prototype.
The entire system is being prototyped, so integration proceeds as part of the refinement.

Requirements:
Develop initial
concept.

Design and
implement initial
prototype.
Obtain
customer
feedback.

Refine
prototype.
Obtain
feedback.

Complete
the

prototype,
including
integration
and final
testing.

Refine
prototype.
Obtain
feedback.

Refine
prototype.
Obtain
feedback.

...

Figure A.3: Gantt-like picture of evolutionary prototyping life cycle

UP Life
Cycle

Require
ments

Timeboxed
iteration,
developing

higher risk and
higher value
pieces first

Timeboxed
iteration,
developing

higher risk and
higher value
pieces first

Timeboxed
iteration,
developing

higher risk and
higher value
pieces first

Final
Development
Iteration

... Final
Integration

Test

Each timebox (2-6 weeks) delivers completed functionality, including the testing of that functionality.
Many successful UP projects include full system-level integration during each timebox.

Use as many timeboxes as necessary to complete the number of iterations needed for the project.
Requirements can change/evolve during the project and are addressed during each iteration.

By attempting to implement the high-risk and high-value requirements first, the consequences of changing requirements are reduced.

Figure A.4: Gantt-like picture of Unified Process life cycle

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=335

ITERATIVE LIFE CYCLE: SPIRAL, EVOLUTIONARY PROTOTYPING, UNIFIED PROCESS 336

Risks Addressed by an Iterative Life Cycle

These are the risks addressed by an iterative life cycle:

• Frequently changing requirements. Because you prototype a piece

at a time, it’s easy to absorb additional or changed requirements.

• Technical (architectural or design) risks. By prototyping early, the

team settles on an architecture or design that they know works.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=336

ITERATIVE LIFE CYCLE: SPIRAL, EVOLUTIONARY PROTOTYPING, UNIFIED PROCESS 337

Risks Exposed by an Iterative life Cycle

These are the risks exposed by an iterative life cycle:

• Schedule. In a true spiral or evolutionary prototyping life cycle,

finishing the project can be difficult, especially if the team enjoys

prototyping and prototypes for a long time. For the UP, finishing

can be difficult if the team has not kept to the timeboxes or com-

pleted each iteration’s work within the timebox.

• Cost risk. These life cycles assume the team will implement the

riskiest parts of the product first, not necessarily the most valu-

able parts of the product. Sometimes the most risky parts are

the most valuable, but not always. See Section 9.3, Implement the

Highest-Value Features First, on page 184.

Iterative Life Cycles Differ from Agile Life Cycles

Iterative life cycles are different from the agile life cycles in these ways:

• The agile life cycles have one- to four- week timeboxes—the same

iteration duration throughout the entire project. Strictly iterative

life cycles have no standard limit on their timeboxes; some itera-

tions could be two weeks, some five weeks, some three weeks, or

whatever works for your project. (Some teams implement the RUP

with timeboxes of a standard size.)

• Agile life cycles strive for completed features at the end of an iter-

ation and will change what they plan for the next iteration based

on what they completed during the previous iteration. The iter-

ative life cycles do not necessarily complete a feature during an

iteration; it’s possible that the goal of an iteration is to develop a

prototype, not completed, tested, and reviewed code.

When to Replan with the Iterative Life Cycles

Replanning is most effective at the end of an iteration in preparation

for the next iteration. If you find you need to plan in the middle of an

iteration, your iterations might be too long, or the team might be trying

to fit too much into an iteration.

As you replan, consider when you want to encourage the developers to

complete prototypes into releasable code. One part of replanning might

be mixing this life cycle with either incremental life cycles or with agile

life cycles so you obtain the benefit of the prototypes early in the project

and the benefit of completed features later in the project.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=337

INCREMENTAL LIFE CYCLE: STAGED DELIVERY,
DESIGN TO SCHEDULE 338

Staged Delivery
 Life Cycle

Require
ments

Design,
Code,

Integrate &
Test

 Design,
Code,

Integrate &
Test

 Design,
Code,

Integrate &
Test

Final
Integration

FInal Test

Analysis to
Choose
Overall

Architecture

 Design,
Code,

Integrate &
Test

 Design,
Code,

Integrate &
Test

 Design,
Code,

Integrate &
Test

...

...

... ...

Feature teams develop their feature in each Design, Code, Integrate & Test box

Figure A.5: Gantt-like picture of an incremental life cycle

A.3 Incremental Life Cycle: Staged Delivery, Design to Schedule

Incremental life cycles (see Figure A.5) shine when you don’t have con-

tinuous access to the customer and you can create feature teams to

implement by feature. Incremental life cycles work even better if you

have cross-functional teams so you can complete the feature with the

cross-functional team. They work less well if the feature teams don’t

finish all the necessary work for a feature (including testing and docu-

mentation) even when the feature team is collocated. One of the ways

to organize teams for incremental life cycles is to acquire the scarce

resources (people, machines, whatever) and implement those features

that require the scarce resources early in the project. If the feature team

doesn’t complete their work when the scarce resource is assigned to the

project, they might not be able to complete the project.

Risks Addressed by an Incremental Life Cycle

The following are the risks addressed by an incremental life cycle:

• Schedule risk. As the team builds, tests, and integrates features,

you can gather data about the team’s real progress, which de-

creases schedule risk.

• Project team changes. If someone leaves the project, the leaving

tends to affect just one of the cross-functional teams, not the

entire project team.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=338

AGILE LIFE CYCLES 339

• Requirements changes, as long as they don’t change the under-

lying product architecture.

Risks Exposed by an Incremental Life Cycle

The following are the risks exposed by an incremental life cycle:

• Architectural risk. If the team guesses wrong about which features

to implement first, a later feature could change the architecture.

• Requirements changes. Since features are completed as the team

proceeds, if someone wants to change a previously developed fea-

ture, the team will need to do more work.

When to Replan with an Incremental Life Cycle

It makes sense to replan after each feature is implemented. Incremental

life cycles lend themselves well to rolling-wave (see Section 5.6, Using

Rolling-Wave Scheduling, on page 95), so the amount of total project

replanning is minimal.

A.4 Agile Life Cycles

Agile life cycles (see Figure A.6, on the next page) handle schedule,

technical, requirements, and cost risks the best. They plan to complete

features—most often the most valuable features—within a short time-

boxed iteration. These life cycles require frequent access to the cus-

tomer or customer surrogate. (In one-week iterations, the customer

needs to be available for questions every day.) As long as the team

members are not multitasked onto several projects, leave in the middle

of a timebox, and can commit to completing features, the team is likely

to succeed with this life cycle.

When I work with teams exploring the idea of moving to an agile life

cycle, one of their stumbling blocks is this: “We need to know how to

break things apart and estimate well. We don’t do that now. We can’t

go to agile, can we?” The answer is yes—as long as you gather the data

for velocity charts and the team understands they will need to learn to

break things into small pieces. Test-driven development (as discussed

in Section 13.3, TDD Is the Easiest Way to Integrate Testing into Your

Project, on page 267) can help team members learn to think in smaller

pieces.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=339

AGILE LIFE CYCLES 340

Iterative/
Incremental
 Lifecycle

Gather
Product
Backlog

Iteration starts here Iteration ends here.
Software is releasable.

One iteration is between the two lines

Build (at least daily)

System Demo
after each iteration

Figure A.6: Gantt-like picture of an agile life cycle

Risks Addressed by Agile Life Cycles

The following are the risks addressed by agile life cycles:

• Schedule risk. Because you never plan for more than an iteration’s

worth of work, it’s easy to replan a schedule or see what you really

need to meet the schedule.

• Project team changes. As long as the project team doesn’t change

within the iteration, the team is more resilient against personnel

changes.

• Requirements changes. Sure, if you have a requirements change

that modifies the architecture, that’s an issue, but that’s an issue

for any life cycle. Because the agile life cycles manage require-

ments changes with a living backlog, it’s easier to talk about the

cost and the value of each of those changes.

• Cost risk. Because the product owner can rerank the require-

ments before the next iteration (see Section 16.6, Manage the Prod-

uct Backlog, on page 323) and because the iterations are relatively

short, the project can end much sooner than management or the

product owner might otherwise plan.

For agile life cycles, the PM’s job is to protect the contents of the itera-

tion and to protect the state of the people working on the project. The

requirements continue to evolve for the project outside the iteration,

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=340

AGILE LIFE CYCLES 341

before the next iteration starts. You can always add or remove features,

but the contents for any given iteration are protected.

In addition to the iteration’s content, the PM protects the iteration’s

staffing. All people on the project must be fully committed to this pro-

ject—and this project alone—during an iteration. What about interrup-

tions? No interruptions until after the iteration. Yes, you can stop an

iteration at any time, work on interruptions, and replan the next itera-

tion. For more on how to handle interruptions, see Section 8.11, Man-

age Interruptions, on page 172. (And if you can’t protect the people

during an iteration because these people are a scarce resource, see

Section 5.5, Scheduling People to Multitask by Design, on page 94.)

Risks Exposed by Agile Life Cycles

If you need to manage schedule, cost, requirements, and technical risk,

the agile life cycles are best. The agile life cycles will expose the risk

that your management can’t decide which projects are ranked at which

priority. And, they expose the risk that the people who need to decide

about requirements can’t decide. And, if your management isn’t willing

to protect the people and the contents of the iteration, you won’t be able

to maintain the life cycle—and that’s true for any life cycle.

Because there’s so much more discipline in an agile life cycle, a work

environment that does not support the life cycle becomes much more

obvious. And that’s a risk to the long-term retention of the people on

your project. (If you or your management isn’t consistent with what you

say and what you do, people will flip the bozo bit [RD05] on you and

eventually leave.)

Consider an Agile Life Cycle When. . .

The more risks you have, the more an agile life cycle and agile prac-

tices will help. Scrum [Sch04] is a project management framework. You

need to be ready to protect an iteration’s worth of work and to pro-

tect the people working on the project from being yanked off to work

on another project. Since the agile life cycles have short iterations, you

could always try three iteration’s worth of work and see how it goes and

then plan the rest of the project. (I recommend you try three iterations

worth of work because it might take you and the team that long to find

your natural rhythm.)

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=341

AGILE LIFE CYCLES 342

When to Replan with an Agile Life Cycle

Replan at the beginning of an iteration. Plan to reorganize the product

backlog (not this iteration’s contents) continuously.

Agile Life Cycles Are Based on Feedback

Agile life cycles use feedback to provide the project team information

about the true state of the project. You don’t need a crystal ball to

know what’s going on—you can see and touch and measure and feel

what’s happening.

These are the only life cycles based on feedback from beginning to end.

If you have a project that’s highly risky, consider an agile life cycle so

you can obtain feedback about the project from day 1.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=342

Appendix B

Glossary of Terms
Critical path:

The critical path is the longest serial chain of dependent tasks. It

is the shortest time it will take you to complete the project.

Crossing the Desert Syndrome:

This is the feeling that you’ll never be done. It occurs when the

team has focused all their attention and time on trying to meet an

intermediate milestone. Once they meet that milestone, they still

have the rest of the project to do. Just when you think you’re at

the oasis, you realize you’re not even close.1

Inch-pebbles:

Inch-pebbles are one-to-two day tasks that are either done or not

done.

Life cycle:

This is the way your organize the project and shepherd it through

to completion.

Parking lot:

This is a place to put issues you don’t want to lose but don’t nec-

essarily want to address at this time.

Product owner:

This is the person who makes decisions about what goes into the

product and when. This is also the person who manages the prod-

uct backlog.

1. I first heard this from Jack Nevison of Oak Associates.

APPENDIX B. GLOSSARY OF TERMS 344

Program management:

Project management means coordinating several subprojects or a

series of projects to meet some specific business objectives.

Project:

A project is a novel undertaking or systematic process to create

a new product or service, the delivery of which signals comple-

tion. Projects involve risk and are typically constrained by limited

resources.2

Project manager:

This is the person whose job it is to articulate and communicate

what done means and to guide the project team to done. By done,

I mean a product that meets the needs of the organization devel-

oping the product and the customers who will use the product.

Product:

This is the set of deliverables that results from the project.

Rolling-wave planning:

This is detailed scheduling for a fixed period of time. Ongoing plan-

ning maintains the timebox.

Spike:

A spike is a timeboxed task to gain information about other work.

In XP, the work in the timebox is thrown away [Coh06].

Technical debt:

Technical debt is the work you owe your product that the project

team didn’t complete in a previous releases. It can be any kind

of work the project team didn’t accomplish in previous releases:

design debt, code redesign or refactoring debt, testing debt, or

writing debt.

Work breakdown structure:

The work breakdown structure (WBS) is the organization of tasks,

showing their dependencies, durations, and owner. The higher

level the WBS (and the earlier in the project), the less you know.

Expect to evolve the WBS as you proceed.

2. © 2007 R. Max Wideman, http://www.maxwideman.com; reproduced with permission.

Report erratum

this copy is (First printing, June 2007)

http://www.maxwideman.com
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=344

Appendix C

Bibliography

[Aus96] Robert D. Austin. Measuring and Managing Performance in

Organizations. Dorset House Publishing, New York, 1996.

[BB96] Tony Buzan and Barry Buzan. The Mind Map Book: How

to Use Radiant Thinking to Maximize Your Brain’s Untapped

Potential. Plume, New York, NY, 1996.

[BF01] Kent Beck and Martin Fowler. Planning Extreme Program-

ming. Addison-Wesley, Reading, MA, 2001.

[Bro95] Frederick P. Brooks, Jr. The Mythical Man Month: Essays

on Software Engineering. Addison-Wesley, Reading, MA,

anniversary edition, 1995.

[BWe01] James Bullock, Gerald M. Weinberg, and Marie Benesh eds.

Roundtable on Project Management: A SHAPE Forum Dia-

logue. Dorset House Publishing, New York, 2001.

[CB91] Allen R. Cohen and David L. Bradford. Influence without

Authority. John Wiley & Sons, New York, 1991.

[CK02] Bret Pettichord Cem Kaner, James Bach. Lessons Learned

in Software Testing: A Context-Driven Approach. John Wiley

& Sons, New York, NY, 2002.

[Coc01] Alistair Cockburn. Agile Software Development. Addison

Wesley Longman, Reading, MA, 2001.

[Coc04] Alistair Cockburn. Crystal Clear: A Human-Powered Method-

ology for Small Teams. Addison Wesley Longman, Reading,

MA, 2004.

APPENDIX C. BIBLIOGRAPHY 346

[Coh06] Mike Cohn. Agile Estimating and Planning. Prentice Hall,

Englewood Cliffs, NJ, 2006.

[Cov91] Stephen R. Covey. Principle-Centered Leadership. Summit

Books, New York, 1991.

[CS98] Michael A. Cusamano and Richard W. Selby. Microsoft

Secrets. Touchstone, New York, 1998.

[DeM86] Tom DeMarco. Controlling Software Projects: Management,

Measurement, Estimation. Prentice Hall, Englewood Cliffs,

NJ, 1986.

[DeM97] Tom DeMarco. The Deadline. Dorset House, New York,

1997.

[DeM01] Tom DeMarco. Slack: Getting Past Burnout, Busywork, and

the Myth of Total Efficiency. Broadway Books, New York,

2001.

[DL99] Tom Demarco and Timothy Lister. Peopleware: Productive

Projects and Teams. Dorset House, New York, NY, second

edition, 1999.

[DL03] Tom Demarco and Timothy Lister. Waltzing with Bears:

Managing Risk on Software Projects. Dorset House, New

York, NY, 2003.

[DL06] Esther Derby and Diana Larsen. Agile Retrospectives: Mak-

ing Good Teams Great. The Pragmatic Programmers, LLC,

Raleigh, NC, and Dallas, TX, 2006.

[Gol97] Eliyahu Goldratt. Critical Chain. North River Press, Great

Barrington, MA, 1997.

[Gol04] Eliyahu Goldratt. The Goal, 3rd ed. North River Press, Great

Barrington, MA, 2004.

[Gra92] Robert B. Grady. Practical Software Metrics for Project Man-

agement and Process Improvement. Prentice Hall, Engle-

wood Cliffs, NJ, 1992.

[GW89] Donald C. Gause and Gerald M. Weinberg. Exploring

Requirements: Quality Before Design. Dorset House, New

York, 1989.

[Hal07] Payson Hall. Exploring project priorities. stickyminds.com,

2007. http://www.stickyminds.com/s.asp?F=S11953_COL_2.

Report erratum

this copy is (First printing, June 2007)

http://www.stickyminds.com/s.asp?F=S11953_COL_2
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=346

APPENDIX C. BIBLIOGRAPHY 347

[HT03] Andy Hunt and Dave Thomas. The art of enbugging. IEEE

Software, 10(1):10–11, 2003.

[JAH02] Ron Jeffries, Ann Anderson, and Chet Hendrickson.

Extreme Programming Installed. Addison-Wesley, Reading,

MA, 2002.

[Ker01] Norman L. Kerth. Project Retrospectives: A Handbook for

Team Reviews. Dorset House, New York, 2001.

[Koh93] Alfie Kohn. Punished by Rewards: The Trouble with

Gold Stars, Incentive PLans, A’s, Praise, and Other Bribes.

Houghton Mifflin Company, Boston, 1993.

[KS99] Jon R. Katzenbach and Douglas K. Smith. The Wisdom of

Team: Creating the High-Performance Organization. Harper-

Collins Publishers, New York, 1999.

[McC96] Steve McConnell. Rapid Development: Taming Wild Software

Schedules. Microsoft Press, Redmond, WA, 1996.

[McC06] Steve McConnell. Software Estimation: Demystifying the

Black Art. Microsoft Press, Redmond, WA, 2006.

[Mey93] Christopher Meyer. Fast Cycle Time: How to Align Purpose,

Strategy, and Structure for Speed. The Free Press, New York,

1993.

[Moo91] Geoffrey A. Moore. Crossing the Chasm. Harper Business,

New York, NY, 1991.

[MP06] Mary and Tom Poppendieck. Implementing Lean Software

Development: From Concept to Cash. Addison-Wesley, Read-

ing, MA, 2006.

[Phi04] Dwayne Phillips. The Software Project Manager’s Handbook:

Principles that work at work, 2nd ed. IEEE/Wiley, Hoboken,

NJ, 2004.

[RBS00] ed. R. Brian Stanfield. The Art of Focused Conversation, 100

Ways to access Group Wisdom in the Workplace. New Society

Publishers, Gabriola Island, BC, Canada, 2000.

[RD05] Johanna Rothman and Esther Derby. Behind Closed Doors:

Secrets of Great Management. The Pragmatic Programmers,

LLC, Raleigh, NC, and Dallas, TX, 2005.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=347

APPENDIX C. BIBLIOGRAPHY 348

[RG05] Jared Richardson and Will Gwaltney. Ship It! A Practical

Guide to Successful Software Projects. The Pragmatic Pro-

grammers, LLC, Raleigh, NC, and Dallas, TX, 2005.

[Rot98] Johanna Rothman. Defining and managing project

focus. American Programmer, 11(2):19–23, 1998.

http://www.jrothman.com/Papers/aparticle.html.

[Rot99] Johanna Rothman. How to use inch-pebbles when you

think you can’t. American Programmer, 12(5):24–29, 1999.

http://www.jrothman.com/Papers/Howinch-pebbles.html.

[Rot02a] Johanna Rothman. Release criteria: Is this software done?

STQE, 4(2):30–35, 2002.

[Rot02b] Johanna Rothman. What does success look like? Sticky-

minds.com, 2002. http://www.stickyminds.com/se/S3181.asp.

[Rot04a] Johanna Rothman. Got good rhythm? Soft-

ware Development Magazine, 12(6), 2004.

http://www.drdobbs.com/dept/architect/184415151.

[Rot04b] Johanna Rothman. Hiring the Best Knowledge Workers,

Techies, and Nerds: The Secrets and Science of Hiring Tech-

nical People. Dorset House, New York, 2004.

[Roy70] Winston W. Royce. Managing the development of large

software systems. Proceedings, IEEE WECON, pages 1–9,

August 1970.

[Sch04] Ken Schwaber. Agile Project Management with Scrum.

Microsoft Press, Redmond, WA, 2004.

[SH06a] Venkat Subramaniam and Andy Hunt. Practices of an Agile

Developer. The Pragmatic Programmers, LLC, Raleigh, NC,

and Dallas, TX, 2006.

[SH06b] Venkat Subramaniam and Andy Hunt. Practices of an Agile

Developer: Working in the Real World. The Pragmatic Pro-

grammers, LLC, Raleigh, NC, and Dallas, TX, 2006.

[SR98] Preston G. Smith and Donald G. Reinertson. Developing

Products in Half the Time: New Rules, New Tools, second ed.

John Wiley & Sons, New York, NY, 1998.

Report erratum

this copy is (First printing, June 2007)

http://www.jrothman.com/Papers/aparticle.html
http://www.jrothman.com/Papers/Howinch-pebbles.html
http://www.stickyminds.com/se/S3181.asp
http://www.drdobbs.com/dept/architect/184415151
http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=348

APPENDIX C. BIBLIOGRAPHY 349

[TCKO00] Stephanie Teasley, Lisa Covi, M. S. Krishnan, and Judith S.

Olson. How does radical collocation help a team succeed?

Proceedings of CSCW’00, pages 339–346, 2000.

[Wei85] Gerald M. Weinberg. The Secrets of Consulting. Dorset

House, New York, 1985.

[Wei92] Gerald M. Weinberg. Quality Software Management: Volume

1, Systems Thinking. Dorset House Publishing, Inc., New

York, 1992.

[Wei94] Gerald M. Weinberg. Quality Software Management, Volume

3: Congruent Action. Dorset House, New York, 1994.

[Wei97] Gerald M. Weinberg. Quality Software Management: Volume

4, Anticipating Change. Dorset House Publishing, Inc., New

York, 1997.

[Wie00] Karl Wiegers. Stop promising miracles. Software Develop-

ment, 8(2), 2000.

[Wie05] Karl Wiegers. Project Initiation Handbook. Process Impact,

Clackamas, OR, 2005.

[WJ77] Bruce W.Tuckman and Mary Ann C. Jensen. Stages of

small group development revisited. Group and Organiza-

tional Studies, 2:419– 427, 1977.

[WJC00] Robert Wysocki, Robert Beck Jr., and David B. Crane. Effec-

tive Project Management, second edition. John Wiley & Sons,

New York, NY, 2000.

[WK02] Laurie Williams and Robert Kessler. Pair Programming Illu-

minated. Addison-Wesley, Reading, MA, 2002.

[You99] Edward Yourdon. Death March: The Complete Soft-

ware Developer’s Guide to Surviving âĂŸMission Impossible’

Projects. Prentice Hall, Englewood Cliffs, NJ, 1999.

Report erratum

this copy is (First printing, June 2007)

http://books.pragprog.com/titles/jrpm/errata/add?pdf_page=349

Index
Symbols
90% Done strategy, 130f, 129–131

A
Accuracy vs. precision, 86

Agile life cycles

code growth for, 190f

combination of incremental and

iterative, 55f

and daily standup meetings, 199

and feedback, 58f, 342

and funding, 318

Gantt-like picture of, 340f

vs. iterative life cycles, 337

managing risk with, 54

measurements for, 238

and multisite teams, 257

and product backlogs, 322

recommended, 63

replanning, 167, 342

and risk, 340, 341

and velocity charts, 219

when to use, 339

Agile practices example chart, 237f

Architects

PowerPoint, 136

as project managers, 149

role of, 135

Architecture

and organization, 184

and risk, 60–62, 332

Area testing, 271

Aubin, Jerry, 61n

Automated smoke tests, 181–182

B
Behavior-driven development website,

129n

Beta releases, 299–300

Bottom-up scheduling, 67

Bring Me a Rock pattern, 102f,

101–104

Brooks’ law, 127

Buddy review, 187

C
Canceling projects, 313–314

Celebrations, 311

Charters, 27–29

Chasing skirts, see Schedule games

Cockburn, Alistair, 143, 247

Cohn, Mike, 87

Complementary life cycles, 253

Complementary practices, 252–260

Completing projects, 298–314

beta releases, 299–300

canceling, 313–314

celebrations, 311

early release requests, 298–299

final tasks, 308–312

late releases, 300–308

overview of, 298, 314

retrospectives, 309

Component testing, 271

Cone of uncertainty, 84f

Conference calls, managing, 208–211

facilitation guidelines, 209

logistics, 209

meeting facilitation, 210

planning, 210

post-call work, 211

Confidence ranges for estimation, 82f,

84f, 82–84

Constellation risk list, 240f

Constraints, 19–23

Context switching, 325

Context-free questions, 26

CONTINUOUS INTEGRATION AND PROJECT RHYTHM 351 ESTIMATING

Continuous integration and project

rhythm, 179–181

Conway’s law, 184

Costs

and agile life cycle, 340

of developing multiple projects, 290

of fixing defects, 230–232

funding projects, 318

and how little thinking, 93

of meetings, 195

in multisite projects, 247–248

of multitasking, 325–327

people as, 227

and serial life cycles, 331

of working across multiple time

zones, 258

Criteria ranking, 160, 162f

Cross-functional project teams, 143,

168–169

Crossing the Desert Syndrome, 302

Cultural differences, 248–249

D
Daily standup meetings, 199–201

Dashboards, 212–245

for agile projects, 238

and cost of fixing defects, 230–232

and defect trends, 232, 233f

and earned value, 218–220

and estimated quality factor, 221f,

222f, 221–223

and fault feedback ratio, 229f,

229–230

initial risk list, 239f

iterations content chart, 217, 218f

measurements introduction,

212–215

multiple measurements, 223

overview of, 212, 245

of practices agreed to, 236f, 237f,

235–238

for program management, 296–297

progress toward completion,

215–238

and qualified people, 226f, 225–227

qualitative data, 235f

and rate of change, 227, 228f

and schedule measuring, 224f, 225f,

224–225

for sponsors, 238–239, 240f

and testing progress, 234f, 233–234

velocity charts, 216f, 220f

as weather report, 241–245

Date ranges for estimation, 85

Debugging by feature, 185

Decision making, 319

Defect-tracking systems (DTS), 139

Defects

managing, 178f, 174–178

planning for, 45

promoting/demoting, 308

trends, 232, 233f

see also Testing integration

Deliverable-based planning, 75, 91

Delphi project estimation, 78

DeMarco, Tom, 221, 280

Denial strategy, 107f, 106–109

Derby, Esther, 104n, 123n, 158, 310

Design-test-code-debug loop, 56f

Domain-expertise skills, 148–151

Drivers, 19–26

DTS, see Defect-tracking systems (DTS)

E
Early release requests, 298–299

Earned value, 218–220

Email status reports, 203

Estimated quality factor (EQF), 221f,

222f, 221–223

Estimating, 77–100

accuracy vs. precision, 86

and deliverable-based planning, 91

how little vs. how much, 93

inch-pebbles and, 98–100

and milestones, 91–92

with multitasking, 94

overview of, 100

person-hours vs. person-days, 88

pragmatic approaches to, 77–90

confidence ranges, 82f, 84f, 82–84

date ranges, 85

Delphi and wideband Delphi, 78

historical comparisons, 77

planning poker, 87

serial life cycle trap, 79

sizing vs. duration, 86

spikes for, 88

three-date technique, 85–86

tips for, 89–90

trusting team’s ability, 78–79

and rolling-wave scheduling, 95–96

vs. scheduling, 65

EXTREME PROGRAMMING (XP) 352 LOW-FIDELITY PROTOTYPING

short iterations for large tasks, 97

and slack time, 80

pragmatic approaches to

for tight deadlines, 90

and timeboxed iterations, 96

see also Scheduling

eXtreme Programming (XP), 63

F
Fagg, Peter, 301

Fault feedback ratio (FFR), 229f,

229–230

Feature testing, 271

Fibonacci series, 87

Floats, 19–22

Formal inspection, 188

Functional skills, 147

Functional teams, 141

G
Gantt charts, 40

Global project, see Multisite projects

Goals, 29, 38

GUI design vs. requirements, 191–192

H
Happy Date strategy, 111f, 111–113

Hendrickson, Elisabeth, 110n, 114n

Hiring, see Recruiting

Hope strategy, 105f, 104–106

Hudson Bay Start, 67–68

I
Implementation by feature, 182–187

debugging, 185

with hardware component, 186

highest value features, 184–185

testing, 185

Inch-pebbles, 96

benefits of, 100

defining, 99

for estimating, 98–100

and project steering, 171–172

for unclear tasks, 98

Incremental life cycles

Gantt-like picture of, 338f

and product backlogs, 323

replanning for, 167, 339

and risk, 53, 338

and velocity charts, 219

when to use, 338

Influence, 175

Initial risk list, 239f

Inside-out scheduling, 67

Integrating testing, see Testing

integration

Integration testing, 272

Interruptions, managing, 172–176

Iron triangle model, 20f, 20

Iterations

content chart, 217, 218f

divide-by-two approach, 165

one-week, 116

review meetings, 206

in scheduling, 168

Iterative life cycles

vs. agile life cycles, 337

Gantt-like picture of evolutionary

prototyping life cycle, 335f

Gantt-like picture of spiral life cycle,

335f

Gantt-like picture of Unified Process

life cycle, 335f

managing risk with, 53, 336, 337

and one-on-one meetings, 201

replanning with, 167, 337

when to use, 334

L
Larsen, Diana, 158, 310

Life cycles, 50–63

agile and feedback, 58f

architectural risk and, 60–62

complementary, 253

description of, 50–51

design-code-test-debug loop, 56f

and early release requests, 298

Gantt-like look at, 53f

and hardware, 59

for larger projects, 58f, 57–60

overview of, 50, 63

recommended, 63

and risk, 52f, 169–170

and schedules, 65

test-code refactor loop, 57f

types of, introduced, 55f, 51–55

and waterfalls, 62

see also specific life cycles

Lister, Timothy, 280

Lister, Tom, 112n, 114n

Low-fidelity prototyping, 192–193

LOW-TECH SCHEDULING 353 PLANNING

Low-tech scheduling, see Scheduling

M
Managing meetings, see Meetings

Margulies, Benson, 106n

Matrixed project team, 142

Measurement, 212–215

of agile projects, 238

of cost of fixing defects, 230–232

of defect trends, 232, 233f

and earned value, 218–220

and estimated quality factor, 221f,

222f, 221–223

of fault feedback ratio, 229f,

229–230

iteration contents chart for, 217,

218f

multiple (assessment), 223

of practices agreed to, 236f, 237f,

235–238

of progress toward completion,

215–238, 296–297

of qualified people, 226f, 225–227

restarting, 215

of schedule, 224f, 225f, 224–225

for series of projects, 297

and testing progress, 234f, 233–234

velocity charts for, 216f, 220f

Meetings, 194–211

to cancel, 195–197

conference calls for remote teams,

208–211

costs of, 195

iterative review, 206

overview of, 194, 211

political, 151

project kickoff, 198

project team, 205–206

release planning, 198–199

reporting to management, 204

status, 199–204

troubleshooting, 206–208

types, 197–198

Micromanaging, 99

Milestones

for beta releases, 300

and deliverable-based planning, 75

and estimating, 91–92

for multisite projects, 254–256

in schedule overview, 39

and scheduling, 66, 92

Mind maps, 67

Multisite projects, 246–264

anticipating potential problems,

260–262

complementary practices, 252–260

cost of a question, 247–248

and cultural differences, 248–249

life cycles for, 59

and outsourcing, 262–264

overview of, 246, 264

time zone issues, 258

and trust building, 249–252

Multitasking

and context switching, 325

costs of, 325–327

and estimating time, 93

multiple projects, 114, 115

project managers and, 152

saying no to, 327–329

two tasks, 325, 326f

Murphy’s law, 86

O
One-on-one meetings, 201–203

Organization goals, 38

Organization, project, 39

Outsourcing considerations, 262–264

P
Pair programming, 187

Pairwise comparison, 160

Pants on fire strategy, 113f, 113–115

Parkinson’s law, 80

Peer review, 188

Person-hours vs. person-days, 88

Phillips, Dwayne, 66, 143

Planning, 33–49

with end in mind, 35

how much, 34–35

overview of, 33, 49

project alternatives, 41f

release criteria, 42–47

defining, 43

drafting, 44–46

gaining consensus on, 46–47

important for project, 43–44

quantifying success, 42–43

SMART, 46

using, 47–49

template, 42f, 35–42

see also Scheduling

PLANNING POKER 354 PROJECT TEAMS

Planning poker, 87

Plans and schedules, 65

PM, see Project managers

PMP certification, 150

Portfolios, see Project portfolios

Precision vs. accuracy, 86

Priorities, 24

Product backlog

for denial strategy, 109

for managing demands, 322f,

321–323

and multitasking, 328

for ranking requirements, 161

Product definition, 18

Product goals, 38

Product purpose, 36

Product quality, 31f

Program management, 288–297

dashboard for, 296–297

definition of, 288–289

manager management, 294–296

for multiple projects over time,

291–294

organizing into one release, 289–291

overview of, 288, 297

Project alternatives, 41f

Project charters, 27–29

Project completion, see Completing

projects

Project dashboard, see Dashboard

Project goals, 38

Project kickoff meetings, 198

Project management professional (PMP)

certification, 150

Project managers

anticipating problems (multisite

teams), 260–262

conducting one-on-one meetings,

201

of cross-functional teams, 143

definition of, 18

domain-expertise skill development,

148–151

functional skill development, 147

of functional teams, 141

and influence, 175

and insufficient resources, 153

interpersonal skill development,

146–147

knowing when to leave, 148–155

management of, 25–27, 294–296

of matrixed project teams, 142

and multiple projects, 151

and multitasking, 152

and outsourcing, 262–264

and PMP certification, 150

and politics, 144

and release trains, 293–294

reporting status to management, 204

responsibility and authority of, 144

results managing, 257

role in team building, 140

and silo management, 153

as team players, 154

and team review, 257

technical contributions by, 152

technical expertise of, 149

when you’re not right for the

product, 155

when you’re not right for the team,

154–155

see also Meetings; Program

management

Project portfolios, 315–329

creating, 316f, 315–316

funding, 318

overview of, 315, 329

product backlogs for, 322f, 321–323

project evaluation, 317–318

ranking projects, 318

starting faster, 319–321

troubleshooting management of,

323–329

context switching, 325

costs of multitasking, 325–327

multitasking, 325, 326f, 327–329

Project progression, 15

Project teams, 135–155

adding more people, 145

choice about members, 149

in competition with each other, 251

complementary practices for,

252–260

cross-functional, 168–169

cultural differences between,

248–249

defining milestones for, 256

and domain-expertise skills,

148–151

and functional skills, 147

implementing by feature, 182–187

and interpersonal skills, 146–147

PROJECT WEATHER REPORTS 355 RISK

manager responsibility and

authority, 144

meetings, 205–206

member roles, 135

overview of, 155

recruiting, 40, 135–137

remote, 208–211

risk in, 282

size of, 143

and testers needed for, 280

testing roles, 273–277

trust building, 249–252

types, 140, 141f

work product reviews, 257

working well together, 137–144

cross-functional project teams,

143

five stages of, 139

functional teams, 141

matrix project teams, 142

tools for, 138

Project weather reports, see Weather

reports

Project, defined, 17–19

Project-based organization, 140

Prototyping

low-fidelity, 192–193

websites for, 192n

Q
QA vs. testing, 286–287

Quality, defining, 31f, 30–32

Queen of Denial strategy, 107f,

106–109

R
Ramos, Bill, 38n

Ranking projects, 318

Ranking requirements, 158–161

criteria ranking, 160, 162f

pairwise comparison, 160

product backlog, 161

Recruiting, 40, 135–137

Refactoring, planning for, 189f, 190f,

188–190

Release criteria, 42–49

drafting, 44–46

gaining consensus on, 46–47

important for project, 31–32, 43–44

for project plan template, 37

quantifying success criteria, 42–43

and SMART, 46

using, 47–49

Release date, not meeting, 300–308

Release planning meetings, 198–199

Release trains, 37, 292–294

Remote teams, 208–211

Requirements

for charter, 28

defining, 190–191

vs. GUI design, 191–192

Rescheduling, see Completing projects;

Scheduling

Retrospectives

interim, 158–159

at project end, 309–311

Return on investment (ROI), 30

Reviewing work, 187–188

Rhythm, 179–193

and automated smoke tests,

181–182

and continuous integration, 179–181

GUI design vs. requirements,

191–192

implementing by feature, 182–187

low-fidelity prototyping, 192–193

overview of, 193

refactoring, planning for, 189f, 190f,

188–190

requirements approach to, 190–191

reviewing work, 187–188

see also Steering projects

Risk

and agile life cycles, 340, 341

architectural, 60–62, 332

developer, 282

and developer tester ratio, 278

evaluating, 280

and incremental life cycles, 338

initial list of, 41, 42f, 239f, 238–239

iterative life cycles and, 337

and iterative planning, 165

and life cycles, 169–170

in managing multiple projects for

one release, 291

of multitasking, 329

project context and, 19

role of testing in, 273

and serial life cycles, 330–333

and test-driven development, 268

and testing, 266–267

ROLLING-WAVE SCHEDULING 356 STARTING PROJECTS

Rolling-wave scheduling, 95–96,

165–168

The Rule of Three (Weinberg), 146, 320

S
Schedule Chicken strategy, 128f,

128–129

Schedule Dream Time strategy, 122f,

122–124

Schedule Equals Commitment strategy,

118f, 117–119

Schedule games, 101–134

90% Done strategy, 130f, 129–131

Bring Me a Rock pattern, 102f,

101–104

denial strategy, 107f, 106–109

Happy Date strategy, 111f, 111–113

Hope strategy, 105f, 104–106

overview of, 134

Pants on Fire strategy, 113f,

113–115

Schedule Chicken strategy, 128f,

128–129

Schedule Dream Time strategy, 122f,

122–124

Schedule Equals Commitment

strategy, 118f, 117–119

Schedule Trance strategy, 133f,

133–134

Split Focus strategy, 115f, 115–117

Sweep Under the Rug strategy, 109f,

109–110

We Can’t Say No strategy, 126f,

126–127

We Gotta Have It; We’re Toast

Without It strategy, 124f, 124–125

We’ll Go Faster Now strategy, 132f,

131–132

We’ll Know Where We Are When We

Get There strategy, 120f, 119–121

see also Scheduling; Iterations

Schedule overview, 39

Schedule risk, 333, 338, 340

Schedule trance strategy, 133f,

133–134

Scheduling, 64–76

and deliverable-based planning, 75

vs. estimating, 65

high-tech vs. low-tech tools, 69–71

iterative, 168

and late projects, 75, 302

and life cycles, 65

milestones, 92

overview of, 76

and plans, 65

pragmatic approaches to, 64–66

proposed, 40

with stickies

arrows, 73

basics, 72f, 71–72, 73f

benefits, 74

features, 74

options, 73

system test time, 304–306

techniques, 66–69

tools for, 69

see also Estimating; Schedule

games; Program management;

Planning

SCM, see Software configuration

management (SCM)

Scrum, 63, 341

Serial life cycles

and architectural risk, 61

code growth for, 189f

completing work, 219

and estimating project time, 79

and forecasting, 334

Gantt-like picture of, 331f

managing, 62

and one-on-one meetings, 201

and product backlogs, 323

replanning, 166, 334

risk management and, 52, 330

risks hidden by, 331–333

and scheduling, 66, 72

when to use, 330

Serial status meetings, 196, 295

Short iterations, 68

Silos, 153, 168–169

Slack time, 80

Smoke tests, automated, 181–182

Software configuration management

(SCM), 138

Spikes for gathering data, 88

Split focus strategy, 115f, 115–117

Staff, see Recruiting

Starting projects, 17–32

charters, 27–29

client management, 25–27

constraints, discussing with client,

22–23

STATUS MEETINGS 357 TIMEBOXING

definition of project, 17–19

drivers, constraints and floats,

19–22

drivers, identifying, 23–25

iron triangle model, 20f

overview of, 17, 32

quality, 31f, 30–32

Status meetings, 199–204

daily standup, 199–201

one-on-one, 201–203

serial, 196

weekly email reports, 203

Steering projects, 156–178

cross-functional project teams,

168–169

defects, managing, 178f, 174–178

inch-pebbles and, 171–172

interim retrospectives, 158–159

interruptions, managing, 172–176

life cycles based on risk, 169–170

natural rhythm of, 156–157, 171

overview of, 156, 178

requirement ranking, 158–161, 162f

rolling-wave planning, 165–168

timebox iterations, 164–165

timebox requirements, 162–163

work hours and, 170–171

see also Rhythm

Stepanek, George, 136n

Sticky scheduling

with arrows, 73

the basics, 72f, 71–72, 73f

benefits of, 74

deliverable-based planning, 75

for features, 74

options with, 73

Student Syndrome, managing with

inch-pebbles, 172

Success criteria, 29

Sweep Under the Rug strategy, 109f,

109–110

System testing, see Testing

T
Team building, see Project teams

Team goals, 38

Technical debt, 37, 266

see also Defects

Teleconference, see Conference calls,

managing

Templates

for beta releases, 299–300

for email status report, 203

for managing multiple projects into

one release, 290–291

for planning projects, 42f, 35–42

for project charters, 28–30

for project team meeting agenda, 205

system test strategy, 284–285

website for, 15

Test-code refactor loop, 57f

Test-driven development (TDD)

project integration with, 267–270

and risk, 266

training for, 269

Testers, 275f, 274–277

Testing

cycles, 305

estimating time for, 304–306

by feature, 185

and fixing simultaneously, 305

progress of, 234f, 233–234

for release trains, 294

risk, 332

when there’s not enough time,

306–307

Testing integration, 265–287

defining roles for, 273–277

developer tester ratio, 277–283

and development, 283

overview of, 265, 287

vs. QA, 286–287

with small tests, 266–267

strategy template, 284–285

and technical debt, 266

with test-driven development,

267–270

testers for, 275f

and variety of techniques, 271f,

271–273

Theory of Constraints (TOC), 79

Three-date technique, 85–86

Timeboxed iterations

and Hope strategy, 106

and scheduling, 68

for steering a project, 164–165

Timeboxing

architecture, 61

and estimating, 96

initial planning, 66

for steering projects, 162–163

testing, 306

TOP-DOWN SCHEDULING 358 YELLOW STICKIES

Top-down scheduling, 66

Troubleshooting meetings, 206–208

Trust, 249–252

U
Unit testing, 267, 270, 272

V
Velocity charts, 106, 108, 216f, 217,

220f

Vision, 28, 36

W
Walk-through, 188

Waterfalls, 62, 63, 331, 332

We Can’t Say No strategy, 126f,

126–127

We Gotta Have It; We’re Toast Without

It strategy, 124f, 124–125

We’ll Go Faster Now strategy, 132f,

131–132

We’ll Know Where We Are When We Get

There strategy, 120f, 119–121

Weather reports, 241–245

credibility of, 244

icons for, 242

weekly publishing of, 245

Websites

for Agile Manifesto, 51n

for agile testing, 283n

for behavior-driven development,

129n

for canceling projects article, 313n

for codependent schedule games

articles, 125n

for continuous integration, 179n

on cost of fixing defects, 231n

for cost of multitasking projects,

247n

for daily standup meetings, 200n

for estimating testing time, 304n

for metrics and agility, 216n

for multitasking and stress article,

324n

for multitasking costs, 94n

for outsourcing article, 262n

for pair programming, 187

for project portfolio evaluation, 317n

for project portfolios article, 316n

for project progress article, 235n

for prototyping feedback, 192n

for release trains article, 292n

for templates, 15

for test-driven development, 269n

for testers needed, 277n

for unit testing article, 272n

for visibility and communication

article, 238n

for weather report article, 241n

Weinberg, Gerald M., 31, 143

Wideband Delphi, 78

Wideman, R. Max, 17, 18n, 218n, 288n

Work breakdown structure (WBS), 39

Work hours, 170–171

Y
Yellow stickies, for scheduling, 69

A Pragmatic Career
Welcome to the Pragmatic Community. We hope you’ve enjoyed this title.

If you’ve enjoyed this book by Johanna Rothman, and want to advance your management

career, you’ll be interested in seeing what happens Behind Closed Doors. And see how you

can lead you team to success by using Agile Retrospectives.

Behind Closed Doors
You can learn to be a better manager—even a great

manager—with this guide. You’ll find powerful tips

covering:

• Delegating effectively • Using feedback and

goal-setting • Developing influence • Handling

one-on-one meetings • Coaching and mentoring

• Deciding what work to do-and what not to do

• . . . and more!

Behind Closed Doors Secrets of Great

Management

Johanna Rothman and Esther Derby

(192 pages) ISBN: 0-9766940-2-6. $24.95

http://pragmaticprogrammer.com/titles/rdbcd

Agile Retrospectives
Mine the experience of your software development

team continually throughout the life of the project.

Rather than waiting until the end of the project—as

with a traditional retrospective, when it’s too late to

help—agile retrospectives help you adjust to

change today.

The tools and recipes in this book will help you

uncover and solve hidden (and not-so-hidden)

problems with your technology, your methodology,

and those difficult “people issues” on your team.

Agile Retrospectives: Making Good Teams Great

Esther Derby and Diana Larsen

(170 pages) ISBN: 0-9776166-4-9. $29.95

http://pragmaticprogrammer.com/titles/dlret

http://pragmaticprogrammer.com/titles/rdbcd
http://pragmaticprogrammer.com/titles/dlret

Competitive Edge
Need to get software out the door? Then you want to see how to Ship It! with less fuss and

more features. And every developer can benefit from the Practices of an Agile Developer.

Ship It!
Page after page of solid advice, all tried and tested

in the real world. This book offers a collection of

tips that show you what tools a successful team

has to use, and how to use them well. You’ll get

quick, easy-to-follow advice on modern techniques

and when they should be applied. You need this

book if: • You’re frustrated at lack of progress on

your project. • You want to make yourself and your

team more valuable. • You’ve looked at

methodologies such as Extreme Programming (XP)

and felt they were too, well, extreme. • You’ve

looked at the Rational Unified Process (RUP) or

CMM/I methods and cringed at the learning curve

and costs. • You need to get software out the

door without excuses

Ship It! A Practical Guide to Successful Software

Projects

Jared Richardson and Will Gwaltney

(200 pages) ISBN: 0-9745140-4-7. $29.95

http://pragmaticprogrammer.com/titles/prj

Practices of an Agile Developer
Agility is all about using feedback to respond to

change. Learn how to apply the principles of agility

throughout the software development process •

Establish and maintain an agile working

environment • Deliver what users really want •

Use personal agile techniques for better coding and

debugging • Use effective collaborative

techniques for better teamwork • Move to an agile

approach

Practices of an Agile Developer: Working in the

Real World

Venkat Subramaniam and Andy Hunt

(189 pages) ISBN: 0-9745140-8-X. $29.95

http://pragmaticprogrammer.com/titles/pad

http://pragmaticprogrammer.com/titles/prj
http://pragmaticprogrammer.com/titles/pad

Cutting Edge
Now that you’ve finished your project, are you sure that it’s ready for the real world? Are

you truly ready to Release It! in this crazy world?

Interested in Ruby on Rails, but don’t want to learn another framework from scratch?

You don’t have to! Rails for Java Programmersleverages you and your team’s knowledge

of Java to quickly learn the Rails environment.

Release It!
Whether it’s in Java, .NET, or Ruby on Rails,

getting your application ready to ship is only half

the battle. Did you design your system to survive a

sudden rush of visitors from Digg or Slashdot? Or

an influx of real world customers from 100 different

countries? Are you ready for a world filled with

flakey networks, tangled databases, and impatient

users?

If you’re a developer and don’t want to be on call at

3AM for the rest of your life, this book will help.

Design and Deploy Production-Ready Software

Michael T. Nygard

(368 pages) ISBN: 0-9787392-1-3. $34.95

http://pragmaticprogrammer.com/titles/mnee

Rails for Java Developers
Enterprise Java developers already have most of

the skills needed to create Rails applications. They

just need a guide which shows how their Java

knowledge maps to the Rails world. That’s what

this book does. It covers: • The Ruby language

• Building MVC Applications • Unit and

Functional Testing • Security • Project

Automation • Configuration • Web Services

This book is the fast track for Java programmers

who are learning or evaluating Ruby on Rails.

Rails for Java Developers

Stuart Halloway and Justin Gehtland

(300 pages) ISBN: 0-9776166-9-X. $34.95

http://pragmaticprogrammer.com/titles/fr_r4j

http://pragmaticprogrammer.com/titles/mnee
http://pragmaticprogrammer.com/titles/fr_r4j

Facets of Ruby Series
If you’re serious about Ruby, you need the definitive reference to the language. The Pick-

axe: Programming Ruby: The Pragmatic Programmer’s Guide, Second Edition. This is the

definitive guide for all Ruby programmers. And you’ll need a good text editor, too. On the

Mac, we recommend TextMate.

Programming Ruby (The Pickaxe)
The Pickaxe book, named for the tool on the cover,

is the definitive reference to this highly-regarded

language. • Up-to-date and expanded for Ruby

version 1.8 • Complete documentation of all the

built-in classes, modules, and methods

• Complete descriptions of all ninety-eight standard

libraries • 200+ pages of new content in this

edition • Learn more about Ruby’s web tools, unit

testing, and programming philosophy

Programming Ruby: The Pragmatic

Programmer’s Guide, 2nd Edition

Dave Thomas with Chad Fowler and Andy Hunt

(864 pages) ISBN: 0-9745140-5-5. $44.95

http://pragmaticprogrammer.com/titles/ruby

TextMate
If you’re coding Ruby or Rails on a Mac, then you

owe it to yourself to get the TextMate editor. And,

once you’re using TextMate, you owe it to yourself

to pick up this book. It’s packed with information

which will help you automate all your editing tasks,

saving you time to concentrate on the important

stuff. Use snippets to insert boilerplate code and

refactorings to move stuff around. Learn how to

write your own extensions to customize it to the

way you work.

TextMate: Power Editing for the Mac

James Edward Gray II

(200 pages) ISBN: 0-9787392-3-X. $29.95

http://pragmaticprogrammer.com/titles/textmate

http://pragmaticprogrammer.com/titles/ruby
http://pragmaticprogrammer.com/titles/textmate

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Manage It! Home Page

http://pragmaticprogrammer.com/titles/jrpm

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragmaticprogrammer.com/titles/jrpm.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/jrpm
http://pragmaticprogrammer.com/updates
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
pragmaticprogrammer.com/titles/jrpm
www.pragmaticprogrammer.com/catalog

	Contents
	Foreword
	Preface
	Starting a Project
	Define Projects and Project Managers
	Manage Your Drivers, Constraints, and Floats
	Discuss Your Project Constraints with Your Client or Sponsor
	Decide on a Driver for Your Project
	Manage Sponsors Who Want to Overconstrain Your Project
	Write a Project Charter to Share These Decisions
	Know What Quality Means for Your Project

	Planning the Project
	Start the Wheels Turning
	Plan Just Enough to Start
	Develop a Project Plan Template
	Define Release Criteria
	Use Release Criteria

	Using Life Cycles to Design Your Project
	Understanding Project Life Cycles
	Overview of Life Cycles
	Seeing Feedback in the Project
	Larger Projects Might Have Multiple Combinations of Life Cycles
	Managing Architectural Risk
	Paddling Your Way Out of a Waterfall
	My Favorite Life Cycles

	Scheduling the Project
	Pragmatic Approaches to Project Scheduling
	Select from These Scheduling Techniques
	Start Scheduling with a Low-Tech Tool

	Estimating the Work
	Pragmatic Approaches to Project Estimation
	Milestones Define Your Project's Chunks
	How Little Can You Do?
	Estimating with Multitasking
	Scheduling People to Multitask by Design
	Using Rolling-Wave Scheduling
	Deciding on an Iteration Duration
	Estimating Using Inch-Pebbles Wherever Possible

	Recognizing and Avoiding Schedule Games
	Bring Me a Rock
	Hope Is Our Most Important Strategy
	Queen of Denial
	Sweep Under the Rug
	Happy Date
	Pants on Fire
	Split Focus
	Schedule Equals Commitment
	We'll Know Where We Are When We Get There
	The Schedule Tool Is Always Right
	We Gotta Have It; We're Toast Without It
	We Can't Say No
	Schedule Chicken
	90% Done
	We'll Go Faster Now
	Schedule Trance

	Creating a Great Project Team
	Recruit the People You Need
	Help the Team Jell
	Make Your Organization Work for You
	Know How Large a Team You Need
	Know When to Add More People
	Become a Great Project Manager
	Know When It's Time to Leave

	Steering the Project
	Steer the Project with Rhythm
	Conduct Interim Retrospectives
	Rank the Requirements
	Timebox Requirements Work
	Timebox Iterations to Four or Fewer Weeks
	Use Rolling-Wave Planning and Scheduling
	Create a Cross-Functional Project Team
	Select a Life Cycle Based on Your Project's Risks
	Keep Reasonable Work Hours
	Use Inch-Pebbles
	Manage Interruptions
	Manage Defects Starting at the Beginning of the Project

	Maintaining Project Rhythm
	Adopt or Adapt Continuous Integration for Your Project
	Create Automated Smoke Tests for the Build
	Implement by Feature, Not by Architecture
	Get Multiple Sets of Eyes on Work Products
	Plan to Refactor
	Utilize Use Cases, User Stories, Personas, and Scenarios to Define Requirements
	Separate GUI Design from Requirements
	Use Low-Fidelity Prototyping as Long as Possible

	Managing Meetings
	Cancel These Meetings
	Conduct These Types of Meetings
	Project Kickoff Meetings
	Release Planning Meetings
	Status Meetings
	Reporting Status to Management
	Project Team Meetings
	Iteration Review Meetings
	Troubleshooting Meetings
	Manage Conference Calls with Remote Teams

	Creating and Using a Project Dashboard
	Measurements Can Be Dangerous
	Measure Progress Toward Project Completion
	Develop a Project Dashboard for Sponsors
	Use a Project Weather Report

	Managing Multisite Projects
	What Does a Question Cost You?
	Identify Your Project's Cultural Differences
	Build Trust Among the Teams
	Use Complementary Practices on a Team-by-Team Basis
	Look for Potential Multisite Project and Multicultural Problems
	Avoid These Mistakes When Outsourcing

	Integrating Testing into the Project
	Start People with a Mind-Set Toward Reducing Technical Debt
	Reduce Risks with Small Tests
	TDD Is the Easiest Way to Integrate Testing into Your Project
	Use a Wide Variety of Testing Techniques
	Define Every Team Member's Testing Role
	What's the Right Developer-to-Tester Ratio?
	Make the Testing Concurrent with Development
	Define a Test Strategy for Your Project
	System Test Strategy Template
	There's a Difference Between QA and Test

	Managing Programs
	When Your Project Is a Program
	Organizing Multiple Related Projects into One Release
	Organizing Multiple Related Projects Over Time
	Managing Project Managers
	Creating a Program Dashboard

	Completing a Project
	Managing Requests for Early Release
	Managing Beta Releases
	When You Know You Can't Meet the Release Date
	Shepherding the Project to Completion
	Canceling a Project

	Managing the Project Portfolio
	Build the Portfolio of All Projects
	Evaluate the Projects
	Decide Which Projects to Fund Now
	Rank-Order the Portfolio
	Start Projects Faster
	Manage the Demand for New Features with a Product Backlog
	Troubleshoot Portfolio Management

	More Detailed Information About Life Cycles
	Serial Life Cycle: Waterfall or Phase-Gate
	Iterative Life Cycle: Spiral, Evolutionary Prototyping, Unified Process
	Incremental Life Cycle: Staged Delivery, Design to Schedule
	Agile Life Cycles

	Glossary of Terms
	Bibliography
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

