
www.it-ebooks.info

http://www.it-ebooks.info/

Microsoft SharePoint 2010
Business Application Blueprints

Master SharePoint application development by building
exciting SharePoint business solutions

Mike Oryszak

P U B L I S H I N G

professional expert ise dist i l led

 BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Microsoft SharePoint 2010 Business
Application Blueprints

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2012

Production Reference: 1180612

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-360-9

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Mike Oryszak

Reviewers
Michael Nemtsev

Doug Ortiz

Wei Chung, Low

Acquisition Editor
Rashmi Phadnis

Lead Technical Editor
Shreerang Deshpande

Technical Editors
Manmeet Singh Vasir

Felix Vijay

Rati Pillai

Project Coordinator
Vishal Bodwani

Proofreader
Bernadette Watkins

Indexer
Monica Ajmera Mehta

Graphics
Manu Joseph

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Mike Oryszak is a Consultant and Practice Manager with Intellinet, a Microsoft
Gold-Certified partner located in the South Eastern US. Mike works with customers
to design and implement business solutions that leverage SharePoint as a platform.
Mike is actively involved in the SharePoint community as the leader of the Triangle
SharePoint User Group in Raleigh, NC, as well as a frequent speaker at SharePoint
events and conferences. Mike has been recognized for his community involvement
as a three time Microsoft Valuable Professional (MVP) for SharePoint Server. When
not working, Mike can be found at home with his family or off hiking the many trails
in the mountains of western North Carolina. Mike can be reached at nextconnect@
live.com or through his blog at http://www.mikeoryszak.com.

A project like this is a very big undertaking, one that cannot be
completed without a supporting team. I would like to thank my
colleagues at Intellinet for their encouragement as well as my many
friends in the SharePoint community who have helped me challenge
ideas and evolve my understanding of best practices over time.
I would also like to give a special thank you to the team at Packt
Publishing for their guidance in helping me mold these thoughts
into a cohesive package.

The time commitment for a project like this is pretty big and a lot of
personal sacrifices had to be made. I would like to thank my family
for sticking with me through this arduous journey and for providing
their never-ending support.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Michael Nemtsev is an ex-Microsoft MVP in .NET/C# and SharePoint Server
2010 (2005 to 2011).

Michael's expertise is in Enterprise Integration and Platform & Collaborations
areas and he is currently working as a Senior Consultant at Microsoft in Sydney,
Australia, helping clients to improve business collaboration with SharePoint 2010
and Office365.

Doug Ortiz is an Independent Consultant whose skill set encompasses multiple
platforms such as .NET, SharePoint, Office, and SQL Server.

He possesses a Master's Degree in Relational Databases and has over 20 years of
experience in Information Technology, of which half are in .NET and SharePoint.
His roles have ranged from architecture, implementation, administration, disaster
recovery, migrations, development and automation of information systems, both in
and outside of SharePoint.

He is the founder of Illustris, LLC and can be reached at:
dougortiz@illustris.org.

Interesting aspects of his profession include:

•	 He has experience integrating multiple platforms and products with the
purpose of sharing data

•	 He has improved, salvaged, and architected projects by utilizing unique and
innovative techniques

When not working, his hobbies include yoga and scuba diving.

www.it-ebooks.info

http://www.it-ebooks.info/

I would like to thank my wonderful wife Mila for all her help and
support, as well as Maria and Nikolay.

I would also like to thank everyone at Packt Publishing for their
encouragement and guidance.

Wei Chung, a Technical Lead in BizTalk and .NET and an MCT, MCPD,
MCITP, MCTS, MCSD.NET, works with ResMed (NYSE: RMD), at its Kuala
Lumpur, Malaysia, campus. He is also a member of PMI, certified as a PMP.
He started working on Microsoft .NET since its early career and has been
involved in development, consultation, and corporate training in the area of
business intelligence, system integration, and virtualization. He has also worked for
the Bursa Malaysia (formerly Kuala Lumpur Stock Exchange) and previously for
Shell IT International, which provided him with rich integration experience
across different platforms.

He strongly believes that a great system implementation delivers precious value
to the business, and integration of various systems across different platforms will
always be a part of this; just as people from different and diverse cultures live
together in most of the major cities, in harmony.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Building an Effective Intranet	 5

Preparing the Intranet site	 6
Choosing a site template	 7
Activating supporting features	 7
Selecting a layout	 9

Creating a Weather Web Part	 12
Approach	 13
Configuring the XML Web Part	 13
Weather Web Part displayed	 14

System status and notification features	 14
Notification List Definition and List Instance feature	 14

Notification list displayed	 20
Presenting status notifications	 21

SP.UI.Status overview	 21
Adding SetStatus code to the Master Page	 22

Notifications displayed	 24
Building an Appropriate Use and Incident dialog	 25

Approach	 25
Showing the form	 25
Appropriate Use and Incident dialog displayed	 26

Building an Employee Corner Web Part	 28
Approach	 28
Creating the Web Part	 29

Defining a Web Part property	 33
Connecting to the Search service application	 33
Formatting the Web Part	 34

Employee Corner Web Part displayed	 36

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Building a Stock Ticker Web Part	 36
Approach	 37
Stock Quote Web Part displayed	 38

Content rollups	 38
Approach	 38

Content Query Web Part (CQWP)	 38
Search Web Parts	 39
Custom Web Part	 39

Creating the content source	 40
Configuring the Content Query Web Part	 40
News content rollup displayed	 43

Summary	 43
Chapter 2: Building an Out of Office Delegation Solution	 45

User profile properties	 46
Defining the section and properties	 47
Populating the properties	 48

Master Delegation Tracking List	 50
Delegation List Definition and List Instance	 50
Defining a custom action group and action	 55
Finalizing the delegation list feature	 57

Check out of office workflow activity	 58
Approach	 59
Creating CheckOutOfOfficeActivity	 59

CheckOutOfOfficeActivity.cs	 60
CheckOutOfOfficeActivity elements.xml	 66

Adding the web.config authorizedType entry	 67
Completed solution	 67
Sample workflow—check out of office	 68

Creating a Task Delegation Web Part	 70
Creating the Web Part project	 70
Displaying Out of Office delegation	 71

Delegation.js	 74
Displaying the Task Delegation Web Part	 75

Creating custom application pages	 75
Preparing for custom application pages	 75
View Delegation History page	 76

ViewDelegationHistory.aspx	 77
ViewDelegationHistory.aspx.cs	 77
Displaying the View Delegation History page	 81

Completed SPBlueprints.Delegation solution	 81
Summary	 82

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 3: Building an Enterprise Content Management Solution	 83
Defining content containers	 84
Defining and managing content types	 86

Content type synchronization	 86
Content type definition	 86

Document routing	 88
Optimizing Search	 91

Content sources	 92
Search scopes	 93
Managed properties	 95

Creating a content aggregation Web Part	 96
Content rollup approaches	 96

DocVault Listings Web Part	 97
Creating the Web Part	 97
Importing the needed Web Part and search references	 98
Defining the Web Part properties	 98
Formatting the Web Part	 100
Display DocVault Listings Web Part	 104

Enhancing the Document ID redirect	 105
Enhanced DocID redirect approach	 106
Creating an enhanced DocID redirect script	 106
Configuring the DocID redirect Web Part	 108
Displaying the DocID redirect	 109

Summary	 109
Chapter 4: Building an Engaging Community Site	 111

Creating the Community Site	 113
Activating supporting features	 114
Creating and configuring the community landing page	 115
Site Permissions	 117

Community members	 117
Creating Communities User Profile Property	 118
Mapping Communities as a Managed Property	 119
Configuring the Members Page	 119

Creating the Members Page	 120
Adding the People Search Core Results Web Part	 120
Configuring Members Search Query	 120

Configuring social web parts	 122
Note Board Web Part	 122
Tagging and Tag Clouds	 124

Configuring Rollup Web Parts	 126
Web Analytics Web Part – Frequently Accessed Content	 126

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Content Query Web Part – New Content	 127
Content Query Web Part – Highly Rated Content	 129

Creating an Enterprise Wiki	 130
Configuring the Enterprise Wiki sub-site	 131
Use of Categories	 132
Metadata Navigation	 133

Activating the Metadata Navigation feature	 134
Configuring Metadata Navigation for Enterprise Wiki Library	 134
Using the feature	 136

Wiki site navigation	 136
Summary	 138

Chapter 5: Building a Site Request and Provisioning System	 139
Overview	 139
Creating the list	 140
Creating the project	 141
Creating the SiteRequest form	 142

Building the Request Site display page	 143
Building the form processing	 145

Defining the RequestSiteAction menu item	 148
Creating timer jobs	 150

Creating the site timer job	 150
Executing the site timer job	 151

Feature receiver	 156
Creating the feature receiver	 156
Feature activating	 156
Feature deactivating	 158
Completed SPBlueprints.SiteCreation solution	 158

Deploying the timer job	 159
Monitoring the timer job	 160

Summary	 162
Chapter 6: Building a Project Site Template	 163

Overview	 163
Template options	 164

Site definitions	 164
Feature stapling an existing site definition	 165
Site template	 165
WebTemplate	 166

Example WebTemplate schema	 166
Sandbox versus farm solutions	 167
Organizing a project into multiple features and solutions	 168

Building the Project Site Template	 169
Create the project	 169

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Create the ProjectTemplate WebTemplate	 170
Complete Elements.xml	 170
Onet.xml	 171

Configure the feature	 173
Create the Project Site configuration feature	 174

Writing the feature receiver	 175
Using Microsoft.SharePoint.Portal.WebControls;Feature Activated	 176
Create a blog subsite	 177
Create Charter list	 178
Create pages library	 179
Create home page	 180
Configure Web Parts on home page	 181
Feature upgrading	 184
Solution Explorer	 184

Summary	 185
Chapter 7: Building a Project Management Main Site	 187

Content aggregation options	 188
Reading individual sites or lists	 188
Search	 188
Scheduled job	 189
Map custom properties as managed properties	 189

Building a project listing and a status Web Part	 190
Creating the ProjectMain project	 190
Creating the ProjectListing Web Part	 191

Creating the ProjectMain.js script	 197
Configuring the feature	 198
Project listing displayed	 199

Building a site metrics gathering process	 199
Creating the feature and feature receiver	 203
Solution Explorer	 205

Configuring a project manager listing	 206
Creating the members page	 206
Adding the People Search Core Results Web Part	 206
Configuring the members search query	 206

Modifying the People Core Results XSL	 208
Project Managers listing displayed	 210

Additional content ideas	 210
Summary	 211

Chapter 8: Building a Task Rollup Solution	 213
Task rollup options	 213

Using search	 214
Search considerations	 214

Using SiteData	 214

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vi]

SiteData considerations	 215
Using a centralized list	 216

Centralized list considerations	 216
MyTasks Search Web Part	 216

Creating the SPBlueprints.MyTasks project	 216
Creating the MyTasks Search Web Part	 217

Creating the MyTasks.js file	 224
MyTasks Web Part	 224

Creating the Web Part	 225
Displaying the MyTasks and MyTasks Search Web Parts	 233
Completed SPBlueprints.MyTasks solution	 235

Summary	 236
Chapter 9: Building a Site Directory with SharePoint Search	 237

Site Directory options	 237
List-based Site Directory	 238
Search-based site discovery	 238

How to leverage search	 239
Content classes	 239
Search Scopes	 240

Defining the Site Directory Search Scope	 240
Enabling the Search Scope on a Site Collection	 243
Testing the Site Directory Search Scope	 243

Site Directory page	 244
Creating the Site Directory page	 244
Configure the Site Directory page settings	 246
Adding a Site Directory tab	 247
Common Searches	 247

Defining Common Searches	 248
Site Directory displayed	 249

Related sites Web Part	 250
Creating the Web Part	 250
Display Related sites Web Part	 255

Summary	 256
Index	 257

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
This book will dive into a diverse set of real-world scenarios to deliver sample business
solutions that can serve as the foundation for your own solutions. It draws from the
author's extensive experience with SharePoint to leverage the platform's underlying
services to provide solutions that can support social collaboration, content and
document management, as well as project collaboration. Each chapter represents a new
business solution that builds on the overall platform to deliver more complex solutions
and more advanced techniques. By the end of the book, the reader will understand
how to leverage the SharePoint platform to build their own business solutions.

What this book covers
Chapter 1, Building an Effective Intranet: An Effective Intranet Site for your
organization that maximizes the site's ability to aggregate content and is
highly effective at communicating important messages.

Chapter 2, Building an Out of Office Delegation Solution: A Workflow Out of Office
Solution that allows users to manage their out of office dates and automate task
assignments to a delegated resource.

Chapter 3, Building an Enterprise Content Management Solution: An Enterprise Content
Management solution designed to support large scale document repositories with
the ability to route documents automatically between site collections based on
metadata attributes along with custom solutions for surfacing the relevant content.

Chapter 4, Building an Engaging Community Site: An Engaging Community Site
including custom features that can be used to enhance collaboration and provide
an information sharing system.

Chapter 5, Building a Site Request and Provisioning System: A Site Request and
Provisioning System that supports automated site provisioning for user requested
sites in a way that supports complex dynamic feature activation and configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 6, Building a Project Site Template: An overview of the template methods
available with SharePoint along with a detailed approach for creating web templates
in order to create a project site template to support project initiatives and track
Issues, Tasks, and Contacts.

Chapter 7, Building a Project Management Main Site: A Project Management Main Site
demonstrating a solution that can aggregate the key metrics and status information
from the project management sites created in the previous chapter.

Chapter 8, Building a Task Rollup Solution: Create custom Web Parts that can aggregate
tasks from the specified sites.

Chapter 9, Building a Site Directory with SharePoint Search: Solutions to leverage
SharePoint Search to provide an optimized experience making it easier for users
to search and discover relevant sites.

Bonus Chapter, Understanding SharePoint Development Choices: This chapter provides a
brief overview of the different customization options that are available, tools that can
be used to create them, as well as some additional considerations when choosing a
development path.

You can download the Bonus Chapter from: http://www.packtpub.com/sites/
default/files/downloads/SharePoint_development.pdf

What you need for this book
This chapter will require the following software:

•	 SharePoint Server 2010 Enterprise
•	 Visual Studio 2010 Professional
•	 SharePoint Designer 2010

Who this book is for
This book is for SharePoint developers, consultants, and administrators who want to
build a range of SharePoint solutions that extend the SharePoint platform, and see
how to apply the many available SharePoint features in different scenarios.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Code words in text are shown as follows:
"The ExecuteOrDelayUntilScriptLoaded() function will delay the execution
of the script until the page and all scripts are loaded."

A block of code is set as follows:

var statusId = '';
var isitDlg = window.location.href.match(/isDlg/i) != null;

if (!isitDlg) {
 ExecuteOrDelayUntilScriptLoaded(LoadNotifications, "sp.js");
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<WebPartPages:WebPartZone runat="server"
AllowPersonalization="false" ID="TopZone" FrameType="TitleBarOnly"
Title="<%$Resources:cms,WebPartZoneTitle_Top%>"
Orientation="Horizontal">

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "After
creating the library, create a page and select the Page tab".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet
One of the most common uses of SharePoint is as an organization's Intranet. While
SharePoint has all of the critical ingredients within the platform to deliver a great
solution, there is no out of the box template that delivers a complete solution. This
often results in Intranet solutions that are underdeveloped and ineffective.

Building an effective Intranet starts with defining the overall goals and is followed
by defining the information architecture, content and feature strategy, and user
experience needed to support those goals. Common goals include the ability to
deliver corporate communications, connect employees to increase collaboration,
and to provide easy access to enterprise content and systems. Depending on the
size, structure, and relative geography of users, those goals could translate to very
different requirements.

This chapter will provide an overview of configuration steps needed to create an
Intranet site, along with example customizations that can be created to provide
dynamic and relevant content, which is a key ingredient to building an effective
Intranet solution. The covered solutions include:

•	 Creating a Weather Web Part
•	 System status and notification features
•	 Building an Appropriate Use and Incident dialog
•	 Building an Employee Corner Web Part
•	 Building a Stock Ticker Web Part
•	 Content rollups

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet

[6]

Preparing the Intranet site
It is important to set the right foundation for the Intranet site. It is easy to get lost in
all of the options available, but this section will cover the design decisions behind
choosing a site template, selecting which features to activate, and then selecting a
page layout to support the landing page(s).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

Choosing a site template
SharePoint ships with a number of site template options, but most of the templates
were built for a very specific type purpose. When choosing a template for an Intranet
site, it is best to select one of the more generic site options. The three to consider are:

•	 Blank site: A generic template that includes no lists or libraries. This is
my first choice when building a top-level site collection such as this
Intranet portal.

•	 Team site: A generic template that includes a standard site with commonly
used lists and libraries including shared documents, calendar, and a
discussions list.

•	 Publishing template (SharePoint Server): A generic template that can be
leveraged in large-scale publishing scenarios. The publishing template is
by far the template that will require the most design work to get to a usable
state, so therefore should only be used in this scenario if you have specific
requirements for it. It is important to note that the publishing template is
not required in order to leverage the publishing features. See the Activating
supporting features section that follows.

A full overview of the available templates can be found on the Microsoft Office
website at http://office.microsoft.com/en-us/sharepoint-server-help/a-
preview-of-the-sharepoint-server-2010-site-templates-HA101907564.aspx

Activating supporting features
After choosing a site template and provisioning the site collection, the next step is
to activate the initial features needed to support the Intranet site. The robust feature
deployment and activation system supported in SharePoint makes it very easy to
fine-tune the functionality available within a site. Since the available features vary
depending on which version you are running (Foundation, Server Standard, and
Server Enterprise), I will specify which version each feature ships with.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet

[8]

The following is a list of features activated on the site being configured for this book:

Site collection features
Document ID service SharePoint Server

Standard and
Enterprise

Assigns IDs to documents in the
site collection, which can be used
to retrieve items independent of
their current location

Search Server Web
Parts

SharePoint Server
Standard and
Enterprise

This feature uploads all
Web Parts required for the
Search Center

SharePoint Server
Standard Site
Collection features

SharePoint Server
Standard and
Enterprise

Features such as user profiles
and search, included in
SharePoint Server Standard
License

SharePoint Server
Enterprise Site
Collection features

SharePoint Server
Enterprise

Features such as InfoPath Forms
Services, Visio Services, Access
Services, and Excel Services
Application

SharePoint
Server Publishing
Infrastructure

SharePoint Server
Standard and
Enterprise

Provides centralized libraries,
content types, master pages and
page layouts, and enables page
scheduling and other publishing
functionality for a site collection

Site features
SharePoint Server
Standard Site
Collection features

SharePoint Server
Standard and
Enterprise

Features such as user profiles
and search

SharePoint Server
Enterprise Site
Collection features

SharePoint Server
Enterprise

Features such as InfoPath Forms
Services, Visio Services, Access
Services, and Excel Services
Application

SharePoint
Server Publishing
Infrastructure

SharePoint Server
Standard and
Enterprise

Creates a web page library as
well as supporting libraries to
create and publish pages based
on page layouts

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

For anyone that is not familiar with the publishing features, it is important to
understand that the document libraries setup for publishing, including the resources
provisioned when the feature is activated such as the Style Library, will require
that all changes be fully published for non-administrators to be able to view
the most recent changes. If changes are made to pages, scripts, images, or CSS
stylesheets included in any of these libraries and are not fully published, you will
see unexpected behaviors such as 404 errors, out of date content, or miscellaneous
unexpected SharePoint page level errors relating to the item's status.

A full overview of the publishing features in SharePoint 2010 is available at
http://technet.microsoft.com/en-us/library/ff628963.aspx

Selecting a layout
Then next step is to choose the high-level structure of the front page. The two default
options are a standard home page or the new Wiki home page. While the Wiki
home page offers some nice improvements over the standard home page formatting,
a better option is to configure a new library to hold Web Part pages in order to
leverage the configuration and security capabilities of a SharePoint document library.

When using SharePoint Foundation where the publishing
features are not available your options are limited to page level
customizations using SharePoint Designer 2010.

With the publishing features activated on SharePoint Server Standard or Enterprise
there are a number of layout options to consider. One of the important changes with
SharePoint 2010 is that page layouts can now be changed, where previously they
were set at the time the page was created and could not be changed later.

It is important to note that if you change the layout, any Web Parts
that are contained in a Web Part zone that no longer exists, will no
longer be displayed and will need to be reapplied to the page.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet

[10]

After creating the library, create a page and select the Page tab. If this is going to be
the home page for the site, be sure to click the Make Homepage button in the ribbon.
The Page Layout option will be displayed in the ribbon, and clicking it will provide
you thumbnails of the layout options as seen in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

When choosing one of the layouts it is important to consider if you want the
left hand navigation to be displayed or hidden. In scenarios where the left hand
navigation is important I would select the Blank Web Part page layout under the
Welcome Page grouping. In scenarios where you need more screen real estate or
where the left hand navigation is not as important on the top-level site you can select
the Splash layout. The Splash layout I have selected for this exercise is displayed in
the following screenshot:

It is also possible to customize this layout if needed in SharePoint Designer, which
may be preferable for simple changes instead of creating custom page layouts. It
is important to note that editing page and page layouts directly with SharePoint
Designer will put the item in an unghosted state which means that the page will
no longer reference the common version of the item and instead store a version of
the item in the content database that the site is stored in. This change will have a
small impact on performance, but can also complicate future upgrades and should
therefore be done with caution.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet

[12]

In the Top Web Part Zone, the default orientation is set to "Vertical", but for
the page we are creating, it is more valuable set to "Horizontal" as shown in the
following code snippet:

<WebPartPages:WebPartZone runat="server"
AllowPersonalization="false" ID="TopZone" FrameType="TitleBarOnly"
Title="<%$Resources:cms,WebPartZoneTitle_Top%>"
Orientation="Horizontal">

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

To make the change perform the following steps:

1.	 Open the page layout in SharePoint Designer.
2.	 Locate the control with the ID "TopZone".
3.	 Change the orientation property from "Vertical" to "Horizontal".
4.	 Save the page layout.
5.	 Publish the page layout.

With the layout selected and the page set as the home page, we are now ready to
start adding content.

Creating a Weather Web Part
In many organizations a frequent request is to display the current time and weather
for one or more locations where the organization operates.

This exercise provides a great example of how to consume web based data to
populate the content. For the purpose of this chapter I am going to consume
a service provided by The Weather Channel ®. You will need to register as
a partner in order to use this service. You can find additional details at
http://portal.theweatherchannel.com/.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Approach
The easiest way to use this service is to load the content into the standard XML
Web Part. This approach will also work in cloud-based environments such as Office
365. The XML Viewer Web Part is included under the Content Rollup category as
displayed in the following screenshot:

Configuring the XML Web Part
With the XML Web Part added to the page, configure the appearance properties
such as title, height, and width. Set the XML link to the path of the service with the
required inputs, and set the XSL link to the path of your XSL file. The best way to
manage the XSL file is to upload it into a central style and script library on the site.

The contents of the XSL file should format the content into the desired format. The
Weather.com web service will return a number of key attributes including the
location, the current temperature, and the current time.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet

[14]

Weather Web Part displayed
A rendered version of the Current Weather Web Part is displayed in the
following screenshot:

The standard SharePoint Web Parts can also be exported with configuration settings
making it easy to reuse the content on many pages or sites. It can either be uploaded
to the desired page(s) or added to the site collection's Web Part Gallery.

System status and notification features
Continuing the theme of using the Intranet as a communications mechanism, this
next solution will leverage the Notification bar within SharePoint to communicate
messages to users anywhere within the site. This is a great way to communicate
topics like system status, organization news, or security bulletins.

The notification details will include a title, notification message, a category
which will be used to change the notification background color and to display a
corresponding image, as well as start and end dates in order to support scheduling
to keep the content fresh and accurate.

This solution requires two parts:

•	 A list to manage the content
•	 Code embedded in the Master Page to handle the message retrieval

and display

Notification List Definition and List
Instance feature
We will provision a List Definition and List Instance to store the notification
content. This will make it easy to reuse the list if necessary in cases where you
need to manage the notifications separately for sites that target different sets of
users or in different farms.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

To create the feature perform the following steps:

1.	 Open Visual Studio 2010.
2.	 Select File, then New Project.
3.	 Browse the Installed Templates and select Visual C# | SharePoint 2010,

and then List Definition as shown in the following screenshot:

4.	 Enter the project details such as Name, Location, and Solution name.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet

[16]

5.	 Within the SharePoint Customization Wizard, provide a path to your
SharePoint site and then be sure to select the option to Deploy as a farm
solution as shown in the following screenshot:

6.	 Rename the ListDefinition1 item NotificationDefinition.
7.	 Rename the ListInstance1 item Notification.
8.	 Rename the Feature1 item SPBlueprints Notification List Feature.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

9.	 Select the SPBlueprints Notification List Feature.feature item and provide a
Title and Description. It should resemble the following screenshot:

10.	 Next we will edit the NotificationDefinition/Elements.xml file to
complete the List Definition. The Elements.xml file is used to describe the
list and fields.

11.	 First, we will add in the field definitions. The following table provides a brief
overview of the field element and attributes that we describe when defining a
new field:

Attribute name Description
Type Used to describe which SharePoint field type will be used.

Options include Text, Choice, Decimal, URL, and DateTime
DisplayName The label that will be shown on forms and within the list views
Required Boolean value that determines if it is a required field
MaxLength If it is a Text field, the maximum number of characters allowed

can be specified
ID The unique ID or GUID used to identify the field
StaticName The internal name of the field; this label cannot be changed and

is set when the field is initially created

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet

[18]

Attribute name Description
Name The name of the field
Group The Group attribute is used for associating fields to make them

easier to locate within the administration screens

12.	 For the Notification field, we will define a Text field with the
following elements:
<Field Type="Text"
DisplayName="Notification"
Required="TRUE"
MaxLength="255"
ID="{6807197A-5A93-48D0-90B5-95DD0212ACDE}"
StaticName="Notification"
Name="Notification"
Group="Communication Columns" />

13.	 For the InfoLink field, we will define a URL field with the following
elements:
<Field Type="URL"
DisplayName="Info Link"
Required="FALSE"
ID="{FEF259DC-8845-45E5-B9DB-578E905CA853}"
StaticName="InfoLink"
Name="InfoLink"
Group="Communication Columns" />

14.	 For the NotifStart field, we will define a simple DateTime field as follows:
<Field Type="DateTime"
DisplayName="Start Date"
Required="FALSE"
ID="{CD648248-7769-428C-955C-2E341A23848E}"
StaticName="NotifStart"
Name="NotifStart"
Group="Communication Columns" />

15.	 The NotifEnd field will be another DateTime field with the
following elements:
<Field Type="DateTime"
DisplayName="End Date"
Required="FALSE"
ID="{0444ABD1-7E04-4EBF-9FF9-87061CA410F4}"
StaticName="NotifEnd"
Name="NotifEnd"
Group="Communication Columns" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

16.	 Next we define the attributes of the ContentType element, and set the field
references to the IDs of the fields defined previously along with the standard
ID field associated with the base content type item:
<ContentType
 ID="0x010089E3E6DB8C9B4B3FBB980447E313CE96"
 Name="Notification Item"
 Group="Communication Content Types"
 Description="Notification List Content Type."
 Version="0">
 <FieldRefs>
 <FieldRef ID="{fa564e0f-0c70-4ab9-b863-0177e6ddd247}" />
 <FieldRef ID="{6807197A-5A93-48D0-90B5-95DD0212ACDE}" />
 <FieldRef ID="{24380857-433E-4A73-BD71-16F3BB1E443D}" />
 <FieldRef ID="{CD648248-7769-428C-955C-2E341A23848E}" />
 <FieldRef ID="{0444ABD1-7E04-4EBF-9FF9-87061CA410F4}" />
 <FieldRef ID="{FEF259DC-8845-45E5-B9DB-578E905CA853}" />
 </FieldRefs>
</ContentType>

17.	 Next we will identify the attributes for the ListTemplate element, which
completes the configuration for the new List Definition:
<ListTemplate
 Name="NotificationDefinition"
 DisallowContentTypes="FALSE"
 Type="12001"
 BaseType="0"
 OnQuickLaunch="FALSE"
 SecurityBits="11"
 Sequence="410"
 DisplayName="Notification List Definition"
 Description="Notification Definition"
 Image="/_layouts/images/itgen.png"/>

18.	 Edit the NotificationDefinition/Notification/Elements.xml file to set
the configuration for the List Instance that will be provisioned:
<ListInstance Title="Notification"
 OnQuickLaunch="FALSE"
 TemplateType="12001"
 Url="Lists/Notification"
 Description="Notification List Instance">
</ListInstance>

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet

[20]

19.	 To build the project, select Build, then Build SPBlueprints.Lists.
Notification.

20.	 To deploy to the local server, select Build, then Deploy SPBlueprints.Lists.
Notification.

21.	 The completed project structure should resemble the following screenshot:

Notification list displayed
Since we are creating both a List Definition and a List Instance, the defined list will
be automatically created once the SPBlueprints Notification List Feature
is activated. It is important to note that the OnQuickLaunch property was set to
FALSE so the list will not show up in the Quick Launch menu. To access the list
you will need to click the Site Actions menu, and select the View All Site Content
menu item.

The pre-defined list view also makes it easy for the content manager to review the
currently logged notifications as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

The New Item form includes the fields we defined in the List Definition, and can be
used to log a variety of notifications as displayed in the following screenshot:

Presenting status notifications
To display notifications on the page we will query the Notification list we previously
deployed, and leverage the SP.UI.Status class made available in the ECMA
Client OM.

SP.UI.Status overview
The SP.UI.Status class supports a number of methods that allow you to add,
update, append, and remove status messages as well as set a background color
for the status bar. For the purpose of this particular feature, we will focus on the
addStatus and setStatusPriColor functions.

Since this is part of the Client OM, it is accessible from any SharePoint page. The
scripts can be added to a Content Editor Web Part, included in a custom Web Part,
or as in this example added directly to the site's Master Page.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet

[22]

Adding SetStatus code to the Master Page
In this section we will add the SetStatus code to the Master Page for the status
updates to be added to the page. It should be positioned just before the </Body> tag.

To start with, create a div container to hold the code and define the script block. The
remainder of the code will be placed inside of the script block. The SetStatus script
container code is shown as follows:

<div id="SetStatus">
 <script type="text/ecmascript" language="ecmascript">
 </script>
</div>

Next we define the main variables and add a check to determine if this is a page
being loaded in a dialog window. This code is needed to prevent the status messages
from being loaded in the dialog windows such as the file upload or edit item forms.

The ExecuteOrDelayUntilScriptLoaded() function will delay the execution of the
script until the page and all scripts are loaded. The SetStatus variables and control
code are shown as follows:

var statusId = '';
var isitDlg = window.location.href.match(/isDlg/i) != null;

if (!isitDlg) {
 ExecuteOrDelayUntilScriptLoaded(LoadNotifications, "sp.js");
}

The LoadNotifications() function will use the Client Object Model to format a
CAML query, and load the matching items from the Notification list. The

LoadNotifications() function code is shown as follows:

function LoadNotifications() {
 var curDate = new Date();
 var curDFormatted = curDate.getYear() + "-" +
 (curDate.getMonth() + 1) + "-" + curDate.getDate() + "T" +
 curDate.getHours() + ":" + curDate.getMinutes() + ":" +
 curDate.getSeconds() + "Z";
 var listTitle = "Notification";
 context = SP.ClientContext.get_current();
 var notifList =
 context.get_web().get_lists().getByTitle(listTitle);
 var camlQuery = new SP.CamlQuery();
 camlQuery.set_viewXml("<View><Query><ViewFields><FieldRef
 Name='Title' /><FieldRef Name='Notification' /><FieldRef

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

 Name='NotifType' /><FieldRef Name='NotifStart' /><FieldRef
 Name='NotifEnd' /><FieldRef Name='InfoLink'
 /></ViewFields><Where><And><Leq><FieldRef Name='NotifStart'
 /><Value IncludeTimeValue='TRUE' Type='DateTime'>" +
 curDFormatted + "</Value></Leq><Geq><FieldRef Name='NotifEnd'
 /><Value IncludeTimeValue='TRUE' Type='DateTime'>" +
 curDFormatted +
 "</Value></Geq></And></Where><OrderBy><FieldRef
 Name='NotifStart' /></OrderBy></Query></View>");
 this.listItems = notifList.getItems(camlQuery);
 context.load(listItems);
 context.executeQueryAsync(ReadListItemSucceeded,
 ReadListItemFailed);
}

The ReadListItemSucceeded() function will be called if the list read call was
successful. Here we will iterate through the returned items and format the status
messages that will be displayed. The ReadListItemSucceeded() function code is
shown as follows:

function ReadListItemSucceeded(sender, args) {
 var message = '';
 var items = listItems.getEnumerator();

 while (items.moveNext()) {
 var listItem = items.get_current();

 switch (listItem.get_item('NotifType')) {
 case "Emergency":
 imageRef = "<img
src='/_layouts/IMAGES/error16by16.gif' align='absmiddle'
border='0' alt='Emergency'>";
 break;
 case "Warning":
 imageRef = "<img
src='/_layouts/IMAGES/warning16by16.GIF' align='absmiddle'
border='0' alt='Warning'>";
 break;
 default:
 imageRef = "<img
src='/_layouts/IMAGES/info16by16.gif' align='absmiddle' border='0'
alt='Information'>";
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet

[24]

 message = listItem.get_item('Notification') + " " +
imageRef;
 SetStatus(listItem.get_item("Title") + ":", message,
 listItem.get_item('NotifType'));
 }
}

The SetStatus() function is called for each status message that needs to be set. It
will use the SP.UI.Status methods to add a message and to set the background
color of the status container. The SetStatus()function code is shown as follows:

function SetStatus(title, message, type) {
 statusId = SP.UI.Status.addStatus(title, message, false);

 switch (type) {
 case "Emergency":
 SP.UI.Status.setStatusPriColor(statusId, 'red');
 break;
 case "Warning":
 SP.UI.Status.setStatusPriColor(statusId, 'yellow');
 break;
 default:
 SP.UI.Status.setStatusPriColor(statusId, 'blue');
 }
}

The ReadListItemFailed() function will provide an alert if the status could not
be set:

function ReadListItemFailed(sender, args) {
 alert('Error: ' + args.get_message());
}

Notifications displayed
The rendered version of the list driven notification system is shown in the following
screenshot. If multiple notices are returned, each will be displayed on a separate line.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

Building an Appropriate Use and
Incident dialog
Next we will extend our solution and show an easy way to provide global links as
part of the standard footer in the Master Page. While the linked content can be to
anything web accessible, the sample solution will be used to link to an appropriate
use page as well as a form used for reporting content.

Many environments today are investing time and effort into creating a SharePoint
Governance Plan, or have existing Appropriate Use or Information Security
policies. Creating a policy is relatively easy, but making it easy to find and access is
something that many organizations struggle with. It is also critical to provide easily
accessible incident reporting mechanisms so that the system can be self-policed as
much as possible.

Approach
Since this is content we want to display globally, we are going to include it as part of
the standard footer in the Master Page. This will guarantee that it is easily accessible.
For the presentation, I think this is a good use of the Client OM's SP.UI.Dialog class
which creates an Ajax shadowbox.

To simplify the example, we will use a standard SharePoint Survey list for the
Incident Report form. You could alternatively create an application page and
deploy it to the farm.

Showing the form
We are going to start by adding the div container govFooter to the Master Page,
just above the <SharePoint:DeveloperDashboard runat="server"/> control.
The remainder of the code will be placed inside this container. We will reference the
stylesheet class s4-notdlg which has special meaning within SharePoint. When this
class is referenced, it will ensure that this content will be hidden from any dialog
windows, such as the ones we are launching with the code added in this section:

<div id="govFooter" class="s4-notdlg" style=" text-align:center;
 width:100%">
 <script type="text/ecmascript">

 </script>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet

[26]

Calling the modal dialog is as easy as calling the showModalDialog() function,
and passing it the input options for what to display. The showPolicy() and
showIncidentForm() functions are as follows:

function showPolicy() {
var _options = { url: "http://intranet/Pages/Acceptable-Use-
Policy.aspx", width: "800", title: "Appropriate Use Policy" };
SP.UI.ModalDialog.showModalDialog(_options);
}

function showIncidentForm() {
var _options = { url:
"http://intranet/Lists/Incident%20Reports/NewForm.aspx", width:
"800", title: "Report Incident" };
SP.UI.ModalDialog.showModalDialog(_options);
}

Next we just have to call the two functions with a JavaScript function call added to
an anchor tag:

<a href="javascript:showPolicy();" style="text-
 decoration:underline">View Acceptable Use Policy
 |
<a href="javascript:showIncidentForm();" style="text-
 decoration:underline">Report Incident

Appropriate Use and Incident dialog
displayed
The standard footer linking to the Appropriate Use Policy and the Incident Report
dialog is represented in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

The Appropriate Use Policy dialog is represented in the following screenshot:

The Incident Report dialog is represented in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet

[28]

Building an Employee Corner Web Part
Highlighting employees is a great way to increase collaboration and user
engagement. In the past this was done in employee newsletters or other
communication methods, but as those methods go electronic and the focus
moves towards the Intranet portal as the central communication hub, it
becomes another type of information that should be included.

SharePoint Server's user profiles can provide a rich set of details
about users, and can be leveraged to provide a great source of
dynamic content around important dates, organization structure,
interests, clients, and past projects.

The Employee Corner Web Part will present a list of new employees based on the
Hire Date field in the user profiles. Additional examples could include employee of
the month (or quarter), birth dates, or employee anniversaries.

Approach
To create the Employee Corner Web Part we will create a custom Web Part in Visual
Studio 2010. The Web Part will leverage the Search API's FullTextSqlQuery class to
query the People search scope bringing back values stored within the user profiles
that are currently indexed.

It is important to understand the underlying architecture in order to know which
development path is really an option. Normal SharePoint list and library data is
stored inside of the content database associated with the site collection. The content
associated with SharePoint's service applications are however stored in separate
databases since those services and the content is not tied to any one site, but
available globally to all web applications associated with the service application.
This means that the service applications are not accessible via the Client OM or via
Sandbox Solutions without implementing some sort of Full Trust proxy that would
have to be installed on the server and provide access to the server API. Based on
these boundaries, a server solution makes the best choice for the approach in most
environments. If the solution needs to be deployed to an environment with server
deployment limitations the Full Trust proxy or other alternatives would have to
be evaluated.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[29]

Creating the Web Part
To create the initial project:

1.	 Open Visual Studio 2010.
2.	 Select File, then New Project.
3.	 Browse the Installed Templates and select Visual C# | SharePoint 2010,

and then Empty SharePoint Project as shown in the following screenshot:

4.	 Enter the project details such as Name, Location, and Solution name.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet

[30]

5.	 Within the SharePoint Customization Wizard, provide a path to your
SharePoint site and then be sure to select the option to Deploy as a farm
solution as shown in the following screenshot:

6.	 Right-click on the project file and select Add New Item.
7.	 From the template selection screen select the Web Part option.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[31]

8.	 Provide the name EmployeeCorner and click the Add button as illustrated in
the following screenshot:

9.	 Rename the Feature1 item SPBlueprints.WebParts.
10.	 Select the SPBlueprints.WebParts feature item and provide a Title and

Description. It should resemble the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet

[32]

11.	 Edit the definition of the EmployeeCorner.webpart file so that the Web Part
definition added to the Gallery is meaningful as displayed in the following
EmployeeCorner.webpart definition:
<?xml version="1.0" encoding="utf-8"?>
<webParts>
 <webPart xmlns="http://schemas.microsoft.com/WebPart/v3">
 <metaData>
 <type
name="SPBlueprints.WebParts.EmployeeCorner.EmployeeCorner,
$SharePoint.Project.AssemblyFullName$" />
<importErrorMessage>$Resources:core,ImportErrorMessage;</import
ErrorMessage>
 </metaData>
 <data>
 <properties>
 <property name="Title" type="string">Employee
Corner</property>
 <property name="Description" type="string">SPBlueprints
- The Employee Corner WebPart displays all new employees that
started in the last 30 days.</property>
 <property name="SearchProxyName" type="string">Search
Service Application</property>
 </properties>
 </data>
 </webPart>
</webParts>

12.	 The completed project structure should resemble the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[33]

Defining a Web Part property
When creating a Web Part, there is often some configuration data that is needed to
be able to reuse the Web Part for different sites or purposes. Creating a Web Part
property makes it much easier to maintain the code than embedding configuration
values in the code.

For the EmployeeCorner Web Part, we are going to establish a text field that allows
the user to specify the Search service application to use when searching for the user
profiles in the next section. The SearchProxyName property is detailed as follows:

private string searchProxyName;

[WebBrowsable(true),
 WebDisplayName("Search Proxy Name"),
 WebDescription("Please provide the name of your Search Service
Application."),
 Personalizable(PersonalizationScope.Shared)]
 public string SearchProxyName
 {
 get { return searchProxyName; }
 set { searchProxyName = value; }
}

Connecting to the Search service application
To work with the Search service application we need to start by adding a reference to
the following namespaces within the project and EmployeeCorner Web Part:

Microsoft.SharePoint.Administration
Microsoft.Office.Server.Search
Microsoft.Office.Server.Search.Query
Microsoft.Office.Server.Search.Administration

The connection to the service application is established through the
SearchServiceApplicationProxy object, which is loaded using the
SearchProxyName Web Part property previously identified. The following code should
be added to a new method called Display() that is called from the OnLoad() method:

SearchQueryAndSiteSettingsServiceProxy settingsProxy =
SPFarm.Local.ServiceProxies.GetValue<SearchQueryAndSiteSettingsSer
viceProxy>();
SearchServiceApplicationProxy searchProxy =
settingsProxy.ApplicationProxies.GetValue<SearchServiceApplication
Proxy>(this.searchProxyName);
FullTextSqlQuery mQuery = new FullTextSqlQuery(searchProxy);

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet

[34]

The FullTextSqlQuery class provides an interface to execute complex queries
against the search index. Queries executed against the index will perform faster
than queries against the actual content such as a list or a library. As the amount of
content increases, and as the number content sources you search across increases,
the performance gains are even more significant, since the index provides a
pre-processed source for the information.

For the FullTextSqlQuery, we will define the fields that we want to see, the scope,
and the criteria to match it. For the fields you will want to make sure that the desired
fields are set up as Managed Properties. The name of a Managed Property may
be different than the name in the actual profile. In this example, the user profile
field's internal name is SPS-HireDate, but the Managed Property name is simply
HireDate. You can check the Managed Property mappings within the Search service
application by clicking the Metadata Properties link in the Quick Launch menu.

For any search involving people, it is required that you use the People search scope
so that it returns user profile information instead of regular site content. The New
Hire Query will pull the specified fields, from the People search scope, for anyone
with a HireDate that is within 30 days of today. An example of the query is shown
as follows:

mQuery.QueryText = "SELECT LastName, FirstName, JobTitle,
accountname, HireDate, Birthday, PictureThumbnailURL FROM SCOPE()
WHERE (\"scope\" = 'People') AND HireDate >= DATEADD (DAY, -30,
GETGMTDATE())";

After setting the query, there are a few other properties that need to be set before
executing the query, which are shown as follows:

mQuery.ResultTypes = ResultType.RelevantResults;
mQuery.TrimDuplicates = true;
mQuery.RowLimit = 100;
ResultTableCollection resultNew = mQuery.Execute();

Formatting the Web Part
Formatting the output of the Web Part begins with identifying any controls that are
needed within the CreateChildControls() method. This method will run as part
of the initialization process before the OnLoad() method, ensuring the controls are
available. The output that will be rendered, will be added to the literal control. The
CreateChildControls() method code is shown as follows:

protected override void CreateChildControls()
{
 this.literalMessage = new Literal();
 this.literalMessage.ID = "literalMessage";

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[35]

 this.Controls.Add(this.literalMessage);
}

Within the Display() method, after the Execute() method previously called,
we will now process the results. When executing a search query, the resulting
ResultsTableCollection contains a number of different types of results. For
the content that will be displayed here, we are interested in the ResultType.
RelevantResults. We will check to validate that there are records returned, then
extract just the relevant results.

Content that will be rendered to the screen will be formatted in a StringBuilder
object called messages. After the main content is structured, we will iterate through
the DataTable object to add each of the individual records returned from the query.
The code is shown as follows:

DataTable resultsNewHire = new DataTable();
if (resultNew.Count > 0)
{
 ResultTable relevantResults =
 resultNew[ResultType.RelevantResults];
 resultsNewHire.Load(relevantResults,
 LoadOption.OverwriteChanges);
 messages.AppendFormat(@"<table width='360' border='0'
 cellpadding='0' cellspacing='0'><tr><td align='left'
 valign='top' width='14' class='ms-wpTdSpace'
 background='/Style%20Library/Images/shadow-
 left.png'> </td><td
 background='/Style%20Library/Images/mid-
 background.jpg'><table><tr><td colspan='2' class='ms-
 standardheader ms-WPTitle'>{0} New Employees in the last 30
 days!</td></tr>", resultsNewHire.Rows.Count);
 foreach (DataRow row in resultsNewHire.Rows)
 {
 messages.AppendFormat(@"<tr valign='center'><td width='100'><img src='{5}' alt='{1}
 {0}' border='0'></td><td width='250' align='left'
 valign='top'>{1}
 {0}
{2}
{4}</td></tr>", row[0].ToString(),
 row[1].ToString(), row[2].ToString(), row[3].ToString(),
 String.Format("{0:dddd, MMMM d yyyy}", row[4]),
 row[6].ToString());
 }
 messages.AppendFormat(@"</table></td><td align='right'
 valign='top' width='14' class='ms-wpTdSpace'
 background='http://intranet/Style%20Library/Images/shadow-
 right.png'> </td></tr></table>");
}

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet

[36]

Employee Corner Web Part displayed
The rendered version of the Employee Corner Web Part is shown in the
following screenshot:

Building a Stock Ticker Web Part
For publicly traded companies it is also desirable to display the current stock quote
information. Like the Weather Web Part previously configured, there are many
publicly available services that can provide this information. For this example, we
will query a REST based service provided by Yahoo having the following address:

http://query.yahooapis.com/v1/public/yql?q=select * from yahoo.
finance.quotes where symbol in ("MSFT")&env=store://datatables.org/
alltableswithkeys

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[37]

Approach
The stock quote information can be shown in a number of different ways. In cases
where the information needs to be on every page, it should be added to a container
on the Master Page with the s4-notdlg style reference previously included in the
Building an Appropriate Use and Incident dialog section. For this example though, we
will include it as an XML Web Part configured in a similar way to the Weather Web
Part previously reviewed.

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-
prefixes="msxsl">
 <xsl:output method="html" indent="yes"/>
 <xsl:template name="main">
 <xsl:variable name="symbol" select="results/quote/Symbol"/>
 <xsl:variable name="price"
 select="results/quote/LastTradePriceOnly"/>
 <xsl:variable name="change"
 select="results/quote/Change_PercentChange"/>
 <div id="stockInfo" style="font-size:10pt">
 <xsl:value-of select="$symbol" />
 <xsl:text> $</xsl:text>
 <xsl:value-of select="$price" />
 <xsl:text> </xsl:text>
 <xsl:value-of select="$change" />
 <xsl:text> </xsl:text>
 <xsl:choose>
 <xsl:when test="contains($change,'+')" >
 <img
src="http://intranet/Style%20Library/Images/stock_up.png"
border="0" alt="Trending Up">
 </xsl:when>
 <xsl:otherwise>
 <img
src="http://intranet/Style%20Library/Images/stock_down.png"
border="0" alt="Trending Down">
 </xsl:otherwise>
 </xsl:choose>
 </div>
 </xsl:template>
 <xsl:template match="/*">
 <xsl:call-template name="main"/>
 </xsl:template>
</xsl:stylesheet>

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet

[38]

Stock Quote Web Part displayed
A rendered version of the current Stock Ticker Web Part can be displayed in the
following screenshot:

Content rollups
An important part of developing a content strategy is to plan where content will be
stored and where it needs to be displayed. In many cases content will be displayed
in multiple locations or aggregated with other content. These aggregated content
sources are often called content rollups and they provide a great way to reuse
content throughout your SharePoint environment.

Approach
There are three common ways to aggregate content to create a content rollup:

•	 Content Query Web Part (CQWP)
•	 Search Web Parts
•	 Custom Web Parts

Let's review each of these options in more detail.

Content Query Web Part (CQWP)
The first is to use one of SharePoint's standard Web Parts like the Content Query
Web Part (CQWP) that comes with SharePoint Server. Using the CQWP, it is
possible to configure a query rule that will look for content in all sites within the site
collection, within site below a selected site, or within a specified list or library. The
query configuration also allows you to specify which list type and content type to
query for. This allows you to cast a pretty wide net and pull back the related content.
It also underscores the importance of properly classifying your content so that it can
be easily identified. There are also a number of presentation properties that can be
configured to present the content in different ways.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[39]

There are two serious limitations to the CQWP, the first is that it may not perform
very well in very large sites or in aggregating large lists of content. It is important
to understand that when a page is loaded with the CQWP, it will issue the requests
to go grab the content. This can be a very expensive call requiring significant
processing power from the server. There is some caching available, but it may
not be effective enough with large sets of data. The second limitation is with the
presentation options available. It is very easy to configure the presentation, but if
one of the available options does not meet your needs it is not possible to have full
control over the presentation.

For the purpose of this exercise the content is pretty simple so we will configure the
rollup using the CQWP.

Search Web Parts
Utilizing the search system has distinct advantage that the information in the
search index is optimized to return results significantly faster than querying the
content sources. In addition, you have the ability to pull content from additional site
collections or content sources within the search index. Using the Search Core Results
Web Part you can specify a moderately complex query, the properties you need,
and then the output can be fully customized by supplying custom XSL to format the
returned XML.

The downside to using the search features is that the content has to be indexed for it
to be available for display. Depending on the crawl frequency there is content that
could be excluded, and typically the most recent content is the most relevant.

For a demonstration of using the Search Web Parts to aggregate content, see
Chapter 4, Building an Engaging Community Site which will use the Search Web
Parts to dynamically display people and content.

Custom Web Part
When developing a custom Web Part you have full control over how the content
is pulled as well as how it is presented which gives you the best of all options. You
have the option of either querying the source data or the search index, and you also
have the ability to take advantage of advanced caching techniques which is valuable
for highly trafficked pages.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet

[40]

The only downside to this approach is that it takes a lot more time and effort to build
and test the customization than to configure the previously mentioned Web Parts.
Also, in environments where farm solutions cannot be deployed to the server, this
may not be an option.

For a demonstration of using more advanced techniques within a custom Web Part,
see Chapter 3, Building an Enterprise Content Management Solution, which will leverage
a series of custom Web Parts to aggregate form submissions.

Creating the content source
For the purpose of this exercise a simple subsite was created called News. Articles
will be published to the Site Pages library on that site. To make the content easy
to identify, a new content type was created called News, which inherits from the
Article Page content type. The Article Page, and therefore the News content type
has a number of properties that allow you to identify a number of pieces of
metadata including By Line, Scheduling Start Date, Scheduling End Date, Article
Date, and Rollup Image which will be used in the presentation of the rollup
information. In addition, an additional Summary field can be added to provide
some additional content.

Configuring the Content Query Web Part
To start with, Edit the Page and add the Content Query Web Part to the
Page. It is available under the Content Rollup category as displayed in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[41]

The next step is to configure the source of the content. To query for content within
the entire site collection you can keep the default setting as Show items from all
sites in this site collection. If the site is large, or you only want to look in specific
locations, you can select one of the other options that narrow the scope. A list of the
Source options are shown in the following screenshot:

Next you define what types of items to display by setting the List Type value, along
with the Content Type, as displayed in the following screenshot:

You also have the option of further filtering based on the property metadata that
is available. This can be helpful to pinpoint the most valuable content within the
system. In this case we are going to filter on the Scheduling End Date field and
look for items with a date that is less than or equal to today, as seen in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet

[42]

For the presentation configuration you have the ability to determine Group By,
Sorting, and Item Limit information similar to a list view.

The Styles section has the most impact on how the content is presented, because
it is used to select the associated XSL used to format the content for the page. For
the headline with summary option we have chosen the Large title Item style as
displayed in the following screenshot:

Next we need to map the list properties to the standard CQWP fields. In the case of
the News article example we will stick pretty close to the default values, and only
modify the Description field to include the Summary field we added to the News
content type as displayed in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[43]

News content rollup displayed
Once configured this will pull and display any items added to the site collection
with the News content type and display them until after the scheduled end date
has passed. Newest articles will be displayed at the top of the list. The News content
rollup is displayed in the following screenshot:

Summary
This section leveraged both the Server and Client OMs to create both packaged
and unpackaged solutions in order to deliver the overall business solution. The
customizations are grouped as follows:

•	 Browser-based configuration:
°° Provision a site collection: Create a new site collection used to hold

our solution
°° Activate features: Activate the features needed to support our

Intranet publishing solution
°° Selecting a page layout: Provides an overview of the available page

layout options and details on how to change the page layout
°° Configuring an XML Web Part: Utilize the XML Web Part to call a

web service and format the output for display
°° Create a List Instance: Provision new lists for storing content within

our site collection
°° Content Query Web Part (CQWP): Configure the CQWP to display a

roll up of the most recent news for display on our main splash page

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Effective Intranet

[44]

•	 Visual Studio 2010:
°° Creating a List Definition
°° Create a List Instance: Create an instance of our custom list
°° Create a custom Web Part: Create a custom Web Part to display

new employees
°° User profiles: Used to store information about the system users and

leveraged by the Employee Corner Web Part
°° Search API: Used to provide a list of new employees to the Employee

Corner Web Part

•	 SharePoint Designer 2010:

°° Master Page customization: Add new content and scripts to the
Master Page so that they can be leveraged wherever the Master Page
is applied

°° Page layout customization: Customize the page layout to add or
configure controls

°° Page customization: Add new Web Parts or customize the Web Part
zone properties

°° Dialog framework: Utilize the Client OM's ModelDialog methods to
display standardized Ajax shadowboxes

These solutions provide examples of how to extend the out of the box features to
build an effective Intranet site that excels at communicating important information,
connecting people to build relationships, and expand on collaboration practices. In
addition to implementing these solutions, they can also be adapted for other types of
content to provide similar solutions.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Out of Office
Delegation Solution

For organizations looking to leverage SharePoint to support collaboration and
process automation, it is important to be able to provide a more robust Out of Office
solution than what is available within messaging systems like Microsoft Exchange.
Those solutions do a good job of providing information that aligns with the user's
current status, but it is not something that can be used to automate the delegation
or assignment of tasks to ensure that processes continue to complete in a timely
manner, while the user is unavailable. The lack of timely responses is one of the
biggest challenges with most process automation projects, and it is not enough just
to know who the task is currently assigned to.

A variation of this solution could also be used to provide a standing long term
delegation for cases such as when a manager wants to delegate all tasks to a
subordinate. This general process could be used to log the delegation in the log
for compliance, while still assigning the task to the person who will actually do
the work.

This chapter will provide the blueprints for a solution that leverages the user profiles
with custom user properties.

The following solutions will be created:

•	 Master Delegation Log: A custom List Definition and List Instance to store
delegation information centrally

•	 Out of Office delegation workflow activity: A custom full-trust workflow
action to manage the delegation check and logging

•	 Sample workflow: A sample workflow that utilizes the Out of Office
delegation workflow activity

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Out of Office Delegation Solution

[46]

•	 Out of Office delegation Web Part: A custom Web Part to display the
delegation information

•	 View Delegation History page: An application page that displays the
relevant delegation history

User profile properties
The user profiles available in SharePoint Server provide a robust set of features to
centrally store and manage information about users. Custom fields can be easily
configured to support your industry, organization, or business processes in the
case of the Out of Office delegation solution.

To configure the user profile properties, navigate to the User Profile Service
Application within Central Administration, and select the Manage User Properties
link under the People group as shown in the following screenshot:

From the Manage User Properties page you can view the listing of all categories and
properties as displayed in the following screenshot. The properties can be ordered as
desired to provide logical groupings.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

Defining the section and properties
For this solution we are going to define a section and three properties to support the
Out of Office delegation.

To create a new section:

1.	 Click on the New Section menu item.
2.	 Provide the Name (internal name) as OutOfOffice.
3.	 Provide the Display Name as Out of Office Delegation.
4.	 Click on the OK button.

To create the Out of Office start date profile property:

1.	 Click on the New Property menu item.
2.	 Set the value for the Name field to outStartDate.
3.	 Set the value for the Display Name field to Out of Office Start Date.
4.	 Set the value for the Type field to Date.
5.	 Ensure that the Default User Profile Subtype is set to the Yes value.
6.	 Set the value for the Description field to Start Date for Delegating Out of

Office task assignments.
7.	 Set the value for the Policy Setting field to Optional.
8.	 Set the value for the Edit Settings field to Allow users to edit values for

this property.
9.	 Set the value for the Show in the Profile properties section field to Yes.
10.	 Set the value for the Show on Edit Details page to Yes.

To create the out of office end date profile property:

1.	 Click on the New Property menu item.
2.	 Set the value for the Name field to outEndDate.
3.	 Set the value for the Display Name field to Out of Office End Date.
4.	 Set the value for the Type field to Date.
5.	 Ensure that the Default User Profile Subtype is set to the Yes value.
6.	 Set the value for the Description field to End Date for Delegating Out

of Office task assignments.
7.	 Set the value for the Policy Setting field to Optional.
8.	 Set the value for the Edit Settings field to Allow users to edit values for

this property.
9.	 Set the value for the Show in the Profile properties section field to Yes.
10.	 Set the value for the Show on Edit Details page to Yes.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Out of Office Delegation Solution

[48]

To create the out of office delegate profile property:

1.	 Click on the New Property menu item.
2.	 Set the value for the Name field to outDelegation.
3.	 Set the value for the Display Name field to Out of Office Delegate.
4.	 Set the value for the Type field to Person.
5.	 Ensure that the Default User Profile Subtype is set to the Yes value.
6.	 Set the value for the Description field to Person to assign new workflow

tasks to.
7.	 Set the value for the Policy Setting field to Optional.
8.	 Set the value for the Edit Settings field to Allow users to edit values for

this property.
9.	 Set the value for the Show in the Profile properties section field to Yes.
10.	 Set the value for the Show on Edit Details page to Yes.

Populating the properties
There are two different ways to edit the user profile properties for a user through the
UI. For any property configured to appear and be editable on the Edit Details screen,
the user or an administrator can browse to the user profile page and click on the Edit
My Profile link as seen in the following user profile page screenshot. From there,
make the desired changes and then click on the Save and Close menu item available
at both the top and bottom of the page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

Alternatively the administrator can edit any profile, and all editable properties, from
the User Profile Service Application by selecting the Manage User Properties menu
item as displayed in the following screenshot:

From here you can search for the user profile you would like to edit, and then
select the Edit My Profile option from the item menu as displayed in the
following screenshot:

All available fields will be shown on the administrator version of the edit user profile
form available from Central Administration. Once the required changes are made,
simply click on the Save and Close menu item at the top or bottom of the page.

Test data will be needed in order to complete and test the remainder of the
components of this solution, so be sure to have some user accounts available with
and without out of office data.

While it is not needed for this solution, it is possible to do bulk updates to the user
profile properties via profile import, custom code, or PowerShell. This can be helpful
when defining new properties and the value of those properties are already stored
in another system. Automatically importing or updating those property values will
remove the need for the user to edit those values themselves.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Out of Office Delegation Solution

[50]

Master Delegation Tracking List
To support compliance and reporting capabilities we will define a custom list that
can be used for logging all of the delegation entries in a central list. This list can
also be used to show a user what tasks were delegated on their behalf as we will
see when we define the View Delegation History page referenced from the Task
Delegation Web Part.

Delegation List Definition and List Instance
We will provision a List Definition and List Instance to store the notification content.
This will make it easy to reuse the list, if necessary, in cases where you need to
manage the notifications separately for sites that target different sets of users or in
different farms.

To create the feature:

1.	 Open Visual Studio 2010.
2.	 Select File, then New Project.
3.	 Browse the Installed Templates and select Visual C#, SharePoint 2010, and

then List Definition as seen in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[51]

4.	 Enter the project details such as Name, Location, and Solution name.
5.	 Within the SharePoint Customization Wizard, provide a path to your

SharePoint site and then be sure to select the option to Deploy as a farm
solution as seen in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Out of Office Delegation Solution

[52]

6.	 Provide a display name for the List Definition, select the Custom List type,
and click on the Finish button as shown in the following screenshot:

7.	 Rename the ListDefinition1 item as DelegationDefinition.
8.	 Rename the ListInstance1 item as Delegation.
9.	 Edit the DelegationDefinition/Elements.xml file and add in the content

for Elements.xml.
10.	 For the SiteName field we would define a Text field with the

following elements:
<Field Type="Text"
 DisplayName="Site Name"
 Required="TRUE"
 MaxLength="255"
 ID="{F0A3BFF6-F8F9-40E2-8031-2FEFD66FE8F3}"
 StaticName="SiteName"
 Name="SiteName"
 Group="Compliance Columns" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[53]

11.	 For the ListName field we would define a Text field with the
following elements:
<Field Type="Text"
 DisplayName="List Name"
 Required="TRUE"
 ID="{F6057985-C41D-4A30-8342-FF4E815BA51F}"
 StaticName="ListName"
 Name="ListName"
 Group="Compliance Columns" />

12.	 For the WorkflowName field we would define a Text field with the
following elements:
<Field Type="Text"
 DisplayName="Workflow Name"
 Required="TRUE"
 ID="{4B57EC1E-C6CD-4197-ABEF-81754013DDD4}"
 StaticName="WorkflowName"
 Name="WorkflowName"
 Group="Compliance Columns" />

13.	 For the OrigUser field we would define a User field with the
following elements:
<Field Type="User"
 DisplayName="Original User"
 Required="TRUE"
 ID="{68C1C89A-324D-48C3-AB1E-26AA7003A37F}"
 StaticName="OrigUser"
 Name="OrigUser"
 Group="Compliance Columns" />

14.	 For the DelegUser field we would define a User field with the
following elements:
<Field Type="User"
 DisplayName="Delegate User"
 Required="TRUE"
 ID="{83856973-C1B3-401A-8687-52633D8B2ADC}"
 StaticName="DelegUser"
 Name="DelegUser"
 Group="Compliance Columns" />

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Out of Office Delegation Solution

[54]

15.	 For the LogDate field we would define a DateTime field with the
following elements:
<Field Type="DateTime"
 DisplayName="Log Date"
 Required="FALSE"
 ID="{EF890C5F-0DE6-44D6-B994-BC269E830E0E}"
 StaticName="LogDate"
 Name="LogDate"
 Group="Compliance Columns" />

16.	 Next we define the attributes of the content type and set the field references
to the IDs of the fields defined in the previous steps, along with the standard
ID field associated with the base content type item:
 <ContentType
 ID="0x010089E3E6DB8C9B4B3FBB980447E313CE97"
 Name="Delegation Log Entry"
 Group="Compliance Content Types"
 Description="Delegation Log Content Type."
 Version="0">
 <FieldRefs>
 <FieldRef ID="{fa564e0f-0c70-4ab9-b863-0177e6ddd247}" />
 <FieldRef ID="{F0A3BFF6-F8F9-40E2-8031-2FEFD66FE8F3}" />
 <FieldRef ID="{F6057985-C41D-4A30-8342-FF4E815BA51F}" />
 <FieldRef ID="{4B57EC1E-C6CD-4197-ABEF-81754013DDD4}" />
 <FieldRef ID="{68C1C89A-324D-48C3-AB1E-26AA7003A37F}" />
 <FieldRef ID="{83856973-C1B3-401A-8687-52633D8B2ADC}" />
 <FieldRef ID="{EF890C5F-0DE6-44D6-B994-BC269E830E0E}" />
 </FieldRefs>

 </ContentType>

17.	 Next we will identify the attributes of the ListTemplate element which
completes the configuration for the new List Definition:

<ListTemplate
 Name="DelegationDefinition"
 DisallowContentTypes="FALSE"
 Type="12002"
 BaseType="0"
 OnQuickLaunch="FALSE"
 SecurityBits="11"
 Sequence="411"
 DisplayName="Delegation List Definition"
 Description="Delegation List Definition"
 Image="/_layouts/images/itgen.png"/>
</Elements>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[55]

Defining a custom action group and action
Since this list is primarily for administrative purposes, and not for general site
content, it is a good idea to provide a link to the list on the Site Settings page. To
add a link to any of the standard menus or ribbon, you will need to define a custom
action. The groups of links are called action groups, and in order to distinguish this
action from the other standard actions, we will also define a custom action group.

To create the custom action:

1.	 Add New Item to the Visual Studio project.
2.	 Under the SharePoint 2010 category, select the Empty Element type and

provide a name such as ComplianceActionGroup as displayed in the Add
New Item form in the previous screenshot.

3.	 Edit the Elements.xml to define the custom action group as follows:

<CustomActionGroup Id="e5086212-6073-47e4-9f83-085e3d30d8df"
 Title="Compliance"
 Description="SPBlueprints Compliance Items"
 Location="Microsoft.SharePoint.SiteSettings"
 ImageUrl=

 "/_layouts/images/SPBlueprints/SPBlueprints_Bullet.png" />

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Out of Office Delegation Solution

[56]

With the action group defined, we can now define our custom action as follows:

1.	 Add New Item to the Visual Studio project.
2.	 Under the SharePoint 2010 category, select the Empty Element type

and provide a name such as ViewDelegationLog as displayed in the
following screenshot:

3.	 Edit the Elements.xml file with the following content to complete the
configuration of the CustomAction definition:

<CustomAction Description="View Delegation Log"
 GroupId="e5086212-6073-47e4-9f83-085e3d30d8df"
 Id="cdbb5ebd-8599-41d2-8e54-c332d03242c1"
 Location="Microsoft.SharePoint.SiteSettings"
 RegistrationType="ContentType"
 RegistrationId="0x010089E3E6DB8C9B4B3FBB980447E313CE97"
 RequireSiteAdministrator="true"
 Rights="ManageWeb"
 Sequence="12001"
 Title="View Delegation Log">
 <UrlAction Url="Lists/Delegation" />
</CustomAction>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[57]

Finalizing the delegation list feature
With all of the project items created we can now finalize the SPBlueprints
Delegation List Feature.

To configure the SPBlueprints Delegation List Feature:

1.	 Rename the Feature1 item SPBlueprints Delegation List Feature.
2.	 Select the SPBlueprints Delegation List Feature.feature item and

provide a Title and Description. It should resemble the next screenshot.
3.	 To build the project, select Build, then Build SPBlueprints.Lists.

Delegation.
4.	 To deploy to the local server, select Build, then Deploy SPBlueprints.

Lists.Delegation.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Out of Office Delegation Solution

[58]

The completed project structure should resemble the following screenshot:

Check out of office workflow activity
To support the workflow we will now create a custom workflow activity that can
connect to the user profiles and perform a series of actions. Custom workflow
activities are a great way to expand the capabilities of a SharePoint workflow
allowing you to connect to additional farm services such as the User Profile Service
application, Business Connectivity Services, or even managed metadata services.
It can also be used to integrate with other systems directly for cases where Business
Connectivity Services is not available or is not desirable. Another advantage to
building custom workflow activities is that you can group multiple steps together
into one reusable activity.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[59]

Approach
The CheckOutOfOffice activity will accept a username and perform the
following steps:

1.	 Check the user's profile to see if they are Out of Office, with a
delegate specified.

2.	 If they are:
°° Log the delegation decision in the workflow's history
°° Log the task information to the Master Delegation Tracking List
°° Return delegated username

3.	 If no match is made, the original username will be returned.

Logging the delegation decision is important and may be required if this is a formal
process that could be audited. It will be important to show why the workflow was
assigned to the delegate, instead of the primary assignee. Without this, it is likely
that there will be questions about what the workflow is doing and the assignment
may be looked on as erroneous.

Logging the task information to the Master Delegation Tracking List will provide
additional compliance traceability across all of your processes, in addition to
providing a source to provide a list of all delegated tasks. This information will be
presented as part of the display created in the View Delegation History page section.

Creating CheckOutOfOfficeActivity
To start, open Visual Studio 2010 and create an Empty SharePoint Project as
a farm solution following the same steps outlined for the custom Web Part in
Chapter 1, Building an Effective Intranet. The project should be called SPBlueprints.
Activities, and the feature should be renamed Custom Activities with a Title
of SPBlueprints Custom Activities.

The next step is to add the required references to the following DLLs:

•	 Microsoft.Office.Server

•	 Microsoft.Office.Server.UserProfiles

•	 Microsoft.SharePoint.WorkflowActions

•	 System.Workflow.ComponentModel

Then add an Empty Element SPI to the project called CheckOutOfOfficeActivity
which will be the name of the workflow activity we are adding.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Out of Office Delegation Solution

[60]

CheckOutOfOfficeActivity.cs
Now that we have a container for our workflow activity, add in a new class called
CheckOutOfOfficeActivity.cs.

Edit the CheckOutOfOfficeActivity.cs and add the following
namespace references:

System.Workflow.ComponentModel
Microsoft.SharePoint
Microsoft.SharePoint.Administration
Microsoft.SharePoint.Workflow
Microsoft.SharePoint.WorkflowActions
Microsoft.Office.Server
Microsoft.Office.Server.UserProfiles

With the System.Workflow.ComponentModel now referenced, change the class
definition to:

public partial class CheckOutOfOfficeActivity : Activity

Once the override for the Activity class has been added you will
notice the classes' icon changes to one used for component classes.
Double-clicking on the class will now show a designer interface.
To view the code right-click and select the View Code option.

We now need to define the activity's properties. In order to interact with the
workflow, the __Context property must be defined in all the workflow activities.
The __Context property will include contextual information about the workflow
calling it, including its status and who initiated it. Next you define any other
properties that will be used as parameters. In this case we will define properties
for User, AssignTo, and Delegated.

public WorkflowContext __Context
{
 get { return (WorkflowContext)GetValue(__ContextProperty); }
 set { SetValue(__ContextProperty, value); }
}

public static readonly DependencyProperty __ContextProperty =
 DependencyProperty.Register("__Context", typeof(WorkflowContext),
 typeof(CheckOutOfOfficeActivity));

public string User
{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[61]

 get { return (string)GetValue(UserProperty); }
 set { SetValue(UserProperty, value); }
}
public static readonly DependencyProperty UserProperty =
 DependencyProperty.Register("User", typeof(string),
 typeof(CheckOutOfOfficeActivity));

public string AssignTo
{
 get { return GetValue(AssignToProperty) as String; }
 set { SetValue(AssignToProperty, value); }
}

public static readonly DependencyProperty AssignToProperty =
 DependencyProperty.Register("AssignTo", typeof(String),
 typeof(CheckOutOfOfficeActivity));

public string Delegated
{
 get { return GetValue(DelegatedProperty) as string; }
 set { SetValue(DelegatedProperty, value); }
}

public static readonly DependencyProperty DelegatedProperty =
 DependencyProperty.Register("Delegated", typeof(string),
 typeof(CheckOutOfOfficeActivity));

The main override method for the Activity class is the Execute method which fires
when the ActivityExecutionStatus is set to Executing. The work takes place
within a using block for the __Context.Site object to ensure proper disposal.

protected override ActivityExecutionStatus
Execute(ActivityExecutionContext executionContext)
{
 using (SPSite site = __Context.Site)
{

 //Read User Profile Code Here

}

 return ActivityExecutionStatus.Closed;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Out of Office Delegation Solution

[62]

Within the activity code we will get the SPServiceContext for the current site, and
then use that to establish a connection with the UserProfileManager object, so
that we can load the profile for the requested user along with the specific properties
defined to support the out of office delegation solution. If the fields do not exist or do
not have values, the catch block will be triggered and the initial user will be set as
the AssignTo.

try
{
 SPServiceContext context = SPServiceContext.GetContext(site);
 UserProfileManager profileManager = new
 UserProfileManager(context);
 UserProfile profile = profileManager.GetUserProfile(this.User);
 DateTime startDate =
 Convert.ToDateTime(profile["outStartDate"].Value);
 DateTime endDate =
 Convert.ToDateTime(profile["outEndDate"].Value);
 string userDelegate = profile["outDelegation"].ToString();

 //Out of Office Check Code Here
}
catch
{
 this.AssignTo = this.User;
 this.Delegated = "False";
}

Next is the all-important check to see if the current time falls between the out of
office start date and end date and that a delegate has been identified. If a delegate
is found, the AssignTo is set to the delegate and the Delegated property is set
to "True", otherwise the AssignTo property is set to the original value and the
Delegated property is set to "False".

if ((System.DateTime.Now >= startDate) && (System.DateTime.Now <=
 endDate) && (userDelegate != ""))
{
//User is out of office with a delegate value, assign delegate
 this.AssignTo = userDelegate;
 this.Delegated = "True";

//Log To Workflow History Code Here

}
else
{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[63]

//User is not out of the office, or a delegate cannot be assigned
 this.AssignTo = this.User;
 this.Delegated = "False";
}

Within the delegation block, we will now log the delegation to the workflow history
list so that it is clear why the assignment was changed. In order to save the entry we
must run with elevated permissions.

SPSecurity.RunWithElevatedPrivileges(delegate()
{
string message = string.Format("The task has been delegated from
 {0} to {1}", this.User.ToString(), this.AssignTo.ToString());

ISharePointService spService =
(ISharePointService)executionContext.GetService(typeof(ISharePoint
Service));
spService.LogToHistoryList(this.WorkflowInstanceId,
 SPWorkflowHistoryEventType.WorkflowComment, -1,
 TimeSpan.MinValue, "Task Delegated", message, String.Empty);
});
//Add Entry to the Master Delegation Log

After the item is logged to the workflow's history, we then want to log it to the
Master Delegation Log.

One technique I would like to introduce here is using the property bags within
the SharePoint objects to store custom configuration data. This provides an
alternative to modifying the web.config or storing the information in a hidden
SharePoint list. In this case we will store our properties at the web-application
level. The properties can be viewed and managed using a client tool like SharePoint
Manager (http://spm.codeplex.com/) or with a server feature such as SharePoint
Property Bag Settings 2010 (http://pbs2010.codeplex.com/).

For this example, we will read the delegation log's site URL and list GUID from the
web application's property bag.

string errBlockMessage = "Error reading properties";
try
{
 SPWebApplication webApp = site.WebApplication;
 string logSiteUrl =
 webApp.Properties["_DelegateLogSite"].ToString();
 Guid logGuid = new
 Guid(webApp.Properties["_DelegateLogList"].ToString());
string ctGuid =
 webApp.Properties["_DelegateContentType"].ToString();

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Out of Office Delegation Solution

[64]

To help ensure the process has the ability to write to the Master Delegation Log, we
will run the next block of code with elevated privileges. Using elevated privileges
will run the code under the identity of the application pool account and will have
access to all lists within that web application. Using the information previously
loaded from the property bag, we will connect to the web and add a new list item,
specifying our field values and then finish by calling the Update method.

SPSecurity.RunWithElevatedPrivileges(delegate()
{
 errBlockMessage = "Error connecting to list";
 using (SPWeb logSite = new SPSite(logSiteUrl).RootWeb)
 {
 SPUser userOrig = logSite.EnsureUser(this.User);
 SPUser userDiag = logSite.EnsureUser(this.AssignTo);
 SPList list = logSite.Lists[logGuid];

 errBlockMessage = "Error logging delegation";
 SPListItem logEntry = list.Items.Add();
 logEntry["Title"] = "Delegation Entry";
 logEntry["SiteName"] = __Context.Web.Url.ToString();
 logEntry["ListName"] = __Context.ListId.ToString();
 logEntry["WorkflowName"] =
 __Context.WorkflowInstanceId.ToString();
 logEntry["OrigUser"] = userOrig;
 logEntry["DelegUser"] = userDiag;
 logEntry["LogDate"] = System.DateTime.Now;
 logEntry.Update();
 }
});
}

If any error is encountered within the block of code that reads the settings, connects
to the list, and adds a list item the issue will be logged to the workflow history list. In
addition to logging the actual error message, we are also providing some additional
detail to pinpoint where within the block the failure occurred. The three areas
include reading the property bag, connecting to the list, and logging the delegation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[65]

In this case we are handling the error instead of raising the error and stopping the
process. At this point in the multiple step process we have properly set a valid
delegation so there is no good reason to halt the process and prevent it from moving
forward. In this case, logging the item to the Master Delegation List, while desirable,
is not critical to the success of the individual workflow.

catch (Exception ex)
{
 SPSecurity.RunWithElevatedPrivileges(delegate()
 {
 SPDiagnosticsService.Local.WriteTrace(0, new
 SPDiagnosticsCategory("SP Blueprints Workflow Activities",
 TraceSeverity.Unexpected, EventSeverity.Error),
 TraceSeverity.Unexpected, ex.Message, ex.StackTrace);

 string errorMessage = string.Format("{0}: {1}",
 errBlockMessage, ex.Message);

 ISharePointService spService =
(ISharePointService)executionContext.GetService(typeof(ISharePoint
Service));
 spService.LogToHistoryList(this.WorkflowInstanceId,
 SPWorkflowHistoryEventType.WorkflowError, -1,
 TimeSpan.MinValue, "Error", errorMessage, String.Empty);
 });
}

Next we need to override the HandleFault method where we will log any errors that
might be generated. Again we will need to run with elevated privileges in order to
read the trace information and write out the exception to the workflow's history log.

protected override ActivityExecutionStatus
HandleFault(ActivityExecutionContext executionContext, Exception
 ex)
{
 SPSecurity.RunWithElevatedPrivileges(delegate()
 {
 SPDiagnosticsService.Local.WriteTrace(0, new
 SPDiagnosticsCategory("SP Blueprints Workflow Activities",
 TraceSeverity.Unexpected, EventSeverity.Error),
 TraceSeverity.Unexpected, ex.Message, ex.StackTrace);

 string errorMessage = string.Format("Error reading User
 Profile Property: {0}", ex.Message);

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Out of Office Delegation Solution

[66]

 ISharePointService spService =
(ISharePointService)executionContext.GetService(typeof(ISharePoint
Service));
 spService.LogToHistoryList(this.WorkflowInstanceId,
 SPWorkflowHistoryEventType.WorkflowError, -1,
 TimeSpan.MinValue, "Error", errorMessage, String.Empty);
 });

return base.HandleFault(executionContext, ex);
}

CheckOutOfOfficeActivity elements.xml
The elements.xml file for a workflow activity is used to define the
WorkflowActions so that it can be interpreted from the design environment.
It describes the action and is used to reference the class and Assembly used to
provide the functionality.

The RuleDesigner Sentence defines the description and field bindings within the
design environment. Then the formal parameters are defined including data type
and direction.

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <WorkflowActions>
 <Action Name="Check Out of Office"
 ClassName="SPBlueprints.Activities.CheckOutOfOfficeActivity"
 Assembly="$SharePoint.Project.AssemblyFullName$"
 AppliesTo="all"
 UsesCurrentItem="false"
 Category="SP Blueprints">
 <RuleDesigner Sentence="Check user %1 for Out of Office
 (Assign Task to %2, Delegated? %3)">
 <FieldBind Field="User" Text="User" Id="1"
 DesignerType="TextArea" />
 <FieldBind Field="AssignTo" Text="Assign To" Id="2"
 DesignerType="ParameterNames" />
 <FieldBind Field="Delegated" Text="Delegated" Id="3"
 DesignerType="ParameterNames" />
 </RuleDesigner>
 <Parameters>
 <Parameter Name="__Context"
 Type="Microsoft.SharePoint.WorkflowActions.WorkflowContext"
 Direction="In" />
 <Parameter Name="User" Type="System.String, mscorlib"
 Direction="In" />
 <Parameter Name="AssignTo" Type="System.String, mscorlib"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[67]

 Direction="Out" />
 <Parameter Name="Delegated" Type="System.String,
 mscorlib" Direction="Out" />
 </Parameters>
 </Action>
 </WorkflowActions>
</Elements>

Adding the web.config authorizedType entry
In order for the custom activity to load, an entry must be added to the
authorizedTypes list of web.config. This will identify the assembly as being
safe for use. It is possible to automate the entry as part of a feature receiver, but
there can be problems managing the entry with multiple activations and
deactivations at the site collection level.

The easiest way to manage this is to add the following entry to the
<authorizedTypes> group:

<authorizedType Assembly="SPBlueprints.Activities,
 Version=1.0.0.0,
 Culture=neutral,
 PublicKeyToken=efa40a16752cda27"
 Namespace="SPBlueprints.Activities"
 TypeName="*"
 Authorized="True" />

Completed solution
The completed solution structure is displayed in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Out of Office Delegation Solution

[68]

Sample workflow—check out of office
Next we will create a workflow to demonstrate the capabilities of the out of office
delegation activity. This activity can be used in any workflow to support a number
of different scenarios.

Please note, to create this workflow, the previously built solutions must be deployed
and activated. The properties for the Master Delegation Log must also be set for the
web application.

To create the workflow, Open SharePoint Designer 2010 and create a new workflow
bound to a list on the current site as displayed in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[69]

When the workflow editing forms load, the custom action will be loaded and will be
available in the list of available actions as shown in the following screenshot:

When added to the workflow it should display as shown in the following screenshot:

A sample workflow supporting multiple task levels, each with Out of Office
delegation checks, is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Out of Office Delegation Solution

[70]

Creating a Task Delegation Web Part
We will now create a custom Web Part for the task delegations to provide better
visibility of the current delegation settings, simplify editing the settings, and also to
view the delegation history for the given user. This Web Part can be used on the user
profile page, or on any of the sites used to store workflows.

In order to determine the correct user profile to read, the Web Part must be able to
check the URL for the accountname variable, and if not found, use the current user's
information, which is how the user profile's Person.aspx page operates.

Creating the Web Part project
The Task Delegation Web Part and the referenced application pages will be added to
a new project called SPBlueprints.Delegation.

To create the initial project:

1.	 Open Visual Studio 2010.
2.	 Select File, then New Project.
3.	 Browse the Installed Templates and select Visual C# | SharePoint 2010,

and then Empty SharePoint Project.
4.	 Enter the project details such as Name, Location, and Solution name.
5.	 Within the SharePoint Customization Wizard, provide a path to your

SharePoint site and then be sure to select the option to Deploy as a
farm solution.

6.	 Right-click on the project file and select Add then New Item.
7.	 From the template selection screen select the Web Part option.
8.	 Provide the name DelegationWebPart and click on the Add button.
9.	 Rename the Feature1 item Web Part.
10.	 Select the Web Part.feature item and provide a Title and a Description.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[71]

The completed Web Part feature should look like the following screenshot:

Displaying Out of Office delegation
We will now build the Task Delegation Web Part by editing the
DelegationWebPart.cs class file.

First we will define the getAccountname() method, which will check the query
string for a variable named accountname. If a value is not found, the current user
will be used.

private string getAccountname(){
 string queryString =
 System.Web.HttpContext.Current.Request.QueryString.ToString();
 int startPos = queryString.IndexOf("accountname=") + 12;
 int valueLength;
 if (startPos >= 12) {
 int nextPos = queryString.IndexOf("&", startPos);
 if (nextPos > 0){
 valueLength = queryString.IndexOf("&", startPos) - startPos;
 }
 else {
 valueLength = queryString.Length - startPos;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Out of Office Delegation Solution

[72]

 return HttpUtility.UrlDecode(queryString.Substring(startPos,
 valueLength));
 }
 if(accountname == "") {
 return
 System.Web.HttpContext.Current.User.Identity.Name.ToString();
 }
return String.Empty;
}

The Display method will be used to render the output for the Web Part. The
formatted output will be maintained in the StringBuilder object named output.
We will start by defining the needed variables and reading the current context, so
that we can work with the current site's object, and then call the getAccountname()
method, as previously explained.

void Display()
{
 StringBuilder output = new StringBuilder();
 string startDate;
 string endDate;

 SPContext context = SPContext.Current;
 SPSite site = context.Site;

 try{
 accountname = getAccountname();

Next we will get the current service context based on the current site and use that to
make a connection to the User Profile service, so that the user profile can be read, and
the Out of Office delegation properties extracted.

SPServiceContext svcContext = SPServiceContext.GetContext(site);
UserProfileManager profileManager = new
 UserProfileManager(svcContext);
UserProfile profile = profileManager.GetUserProfile(accountname);
DateTime dStartDate =
 Convert.ToDateTime(profile["outStartDate"].Value);
startDate = dStartDate.ToShortDateString();

DateTime dEndDate =
 Convert.ToDateTime(profile["outEndDate"].Value);
endDate = dEndDate.ToShortDateString();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[73]

string userDelegate = profile["outDelegation"].ToString();

// Lookup Display name for delegate
profile = profileManager.GetUserProfile(userDelegate);
string userDelegateDisplay = profile.DisplayName.ToString();
string userDelegateProfile = profileManager.MySiteHostUrl +
 "person.aspx";

With the supporting data read from the user profiles, we can now format the output.
The first step is to reference the Javascript file that is used to launch the Client OM's
modal dialog windows. Next we will determine if there is a valid delegation in place,
and display the appropriate output.

// Reference script
output.AppendFormat(@"<script type='text/ecmascript'
src='/_layouts/SPBlueprints.Delegation/Delegation.js'></script>");

// Determine if Active Delegation
if ((System.DateTime.Now >= dStartDate) && (System.DateTime.Now <=
 dEndDate) && (userDelegate != "")){
 output.AppendFormat(@"
<div id='delegationContainer'>Active
 Delegation
");
 output.AppendFormat(@"{0} to {1}
", startDate, endDate);
 output.AppendFormat(@"Delegating to {2}

",
 userDelegateProfile, userDelegate, userDelegateDisplay);
 output.AppendFormat(@"View
 Delegation History - Modify
 Delegation Settings

", accountname.Replace("\\",
 "\\\\"));
 output.AppendFormat(@"</div>");

}
else {outputInactive(output);}
}

catch // properties could not be loaded
 { outputInactive(output); }

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Out of Office Delegation Solution

[74]

Once the output is complete we will set the value for the literal which renders the
output of the Web Part.

this.EnsureChildControls();
this.literalMessage.Text = output.ToString();

Since the output for the inactive delegation could be called from more than one
place, the code to display that version was moved to the outputInactive() method
which is called in the previous code.

private StringBuilder outputInactive(StringBuilder output){
// Output Inactive Delegation
 output.AppendFormat(@"<div id='delegationContainer'>No Active
 Delegation
");
 output.AppendFormat(@"

");
 output.AppendFormat(@"

");
 output.AppendFormat(@"View Delegation
 History - Modify Delegation
 Settings", accountname.Replace("\\", "\\\\"));
 output.AppendFormat(@"</div>");
 return output;
}

Delegation.js
When using Javascript within your custom Web Parts, it is often easiest to add the
content to a file that is managed with the custom Web Part's feature. By mapping
the Layouts folder in your Visual Studio project, it is possible to deploy files to
a location within the Layouts virtual directory making it available to any site in
the farm.

Best practice is to name the folder to match your project or feature name. In this
case a folder named SPBlueprints.Delegation has been added and the following
Delegation.js script was added to the project:

function showDelegationHistory(account) {
 var _options = { url:
 '/_layouts/SPBlueprints.Delegation/ViewDelegationHistory.aspx?
 accountname=' + account, width: '800', title: 'Delegation
 History for ' + account };
 SP.UI.ModalDialog.showModalDialog(_options);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[75]

function showDelegationForm(account) {
 var _options = { url:
 '/_layouts/SPBlueprints.Delegation/EditDelegationSettings.aspx?
 accountname=' + account, width: '800', title: 'Edit Delegaton
 Settings'};
 SP.UI.ModalDialog.showModalDialog(_options);
}

Displaying the Task Delegation Web Part
The rendered Task Delegation Web Part is displayed in the following screenshot:

Creating custom application pages
The Task Delegation Web Part includes references to two separate application
pages. Custom application pages are ASP.NET pages that can fully utilize the server
API, and ASP.NET capabilities to deliver robust visualizations, or a web form with
complex business rules. The application pages are deployed to the Layouts directory
that are available throughout the system.

Preparing for custom application pages
In order to add application pages or any other object to the Layouts directory, we
start by mapping the path to the directory. Since these application pages will be
a dependency for the Task Delegation Web Part, we will add these pages to the
existing project. To do this, right-click on the project name and select Add, then
SharePoint "Layouts" Mapped Folder. This will create a new folder called Layouts
in your project.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Out of Office Delegation Solution

[76]

View Delegation History page
Logging the delegations is important to keep a central tracking list, but we will also
want to provide an easy way to view the delegation data. In the Task Delegation Web
Part we added a link that references the View Delegation History page where we can
show the delegation history for the specified user. Putting this in an application page
will make it available throughout the farm. The Master Delegation Lists' properties
can be read from the web application's property bag, giving you the ability to use the
single page throughout the farm, even if there are multiple delegation lists.

The page will read the accountname variable provided in the query string, connect
to the web application's Master Delegation List, and display the output in a standard
ASP.NET datagrid.

This page could easily be extended to include some advanced filtering capabilities,
perhaps based on specific date ranges, or based on who it was delegated to.

To add the custom application page:

1.	 Expand the Layouts directory mapped in the previous section.
2.	 Select the SPBlueprints.Delegation folder.
3.	 Right-click and select Add, then New Item.
4.	 Under the SharePoint 2010 category, select Application Page and

provide the name ViewDelegationHistory.aspx as displayed in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[77]

ViewDelegationHistory.aspx
As application pages are ASP.NET pages, they contain both the design interface for
controls and the code behind for logic and events.

Within the ViewDelegationHistory.aspx page, the normal display content
should be added to the PlaceHolderMain content control. Any filtering controls or
additional content should be added to this section. For now, we will include a label
for displaying any rendering errors and the single GridView control for displaying
the delegation history information.

<asp:Content ID="Main"
 ContentPlaceHolderID="PlaceHolderMain"
 runat="server">
 <asp:Label ID="Error"
 runat="server"></asp:Label>

 <asp:GridView ID="delegationHistory"
 runat="server"
 BorderWidth="0"
 CssClass="ms-listviewtable">
 </asp:GridView>
</asp:Content>

A title should also be added to the PageTitle and PageTitleInTitleArea content
areas as follows:

<asp:Content ID="PageTitle"
 ContentPlaceHolderID="PlaceHolderPageTitle"
 runat="server">
 View Delegation History
</asp:Content>

<asp:Content ID="PageTitleInTitleArea"
 ContentPlaceHolderID="PlaceHolderPageTitleInTitleArea"
 runat="server" >
 View Delegation History
</asp:Content>

ViewDelegationHistory.aspx.cs
The ViewDelegationHistory.aspx.cs is a regular ASP.NET code behind page,
with all of the available page lifecycle events and capabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Out of Office Delegation Solution

[78]

Since we will be working with the user profiles, as well as the web application's
property bag, we will need to add the following references to our class:

using Microsoft.SharePoint.Administration;
using Microsoft.SharePoint.WebControls;
using Microsoft.Office.Server;
using Microsoft.Office.Server.UserProfiles;

We will also define the string accountname for use throughout the methods on
the page.

private string accountname;

To get started we will need to know what account name was provided in the query
string. A call to the getAccountname() method will set the accountname variable.

private void getAccountname()
{
 string queryString =
 System.Web.HttpContext.Current.Request.QueryString.ToString();
 int startPos = queryString.IndexOf("accountname=") + 12;
 int valueLength;

 if (startPos >= 12) {
 int nextVariable = queryString.IndexOf("&", startPos);
 if (nextVariable > 0){
 valueLength = queryString.IndexOf("&", startPos) - startPos;
 }
 else{
 valueLength = queryString.Length - startPos;
 }
 accountname= Server.UrlDecode(queryString.Substring(startPos,
 valueLength));
 }
}

The data is loaded through a method named loadDelegationHistory() which
reads the delegation list's location from the web application's property bag.

private DataTable loadDelegationHistory()
{
 Try{
 SPContext context = SPContext.Current;
 SPSite site = context.Site;
 SPWebApplication webApp = site.WebApplication;
 string logSiteUrl =

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[79]

 webApp.Properties["_DelegateLogSite"].ToString();
 Guid logGuid = new
 Guid(webApp.Properties["_DelegateLogList"].ToString());

Next we will connect to the web where the list is located and load the list:

 using (SPSite tmpSite = new SPSite(logSiteUrl)){
 SPWeb logSite = tmpSite.RootWeb;
 SPUser userOrig = logSite.EnsureUser(accountname);
 SPList history = logSite.Lists[logGuid];

In order to only get the fields and records we are looking for, we will now format a
query using the SPQuery object.

 SPQuery query = new SPQuery();
 query.ViewFields = @"<FieldRef Name='ID' /><FieldRef
 Name='SiteName' /><FieldRef Name='ListName' /><FieldRef
 Name='WorkflowName' /><FieldRef Name='LogDate' /><FieldRef
 Name='OrigUser' /><FieldRef Name='DelegUser' />";
 query.Query = @"<Where><Eq><FieldRef Name='OrigUser'
 /><Value Type='User'>" + userOrig.Name.ToString() +
 "</Value></Eq></Where>";

With the objects loaded and the query formatted, we can now return the DataTable
object with the list data returned.

 return history.GetItems(query) GetDataTable();
 }
 }

In order to handle errors and still return a DataTable object, we will create a
DataTable object and populate it with any exceptions that may be generated
as part of the catch block.

 catch (Exception ex) {
 DataTable tableHistory = new DataTable();
 tableHistory.Columns.Add("Error");
 DataRow errorRow = tableHistory.NewRow();
 errorRow.SetField("Error", ex.Message);
 tableHistory.Rows.Add(errorRow);

 return tableHistory;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Out of Office Delegation Solution

[80]

With the supporting methods defined, we can now define the main controlling code
within the Page_Load() method which is the standard starting point for the ASP.
NET pages. We will include some error handling and only execute the page if it is
not loaded in a postback event.

protected void Page_Load(object sender, EventArgs e)
{
 try
 {
 this.Error.Text = "";
 this.Error.Visible = false;

 if (!Page.IsPostBack){

The getAccountname() and loadDelegationHistory() methods are now called to
get the accountname property and then load the list data.

 getAccountname();
 DataTable userHistory = loadDelegationHistory();

Since the Modified and Created fields are returned by default, we will remove
these tables from the list data returned before the datagrid is bound to the
returned DataTable.

 if (userHistory.Columns[0].ColumnName != "Error"){
 //Exclude these columns
 userHistory.Columns.Remove("Modified");
 userHistory.Columns.Remove("Created");
 }
 this.delegationHistory.BorderStyle =
 System.Web.UI.WebControls.BorderStyle.None;
 this.delegationHistory.Width =
 System.Web.UI.WebControls.Unit.Percentage(100);
 this.delegationHistory.DataSource = userHistory;
 this.delegationHistory.DataBind();
 }

The main catch block will display any exceptions that occur during the rendering of
the content and then closes out the Page_Load() method.

 }
 catch (Exception ex){
 this.Error.Visible = true;
 this.Error.Text = "Error: " + ex.Message;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[81]

Displaying the View Delegation History page
Clicking the View Delegation History link from within the Task Delegation Web Part
will display the delegation history as shown in the following screenshot:

Completed SPBlueprints.Delegation solution
The completed solution for the SPBlueprints.Delegation project and Web
Part feature should include the delegation Web Part, Delegation.js script file,
EditDelegationSettings.aspx application page, and ViewDelegationHistory.
aspx application page. The final solution should look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Out of Office Delegation Solution

[82]

Summary
This section leveraged both the Server and Client OMs to create packaged solutions
in order to deliver the Out of Office delegation solution. The customizations are
grouped as follows:

•	 Visual Studio 2010:
°° List Definition
°° List Instance
°° Web Part
°° Action group definition
°° Actions definition
°° Application page

These solutions provide examples of how to extend the user profiles and create
customizations that can be used to support business processes, and also how to
add additional Web Parts to the user profile page. This can be used as the basis to
support robust reusable business processes, and also be used to enhance the value
of the user profile pages.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Enterprise
Content Management

Solution
One of SharePoint's core capabilities is to store document-based content. In many
cases for informal team scoped documents, but organizations also typically have
more formal enterprise content that is stored centrally and relevant to multiple
groups. The Document Center template included in SharePoint 2010 offers a good
starting point, but unfortunately it cannot scale to the size needed to support
medium to large organizations.

The limitations are based on the overall amount of content; stored in a library,
site collection, and underlying content database. At the time of writing, Microsoft
introduced new guidance with the release of SharePoint 2010 Service Pack 1 which
states that the maximum content database size can be 4 TB with SQL and storage
sub-system optimization, or 200 GB without optimization.

Additional details about SharePoint boundaries can be found in
the TechNet article SharePoint Server 2010 capacity management:
Software boundaries and limits available at: http://technet.
microsoft.com/en-us/library/cc262787.aspx

While it is possible to live within the actual hard limits, performance problems and
general usability issues will be noticed well before those limits are reached. Therefore
a proper solution should be architected to ensure long term health and viability of
the solution, and handle the underlying storage and organization of the document
content, along with an easy to use system to find and retrieve this content.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Enterprise Content Management Solution

[84]

This chapter will take us through some of the initial organization and storage
decisions and provide solutions for making the processes of adding and locating
content very easy for the users. The covered solutions include:

•	 Configuring content types for publishing
•	 Document routing via the Content Organizer
•	 DocVault Web Part
•	 Enhanced Document ID redirect Web Part

The following screenshot shows the Document Vault main site:

Defining content containers
When planning for content containers, it is important to have a general idea of how
much content the system will eventually need to hold. In this sample we will plan for
containers to hold invoices, sales orders, and purchase orders.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[85]

For the sample system, we expect to store the following documents for up to seven
years. The following table shows projections for the number of documents by type
per week, per year, as well as the maximum number expected to be stored before
retention policies archive the older documents:

Document type Number per week Number per year Expected limit
Invoices 200 10,400 72,800
Sales orders 300 15,600 109,200
Purchase orders 150 7,800 54,600

As we see, the numbers start to grow quickly. If each document averaged 150K in
PDF format, the total storage within a single site collection would be difficult to
support. Most organizations have close to 15 enterprise document types that they
manage, making this planning process even more important.

In addition to the storage needs of the documents, there are also the general
organization boundaries of SharePoint to consider including the number of items in
a library, folder, or view. In extreme cases, a single document type may need to be
stored in multiple document libraries or perhaps within multiple site collections.

To counter these problems the Enterprise Content Management (ECM) solution will
be organized into the following containers, each a site collection:

Site name Site template Notes
Document Vault home Document Center Entry site into the ECM solution
Invoices Document Center Used to store invoices
Sales orders Document Center Used to store sales orders
Purchase orders Document Center Used to store purchase orders

Any additional types of documents would be stored in similarly configured
site collections.

Any site collections that are expected to be very large should be created in their
own content database. That is out of the scope of this book, but can be done with
the PowerShell commands New-SPContentDatabase followed by New-SPSite
referencing the previously created content database.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Enterprise Content Management Solution

[86]

Defining and managing content types
The first step in making the content easy to organize and discover is to define
content types and site columns that describe the documents. Classifying content
based on a content type makes it easier to locate them later using either list or
search based queries.

Content type synchronization
While content types and site columns have traditionally been bound to a single site
collection, the 2010 release of SharePoint Sever added a feature called the content
type hub, which is part of the managed metadata service. This allows you to define
all of your content types in a central location, and then to publish specified content
types out to other site collections. This is very important for solutions like the one we
are creating here as it is likely that content will be stored in multiple site collections.

If your content type hub has not already been defined, then it is important to know
that you can only define a single content type hub per managed metadata service
application. Proper planning should be done before specifying the site that will serve
as the content type hub for all sites and content types.

To set up a content type for publishing:

1.	 Navigate to the content type.
2.	 Click on the Manage publishing for this content type link.
3.	 With the Publish option selected, click on the OK button.

The publishing process is executed via timer jobs and may take a little while to
complete. It is possible to execute the jobs immediately, by navigating to the timer
job and clicking on the Run Now button.

Content type definition
The following content types will be defined for this sample solution. They will
be defined in the content type hub site so that they are available for all other
site collections.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[87]

The DocVault Core content type inherits from the Document content type and
includes the following site columns:

Field Description
Title Inherited from Document
Customer Single line of text
Account Single line of text

The invoices content type inherits from the DocVault Core content type and includes
the following site columns:

Field Description
Title Inherited from DocVault Core
Customer Inherited from DocValue Core
Account Inherited from DocVault Core
Amount Currency

The sales orders content type inherits from the DocVault Core content type and
includes the following site columns:

Field Description
Title Inherited from DocVault Core
Customer Inherited from DocValue Core
Account Inherited from DocVault Core
Amount Currency

The purchase orders content type inherits from the DocVault Core content type and
includes the following site columns:

Field Description
Title Inherited from DocVault Core
Customer Inherited from DocValue Core
Account Inherited from DocVault Core
Amount Currency

After the content types are configured and available on their respective sites, they
should be configured as the default content type for the respective libraries.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Enterprise Content Management Solution

[88]

Document routing
For this solution to be effective and easy for the end users, the process of adding and
storing content needs to be simplified. One of the usability hurdles that can make
ECM difficult in SharePoint is determining the proper location for your uploaded
content. There are also fundamental organization techniques that need to be
followed for the system to continue to perform well with large sets of content,
mainly limiting the number of documents per folder. These are details that the
end user should not have to think about, let alone understand. To handle this, we
need an easy way to route documents to the appropriate location. Fortunately,
SharePoint 2010 introduced the Content Organizer feature which supports
rules-based document organization, including the ability to move documents
across site collections. This is a great example of a task that used to require custom
code, but can now be configured with out of the box features.

To support this part of the solution we will need to activate the Content Organizer
feature on each of the site collections. This will create a document library called Drop
Off folder in each of the sites.

To activate the Content Organizer feature:

1.	 Navigate to the site.
2.	 Click on the Site Actions menu and select Site Settings.
3.	 Under Site Actions, click on the Manage site features link.
4.	 Click on the Activate button on the Content Organizer line if not

already activated.

We can now configure the destination content locations which can be used as part of
the Content Organizer feature.

To configure the Content Organizer destinations:

1.	 Navigate to the Central Administration site.
2.	 Under the General Application Settings heading, click on the Configure

Send to connections link.
3.	 Ensure that the New Connection option is selected.
4.	 Provide a Display name.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[89]

5.	 Provide a Send To URL, which would be the path to the site collection with
Content Organizer turned on with /_vti_bin/officialfile.asmx added
to the end. An example would be http://intranet/docvault/invoices/
_vti_bin/officialfile.asmx

If the Content Organizer is not activated, the URL will not
validate as a valid location.

6.	 Set the Send To Action to Move in order to prevent a copy from being left in
the source library.

7.	 Provide an explanation if desired.
8.	 Click on the Add Connection button.
9.	 Repeat for all destinations that need to be configured.
10.	 Click on the OK button.

With the Content Organizer feature activated on each of the sites and the
destinations configured, we can now set up the routing rules.

To configure the Content Organizer rules from the DocVault site collection:

1.	 Navigate to the site.
2.	 Click on the Site Actions menu and select Site Settings.
3.	 Click on the Content Organizer Settings link under the Site Administration

heading.
4.	 Click on the checkbox labeled Require users to use the organizer when

submitting new content to libraries with one or more organizer rules
pointing to them.

5.	 Click on the checkbox labeled Allow rules to specify another site as a
target location.

6.	 Click on the OK button.
7.	 Click on the Content Organizer Rules link under the Site

Administration heading.
8.	 Click on the Add new item option.
9.	 Provide a name for the rule; I recommend setting it to the content type.
10.	 Select the Content Type Group and Type.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Enterprise Content Management Solution

[90]

11.	 Under the Target Location section, select the option Another content
organizer in a different site.

12.	 Select the desired Send To location.
13.	 Click on the OK button.
14.	 Repeat as needed for each of the content types that need to be routed.

This process will now route any uploaded documents from the DocVault Home site
to the Drop Off library of appropriate content type specific site collection. We now
need to configure the routing rules to move it from the Drop Off library to its final
location in a folder inside a regular document library.

To configure the content type level site collection Content Organizer rules:

1.	 Navigate to the site.
2.	 Click on the Site Actions menu and select Site Settings.
3.	 Click on the Content Organizer Settings link under the Site

Administration heading.
4.	 Click on the checkbox labeled Require users to use the organizer when

submitting new content to libraries with one or more organizer rules
pointing to them.

5.	 Click on the checkbox labeled Create subfolders after a target location has
too many items.

6.	 Click on the OK button.
7.	 Click on the Content Organizer Rules link under the Site

Administration heading.
8.	 Click on the Add new item option.
9.	 Provide a name for the rule, I recommend setting it to the content type.
10.	 Select the Content Type Group and Type.
11.	 Browse to the desired document library.
12.	 Click on the OK button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[91]

With the rules configured on the DocVault Home site collection and the content type
specific site collections we now have a robust routing system that can file away the
documents in an efficient and effective way. An example of the resulting process
flow is shown as follows:

DocVault Home

Drop Off Library

Drop Off Library

Documents

Invoices

Documents

Purchase Orders

Documents

Sales Order

Drop Off LibraryDrop Off Library

Optimizing Search
Both the regular SharePoint Server Search service application and FAST Search
service application offer a rich platform to developers to create dynamic systems
that are able to accommodate extremely large datasets. It can be leveraged to
provide a way to aggregate content across multiple site collections as we will
see in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Enterprise Content Management Solution

[92]

The search system is complex, and indeed there are entire books written on the
subject, but there are three key pieces that need to be understood as they will be
leveraged in this solution:

•	 Content sources
•	 Search scopes
•	 Managed properties

Content sources
Content sources define the locations that will be crawled. This can include both
SharePoint resources as well as other systems like Exchange, network shares, or
even public websites. Most administrators configure a single content source for
SharePoint, and list out the root of each web application. This works fine, but by
creating multiple content sources, you can leverage them within the custom search
scopes covered in the next sub-section, to filter down the content much more
easily. Items from each of the content sources are combined into the singular, all-
encompassing index that services the service application.

To configure a custom content source for the DocVault solution:

1.	 Navigate to the Search Service Application.
2.	 Click on the Content Sources link on the Quick Launch menu under the

Crawling heading.
3.	 Click on the New Content Source menu item.
4.	 Provide a name such as DocVault.
5.	 As we want this custom content source to include content from each of the

DocVault sites, we will add in the path to each of the site collections on a
separate line.

6.	 Under the Crawl Settings section select the Only crawl the Site Collection
of each start address option.

7.	 You can then schedule an appropriate crawl schedule and save the
new scope.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[93]

The following screenshot shows an example of the DocVault content source:

Search scopes
Search scopes are used to filter down the all-encompassing index into subsets of
data based on rules. These rules can be set based on where the content is located,
the content source that was used to index it, or based on a property of the data.

The two search scopes that come with the system by default are:

•	 All Sites: This scope will search against all content, with no rules applied
•	 People: This search scope filters down to only show the SPSPeople objects,

separating out normal content from the user profiles

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Enterprise Content Management Solution

[94]

To support the DocVault system, we are going to configure a custom search scope to
be used on the various DocVault sites which will ensure that any results returned are
from the DocVault sites.

To create a custom search scope:

1.	 Navigate to the Search Service Application.
2.	 Click on the Search Scopes link on the Quick Launch menu under the

Queries and Results heading.
3.	 Provide a Title such as DocVault and a Description, then click on the

OK button.
4.	 From the View Scopes page, click on the Add Rules link next to the new

search scope.
5.	 To filter the dataset down to just the DocVault sites, we will select the

Content Source option under the Scope Rule Type section and select the
DocVault Content Source previously defined.

6.	 For the Behavior section, select the Require option as shown in the
following screenshot:

7.	 From the Scope Properties page, select the New Rule link.
8.	 For the Scope Rule Type section, select the Property Query option.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[95]

9.	 For the Property Query section, select the contentclass option which will
look for specific types of objects within the index.

10.	 For the property value, add STS_listitem_documentlibrary which will
filter the results down to just Document Library list items.

11.	 For the Behavior section, select the Require option as shown in the
following screenshot:

Managed properties
Managed properties provide a way to identify an item based on a specific property
or attribute. That is how a site column or list column is indexed and available
during the search processing, and can be used for either filtering the results or
for display purposes.

To support the DocVault system, we will configure managed properties to support
both the Customer and Account (CustomerAccount) fields included in the DocVault
Core content type.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Enterprise Content Management Solution

[96]

To identify a managed property:

1.	 Navigate to the Search Service Application.
2.	 Click the Metadata Properties link under the Queries and Results heading.
3.	 Provide a Property name value such as Customer and a Description.
4.	 Under the Mappings to crawled properties section, click on the Add

Mapping button and search for the Customer field identified in the
content type.

5.	 Select the ows_Customer(Text) and click on the OK button.

Repeat these steps for the Account field, but provide the name CustomerAccount
since there is already a managed property named Account that refers to a
person's username.

Creating a content aggregation Web Part
Providing an easy way to access the content is incredibly important, and gets more
challenging over time as the amount of content in the system grows.

Content rollup approaches
There are three main content rollup approaches that can be considered:

•	 Content Query Web Part
•	 Query list data directly
•	 Query using SharePoint Search

In the Document Center template, there are three Content Query Web Parts (CQWP)
that are pre-configured. The CQWP can work great in smaller sites, but has two real
limitations; it cannot work across site collections and it does not perform well with
very large sets of content. So even if this solution were altered to locate all of the sites
and libraries within a single site collection, it is very likely that the solution would
fail eventually. Performance is even more critical because those content rollups
are typically placed on the main landing pages that all users will see as they enter
the system.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[97]

A second option is to query all of the sources directly. Those sources could
be the specific libraries using the SPList.GetItems() method or the SPWeb.
GetSiteData() method which can be run for each site or site collection that holds
the content. Querying the sources directly would require that you know where the
content is and will require maintenance to ensure that any new content sources are
included in the rollup. In addition, because the source systems are being queried
directly, the same performance problems reviewed in the CQWP previously would
be experienced here as well.

The third, and preferred option, would be to use the SharePoint Search sub-system
to access the content. Getting this information should be substantially quicker
because the index has pre-processed the information, and the actual sources do not
have to be scanned or queried. With proper planning of the content containers and
search, as covered in the previous sections, it is possible to have the content rollups
automatically find any applicable new content sources that are added to the system
over time to the given search scope. The only downside to using Search is that the
content has to be in the index to be discovered and crawls should be scheduled on a
regular schedule.

DocVault Listings Web Part
We will now create a custom Web Part that can provide dynamic content rollups
across the different DocVault site collections. There are two views available in the
initial Web Part, but additional ones can be identified as needed by extending the
code and defined QueryMode property.

Creating the Web Part
The DocVault Listings Web Part will be added to the previously created
SPBlueprints.WebParts project created in Chapter 2, Building an Out of Office
Delegation Solution.

To add the additional Web Part:

1.	 Open the SPBlueprints.WebParts project in Visual Studio 2010.
2.	 Browse to the Installed Templates and select Visual C# |

SharePoint | 2010.
3.	 Right-click on the project file and select Add then New Item.
4.	 From the template selection screen select the Web Part option.
5.	 Provide the name DocVaultListings and click on the Add button.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Enterprise Content Management Solution

[98]

6.	 Edit the DocVaultListings.webpart file with the following definition:

<properties>
 <Property Name="Group" type="string">SPBlueprints</Property>
 <property name="Title" type="string">DocVault
 Listings</property>
 <property name="Description" type="string">SPBlueprints - The
 DocVault Rollup web part displays content rollups for
 DocVault documents.</property>
 <property name="SearchProxyName" type="string">Search Service
 Application</property>
 <property name="SearchScopeName"
 type="string">DocVault</property>
 <property name="DisplayLimit" type="int">15</property>
</properties>

Importing the needed Web Part and
search references
Start by editing the DocVaultListings.cs file and add in the following references:

using System.Collections;
using System.Data;
using System.Text;
using Microsoft.SharePoint.Administration;
using Microsoft.Office.Server.Search;
using Microsoft.Office.Server.Search.Query;
using Microsoft.Office.Server.Search.Administration;

Defining the Web Part properties
Next we will need to define the Web Part's properties starting with the Search Proxy
Name property. This property will be used to manage the connection to the Search
service application.

private string searchProxyName;

[WebBrowsable(true),
 Category("Custom Properties"),
 WebDisplayName("Search Proxy Name"),
 WebDescription("Please provide the name of your Search Service
 Application."),
 Personalizable(PersonalizationScope.Shared)]
public string SearchProxyName

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[99]

{
 get { return searchProxyName; }
 set { searchProxyName = value; }
}

Next we will define the Search Scope Name property which can be used to target the
desirable content for display.

private string searchScopeName;
[WebBrowsable(true),
 Category("Custom Properties"),
 WebDisplayName("Search Proxy Name"),
 WebDescription("Please provide the name of your Search Service
 Application."),
 Personalizable(PersonalizationScope.Shared)]
public string SearchProxyName
{
 get { return searchProxyName; }
 set { searchProxyName = value; }
}

Next we will define the Display Limit property used to determine how many records
to display.

private int displayLimit;
[WebBrowsable(true),
 Category("Custom Properties"),
 WebDisplayName("Result limit"),
 WebDescription("The number of items to display."),
 Personalizable(PersonalizationScope.Shared)]
public int DisplayLimit
{
 get { return displayLimit; }
 set { displayLimit = value; }
}

In order to provide multiple views, we will add an enum property that will display
as a drop-down list from within the Web Part properties page. This requires that we
define and set a value so that it can be used within the Web Part.

private queryMode _queryMode;
public enum queryMode
{
 ByUser,
 Recent
}

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Enterprise Content Management Solution

[100]

[WebBrowsable(true),
 Category("Custom Properties"),
 WebDisplayName("Query Mode"),
 WebDescription("Please select the query mode."),
 Personalizable(PersonalizationScope.Shared)]
public queryMode QueryMode
{
 get { return _queryMode; }
 set { _queryMode = value; }
}

public DocVaultListings()
{
 _queryMode = queryMode.ByUser;
}

Formatting the Web Part
The output will be built within a literal control defined within the class, and
instantiated within the CreateChildControls() method shown as follows:

protected Literal _output;
protected override void CreateChildControls()
{
 this._output = new Literal();
 this._output.ID = "output";
 this.Controls.Add(this._output);
}

With all of the setup work complete, we can now define the Display() method
that can be called from the OnLoad() method. The method starts by defining the
StringBuilder class, which we will use to build the output of the Web Part, and
then attempts to connect to the Search Proxy specified in the Web Part properties.

protected void Display()
{
StringBuilder messages = new StringBuilder();
try
{
SearchQueryAndSiteSettingsServiceProxy settingsProxy =
SPFarm.Local.ServiceProxies.GetValue<SearchQueryAndSiteSettingsSer
viceProxy>();
SearchServiceApplicationProxy searchProxy =
settingsProxy.ApplicationProxies.GetValue<SearchServiceApplication
Proxy>(this.searchProxyName);
FullTextSqlQuery mQuery = new FullTextSqlQuery(searchProxy);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[101]

Next we will do some preparation work that is common to each of the views.

try
{
ResultTableCollection resultsTableCollection;
DataTable results = new DataTable();
bool bAltRow = true;

The multiple views of the Web Part are handled by a central switch statement that
will check the _queryMode value and display the appropriate view.

switch (_queryMode){
 case queryMode.ByUser:

 break;
 case queryMode.Recent:

 break;
}

Within the ByUser view, we will construct and execute a query and then format the
returned results. The FullTextSQLQuery will grab the desired properties from the
specified search scope and filter them based on content generated by the current
user. The Display Limit Web Part property will be used to limit the number of results
returned. The included output will present the returned data similar to a normal list
view, though the complex view functions have not been included.

string user = SPContext.Current.Web.CurrentUser.Name;
mQuery.QueryText = "SELECT Title, Customer, CustomerAccount,
LastModifiedTime, DocID, SiteTitle, ContentTypeSearch, CreatedBy,
Filename, FileExtension, Path FROM SCOPE() WHERE (\"scope\" = '" +
searchScopeName + "') AND Author = '" + user + "' ORDER BY
LastModifiedTime Desc";

mQuery.ResultTypes = ResultType.RelevantResults;
mQuery.TrimDuplicates = false;
mQuery.RowLimit = DisplayLimit;
resultsTableCollection = mQuery.Execute();
if (resultsTableCollection.Count > 0)
{
 ResultTable relevantResults =
 resultsTableCollection[ResultType.RelevantResults];
 results.Load(relevantResults, LoadOption.OverwriteChanges);

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Enterprise Content Management Solution

[102]

 messages.AppendFormat(@"<table width='100%' border='0'
 cellpadding='1' cellspacing='0' class='ms-listviewtable'>
 <tr class='ms-viewheadertr ms-vhltr'>
 <td>Type</td><td>Site</td><td>Customer</td>
 <td>Account</td><td>DocumentID</td>
 <td>Name</td><td>Modified</td></tr>");

foreach (DataRow row in results.Rows)
{
 messages.AppendFormat(@"<tr ");
 if (bAltRow) {
 messages.AppendFormat(@"class='ms-alternatingstrong'"); }
 messages.AppendFormat(@"><td><img src='{7}'
 border='0'></td><td>{0}</td><td>{1}</td><td>{2}</td>
 <td>{3}</td><td>{4}</td><td>{5}</td></tr>",
 row[5].ToString(), row[1].ToString(), row[2].ToString(),
 row[4].ToString(), row[0].ToString(), row[3].ToString(),
 row[10].ToString(), getImageRef(row[9].ToString()));
 bAltRow = !bAltRow;
 }
 messages.AppendFormat(@"</table>");
}

Within the Recent view, we will construct and execute a similar query as the ByUser,
but this query will look for documents recently edited by any user. It will also search
against the specified search scope and limit the results to the Display Limit specified
in the Web Part property.

mQuery.QueryText = "SELECT Title, Customer, CustomerAccount,
LastModifiedTime, DocID, SiteTitle, ContentTypeSearch, CreatedBy,
Filename, FileExtension, Path FROM SCOPE() WHERE (\"scope\" = '" +
searchScopeName + "') AND LastModifiedTime >= DATEADD (DAY, -30,
GETGMTDATE()) ORDER BY LastModifiedTime Desc";

mQuery.ResultTypes = ResultType.RelevantResults;
mQuery.TrimDuplicates = false;
mQuery.RowLimit = DisplayLimit;
resultsTableCollection = mQuery.Execute();
if (resultsTableCollection.Count > 0)
{
 ResultTable relevantResults =
 resultsTableCollection[ResultType.RelevantResults];
 results.Load(relevantResults, LoadOption.OverwriteChanges);
 messages.AppendFormat(@"<table width='100%' border='0'
 cellpadding='1' cellspacing='0' class='ms-listviewtable'>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[103]

 <tr class='ms-viewheadertr msvhltr'>
 <td>Type</td><td>Site</td><td>Customer</td><td>Account</td>
 <td>Document ID</td><td>Name</td><td>Modified</td></tr>");

foreach (DataRow row in results.Rows)
{
 messages.AppendFormat(@"<tr ");
 if (bAltRow) {
 messages.AppendFormat(@"class='ms-alternatingstrong'"); }
 messages.AppendFormat(@"><td><img src='{7}'
 border='0'></td><td>{0}</td><td>{1}</td><td>{2}</td>
 <td>{3}</td><td>{4}</td><td>{5}</td></tr>",
 row[5].ToString(), row[1].ToString(), row[2].ToString(),
 row[4].ToString(), row[0].ToString(), row[3].ToString(),
 row[10].ToString(), getImageRef(row[9].ToString()));
 bAltRow = !bAltRow;
 }
 messages.AppendFormat(@"</table>");

To complete the Display() method, we will set the Text property of the literal
control named _output to the StringBuilder object message that we have been
building. There is some additional error handling and object disposal included as
part of the overall code flow.

 this.EnsureChildControls();
 this._output.Text = messages.ToString();
 }
 catch (Exception ex)
 {
 this.EnsureChildControls();
 this._output.Text = "Error: " + ex.Message.ToString();
 }
 finally
 {
 mQuery.Dispose();
 }
 }
 catch
 {
 this.EnsureChildControls();
 this._output.Text = "Error: Please specify a Search Service
 Application.";
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Enterprise Content Management Solution

[104]

The views also reference a simple method that will display an appropriate document
icon for the specified file extension.

private string getImageRef(string extension)
{
 string image = "";
 switch (extension){
 case "DOCX":
 image = "/_layouts/images/icdocx.gif";
 break;
 case "XLSX":
 image = "/_layouts/images/icdocx.gif";
 break;
 case "PDF":
 image = "/_layouts/images/ICLOG.GIF";
 break;
 default:
 image = "/_layouts/images/ICLOG.GIF";
 break;
 }
 return image;
}

Display DocVault Listings Web Part
As we have seen, the DocVault Listings Web Part supports both a DocVault
Recently Added view and a DocVault Edited by Me view. The rendered
screenshots are shown as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[105]

Enhancing the Document ID redirect
The Document ID service was added to the SharePoint Server 2010 to help with the
retrieval of documents in large or complex systems. It adds a field to the Document
content type that provides a unique identity to that document within the site
collection. This is very helpful in cases where documents move around between
libraries or sites within the site collection, perhaps via a workflow, or in cases like
the solution here where there are perhaps tens of thousands of documents to be
sifted through.

In addition to adding the additional field and maintaining the value assignment
process, there is also an additional Web Part provided that supports a form that
allows the user to provide the unique Document ID. It also sends it to a redirect
service that will load the document no matter where it is stored within that
site collection.

The feature is nearly flawless when used within a single site collection, but in most
organizations, enterprise content cannot (and should not) be stored within a single
site collection. In order to get the feature to work with multiple site collections, we
need to direct the request to the appropriate site collection.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Enterprise Content Management Solution

[106]

Enhanced DocID redirect approach
The enhanced DocID redirect Web Part will provide a simple mechanism to direct
the user's lookup to the redirect page in the right site collection. The standard Doc ID
redirection page is available here: /_layouts/DocIdRedir.aspx?ID=[Document ID].

A simple, but effective, way of maintaining the DocID destinations would be to use
a simple linked list on the main Document Vault home site. That list can be created
with a List Definition and List Instance in Visual Studio, or configured manually in
the browser. In addition to the standard columns, an additional column was added
named isActive to allow destinations to be deactivated if needed.

The Web Part will use the Client OM to read the DocumentIDLocations list and load
all active locations into a drop-down box. The drop-down in combination with the
Document ID textbox will form the link needed for the Document ID's redirect page.

Creating an enhanced DocID redirect script
As this will be done using the Client OM, we will create an HTML file to contain our
script. Within that file we will start by adding a container for our code. The display
for this Web Part is very simple, it includes a div container named DocIDRedirect, a
span container named DocLocations that will contain the rendered drop-down with
locations, a standard input box named DocumentID, and then an image link used for
a Submit button.

<div id="DocIDRedirect" class="s4-search">

 <input type="text" id="DocumentID" value="" maxlength="20"
 title="DocumentID" class="ms-sbplain" size="120"/>
 <div style="float:right">

 <img border="0" class="srch-gosearchimg" alt="Go"
 src="/_layouts/images/DocIdLookup.png">
 </div>

We will now create the script block to hold our ECMAScript and add in the
ExecuteOrDelayUntilScriptLoaded call which will wait for the page to fully load
before calling the loadDocumentIDLocations method.

 <script type="text/ecmascript" language="ecmascript">
 ExecuteOrDelayUntilScriptLoaded(loadDocumentIDLocations,
 "sp.js");

 </script>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[107]

Within the script block we will now add in the referenced
loadDocumentIDLocations() method. This method will connect to the
list and execute a query to load any active Document ID locations.

function loadDocumentIDLocations() {
 var listTitle = "DocumentIDLocations";
 var context = SP.ClientContext.get_current();
 var list = context.get_web().get_lists().getByTitle(listTitle);
 var camlQuery = new SP.CamlQuery();
 camlQuery.set_viewXml("<ViewFields><FielfRef Name='isActive'
 /><FieldRef Name='URL' /></ViewFields><Where>
 <Eq><FieldRef Name='isActive'/><ValueType='Boolean'>1</Value>
 </Eq></Where><OrderBy>
 <FieldRef Name='URLwMenu' Ascending='True' /></OrderBy>");

 this.listItems = list.getItems(camlQuery);
 context.load(listItems);
 context.executeQueryAsync(ReadListItemSucceeded,
 ReadListItemFailed);
}

If the query was successful, the ReadListItemSuceeded() method will be called.
From here we can now create the docSelect drop-down and populate it with the
returned options. When the control is fully populated, the resulting HTML will be
set within the DocLocations container previously created.

function ReadListItemSucceeded(sender, args) {
 comboContents = "<select id='docSelect' style='width:200px'>";
 var items = listItems.getEnumerator();

 while (items.moveNext()) {
 var listItem = items.get_current();
 listItem.get_item('URL').get_description());
 comboContents += "<option value='" +
 listItem.get_item('URL').get_url() + "'>" +
 listItem.get_item('URL').get_description() + "</option>";
 }
 comboContents += "</select>";
 document.getElementById("DocLocations").innerHTML =
 comboContents;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Enterprise Content Management Solution

[108]

If the query was not successful, the ReadListItemFailed() method will be called
and an alert with the exception and stack trace will be displayed.

function ReadListItemFailed(sender, args) {
 alert('Error: ' + args.get_message() + '\n' +
 args.get_stackTrace());
}

The final method is the docRedirect() method that is called when a user clicks on
the image to submit the form. This is a simple call to redirect the user to the selected
Document ID location and supplies the DocumentID value specified by the user.

function docRedirect() {
 location.href= document.getElementById("docSelect").value +
 document.getElementById("DocumentID").value;
}

When the file is complete, save it and upload it to a document library on the site. For
the purpose of this example, I have uploaded the script to a library named Scripts.

Configuring the DocID redirect Web Part
With the script uploaded to the site, it is now available to be used within the Web
Part on the page.

To add the Web Part to the Document Vault home page:

1.	 Browse to the page you want to add the Web Part to.
2.	 Click on the Site Actions menu and select Edit Page.
3.	 Within the top-right zone, click on the Add a Web Part option.
4.	 Within the Media and Content category, select the Content Editor Web Part.
5.	 Click on the Add button.
6.	 Provide a Title such as Find by Document ID.
7.	 For the Content Link, provide a link to the script that was uploaded.
8.	 After all of the desired properties are set, click on the OK button to apply

the changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[109]

Displaying the DocID redirect
The rendered DocID redirect Web Part is shown in the following screenshot:

Summary
This section leveraged both the Server and Client OMs, along with SharePoint's ECM
features, to create a robust business solution.

The customizations are grouped as follows:

•	 Browser based configuration:
°° Site collection: Provision site collections to hold our solution
°° List instance: Provision lists to hold our content
°° Content Editor Web Part (CEWP): Use the Content Query Web Part

to display our content
°° Content type: Define content types to describe our content
°° Site column: Define site columns for use with the related

content types
°° Content type hub: Use the content type hub to synchronize content

types to subscribing site collections
°° Content Organizer: Use the Content Organizer and configured rules

to move content from the Drop Off library to libraries in one or more
site collections

•	 Visual Studio 2010:
°° Custom Web Part: Use the Search API to load content for display in

a custom Web Part that can aggregate relevant content from within
the system.

These solutions provide examples of how to leverage SharePoint 2010's ECM
features to provide a robust solution that scales for extremely large scenarios, while
still providing an intuitive user experience.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Engaging
Community Site

Organizations today are looking for ways to increase collaboration and to provide
more self-help resources through the use of tools like SharePoint. Thanks to the
built-in Team Site template, it can be fairly easy to build a department-level
collaboration site, but there is currently no template that is optimized for use as
a true community collaboration site where the content is less structured, more
conversational, and where the group will evolve over time, unlike your traditional
department site.

This chapter will attempt to address the challenges of using a Team Site for
community collaboration so that you can build a community site that can keep
people engaged and incorporate the collaboration levels that everyone is looking for.

Community sites can be used to drive collaboration and self-help around a specific
topic or system. Examples could include business topics like Lean, Six Sigma, or
other process improvement methodologies, or for system support for various ERP,
HRIS, or IT systems. The management, education, and governance of SharePoint
itself make for a good community site focus, and will be the focus of this chapter.
Using this solution as a template though, there could be numerous community sites
created for an organization.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Engaging Community Site

[112]

The community sites can provide a much better collaboration platform, and also
can provide user training and a help platform as well. The key difference for a
community site is moving away from the default content of a Team Site which
focuses primarily on shared documents and a team calendar and instead focuses
on more dynamic and social features focused on the community content. When
done properly, people throughout the organization will be willing participants
and can help provide that support which better utilizes the company's resources
and potentially provide more relevant information. Community sites should be
the future of collaboration and perhaps for IT system support.

Just like the Effective Intranet covered in Chapter 1, Building an Effective Intranet, it is
essential to start this process by defining what the goals for the site are, followed by
defining the information architecture, content, and feature strategy.

Most community sites have varying levels of formality to the content. The formality
of the content may be decided upon based on who can contribute content, whether
it needs to be reviewed and approved, and whether it is retained in the system long
term. On the informal side it could be completely informal collaboration with a very
wide range of collaborators using tools like a note board, a threaded discussion
list, or perhaps a list of helpful links. This is true user-generated content that can
be added quickly and easily, though it may not be as complete or 'authoritative'
as more formal content. Moving more towards the formal side, you may also see
edited and approved Frequently Asked Question type lists or system and process
documentation. As the community fills with information, it becomes more important
to start highlighting popular or useful content.

This chapter will provide an overview of configuration steps needed to create a base
Community site template, along with example customizations that can be created
to provide dynamic and relevant content, which is a key ingredient to building an
engaging Community Site solution. The covered solutions include:

•	 Enterprise Wikis
•	 Content Rollups
•	 Community Leaders Group

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[113]

Creating the Community Site
To get started we will need to provision a new site collection to hold our
solution, activate the supporting features, and create a landing page to
support our community.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Engaging Community Site

[114]

In this case I have selected a Team Site template because it is a good generic building
block for sites like this, and it can also be used to create Web Templates that can be
used to provision additional sites in the future.

See Choosing a Site Template section in Chapter 1, Building an Effective Intranet for
additional background information on the available site templates.

Activating supporting features
After choosing a site template and creating the site collection, the next step is to
activate the initial features needed to support the Community site. The robust feature
deployment and activation system supported in SharePoint makes it very easy to
fine tune the functionality available within a site, since individual features can be
activated as they are required. In many cases these features may already be activated
by default, depending on your settings for the web application and overall farm.

Following is a list of the features that are required to be activated on the site being
configured for this solution:

•	 Site Collection features:
°° Document ID Service: It assigns IDs to documents in the Site

Collection, which can be used to retrieve items independent of their
current location.

°° Search Server Web Parts: This feature uploads all web parts required
for Search Center.

°° SharePoint Server Standard Site Collection features: It provides
features such as user profiles and search, included in the SharePoint
Server Standard License.

°° SharePoint Server Enterprise Site Collection features: It provides
features such as InfoPath Forms Services, Visio Services, Access
Services, and Excel Services Application, included in the SharePoint
Server Enterprise License.

°° SharePoint Server Publishing Infrastructure: It provides centralized
libraries, content types, master pages, and page layouts and enables
page scheduling and other publishing functionality for a site
collection.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[115]

•	 Site features:

°° SharePoint Server Standard Site Collection features: It provides
features such as user profiles and search, included in the SharePoint
Server Standard License.

°° SharePoint Server Enterprise Site Collection features: It provides
features such as InfoPath Forms Services, Visio Services, Access
Services, and Excel Services Application, included in the SharePoint
Server Enterprise License.

°° SharePoint Server Publishing: It is used to create a Web page library
as well as supporting libraries to create and publish pages based on
page layouts.

For anyone that is not familiar with the publishing features, it is important to
understand that the Document Libraries setup for publishing, including the
resources provisioned when the feature is activated such as the Style Library, will
require that all changes be fully published for non-administrators to be able to
view the most recent changes. If changes are made to pages, scripts, images, or CSS
stylesheets included in any of these libraries and are not fully published, you will
see unexpected behaviors such as 404 errors, out of date content, or miscellaneous
unexpected SharePoint page level errors.

Creating and configuring the community
landing page
With the Publishing features enabled at both the Site Collection and web level, we
can now create and configure our landing page.

From anywhere on the community site:

1.	 Click Site Actions menu, and select the New Page item.
2.	 Provide a title for the page.
3.	 Click the Create button.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Engaging Community Site

[116]

When the page is created it will open in edit mode and be ready for
configuration. The next task is to set the appropriate page layout. In the
Page tab of the ribbon is an action for the Page Layout. Within the selection
panel, a list of options will be displayed by category with an included
thumbnail. The Welcome Page category includes some great landing pages,
and for this one we will select the Blank Web Part page option as shown in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[117]

4.	 Next, we will want to set the new page as the site's Homepage. In the Page
tab of the ribbon is the Make Homepage action, as shown in following
screenshot. Click this action to set the new page as the site's homepage.

Site Permissions
Permissions management is one of the things that is typically different when
working with community sites. Where a traditional department site is tied to
a specific department and likely has an Active Directory security group, the
community site is meant to be cross-functional including people from throughout
the organization. Making that collaboration easy, especially for new members, often
means taking a completely different approach.

The approach that I typically take is to identify the top most Active Directory
groups that apply and then grant them Contributor permission level. That could be
something like <my domain>\domain users which is a standard security group that
will include all domain users. Letting everyone contribute by default will make the
site easier to maintain and also better support collaboration and innovation.

Community members
One way to profile community advocates and members from throughout the
organization is to find a way to list out the community's members. A great way to do
this is to define a user profile property that can track the communities that the person
is associated with. The advantage of this is that it will link the user to the community
within their user profile as well as list them as a member on the community site. This
one field can be used to support all of the communities throughout the organization
so it should only be created once. The great thing about this property is that it
can be used to help find people within the user profiles, but also it can be used to
display the members within the community site itself. In this section we will define
the custom user profile property and then create a custom page that lists people
associated with the community.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Engaging Community Site

[118]

Creating Communities User Profile Property
The User Profiles Properties are stored and maintained within the User Profile
Service Application. This information is available from any site collection within
the web applications associated with the service application.

The properties we will create should be available for everyone to see, but in other
cases there may be varying levels of visibility and overall behavior. Creating a new
property requires thought and planning to ensure that the desired privacy, security,
and behaviors are available.

To create the User Profile properties:

1.	 From Central Administration, browse to the User Profile
Service Application.

2.	 On the Manage User Properties screen, click on the New Property menu
item as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[119]

3.	 Set the Name field to Communities.
4.	 Set the Display Name field to Communities.
5.	 Set the Type field to String (Multi Value).
6.	 Set the Length field to 250.
7.	 Set the Multivalue Separator field to Semicolon.
8.	 Ensure the Default User Profile Subtype value is set to Yes.
9.	 Set the Description field to Community Site Membership.
10.	 Set the Policy Setting field to Optional.
11.	 Set the Default Privacy Setting to Everyone.
12.	 Set the Edit Settings field to Allow users to edit values for this property.
13.	 Set the Show in profile field to Yes.
14.	 Set the Show in Edit Details page to Yes.

Mapping Communities as a Managed Property
To make it easier to retrieve people in specified groups we will identify the
Communities property as a Managed Property.

To create the mapping:

1.	 From Central Administration, browse to the Search Service Application.
2.	 Click on the Metadata Properties link under the Queries and

Results heading.
3.	 Provide a Property name value such as Communities and a description.
4.	 Under the Mappings to crawled properties section, click on the Add

Mapping button and search for the Communities field identified in the
content type.

5.	 Select the People:Communities(Text) and click on the OK button.

Configuring the Members Page
The Members page will display a listing of all of the group members using
SharePoint's People Search and the People Core Results Web Part to execute
a set query that looks at the Communities field previously defined.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Engaging Community Site

[120]

Creating the Members Page
To create the members page:

1.	 Click on the Site Actions menu, and select the New Page item.
2.	 Provide a title for the page.
3.	 Click on the Create button.

Adding the People Search Core Results Web Part
To add the People Search Core Results Web Part to the page:

1.	 Click on the Insert tab of the Ribbon.
2.	 Select the Web Parts action.
3.	 Select the Search category.
4.	 Select the People Search Core Results Web Part.

Configuring Members Search Query
To configure the pre-set members search query:

1.	 Edit the People Core Results Web Part properties.
2.	 Under the Display Properties group, change the Default Results

Sorting to Name.
3.	 Set the Results Per Page value to 20.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[121]

4.	 If custom properties need to be displayed, they need to be added to the
Fetched Properties field.

5.	 Under the Results Query Options group, change the Cross-Web
Part query ID.

6.	 Change the Fixed Keyword Query to Communities:"SharePoint".

7.	 Under the Appearance group, change the Chrome Type field to None.
8.	 Click on the OK button.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Engaging Community Site

[122]

The Fixed Keyword Query value added in step 6 will do a managed property search
for the Communities field and look for matches with the value "SharePoint" which is
the name of this community.

The final rendered view is displayed as shown in the following screenshot:

Configuring social web parts
The social features included with SharePoint Server 2010 are intended to support
collaboration and increase user engagement. Both the Note Board and Tag Cloud
web parts are included to help support those social interactions.

Note Board Web Part
The Note Board Web Part allows users to pose a simple note such as a question they
need help with, or some other note that may benefit the community. Any notes saved
will be tied to the URL of the page it is on, so it is important to understand that,
unlike a discussion board, there should be some thought put into which pages the
note board is prominently placed on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[123]

To add a Note Board Web Part to the front page of the site:

1.	 Browse to the homepage of the community site.
2.	 Click on the Site Actions menu and select the Edit Page option.
3.	 Select the Insert ribbon tab.
4.	 Select the Social Collaboration category.
5.	 Select the Note Board Web Part as displayed in the following screenshot:

6.	 For the Add Web Part to option, select Header. Click on the Add button.

An example of the Note Board is displayed in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Engaging Community Site

[124]

Tagging and Tag Clouds
The Tagging and Tag Clouds features introduced with SharePoint Server 2010 are
powered by the Managed Metadata Services and allow users to apply tags to any
content including pages, documents, or list items. Users can tag the item using any
term they choose, but they are also given tag recommendations based on what other
people tagged the document with. This informal meta-data process provides a lot
of flexibility, better supporting informal or dynamic content, but it also provides a
much more personalized experience which users tend to appreciate.

All tags that a user sets will be available to them in their profile page and MySites,
and users also have the ability to subscribe to tags so that they receive updates when
that tag is used. This is great for cases where maybe they are a Subject Matter Expert
(SME) on a topic or perhaps a Product Manager responsible for a given product.

The Tag Cloud web part that ships with SharePoint Server 2010 offers three views to
filter the available tags:

•	 By current user
•	 By all users
•	 Under the current URL by all users

The appropriate selection will depend on the context of how you want to use the
information. In the case of our community site, we want to make it easy for people to
find information so we want people to be able to leverage the tags of other users on
this particular site.

To add the Tag Cloud Web Part to the community site:

1.	 Browse to the homepage of the community site.
2.	 Click on the Site Actions menu and select the Edit Page option.
3.	 Select the Insert ribbon tab.
4.	 Select the Social Collaboration category.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[125]

5.	 Select the Tag Cloud Web Part as displayed in the following screenshot:

6.	 For the Add Web Part to option, select Right.
7.	 Click on the Add button.

By default the Web Part will display the current user's tags. To change that simply
edit the Web Part settings and change the Show Tags option to Under the current
URL for all users as displayed in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Engaging Community Site

[126]

Configuring Rollup Web Parts
It is important that we continue to try and find effective ways to surface content so
that it is as easy as possible for users to find and use the content. To do that we are
going to leverage two additional Web Parts available in SharePoint Server that can
assist here. The Web Parts are:

•	 Web Analytics Web Part
•	 Content Query Web Part

Web Analytics Web Part – Frequently
Accessed Content
The Web Analytics Web Part leverages the Usage and Web Analytics system to
provide content reporting to your authors and end users. In the past it has been
difficult to provide an accurate list of Frequently Accessed Content, but this Web
Part provides that much needed information.

It is important to understand that this is pre-processed information that is generated
based on the schedule configured for the Web Analytics reporting. This allows it to
execute very fast, but with default settings the content may be up to 24 hours out of
date, so new content may not be displayed.

To configure the Web Analytics Web Part:

1.	 Browse to the homepage of the community site.
2.	 Click on the Site Actions menu and select the Edit Page option.
3.	 Select the Insert ribbon tab.
4.	 Select the Content Rollup category.
5.	 Select the Web Analytics Web Part as displayed in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[127]

6.	 For the Add Web Part to option, select Top Right.
7.	 Click on the Add button.
8.	 Edit the Web Part settings.
9.	 Change the Information to Display option to Most Viewed Content.
10.	 Ensure that the Site Scope option is set to This Site and Subsites.
11.	 Ensure that the Period option is set to Proceeding 30 Days.
12.	 Select the Show Frequency option.
13.	 Select the Show Popularity Rank option.
14.	 Select the Show Popularity Rank Trend option.
15.	 Under the Appearance section, change the Title field to Popular Content.

An example of the configured Web Part is displayed in the following screenshot:

Content Query Web Part – New Content
The Content Query Web Part allows you to do simple content rollups within a site
collection. We are going to configure one that can be used to highlight new pages
that are added to the site.

To configure the Content Query Web Part:

1.	 Browse to the homepage of the community site.
2.	 Click on the Site Actions menu and select the Edit Page option.
3.	 Select the Insert ribbon tab.
4.	 Select the Content Rollup category.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Engaging Community Site

[128]

5.	 Select the Content Query as displayed in the following screenshot:

6.	 For the Add Web Part to option, select Right.
7.	 Click the Add button.
8.	 Edit the Web Part settings.
9.	 Under the Query section, List Type grouping, set the Show items from this

list type field to the Pages Library option.
10.	 Under the Presentation section, Grouping and Sorting grouping, set the

Sort items by field to the Created option.
11.	 Ensure that the Show items in descending order option is selected.
12.	 Under the Styles grouping, set the Item Style field to Title, description,

and document icon.
13.	 Under the Appearance section, set the Title field to Recently Added Content.
14.	 Click on the OK button.

An example of the configured Web Part is displayed in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[129]

Content Query Web Part – Highly
Rated Content
Next we will add and configure another Content Query Web Part that will highlight
the highest rated pages that are added to the site.

To configure the Content Query Web Part:

1.	 Browse to the homepage of the community site.
2.	 Click the Site Actions menu and select the Edit Page option.
3.	 Select the Insert ribbon tab.
4.	 Select the Content Rollup category.
5.	 Select the Content Query as displayed in the following screenshot:

6.	 For the Add Web Part to option, select Top Left.
7.	 Click on the Add button.
8.	 Edit the Web Part settings.
9.	 Under the Query section, List Type grouping, set the Show items from this

list type field to the Pages Library option.
10.	 Under the Presentation section, Grouping and Sorting grouping, set the Sort

items by field to the Rating (0-5) option.
11.	 Ensure that the Show items in descending order option is selected.
12.	 Under the Styles grouping, set the Item Style field to Title, description, and

document icon.
13.	 Under the Fields to Display grouping, Description field, add Rating (0-5); to

the field listing to show the current rating for the content.
14.	 Under the Appearance section, set the Title field to Recently Added Content.
15.	 Click on the OK button.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Engaging Community Site

[130]

An example of the configured Web Part is displayed in the following screenshot:

Creating an Enterprise Wiki
Using Wikis is a great way to collaborate on content within SharePoint. While most
people still think in terms of documents and pages, there are a number of advantages
to using Wikis over individual documents or pages.

These advantages include:

•	 They can support a more collaborative process and tap into the collective
knowledge of a wider range of content contributors

•	 They have the ability to easily link from one document to another through
page markup

•	 They have the ability to easily see what changes were made and by who
without the need to use Track Changes

The Enterprise Wikis feature, introduced with SharePoint Server 2010, provides
some much needed advances over the standard Wiki features including the ability
to integrate other Web Parts or SharePoint content within the Wiki content. While
the page editing and markup are the exact same, there are page layout changes that
provide much better support organizing large sets of content. The features include
Page Ratings, Wiki Categories, making it easier to tag and relate pages, and also
Metadata Navigation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[131]

Additional information on SharePoint 2010's Enterprise Wikis is available here:
http://technet.microsoft.com/en-us/library/ee721051.aspx

This section will detail the recommended steps for:

•	 Configuring the Enterprise Wiki on our community site
•	 Explaining the use of categories
•	 Activating the Metadata Navigation feature
•	 Configuring a navigation scheme that will make it easier to find the content

Configuring the Enterprise Wiki sub-site
Next we will create a sub-site to hold our Enterprise Wiki content.

When configuring a Wiki, it is important to consider where to place that content.
It is possible to simply create a Wiki library on a given site, but when considering
site topology, in many cases it is more beneficial to create the Wiki as a sub-site in
order to segment and manage the content separately if needed, but also in order to
optimize content rollups and search.

To create an Enterprise Wiki as a sub-site:

1.	 From the community site, click on the Site Actions menu.
2.	 Select the New Site option.
3.	 Select the Enterprise Wiki option.
4.	 In the right margin, click on the More Options button.
5.	 Provide a value for the Title field.
6.	 Provide a value for the Description field.
7.	 Provide a value for the URL field.
8.	 Ensure the Use the same permissions as parent site? option is selected

which will ensure that users have the same permissions on the sub-site.
9.	 Under Navigation Inheritance, select the Yes option which will ensure that

the navigation is consistent between the two sites.
10.	 Click on the Create button to create the site.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Engaging Community Site

[132]

An example of the form for creating an Enterprise Wiki is available in the
following screenshot:

Use of Categories
The categories make it easy to organize and locate your content. Where most site fields
are editable only within the library, the Enterprise Wiki has the category field available
directly on the Wiki page. When editing a page the taxonomy field is enabled and new
categories can be added or selected. An example is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[133]

When browsing the pages, any identified categories will be displayed. Clicking one
of the category values will lead to a special Category filtering page that will display
all wiki pages in the library that match that category value.

It is important to keep in mind that the identified categories are stored in the
Term Store and will not be surfaced through the Tag Cloud Web Part previously
configured. If users want pages to show up in the Tag Cloud, the pages also have
to be tagged using the tagging feature.

Metadata Navigation
As the number of pages and the amount of content grows, finding that content in a
large Wiki can get very challenging. One of the great features added with SharePoint
Server 2010 is the Metadata Navigation feature. This feature can be used to browse
items based on the category metadata. This feature, however, is not enabled by
default, so unless it is included as part of an automated site provisioning process,
it will need to be enabled manually.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Engaging Community Site

[134]

Activating the Metadata Navigation feature
To activate the Metadata Navigation feature:

1.	 From the Enterprise Wiki site, click on Site Actions.
2.	 Select the Site Settings option.
3.	 Under the Site Actions group, click on the Manage Site Features link.
4.	 Browse to the Metadata Navigation and Filtering feature and click on the

Activate button.

Configuring Metadata Navigation for Enterprise
Wiki Library
With the feature now activated on the site, we can configure its use within the
Enterprise Wiki library.

To configure Metadata Navigation on the library:

1.	 From one of the Wiki pages, select the Page ribbon tab and select the View
All Pages action as shown in the following screenshot:

2.	 Select the Library Settings action as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[135]

3.	 Under the General Settings category, click on the Metadata navigation
settings link as shown in the following screenshot:

4.	 Select the Folders and Wiki Categories nodes.
5.	 Click on the Add Button.
6.	 To complete the Configure Key Filters section, select the desired fields and

click on the Add button.
7.	 Click on the OK button when finished to save your changes.

The Manage Navigation Settings screen is displayed in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Engaging Community Site

[136]

Using the feature
With Metadata Navigation now configured, whenever you are on a view page within
the library you will see a Category navigation control added to the left side below
the standard QuickLaunch navigation. Selecting a tag will filter down the related
Wiki Pages associated with that tag, providing a quick and effective way of finding
content. As you will see in the Site Navigation section that follows, it is possible to
add navigation nodes to the top most common or important categories.

You will also noticed that the Key Filters control is also displayed on the left-hand side
allowing for advanced filtering of any fields that were configured. This is especially
helpful when looking for content by a specific author, or perhaps based on dates.

An example of the Metadata Navigation is displayed in the following screenshot:

Wiki site navigation
In addition to the Metadata Navigation covered in the previous section, it is also
important to consider the navigation employed with the standard Quicklaunch
navigation when browsing the wiki pages. This will give you the ability to
highlight very important and 'authoritative' pages, in addition to browsing
and filtering by category.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[137]

The normal navigation settings page available by navigating through Site Actions,
Navigation supports having Wiki pages added to the navigation automatically,
which may work fine with small Wikis, but does not work well if you have dozens
or hundreds of Wiki pages. For most Wikis established for free form collaboration,
generally uncheck the Show Pages option for the Current Navigation section. This
means that any navigation would have to be configured manually. This should be
reserved for high level category pages or other very important pages. It does take
some on-going maintenance but will result in a much more organized system. The
general navigation should be determined by how the content is organized.

Since the purpose of this Wiki is for content relating to SharePoint, a set of categories
have been identified:

•	 Main
•	 End User
•	 Site Owner
•	 Developer

For each of these categories, a Section Heading will be created that links to the
main view of the library. This will allow users to click into the library to filter down
available pages based on the category or topic. In this example, the heading for Main
shows the full library, while the others start by selecting the identified tag.

Main section pages can be linked to directly as well as any other important pages. As
new pages are added, the most important ones should be added to the navigation
settings, but not too many, as it will eventually get cluttered.

An example of the Navigation Settings is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building an Engaging Community Site

[138]

Summary
This section heavily leverages the out of the box Web Parts and features to assemble
a rich and interactive community site.

The customizations are grouped as follows:

•	 Browser-Based Configuration
°° Site Collection: To provision a site collection to hold our solution
°° Content Query Web Part (CQWP): To configure the content query

Web Part for displaying our content
°° Web Analytics Web Part: To configure the web analytics Web Part

for displaying relevant content
°° People Core Results Web Part: To configure the people core results

Web Part to display community membership
°° Enterprise Wikis: To configure the enterprise wikis with enhanced

navigation functionality
°° Note Board Web Part: To configure the note board Web Part for use

in supporting community conversations and collaboration
°° Tag Cloud Web Part: To configure the tag cloud Web Part in order to

help surface relevant content by keyword.

There are a number of additional types of content that may be beneficial to a
community that were not covered in detail within this chapter. Items configured,
but not covered, include threaded discussions, community events, and community
links. The key is to find content that is relevant and make it as easy as possible for
participants to contribute.

An effective community site can greatly enhance collaboration, innovation, and
provide a foundation for user self-service by giving the users a central place to share
content and discuss ideas. It provides a distinct advantage over the use of e-mail
because the information is stored in a central repository, versus individual e-mail
boxes, which makes it discoverable by anyone with access to the site. Providing an
engaging site requires a mix of good content, features, and the ability to personalize
it to the community's needs.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Request and
Provisioning System

In many environments, managing site requests and going through the site collection
provisioning process is one of the most frequent ongoing tasks. In many cases this
is a manual task, and while it is pretty easy to do, it can be tedious and repetitive.
There should be some general standards established for how sites should be
created, which templates are available, what quotas to apply, and where to put the
site collection. In addition, many organizations also have governance policies that
require the site request be logged or approved before it can be provisioned in order
to meet compliance goals.

Providing an automated site request and provisioning system will:

•	 Ensure that requests are properly logged
•	 Ensure that necessary approvals are obtained
•	 Reduce administrator work by automating the provisioning and

configuration of the new site collections

Overview
This chapter will take us through creating a series of solutions that will provide
a request and approval system, as well as an automated provisioning and
configuration solution.

The following solutions will be created:

•	 Site request list
•	 Site request form
•	 Site provisioning timer job
•	 Site request custom action

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Request and Provisioning System

[140]

Creating the list
We will create a list called SiteRequestLog that can be used to log all of the site
requests with the configuration data along with the approval status.

At this point in the book we have created a number of list definitions and instances
in Visual Studio. I believe this task should be well understood by this point, so I
will not go into the step-by-step process for this solution. If you skipped over the
other sections and are not sure how to create a list definition and instance, see the
Notification List Definition and List Instance feature section in Chapter 1, Building an
Effective Intranet, or the Master Delegation Tracking List section in Chapter 2, Building
an Out of Office Delegation Solution.

The SiteRequestLog list needed to support this solution requires the
following fields:

Column Type
Title Single line of text
Description Single line of text
PriOwner Person
SecOwner Person
Path Single line of text
URLName Single line of text
Template Choice
Quota Choice
ApprovedBy Person
ApprovedDate Date and time
Status Choice
CreateDate Date and time
CreationNotes Single line of text
Feature n Yes/No

The Feature n field at the end of the list would be for the specific features you would
like to include in the process. For my list and provisioning process, I have included
three site collection and three web features that are commonly used. The referenced
features listed later can be changed or substituted to meet your needs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[141]

Creating the project
The Create Site timer job will be added to a new project called SPBlueprints.
SiteCreation.

To create the initial project:

1.	 Open Visual Studio 2010.
2.	 Select File, then New Project.
3.	 Browse to the Installed Templates and select Visual C# | SharePoint |

2010, and then Empty SharePoint Project.
4.	 Enter the project details such as Name, Location, and Solution name.
5.	 Within the SharePoint Customization Wizard, provide a path to your

SharePoint site and then be sure to select the option to Deploy as a
farm solution.

6.	 Right-click on the project file and select Add then New Item.
7.	 From the template selection screen select the Empty Element option.
8.	 Provide the name CreateSiteTimerJob and click on the Add button.
9.	 Rename the Feature1 item SiteCreationProcess.
10.	 Select the SiteCreationProcess.feature item and provide a Title

and Description.
11.	 Change the Scope to WebApplication so that the feature is only activated

once per web application as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Request and Provisioning System

[142]

Creating the SiteRequest form
The SiteRequest form will be used to log the site requests with the related
configuration settings and approval status. As we need this form to be available
globally we will use an application page, which is deployed via our feature and
available throughout the farm. This will also enable us to show or hide fields as
needed and include advanced business logic, which provides significantly more
flexibility than standard SharePoint list forms.

To get started we will need to map a folder within the Layouts directory.

To map the folder and create the files:

1.	 Right-click on the project and select the Add node then select the SharePoint
"Layouts" Mapped Folder option.

2.	 Rename the newly created folder to SPBlueprintsSiteCreation without
the period.

3.	 Right-click on the folder and select the AddNewItem option.
4.	 From the SharePoint 2010 category, select the ApplicationPage option and

provide the name RequestSite.aspx.
5.	 Click on the Add button as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[143]

Building the Request Site display page
The standard application page is added to the project, which comprises two files we
will now need to build. They are:

•	 RequestSite.aspx: The design surface for controls
•	 RequestSite.aspx.cs: The code behind file for control logic and events

The standard application page template includes the control and resource import
statements at the top followed by the content placeholder controls.

To build the Request Site page:

1.	 Add the page title Request Site Collection to the PlaceHolderPageTitle
control shown as follows:
<asp:ContentID="PageTitle"
 ContentPlaceHolderID="PlaceHolderPageTitle" runat="server">
 Request Site Collection
</asp:Content>

2.	 Add the page title Request Site Collection to the
PlaceHolderPageTitleInTitleArea control shown as follows:
<asp:ContentID="PageTitleInTitleArea"
 ContentPlaceHolderID="PlaceHolderPageTitleInTitleArea"
 runat="server" >
 Request Site Collection
</asp:Content>

3.	 Next we will build-out the actual form within the PlaceHolderMain control.
The format and referenced styles will render the form like the standard
SharePoint list forms. A label control will be added to provide status and any
error messages that need to be displayed.
<table class="ms-formtable" style="margin-top:
 8px;"border="0" cellpadding="0" id="formTbl" cellspacing="0"
 width="100%">
<tr>
 <td valign="top" class="ms-formbody" colspan="2" id="Td5">
 <asp:LabelID="Status"runat="server"></asp:Label>
 </td>
</tr>

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Request and Provisioning System

[144]

4.	 The formatting for a simple textfield such as the Title property is shown
as follows:
<tr>
 <td nowrap="true" valign="top" width="165px" class="ms-
 formlabel"><h3 class="ms-
 standardheader">
 Site Title</h3>
 </td>
 <td valign="top" class="ms-
 formbody" width="450px" id="SPFieldFile">
 <SharePoint:InputFormTextBox ID="Title"
 runat="server" ControlMode="New" Width="300">
 </SharePoint:InputFormTextBox>
 </td>
</tr>

5.	 The formatting for a person field such as the PriOwner property is shown
as follows:
<tr>
 <td nowrap="true" valign="top" width="165px"
 class="ms-formlabel"><h3 class="ms-standardheader">
 Primary Owner</h3>
 </td>
 <td valign="top" class="ms-formbody" width="450px" id="Td2">
 <SharePoint:PeopleEditorID="PriOwner" runat="server"
 MultiSelect="false" MaximumEntities="1" Width="300"/>
 </td>
</tr>

6.	 Our form also requires a drop-down list, which will be used to help preset
other list properties such as the managed path, site template, and quota
template properties. A standard ASP.NET drop-down control is used
as follows:
<tr>
 <td nowrap="true" valign="top" width="165px"
 class="ms-formlabel"><h3 class="ms-standardheader">
 Site Category</h3>
 </td>
 <td valign="top" class="ms-formbody" width="450px" id="Td3">
 <asp:DropDownList ID="SiteCategory" runat="server"
 Width="300">
 </asp:DropDownList>
 </td>
</tr>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[145]

7.	 To handle the selected feature options we will use a standard ASP.NET
CheckBox control for each of the features available. The form row is shown
as follows:
<tr>
 <td nowrap="true" valign="top" width="165px"
 class="ms-formlabel"><h3 class="ms-standardheader">
 Document ID Service</h3>
 </td>
 <td valign="top" class="ms-formbody" width="450px" id="Td6">
 <asp:CheckBox ID="SiteFeatureDocID" runat="server"/>
 </td>
</tr>

8.	 To submit the form we have included a standard ASP.NET button.

 <tr>
 <td colspan="2" align="right">
 <asp:Button ID="Save" runat="server" Text="Save"/>
 </td>
 </tr>
 </table>
</asp:Content>

Building the form processing
The code behind this application page is used to handle the form processing during
the Page_Load() method:

1.	 We will start by checking to see if the form was posted, and if it was, we
will reset the status control and then move into determining some of the
configuration settings based on the SiteCategory form input field.
if (Page.IsPostBack)
{
 this.Status.Text = "";

 try
 {
// Site Categorization
 string quotaTemplate = "";
 string managedPath = "";
 string siteTemplate = "";

 switch (this.SiteCategory.SelectedValue)
 {

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Request and Provisioning System

[146]

 case"Project Site":
 quotaTemplate = "Project Collab";
 siteTemplate = "Project Site";
 managedPath = "projects/";
 break;
 case"Extranet Site":
 quotaTemplate = "Extranet Collab";
 siteTemplate = "Extranet Site";
 managedPath = "extranet/";
 break;
 default:
 quotaTemplate = "Team Collab";
 siteTemplate = "Team Site";
 managedPath = "sites/";
 break;
 }

2.	 Next we need to connect to the list, which requires that we load the
two properties stored in the web application's property bag. With
those properties we can establish the required connections.
string listName =
 this.Web.Site.WebApplication.Properties["SiteRequestList"].
 ToString();
string listPath =
 this.Web.Site.WebApplication.Properties["SiteRequestSite"].
 ToString();
using (SPSite site = newSPSite(listPath))
{
 using (SPWeb web = site.RootWeb)
{

3.	 When using a Person or Group field in a SharePoint list, it is necessary to
pass in an SPUser object when updating the list item. Before we can set the
list value we will need to define an SPUser object and set it to the form value
if one was provided.
SPUser userPriOwner = null;
if (this.PriOwner.Accounts.Count > 0)
{
 userPriOwner =
 web.EnsureUser(this.PriOwner.Accounts[0].ToString());
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[147]

4.	 We can now add our list item and set the appropriate field values based on
a mixture of our input form and the values that were determined based on
internal decisions. For example, the SiteCategory selection box drives the
field values for the managed path, site template, and quota template. We are
also setting the request's status to Pending Approval, which is what we have
determined is the starting status for our requests. After all of the desired
fields are set, we need to call the Update() method so that they are saved
back to the list.
SPListItem newEntry = web.Lists[listName].Items.Add();
newEntry["Title"] = this.Title.Text;
newEntry["Description"] = this.Description.Text;
newEntry["PriOwner"] = userPriOwner;
newEntry["Path"] = managedPath;
newEntry["URLName"] = this.URLName.Text;
newEntry["Template"] = siteTemplate;
newEntry["Quota"] = quotaTemplate;
newEntry["Status"] = "Pending Approval";
newEntry["SiteFeatureDocID"] = this.SiteFeatureDocID.Checked;
newEntry["SiteFeaturePub"] = this.SiteFeaturesPub.Checked;
newEntry["SiteFeatureActions"] =
 this.SiteFeaturesActions.Checked;
newEntry["SiteFeaturesWebParts"] =
 this.SiteFeaturesWebParts.Checked;
newEntry["WebFeaturesContentOrg"] =
 this.WebFeaturesContentOrg.Checked;
newEntry["WebFeaturesMetaNav"] =
 this.WebFeaturesMetaNav.Checked;
newEntry["WebFeaturesPub"] = this.WebFeaturesPub.Checked;
newEntry["WebFeaturesWikiPage"] =
 this.WebFeaturesWikiPage.Checked;
newEntry.Update();

5.	 We can now close out the top of our if block.

6.	 If the form was not posted then we need to process the form within the
else block.

else
{
 this.SiteCategory.Items.Add("Team Site");
 this.SiteCategory.Items.Add("Project Site");
 this.SiteCategory.Items.Add("Extranet Site");
}

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Request and Provisioning System

[148]

7.	 Once deployed, the rendered version of the Request Site Collection page is
displayed as follows:

Defining the RequestSiteAction
menu item
The request form will need to be easily accessible to all of the site users. One
good way to do that is to add it to one of the standard action menus such as the
SiteActions or PersonalActions menu. It will direct the user to the request form
wherever they are in the system allowing them to submit the request.

To define a custom action:

1.	 Click on Add | New Item to the Visual Studio project.
2.	 Under the SharePoint | 2010 category, select the Empty Element type and

provide a name such as RequestSiteAction.
3.	 Edit the Elements.xml file with the following content:

<CustomAction Description="Submit a site collection
 request."GroupId="SiteActions"
 Id="RequestSiteAction"
 Location=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[149]

 "Microsoft.SharePoint.StandardMenu"
 RequireSiteAdministrator="false" Sequence="1001"
 Title="Request Site Collection">
 <UrlAction
 Url="_layouts/SPBlueprintsSiteCreation/RequestSite.aspx" />
</CustomAction>

4.	 When deployed the custom action will be displayed in the Site
Actions menu, based on the sequence order. With the value of 1001
set, it is displayed at the bottom of the list of actions as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Request and Provisioning System

[150]

Creating timer jobs
The actual provisioning and configuration of the new site collection will be handled
via a timer job instead of making it part of the standard workflow. The provisioning
process can be a long running job, and there can be stability problems if too many
requests are executed simultaneously. The workflow actions were not intended to
support long running jobs such as this. By moving the process to a timer job we can
take advantage of the robust scheduling mechanism to queue up the requests, and
then handle all of the open requests.

Timer jobs have two main components:

•	 The class file that holds the actual execution logic that runs when the timer
job is active

•	 The feature receiver is used to handle the initial setup and registration of the
job. It will schedule the timer job to run as well as execute any tear down
activities that need to happen when the timer job is deactivated

Creating the site timer job
To create the timer job:

1.	 We will start by adding an Empty Element to the solution.
2.	 We will name the element CreateSiteTimerJob.
3.	 Within the CreateSiteTimerJob element we now add a class named

CreateSite. This class is where the actual timer job and execution logic
will reside. We will need to import the following namespaces to support
our work:
using Microsoft.SharePoint;
using Microsoft.SharePoint.Administration;

4.	 Next, we need to inherit from the SPJobDefinition class, which will allow
us to perform the timer job functions shown as follows:

class CreateSite : SPJobDefinition
{
 public CreateSite()
 : base() {
 }

 public CreateSite (string jobName, SPService service,
 SPServer server, SPJobLockType targetType)
 : base (jobName, service, server, targetType) {
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[151]

 public CreateSite (string jobName,
 SPWebApplication webApplication)
 : base(jobName, webApplication, null, SPJobLockType.Job)
 {
 this.Title = "Create Site";
 }

Executing the site timer job
The main processing is handled by the override of the Execute() method as
explained the following steps:

1.	 The Execute() method passes in the targetInstanceId, and also
provides access to contextual information that we will use to instantiate
an SPWebApplication object shown as follows:
public override void Execute(Guid targetInstanceId)
{
 base.Execute(targetInstanceId);
 SPWebApplication webApp = this.Parent asSPWebApplication;

2.	 We will now request a collection of the pending site requests. To do that,
we need to connect to the site that holds the request list. We will load
the site specified in the web application's property bag and the
SiteRequestSite property.
using (SPSite requestSite =
 newSPSite(webApp.Properties["SiteRequestSite"].ToString()))
{

3.	 Next we will define our list query.
SPQuery requestQuery = newSPQuery();
requestQuery.Query = "<Where><Eq><FieldRef Name='Status' />
 <Value Type='Choice'>Pending Creation</Value>
 </Eq></Where>";

4.	 Now we are ready to get the item collection by executing the query against
the specified list. The list is identified by another property stored in the web
application's property bag in a property named SiteRequestList shown
as follows:
SPListItemCollection items =
requestSite.RootWeb.Lists[webApp.Properties["SiteRequestList"].
ToString()].GetItems(requestQuery);

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Request and Provisioning System

[152]

5.	 As it is possible that we have multiple requests pending, we will need to loop
through the collection of requests returned from the list, and wrap the code
within a foreach loop block shown as follows:
foreach (SPItem item in items)
{

}

6.	 Before we can create the new site collection, we will need to ensure that a
site collection does not already exist at the given address. To do this, we will
load the requested path and attempt to connect to the site and web to see if it
already exists. If it does not exist, the site will be created.
string path = item["Path"].ToString() +
item["URLName"].ToString();
bool siteExists = false;
SPSite tmpSite = null;
try
{
 tmpSite = webApp.Sites["/" + path];
 siteExists = tmpSite.RootWeb.Exists;
}
catch
{
 siteExists = false;
}
finally
{
 if (tmpSite != null)
 {
 tmpSite.Dispose();
 }
}

if (!siteExists){
// Create Site Code
}
else
{
// Update Status of Site Request
 item["Status"] = "Creation Failed";
 item["CreationNotes"] = "URL is not unique.";
 item.Update();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[153]

7.	 In order to create the site, we will need to identify the site owners'
information. To do that we will need to grab the value from the request
list and convert it to an SPUser object. The following code will handle
the conversion:
SPFieldUserValue userField =
 new SPFieldUserValue(requestSite.RootWeb,
 item["PriOwner"].ToString());
SPUser priOwner = userField.User;

8.	 Creating the site is done by calling the Sites.Add() method and setting the
required initial properties such as the URL, Title, Description, Language,
Template, and Owner information. There are multiple overrides available
and you can choose the one that makes the most sense for your solution.
The following is an example of the call included in the sample code. You
will notice the LookupTemplate() method, which is addressed later in
the section.
SPSite newSite = webApp.Sites.Add(path,
 item["Title"].ToString(),
 item["Description"].ToString(),
 1033,
 LookupTemplate(item["Template"].ToString()),
 priOwner.LoginName,
 priOwner.Name,
 priOwner.Email);

9.	 We will now set some of the site's properties. These could either be
standardized based on your governance policy, or options that are read
from the form. All of these properties are properties of the SPSite object.

10.	 In the case of the quota template, it will be important to ensure that the quota
templates match what you have registered in the system. The following are
the sample properties configured on our sites during the process:
newSite.PortalName = "Main Site";
newSite.PortalUrl = "http://Intranet";
newSite.AllowDesigner = true;
if (item["Quota"].ToString() != null)
{
 newSite.Quota =
 SPWebService.ContentService.QuotaTemplates[item["Quota"].
 ToString()];
}

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Request and Provisioning System

[154]

11.	 One of the advantages with automating the site provisioning process is
automating the feature activation for common features. In this case there are
a number of standard site and web features included on the request form.
You can promote the use of certain features by including them on the request
form and building them into the site creation process.

12.	 The feature activation code for the site and the web work the same way, the
only difference is where the collection resides. We will start by setting
a reference to the SPFeatureCollection.

13.	 Next, we will check our request item to see if the given feature needs to
be activated; if so, we will call the Add() method with a reference to the
feature's GUID, and a Boolean value to force the activation. The following is
an example for the Document ID service:
SPFeatureCollection siteFeatures = newSite.Features;
if (Convert.ToBoolean(item["SiteFeatureDocID"].ToString()) ==
 true)
 siteFeatures.Add(newGuid("b50e3104-6812-424f-a011-
 cc90e6327318"), true);

14.	 Next, we will update the status of the request list item. This will ensure that
it does not get picked up by future jobs, and will also log the date that the site
was created for compliance purposes.
// update status of site request
item["Status"] = "Complete";
item["CreateDate"] = System.DateTime.Now;
item.Update();

15.	 Make sure SharePoint objects are disposed to avoid memory leaks.
Additional details can be found on the MSDN website at: http://msdn.
microsoft.com/en-us/library/ee557362(v=office.14).aspx

newSite.Dispose();

16.	 To update the timer job's progress indicator there is a simple method call that
includes a number representing the current percentage.
this.UpdateProgress(50);

17.	 The newSite.Add() function call included a call to the LookupTemplate()
function detailed as follows. The purpose of this simple method is to get the
internal template value based on the given display name that the requestor
specified. The simple switch statement can be expanded to include any other
site definitions added to the system.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[155]

private string LookupTemplate(string TemplateName)
{
 string tempID;
 switch (TemplateName) {
 case "Team Site":
 tempID = "STS#0";
 break;
 case "Blank Site":
 tempID = "STS#1";
 break;
 case "Document Workspace":
 tempID = "STS#2";
 break;
 case "Basic Meeting Workspace":
 tempID = "MPS#0";
 break;
 case "Blank Meeting Workspace":
 tempID = "MPS#1";
 break;
 case "Decision Meeting Workspace":
 tempID = "MPS#2";
 break;
 case "Social Meeting Workspace":
 tempID = "MPS#3";
 break;
 case "Multipage Meeting Workspace":
 tempID = "MPS#4";
 break;
 case "Blog":
 tempID = "BLOG#1";
 break;
 case "Wiki":
 tempID = "WIKI#0";
 break;
 default:
 tempID = "STS#0";
 break;
 }
 return tempID;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Request and Provisioning System

[156]

Feature receiver
Feature receivers can be used to run code during the feature events including:

•	 Activation
•	 Deactivation
•	 Installed
•	 Upgrade

This allows for advanced setup and automation capabilities. For the site
provisioning feature, we will need to use the feature receiver to manage the
status of the site request.

Creating the feature receiver
To create the feature receiver:

1.	 From the Solution Explorer, right-click on SiteCreationProcess.feature
and select the Add Event Receiver option.

2.	 This will add a class file named SiteCreationProcess.EventReceiver.cs.
Within this class file you will find some example feature override methods
that can be used to handle standard feature events.

3.	 We need to establish a constant that can be used to support our project
shown as follows:

conststring TIMER_JOB_NAME = "CreateSite";

Feature activating
The FeatureActivated() method will run whenever the feature is activated, and
for our purpose it will be used to register the new timer job:

1.	 We will uncomment the FeatureActivated() method and add the code that
is needed to support the feature. As we are scoped for the web application,
we will need to grab the context, which we will do with the following line:
SPWebApplication webApp = properties.Feature.Parent as
 SPWebApplication;

2.	 Now we will run a little code to ensure that a job with the same name is not
already registered. If it is, it will be removed.
foreach (SPJobDefinition job in webApp.JobDefinitions) {
 if (job.Name == TIMER_JOB_NAME)
 job.Delete();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[157]

3.	 As our timer job needs to read from the request list, we need a place to store
those settings. They could be stored in web.config, in an XML file stored
somewhere, but the method of choice is to use the web application's property
bag, which is easier to maintain than either of the previously identified
methods. Before creating the properties we need to do a basic check to see
if they already exist. If they do, we will skip the step, if not, then we will
create the new properties. At the end we need to be sure to call the Update()
method so that any changes are saved. This call can add time to your overall
processing, so you will want to call it only if changes were made, which we
will track using the Boolean variable isDirty that we have defined.
bool isDirty = false;
if (!webApp.Properties.ContainsKey("SiteRequestList"))
{
 webApp.Properties.Add("SiteRequestList", "SiteRequestLog");
 isDirty = true;
}
if (!webApp.Properties.ContainsKey("SiteRequestSite"))
{
 webApp.Properties.Add("SiteRequestSite",
 "http://intranet/sites/provision");
 isDirty = true;
}
if (isDirty)
 webApp.Update();

4.	 Register the job with a simple reference to the timer job's class file.
CreateSiteTimerJob.CreateSite createSite = new
 CreateSiteTimerJob.CreateSite(TIMER_JOB_NAME, webApp);

5.	 Now we need to establish the schedule for the job. There are different
scheduling profiles and options including Minutes, Hourly, Daily, Weekly,
and Monthly. As we need this job to run frequently throughout the day, we
are going to use the Minutes schedule supported by the SPMinuteSchedule
class. We will set the profile to run every 15 minutes shown as follows:

SPMinuteSchedule schedule = newSPMinuteSchedule();
schedule.BeginSecond = 0;
schedule.EndSecond = 59;
schedule.Interval = 15;
createSite.Schedule = schedule;
createSite.Update();

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Request and Provisioning System

[158]

Feature deactivating
The FeatureDeactivating() method will run whenever the feature is deactivated.
Its primary function in this case is to ensure that the timer job is properly moved
when the feature is deactivated.

Uncomment the FeatureDeactivating() method. The code is the same as what we
put in place during activation in case a prior version of the job already existed, but we
also need one here so that it can be properly removed if the feature is no longer needed.

SPWebApplication webApp = properties.Feature.Parent
as SPWebApplication;

foreach (SPJobDefinition job in webApp.JobDefinitions)
{
 if (job.Name == TIMER_JOB_NAME)
 job.Delete();
}

Completed SPBlueprints.SiteCreation solution
The completed Solution Explorer for the SPBlueprints.SiteCreation solution
should look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[159]

The completed feature should look like the following screenshot:

Deploying the timer job
The next step is to compile the solution and deploy the feature to your farm. Before
the timer job can properly run, you will just need to set the web application's
property bag value for the property named SiteRequestSite. This should be set
to the path to the site where the request list is stored. With proper configuration in
place your job is ready to go.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Request and Provisioning System

[160]

Monitoring the timer job
With the timer job deployed you will want to be familiar with how to check on it and
its status. Within Central Administration, under the Monitoring section is an area
for managing the registered Timer Jobs as shown in the following screenshot:

The Review job definitions link will list out all of the registered jobs. There are a
lot of jobs registered so it is often helpful to filter the list. As the Create Site job is
defined with a WebApplication scope, it is typically a good idea to set the View to
the Web Application view, and then the Web Application to the web application
you are working with, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[161]

If you click on the title of a registered job, you can view or change its schedule or
even run it immediately if desired. A view of the screen is shown as follows:

To view the results of a completed job, you can click on the Job History link in the
upper left-hand side, within Central Administration, under the Job Definitions
section. This will detail out the status of all of the current jobs. Just like with the job
definition list, it is possible to filter this down to the web application, making it easier
to find your job. Clicking on the Status link for a given job will provide a view of the
job's execution details including when it ran, how long it ran, and any error messages
if applicable.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Request and Provisioning System

[162]

A view of the Job History screen is shown as follows:

Summary
This chapter leveraged the Server OMs to create packaged solutions in order to
deliver the site request and provisioning solution.

The customizations are grouped as follows:

•	 Timer job: A timer job that is used to provision new sites based on requests
in a central SharePoint list

•	 Feature receiver: Feature receivers are used to add and remove the timer
job registration

•	 Application page: A custom form available globally to request a new
site collection

•	 Custom action: Add a menu item to the Site Actions menu that links to the
site request form, giving users the ability to easily request a new site collection

This chapter showed how you can leverage custom solutions to help automate
tedious site administration duties while enhancing governance and compliance
capabilities. As these features require a lot of interaction with the farm as a whole,
they are not appropriate for sandboxed solutions and would be a challenge to create
for the cloud.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project
Site Template

When we think about collaboration sites there are a few types of sites that are
commonly used; one of the most common types would be for project-based
collaboration. It is easy to start to see very similar content and configuration needs
across all sites of this type. Information such as project status, open issues, current
project tasks, and project documents are needed throughout all of these sites.

To make it easy to set up and maintain the sites, it is important to come up with a
method for creating a site template that can support the site over time. This requires
picking a site template approach that can be updated over time, both for new sites
being provisioned, as well as applying updates to existing sites.

Overview
This chapter will provide an overview of templating techniques that can be
employed to build a robust and maintainable site solution.

The following solution will be created:

•	 Project site template
•	 Project web configuration

°° Create a project blog subsite
°° Provision a list through code based on a syndicated content type
°° Create a page library

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Site Template

[164]

°° Create a new homepage
°° Configure Web Parts on the homepage

Template options
There are four main options for creating a site template that can be used to create
a new site or subsite. They include site definitions, feature stapling an existing
site definition, exporting site templates via the UI, and custom code. Each of these
options has its own benefits and limitations.

Site definitions
A site definition is the root definition of a site and its features in XML. When a site
is created, a site definition is referenced, it will always have that dependency, and it
cannot be changed easily. The base SharePoint templates including blank, team site,
blog site, and so on are all defined as site definitions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[165]

In the earliest versions of SharePoint it was very common, and even recommended,
for you to define your own site definitions by creating a feature and including a
custom onet.xml. The problem with this approach is the dependency that it creates
and the difficulty involved with upgrading or migrating that site to another farm or
during version upgrades. The dependency has to be maintained and deployed to any
of those other farms. During a major platform upgrade, such as SharePoint 2007 to
2010, this can complicate the upgrading process. While not impossible to upgrade,
it is difficult, and this approach is now widely discouraged. The alternatives that
follow each offer better flexibility without the long-term dependency issues.

Feature stapling an existing site definition
Feature stapling was introduced with SharePoint 2007 and allows you to associate
a custom solution with an existing site definition. When that site definition is used,
your custom solution will also be executed allowing your changes to be made. This
can include adding in custom features like lists, removing lists you do not want to
use, or configuring Web Parts. The good news is that the standard site definition is
registered, and no changes are made to the standard site definitions.

This is still a valid and supported option with SharePoint 2010, but does not offer all
of the flexibility offered in the new WebTemplates method described later.

Site template
In previous versions of SharePoint, site owners had the ability to export a site to
create a template within the UI. The Site template that was created was in the
form of an STP file which had some limitations. With SharePoint 2010 the export
site template was rewritten to produce a WSP, the standard solution package
administrators recognize. The exported solution is added to the Solution Gallery
within the Site Collection, essentially making it a Sandbox solution by default.

Developers can take the WSP and import it into Visual Studio if desired using the
Import SharePoint Solution Package project type. This will bring the template into
Visual Studio 2010 allowing further modifications if needed.

It should not take long to realize that the solution that is exported is bloated and
includes definitions for everything including every content type and site column
even if they are not being used. If you are going to take this approach it will take
significant clean up and refactoring of the project to get it into a maintainable state.

One interesting note about this process is that it relies on the WebTemplates
approach that we will review next. The export process basically handles the
definition of the WebTemplate package, in a single project with multiple solutions.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Site Template

[166]

WebTemplate
The WebTemplates option that was added with SharePoint 2010 attempts to address
the core issues with the other solutions.

First, it addresses the issues associated with the site definitions by providing a way
to provide a custom onet.xml definition, without having to register the custom
site definition. It allows you to take a copy of one of the existing onet.xml files
and make the necessary modifications. The elements.xml then references the new
WebTemplate schema, which is used to define your WebTemplate, and associate
it with an existing site definition. While the approach sounds similar to a custom
site definition, the important difference is that the site that is provisioned will be
identified as using the base site definition referenced. This means that there will be
no issue migrating or upgrading the site because of the site definition dependency.

Example WebTemplate schema
Following is a copy of a sample schema with all possible properties:

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
<WebTemplate
AdjustHijriDays="0"
AlternateCssUrl=""
AlternateHeader=""
BaseTemplateID="1"
BaseTemplateName="STS"
BaseConfigurationID="0"
CalendarType="1"
Collation="25"
ContainsDefaultLists="TRUE"
CustomizedCssFiles=""
CustomJSUrl=""
Description="A Custom Team Site."
ExcludeFromOfflineClient="FALSE"
Locale="1033"
Name="TeamPlus"
ParserEnabled="TRUE"
PortalName=""
PortalUrl=""
PresenceEnabled="TRUE"
ProductVersion="4"
QuickLaunchEnabled="TRUE"
Subweb="TRUE"
SyndicationEnabled="TRUE"
Time24="FALSE"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[167]

TimeZone="13"
Title="Custom Team Site"
TreeViewEnabled="FALSE"
UIVersionConfigurationEnabled="FALSE" />
</Elements>

The following properties are required, the rest are optional:

Required Property Notes
BaseTemplateID Referenced Template ID
BaseTemplateName Referenced Template Name
BaseConfigurationID Referenced Configuration ID
Name Internal Name of your WebTemplate, cannot

contain spaces

Sandbox versus farm solutions
The WebTemplate solution can be packaged and deployed as either a Sandbox
or Farm solution. How you intend to use the template may dictate which option
is better.

Here are some considerations:

•	 On Premise SharePoint or Office 365: Since farm solutions are not supported
in Office 365, the sandbox represents the only option

•	 Frequently Used Templates: If the template will be frequently used, it will
be quicker and easier to deploy and maintain as a farm solution, because the
solution will be maintained centrally instead on each site collection

WebTemplate as a sandbox solution
For the Sandbox solution, the solution should be scoped as for web deployment. The
site owner will need to upload the package to the site collection's solution gallery
before it can be activated and used. If you are working with a site collection and
want to use the solution for subsites then it will be readily available.

A site administrator will need to add the solution to every solution gallery in which
it is needed individually, which is the normal pattern with Sandbox solutions, but
may get cumbersome for site owners who manage a lot of different site collections.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Site Template

[168]

It is possible to provision new site collections with a WebTemplate deployed as a
Sandbox solution, but it will require some additional steps. When the initial site
collection is provisioned, the custom template option should be selected so that the
template is identified later. After the core site collection is provisioned, the solution
will need to be uploaded to the Solution Gallery.

WebTemplate as a farm solution
In order to get the WebTemplate available globally for both new site collections as
well as subsites, the solution should be set to deploy as a farm solution with the
solution scoped for the farm. This will ensure that it is activated globally and that the
template will show up as available within the template catalog for provisioning via
central administration, via code, or as a subsite within a site collection.

Organizing a project into multiple features
and solutions
A simple site template can be easily configured within a single project and a
single solution. Since the onet.xml offers the ability to activate other features it is
possible to organize your code into multiple features or even solutions. Breaking
up your customization into multiple features and solutions will improve the overall
maintainability to better support advanced scenarios.

For example, the WebTemplate could be included in one solution and then a set of
additional features can be included in separate solutions that are activated as part
of the overall setup process. If those additional features need to be updated the
solutions can be upgraded independently of the WebTemplate. In cases like site
configuration, properties can be managed and reset this way, Web Parts can be
added or moved on pages, or a document library's properties can be modified. The
Project Site Template solution developed in this chapter will follow through on this
example to illustrate a complex set of solutions.

The following screenshot will present the most common scenario with a set of site
and web features identified within the onet.xml:

WebTemplate

Feature

Basic WebParts

Feature

ContentType Syndication

Feature

Web Config

Feature

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[169]

In more advanced scenarios, you may need to activate additional features from
within one of your custom features. This would most likely be done within a
feature receiver. This type of more complex scenario is illustrated as follows:

WebTemplate

Feature

Basic WebParts

Feature

ContentType Syndication

Feature

Web Config

Feature

Additional

Feature

Additional

Feature

In the scenario for this chapter we will be walking through the creation of a single
web template and a feature to configure the template after it is provisioned. If we
needed to build a robust library of templates, then there would likely be a single
feature that holds all of the web templates, scoped for the farm, and then one feature
specific to each template, and perhaps a set of utility features each called from two or
more of the other features.

Building the Project Site Template
The Project Site Template will be added to a new project named SPBlueprints.
WebTemplates. This project can contain multiple templates as well as any site
configuration solutions.

Create the project
To create the initial project:

1.	 Open Visual Studio 2010.
2.	 Select File, then New Project.
3.	 Browse the installed templates and select Visual C# | SharePoint 2010, and

then Empty SharePoint Project.
4.	 Enter the project details such as Name, Location, and Solution name.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Site Template

[170]

5.	 Within the SharePoint Customization Wizard, provide a path to your
SharePoint site and then be sure to select the option to Deploy as a
farm solution.

6.	 Right-click on the project file and select Add then New Item.
7.	 From the template selection screen select the Empty Element option
8.	 Provide the name ProjectTemplate and click on the Add button.

Create the ProjectTemplate WebTemplate
A web template SPI includes two main artifacts; the Elements.xml and the
Onet.xml files.

Complete Elements.xml
As previously described, the Elements.xml will define the web template and
associate it with the base site definition. For the ProjectTemplate we will
associate this with a standard Team Site. Ensure that the Name property matches
the name of your SPI, and that it does not contain any spaces or you will not be able
to activate the solution. We will also set the portal site connection which will allow
the project sites to lead back to the main project site which we will build out in the
next chapter.

<WebTemplate
BaseConfigurationID ="0"
BaseTemplateID ="1"
BaseTemplateName ="STS"
Description="A SPBlueprints Project site."
DisplayCategory="SPBlueprints"
Name="ProjectTemplate"
Title="Project Template"
PortalName="Projects Home"
PortalUrl="http://intranet/PMO">
</WebTemplate>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[171]

Onet.xml
The Onet.xml file is the file used within site definition to define all aspects of the site
including navigation, lists, pages, and features:

1.	 To create a Onet.xml file for your project, copy the onet.xml file for the
site definition you want to associate with the web template. You can find
the standard site definitions on the SharePoint server in the C:\Program
Files\Common Files\Microsoft Shared\Web Server Extensions\14\
TEMPLATE\SiteTemplates directory. Since we referenced the Team Site
template, we need to grab the file in the sts\xml\directory.

2.	 Remove the Modules node block. We only need to include a subset of the
content to support the web template feature, and the Modules block is not
required or supported.

3.	 Ensure that there are no FileDialogPostProcess,
ExternalSecurityProvider, or ServerEmailFooter elements; if they exist
then they must also be removed.

4.	 Within the Configurations node block, we need to remove all but the
configuration ID=0 node block. The Team Site definition supports multiple
configurations, but we only want the first node.

5.	 We then need to ensure that there are no Modules node blocks within the
configuration node block.

We now have a good checkpoint for a clean Team Site definition that can be used for
all of your web templates. Now we can begin making the changes used to support
our specific template.

The next thing we want to do is configure the NavBars block which controls the
Quick launch and Top link bar navigation items.

To customize the navigation:

1.	 The NavBar element exists in the standard onet.xml, but there is no link
present so we will add a NavBarLink element.
<NavBar Name="$Resources:core,category_Top;" Separator="&nbs
p;&nbsp;&nbsp;" Body="<a ID='onettopnavbar#LABEL_ID#'
href='#URL#' accesskey='J'>#LABEL#" ID="1002" >
<NavBarPage Name="Home" Url="" />
</NavBar>

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Site Template

[172]

2.	 Add a NavBar element for the Project Libraries item header shown as
follows:
<NavBar Name="Project Libraries" Url="_layouts/viewlsts.
aspx?BaseType=1" ID="1004" />

3.	 Add a NavBar element for the Project Lists item header shown as follows:
<NavBar Name="Project Lists" Url="_layouts/viewlsts.
aspx?BaseType=0" ID="1003" />

4.	 Add a NavBar element for the Discussions item header shown as follows:

<NavBar Name="Discussions" Url="_layouts/viewlsts.aspx?BaseType=0&
amp;ListTemplate=108" ID="1006" />

The next thing we want to do is add to any standard lists to the site.

To add an instance to a standard list:

1.	 For any standard list templates, we can add the following definition to the
Lists node block.
<List FeatureId="00bfea71-5932-4f9c-ad71-1557e5751100"
Type="1100"
Title="Issues"
Url="$Resources:core,lists_Folder;/Issues"
QuickLaunchUrl="$Resources:core,lists_Folder;/Issues/AllItems.
aspx"
/>

2.	 Next, we will add any site scoped features we wish to activate.
<SiteFeatures>
<!-- BasicWebParts Feature -->
<Feature ID="00BFEA71-1C5E-4A24-B310-BA51C3EB7A57" />
<!-- Three-state Workflow Feature -->
<Feature ID="FDE5D850-671E-4143-950A-87B473922DC7" />
<!-- Doc ID Service Feature -->
<Feature ID="b50e3104-6812-424f-a011-cc90e6327318" />
<!-- Content Type Syndication -->
<Feature ID="73EF14B1-13A9-416b-A9B5-ECECA2B0604C" />
<!-- Ent Site Features -->
<Feature ID="8581a8a7-cf16-4770-ac54-260265ddb0b2" />
<!-- Std Featurs -->
<Feature ID="b21b090c-c796-4b0f-ac0f-7ef1659c20ae" />
</SiteFeatures>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[173]

3.	 Finally, we will add any web scoped features we wish to activate.
<WebFeatures>
<!-- TeamCollab Feature -->
<Feature ID="00BFEA71-4EA5-48D4-A4AD-7EA5C011ABE5" />
<!-- MobilityRedirect -->
<Feature ID="F41CC668-37E5-4743-B4A8-74D1DB3FD8A4" />	
<!-- SPBlueprints Web Config -->
<Feature ID="3b3eb230-2649-4ace-996f-ed6e97494a04" />
</WebFeatures>

Once the Onet.xml files are complete, we need to change the file's Deployment type
property to ElementsFile so that it can be properly deployed.

The last WebFeature in the list SPBlueprints Web Config is a reference to a
second feature we will now add to the solution. Ensure that the GUID matches
the corresponding GUID to your new feature.

Configure the feature
We will now configure the main solution that will contain the web templates. This
solution will be scoped for a farm deployment so that it is available for provisioning
site collections in a single step, without the need to upload or activate the template.
This would also make it available for the automated site provisioning process
previously reviewed.

To configure the ProjectTemplate-Farm feature:

1.	 Rename Feature 1 to ProjectTemplate-Farm.
2.	 Change the Title to Project Site Template.
3.	 Change the Description to SPBlueprints Project Site Template.
4.	 Change the Scope to Farm.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Site Template

[174]

The completed feature is displayed as follows:

Create the Project Site configuration feature
As discussed in the WebTemplate overview section at the beginning of the chapter,
it is possible to call custom features from within the WebTemplates definition.
Organizing your work into multiple features will help to provide additional
capabilities to execute code for configuration items that either cannot be set
declaratively in the CAML within the onet.xml file or need to be handled later
in the overall execution chain.

There is also the added benefit that the solution can be maintained over time through
feature versioning and upgrading. When a new version is deployed it would be
possible to execute the updates allowing for any needed changes to be automatically
deployed or configured.

We will define an additional feature at this time, a feature that will not contain
any SPIs, but will have a feature receiver that executes to make any required
modifications.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[175]

To configure the ProjectWebConfig-Web feature:

1.	 Right-click on the Features node and select Add Feature.
2.	 Rename Feature 1 to ProjectWebConfig-Web.
3.	 Change the Title to Project Web Configuration.
4.	 Change the Description to SPBlueprints Project Web

Configuration - Hidden Feature.
5.	 Change the Scope to Web.
6.	 Change the Is Hidden property to true.
7.	 Right-click on the ProjectWebConfig-Web feature and select

Add Event Receiver.

The completed feature is displayed in the following screenshot:

Writing the feature receiver
The feature receiver can support multiple event methods to cover the different
feature lifecycle events such as FeatureActivated, FeatureDeactivating, and
FeatureUpgrading. These events are what will assist us in maintaining the sites
over time.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Site Template

[176]

The first step is to establish the required references to support our work. We will
import the following namespaces:

using System;
using System.Runtime.InteropServices;
using System.Security.Permissions;
using System.IO;
using System.Xml;
using System.Web.UI;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Administration;
using Microsoft.SharePoint.Navigation;
using Microsoft.SharePoint.Security;
using Microsoft.SharePoint.Utilities;
using Microsoft.SharePoint.WebPartPages;
using Microsoft.SharePoint.WebControls;

Using Microsoft.SharePoint.Portal.
WebControls;Feature Activated
The FeatureActivated() method is the method that is called when the feature
is activated, and it is the method that will make the final configuration changes
to the site at the time it is provisioned, since this feature is activated as part of the
WebTemplate code.

We will start by grabbing a reference to the SPWeb from the feature properties and
then wrap the rest of the code within a try/catch block to ensure any exceptions are
trapped and logged to the ULS logs.

public override void FeatureActivated(SPFeatureReceiverProperties
properties)
{
SPWeb web = (SPWeb)properties.Feature.Parent;
try
{
// **
// Main Code Here
// **
}
catch (Exception ex)
 	 {
SPSecurity.RunWithElevatedPrivileges(delegate()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[177]

 {
// Log to ULS Log
 	SPDiagnosticsService.Local.WriteTrace(0, new
SPDiagnosticsCategory("SP Blueprints Site Configuration",
TraceSeverity.Unexpected, EventSeverity.Error), TraceSeverity.
Unexpected, ex.Message, ex.StackTrace);
 	 });
}
}

Within the main try block we will create code blocks that perform the desired
configuration changes. These steps represent examples of changes that can be
automated as part of the site creation process.

The following functions will be included:

•	 Create a blog subsite: A subsite for the project site for communicating
project news

•	 Create the charter list: A list that contains project charter information
•	 Create the pages library: A library that will contain our Web Part pages
•	 Create the homepage: A Web Part page added to the Pages library
•	 Configure Web Parts on the homepage: We will add the desired Web

Parts and list view Web Parts to the homepage

Create a blog subsite
The first thing we will do within the main code block is to provision a blog
subsite. This will give the project team a way to communicate out to the
project's stakeholders and participants.

When creating a site, it is important to check to see if the site already exists so we will
do a simple check prior to creating the site. If this is the first time this code is run, the
site should not exist, but if the feature were to be deactivated and reactivated on an
existing site, this code will run an additional time.

SPWeb blog = web.Webs["Project Blog"];
if (!blog.Exists) {
blog = web.Webs.Add("blog", "Project Blog", "Blog for project
communications.", 1033, SPWebTemplate.WebTemplateBLOG, false, false);

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Site Template

[178]

With the blog site created, we now want to make sure that it is set to inherit the main
project site's navigation and then add it to the main project site's top navigation.
Calling the Update() method will save the changes.

blog.Navigation.TopNavigationBar.Navigation.UseShared = true;
blog.Update();
SPNavigationNode blogNode = new SPNavigationNode("Blog", blog.
ServerRelativeUrl);
web.Navigation.TopNavigationBar.AddAsLast(blogNode);
web.Navigation.GlobalNodes.AddAsLast(blogNode);
web.Update();

Now we need to close out our if block and dispose our SPWeb object. For
additional guidance on best practices for disposing SharePoint objects see:
http://msdn.microsoft.com/en-us/library/ee557362(v=office.14).aspx

Create Charter list
In previous chapters we created a number of content types, list definitions, and list
instances declaratively in our solutions. An alternative is to create those lists using
the object model. Creating them with the object model can provide some advantages
in maintainability, but it is also a necessity in cases where you want to establish a
list from an existing content type. In this case, the ProjectCharter content type is
syndicated via the Content Type hub.

The first thing we want to do is check to see if the list exists.

bool listExists = false;
try{
SPList temp = web.Lists["Charter"];
listExists = true;
}
catch{
listExists = false;
}

If the list does not exist, we will create the list.

if (!listExists) {
Guid guidCharter = web.Lists.Add("Charter", "Project Charter",
SPListTemplateType.GenericList);
SPList listCharter = web.Lists[guidCharter];
listCharter.OnQuickLaunch = true;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[179]

Then add the ProjectCharter content type to the list.

listCharter.ContentTypes.Add(web.AvailableContentTypes
["ProjectCharter"]);
listCharter.Update();

Now we will want to modify the default view to add in the ProjectCharter fields.

SPView defaultView = listCharter.Views[0];
defaultView.ViewFields.Add("ProjectDescription");
defaultView.ViewFields.Add("ProjectManager");
defaultView.ViewFields.Add("ProjectStatus");
defaultView.ViewFields.Add("Sponsor");
defaultView.ViewFields.Add("ActualStart");
defaultView.ViewFields.Add("ScheduledCloseout");
defaultView.ViewFields.Add("ActualCloseout");
defaultView.ViewFields.Add("CurrentNotes");
defaultView.ViewFields.Add("Portfolio");
defaultView.Update();

Create pages library
We will now create a document library that can be used to store the Web Part pages
including our home page. Before we attempt to create the library, we will want to
check to see if it already exists.

bool libExists = false;
string libName = "Pages";

foreach (SPList list in web.Lists){
if (list.Title == "Pages"){
libExists = true;
 break;
}
}

If the library does not exist, we will add one to the current web.

if (!libExists) {
web.Lists.Add(libName, "Content Pages", SPListTemplateType.
DocumentLibrary);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Site Template

[180]

Create home page
Next we will create a new page in the previously created pages library and configure
it to hold the desired Web Parts.

There are a number of different page types including:

•	 Basic home page: The basic Web Part page template typically employed by a
team site. It includes Web Part zones and the Quick launch menu on the left
hand side.

•	 Web Part pages: A Web Part page template that includes Web Part zones in
various configurations, but does not include a Quick launch menu.

•	 Publishing pages: A Web Part page template available when the publishing
infrastructure is activated. They support the selection of a page layout and
support page level metadata attributes.

•	 Wiki Pages: Wiki Pages are the default page types for a Wiki.

The Wiki Pages make it difficult to programmatically configure them since the Web
Part zones are dynamically generated and therefore difficult to reference, so they are
not a great option if you are adding and customizing Web Parts on the page.

First we will get a reference to the Pages library we previously created and establish
some other working variables. The newFilename variable is the name of the page we
want to create and the templateFilename is the name of the template we are using.
The GetGenericSetupPath points to a template file in the main SharePoint root.

SPFolder libFolder = web.GetFolder(libName);
string newFilename = "Home.aspx";
string templateFilename = "default.aspx";
string path = SPUtility.GetGenericSetupPath("TEMPLATE\\SITETEMPLATES\\
STS\\");
SPFile newFile = null;

Next we will check to see if the page already exists, and if it exists we will delete it so
that it can be recreated with the current configuration.

foreach (SPFile page in libFolder.Files) {
if (page.Name == newFilename) {
libFolder.Files["Home.aspx"].Delete();
libFolder.Update();
break;
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[181]

We can now create the page. We will read the template file referenced into a
FileStream object into a new file created within the folder object we have a
reference to. Be sure to close and dispose the FileStream object, or the process
will put a lock on your template file, which will prevent any additional processes
from using it.

FileStream stream = new FileStream(path + templateFilename, FileMode.
Open);
SPFileCollection files = libFolder.Files;
newFile = files.Add(newFilename, stream);
stream.Close();
stream.Dispose();

We now need to set the new page as the WelcomePage for the web's RootFolder
which will ensure that any user going to the root of the web will be directed to this
page instead of getting a Page Cannot Be Found error.

web.AllowUnsafeUpdates = true;
SPFolder rootFolder = web.RootFolder;
rootFolder.WelcomePage = newFile.Url;
rootFolder.Update();
web.AllowUnsafeUpdates = false;

Configure Web Parts on home page
We now have a reference to the page and can add the desired Web Parts to the page.
Adding Web Parts to the page is done through the SPLimitedWebPartManager
object. We can get a reference to the object within our new file for the given
PersonalizationScope; in this case the Shared scope.

SPLimitedWebPartManager wpMgr = newFile.
GetLimitedWebPartManager(System.Web.UI.WebControls.WebParts.
PersonalizationScope.Shared);

The first Web Part we will add to the page is the Tag Cloud Web Part, which will
be configured to show the tags for all users for the content within this site and all of
its subsites. The Tag Cloud Web Part has a number of configuration properties that
will be set including the ShowCount which determines if the number of items tagged
should be included and UserScope which is what determines which tags to show, in
this case the tags for all users from this site.

When we add the reference to the Web Part to the SPLimitedWebPartManager
object, we also need to define the Web Part zone to use and a position reference.

TagCloudWebPart tagWebPart = new TagCloudWebPart();
tagWebPart.Title = "Project Site Tags";

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Site Template

[182]

tagWebPart.ShowCount = true;
tagWebPart.UserScope = TagCloudUserScope.UnderUrlEveryone;
wpMgr.AddWebPart(tagWebPart, "Right", 2);
wpMgr.SaveChanges(tagWebPart);

Next we will add a Note Board Web Part to the page so that stakeholders can leave
comments on the page or ask questions. The WebPartPropertyDisplayItems will
determine the number of items to show before paging starts.

SocialCommentWebPart noteboardWebPart = new SocialCommentWebPart();
noteboardWebPart.Title = "Project Note Board";
noteboardWebPart.WebPartPropertyDisplayItems = 10;
wpMgr.AddWebPart(noteboardWebPart, "Right", 3);
wpMgr.SaveChanges(noteboardWebPart);

Next we will add a ListViewWebPart to the page which is a Web Part representation
of one of the site's lists or libraries. We will start by adding a Web Part for the
Charter list that was created. Since we will be adding multiple ListViewWebParts
to the page, I have created a utility function named ConfigureWebPart to assist with
the common steps. This method will be detailed later.

We will pass the ConfigureWebPart method a reference to the SPList object, the
name of the zone, and a Boolean value, to determine if the default view should be
used, and we get a populated Web Part object in return. We will pass that Web Part
object to the SPLimitedWebPartManager and save the changes.

ListViewWebPart charterWebPart = ConfigWebPart(web.Lists["Charter"],
"Left", true);
wpMgr.AddWebPart(charterWebPart, charterWebPart.ZoneID, 1);
wpMgr.SaveChanges(charterWebPart);

Similar to the Charter ListViewWebPart, we will now add the Issues,
Calendar and Links lists to the page.

ListViewWebPart issuesWebPart = ConfigWebPart(web.Lists["Issues"],
"Left", true);
wpMgr.AddWebPart(issuesWebPart, issuesWebPart.ZoneID, 3);
wpMgr.SaveChanges(issuesWebPart);
ListViewWebPart calendarWebPart = ConfigWebPart(web.Lists["Calendar"],
"Left", false);
wpMgr.AddWebPart(calendarWebPart, calendarWebPart.ZoneID, 4);
wpMgr.SaveChanges(calendarWebPart);
ListViewWebPart linksWebPart = ConfigWebPart(web.Lists["Links"],
"Right", false);
wpMgr.AddWebPart(linksWebPart, linksWebPart.ZoneID, 1);
wpMgr.SaveChanges(linksWebPart);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[183]

For the announcements list we will want to configure that one a little more
explicitly so it will not use the ConfigWebPart() method and instead make all
of the changes inline. We will establish a reference to the SPList object, create
the ListViewWebPart and then set the desired properties before adding it to the
SPLimitedWebPartManager.

SPList announ = web.Lists["Announcements"];
ListViewWebPart announcementsWebPart = new ListViewWebPart();
announcementsWebPart = new ListViewWebPart();
announcementsWebPart.Title = announ.Title;
announcementsWebPart.ZoneID = "Left";
announcementsWebPart.ListName = announ.ID.ToString("B").ToUpper();
announcementsWebPart.TitleUrl = announ.DefaultViewUrl;
pMgr.AddWebPart(announcementsWebPart, announcementsWebPart.ZoneID, 2);
wpMgr.SaveChanges(announcementsWebPart);
wpMgr.Dispose();

We need to ensure that the SPLimited WebPartManager object is properly disposed
when we are done with it to prevent memory leaks.

While completing the code that configured the ListViewWebParts we referenced a
utility function called ConfigWebPart that helped to set some standard configuration
for the Web Parts properties. The method is provided with a reference to the SPList,
the zone to place the Web Part, and a Boolean value to determine if the default
view should be used. In the case of most regular lists, the default view and its
fields should be applied, but in cases where there are special styles applied to the
ListViewWebPart views, the default view should not be applied. Examples include
the Links and Announcement lists which have different visual formatting by default.
At the end, the configure Web Part object is returned.

private ListViewWebPart ConfigWebPart(SPList list, string zoneID, bool
setDefaultView)
{
ListViewWebPart wp = new ListViewWebPart();
wp = new ListViewWebPart();
wp.Title = list.Title;
wp.ZoneID = zoneID;
wp.ListName = list.ID.ToString("B").ToUpper();
wp.TitleUrl = list.DefaultViewUrl;
 	 if (setDefaultView)
 	 wp.ViewGuid = list.DefaultView.ID.ToString("B").ToUpper();
return wp;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Site Template

[184]

Feature upgrading
SharePoint 2010 has added some new capabilities to better support the lifecycle of
your custom solutions. With proper versioning and adoption of the feature upgrade
patterns, it is possible to add additional Web Parts to the page, define additional lists,
add or modify list columns, and so on. This functionality is critical to maintaining a
solution like this Project Site template solution which is likely to be used on dozens
of sites, but also needs the changes available for any new sites that are provisioned.
Since the upgrades can be applied to specific version ranges, it is possible to support
the features in multiple previously controlled states.

Solution Explorer
The completed Solution Explorer is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[185]

Summary
This chapter leveraged the Server OMs and a series of packaged features in order to
deliver the Project Site Template solution.

The customizations are grouped as follows:

Visual Studio 2010

•	 WebTemplate: To create a WebTemplate feature that defines a site template
and activates the desired features.

•	 Feature receiver: To create a feature receiver that handles additional web
provisioning, creates required lists and libraries, and then creates and
configures a home page with the desired Web Parts.

This chapter showed how you can use the WebTemplates feature to build robust
custom site templates that are maintainable. Also, by moving the additional
configuration code to a separate solution we provided a way that we can maintain
our sites over time allowing for changes and reconfiguration of existing sites
as needed.

In the next chapter, Building a Project Management Office Site, we will leverage the
content from these sites to create a master rollup site which will give people the
ability to view summary data across all related sites.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project
Management Main Site

In the previous chapter we went through the steps to design a reusable web template
that can be used to provision a site to support a standard business process. The
example we used was for project management, but it could have also been used for
numerous other examples including product management, process improvement,
inventory management, and so on. The value of creating those sites with standard
templates and definitions is twofold; it cuts down on the amount of configuration
needed when setting up each site, but it also provides a standardized set of content
that can be aggregated and displayed on top-level sites.

This chapter takes us through the development of a Project Management Master
site that can aggregate the key metrics and status information from the project
management sites previously created. In addition, the site can also include process
and community content similar to what was originally covered in Chapter 4, Building
an Engaging Community Site.

This chapter covers the following topics:

•	 Project listing and status Web Part
•	 Rollup metrics
•	 My Project Sites listing
•	 Project Manager listing

By the end of this chapter we will be able to create a site capable of aggregating
content and information from a number of project subsites.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Management Main Site

[188]

Content aggregation options
As the content is organized across many site collections, it is important that the
process used to get the information executes very quickly and efficiently. Depending
on the type of content you are aggregating and how it will be used, the type of
approach may change. In this case the content will also be somewhat dynamic with
new project sites being provisioned on a regular basis. It would be impossible to
maintain a manual list of all of the active projects.

There are three main approaches that can be considered: reading for the individual
sites, using search, and compiling information via a scheduled job.

Reading individual sites or lists
The simplest way to read data from the Server OM is to make a call to SPList.
GetItems for a given list. While this works great when you know exactly what you
are looking for, and from which specific locations, it does not tend to be a great way
to aggregate content, because it is too specific and does not scale as well as some of
the other approaches.

It is also possible to query for all of the content within a site collection by making
a call to SPWeb.GetSiteData. This is significantly more flexible than the previous
method because it casts a wider net and looks throughout the site collection, but it
would still require iterating through each site collection and would require that you
know which site collections contain the content you are looking for.

Using these methods should not be the primary aggregation method, but can be
combined with one of the following, to query additional content or details.

Search
The search index provides a great way to quickly and efficiently access content
from a wide range of sources, especially when aggregating a list of similar or
related content from a wide range of sites. It is possible to use KeywordQuery,
FullTextSQLQuery, or in cases where FAST is available, FQL queries.

To increase the accuracy and speed of the queries, it is possible to fine-tune the
query and configuration to target-specific search scopes, content types, and managed
properties. Specifying the search scope will shrink the number of source records
you are searching against, and specifying a content type or a managed property
will allow you to filter the results down to a very precise level.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[189]

The first challenge to using the search index is that your content needs to be indexed
regularly for accurate results in cases where your content changes frequently. In
most cases incremental crawls are sufficient to pick up any new or modified content.
If your content changes more frequently than it can be crawled, you may need to use
an alternative approach.

The second challenge to using the search index is that very specific queries that filter
or return content based on custom properties will need to have managed properties
established, in order for the indexing process to recognize the specific fields and
values. Setting up managed properties for a handful of specified fields is not a big
deal, but mapping a dozen or more fields for a single solution might be cumbersome.
An alternative to this approach would be to execute a simplified query to quickly get
a list of content sources, and then iterate through that list and execute a call to the
SPList.GetItems or SPWeb.GetSiteData method that was outlined earlier.

Scheduled job
In cases where you need to aggregate content for more complicated purposes, such
as for a scorecard on a dashboard, it is not advisable to gather the data in real-time.
In these cases it is advisable to run a timer job to generate the results. This will
simplify the process by providing a single source for pulling the summary data
or aggregated content.

Map custom properties as managed
properties
As we saw in the Search section earlier, it is necessary to create managed properties
for individual fields that we will return or filter by within our search query.

To create the mapping:

1.	 Navigate to the Search Service Application.
2.	 Click on the Metadata Properties link under the Queries and

Results heading.
3.	 Provide a Property name, Value, and a Description.
4.	 Under the Mappings to crawled properties section, click on the Add

Mapping button and search for the field identified in the content type.
5.	 Select the appropriate mapping and click on the OK button.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Management Main Site

[190]

This will need to be completed for the following properties:

•	 Portfolio

•	 ProjectDescription

•	 ProjectManager

•	 ProjectStatus

•	 Sponsor

•	 ScheduledStart

•	 ActualStart

•	 ScheduledCloseout

•	 ActualCloseout

•	 ProjectHealth

Building a project listing and a status
Web Part
As part of the Project Site Template created in the previous chapter, there is a simple
list based on a syndicated content type called ProjectCharter that provided
some information about the project. While it is set as a regular list, there would
only be a single record per site. This information is a great example of the type of
information that can be rolled up into a central listing. This listing will be created
with the ProjectListing Web Part which leverages the Server OM and search
to dynamically find all of the indexed projects. In addition, the projects' current
project status records can also be displayed from the central listing, which provides
a convenient way to review the information.

Creating the ProjectMain project
The ProjectListing Web Part will be added to a new project called
SPBlueprints.ProjectMain.

To create the initial project:

1.	 Open Visual Studio 2010.
2.	 Select File, then New Project.
3.	 Browse to the Installed Templates and select Visual C# | SharePoint 2010,

and then Empty SharePoint Project.
4.	 Enter the project details such as Name, Location, and Solution name.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[191]

5.	 Within the SharePoint Customization Wizard, provide a path to your
SharePoint site and then be sure to select the option to Deploy as a
farm solution.

Creating the ProjectListing Web Part
To create the Web Part:

1.	 Right-click on the project file and select Add New Item.
2.	 From the template selection screen select the Web Part option.
3.	 Provide the name ProjectListing and click on the Add button.
4.	 Edit the ProjectListing.webpart file.
5.	 Set the Title property to ProjectListing.
6.	 Set the Description property to SPBlueprints Project Listings.
7.	 Create a property named SearchProxyName and set it to the name of your

Search service application.
8.	 Create a property named SearchScopeName and set it to Project Sites.
9.	 Create a property named DisplayLimit and set it to 50.
10.	 Edit the ProjectListing.cs file.
11.	 Import the following namespaces to support our work:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Text;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.Administration;
using Microsoft.Office.Server.Search;
using Microsoft.Office.Server.Search.Query;
using Microsoft.Office.Server.Search.Administration;

12.	 The following variables should be defined to support the Web Part:
private string searchProxyName;
private string searchScopeName;
private int displayLimit;

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Management Main Site

[192]

protected Literal _output;
protected Label labelStatus;
protected DropDownList choiceStatus;
protected Label labelSort;
protected DropDownList choiceSort;

13.	 Next we need to override the CreateChildControls() method and
instantiate each of the ASP.NET controls.
protected override void CreateChildControls()
{
 this.labelStatus = newLabel();
 this.labelStatus.ID = "labelStatus";
 this.labelStatus.Text = "Status: ";
 this.Controls.Add(this.labelStatus);

 this.choiceStatus = newDropDownList();
 this.choiceStatus.ID = "choiceStatus";
 this.choiceStatus.Items.Add("Active");
 this.choiceStatus.Items.Add("All");
 this.choiceStatus.Items.Add("Identified");
 this.choiceStatus.Items.Add("Scheduled");
 this.choiceStatus.Items.Add("In Progress");
 this.choiceStatus.Items.Add("Closeout");
 this.choiceStatus.Items.Add("Complete");
 this.choiceStatus.AutoPostBack = true;
 this.Controls.Add(this.choiceStatus);

 this._output = newLiteral();
 this._output.ID = "output";
 this.Controls.Add(this._output);
}

14.	 The following Web Part properties should be defined to allow settings to be
configured instead of hard-coding them into the Web Part code:
#region WebPart Properties
[WebBrowsable(true),
Category("Project Listing Properties"),
WebDisplayName("Search Proxy Name"),
WebDescription("Please provide the name of your Search Service
 Application."),
Personalizable(PersonalizationScope.Shared)]
public string SearchProxyName
{
 get { return searchProxyName; }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[193]

 set { searchProxyName = value; }
}

[WebBrowsable(true),
Category("Project Listing Properties"),
WebDisplayName("Search Scope Name"),
WebDescription("Please provide the name of your Search
 Scope."),
Personalizable(PersonalizationScope.Shared)]
public string SearchScopeName
{
 get { return searchScopeName; }
 set { searchScopeName = value; }
}

 [WebBrowsable(true),
Category("Project Listing Properties"),
WebDisplayName("Result limit"),
WebDescription("The number of items to display."),
Personalizable(PersonalizationScope.Shared)]
public int DisplayLimit
{
 get { return displayLimit; }
 set { displayLimit = value; }
}
#endregion

15.	 The output will be created in the Display() method, which should be called
as a part of the OnLoad() method. The overall output will be maintained
within the messages StringBuilder object.
protectedvoid Display()
{
 this.EnsureChildControls();
 StringBuilder messages = newStringBuilder();

16.	 As we will be using SharePoint Search to help surface the content, we will
need to test a connection to the Search service application specified in the
Web Part properties. If the connection cannot be established, then the error
should be caught and handled within the catch block.
try
{
 SearchQueryAndSiteSettingsServiceProxy settingsProxy =
 SPFarm.Local.ServiceProxies.GetValue
 <SearchQueryAndSiteSettingsServiceProxy>();

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Management Main Site

[194]

 SearchServiceApplicationProxy searchProxy =
 settingsProxy.ApplicationProxies.GetValue
 <SearchServiceApplicationProxy>(this.searchProxyName);
 FullTextSqlQuery mQuery = newFullTextSqlQuery(searchProxy);

// Additional Formatting Code
catch
{
 this.EnsureChildControls();
 this._output.Text = "Error: Please specify a Search Service
 Application.";
}

17.	 The remaining code will all reside within a try/catch block. There is a
choice control that provides the user the opportunity to filter down the
records to actual status values, as well as some virtual status values that can
include one of multiple values.
try
{
 string filter = "Active";
 if (this.choiceStatus.SelectedValue != null)
 filter = this.choiceStatus.SelectedValue;

 ResultTableCollection resultsTableCollection;
 DataTable results = newDataTable();
 bool bAltRow = true;

18.	 The query will identify the specific managed properties we want to display,
the scope to select it from, and the filter that will be used. It is important
to remember that the managed properties have to be mapped in order to
be used in the queries, so only fields mapped to a managed property can
be used. To help increase accuracy and further improve performance, we
can reference the Project Sites scope instead of the All Sites scope, in order
to apply an additional set of filtering rules. We are looking specifically for
records within the ProjectCharter content type so that needs to be added to
the WHERE clause of the query.
mQuery.QueryText = "SELECT Portfolio, Title,
 ProjectDescription, ProjectManager, ProjectStatus, Sponsor,
 ScheduledStart, ActualStart, LastModifiedTime, Path, SiteName,
 ScheduledCloseout, ActualCloseout FROM SCOPE()
 WHERE (\"scope\" = 'Project Sites') AND
 Contains(ContentType,'ProjectCharter') ";

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[195]

19.	 To help support the status filtering we will use a switch block that can
support showing multiple statuses related to the "Active" status, show
records from all statuses, or from a specific status that might be selected.
This could be extended to show other logical groupings similar to the
"Active" status if needed.
switch (filter)
{
 case "Active":
 mQuery.QueryText += "AND (ProjectStatus = 'Identified' OR
 ProjectStatus = 'Scheduled' OR ProjectStatus =
 'In Progress')";
 break;
 case "All":
 break;
 default:
 mQuery.QueryText += "AND ProjectStatus = '" + filter + "'";
 break;
}

20.	 Next we can set the remaining query properties, execute the query, and check
to see if the results were returned.
mQuery.ResultTypes = ResultType.RelevantResults;
mQuery.TrimDuplicates = true;
mQuery.RowLimit = DisplayLimit;
resultsTableCollection = mQuery.Execute();

if (resultsTableCollection.Count > 0){

21.	 Next we will extract just the relevant results from the returned
ResultTableCollection object.
ResultTable relevantResults =
 resultsTableCollection[ResultType.RelevantResults];
results.Load(relevantResults, LoadOption.OverwriteChanges);

22.	 Next we will reference a JavaScript file that will contain client-side code to
support the status pop-up display.
messages.Append("<script type='text/ecmascript'
 src='/_layouts/SPBlueprints.ProjectMain/ProjectMain.js'>
 </script>");

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Management Main Site

[196]

23.	 The display could be done using SPGridView, but in order to have
complete control over the display, we can format the output as a simple
HTML table. This is defined in the following code snippet, along with the
header row, to define the fields that will be displayed. In order to adopt
the standard SharePoint styles, we will reference the CSS classes used by
a standard SPGridView.
messages.AppendFormat(@"<table width='100%' border='0'
 cellpadding='1' cellspacing='0' class='ms-listviewtable'>
 <tr class='ms-viewheadertr ms-vhltr'><th class=
 'ms-vh2'>Portfolio</th><th class='ms-vh2'>Title</th>
 <th class='ms-vh2'>Project Description</th><th class=
 'ms-vh2'>Project Manager</th><th class='ms-vh2'>Status</th>
 <th class='ms-vh2'>Sponsor</th><th class='ms-vh2'>Scheduled
 Start</th><th class='ms-vh2'>Actual Start</th><th class=
 'ms-vh2'>Scheduled End</th><th class='ms-vh2'>Last
 Modified</th></tr>");

24.	 To provide the row output we will now use a simple foreach loop, which
can iterate through the available rows. In order to provide a link to the
project site and to the status listing within the pop up, we will also need to
execute some string manipulation on the sitePath value that was returned
from the search results.
foreach (DataRow row in results.Rows)
{
 string sitePath = row[10].ToString();
 sitePath = sitePath.Substring(0, sitePath.Length - 13);
 string statusPath = String.Concat(sitePath,
 "Lists/Status/AllItems.aspx?isDlg=1");

25.	 Next we will define the row tags, and include a logic check to see
if the alternating row needs to be styled. The remainder of the row
is written out including a link to the project site and a call to the
javascript:showStatus() method, which will load the project's status list
view in a Client OM modal dialog window. Afterwards the alternating row
flag is changed before closing out the foreach loop and then closing the
HTML table.
 messages.AppendFormat(@"<tr ");
 if (bAltRow) { messages.AppendFormat(@"class=
 'ms-alternatingstrong'"); }
 messages.AppendFormat(@"><td>{0}</td><td>
 {1}</td><td>{2}</td><td>{3}</td><td>
 {4}
 </td><td>{5}</td>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[197]

 <td>{6}</td><td>{7}</td><td>{8}</td><td>{9}</td></tr>",
 row[0].ToString(), row[1].ToString(), row[2].ToString(),
 row[3].ToString(),row[4].ToString(), row[5].ToString(),
 String.Format("{0:M/d/yyyy}", row[6]),
 String.Format("{0:M/d/yyyy}", row[7]),
 String.Format("{0:M/d/yyyy}",
 row[11]), row[8].ToString(), row[9].ToString(),
 row[10].ToString(),statusPath);

 bAltRow = !bAltRow;
}
messages.AppendFormat(@"</table>");

26.	 Finally we will set the final output, provide the catch block to grab and
report any errors, and then use the finally block to ensure that the query
object is properly disposed.

 }
 this.EnsureChildControls();
 this._output.Text = messages.ToString();
}
catch (Exception ex)
{
 this.EnsureChildControls();
 this._output.Text = "
Error: " + ex.Message.ToString();
}
finally
{
 mQuery.Dispose();
}

Creating the ProjectMain.js script
Our Web Part output includes references to a JavaScript file that is used to display
the project's status list view in a Client OM modal dialog window.

To add this script:

1.	 In Solution Explorer, right-click and select Add, and select the SharePoint
"Layouts" Mapped Folder option.

2.	 Select the project folder.
3.	 Right-click and select Add | New Item.
4.	 Under the Web category select the Jscript file option.
5.	 Name the file ProjectMain.js.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Management Main Site

[198]

6.	 Click on the Add button.
The ProjectMain.js file will initially contain a single method
named showStatus(), which will format and open a Client OM modal
dialog window with a reference to the project site's status list.
function showStatus(statusUrl, statusTitle) {
 var _options = { url: statusUrl, width: '1200',
 height: '600', title: statusTitle };
 SP.UI.ModalDialog.showModalDialog(_options);
}

Configuring the feature
We will now configure the main solution that will contain the Web Parts. This
solution will be scoped for a site deployment.

To configure the ProjectMain-Web feature:

1.	 Rename Feature 1 to ProjectMain-Web.
2.	 Change Title to Project Main.
3.	 Change Description to SPBlueprints Project Main Site Feature.
4.	 Change Scope to Site.

The completed feature is displayed in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[199]

Project listing displayed
The final rendered view is displayed in the following screenshot:

View status for a project is displayed in the following screenshot:

Building a site metrics gathering process
In order to gather the metrics for the active projects we will use a timer job to support
the scheduled job scenario reviewed at the beginning of the chapter.

To create the timer job:

1.	 Start by adding an Empty Element to the solution.
2.	 Name the element SiteMetricsProcess.
3.	 Within the SiteMetricsProcess SPI, we now need to add in a class named

SiteMetricsTimerJob.cs. This class is where the actual timer job and its
execution logic will reside.

4.	 We will need to import the following namespaces to support our work:
using System;
using System.Collections.Generic;
using System.Data;

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Management Main Site

[200]

using Microsoft.Office.Server.Search;
using Microsoft.Office.Server.Search.Query;
using Microsoft.Office.Server.Search.Administration;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Administration;

5.	 Next, we need to inherit from the SPJobDefinition class, which will allow
us to perform the timer job functions displayed as follows:
class SiteMetricsTimerJob : SPJobDefinition
{
 public SiteMetricsTimerJob() : base() {
 }

 public SiteMetricsTimerJob (string jobName,
 SPService service, SPServer server,
 SPJobLockType targetType)
 : base (jobName, service, server, targetType) {
 }

 public SiteMetricsTimerJob(string jobName,
 SPWebApplication webApplication)
 : base(jobName, webApplication, null, SPJobLockType.Job)
 {
 this.Title = "Project Site Metrics Collection";
 }

6.	 The main processing is handled by the override of the Execute method.
The Execute method passes in targetInstanceId, and also provides
access to the contextual information that we will use to instantiate an
SPWebApplication object displayed as follows:
public override void Execute(Guid targetInstanceId)
{
 base.Execute(targetInstanceId);
 SPWebApplication webApp = this.Parent as SPWebApplication;

7.	 Next, we will establish a connection with the search proxy, and create
a FullTextSQLQuery object, which is very similar to the Web Part we
recently created.
SearchQueryAndSiteSettingsServiceProxy settingsProxy =
 SPFarm.Local.ServiceProxies.
 GetValue<SearchQueryAndSiteSettings ServiceProxy>();
SearchServiceApplicationProxy searchProxy =
 settingsProxy.ApplicationProxies.
 GetValue<SearchServiceApplicationProxy>
 (webApp.Properties["SearchProxyName"].ToString());
FullTextSqlQuery mQuery = new FullTextSqlQuery(searchProxy);
ResultTableCollection resultsTableCollection;
DataTable results = new DataTable();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[201]

8.	 As we are only looking to collect summary metrics, the search query can
be simplified to only include a couple of properties needed to generate
the metrics.
mQuery.QueryText = "SELECT Title, ProjectStatus FROM SCOPE()
WHERE (\"scope\" = 'Project Sites') AND
Contains(ContentType,'ProjectCharter') ";

mQuery.ResultTypes = ResultType.RelevantResults;
mQuery.TrimDuplicates = true;
resultsTableCollection = mQuery.Execute();

if (resultsTableCollection.Count > 0)
{
 ResultTable relevantResults =
 resultsTableCollection[ResultType.RelevantResults];
 results.Load(relevantResults, LoadOption.OverwriteChanges);

9.	 With the results returned and available within a DataTable object, we can
generate the individual metrics we need. For this, we will call the Select()
method with an expression to gather the matched records, and then set a
local variable for later use.
string exp;

// Identified Items
exp = "ProjectStatus = 'Identified'";
DataRow[] matchedIdenRows;
matchedIdenRows = results.Select(exp);
int iIden = matchedIdenRows.GetUpperBound(0) + 1;

// Scheduled Items
exp = "ProjectStatus = 'Scheduled'";
DataRow[] matchedSchedRows;
matchedSchedRows = results.Select(exp);
int iSched = matchedSchedRows.GetUpperBound(0) + 1;

// In Progress Items
exp = "ProjectStatus = 'In Progress'";
DataRow[] matchedInProgRows;
matchedInProgRows = results.Select(exp);
int iInProg = matchedInProgRows.GetUpperBound(0) + 1;

// Closeout Items
exp = "ProjectStatus = 'Closeout'";
DataRow[] matchedCloseoutRows;
matchedCloseoutRows = results.Select(exp);
int iCloseout = matchedCloseoutRows.GetUpperBound(0) + 1;

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Management Main Site

[202]

// Completed Items
exp = "ProjectStatus = 'Complete'";
DataRow[] matchedCompRows;
matchedCompRows = results.Select(exp);
int iComp = matchedCompRows.GetUpperBound(0) + 1;

10.	 We now have all of the information we need to update the central metrics
list. To start with, we will connect to the site specified in the property bag,
open the web, and connect to the list specified in the property bag. We will
grab the All Items view which will have the five status values, and set each
of them to the summary values that were gathered earlier before saving
the updates.

using (SPSite site = new
 SPSite(webApp.Properties["ProjectSiteMetrix"].ToString()))
{
 using (SPWeb web = site.OpenWeb())
 {
 SPList metrics =
 web.Lists[webApp.Properties["ProjectSiteMetrixList"].
 ToString()];
 SPListItemCollection items =
 metrics.GetItems(metrics.Views["All Items"]);

 SPListItem item;
 item = items[0];
 item["Title"] = "Identified";
 item["Sites"] = iIden;
 item.Update();

 item = items[1];
 item["Title"] = "Scheduled";
 item["Sites"] = iSched;
 item.Update();
 item = items[2];
 item["Title"] = "In Progress";
 item["Sites"] = iInProg;
 item.Update();
 item = items[3];
 item["Title"] = "Closeout";
 item["Sites"] = iCloseout;
 item.Update();

 item = items[4];
 item["Title"] = "Complete";
 item["Sites"] = iComp;
 item.Update();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[203]

Creating the feature and feature receiver
Another feature will be added to support the timer job, and allow for registering and
removing the job during activation and deactivation.

To add the feature:

1.	 Right-click on the Features node and select the Add Feature option.
2.	 Rename the feature ProjectMain-App.
3.	 Provide a Title property.
4.	 Provide a Description for the feature.
5.	 Set the scope of the feature to WebApplication to support activation once per

web application.

A feature receiver must be created to register the job on activation or remove it,
when it is deleted.

To create the feature receiver:

1.	 From Solution Explorer, right-click on ProjectMain-App.feature and
select the Add Event Receiver option. This will add a class file named
ProjectMain-App.EventReceiver.cs. Within this class you will find
some example feature override methods that can be used.

2.	 The next thing we need to do is establish a constant that can be used to
support our project shown as follows:
const string TIMER_JOB_NAME = "SiteMetricsProcess";

3.	 Next, we will uncomment the FeatureActivated() method and add the
code that is needed to support the feature. As we are scoped for the web
application, we will need to grab the context which we will do with the
following line:
SPWebApplication webApp = properties.Feature.Parent as
 SPWebApplication;

4.	 Now we will run a little code to ensure that a job with the same name is not
already registered. If it is, it will be removed.
foreach (SPJobDefinition job in webApp.JobDefinitions) {
 if (job.Name == TIMER_JOB_NAME)
 job.Delete();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Management Main Site

[204]

5.	 As our timer job needs to read from and write to a SharePoint list, we will
use the property bag to maintain those settings. We will check to see if the
required keys exist, and create them and set a value if they do not. At the
end we need to be sure to call the Update() method, so that any changes are
saved. This call can add time to your overall processing, so you will want
to only call it if changes were made, which we will track using the Boolean
variable isDirty that we have defined.
bool isDirty = false;
if (!webApp.Properties.ContainsKey("SearchProxyName"))
{
 webApp.Properties.Add("SearchProxyName",
 "Search Service Application");
 isDirty = true;
}
if (!webApp.Properties.ContainsKey("SearchScopeName"))
{
 webApp.Properties.Add("SearchScopeName", "Project Sites");
 isDirty = true;
}
if (!webApp.Properties.ContainsKey("ProjectSiteMetrixList"))
{
 webApp.Properties.Add("ProjectSiteMetrixList",
 "ProjectSiteMetrics");
 isDirty = true;
}
if (!webApp.Properties.ContainsKey("ProjectSiteMetrix"))
{
 webApp.Properties.Add("ProjectSiteMetrix",
 "http://intranet/PMO/");
 isDirty = true;
}
if (isDirty)
 webApp.Update();

6.	 Next we will register the job with a simple reference to the timer job's class
file and create the schedule. The metrics can be set to generate on a frequency
that meets the requirements. In this example we will set it to run once daily,
but it could be generated at any frequency needed.
SiteMetricsProcess.SiteMetricsTimerJob metricsProcess =
 new SiteMetricsProcess.SiteMetricsTimerJob(TIMER_JOB_NAME,
 webApp);

SPDailySchedule schedule = newSPDailySchedule();
schedule.BeginSecond = 0;
schedule.EndSecond = 59;
metricsProcess.Schedule = schedule;
metricsProcess.Update();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[205]

7.	 We also want to make sure that we have proper clean up actions so we will
now uncomment the FeatureDeactivating() method. The code is the same
as what we put in place during activation in case a prior version of the job
already existed, but we also need one here so that it can be properly removed
if the feature is no longer needed.

SPWebApplication webApp = properties.Feature.Parent as
 SPWebApplication;

foreach (SPJobDefinition job in webApp.JobDefinitions)
{
 if (job.Name == TIMER_JOB_NAME)
 job.Delete();
}

Solution Explorer
The completed Solution Explorer is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Management Main Site

[206]

Configuring a project manager listing
The Project Managers page will display a listing of all of the people with a title of
Project Manager. This will leverage SharePoint's People Search and the People Search
Core Results Web Part to execute a set query that looks at the JobTitle field.

Creating the members page
To create the members page:

1.	 Click on the Site Actions menu, and select the New Page item.
2.	 Provide a Title for the page.
3.	 Click on the Create button.

Adding the People Search Core Results
Web Part
To add the People Search Core Results Web Part to the page:

1.	 Click on the Insert tab of the Ribbon.
2.	 Select the Web Part action.
3.	 Select the Search category.
4.	 Select the People Search Core Results Web Part as shown in the

following screenshot:

Configuring the members search query
To configure the preset members search query:

1.	 Edit the People Search Core Results Web Part properties.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[207]

2.	 Under the Display Properties group, change the Default Results Sorting
to Name.

3.	 Set the Results Per Page value to 50.
4.	 Uncheck the Use Location Visualization checkbox to enable customizing the

XSL as shown in the following screenshot:

5.	 Click on the XSL Editor button to open the model window with the XSL that
formats the results.

6.	 Make any desired modifications (see the next section).
7.	 Click on the Save button to save your changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Management Main Site

[208]

8.	 Under the Results Query Options group, change the Cross-Web Part
query ID.

9.	 Change the Fixed Keyword Query to JobTitle:"Project Manager" as
shown in the following screenshot:

10.	 Under the Appearance group, change the Title to Our Project Managers.
11.	 Click on the OK button.
12.	 The Fixed Keyword Query value added in step 9 will do a managed

property search for the JobTitle field, looks for matches with the
value "Project Manager", and returns all matching contacts.

Modifying the People Core Results XSL
The standard People Core Results markup can be changed to add or remove
properties in order to display the desired content. The standard markup is organized
into two main div containers: ContactInfo and MoreInfo. The ContactInfo
contains properties that are of value, but we will be changing the contents of the
MoreInfo container in order to focus on their skills, interests, and previous projects.
We will also remove the About Me property, and apply formatting changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[209]

Within the XSL, search for the MoreInfo container. Immediately before the MoreInfo
container there is a conditional statement that should be removed so that the
properties are displayed consistently.

<xsl:if test="$hasabme or $hasresp or $hassk or $hasint or
 $hasorgparent or $hasmem or $haspp or $hassch or $hasbol or
 $hassum">

Next we will replace the About Me property with the Past Projects property, which is
more meaningful in this context.

Remove the following section:

<xsl:if test="$hasabme">

 <xsl:value-of select="$AboutMeLabel" />

 <xsl:apply-templates select=
 "hithighlightedproperties/aboutme" />

</xsl:if>

And replace it with:

 <xsl:value-of select="$PastProjectsLabel" />

 <xsl:call-template name="RenderSimpleMultivalue">
 <xsl:with-param name="multivalue"
 select="hithighlightedproperties/pastprojects"/>
 <xsl:with-param name="cutoff" select="5"/>
 </xsl:call-template>

For the Responsibilities, Skills, and Interests sections, be sure to remove the
conditional test that wraps each section. With this conditional test in place,
it will only show the section if it was related to the search term.

The remaining properties within this section can be removed.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Project Management Main Site

[210]

Project Managers listing displayed
The final rendered view is displayed in the following screenshot:

Additional content ideas
With a project main site, it may be desirable to aggregate additional project details
like project issues or milestones, which can be done following a similar pattern to
what was done with the project charter information.

It may also be desirable to display content recently modified across the sites, or
content edited by the current user following a pattern similar to the DocVault Listings
Web Part reviewed in Chapter 3, Building an Enterprise Content Management Solution.

In addition, the community content and features reviewed in Chapter 4, Building an
Engaging Community Site may also provide value to your project participants.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[211]

Summary
This chapter leveraged both the Server and Client OMs along with some community
based libraries to create a packaged solution that can provide a Project Management
rollup site.

The customizations are grouped as follows:

•	 Visual Studio 2010:
°° Web Part: Used to display both the main project metrics as well as

provide a way to view the detailed project status
°° Timer job: Used to update the metrics on a scheduled basis
°° Feature receiver: Used to register and unregister the timer job

•	 Browser based configuration:
°° Configure People Core Results Web Part: Configured to pull the

listing of project managers along with custom XSL to enhance the
format of the results

This chapter showed how you can:

•	 Aggregate content across site collections using both the search subsystem as
well as the regular list APIs to query content

•	 Mix both the server and client code within the same solution in order to
build a highly functional and efficient solution, which is critical when pulling
content from potentially hundreds of sites

•	 Use techniques for generating aggregate metrics that can be processed via
a scheduled process, in order to increase the speed for rendering the content
on demand

The next chapter will address the business need to aggregate a user's tasks from
across the entire system or a selection of sites, providing an effective way to surface
the tasks and increase the chances that they will be completed in a timely fashion.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Task
Rollup Solution

For organizations that are widely using SharePoint to support workflows or task
management, it can be important to find an effective way to make those tasks
accessible throughout the system, or at least in particular places like the user's
MySite or the front page of a portal. As there is no solution included that meets
this need, it represents another great example of a custom solution that can be
built to extend the platform to provide a critical business solution.

This chapter will provide an overview of the approaches that can be leveraged
to aggregate the tasks from multiple sites into a single display, along with the
trade-offs of each approach. In addition to the conceptual overview, the following
customizations will be created:

•	 MyTasks Search Web Part
•	 MyTasks Web Part

Task rollup options
To aggregate the tasks into a single listing there are three options that can
be considered:

•	 Using search to query the content from the index
•	 Querying the lists directly with SiteData
•	 Running a scheduled process that can create a reference to the task in a

centralized list

We will review the advantages and disadvantages of each approach and determine
where you would want to use or not use it for your scenario.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Task Rollup Solution

[214]

Using search
As we have seen in the example solutions throughout the book, search can provide
a very effective way to aggregate content from many different sources quickly. The
biggest advantage is the speed of retrieving the results, and the fact that it can work
with results that have very different attributes and metadata schemas.

Search considerations
One of the risks with using search for this solution is that the accuracy of the
displayed results will vary greatly depending on how current the crawl index is. The
timeliness or freshness of the record is probably more important with tasks than any
other content stored in SharePoint, because tasks can be actively worked throughout
the day with new tasks being added, and existing ones being updated or completed.
If the index is stale, it will lead to inaccurate information being displayed, which will
lead to a lack of trust in the solution.

In order to successfully use search, the crawl schedule will need to be as frequent
as possible for the content sources that contain the tasks. Moving towards a
continuous, or at least near continuous, crawl will help ensure more accurate
results. If crawls cannot be completed frequently enough, then using the search
index is not a good idea.

Using SiteData
It is also possible to query the list information within the sites. This provides a
good case for using the SPSiteDataQuery class, which provides a mechanism
to define a list query across multiple lists simultaneously, either within the scope
of the given web or the entire site collection. When used with the GetSiteData()
method within the SPWeb object, you can effectively execute a complex query used
to aggregate content.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[215]

The SPSiteDataQuery object has the following key properties:

Property Description
Lists The Lists property is used to specify the Base List Type or List

Template associated with the list.
ViewFields The ViewFields property identifies the fields that should be returned.

Adding Nullable = True will ensure that the field is included even if
all list items do not include that field in its schema. The ViewFields
property format should be a valid CAML.

Query The Query property identifies any filtering or ordering that should
be done to the results. The Query property format should be a
valid CAML.

Webs The Webs property identifies the scope with the two main options being
Recursive, which will execute the query against the current site and all
subsites, or SiteCollection, which will execute the query against the
entire site collection.

The SPWeb.GetSiteData() method can be used to execute the referenced
SPSiteDataQuery object and returns a standard DataTable object in response.

SiteData considerations
As we will see later in this chapter, the SiteData option can be very effective when
used wisely, but has the potential to cause some serious performance issues if used
inappropriately. As the widest scope that it can query is a site collection, you will
need to make a call to each site collection you want to check for tasks. If there are
only a handful of site collections, this may not be that risky, but if you have dozens
of site collections it is sure to perform slowly or with hundreds of sites it will
surely fail.

Particular care should be taken when considering how to identify and move through
the sites that you will execute the query against. Apart from proper disposal of the
SPSite objects, it is also nearly always a good idea to avoid iterating through the
entire SPSiteCollection, unless you are certain that the number of site collections
is small.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Task Rollup Solution

[216]

Using a centralized list
It is possible to aggregate the content in a centralized list so that the data can be
retrieved quickly. This could be done using either of the following methods:

•	 An event receiver could be written that automatically copies the reference to
each new task or updates any existing task

•	 A custom timer job could be written that could execute the GetSiteData()
method on each site collection, and then write the results to the central list

Centralized list considerations
While these approaches may make sense for some solutions and content, I do not
believe that either would be a good fit for aggregating task data.

For the event receiver option, event receivers may not be reliable enough to keep the
items in sync throughout all task lists within the entire environment, and will add
significant overhead to your servers.

The timer job option is not a good idea for two reasons. The first reason for this is
that it would have to be done for all users, not just the ones using the customization
which will result in wasted processing. The second reason is that this approach will
be limited by the same constraint as using the search index; it will only be as accurate
as the last collection job. Running the job too frequently will have a large impact on
the server, because the timer job is unlikely to have the scalability or parallelism built
into the search crawling process.

MyTasks Search Web Part
The MyTasks Search Web Part will utilize the search approach to pull together a
listing of all the user's tasks.

Creating the SPBlueprints.MyTasks project
The MyTasks Search Web Part will be added to a new project called
SPBlueprints.MyTasks.

To create the initial project:

1.	 Open Visual Studio 2010.
2.	 Select File, then New Project.
3.	 Browse the Installed Templates and select Visual C# | SharePoint 2010,

and then Empty SharePoint Project.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[217]

4.	 Enter the project details such as Name, Location, and Solution name as
shown in the next screenshot.

5.	 Within the SharePoint Customization Wizard, provide a path to your
SharePoint site and then be sure to select the option to Deploy as a
farm solution.

Creating the MyTasks Search Web Part
To add the Web Part to the SPBlueprints.MyTasks project:

1.	 Open the SPBlueprints.MyTasks project in Visual Studio 2010.
2.	 Browse the Installed Templates and select Visual C# | SharePoint 2010.
3.	 Right-click on the project file and select Add | New Item.
4.	 From the template selection screen select the Web Part option.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Task Rollup Solution

[218]

5.	 Provide the Name as MyTasks Search and click on the Add button as shown
in the following screenshot:

6.	 Edit the MyTasksSearch.webpart file and add in the custom properties
shown as follows:
<property name="Title" type="string">MyTasks Search</property>
<property name="Description"type="string">Task Rollup Web
 Part</property>
<property name="DisplayMode"type="string">List</property>
<property name="SearchProxyName"type="string">Search Service
 Application</property>

7.	 The project will need to add references to both the Microsoft.Office.
Server and Microsoft.Office.Server.Search DLLs. With those
references in place the following namespaces should be imported to
your Web Part file:
Using System.Data;
Using System.Text;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[219]

Using Microsoft.Office.Server.Search;
Using Microsoft.Office.Server.Search.Query;
Using Microsoft.Office.Server.Search.Administration;

8.	 The Web Part will include a number of properties with configuration settings
and the output format of the content. First we will define the Display Mode
property which is used to determine the format of the output using a simple
enumeration to designate a List or Table format.
private displayMode _displayMode;
public enum displayMode
{
 List,
 Table
}

[WebBrowsable(true),
 Category("Configuration"),
 WebDisplayName("Display Mode"),
 WebDescription("Please select the display mode."),
 Personalizable(PersonalizationScope.Shared)]
public displayMode DisplayMode
{
 get { return _displayMode; }
 set { _displayMode = value; }
}

9.	 Next we will define the Search Proxy Name which is used to connect to the
Search service application of your choice.
private string _searchProxyName;
[WebBrowsable(true),
 Category("Configuration"),
 WebDisplayName("Search Proxy Name"),
 WebDescription("Please provide the name of your Search
 Service Application."),
 Personalizable(PersonalizationScope.Shared)]
public string SearchProxyName
{
 get { return _searchProxyName; }
 set { _searchProxyName = value; }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Task Rollup Solution

[220]

10.	 The output will be built within a Literal control defined within the
class, and instantiated within the CreateChildControls() method
shown as follows:
protected Literal _output;
protected override void CreateChildControls()
{
 this._output = newLiteral();
 this._output.ID = "output";
 this.Controls.Add(this._output);
}

11.	 The LoadTasks() method will be used to get any relevant task information
in the search index. To start out we will identify an initial DataTable to
hold our results, and then establish a connection to the Search service
application specified in the Web Part's properties. This is encapsulated
within a try/catch block in order to capture any exceptions connecting
to the service application.
private DataTable LoadTasks()
{
 DataTable results = new DataTable();
 try
 {
 SearchQueryAndSiteSettingsServiceProxy settingsProxy =
 SPFarm.Local.ServiceProxies.
 GetValue<SearchQueryAndSiteSettingsServiceProxy>();
 SearchServiceApplicationProxy searchProxy =
 settingsProxy.ApplicationProxies.
 GetValue<SearchServiceApplicationProxy>
 (this._searchProxyName);
 FullTextSqlQuery mQuery =
 new FullTextSqlQuery(searchProxy);

// Remaining code here
 }
 catch
 {
 this.EnsureChildControls();
 this._output.Text = "Error: Please specify a Search Service
 Application.";
 }
 return results;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[221]

12.	 As long as the connection with the service application was successful, the
remaining code will execute. For proper exception handling, the remaining
code will be enclosed in another try/catch/finally block to support
displaying any unexpected exceptions, and to properly dispose the
query object.

13.	 We will start by getting the current user's information, and then formatting
the FullTextSQLQuery syntax to return the information we are looking for.
We identify the properties that need to be returned.

The properties must be set up as Managed Metadata Properties
in the Search service application to be selectable.

try
{
 string user =
 SPContext.Current.Web.CurrentUser.Name.ToString();
 ResultTableCollection resultsTableCollection;
 mQuery.QueryText = "SELECT Title, Path, AssignedTo, Status, "
 + " WorkflowName, StartDate, EndDate"
 + " FROM SCOPE() WHERE (\"scope\" = 'All Sites')"
 + " AND ContentClass='STS_ListItem_Tasks'";
 mQuery.ResultTypes = ResultType.RelevantResults;
 mQuery.TrimDuplicates = false;
 mQuery.RowLimit = 100;

14.	 We can now execute the query and set the results in the
resultsTableCollectionDataTable object. We will then check to see if
there are any items, and if so, pull out the items identified as relevant results
and load those in the results DataTable object.
resultsTableCollection = mQuery.Execute();
if (resultsTableCollection.Count> 0)
{
 ResultTable relevantResults =
 resultsTableCollection[ResultType.RelevantResults];
 results.Load(relevantResults, LoadOption.OverwriteChanges);
}

15.	 We can now close out the try block and add the catch block to trap any
exceptions and include the exception message in the Web Part's output.
}
catch (Exception ex)
{
 this.EnsureChildControls();

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Task Rollup Solution

[222]

 this._output.Text+= ex.Message;
}
 finally
{
 mQuery.Dispose();
}

16.	 The Display() method will be used to define the Web Part's output and
will be called from the OnLoad() method. The method starts by defining
the StringBuilder object we will use to build the output of the Web Part,
and then calls the LoadTasks() method we just defined to load the actual
data. We can then start to format the output of our content and register the
MyTasks.js script.
protected void Display()
{
 StringBuilder messages = new StringBuilder();
 try
 {
 DataTable results = LoadTasks();
 messages.AppendFormat(@"
My Tasks: {0}",
 results.Rows.Count);
 messages.AppendFormat(@"<div id='MyTasks'>");
 messages.AppendFormat(@"<script type='text/ecmascript'
 src='/_layouts/SPBlueprints.MyTasks/MyTasks.js'>
 </script>");

17.	 We will use a switch block to control the multiple versions of the output
which supports both a List and Table version. If the value of the Display
Mode Web Part property is List, the first case will be met and the content
will be shown in a simple list format.

18.	 A foreach loop will then be used to iterate through each row in the included
results DataTable object. Within the loop we will handle some conditional
formatting for the WorkflowName field, and display it within brackets if there
is a value. Then we will write out the list item tag for the given task, close the
list and close the div container object before breaking the case statement.
switch (_displayMode)
{
 case displayMode.List:
 foreach (DataRow row in results.Rows)
 {
 string workflow = "";
 if (row[4].ToString() != "")
 workflow = "(" + row["WorkflowName"].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[223]

 ToString() + ")";
 messages.AppendFormat(@"
 <a href=""javascript:showTask('{0}', '{1}',
 '{2}')"">{1} {2}", row[1].ToString(),
 row[0].ToString(), workflow);
 }
messages.AppendFormat(@"</div>");
break;

19.	 The second case supports the Display Mode of Table which will render
an HTML table. The formatting for the table is a little more elaborate and
will require defining the table, and cell headers. You will notice the use of
standard SharePoint CSS classes being referenced.
case displayMode.Table:
 boolbAltRow = true;
 messages.AppendFormat(@"<table width='100%' border='0'
 cellpadding='1' cellspacing='0' class='ms-listviewtable'>
 <tr class='ms-viewheadertrms-vhltr'>");
 messages.AppendFormat(@"<td>Title</td><td>Workflow</td>
 <td>Status</td><td>Start Date</td><td>Due Date</td></tr>");

20.	 We will then add in a foreach loop to iterate through the rows within the
results DataTable object. For each row we will format the results within the
table cells and use the bAltRow Boolean value to control whether to use the
alternating styles class ms-alternatingstrong. Afterwards we terminate the
loop, close out the table and div tags, break the case block, and terminate
the switch block.
foreach (DataRow row in results.Rows)
{
 messages.AppendFormat(@"<tr ");
 if (bAltRow) { messages.AppendFormat(@"class=
 'ms-alternatingstrong'"); }
 messages.AppendFormat(@"><td>
 <a href=""javascript:showTask('{0}', '{1}',
 '{2}')"">{1}</td><td>{2}</td><td>{3}</td><td></td>

 <td></td></tr>", row[1].ToString(), row[0].ToString(),
 row[4].ToString(), row[3].ToString());
 bAltRow = !bAltRow;
}
messages.AppendFormat(@"</table></div>");
break;

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Task Rollup Solution

[224]

21.	 With the output string fully generated we will ensure that the controls
have been initialized, and set the output Literal control to the messages
StringBuilder object and close the try block. We then have a catch block
that can trap any exceptions that might have occurred, and use the output
Literal control to display the exception details.

 this.EnsureChildControls();
 this._output.Text = messages.ToString();
}
catch (Exception ex)
{
 this.EnsureChildControls();
 this._output.Text+= "Error: " + ex.Message.ToString();
}

Creating the MyTasks.js file
The MyTasks.js script referenced within the Display() function is used to leverage
the Client OM's modal dialog framework for displaying the tasks within a standard
modal window.

When using JavaScript within your custom Web Parts, it is often easiest to add the
content to a file that is managed with the custom Web Part's feature. By mapping
the Layouts folder in your Visual Studio project, it is possible to deploy files to a
location within the Layouts virtual directory making it available to any site in
the farm.

Best practice is to name the folder to match your project or feature name. In this case
a folder named SPBlueprints.MyTasks has been added and the following MyTasks.
js script was added to the project:

function showTask(taskLink, title, workflow) {
 var _options = { url: taskLink, width: '800', title: workflow +
 ' - ' + title };
 SP.UI.ModalDialog.showModalDialog(_options);
}

MyTasks Web Part
The MyTasks Web Part will utilize the SiteData approach to pull together a listing
of all the user's tasks by executing the GetSiteData() method from a specified list
of sites.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[225]

Creating the Web Part
The MyTasks Web Part will be added to the SPBlueprints.MyTasks project.

To create the solution and Web Part:

1.	 Open the SPBlueprints.MyTasks project in Visual Studio 2010.
2.	 Browse the Installed Templates and select Visual C# | SharePoint 2010.
3.	 Right click on the project file and select Add | New Item.
4.	 From the template selection screen select the Web Part option.
5.	 Provide the Name as MyTasks and click on the Add button as shown in the

following screenshot:

6.	 Edit the MyTasks.webpart file and add in the custom properties shown
as follows:
<property name="Title" type="string">MyTasks</property>
<property name="Description" type="string">Task Rollup Web
 Part</property>
<property name="DisplayMode" type="string">List</property>

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Task Rollup Solution

[226]

7.	 The following namespaces need to be added to the default namespaces listed
with a new Web Part template:
using System.Data;
using System.Text;

8.	 The Web Part will include a number of properties that help to manage both
the processing and the output of the content. First we will define the Display
Mode property, which is used to determine the format of the output using a
simple enumeration to designate a List or Table format.
private displayMode _displayMode;
public enum displayMode
{
 List,
 Table
}

[WebBrowsable(true),
 Category("Configuration"),
 WebDisplayName("Display Mode"),
 WebDescription("Please select the display mode."),
 Personalizable(PersonalizationScope.Shared)]
public displayMode DisplayMode
{
 get { return _displayMode; }
 set { _displayMode = value; }
}

9.	 The next property will be another enumeration that will determine whether
to aggregate tasks from just the current site collection or to use the specified
list of sites.
private scope _scope;
public enum scope
{
 Current,
 Specified
}
[WebBrowsable(true),
 Category("Configuration"),
 WebDisplayName("Scope"),
 WebDescription("Please select the scope to search for
 tasks."),
 Personalizable(PersonalizationScope.Shared)]
public scope Scope
{
 get { return _scope; }
 set { _scope = value; }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[227]

10.	 Last we will specify the site list which is a comma-delimited list of sites the
site designer can specify for inclusion in the rollup.
private string _siteList;

[WebBrowsable(true),
 Category("Configuration"),
 WebDisplayName("Site List"),
 WebDescription("Please provide a comma delimited list of
 sites"),
 Personalizable(PersonalizationScope.Shared)]
public string SiteList
{
 get { return _siteList; }
 set { _siteList = value; }
}

11.	 The output will be built within a Literal control defined within the
class, and instantiated within the CreateChildControls() method
shown as follows:
protected Literal _output;
protected override void CreateChildControls()
{
 this._output = newLiteral();
 this._output.ID = "output";
 this.Controls.Add(this._output);
}

12.	 The LoadTasks() method will load the task information for both display
modes. It will take in the site list parameter and return a DataTable object.
To start off the method we will prepare some variables and objects used
within this block of code. The DataTable object results will be used to store
the master list of results, while the DataTable object localResults will
contain temporary results from one specified site collection. We will also
get the current user's display name which will be used within the query.
private DataTable LoadTasks(string siteList)
{
DataTable results = new DataTable();
DataTable localResults = new DataTable();
bool firstRow = true;
SPWeb web = null;
string[] siteArray = siteList.Split(',');
string user =

 SPContext.Current.Web.CurrentUser.Name.ToString();

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Task Rollup Solution

[228]

13.	 Next we will create and set the SPSiteDataQuery object which will be used
to define the query. As discussed previously, the Lists property can be
used to filter the results for a specific template type, in this case the Tasks
template, which has an internal ID of 107.
SPSiteDataQuery query = newSPSiteDataQuery();
query.Lists = "<Lists ServerTemplate=\"107\" />";

14.	 The ViewFields property will contain the CAML query that specifies
the fields you want to retrieve. For any fields that will not return a
matching value, be sure to set the Nullable = True property to
ensure that it is returned.
query.ViewFields = "<FieldRef Name=\"LinkTitle\" />"+
 "<FieldRef Name=\"Title\" />" +
 "<FieldRef Name=\"AssignedTo\" Nullable=\"TRUE\"/>"+
 "<FieldRef Name=\"StartDate\" Nullable=\"TRUE\"/>" +
 "<FieldRef Name=\"DueDate\" Nullable=\"TRUE\"/>" +
 "<FieldRef Name=\"Status\" Nullable=\"TRUE\"/>" +
 "<FieldRef Name=\"PercentComplete\" Nullable=\"TRUE\"/>" +
 "<FieldRef Name=\"WorkflowName\" Nullable=\"TRUE\"/>" +
 "<ListProperty Name=\"Title\" />" +
 "<FieldRef Name=\"ID\" />" +
 "<FieldRef Name=\"EncodedAbsUrl\" />" +
 "<FieldRef Name=\"FileDirRef\" />";

15.	 Next is the Query property, which will specify the Where and OrderBy
clauses. For this example, we want to find tasks that are assigned to the
current user with a status not equal to completed, and then order the
results by the StartDate field.
query.Query = "<Where><And><Eq><FieldRef Name=\"AssignedTo\"
 />" +
 "<Value Type=\"User\">" + user + "</Value></Eq>" +
 "<Neq><FieldRef Name=\"Status\" />" +
 "<Value Type=\"Choice\">Completed</Value></Neq></And></Where>"
 +
 "<OrderBy><FieldRef Name=\"StartDate\" /></OrderBy>";

16.	 The last two properties we will set are the Webs property which will set it to
look at the entire site collection, and then we will set the RowLimit property.
query.Webs = "<Webs Scope=\"SiteCollection\" />";
query.RowLimit = 100;

17.	 As the Web Part supports two different processing models, we will use the
Scope Web Part property within a switch statement to determine which
block to execute. Please note that Current scope is the default scope.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[229]

18.	 For the Specified scope, we will iterate through siteArray and connect to
the SPSite object for each specified item. For each site, we will set a reference
to its RootWeb, and then execute the GetSiteData() method passing in the
SPSiteDataQuery object, and populating the results in the localResults
DataTable object.
switch (_scope)
{
 case scope.Specified:
 for (int i = 0; i <= siteArray.GetUpperBound(0); i++)
 {
 using (SPSite site = new SPSite(siteArray[i]))
 {
 web = site.RootWeb;
 localResults = web.GetSiteData(query);

19.	 If this is the first time through we will need to set the results DataTable
equal to the localResults DataTable which will also pass in the schema
information, otherwise we will execute the Merge() method of DataTable
which will add the rows from the localResults DataTable into the results
DataTable. We then set the firstRow value to false so that the next load
will be merged.
if (firstRow)
 results = localResults;
else
 results.Merge(localResults);

firstRow = false;

20.	 Next, we need to close out the switch block and add the break command to
ensure that future blocks are not executed.
 }
}
break;

21.	 The default block of the switch statement is used to process results only for
the current site. As we are not aggregating results at this point, the overall
code is significantly simpler. We will get a reference to the current web and
populate the results DataTable directly.
default: //Current Site
 web = SPContext.Current.Web;
 results = web.GetSiteData(query);
 break;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Task Rollup Solution

[230]

22.	 At the very end we will set the method's return to the results DataTable to
ensure that the data is passed back to the calling method.
return results;

23.	 The FormatLink() method will be used within the Display() method to
provide standard formatting to the task links within each of the display
modes. The FileDirRef field needs to be manipulated in order to get the
path to the item. We will read out the value to a local variable and then
execute a split command on it using the '#' character, which is included
in the multipart value. Finally we will format the return value with a full
link to the item, including the QueryString command, so that it assumes
the modal dialog styles and includes the proper source value.
private string FormatLink(string FileRef, string AbsUrl,
 string itemID)
{
 string[] listPath = FileRef.Split('#');
 return AbsUrl + listPath[1] + "/DispForm.aspx?ID="
 + itemID + "&IsDlg=1&Source="
 + HttpContext.Current.Request.Url.ToString();
}

24.	 With all of the setup work complete, we can now define the Display()
method that can be called from the OnLoad() method. The method starts
by defining the StringBuilder object we will use to build the output of the
Web Part, and then calls the LoadTasks() method we just defined to load the
actual data.
protected void Display()
{
 StringBuilder messages = new StringBuilder();
try
{
 DataTable results = LoadTasks(_siteList);

25.	 Next we will start to format the output with the MyTasks label, specify the
number of results that were returned, specify the selected scope and create
a div container to hold our content.
messages.AppendFormat(@"
My Tasks: {0} ({1})",
 results.Rows.Count, _scope);
messages.AppendFormat(@"<div id='MyTasks'>");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[231]

26.	 Then we will reference the MyTasks.js file specified in the next section
which will be used to load our task items within a standard model dialog.
This gives the user access to the standard task or workflow task forms on the
specified site, without having to click away from the page they are on.
messages.AppendFormat(@"<script type='text/ecmascript'
 src='/_layouts/SPBlueprints.MyTasks/MyTasks.js'></script>");

27.	 To handle the multiple display modes, we will use another switch statement
that keys off the Display Mode field. The first block will handle the list
display mode in which we will create a loop to iterate the rows in the results
DataTable object.
switch (_displayMode)
{
 case displayMode.List:
 foreach (DataRow row in results.Rows)
 {

28.	 Within the loop we will define and populate a number of row-level variables
used in the processing of the row output. To get the task item's formatted
link we will call the FormatLink() method passing in the FileDirRef,
EncodedAbsURL, and ID fields for the row. We will also apply some
conditional formatting for the WorkflowName row, showing the value in
brackets if it is returned, or ignoring it if it is not.
itemLink = FormatLink(row["FileDirRef"].ToString(),
 row["EncodedAbsUrl"].ToString(), row["ID"].ToString());
string workflow = "";
if (row["WorkflowName"].ToString() != "")
 workflow = "(" + row["WorkflowName"].ToString() + ")";

29.	 With the link value formatted we can now write it to the output including the
call to the showTask() method within the MyTasks.js file referenced earlier.
messages.AppendFormat(@"
 {0}
 {1}", row["Title"].ToString(), workflow, itemLink);

30.	 We can now complete our foreach block, close our list and div HTML
objects and add the break command within the case block.
}
messages.AppendFormat(@"</div>");
break;

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Task Rollup Solution

[232]

31.	 The second case within the switch block is used for the table display mode,
which will format a grid-like output through the use of a simple HTML table.
case displayMode.Table:
 bool bAltRow = true;
 messages.AppendFormat(@"<table width='100%' border='0'
 cellpadding='1' cellspacing='0' class='ms-listviewtable'>
 <tr class='ms-viewheadertrms-vhltr'>");
 messages.AppendFormat(@"<td>Title</td><td>Workflow</td>
 <td>Status</td><td>% Complete</td><td>Start Date</td><td>
 Due Date</td></tr>");

32.	 To process the results we use a foreach loop to iterate through the data
rows within the results DataTable. Similar to the list display mode we
will make a call to the FormatLink() method passing in the FileDirRef,
EncodedAbsURL, and ID fields for the row.
foreach (DataRow row in results.Rows)
{
 itemLink = FormatLink(row["FileDirRef"].ToString(),
 row["EncodedAbsUrl"].ToString(), row["ID"].ToString());

33.	 We can now format the table row which includes support for the
ms-alternatingstrong style through the use of a simple Boolean
variable that checks if the value was changed with each row. The main
table cell values are also written out with the main value formatted as
a link to the showTask() method from the MyTasks.js file.
messages.AppendFormat(@"<tr ");
if (bAltRow) { messages.AppendFormat(@"class='ms-
 alternatingstrong'"); }
messages.AppendFormat(@"><td>
 <a href=""javascript:showTask('{0}', '{1}',
 '{2}')"">{1}</td><td>{2}</td><td>{3}</td><td>{4}</td>
 <td>{5}</td><td>{6}</td></tr>", itemLink,
 row["Title"].ToString(), row["WorkflowName"].ToString(),
 row["Status"].ToString(), row["PercentComplete"],
 row["StartDate"], row["DueDate"]);
bAltRow = !bAltRow;

34.	 We can now terminate the loop block, close our table container, complete
our switch block, and close our div container.
 }
 messages.AppendFormat(@"</table>");
 break;
}
messages.AppendFormat(@"</div>");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[233]

35.	 With all of the formatting within the Display() method complete we will
now make a call to the EnsureChildControls() method to make sure that
everything is initialized, and then set the output Literal control to our
messages variable before closing out the try block. A standard catch block
has also been added to support exception handling.

 this.EnsureChildControls();
 this._output.Text = messages.ToString();
}
catch (Exception ex)
{
 this.EnsureChildControls();
 this._output.Text = "Error: " + ex.Message.ToString();
}

Displaying the MyTasks and MyTasks Search
Web Parts
The display of the MyTasks and MyTasks Search Web Parts are identical and both
support multiple display modes, a bulleted list as well as a table view.

The following is a screenshot of the MyTasks Web Part in a simple list mode:

The following is a screenshot of the MyTasks Web Part in table mode:

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Task Rollup Solution

[234]

Both the list and table modes offer links directly to the tasks in a model window
shown as follows:

While the All Items link directs to the standard list item display form, workflow tasks
will automatically redirect to the workflow task in the model form shown as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[235]

Completed SPBlueprints.MyTasks solution
The completed solution for the SPBlueprints.MyTasks project and Web Part feature
should include both the MyTasks and MyTasksSearch Web Parts, and the MyTasks.
js script file. The final Solution Explorer should look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Task Rollup Solution

[236]

The completed feature definition should look like the following screenshot:

Summary
This chapter leveraged both the search index as well as the SiteData method for
aggregating user tasks into a simple Web Part that can be displayed on main pages
or on the user's My Content site.

We showed you how to create custom Web Parts that can aggregate tasks from the
specified sites.

In the next chapter, we can take a look at how to create a site directory feature using
SharePoint Search.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Directory with
SharePoint Search

A common challenge for many SharePoint users is finding sites with content that
is relevant to them. It is pretty common to find environments with hundreds if not
thousands of sites. In past versions of the product, there was a Site Directory feature
that was available, but it was essentially just a SharePoint list which required manual
entry and significant maintenance, which ultimately made it a pretty unreliable and
ineffective solution.

This chapter will provide some alternative solutions for addressing these challenges,
starting with an overview of some key concepts on how to leverage SharePoint
Search to provide an optimized experience, making it easier for users to search
and discover relevant sites. In addition to the conceptual overview, the following
configurations and custom solutions will be covered:

•	 Sites Search Scope
•	 Site Directory page
•	 Relevant sites Web Part

Site Directory options
There are two main approaches to providing a Site Directory feature:

•	 A central list that has to be maintained
•	 Using a search-based tool that can provide the information dynamically

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Directory with SharePoint Search

[238]

List-based Site Directory
With a list-based Site Directory, a list is provisioned in a central site collection, such
as the root of a portal or intranet. Like all lists, site columns can be defined to help
describe the site's metadata. Since it is stored in a central list, the information can
easily be queried, which can make it easy to show a listing of all sites and perform
filtering, sorting, and grouping, like all SharePoint lists.

It is important to consider the overall site topology within the farm. If everything
of relevance is stored within a single site collection, a list-based Site Directory,
accessible throughout that site collection, may be easy to implement. But as soon as
you have a large number of site collections or web applications, you will no longer
be able to easily use that Site Directory without creating custom solutions that can
access the central content and display it on those other sites. In addition, you will
need to ensure that all users have access to read from that central site and list.

Another downside to this approach is that the list-based Site Directory has to be
maintained to be effective, and in many cases it is very difficult to keep up with this.
It is possible to add new sites to the directory programmatically, using an event
receiver, or as part of a process that automates the site creation, such as the solution
outlined in Chapter 5, Building a Site Request and Provisioning System. However,
through the site's life cycle, changes will inevitably have to be made, and in many
cases sites will be retired, archived, or deleted.

While this approach tends to work well in small, centrally controlled environments,
it does not work well at all in most of the large, distributed environments where
the number of sites is expected to be larger and the rate of change is typically
more frequent.

Search-based site discovery
An alternative to the list-based Site Directory is a completely dynamic site discovery
based on the search system. In this case the content is completely dynamic and
requires no specific maintenance. As sites are created, updated, or removed,
the changes will be updated in the index as the scheduled crawls complete. For
environments with a large number of sites, with a high frequency of new sites
being created, this is the preferred approach.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[239]

The content can also be accessed throughout the environment without having to
worry about site collection boundaries, and can also be leveraged using out of the
box features, as we will see later in this chapter.

The downside to this approach is that there will be a limit to the metadata you can
associate with the site. Standard metadata that will be related to the site include
the site's name, description, URL, and to a lesser extent, the managed path used to
configure the site collection. From these items you can infer keyword relevance,
but there is no support for extended properties that can help correlate the site with
categories, divisions, or other specific attributes.

How to leverage search
Most users are familiar with how to use the Search features to find content, but are
not familiar with some of the capabilities that can help them pinpoint specific content
or specific types of content. This section will provide an overview on how to leverage
search to provide features that help support users finding results that are only
related to sites.

Content classes
SharePoint Search includes an object classification system that can be used to identify
specific types of items as shown in the next table. It is stored in the index as a
property of the item, making it available for all queries.

Content Class Description
STS_Site Site Collection objects
STS_Web Subsite/Web objects
STS_list_[templatename] List objects where [templatename] is the name

of the template such as Announcements or
DocumentLibrary

STS_listitem_[templatename] List Item objects where [templatename] is the
name of the template such as Announcements
or DocumentLibrary

SPSPeople User Profile objects (requires a User Profile
Service Application)

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Directory with SharePoint Search

[240]

The contentclass property can be included as part of an ad hoc search performed by
a user, included in the search query within a customization, or as we will see in the
next section, used to provide a filter to a Search Scope.

Search Scopes
Search Scopes provide a way to filter down the entire search index. As the index
grows and is filled with potentially similar information, it can be helpful to define
Search Scopes to put specific set of rules in place to reduce the initial index that the
search query is executed against. This allows you to execute a search within a specific
context. The rules can be set based on the specific location, specific property values,
or the crawl source of the content.

The Search Scopes can be either defined centrally within the Search service
application by an administrator or within a given Site Collection by a Site Collection
administrator. If the scope is going to be used in multiple Site Collections, it should
be defined in the Search service application. Once defined, it is available in the
Search Scopes dropdown box for any ad hoc queries, within the custom code, or
within the Search Web Parts.

Defining the Site Directory Search Scope
To support dynamic discovery of the sites, we will configure a Search Scope that
will look at just site collections and subsites. As we saw above, this will enable us
to separate out the site objects from the rest of the content in the search index. This
Search Scope will serve as the foundation for all of the solutions in this chapter.

To create a custom Search Scope:

1.	 Navigate to the Search Service Application.
2.	 Click on the Search Scopes link on the QuickLaunch menu under the

Queries and Results heading.
3.	 Set the Title field to Site Directory.
4.	 Provide a Description.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[241]

5.	 Click on the OK button as shown in the following screenshot:

6.	 From the View Scopes page, click on the Add Rules link next to the new
Search Scope.

7.	 For the Scope Rule Type select the Property Query option.
8.	 For the Property Query select the contentclass option.
9.	 Set the property value to STS_Site.
10.	 For the Behavior section, select the Include option.

11.	 From the Scope Properties page, select the New Rule link.
12.	 For the Scope Rule Type section, select the Property Query option.
13.	 For the Property Query select the contentclass option.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Directory with SharePoint Search

[242]

14.	 Set the property value to STS_Web.
15.	 For the Behavior section, select the Include option.

The end result will be a Search Scope that will include all Site Collection and subsite
entries. There will be no user generated content included in the search results of
this scope.

After finishing the configuration for the rules there will be a short delay before
the scope is available for use. A scheduled job will need to compile the search
scope changes.

Once compiled, the View Scopes page will list out the currently configured search
scopes, their status, and how many items in the index match the rules within the
search scopes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[243]

Enabling the Search Scope on a
Site Collection
Once a Search Scope has been defined you can then associate it with the Site
Collection(s) you would like to use it from. Associating the Search Scope to the Site
Collection will allow the scope to be selected from within the Scopes dropdown on
applicable search forms. This can be done by a Site Collection administrator one Site
Collection at a time or it can be set via a PowerShell script on all Site Collections.

To associate the search scope manually:

1.	 Navigate to the Site Settings page.
2.	 Under the Site Collection Administration section, click on the

Search Scopes link.
3.	 In the menu, select the Display Groups action.
4.	 Select the Search Dropdown item.
5.	 You can now select the Sites Scope for display and adjust its position within

the list.
6.	 Click on the OK button when complete.

Testing the Site Directory Search Scope
Once the scope has been associated with the Site Collection's search settings, you
will be able to select the Site Directory scope and perform a search, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Directory with SharePoint Search

[244]

Any matching Site Collections or subsites will be displayed. As we can see from the
results shown in the next screenshot, the ERP Upgrade project site collection comes
back as well as the Project Blog subsite.

Site Directory page
The initial configuration of the Site Directory Search Scope pointed to the standard
results search page. While this may work fine in some cases, a custom results page
will allow you to fine tune the user experience and also make additional searches or
refinements a little easier.

Creating the Site Directory page
We will now add a custom page to the Search Center to support our Site Directory
search page. Once added to the Search Center it will then be configured to be the
default destination for the Site Directory search scope.

To create the page:

1.	 Navigate to the default Search Center.
2.	 Click Site Actions | Show Ribbon.
3.	 Select the Page tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[245]

4.	 Select the View All Pages action.

5.	 Select the Documents tab.
6.	 Click the New Document action and select Page as shown in the

next screenshot:

7.	 Set the Title field to the value Site Directory.
8.	 Provide a Description.
9.	 Provide a URL Name such as Site-Directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Directory with SharePoint Search

[246]

10.	 Ensure that for the Page Layout, (Welcome Page) Search results is selected.
11.	 Click on the Create button.

Configure the Site Directory page settings
We will now see a standard search results page and will need to make a few minor
changes in order to be used to support the Site Directory requirements.

To configure the page's settings:

1.	 Click on Site Actions | Edit Page.
2.	 From Search Box Web Part, select the Edit Web Part action.
3.	 Within the Miscellaneous section, change the Target search results

page URL to Site-Directory.aspx so that it directs the request to our
Site Directory page.

4.	 Click the OK button.
5.	 From the Search Core Results Web Part, select the Edit Web Part action.
6.	 Within the Location Properties section, set the Scope property to

Site Directory.
7.	 Within the More Results Link Options, check the checkbox to Show More

Results Link.
8.	 Click on the OK button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[247]

Adding a Site Directory tab
With both the search query and result pages there is a control that will display
contextual tabs that can be used to navigate to customized search pages. The All
Sites and People tabs are added by default, but additional tabs can be configured.
To make it easy for users to search the Site Directory from the Search Center, we will
add a Site Directory tab. Please note, since the values are stored in a set of central
lists within the Search Center, you only need to configure the tabs once for the
regular search pages and once for the results pages.

To add a new tab:

1.	 Click on the Add New Tab option under the existing tabs.
2.	 Set the Tab Name property to Site Directory.
3.	 Set the Page property to Site-Directory.aspx.
4.	 Set the Tooltip property to Click for relevant sites.
5.	 Click on the Save button.

Common Searches
The search system's query engine is extremely powerful, but most users are not
familiar enough with how to format the queries for advanced searches. A great way
to address this is by providing a list of common search keywords and saved queries.
This will allow users to quickly and easily initiate a search and it will work with the
Refinement Web Part to provide additional drill through capabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Directory with SharePoint Search

[248]

This Common Searches information can be saved in a simple link list within the
Search Center. Like the search tabs feature, this provides an easy way for the Search
Center administrator to maintain the configuration through the standard SharePoint
UI. The standard link list template is sufficient, but if you want to potentially have
different lists for different search tabs, then I recommend that you add a lookup field
to the Tab Name field of the Tabs in Search Results list. A sample view of the list is
displayed in the next screenshot:

Defining Common Searches
Adding a saved search is as simple as adding an entry to the link list. The key to this
solution is in the formatting of the linked URL. There are three main parameters in
the URL that you will frequently need to use.

Parameter Description
k Keyword
s Search Scope
r Refiner

Here are some examples used to power up the demo in the book.

Simple saved query
In its simplest form, keywords are passed to the results page in the URL's query
string. This is the same result as a user passing in a simple keyword in the search
box. It might look like this: http://intranet/search2/Pages/Site-Directory.
aspx?k=HR.

The URL can be separated into two parts with the first part being the path to the
results page: http://intranet/search2/Pages/Site-Directory.aspx, and the
remaining part which identifies the keyword query that will be executed: k=HR.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[249]

Advanced saved query
Through the query language it is possible to specify additional keywords and logical
operations. The following example will search for Blog subsites and apply a refiner
to ensure that any returned sites are within the MySites area.

The query would look like this: k=Blog&r=site%3D%22http%3A%2F%2Fintranet%2F
my%2Fpersonal%22.

The keyword part is set to k=Blog. The refiner part is set to r=site%3D%22http%3A%2
F%2Fintranet%2Fmy%2Fpersonal%22.

Adding Common Searches to the Site Directory page
To add the Common Searches list to the Site Directory page we will simply add
a standard list view set to the summary view, which will present a bulleted list.
Additional properties can be set to change the title and overall display if desired.
Alternatively this can be displayed via a Client OM script or a Server OM Web Part
if additional control is needed over the rendered display.

Site Directory displayed
The completed Site Directory page with the Common Searches listing is displayed in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Directory with SharePoint Search

[250]

A close up view of the Common Searches list view Web Part is displayed in the
following screenshot:

Related sites Web Part
In addition to making it easy for the users to execute ad hoc site searches, it may
also be valuable to dynamically display a listing of related web sites. To provide
this feature, one approach would be to create a Web Part that allows the site owner
to specify some related keywords, and then perform the Site Directory search and
display a list of relevant sites.

Creating the Web Part
The Related sites Web Part will be added to the previously created SPBlueprints.
WebParts project created in Chapter 2, Building an Out of Office Delegation Solution.

To add the additional Web Part:

1.	 Open the SPBlueprints.WebParts project in Visual Studio 2010.
2.	 Browse the installed templates and select Visual C# | SharePoint 2010.
3.	 Right-click on the project file and select Add | New Item.
4.	 From the template selection screen select the Web Part option.
5.	 Provide the name RelatedSites and click on the Add button.
6.	 Edit the RelatedSites.webpart file, and add in the custom properties as

shown in the following:
<property name="Title" type="string">Related Sites</property>
<property name="Description" type="string">SPBlueprints - The
Related Sites web part will search for sites with matching
keywords.</property>
<property name="SearchProxyName" type="string">Search Service
Application</property>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[251]

<property name="SearchScopeName" type="string">Site Directory</
property>
<property name="DisplayLimit" type="int">5</property>
<property name="KeywordList" type="string">sites</property>

7.	 Start by editing the RelatedSites.cs file and add in the following
references:
using System.Collections;
using System.Data;
using System.Text;
using Microsoft.SharePoint.Administration;
using Microsoft.Office.Server.Search;
using Microsoft.Office.Server.Search.Query;
using Microsoft.Office.Server.Search.Administration;

8.	 Next we will need to define the Web Part's properties starting with the
Search Proxy Name property. This property will be used to manage the
connection to the Search service application.
private string _searchProxyName;

[WebBrowsable(true),
 Category("Configuration"),
 WebDisplayName("Search Proxy Name"),
 WebDescription("Please provide the name of your Search Service
Application."),
 Personalizable(PersonalizationScope.Shared)]
public string SearchProxyName
{
 get { return _searchProxyName; }
 set { _searchProxyName = value; }
}

9.	 Next we will define the Search Scope Name property which can be used to
target the desirable content for display.
private string _searchScopeName;
[WebBrowsable(true),
 Category("Configuration"),
 WebDisplayName("Search Scope Name"),
 WebDescription("Please provide the name of your Search Scope."),
 Personalizable(PersonalizationScope.Shared)]
public string SearchScopeName
{
 get { return _searchScopeName; }
 set { _searchScopeName = value; }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Directory with SharePoint Search

[252]

10.	 Next we will define the Display Limit property used to determine how many
records to display.
private int _displayLimit;
[WebBrowsable(true),
 Category("Configuration "),
 WebDisplayName("Result limit"),
 WebDescription("The number of items to display."),
 Personalizable(PersonalizationScope.Shared)]
public int DisplayLimit
{
 get { return _displayLimit; }
 set { _displayLimit = value; }
}

11.	 Next we will define the Keywords property where the site administrator will
actually set the keywords.
private string _keywordList;
[WebBrowsable(true),
 Category("Configuration"),
 WebDisplayName("Keywords"),
 WebDescription("Comma delimited list of keywords"),
 Personalizable(PersonalizationScope.Shared)]
public string KeywordList
{
 get { return _keywordList; }
 set { _keywordList = value; }
}

12.	 The output will be built within a Literal control defined within the class,
and instantiated within the CreateChildControls() method as shown
in the following:
protected Literal _output;
protected override void CreateChildControls()
{
 this._output = new Literal();
 this._output.ID = "output";
 this.Controls.Add(this._output);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[253]

13.	 With all of the setup work complete, we can now define the Display()
method that can be called from the OnLoad() method. The method starts by
defining StringBuilder that we will use to build the output of the Web Part,
and then checks to see if there are any keywords set. Since the keywords
are stored within a single string property and are comma delimited, we will
do a simple split command to load the values into an array. If there are no
keywords, there will be no content to display.
protected void Display()
{
 StringBuilder messages = new StringBuilder();
 string[] keywords = this._keywordList.Split(',');
 if (keywords[0] != "")
 {

14.	 Next we attempt to connect to the Search Proxy specified in the Web Part
properties. There is a try/catch block here in order to handle issues related
to connecting to the Search service application differently than errors
returned as part of a search.
try
{
 SearchQueryAndSiteSettingsServiceProxy settingsProxy = SPFarm.
Local.ServiceProxies.GetValue<SearchQueryAndSiteSettingsServicePro
xy>();
 SearchServiceApplicationProxy searchProxy = settingsProxy.
ApplicationProxies.GetValue<SearchServiceApplicationProxy>(this.
searchProxyName);

// Query and Display of Web Part

Catch
{
 this.EnsureChildControls();
 this._output.Text = "Error: Please specify a Search Service
Application.";
}

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Directory with SharePoint Search

[254]

15.	 Now we can instantiate FullTestSqlQuery and prepare the data objects.
FullTextSqlQuery mQuery = new FullTextSqlQuery(searchProxy);
try
{
 ResultTableCollection resultsTableCollection;
 DataTable results = new DataTable();

16.	 The formatted query will be broken into two parts, with the first part being
the same in all cases and then the addition of the dynamic keywords with a
variable number of items. We will then define a simple for loop to append
the query to include a dynamic part that covers each keyword. Since we are
looking for matches for any of the keywords, the OR operator will be used,
which will require that we set the scope predicate starting with the second
keyword. The query can also be tailored to exclude other content in your
environment as needed.
mQuery.QueryText = "SELECT Title, Path, SiteName FROM SCOPE()
Where ";
for (int i = 0; i <= keywords.GetUpperBound(0); i++)
{
 if (i > 0) mQuery.QueryText += " OR ";
 mQuery.QueryText += " ((\"scope\" = '" + _searchScopeName + "')
AND Contains('" + keywords[i] + "'))";
}

17.	 The remaining FullTextSqlQuery properties can now be set and the query
executed. The returned DataTable object can now be checked for results to
see if the list needs to be rendered.
mQuery.ResultTypes = ResultType.RelevantResults;
mQuery.TrimDuplicates = true;
mQuery.RowLimit = DisplayLimit;

resultsTableCollection = mQuery.Execute();
if (resultsTableCollection.Count > 0)
{
 ResultTable relevantResults = resultsTableCollection[ResultType.
RelevantResults];
 results.Load(relevantResults, LoadOption.OverwriteChanges);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[255]

18.	 The output can be as simple or as complex as needed. For this example, I will
create a simple HTML bulleted list with a link to the site. A DIV container
and the list will be defined, and then we will iterate through the rows, and
write out each link.
messages.AppendFormat(@"<div id='RelatedSites'>");
foreach (DataRow row in results.Rows)
{
 messages.AppendFormat(@"{0}",
row["Title"].ToString(), row["Path"].ToString(), row["SiteName"].
ToString());
}
messages.AppendFormat(@"</div>");
}

19.	 With the display complete we can now render the output, complete the catch
block to handle any exceptions, and dispose our Query object.
this.EnsureChildControls();
this._output.Text = messages.ToString();
}
catch (Exception ex)
{
 this.EnsureChildControls();
 this._output.Text = "Error: " + ex.Message.ToString();
}
finally
{
 mQuery.Dispose();
}

Display Related sites Web Part
Once deployed, the Related sites Web Part can be configured to set the desired
keywords in a comma delimited list. The rendered screen is shown as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Site Directory with SharePoint Search

[256]

Summary
This chapter leveraged the search features and configuration along with the Server
OM to create a set of solutions that can be used to provide users with easy and
intuitive ways to locate relevant sites.

The customizations are grouped as follows:

•	 Visual Studio 2010
°° Web Part: Creating a custom Web Part that can display related sites

based on a keyword property.
•	 Browser based configuration

°° Configure Search Scopes: Create a Search Scope that automatically
filters the content to show only site objects, and excludes any other
type of content.

°° Search Results Page: A custom search results page that works with
our custom search scope, and also includes some additional Web
Parts to enhance the user's ability to find relevant sites.

°° Configure Core Results Web Part: The Core Results Web Part was
configured to show our Site Directory and interactive search results.

This chapter showed how you can develop effective solutions that provide easy
ways for users to find the relevant sites and resources needed to ensure better
collaboration and process efficiency. These solutions are very easy to implement
and can deliver immediate value.

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
__Context property 60

A
accountname variable 76
Add button 31
Add() method 154
addStatus function 21
appropriate use and incident dialog

approach 25
building 25
displaying 26, 27
form, displaying 25, 26

AssignTo property 62

B
BaseConfigurationID property 167
BaseTemplateID property 167
BaseTemplateName property 167
blank site, intranet site template 7
Blank Web Part page layout 11
Browser-based configuration 43

C
centralized list, task rollup

considerations 216
using 216

CheckOutOfOfficeActivity.cs 60-66
CheckOutOfOfficeActivity

elements.xml 66, 67
check out of office, sample workflow 68, 69
Check out of office workflow activity

about 58

approach 59
OfOfficeActivity.cs 60-66
OfOfficeActivity elements.xml 66, 67
creating 59
web.config authorizedType entry,

adding 67
common searches, site directory page

adding 249
advanced save query 249
defining 248
simple saved query 248

communities user profile property
creating 118, 119

communities
mapping, as managed property 119

community landing page
configuring 115-117
creating 115, 117

community members
about 117
communities, mapping as managed

property 119
communities user profile property,

creating 118, 119
community site

collection features 114
creating 113, 114
member page, configuring 119
member page, creating 120
members search query,

configuring 120, 121
People Search Core Results Web Part,

adding 120
site features 115
supporting features 114, 115

www.it-ebooks.info

http://www.it-ebooks.info/

[258]

ConfigureWebPart method 182
ConfigWebPart() method 183
content aggregation options

about 188
custom properties, mapping as managed

properties 189, 190
individual lists, reading 188
individual sites, reading 188
scheduled job 189
search index 188, 189

content class
SPSPeople 239
STS_listitem_[templatename] 239
STS_list_[templatename] 239
STS_Site 239
STS_Web 239

content containers
defining 84, 85

content organizer destination
configuring 88

content organizer feature
activating 88

content organizer rule
configuring 89, 90

Content Query Web Part. See also CQWP
Content Query Web Part

Highly Rated Content 129
New Content 127, 128

content rollup approaches
about 96
Content Query Web Parts (CQWP) 96, 97

Content Rollup category 13
content rollups

about 38
approach 38
Content Query Web Part (CQWP) 38
Content Query Web Part (CQWP),

configuring 40, 41, 42
content source, creating 40
Custom Web Parts 39, 40
displaying 43
Search Web Parts 39

content source
about 92
creating 40
configuring, from DocVault solution 92

content type
defining 86, 87
synchronizing 86

content type hub 86
content type level site collection

configuring 90
CQWP

about 38, 96, 97
configuring 40-42
Scheduling End Date field 41

CreateChildControls() method 34, 220,
227, 252

CustomAction definition 56
custom application pages

about 75
preparing for 75
ViewDelegationHistory.aspx 77
ViewDelegationHistory.aspx.cs 77-80
View Delegation History page 76

Custom Web Parts 39, 40

D
DataTable object 35, 79
DateTime field 18, 54
Delegated property 62
DelegUser field 53
Display method 72
Display() method 33, 35, 103, 222, 230,

233, 253
DocID redirect

displaying 109
DocID redirect approach

enhancing 106
DocID redirect script

enhanced script, creating 106-108
DocID redirect Web Part

configuring 108
DocLocations container 107
docRedirect() method 108
Document ID redirect

enhancing 105
Document ID service 8
DocumentID value 108
document routing 88

www.it-ebooks.info

http://www.it-ebooks.info/

[259]

DocVault Listings Web Part
content rollup approaches 96
creating 97, 98
displaying 104
DocID redirect script, creating 106
formatting 100-104
importing 98
properties, defining 98-100

E
ECM 85
Edit My Profile link 48
Edit My Profile option 49
Elements.xml 170
Employee Corner Web Part

Add button 31
approach 28
building 28
building, steps for 29-32
displaying 36
formatting 34, 35
property, defining 33
search service application, connecting

to 33, 34
Web Part option 30

EnsureChildControls() method 233
Enterprise Content Management. See ECM
Enterprise Wiki

about 130
advantages 130
categories, using 132, 133
creating, as sub-site 131
sub-site, configuring 131
URL 131

Execute() method 151
ExecuteOrDelayUntilScriptLoaded()

function 22

F
farm solution

WebTemplate as 168
versus Sandbox 167

FeatureActivated() method 156, 176, 177
FeatureDeactivating() method 158
feature, project listing

configuring 198

feature receiver
about 156
creating, steps for 156
FeatureActivated() method 156
feature, activating 156, 157
feature, deactivating 158
SPBlueprints.SiteCreation solution 158, 159

feature stapling 165
FileStream object 181
foreach block 231
foreach loop 222
FormatLink() method 231, 232
form processing

building 145-147
FullTextSqlQuery class 34
FullTextSqlQuery properties 254

G
getAccountname() method 71, 78, 80
GetSiteData() method 224, 229

H
home page

basic home page 180
creating 180
publishing pages 180
web part pages 180
wiki pages 180

I
Incident Report dialog 27
InfoLink field 18
intranet site

features, activating 7, 8
features, URL 9
layout, selecting 9
preparing 6
template, selecting 7

intranet site template
blank site 7
Microsoft Office website, URL 7
publishing template 7
team site 7

www.it-ebooks.info

http://www.it-ebooks.info/

[260]

L
layout, intranet site

Blank Web Part page layout 11
Make Homepage button 10
Page Layout option 10
Page tab 10
selecting 9
Splash layout 11
Top Web Part Zone 12

list
creating 140

list-based site directory 238
lists property 215
ListTemplate element 54
loadDelegationHistory() method 78, 80
LoadNotifications() function 22
LoadTasks() method 220, 227, 230
localResults DataTable object 229
LogDate field 54
LookupTemplate() function 154
LookupTemplate() method 153

M
Make Homepage button 10
managed properties

about 95
identifying 96
communities, mapping as 119

Manage User Properties link 46
Manage User Properties menu item 49
Manage User Properties page 46
master delegation log 45
Master Delegation Tracking List

about 50
custom action group, defining 55, 56
delegation list feature, finalizing 57, 58
list definition 50-54
list instance 50-54

master page, status notifications
SetStatus code, adding 22, 24

member page
configuring 119
creating 120

members page, project manager listing
creating 206

members search query
configuring 120, 121

members search query, project manager
listing

configuring 206, 208
Merge() method 229
metadata navigation feature

about 133
activating 134
Enterprise Wiki Library for 134
for Enterprise Wiki Library 134, 135
using 136

MyTasks
and MyTasks Search Web Parts,

displaying 233, 234
MyTasks.js file, MyTasks Search Web Part

creating 224
MyTasks Search Web Part

about 216
and MyTasks, displaying 233, 234
creating 217-224
MyTasks.js file, creating 224
SPBlueprints.MyTasks project, creating 216

MyTasks Web Part
creating 225-232
MyTasks and MyTasks Search Web Parts,

displaying 233, 234
SPBlueprints.MyTasks solution 235, 236

N
name property 167
NavBar element 171
newFilename variable 180
New Item form 21
newSite.Add() function 154
Note Board Web Part

about 122
adding 123

NotifEnd field 18
Notification field 18
notification list

about 14
creating, steps for 15-20
defining 14
displaying 20, 21
instance feature 14

www.it-ebooks.info

http://www.it-ebooks.info/

[261]

SetStatus code, adding to master
page 22, 24

NotifStart field 18

O
Onet.xml 171
OnLoad() method 33, 34, 222, 230, 253
OnQuickLaunch property 20
OrigUser field 53
OR operator 254
out of office delegate profile property

creating 48
Out of Office delegation, Task Delegation

Web Part
displaying 71-74

Out of Office delegation Web Part 46
Out of Office delegation workflow

activity 45
out of office property

creating 47
Out of Office start date profile property

creating 47
outputInactive() method 74

P
Page Layout option 10
Page_Load() method 80, 145
Page tab 10
PageTitle content area 77
PageTitleInTitleArea content area 77
people core results XSL, project manager

listing
modifying 208, 209

People Search Core Results Web Part
adding 120

project
creating 141
organizing, into features 168, 169
organizing, into solution 168, 169

project listing
building 190
displaying 199
feature, configuring 198
ProjectListing Web Part, creating 191-197
ProjectMain.js script, creating 197, 198
ProjectMain project, creating 190

ProjectListing Web Part, project listing
creating 191-196

ProjectMain.js script, project listing
creating 197, 198

ProjectMain project, project listing
creating 190

project manager listing
configuring 206
displaying 210
members page, creating 206
members search query,

configuring 206, 208
people core results XSL, modifying 208, 209
results search core results web part,

adding 206
Project Site configuration feature

blog sub-site, creating 177, 178
charter list, creating 178, 179
creating 174
FeatureActivated() method 177
feature receiver, writing 175
feature upgrading 184
home page, creating 180, 181
pages library, creating 179
solution explorer 184
web parts, configuring on home

page 181, 182, 183
project site template

about 169
blog sub-site, creating 177, 178
feature, configuring 173
feature receiver, writing 175-177
project, creating 169, 170
Project Site configuration feature, creating

174
ProjectTemplate WebTemplate,

creating 170-172
ProjectTemplate-Farm feature

configuring 173
ProjectTemplate WebTemplate

creating 170
Elements.xml 170
Onet.xml 17-173

ProjectWebConfig-Web feature
configuring 175

publishing pages 180
publishing template, intranet site template 7

www.it-ebooks.info

http://www.it-ebooks.info/

[262]

Q
query property 215, 228

R
ReadListItemFailed() function 24
ReadListItemFailed() method 108
ReadListItemSucceeded() function 23
ReadListItemSuceeded() method 107
related sites web part

about 250
creating 250-255
displaying 255

RequestSiteAction menu item
building 148, 149

Request Site display page
building 143-145

results search core results web part, project
manager listing

adding 206
Review job definitions link 160
Rollup Web Parts

configuring 126
Content Query Web Part,

configuring 127-129
Content Query Web Part, Highly Rated

Content 129
Content Query Web Part, New

Content 127, 128
Web Analytics Web Part 126
Web Analytics Web Part,

configuring 126, 127
RuleDesigner Sentence 66

S
Sandbox

versus farm solutions 167
Sandbox solution

WebTemplate as 167, 168
Save and Close menu item 49
scheduled job, content aggregation

options 189
Scheduling End Date field 41
search

content classes 239
content sources 92

leveraging 239
managed properties 95, 96
optimizing 91
scopes 93-95, 240

search-based site discovery 238
search index, content aggregation

options 188, 189
SearchProxyName 33
SearchProxyName property 33
Search Server Web Parts 8
SearchServiceApplicationProxy object 33
search, task rollup

considerations 214
using 214

Search Web Parts 39
SetStatus code, status notifications

adding, to master page 22, 24
setStatusPriColor function 21
SetStatus script 22
SetStatus variables 22
SharePoint

intranet site, preparing 6
intranet site template, selecting 7

SharePoint 2010
publishing features, URL 9
templates, URL 7

SharePoint Designer 2010 44
SharePoint Server. See publishing template,

intranet site template
SharePoint Server Enterprise Site Collection

features 8
SharePoint Server Publishing 8
SharePoint Server Publishing

Infrastructure 8
SharePoint Server Standard Site Collection

features 8
showIncidentForm() function 26
showModalDialog() function 26
showPolicy() function 26
showTask() method 231, 232
site collection

search scope, enabling 243
SiteData, task rollup

considerations 215
using 214, 215

www.it-ebooks.info

http://www.it-ebooks.info/

[263]

site directory
list-based site directory 238
search-based site discovery 238

site directory page
about 244
common searches 247
common searches, defining 248
creating 244-246
displaying 249
settings, configuring 246
tab, adding 247

site directory search scope
custom search scope 242
custom search scope, creating 240, 241
defining 240
enabling, on site collection 243
testing 243, 244

site metrics gathering process
building 199-202
feature, adding 203
feature, creating 203-205
feature receiver, creating 203-205
solution explorer 205
timer job, creating 199-202

site permissions 117
SiteRequest form

creating, steps for 142
form processing, building 145-147
RequestSiteAction menu item,

defining 148, 149
Request Site display page, building 143-145

SiteRequestLog list 140
Sites.Add() method 153
Site Settings page 55
site template

about 165
feature stapling 165
options 164
site, defining 164, 165
WebTemplates option 166

social web parts
configuring 122
Note Board Web Part 122

solution explorer, site metrics gathering
process 205

SPBlueprints.Delegation 70
SPBlueprints.Delegation solution 81

SPBlueprints.MyTasks project, MyTasks
Search Web Part

creating 216
SPBlueprints.MyTasks solution, MyTasks

Web Part 235, 236
SPBlueprints.SiteCreation solution 158, 159
SPBlueprints.WebParts feature item 31
Splash layout 11
SPLimitedWebPartManager object 181
SPList.GetItems() method 97
SPSPeople, content class 239
SP.UI.Status class 21
SPUser object 146, 153
SPWeb.GetSiteData() method 97, 215
status notifications

about 21
displaying 24
setStatusPriColor function 21
SP.UI.Status class 21
SP.UI.Status, overview 21

Stock Ticker Web Part
approach 37
building 36
displaying 38

StringBuilder object 35, 72
StringBuilder object message 103
STS_listitem_[templatename], content

class 239
STS_list_[templatename], content class 239
STS_Site, content class 239
STS_Web, content class 239

T
Tag Cloud feature 124, 125
Tagging feature 124, 125
Task Delegation Web Part

about 70
creating 70
Delegation.js 74, 75
displaying 75
Out of Office delegation, displaying 71-74

task rollup
centralized list, considerations 216
centralized list, using 216
options 213
search, considerations 214

www.it-ebooks.info

http://www.it-ebooks.info/

[264]

search, using 214
SiteData, considerations 215
SiteData, using 214, 215

team site, intranet site template 7
timer jobs

components 150
creating 150
deploying 159
monitoring 160, 161
site timer job, creating 150, 151
site timer job, executing 151-154

Top Web Part Zone 12
try/catch block 253

U
Update() method 147, 157, 178
UserProfileManager object 62
user profile properties

about 46
configuring 46
date profile property, creating 47
Edit My Profile link 48
Edit My Profile option 49
Manage User Properties menu item 49
Manage User Properties page 46
new section, creating 47
out of office delegate profile property,

creating 48
out of office property, creating 47
Out of Office start date profile property,

creating 47
populating 48, 49
Save and Close menu item 49

V
ViewDelegationHistory.aspx 77
ViewDelegationHistory.aspx.cs 77-80

View Delegation History page
about 46, 76
displaying 81

ViewFields property 215, 228
Visual Studio 2010 44

W
Weather Web Part

approach 13
Content Rollup category 13
creating 12
displaying 14
XML Viewer Web Part 13
XML Web Part, configuring 13

Web Analytics Web Part
Frequently Accessed Content 126, 127

web.config authorizedType entry
adding 67

Web Part option 30
web part pages 180
Webs property 215
WebTemplate

as farm solution 168
as Sandbox solution 167, 168
schema, example 166, 167

WebTemplates option 166
Welcome Page grouping 11
wiki pages 180
Wiki Site Navigation 136, 137
WorkflowName field 53

X
XML Viewer web part 13
XML Web Part, Weather Web Part

configuring 13

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Microsoft SharePoint 2010

Business Application Blueprints

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

(MCTS): Microsoft BizTalk Server
2010 (70-595) Certification Guide
ISBN: 978-1-849684-92-7 Paperback: 476 pages

A compact certification guide to help you prepare
for and pass exam 70-595: TS: Developing Business
Process and Integration Solutions by using Microsoft
BizTalk Server 2010

1.	 This book and e-book will provide all that
you need to know in order to pass the (70-595)
Developing Business Process and Integration
Solutions exam by Using Microsoft BizTalk
Server 2010 book

3.	 The layout and content of the book closely
matches that of the skills measured by the
exam, which makes it easy to focus your
learning and maximize your study time in
areas where you need improvement.

iPhone with Microsoft Exchange
Server 2010: Business Integration
and Deployment
ISBN: 978-1-849691-48-2 Paperback: 290 pages

Set up Microsoft Exchange Server 2010 and deploy
iPhone and other iDevices securely into your business

1.	 Learn about Apple's mobile devices and how
they work with Exchange Server 2010

2.	 Plan and deploy a highly available Exchange
organization and Office 365 tenant

3.	 Create and enforce security policies and set up
certificate-based authentication

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Microsoft SQL Server 2012
Integration Services:
An Expert Cookbook
ISBN: 978-1-849685-24-5 Paperback: 564 pages

Over 80 expert recipes to design, create, and deploy
SSIS packages

1.	 Full of illustrations, diagrams, and tips
with clear step-by-step instructions and
real time examples

2.	 Master all transformations in SSIS and their
usages with real-world scenarios

3.	 Learn to make SSIS packages re-startable and
robust; and work with transactions

4.	 Get hold of data cleansing and fuzzy operations
in SSIS

Microsoft Dynamics AX 2012
Development Cookbook
ISBN: 978-1-849684-64-4 Paperback: 372 pages

Solve real-world Microsoft Dynamics AX
development problems with over 80 practical recipes

1.	 Develop powerful, successful Dynamics AX
projects with efficient X++ code with this book
and eBook

2.	 Proven recipes that can be reused in numerous
successful Dynamics AX projects

3.	 Covers general ledger, accounts payable,
accounts receivable, project modules and
general functionality of Dynamics AX

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building an Effective Intranet
	Preparing the Intranet site
	Choosing a site template
	Activating supporting features
	Selecting a layout

	Creating a Weather Web Part
	Approach
	Configuring the XML Web Part
	Weather Web Part displayed

	System status and notification features
	Notification List Definition and List
Instance feature
	Notification list displayed

	Presenting status notifications
	SP.UI.Status overview
	Adding SetStatus code to the Master Page

	Notifications displayed

	Building an Appropriate Use and
Incident dialog
	Approach
	Showing the form
	Appropriate Use and Incident dialog displayed

	Building an Employee Corner Web Part
	Approach
	Creating the Web Part
	Defining a Web Part property
	Connecting to the Search service application
	Formatting the Web Part

	Employee Corner Web Part displayed

	Building a Stock Ticker Web Part
	Approach
	Stock Quote Web Part displayed

	Content rollups
	Approach
	Content Query Web Part (CQWP)
	Search Web Parts
	Custom Web Part

	Creating the content source
	Configuring the Content Query Web Part
	News content rollup displayed

	Summary

	Chapter 2: Building an Out of Office Delegation Solution
	User profile properties
	Defining the section and properties
	Populating the properties

	Master Delegation Tracking List
	Delegation List Definition and List Instance
	Defining a custom action group and action
	Finalizing the delegation list feature

	Check out of office workflow activity
	Approach
	Creating CheckOutOfOfficeActivity
	CheckOutOfOfficeActivity.cs
	CheckOutOfOfficeActivity elements.xml

	Adding the web.config authorizedType entry
	Completed solution
	Sample workflow—check out of office

	Creating a Task Delegation Web Part
	Creating the Web Part project
	Displaying Out of Office delegation
	Delegation.js

	Displaying the Task Delegation Web Part

	Creating custom application pages
	Preparing for custom application pages
	View Delegation History page
	ViewDelegationHistory.aspx
	ViewDelegationHistory.aspx.cs
	Displaying the View Delegation History page

	Completed SPBlueprints.Delegation solution

	Summary

	Chapter 3: Building an Enterprise Content Management Solution
	Defining content containers
	Defining and managing content types
	Content type synchronization
	Content type definition

	Document routing
	Optimizing Search
	Content sources
	Search scopes
	Managed properties

	Creating a content aggregation Web Part
	Content rollup approaches

	DocVault Listings Web Part
	Creating the Web Part
	Importing the needed Web Part and
search references
	Defining the Web Part properties
	Formatting the Web Part
	Display DocVault Listings Web Part

	Enhancing the Document ID redirect
	Enhanced DocID redirect approach
	Creating an enhanced DocID redirect script
	Configuring the DocID redirect Web Part
	Displaying the DocID redirect

	Summary

	Chapter 4: Building an Engaging Community Site
	Creating the Community Site
	Activating supporting features
	Creating and configuring the community landing page
	Site Permissions

	Community members
	Creating Communities User Profile Property
	Mapping Communities as a Managed Property
	Configuring the Members Page
	Creating the Members Page
	Adding the People Search Core Results Web Part
	Configuring Members Search Query

	Configuring social web parts
	Note Board Web Part
	Tagging and Tag Clouds

	Configuring Rollup Web Parts
	Web Analytics Web Part – Frequently Accessed Content
	Content Query Web Part – New Content
	Content Query Web Part – Highly
Rated Content

	Creating an Enterprise Wiki
	Configuring the Enterprise Wiki sub-site
	Use of Categories
	Metadata Navigation
	Activating the Metadata Navigation feature
	Configuring Metadata Navigation for Enterprise Wiki Library
	Using the feature

	Wiki site navigation

	Summary

	Chapter 5: Building a Site Request and Provisioning System
	Overview
	Creating the list
	Creating the project
	Creating the SiteRequest form
	Building the Request Site display page
	Building the form processing

	Defining the RequestSiteAction
menu item
	Creating timer jobs
	Creating the site timer job
	Executing the site timer job

	Feature receiver
	Creating the feature receiver
	Feature activating
	Feature deactivating
	Completed SPBlueprints.SiteCreation solution

	Deploying the timer job
	Monitoring the timer job

	Summary

	Chapter 6: Building a Project
Site Template
	Overview
	Template options
	Site definitions
	Feature stapling an existing site definition
	Site template
	WebTemplate
	Example WebTemplate schema
	Sandbox versus farm solutions
	Organizing a project into multiple features
and solutions

	Building the Project Site Template
	Create the project
	Create the ProjectTemplate WebTemplate
	Complete Elements.xml
	Onet.xml

	Configure the feature
	Create the Project Site configuration feature
	Writing the feature receiver
	Using Microsoft.SharePoint.Portal.WebControls;Feature Activated
	Create a blog subsite
	Create Charter list
	Create pages library
	Create home page
	Configure Web Parts on home page
	Feature upgrading
	Solution Explorer

	Summary

	Chapter 7: Building a Project Management Main Site
	Content aggregation options
	Reading individual sites or lists
	Search
	Scheduled job
	Map custom properties as managed properties

	Building a project listing and a status Web Part
	Creating the ProjectMain project
	Creating the ProjectListing Web Part
	Creating the ProjectMain.js script
	Configuring the feature
	Project listing displayed

	Building a site metrics gathering process
	Creating the feature and feature receiver
	Solution Explorer

	Configuring a project manager listing
	Creating the members page
	Adding the People Search Core Results
Web Part
	Configuring the members search query
	Modifying the People Core Results XSL
	Project Managers listing displayed

	Additional content ideas
	Summary

	Chapter 8: Building a Task
Rollup Solution
	Task rollup options
	Using search
	Search considerations

	Using SiteData
	SiteData considerations

	Using a centralized list
	Centralized list considerations

	MyTasks Search Web Part
	Creating the SPBlueprints.MyTasks project
	Creating the MyTasks Search Web Part
	Creating the MyTasks.js file

	MyTasks Web Part
	Creating the Web Part
	Displaying the MyTasks and MyTasks Search Web Parts
	Completed SPBlueprints.MyTasks solution

	Summary

	Chapter 9: Building a Site Directory with SharePoint Search
	Site Directory options
	List-based Site Directory
	Search-based site discovery

	How to leverage search
	Content classes
	Search Scopes

	Defining the Site Directory Search Scope
	Enabling the Search Scope on a
Site Collection
	Testing the Site Directory Search Scope

	Site Directory page
	Creating the Site Directory page
	Configure the Site Directory page settings
	Adding a Site Directory tab
	Common Searches
	Defining Common Searches

	Site Directory displayed

	Related sites Web Part
	Creating the Web Part
	Display Related sites Web Part

	Summary

	Index

