
www.it-ebooks.info

http://www.it-ebooks.info

PROFESSIONAL

BUSINESS CONNECTIVITY SERVICES

IN SHAREPOINT® 2010

INTRODUCTION . xxv

CHAPTER 1 Business Connectivity Services . 1

CHAPTER 2 Using BCS Solutions in SharePoint 2010 . 29

CHAPTER 3 Using BCS Solutions in Offi ce 2010 . 73

CHAPTER 4 Creating BCS Solutions with the SharePoint Designer 103

CHAPTER 5 Programming BCS Solutions in SharePoint 2010 151

CHAPTER 6 Programming BCS Solutions in Offi ce 2010 . 195

CHAPTER 7 Developing and Using Connectors . 233

CHAPTER 8 Working with BCS Security . 281

CHAPTER 9 Working with Enterprise Search . 319

INDEX . 357

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

Professional Business Connectivity Services in SharePoint® 2010

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-61790-8
ISBN: 978-1-118-04381-3 (ebk)
ISBN: 978-1-118-04380-6 (ebk)
ISBN: 978-1-118-04379-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax
(201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010942336

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and
other countries, and may not be used without written permission. SharePoint is a registered trademark of Microsoft
Corporation in the United States and/or other countries. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

www.it-ebooks.info

http://www.it-ebooks.info

CONTENTS

INTRODUCTION xxv

CHAPTER 1: BUSINESS CONNECTIVITY SERVICES 1

Challenges Integrating External Data 2

User Challenges 3

IT Challenges 3

Introducing Business Connectivity Services 3

Evolution of the Business Data Catalog 4

BCS and Other Integration Services 5

Architecture Overview 7

Key Capabilities 9

Presentation 9

Connectivity 11

Tooling 12

BCS in SharePoint and Offi ce SKUs 13

Creating Simple BCS Solutions 14

Creating External Content Types 14

Creating External Lists 16

Connecting External Lists to Offi ce 2010 17

Types of Solutions 19

Simple Solution Leveraging Out-of-the-Box Capabilities 20

Intermediate Declarative Solution 20

Advanced Code-Based Solution 21

Solution Packaging 22

ClickOnce Package 23

Deployment Concepts 24

Security 24

Authentication Overview 25

Claims and OAuth 25

Offi ce Client 26

Authorization Overview 26

Summary 27

www.it-ebooks.info

http://www.it-ebooks.info

CONTENTS

xviii

CHAPTER 2: USING BCS SOLUTIONS IN SHAREPOINT 2010 29

Understanding Business Data Connectivity 29

Introducing the BDC Metadata Model 30

BDC Metadata Store 32

Resource Files 32

Versioning 33

BDC Service Application 34

Managing the BDC Service Application 35

Permissions 36

Model Import 38

Model Export 39

Managing External Content Types 40

Managing Actions 41

Managing Profi le Pages 44

Throttling 46

BDC Server OM 48

Integrating BCS Data with SharePoint 49

Using External Lists 49

Permissions 50

View Settings 50

DateTime Fields 51

Forms 52

Diff erences from Regular Lists 53

Life Cycle and Portability 55

Using External Data Web Parts 56

Using the Chart Web Part 60

Creating External Data Columns 60

Mobile Device Support 63

Time Zone Support 63

User Profi le Enhancements Using ECTs 64

Searching External Systems 65

Using Workfl ow to Access External Data 66

Simple Workfl ows 66

Intermediate Workfl ows 67

Advanced Workfl ows 68

Upgrading from MOSS 2007 69

Summary 71

www.it-ebooks.info

http://www.it-ebooks.info

CONTENTS

xix

CHAPTER 3: USING BCS SOLUTIONS IN OFFICE 2010 73

Understanding Business Data Connectivity 73

Understanding the BDC Client Runtime 74

Understanding the Metadata Cache 75

Understanding Subscriptions in the Metadata Cache 76

Understanding Cache Population 78

Understanding Cache Operations 79

Understanding Solution Deployment 82

Understanding ClickOnce Deployment 83

Understanding ClickOnce Security 84

Connecting External Lists to Outlook 87

Understanding BCS Folder Limitations 87

Understanding Form Limitations 87

Understanding Functional Limitations 89

Understanding SharePoint Security Limitations 89

Synchronizing Outlook Data 89

Managing Client Credentials 90

Updating Outlook Solutions 91

Connecting Lists to the SharePoint Workspace 92

Understanding SPW Architecture 92

Understanding the Offi ce Document Cache 93

Synchronizing External Lists 94

Writing Scripts and Macros 94

Using External Data in Word 96

Using External Data Columns 97

Creating Reusable Site Content Types 97

Understanding External Data Limitations in Word 100

Working with External Data in Microsoft Access 101

Summary 102

CHAPTER 4: CREATING BCS SOLUTIONS WITH
THE SHAREPOINT DESIGNER 103

Working with the BDC Metadata Model 103

Working with External Data Sources 106

Connecting with the SQL Server Connector 107

Connecting to Microsoft SQL Server Databases 107

Connecting to Oracle Databases 108

Connecting to ODBC Data Sources 110

Connecting to OLE DB Data Sources 111

www.it-ebooks.info

http://www.it-ebooks.info

CONTENTS

xx

Connecting with the WCF Service Connector 111

Connecting to ASP.NET Web Services 112

Connecting to WCF Web Services 114

Creating Methods 115

Implementing Method Stereotypes 117

Defi ning Properties 118

Defi ning Parameters 118

Defi ning Filters 118

Understanding Stereotype Requirements 118

Creating Methods for Databases 122

Creating Finder Methods 122

Modeling Finder Methods 124

Understanding the Default Finder 129

Creating Other Methods 129

Creating Methods for Web Services 130

Defi ning Associations 131

Creating One-to-Many Associations 131

Creating Self-Referential Associations 134

Creating Reverse Associations 136

Working with Many-to-Many Relationships 136

Working with External Lists 137

Creating Custom List Actions 137

Creating Custom Forms 138

Creating ASPX Forms 138

Creating InfoPath Forms 139

Accessing External Lists in Code 140

Using the SPList Object 140

Using the Client Object Model 141

Initiating Workfl ows 143

Developing Solutions 146

Making Solutions Portable 146

Converting ASP.NET Solutions 147

Upgrading BDC 2007 Solutions 149

Summary 150

CHAPTER 5: PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010 151

Working with the BDC Server Runtime Object Model 151

Connecting to the Metadata Catalog 153

Retrieving Model Elements 154

Executing Operations 155

www.it-ebooks.info

http://www.it-ebooks.info

CONTENTS

xxi

Executing Finder Methods 158

Executing Specifi cFinder Methods 161

Executing Updater Methods 162

Executing Creator Methods 163

Executing Deleter Methods 164

Executing AssociationNavigator Methods 165

Working with Complex and Unsupported Types 167

Using InfoPathForms for Display 169

Using Complex Formatting for Display 171

Using Custom Field Types for Display 174

Advanced Workfl ow Solutions 178

Developing Visual Studio Workfl ows 179

Developing Pluggable Services 179

Working with Sandbox Workfl ow Actions 182

Working with the BDC Administration Object Model 185

Connecting to the Catalog 185

Creating BDC Metadata Models in Code 186

Importing and Exporting Models 188

BCS Limits 189

Summary 193

CHAPTER 6: PROGRAMMING BCS SOLUTIONS IN OFFICE 2010 195

Creating Outlook Declarative Solutions 195

Generating Artifacts 196

Packaging and Deploying Solutions 200

Creating Custom Form Regions 201

Creating Custom View Defi nitions 203

Including Associations in Declarative Solutions 204

Creating Custom Actions, Ribbons, and Parts 206

Coding the Custom Elements 207

Packaging the Custom Elements 210

Working with the BDC Client Runtime Object Model 213

Connecting to the Metadata Catalog 215

Understanding the Execution Context 216

Executing Cache Operations 218

Exploring the Client Cache 220

Creating Offi ce Add-Ins 224

Adding Ribbon Support 224

Creating a Custom Task Pane 227

Packaging Data-Only Solutions 229

Summary 231

www.it-ebooks.info

http://www.it-ebooks.info

CONTENTS

xxii

CHAPTER 7: DEVELOPING AND USING CONNECTORS 233

Developing Connectors 233

Creating .NET Assembly Connectors 234

Understanding the Project Tooling 235

Walking through the Development Process 238

Creating a New Project 238

Creating a New Entity 239

Creating a Finder Method 240

Creating a Specifi cFinder Method 242

Handling Connection Information 243

Implementing the Methods 245

Adding Creator, Updater, and Deleter Methods 246

Adding a StreamAccessor Method 249

Creating Associations between Entities 251

Understanding Non–Foreign Key Relationships 253

Testing the Connector 254

Creating Custom Connectors 254

Understanding Project Elements 255

Walking through the Development Process 255

Starting the Project 256

Handling Connection Information 256

Defi ning the Entity 257

Defi ning the Finder Method 257

Implementing the Finder Method 258

Defi ning the Specifi cFinder Method 260

Implementing the Specifi cFinder Method 261

Defi ning the Creator Method 263

Implementing the Creator Method 263

Defi ning the Updater Method 265

Implementing the Updater Method 266

Defi ning the Deleter Method 267

Implementing the Deleter Method 267

Creating Confi gurable Connection Properties 268

Specifying a Connection Manager 268

Using the Custom Connector 269

Handling Errors in Connectors 272

Handling Runtime and Validation Errors 272

Handling Concurrency Issues 272

Packaging Considerations 277

Summary 279

www.it-ebooks.info

http://www.it-ebooks.info

CONTENTS

xxiii

CHAPTER 8: WORKING WITH BCS SECURITY 281

Understanding BDC Permissions 281

Understanding Windows Authentication 284

Understanding Impersonation 286

Understanding Delegation 286

Understanding Anonymous Access 287

Getting Started with Server Authentication 287

Using Passthrough Authentication 288

Using RevertToSelf Authentication 288

Understanding the Secure Store Service 290

Using the Secure Store Service for Authentication 294

Using WindowsCredentials Authentication 294

Using RdbCredentials Authentication 295

Using Credentials Authentication 296

Using Application-Level Authentication 296

Confi guring Client Authentication 298

Using Passthrough Authentication 298

Using RevertToSelf Authentication 299

Using Secure Store Service Authentication 299

Working with the SSS Object Model 300

Retrieving Server-Side Credentials 300

Retrieving Client-Side Credentials 302

Creating a Pluggable Provider 303

Understanding Claims Authentication 306

Understanding Authentication Challenges 306

Understanding Claims Concepts 307

Understanding Claims Architecture 308

Confi guring Claims Authentication 309

Understanding the Claims-to-Windows Token Service 309

Creating a Claims-Aware Service 311

Using an STS with a Claims-Aware Service 313

Understanding Token Authentication 315

Summary 316

CHAPTER 9: WORKING WITH ENTERPRISE SEARCH 319

Understanding Search Off erings 319

Understanding Search Architecture 320

Understanding the Search Service Application 321

Understanding the Indexing Process 321

Understanding the Query Process 322

www.it-ebooks.info

http://www.it-ebooks.info

CONTENTS

xxiv

Using Basic BCS Search Support 322

Enabling Search Support 323

Working with Search Results 325

Creating and Using Scopes 325

Displaying BCS Data in Search Results 327

Crawling Associations 329

Ignoring Fields 330

Customizing the Search Results Display 330

Creating Ranking Models 331

Understanding Ranking Models 332

Creating a Custom Ranking Model 333

Using a Custom Ranking Model 335

Searching with .NET Assembly Connectors 336

Enabling Search Basics 336

Using Custom Hyperlinks in Search Results 338

Using a Changelog for Incremental Crawls 339

Debugging Search Connectors 342

Trimming Search Results 342

Implementing Crawl-Time Security 342

Implementing Query-Time Security 346

Creating a Custom Security Trimmer 348

Searching with Custom Connectors 350

Implementing Required Interfaces 350

Deploying the Connector 354

Using the Connector 354

Summary 355

INDEX 357

www.it-ebooks.info

http://www.it-ebooks.info

 INTRODUCTION

 THE CREATION OF BUSINESS CONNECTIVITY SERVICES (BCS) for Microsoft SharePoint Foundation
2010 and Microsoft SharePoint Server 2010 involved a massive investment of people and resources
by Microsoft. The result of this investment is a set of services, components, and technologies that
have signifi cant implications for the entire SharePoint community. Gradually, the impact of BCS is
beginning to sink in as developers peel back its layers and put it to work, but most people do not yet
understand how deeply they will be affected.

 At this writing, many people in the community have seen BCS presentations and demonstrations.
The typical presentation involves a message that says “ use BCS to integrate systems such as
CRM and ERP with SharePoint. ” The typical demonstration involves a no - code solution created
in SharePoint Designer that rapidly integrates External Data, creates an External List, and
synchronizes that list with Microsoft Outlook. While the typical presentation and demonstration
fi ts well into an hour and looks sexy, it often misses the point. Business Connectivity Services
is not simply middleware to use with existing systems, it is the data layer on top of which every
SharePoint solution that uses External Data should be built.

 When SharePoint developers architect solutions, they often discuss the differences between lists and
databases. Lists are great for creating data structures that are easily editable by end users, but they
lack the storage effi ciency offered by databases. So what if you are trying to create an application
that needs the capacity and effi ciency of a database for storage, but you want it integrated with
SharePoint? In the past, developers often simply created ASP.Net applications and deployed them
to the LAYOUTS directory or built custom web parts that connected directly to a SQL Server
database. BCS changes all of that.

 Because BCS offers an integration layer capable of connecting SharePoint to External Data, developers
should now consider it as the primary pattern for developing applications in SharePoint. If your
SharePoint solution needs data storage with capabilities beyond those of a standard list, you should
use BCS to create that solution. For making this effort, you will be rewarded with a host of capabilities
that a custom ASP.NET application will never have such as enterprise search, External Data columns,
user profi le integration, client synchronization, off - line support, and Microsoft Word integration.

 This book presents BCS from a developer ’ s perspective. The idea behind the book is to present all
of the power and capabilities of BCS along with guidance for using them in custom application
development. After you fully understand BCS, you ’ ll never think of SharePoint solutions the same
way again.

 WHO THIS BOOK IS FOR

 This book is for professional SharePoint developers. While many of the solutions in this book can be
created with no code using the SharePoint Designer, we assume that the reader is an accomplished
C# developer with experience using the Microsoft SharePoint object model. Discussions involving

www.it-ebooks.info

http://www.it-ebooks.info

xxvi

INTRODUCTION

related technologies such as web parts and workfl ows all assume the reader has general knowledge
of the subject.

 HOW THIS BOOK IS STRUCTURED

 This book is organized to present a structured view of BCS development. Early chapters present no -
 code BCS solutions that utilize the SharePoint Designer. Later chapters present solutions that require
Visual Studio 2010. Along the way, the book also divides server - side and client - side capabilities that
can be used in solutions. The following is a brief description of each chapter:

 Chapter 1: Business Connectivity Services — This chapter provides an overview of BCS, its
relationship to other components of SharePoint, and its role in the business environment. The
chapter concludes with a simple no - code solution.

 Chapter 2: Using BCS Solutions in SharePoint 2010 — This chapter presents the integration points
between existing BCS solutions and SharePoint 2010. Readers will learn how to make use of
facilities such as External Lists, External Data columns, External Data web parts, and user profi le
integration.

 Chapter 3: Using BCS Solution in Offi ce 2010 — This chapter presents the integration points
between existing BCS solutions and Microsoft Offi ce 2010. Microsoft Outlook and the client cache
are covered in detail along with the SharePoint Workspace and Microsoft Word.

 Chapter 4: Creating BCS Solutions with the SharePoint Designer — This chapter provides full
coverage of creating BCS solutions through the SharePoint Designer. This chapter includes coverage
of intermediate topics such as form deign and workfl ow integration.

 Chapter 5: Programming BCS Solutions in SharePoint 2010 — This chapter provides coverage of
the server - side object models available in BCS. Readers will learn to create custom solutions for
SharePoint 2010 using these models.

 Chapter 6: Programming BCS Solutions in Offi ce 2010 — This chapter provides coverage of the
client - side object models available in BCS. Readers will learn to create custom solutions for Offi ce
2010 using these models.

 Chapter 7: Developing and Using Connectors — This chapter provides complete coverage of
connector development in Visual Studio 2010. These connectors are used when developers need
more control over communication with external Systems.

 Chapter 8: Working with BCS Security — This chapter provides a detailed examination
of security in BCS solutions. Coverage includes both classic and claims mode considerations for
SharePoint 2010.

 Chapter 9: Working with Enterprise Search — This chapter shows how to create solutions that use
enterprise search with External Systems. The chapter presents fundamental search information as
well as advanced development topics.

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

PROFESSIONAL

Business Connectivity Services

in SharePoint® 2010

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

 SharePoint/Offi ce integration is ideal for information workers, but presents its own set of challenges
to solution developers charged with actually performing the integration.

 SharePoint solutions are often closely related to the data and processes contained in External
Systems. For example, a document library containing invoices may contain metadata also found
in the ERP system, or be addressed to a customer whose information is also in the CRM system.
Without some way of using data from External Systems, the SharePoint solution would be forced to
duplicate information.

 Duplication of data leads to another problem: how do users know which version is up - to - date? If
they regularly work with the SharePoint data but have to cross - reference it with data in the External
System, this creates signifi cant maintenance overhead that could slow adoption and ultimately result
in a higher total cost of ownership.

 User Challenges

 In addition to the data challenges related to SharePoint, there are challenges involved in integrating
external data with Offi ce 2010 documents. When salespeople create a quote, for example, they
often look up customer contact information in a CRM system, copy it to the clipboard, and then
paste it into the document. This duplication of effort obviously increases the time it takes to create
documents. Furthermore, salespeople must be connected to the network in order to access the CRM
system; they cannot easily create quotes while offl ine.

 Users are often frustrated because systems such as CRM or ERP and productivity software do
not seem to “ talk ” to each other. It ’ s diffi cult to create a sales proposal document that combines
data from both systems. Too often there is a lack of integration among the systems that are
important to users.

 IT Challenges

 Information Technology workers want to deploy applications that effi ciently meet end user needs,
yet still meet security, reliability, and regulatory compliance requirements. Writing custom code
to integrate external data, whether it ’ s into a custom application or into SharePoint or Offi ce,
brings up a lot of questions. For example, is the custom application reliable? Can it be modifi ed by
business units? Can it be easily upgraded and enhanced to meet new requirements or serve more
users? Does it build on and leverage strategic software assets?

 Microsoft Business Connectivity Services (BCS) can help address all three classes of challenges.
By using BCS to handle the “ heavy lifting ” — connectivity infrastructure, deployment, and UI
entry points — you leave yourself free to focus on customizations specifi c to the business
problems at hand.

 INTRODUCING BUSINESS CONNECTIVITY SERVICES

 Business Connectivity Services (BCS) makes it easy to integrate external data into SharePoint 2010
and Offi ce 2010 by providing infrastructure to help solve many of the data, user, and IT problems
inherent in data integration solutions. Today professional developers are needed to build this class

Introducing Business Connectivity Services ❘ 3

www.it-ebooks.info

http://www.it-ebooks.info

4 ❘ CHAPTER 1 BUSINESS CONNECTIVITY SERVICES

of solution; with BCS, a broader range of users — from power users to IT staff to developers — can
work together, leveraging BCS capabilities to enable rich interaction with the external data in
applications that end users are already familiar with. Professional developers are freed up to focus
on building reusable data connections and UI components that can be shared with power users and
BUIT staff who are assembling end - to - end solutions. By expanding the set of users directly involved
in building and customizing a solution, you can remove the central IT bottleneck and solve more
business problems.

 BCS solutions map External System capabilities to standardized interfaces to defi ne how to interact
with a system ’ s external data. As a result, solution developers don ’ t have to learn the nuances of
each LOB system; they can deliver powerful solutions faster. BCS also facilitates deployment and
maintenance of scalable and secure solutions through integration with Visual Studio ClickOnce
technology. This allows you to connect SharePoint solutions with Offi ce client computers.

 In a nutshell, BCS is all about connecting end users with enterprise data that they need to do their
jobs — without requiring that they leave the familiar user interfaces of the applications they use
today: SharePoint and Offi ce. This makes it easier for end users to gain insight into the underlying
data, make decisions, and take action within the context of the problem at hand.

 SharePoint provides a range of different capabilities, from sharing information seamlessly and
securely to searching for people and information. One of the groups of capabilities is referred to as
 composites ; BCS is the centerpiece of this group. Composites refer to the ability to create powerful
collaboration and information-sharing solutions that balance self - service with ease of management.
You can assemble these solutions without code, building on the extensible platform capabilities of
SharePoint 2010 and Offi ce 2010. BCS is meant to achieve three things:

 Extend the reach and usage of external data

 Make external data actionable and available

 Create collaborative solutions easily through the reuse of components

 Evolution of the Business Data Catalog

 BCS builds upon the capabilities delivered in the Business Data Catalog (BDC) functionality
of Microsoft Offi ce SharePoint Server 2007. BDC enhanced the capabilities of SharePoint as a
platform for developing composite applications by providing a simple, declarative mechanism to
connect SharePoint 2007 to any database ADO.NET can connect to, or to any SOAP web service.
BDC entities, Business Data web parts, and Business Data list columns were designed to provide a
read - only window into External Systems.

 In SharePoint 2010, BCS provides much deeper integration of external data directly into the
SharePoint and Offi ce UIs in a fully read - write fashion. External Content Types (ECTs) allow
solution designers to describe both the structure of the External System and how that data should
behave within SharePoint and Offi ce.

 If you have not previously worked with the Business Data Catalog, don ’ t worry; no prior experience
is required to understand or use BCS in SharePoint or Offi ce solutions.

➤

➤

➤

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

data input elements such as forms and the data stack itself) and those of BCS (deep UI integration
in both SharePoint and Offi ce). The simplest way to do this is by creating a BCS.NET assembly
connector to consume data entities, operations, and business logic from your WCF RIA Services
solution ’ s domain service.

 To illustrate how these technologies can work together, let ’ s look at a simple end - to - end example:
connecting to a database to present customer data in SharePoint.

 1. We start in Visual Studio by using EDM to model our Customer data.

 2. We then create a Silverlight project and enable WCF RIA Services to present data from our
database to end users.

 3. We add business logic to our project; this lives in the domain service that the Silverlight part
connects to when retrieving/submitting data.

 4. Next, we publish the project to SharePoint as a WSP package. This will be installed as a
full - trust solution.

 5. We then create a site and a web part page, add SharePoint ’ s Silverlight Web Part to the page,
and confi gure it to host our Silverlight application.

 An information worker can now browse to a SharePoint page and interact with the Silverlight
application to view, create, update, or delete customers in an external database.

 Now let ’ s add BCS to the picture. We will start by opening Visual Studio to create a few additional
artifacts.

 1. We create a .NET assembly connector where we ’ ll specify the LINQ calls to create, read,
update, or delete data from our Customers database, as well as specifying the fi elds that
make up a customer.

 2. We publish the project to SharePoint, which will export it as a WSP package and install it as
a full - trust solution. This will register a new Customer External Content Type with BCS.

 With a minimal amount of extra effort, we ’ ve enhanced our solution to allow end users to easily
create SharePoint lists that show customers, search for customers, and connect customer lists
to Outlook and SharePoint Workspace. If necessary we could write additional code to present
customer data in other Offi ce applications by using VSTO add - in support.

 ARCHITECTURE OVERVIEW

 BCS is an umbrella term for a set of technologies that brings data from External Systems into
SharePoint Server 2010 and Offi ce 2010. It spans tools, connectivity infrastructure, and UI
components on both the server and client. The term Business Data Connectivity, or BDC (same
acronym as in 2007, but Connectivity instead of Catalog) is used to refer to the connectivity
runtime. This BDC runtime is identical on the server and client, an ECT can be interpreted in either
SharePoint or Offi ce client, and the same External System called to retrieve data.

 Figure 1 - 1 shows the set of BCS connectivity and UI capabilities across SharePoint and Offi ce.

Architecture Overview ❘ 7

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

 The Business Data Connectivity Service (BDC) is the runtime object model invoked when a user
request to interact with an External System is received. The BDC runtime reads ECTs from the
BDC Metadata Store and routes calls through the appropriate connector (WCF/WS, DB, .NET
Connectivity Assembly, Custom) to access the data source.

 The BDC runtime may also call other SharePoint services before making a call to an External
System. The Secure Store Service (which securely stores credential sets for External Systems and
associates those credential sets with identities of individuals or with group identities) and the
SharePoint Secure Token Service (which is used to request a security token that can be passed to a
Claims - enabled External System) are two such examples.

 Users can create External Lists and confi gure External Data web parts to work with data that BCS
exposes. Once an External List is available, numerous other SharePoint capabilities can interact
with it, including Workfl ow, Search, and InfoPath forms. These are described in more detail in
Chapter 2.

 Users can also connect External Lists to computers with Offi ce 2010 installed. In supported Offi ce
client applications (SharePoint Workspace, Outlook, and Word) the BCS Client components act as
connectors between the BDC runtime service and Offi ce applications.

 External data and Secure Store Service data are cached on client computers, the former being
stored in a SQL CE database and the latter being stored in the Windows Credential Manager
Service. The BDC client runtime uses a local cached copy of the Metadata Model containing the
ECTs to connect directly to External Systems. Connections are made to SharePoint only when
the user checks for updates to the ClickOnce package. Chapter 3 expands on BCS integration
with Offi ce 2010.

 KEY CAPABILITIES

 BCS provides a wide range of features across SharePoint 2010 and Offi ce 2010, but, broadly
speaking, they can be grouped into three areas:

 Presentation

 Connectivity

 Tooling

 Presentation

 The goal of the presentation features in BCS is to extend the SharePoint and Offi ce user experience
and capabilities to handle external data and processes. Let ’ s start within SharePoint to understand
the out - of - the - box capabilities that are at your disposal to present external data.

 External List: A type of SharePoint list that points to an External Content Type as its
data source, but looks and feels like any other SharePoint list. When a user browses to an
External List, data is retrieved directly from the External System. Supports full CRUD
capabilities.

➤

➤

➤

➤

Key Capabilities ❘ 9

www.it-ebooks.info

http://www.it-ebooks.info

10 ❘ CHAPTER 1 BUSINESS CONNECTIVITY SERVICES

 External Data Column: A column that can be added to an existing list or document library
and bound to one or more fi elds from an External System. When the column is added, a
read - only copy of the data is made in SharePoint. Note that External Data Columns were
referred to in SharePoint 2007 as Business Data Columns, or Business Data in Lists.

 External Data Web Parts: Five web parts (Item, List, Related List, Actions, and Item
Builder) that can be added to any SharePoint web part page to display external data.
The parts are read - only but can easily be extended to leverage External Lists and actions
to enable write - back scenarios. External Data web parts are sometimes referred to in
SharePoint 2010 UI and documentation as the Business Data web parts, the same name
used in SharePoint 2007.

 Chart Web Part: A powerful web part with rich customization capabilities that can be used
to visually present charts and graphs of SharePoint data or external data.

 Enterprise Search: Allows end users to search External Systems from within the SharePoint
Search Center. Search scopes can be created to target a specifi c set of external data.

 External Data in User Profi les: Enables an administrator to append fi elds from External
Systems to data from your corporate Active Directory and store the results in the SharePoint
user profi le database. Once defi ned, the value of any user profi le fi eld can be sent to the
External System when data is retrieved at runtime.

 InfoPath: Can be used to replace the standard SharePoint forms for an External List. Once
customized, the same InfoPath form can be presented in both SharePoint and SharePoint
Workspace.

 Most of the SharePoint presentation features in the preceding list are covered in detail in Chapter 2.
Search is covered in detail in Chapter 9.

 BCS also provides a broad set of capabilities within Offi ce client applications to present
external data:

 SharePoint Workspace (SPW): View and interact with any in a rich client application,
regardless of whether users are online or offl ine. Sort, fi lter, group, or search external data,
and view item details in InfoPath forms.

 Outlook: View and interact with External Lists whose structure maps closely to the Offi ce
item types that Outlook supports. (Appointment, Contact, Post, and Task.)

 Word: Create or edit a Word document or template in a SharePoint document library that
has one or more external data columns. Add Quick Parts to enable end users to select and
embed external data into their document.

 Access: Create a read - only link table to surface external data inside an Access rich client
application. Be aware that data in these applications cannot be viewed when it is hosted by
Access Services in the browser.

 The Offi ce presentation features described in the preceding list are covered in detail in Chapter 3.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

12 ❘ CHAPTER 1 BUSINESS CONNECTIVITY SERVICES

 SharePoint Search 2010 uses BCS to crawl and index external data, and offers full - text search
regardless of where the data resides. Search also uses the BDC service to perform security trimming
of external data when a query is executed. External data can be incrementally crawled to identify
items that have changed, and proprietary External Systems can be crawled through the use of
BCS.NET assembly connectors or custom connectors.

 Tooling

 BCS provides an integrated tooling experience that scales from simple solutions to advanced
code - based applications, with capabilities to enable packaging of SharePoint solutions for
deployment to Offi ce client computers.

 In SharePoint Designer 2010, SPD users can discover and use external data. They can create ECTs
to describe External Systems that are relatively fl at in structure and simple to understand, defi ne
associations between ECTs, create External Lists, add InfoPath forms to these lists, and perform
other operations critical to building most BCS solutions. SharePoint Designer is most useful for the
following operations:

 Create connections to External Systems such as:

 Database

 WCF or Web services

 Map operations for an External System

 Create, read, update, delete

 Associations

 Re - use existing connections to External Systems

 .NET type

 Surface external data

 In SharePoint External Lists

 In Outlook as Appointments, Contacts, Posts, or Tasks

 Visual Studio 2010 is optimized for creating and publishing code - based components to SharePoint.
By using the new Business Data Connectivity project type, developers can easily do the following:

 Create a .NET Assembly Connector to

 Aggregate data across multiple External Systems

 Perform custom data transformations

 Execute custom business logic/rules (such as by triggering a workfl ow)

 Query data from data sources the out - of - the - box connectors do not support

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

www.it-ebooks.info

http://www.it-ebooks.info

 Enhance and expand solutions created in SharePoint Designer

 Bring external data into other Offi ce client applications (such as Excel) with VSTO add - ins

 Visual Studio offers a simple drag - and - drop experience to create External Content Types as part of
a .NET assembly connector. Empty stereotypes are automatically defi ned for the CRUD methods;
the developer simply fi lls in the code. Developers can switch between Visual and XML views of the
ECT defi nitions, and press F5 when fi nished to import the ECTs to SharePoint in the form of a WSP.
From there it ’ s easy to create an External List and see things “ running ” end to end. You can even
add a breakpoint to your code and step through the code as your External List loads data.

 BCS provides automatic packaging and deployment for solutions. When a user navigates to an
External List and clicks a button to take it offl ine to SharePoint Workspace or Outlook, BCS
packages all related artifacts into a single, versioned ClickOnce package that is saved to a
sub - folder of the External List. The user is redirected to this package and ClickOnce is launched
to deploy it to the client machine. Where required, solutions can also be “ pushed ” to desktops
via tools such as SMS.

 BCS also plugs into common SharePoint tools such as backup and restore, site migration, and
upgrade from previous versions, just as many other SharePoint services do.

 BCS in SharePoint and Offi ce SKUs

 With the SharePoint 2007 release, Business Data Catalog functionality was available only in the
Microsoft Offi ce SharePoint Server Enterprise Edition SKU. For SharePoint 2010 the connectivity
and administration are available in SharePoint Foundation. There continues to be a tiered story for
the SharePoint Server 2010 SKUs, which are differentiated based on the Client Access License (CAL)
purchased for each user. Table 1 - 1 lists the three SharePoint SKUs, and notes which BCS features are
available in each. All features available in SharePoint Foundation are included in both SharePoint
Server SKUs. All features in SharePoint Server with Standard CAL are included in SharePoint Server
with Enterprise CAL.

➤

➤

 TABLE 1 - 1: BCS Capabilities in SharePoint 2010

 SKU FEATURES

 SharePoint Foundation BDC runtime OM, Connectors (WCF/WS, DB, .NET Assembly

Connector, Custom), BDC Metadata Store, External Lists, External

Data column, BDC Administration pages, BDC administration OM,

Workfl ow

 SharePoint Server with

Standard CAL

 Secure Store Service OM and Administration pages

 SharePoint Server with

Enterprise CAL

 External Data Search, Profi le pages, External Data web parts, Rich

Client Extensions (i.e., Offi ce 2010 connectivity for External Lists),

InfoPath forms

Key Capabilities ❘ 13

www.it-ebooks.info

http://www.it-ebooks.info

14 ❘ CHAPTER 1 BUSINESS CONNECTIVITY SERVICES

 For Offi ce 2010, BCS is included in the Professional Plus suite (often referred to as Pro Plus) and
its stand - alone derivatives such as Outlook 2010, Word 2010, Access 2010, and Excel 2010. BCS
is not available in other suites, such as Standard, nor in stand - alone applications that are not
present in Professional Plus, such as Visio or Project. There is no tiered functionality in Offi ce as
in SharePoint — if BCS components are installed you get all the BCS client features:

 BDC runtime

 SQL CE cache

 BCS client runtime

 Connecting an External List to SharePoint Workspace or Outlook obviously requires that the
appropriate host application be installed. Building an advanced code - based solution that targets an
application that BCS doesn ’ t support out of the box (such as Excel 2010) is possible, provided that
either the Pro Plus suite or a corresponding stand - alone application is installed.

 CREATING SIMPLE BCS SOLUTIONS

 BCS solutions can be complex, or so simple that they don ’ t even use code. Using the capabilities of
SPD and SharePoint you can easily create External Content Types and External Lists. This external
data can then be edited in SharePoint or Offi ce clients. In this section you ’ ll walk through a simple
BCS solution based on the AdventureWorksLT SQL Server database. The database contains two
tables of sales - related data; Figure 1 - 3 shows the Customer table. The goal of the walkthrough is to
create lists of customers and products in SharePoint and make those lists available in Outlook and
SharePoint Workspace respectively.

➤

➤

➤

 FIGURE 1 - 3

 Creating External Content Types

 The solution begins with the defi nition of External Content Types to defi ne the schema, and
operations to perform on the external data. Whether your BCS solution ultimately uses code or not,
you will almost always defi ne the ECTs using SharePoint Designer. The tooling in SPD for creating
ECTs was designed to be sophisticated enough to be used by professional developers across all types

www.it-ebooks.info

http://www.it-ebooks.info

of BCS solutions. To begin, open a SharePoint site in SPD and select External
Content Types from the list of Site Objects, as in Figure 1 - 4.

 The External Content Type gallery displays the set of existing ECTs;
clicking the External Content Type button in the New section of the ribbon
begins the creation process. The ECT summary page prompts you for
basic properties such as programmatic name, display name, namespace,
and version. Offi ce Item Type, shown in Figure 1 - 5, defi nes how the ECT
should be presented when taken offl ine to Outlook 2010. The default
option, Generic List, means that the ECT doesn ’ t map to any Offi ce item
type and will be available to take offl ine in SPW but not Outlook. For this
walkthrough choose Contact, as the fi elds of the Customer table map well
to the properties of an Outlook contact.

 Clicking the link to discover external data sources and then choosing Add Connection opens a
dialog where you select the type of system that you are connecting to: WCF/Web Service, .NET
Assembly Connector, or SQL Server. Choosing SQL Server allows you to enter the database server
and database name, as shown in Figure 1 - 6.

 FIGURE 1 - 6 FIGURE 1 - 5

 FIGURE 1 - 4

 FIGURE 1 - 7

 The list of database tables is now displayed in the Data
Source Explorer tab. Expand the Customer table to
view its structure; right - click the table to defi ne an
individual create, read, update, or delete method. As
we are modeling a database in this example, we can
save time by selecting Create All Operations, shown in
Figure 1 - 7, which will condense the process into one
three - step wizard.

 On the second step of the wizard you will need
to map fi elds from the Customer table to Outlook
contact properties. For this example, map FirstName ,
 LastName , CompanyName , and EmailAddress to the
Outlook properties of the same name. Additionally, map Phone to Business Telephone Number .
Do this by selecting the database fi eld in the left column and the corresponding Offi ce property

Creating Simple BCS Solutions ❘ 15

www.it-ebooks.info

http://www.it-ebooks.info

16 ❘ CHAPTER 1 BUSINESS CONNECTIVITY SERVICES

from the drop - down menu in the right column, as shown in Figure 1 - 8. Note that several properties,
such as SalesPerson and ModifiedDate , remain unmapped. Click Finish to exit the wizard.

 FIGURE 1 - 9

 FIGURE 1 - 10

 FIGURE 1 - 8

 Complete the process by clicking Save in SPD to publish the ECT to the BDC Metadata Store.

 Creating External Lists

 External Lists can be created through the browser
or in SPD. For this walkthrough, click the Create
Lists & Forms button in the ribbon and give the list
a name, as in Figure 1 - 9. You can optionally add
InfoPath forms to the list by selecting the checkbox
at the bottom of the dialog.

 The new External List can be viewed in the browser,
as shown in Figure 1 - 10. Users can create, view, edit,
and delete items because all of these operations were
defi ned as part of the ECT.

www.it-ebooks.info

http://www.it-ebooks.info

 Connecting External Lists to Offi ce 2010

 SharePoint Server 2010 with the Enterprise
Client Access License supports connecting
External Lists to SharePoint Workspace 2010,
and where applicable to Outlook 2010. In the
List tab of the External List ’ s ribbon, a Connect
to Outlook button enables synchronization to
Outlook. A Visual Studio ClickOnce package
is automatically created and accessed to present
the installation screen shown in Figure 1 - 11.

 Outlook is launched if it ’ s not currently
running and a new Customers folder is
created in the SharePoint External Lists PST
store. Synchronization of data from the SQL Server database happens almost immediately and
items are presented to the user. As a result of the Customers ECTs being mapped to the Contact
Offi ce Item Type, the items are shown in the business card view in Outlook, as illustrated in
Figure 1 - 12. Double - clicking an item to open the inspector view reveals fi elds such as LastName
and Phone that were mapped to Outlook properties. You can view those properties that were not
mapped, such as SalesPerson and ModifiedDate , by clicking the Customers Details button in
the ribbon.

 FIGURE 1 - 12

 FIGURE 1 - 11

 All External Lists, not just those that mirror the schema of an Offi ce Item Type, can be
synchronized with SharePoint Workspace. For the purposes of this walkthrough, an additional
ECT and an External List have been prepared to show data from the Products database table. The

Creating Simple BCS Solutions ❘ 17

www.it-ebooks.info

http://www.it-ebooks.info

18 ❘ CHAPTER 1 BUSINESS CONNECTIVITY SERVICES

preparation steps were identical to those for the Customer sample, with the exception of Offi ce
item type. Because products do not map closely to an appointment, contact, post, or task item,
Generic List was selected. As in Figure 1 - 13, from the Products External List, click the Sync to
SharePoint Workspace button in the List tab of the ribbon.

 FIGURE 1 - 13

 FIGURE 1 - 14

 Again, a Visual Studio ClickOnce package is created and accessed to install the necessary ECT,
form, and data subscription components. Figure 1 - 14 shows the Products External List in the
SharePoint Workspace.

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

20 ❘ CHAPTER 1 BUSINESS CONNECTIVITY SERVICES

 Simple Solution Leveraging Out - of - the - Box Capabilities

 In SharePoint Foundation 2010 you can surface external data in an External List or on a web part
page via the Business Data web parts or the Chart Web Part. You can also add an External Data
column to a standard SharePoint list or document library. That column can then be exposed as a
Quick Part in Word 2010.

 In Outlook 2010 you can take an External List offl ine from SharePoint Server 2010 with Enterprise
Client Access License and allow users to interact with the external data from within Outlook. Users
see the same formatting (contact, appointment, task, or post) as for regular Outlook items and
can use the same gestures to interact with them. This type of solution runs under the native BCS
Outlook add - in, which is installed with Offi ce 2010 and loaded at Outlook startup.

 In SharePoint Workspace 2010 you can take an External List offl ine from SharePoint Server 2010
with Enterprise Client Access License and allow users to interact with the external data from within
SharePoint Workspace. Business Connectivity Services does not provide an extensible programming
model to extend this type of simple solution, but you can associate an InfoPath form with the
External List. This opens up the ability to customize the form and present the customized form on
both the server and the client in SharePoint Workspace.

 Users in Outlook and SharePoint Workspace can synchronize data directly with the External
System(s) automatically (the default interval is every three hours) or by explicitly clicking an action.
They can also explicitly check for schema updates to the External List, which will result in a new
ClickOnce package being deployed to the machine if the structure of the External List, its forms, or
its views have changed.

 Tooling for simple solutions mostly involves creating External Content Types, which is typically
done with SharePoint Designer but can involve Visual Studio, or an XML editor if necessary. From
there you can create an External List using the browser or SharePoint Designer and click a button
in the SharePoint ribbon to connect it to Outlook or SharePoint Workspace. Web part pages and
external data columns can be created using the browser or SharePoint Designer.

 Intermediate Declarative Solution

 The most common types of intermediate solutions are simple solutions that have been further
customized to add capabilities. These additional capabilities include InfoPath forms, SharePoint
workfl ow, and SharePoint web part pages. You can customize InfoPath forms that present External
Data by changing the look and feel, adding declarative rules/business logic, or adding code behind.
The latter requires that the form be published as an admin - deployed form to the server — Chapter 4
walks you through this process end to end. You can also create or add capabilities to SharePoint
workfl ows through SharePoint Designer by confi guring the out - of - the - box SharePoint List activity
to read data from, or write data to, an External List, or by reusing a custom workfl ow activity
built in Visual Studio (and published to SharePoint) that interacts with External Lists or the BDC
runtime object model. Finally, you can create web part pages that leverage out - of - the - box web
parts (Business Data Item, List, Related List, Actions, Item Builder, and Filter as well as the Chart
Web Part) and optionally confi gure part - to - part connections to send data among them. You can
customize the look and feel of parts by editing the XSLT of each part in the web part tool pane.

www.it-ebooks.info

http://www.it-ebooks.info

 Another type of intermediate customization involves external data in Outlook 2010. For example,
you can show related order information in a custom task pane when a user has a Business Contact
inspector open.

 Starting with basic Outlook elements you can customize the view that is shown for a folder of
external data. Do this by opening the folder in Outlook and using the standard commands to
build and save a new view. BCS provides a command to save the customized view to SharePoint
and place it in a sub - folder of the External List, making it available to future users who connect the
list to Outlook.

 Additional Outlook customizations are slightly more complex than other intermediate
customizations and require that you create XML fi les — such as Solution Manifest (OIR.Config),
Subscription, Ribbon, and Layouts — and then create a ClickOnce package by using BCS SDK
tools. Users can then deploy the solution in Outlook by installing the ClickOnce package. In such a
solution, you can defi ne custom task panes and present external data to users via external data parts
(either out - of - the - box parts or code - based custom parts) hosted in a task pane. You can also defi ne
ribbon fi les and custom actions (exposed in the ribbon or in an external data part) that either trigger
code or launch a browser pointing to a URL. Finally, you can customize Outlook forms by starting
with the auto - generated forms that BCS provides, tweaking them, and saving/exporting the fi le(s).
Customizations here leverage Business Connectivity Services ’ rich client runtime (including the BCS
Outlook add - in), which presents the elements defi ned in the XML fi les at runtime.

 The fi nal type of intermediate solution is referred to as a data - only solution . As the name implies,
this is used to tell BCS to fetch data from an External System and store it in the client cache.
No UI is created to view/administer the data in Outlook. This is useful when combined with
an advanced solution that integrates with an Offi ce application, such as Excel or PowerPoint, as
advanced solutions are not capable of communicating with BCS to populate the client cache.

 A variety of tools, including InfoPath Designer (for forms), SharePoint Designer (for workfl ows),
a browser (for SharePoint web part pages), and Outlook (for customized forms and views), can be
used to build intermediate solutions.

 To create the XML fi les needed for your Outlook declarative solution, you can use any XML editor.
Visual Studio provides IntelliSense, which can be helpful when you are creating these XML fi les.
Business Connectivity Services provides a Solution Packaging Tool as part of the SDK, which you
can use to create a ClickOnce package for Outlook declarative solutions. Chapter 6 describes the
schema of these XML fi les, and provides sample fi les to get you started.

 Advanced Code - Based Solution

 Advanced solutions can involve the creation of reusable components (.NET assembly connector
to aggregate or transform data from External Systems, custom web parts, custom workfl ow
activities, code behind for InfoPath forms, and code - based actions or external data parts for use
in Outlook declarative solutions) or an entire end - to - end solution that leverages the Business Data
Connectivity object model. The rest of this section discusses the different options and considerations
for end - to - end solutions.

 A code - based .NET Framework solution created with a tool such as Visual Studio can use any
element of the public Business Connectivity Services object model and can enable users to interact

Types of Solutions ❘ 21

www.it-ebooks.info

http://www.it-ebooks.info

22 ❘ CHAPTER 1 BUSINESS CONNECTIVITY SERVICES

with external data. It can register with the Business Data Connectivity (BDC) service by using the
BDC runtime object model to present data in SharePoint or an Offi ce 2010 application that supports
VSTO add - ins. Creating a custom client application that is not hosted in a Microsoft Offi ce
application to surface external data is not supported.

 External Data can be retrieved directly from the External System while a client application is
connected to it, or External Data can be retrieved locally from the BCS rich client cache to enable
offl ine scenarios. To populate the cache with External Data, one or more External Lists can be
taken offl ine to SharePoint Workspace or Outlook, or a Declarative Data Only solution can
be deployed to the client machine. Developers wishing to deploy a Data Only and an advanced
solution together as a single unit can chain the ClickOnce packages together by referencing the
second package in the Post Deployment Action (PDA) of the fi rst package. Advanced solutions can
be used to extend BCS to Offi ce applications that are not supported out of the box, such as Excel
and PowerPoint.

 In a code - based end - to - end solution, the developer controls the user interface, packaging, and
deployment. This type of solution cannot make use of Business Connectivity Services ’ rich
client runtime, which is used by simple and intermediate solutions to integrate data into Offi ce
applications.

 The only exception to the preceding rules about populating the cache with data, and advanced
solutions owning all UI elements, is advanced solutions that target Outlook. These solutions are able
to provide a Subscription fi le that defi nes the data that should be pulled into the client cache, and an
 OIR.config fi le that describes the structure of folders that should be created in Outlook. Additional
UI customizations such as customizing the ribbon, showing data in a task pane, and providing
custom forms are the responsibility of the solution developer and will require additional code.

 Code - based solutions are developed with a tool such as Visual Studio 2010. A BDC project type
is available to facilitate the creation of .NET assembly connectors. Learn how to create a .NET
assembly connector in Chapter 7.

 To summarize, a broad spectrum of solutions can be built using BCS. These range from
simple solutions that rely on out - of - the - box capabilities with little or no customization to
intermediate solutions that involve customizing a wide range of features in SharePoint and
Offi ce 2010. Advanced solutions involve the creation of code via Visual Studio, and can either
be complete end - to - end solutions or provide reusable code - based components that can be included
in intermediate solutions.

 SOLUTION PACKAGING

 As noted previously, BCS lets you package SharePoint solutions into ClickOnce applications for
deployment to Offi ce 2010 machines. This functionality is completely transparent for simple
solutions — the package for an External List is created on demand when a user clicks Connect
to Outlook or Sync to SharePoint Workspace. The same mechanism is used to install declarative
or advanced solutions, but the ClickOnce package must be created in advance by the solution
developer. Microsoft provides a Software Development Kit (SDK) tool to streamline the process
of creating a declarative or advanced solution package.

www.it-ebooks.info

http://www.it-ebooks.info

 TABLE 1 - 2: ClickOnce Package Contents by Solution Type

 COMPONENT DESCRIPTION SIMPLE DECLARATIVE ADVANCED

 Metadata Model Contains ECTs,

describes how to

connect to External

Systems

 Required Required Required

 Subscription Describes the set of

data (i.e. views) with

which to populate the

client cache

 Automatically

created on client

after deployment

 Required Not

supported

 InfoPath forms Shown in SharePoint

workspace; can contain

declarative validation

logic or code behind

 Automatically

created on client

after deployment

 Optional (for

showing data

in Outlook

task pane or

custom form

region)

 Requires

code

 OIR.config fi le Basic Outlook UI

structure

 Automatically

created on client

after deployment

 Required

(except for

Data Only)

 Required

if targeting

Outlook

 Outlook view

customizations

 Defi nes the columns

and sort/fi lter/group

settings for an external

data folder

 Optional Optional Requires

code

 Outlook UI

customizations

 Outlook Forms 3 forms,

ribbon fi les, custom

task pane layouts, UI

controls to show in

forms/task panes

 Not supported Optional Requires

code

 ClickOnce Package

 Regardless of who creates it or how it is created, the ClickOnce package must contain a Metadata
Model fi le that includes one or more ECTs. As shown in Table 1 - 2 , additional elements are optional
and depend on the type of solution and which Offi ce application will host it.

 Where it is noted in the table that code is required, it is the responsibility of the solution developer
to include the element in the package and register/display the artifact in the host application at
runtime.

Solution Packaging ❘ 23

www.it-ebooks.info

http://www.it-ebooks.info

24 ❘ CHAPTER 1 BUSINESS CONNECTIVITY SERVICES

 Deployment Concepts

 When a user clicks a link or action that points to a ClickOnce package, the initial deployment
process begins. The user sees an initial trust prompt, as shown in Figure 1 - 11, of the Simple
Solution walkthrough. By default this prompt shows an unknown publisher; you can change this by
registering a certifi cate on the SharePoint farm. This process is described in Chapter 5.

 Elements of a solution will almost certainly change after initial deployment to a given group of
users. The schema of the External System(s) could change, necessitating modifi cations of the ECTs
and model fi le, InfoPath or Outlook forms, or other solution elements.

 Simple solutions provide a semi - automated mechanism for processing updates to a solution —
 whenever a user clicks the Connect to Outlook or Sync to SharePoint Workspace button on an
External List, BCS checks to see if there is an existing solution. If not, a new ClickOnce package
is generated; if so, the version of each server - side artifact (Metadata Model, InfoPath forms,
External List views) is checked to see if it has changed. If there are no changes, the existing
package is current and made available for download; if there are changes, a new version of the
package is created. Similar logic is executed if a user clicks Check for Updates from a BCS folder
in Outlook or chooses to sync an External List in SharePoint Workspace.

 Declarative and advanced solutions hosted in Outlook, like simple solutions, give users the ability
to explicitly check for updates from a BCS folder in Outlook. However, neither declarative nor
advanced solutions can be auto - generated; thus the solution developer must manually replace the
ClickOnce package with a newer version.

 Data only declarative solutions and advanced solutions hosted in applications other than Outlook
must provide their own logic to check for updates or simply rely on “ push ” mechanisms to update
client machines.

 SECURITY

 There are two key components to security: authentication and authorization. When connecting
to External Systems, BCS must be fl exible enough to understand several different authentication
modes. In the simplest case, BCS may be passing Windows credentials from the user (whether in
SharePoint or in an Offi ce application) through to the External System. However, most real - world
applications have more complex requirements such as proprietary authentication mechanisms
including tokens or claims.

 From an authorization perspective, SharePoint objects can be secured, BCS provides the ability to
secure ECTs and models, and External Systems control permissions to the data itself. It is important
to understand how these layers work together and to implement the minimum set of permissions
necessary to enable users to be productive.

 In order for BCS solutions to be secure and easy to deploy, they must gracefully deal with a wide
range of authentication and authorization scenarios. These scenarios are discussed in more detail in
Chapter 8; what follows is a brief overview of the key concepts.

www.it-ebooks.info

http://www.it-ebooks.info

 Authentication Overview

 The most common BCS authentication scenario involves a database or web service as the External
System. These systems are typically internal to the organization and use either Windows authentication
or username/password authentication. In these scenarios BCS supports two authentication models:
 Trusted Subsystem and Impersonation and Delegation . In the Trusted Subsystem model BCS uses a
single account to access the External System regardless of the end user ’ s identity. With Impersonation
and Delegation, BCS attempts to impersonate the end user and access the External System.

 The authentication mode that BCS uses to connect to an External System is defi ned by the
 AuthenticationMode element in the XML Metadata Model fi le that defi nes one or more External
Content Types. There are fi ve possible values for the AuthenticationMode element:

 Passthrough falls under the Impersonation and Delegation authentication model and
results in BCS using the credentials of the currently logged - in user to access the External
System. Passthrough works well for simple scenarios (such as the walkthrough earlier in
this chapter) in which the External System is hosted on the same computer as SharePoint;
it falls short for most real - world scenarios because of the “ double - hop ” problem, which is
discussed in Chapter 8.

 RevertToSelf falls under the Trusted Subsystem authentication model and results in BCS using
the credentials of the application pool to access the External System. Although RevertToSelf can
solve the double - hop problem, all user requests to the External System will be made using the same
account. While appropriate for some scenarios, this makes it impossible for the External System
to grant an employee rights to view a certain set of data and a manager rights to view additional
details. It also makes it diffi cult or impossible to track which users made changes to the External
System. The fi nal three values — WindowsCredentials , RdbCredentials , and Credentials — are
used to pass a separate set of credentials from the Secure Store Service (SSS). The SSS is a fl exible
credential management service that supports both the Trusted Subsystem and the Impersonation
and Delegation authentication models. If you map all end - user credentials to a single group account
in SSS, you can support the Trusted Subsystem authentication model. Alternatively, if you map
end - user credentials to a unique set of credentials per user, SSS is supporting the Impersonation
and Delegation authentication model. SSS is capable of managing three different types of
credentials (Windows, SQL, and username/password), which correspond to WindowsCredentials ,
 RdbCredentials , and Credentials respectively.

 Claims and OA uth

 BCS can also use claims to authenticate against External Systems that support it. The External
System must both support claims and trust the SharePoint claims provider. A common scenario
is a custom WCF service that implements claims authentication and exposes data from one or
more databases. To implement claims authentication, AuthenticationMode should be set to
 Passthrough . As noted previously, this will cause BCS to authenticate with the current user ’ s
credentials. In this scenario, however, the External System ’ s WCF service will request a Security
Assertion Markup Language (SAML) token, which is necessary to authenticate in a claims
environment. When BCS receives the request for the SAML token, it contacts the Secure Token
Service (STS), an application service that runs in the SharePoint farm. The SharePoint STS examines
the end - user credentials and issues a SAML token. This SAML token is then used by BCS ’ s WCF
connector to authenticate against the WCF service.

➤

Security ❘ 25

www.it-ebooks.info

http://www.it-ebooks.info

26 ❘ CHAPTER 1 BUSINESS CONNECTIVITY SERVICES

 OAuth is a common authentication mechanism that is used by web - based applications and services.
It is a token - based standard in which a user provides log - in information and is issued a token that
grants access to a particular website for a specifi c set of resources for a specifi ed duration. The
SDK provides a working BCS code sample that shows how to connect to an External System that
uses OAuth.

 Offi ce Client

 Much of this section refers to scenarios that involve accessing External Systems from SharePoint —
 what changes when a user is trying to authenticate from an Offi ce client application? One of the
goals of BCS is to provide a symmetrical runtime experience on both server and client — the same
Metadata Model and ECTs are made available in both locations and user requests are sent directly
to the External System — but there are some scenarios in which different client settings will be
required. It is for this reason that you can specify client - specifi c settings as part of your ECTs and
Metadata Models. This gives you the fl exibility to choose the authentication mode most appropriate
for each environment.

 Passthrough authentication will result in the client ’ s passing the user ’ s current Windows credentials
through to the External System. If the External System is a claims - enabled WCF service, a request
will be made to the SharePoint STS to obtain a token that can then be passed from the client to the
External System. This is one of the few scenarios in which a request for external data from a client
requires that SharePoint be accessible.

 RevertToSelf is not useful for client scenarios — unlike on the server, the client is not impersonating
the identity of a user to process a request and thus there is no identity to revert to. Client requests
made with this setting in the Metadata Model will act the same as Passthrough requests.

 Secure Store can be used on the client and credentials will be persisted in the Windows Credential
Manager store. It is important to note, however, that credentials that are encrypted in the SSS
within SharePoint are not transferred to Offi ce client applications — users must re - enter the
credentials locally. A key consideration with SSS is whether to use individual or group accounts.
All users can be mapped to a group account on the server, whose credentials can be managed by an
administrator. When a BCS solution that requires these group credentials is connected to an Offi ce
client application, the end user will be prompted for those credentials, which he or she is unlikely
to have access to. Individual credential mapping is a cleaner approach when you are using SSS with
client applications — end users will still be prompted to enter credentials if those credentials don ’ t
exist or have expired in the Credential Manager store, but the users are more likely to know what
they need to enter.

 Authorization Overview

 Authentication is only the fi rst part of accessing data from External Systems. After the user is
authenticated BCS must determine whether the user is authorized to call a particular operation
on an ECT. BCS has four different permissions that may be assigned. These are Edit, Execute, Set
Permissions, and Selectable in Clients. The Edit right grants the ability to create, delete, and update
BCS metadata. The Execute right grants the ability to make a call to an External System. The Set
Permissions right grants the ability to assign rights to other users, and the Selectable in Clients right
provides access to utilities such as the External Content Type picker. These rights can be assigned at

www.it-ebooks.info

http://www.it-ebooks.info

the model, system, entity/ECT, and operation levels through the Central Administration UI for the
BDC application service.

 In addition to the authentication and authorization scenarios described earlier, it is possible to add
custom code to a .NET Assembly Connector or Custom connector to address requirements unique
to a particular scenario or External System. Two important considerations here include:

 The context in which your code is running: by the time the request reaches the BDC
runtime you may not have direct access to the SharePoint or Offi ce context in which the
user initiated the action.

 Are you building a client-server solution that relies on resources that exist only in
SharePoint? For example, client machines cannot fetch the credentials of the SharePoint
application pool account.

 SUMMARY

 In short, there are many challenges when it comes to integrating external data. Business Connectivity
Services helps to address those challenges by providing a powerful and quick way to connect that
data into SharePoint and Offi ce 2010. BCS can also work alongside and extend other integration
service offerings such as BizTalk, EDM, and WCF RIA Services.

 External Content Types (ECTs) are the critical building block of BCS: they defi ne how to connect
to an External System to retrieve data for a particular object such as a Customer. The defi nitions
include the methods to call when to read or update data, the fi elds that constitute a single Customer
record, and how that Customer should behave within the SharePoint and Offi ce environments.

 The core capabilities of BCS can be divided into three areas: presentation, connectivity, and tooling.
External Lists are the primary presentation mechanism for data in SharePoint, while SharePoint
Workspace and Outlook are the primary Offi ce applications. BCS can natively connect to
databases, SOAP web services, and WCF services; you can also defi ne your own custom connection
to aggregate or transform data by creating a .NET assembly connector or custom connector.
SharePoint Designer offers a graphical, wizard - based experience for creating ECTs, External Lists
and InfoPath forms. Visual Studio can be used to create code - based components from scratch, or to
enhance ECTs created or modifi ed in SPD.

 All the core BCS runtime and administration infrastructure is available in SharePoint Foundation,
as are the External List capabilities. SharePoint Server adds web parts and Secure Store
functionality, as well as the ability to connect External Lists to Offi ce client applications.

 BCS provides support for several different authentication schemes, including Trusted Subsystem and
Impersonation and Delegation. You can also connect to a Claims - enabled WCF service to exchange
SAML tokens or, by writing code, connect to a token - based service that uses OAuth.

 At this point you understand the fundamental BCS concepts and have seen a sample end - to - end
scenario. Chapter 2 takes an in - depth look at the different BCS components within SharePoint —
 from the administration and runtime infrastructure to the External Lists and web parts that end
users interact with.

➤

➤

Summary ❘ 27

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

30 ❘ CHAPTER 2 USING BCS SOLUTIONS IN SHAREPOINT 2010

BCS solutions whether you are focused on the server, the client, or both. On the server, the BDC
components consist of the BDC Service Application, the BDC Service Application Proxy, the Metadata
Store, and the BDC Server Runtime. On the client, the BDC components consist of a metadata cache,
a dispatcher, a sync agent, and the BDC Client Runtime. Client components are explored in more
detail in Chapter 3.

 We begin by looking at External Content Types and how they relate to the BDC Metadata
Model, and then examine the various components of the BDC Service Application and how
you manage them.

 Introducing the BDC Metadata Model

 For each External Data element that you want to make available to end users through BCS, an
External Content Type must be created. An ECT (referred to in SharePoint 2007 as an entity) is
simply a series of XML fragments that describe how to interact with an External System. At a high
level, an ECT can be thought of as:

 A table, or a view from a database

 A result set from a T - SQL statement, or

 A result set from a web method call

 For example, a Product ECT might specify that ProductID , Description , Category , and Cost
fi elds be returned from an ERP system when a particular Product record is requested by passing
in ProductID .

 Additionally, an ECT defi nes the operations that can be performed against the External System.
These operations can be mapped to a set of stereotyped Methods that BDC understands. A detailed
list of Methods supported by BDC can be found in Chapter 4. The fi ve most common stereotyped
Methods enable you to perform CRUD operations (Create, Read a single item, Update, Delete, and
Query for a list of items) and can be generated with SharePoint Designer. They are:

 Finder (read list)

 SpecificFinder (read item)

 Creator (create)

 Updater (update)

 Deleter (delete)

 In certain scenarios you may want to represent a subset of operations for an External System (such
as read and update, but not create or delete). This is allowed; in most cases you must at minimum
defi ne a SpecificFinder method. This will enable scenarios that involve only retrieving items, such
as External Data columns in lists, and the Business Data Item web part. Scenarios that also present
a list of items (such as External Lists, or the Business Data List web part) will additionally require
that a Finder method be defi ned.

 Data structures such as the External Content Type and its stereotyped Methods (which defi ne the
available operations) and TypeDescriptors (which defi ne the fi elds) abstract out complex details

➤

➤

➤

➤

➤

➤

➤

➤

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

32 ❘ CHAPTER 2 USING BCS SOLUTIONS IN SHAREPOINT 2010

 Default settings: The values that should be used in communicating with the External System,
in the absence of specifi c user input. These are most commonly associated with fi lters.

 Actions: A hyperlink to a URL in which information about an external item can be passed
as input to the target page in the form of a query string parameter.

 This additional metadata is extremely powerful, as it can be leveraged through BDC Runtime object
model calls such as Entity.FindFiltered and Entity.FindAssociated . This makes it simple to
get the External Data you need in a consistent way from multiple heterogeneous External Systems.
Detailed examples using various BDC metadata objects are contained throughout the book.

 BDC Metadata Store

 BDC Metadata Models are stored in a relational database and loaded into memory before they are
interpreted by the BDC Runtime. The database tables and stored procedures for holding, reading,
and modifying the BDC Metadata Model constitute the BDC Metadata Store (also called the
Metadata catalog). This component exists only on server deployments of Business Connectivity
Services. To edit a Metadata Model that has been saved to the Metadata Store, you may do either
of the following:

 Export the model, make the necessary modifi cations to the XML fi le, and re - import it
(through the BDC Service Application ’ s Central Administration UI or by using PowerShell).

 Use the BDC Administration object model to edit individual elements.

 Editing the Metadata Store database directly is not supported. For Offi ce client deployments, the
Metadata Store is replaced by an in - memory copy of the BDC Metadata Model obtained from
the client cache — a Microsoft SQL Server Compact Edition database. Chapter 3 covers this
architecture in detail.

 Resource Files

 In addition to the Metadata Model fi le that contains the base XML metadata for a system, a second
type of XML fi le (referred to as a Resource fi le) can optionally be used to isolate specifi c metadata
elements that commonly change. These include:

 Localized names: Names for metadata objects in a particular locale. For example, English,
French, and Spanish fi eld names for an ECT and its fi lter parameters.

 Properties: Properties for metadata objects. For example, authentication mode, ECT
version, and data source connection settings.

 Permissions: Access control lists (ACLs) for metadata objects. For example, the security
group containing users who have rights to retrieve customer information.

 Although the preceding information can be added directly to the Metadata Model fi le, separating
some or all of these elements into a distinct Resource fi le can be useful in certain situations.

 When uploading a new Metadata Model, BDC deletes the existing metadata and replaces it with
the new fi le. This can lead to additional testing/validation effort, as well as requiring a full crawl
of External Systems described in the model by the Search indexer. If you import Resource fi les

➤

➤

➤

➤

➤

➤

➤

www.it-ebooks.info

http://www.it-ebooks.info

Understanding Business Data Connectivity ❘ 33

containing localized names, properties, or permissions, however, BDC merges the contents of the
Resource fi le with existing metadata.

 Resource fi les are useful, for example, if you have an existing model for an ERP system. If your
External System ’ s connection information changes, or you wish to add support for additional
languages to your application, you can easily create a Resource fi le containing new connection
settings for the External System(s) or localized names for properties. Resource fi les are also useful
for moving among development, staging, and production environments by isolating the settings
that are specifi c to a given environment and making them easier to identify and change. Chapter 5
shows how to create Resource fi les.

 Versioning

 Metadata Model fi les as a whole are not versioned, but External Content Types within a model
fi le are. Version is a property of the Entity (External Content Type) metadata object; it ’ s a string
property of the form 1.0.0.0 . The following code shows the Version property on an Entity inside
a Metadata Model:

 < ?xml version=”1.0” encoding=”utf-16” standalone=”yes”? >
 < Model >
 ...
 < Entities >
 < Entity Namespace=”http://www.contoso.com” Version=”1.0.0.0”
 EstimatedInstanceCount=”10000” Name=”Product”
 DefaultDisplayName=”Product” >
 < /Entity >
 < /Entities >
 ...
 < /Model >

 Saving an ECT from SharePoint Designer will automatically increment the fourth digit of the
version by one (e.g., changing 1.0.0.0 to 1.0.0.1) regardless of the type of change made.
Importing a model through the Central Administration UI will not auto - increment the version;
it is up to you to edit this property in the fi le itself. Model import will fail if an ECT with the
same name and version already exists in the Metadata Store. The fi rst two digits are typically
incremented when a “ breaking change ” occurs (for example, the data type of a fi eld has changed,
or a required fi eld has been added); the last two digits are used to signify “ non - breaking changes ”
(for example, to the default value for a fi lter).

 The Version property exists primarily to enable you to track changes within your solution
components, but it is checked by InfoPath when an External List form is accessed. When an
InfoPath form is created for an External List, the version of the ECT associated with the list is
stored as a property in the form. When the form is accessed by an end user (in SharePoint or
within the Offi ce client), the current version of the ECT is retrieved from the metadata cache;
if the fi rst and second digits match, the form can be opened. If the fi rst or second digits have
changed, the ECT schema is assumed to have changed in a fashion that would “ break ” the
form and prevent a user from successfully submitting a change to the External System. InfoPath
will display an error on form open; the form must then be opened in InfoPath Designer and
republished.

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

Understanding Business Data Connectivity ❘ 35

 When an end user browses to a SharePoint page, a connection is established to a front - end
SharePoint server. If that page hosts a component that uses BCS to access External Data,
the appropriate Metadata Model settings and External Data Connectors are used to access the
External System(s) and retrieve data through the BDC Runtime object model.

 To optimize performance, a metadata cache is maintained by the BDC Service so that the service
can quickly access ECT data without having to read it directly from the Metadata Store database.
This metadata cache is updated every 60 seconds to ensure that the latest settings are available to
the farm. It is important to note that the BDC Metadata Store does not contain rows of External
Data; it contains only metadata about External Systems. The metadata cache refresh interval
cannot be modifi ed.

 For multi - server SharePoint farm deployments, the BDC runtime OM is hosted on front - end
SharePoint servers, while the other components of the BDC Service Application typically reside
on one or more application servers.

 Managing the BDC Service Application

 The BDC Service is part of the Service Application framework in SharePoint and can be managed
just like other services such as Search, InfoPath, and User Profi les. You can access the management
user interface for the BDC Service through the Central Administration site by selecting Application
Management ➪ Manage Service Applications. Most tasks can also be scripted using Windows
PowerShell. Figure 2 - 2 shows the main BDC Service Application management page in Central
Administration, located at http://server:port/_admin/BDC/ViewBDCApplication.aspx .

 FIGURE 2 - 2

 You can perform the following common tasks to manage components of the BDC Service:

 Set permissions.

 Import and export Metadata Models and Resource fi les.

 Manage External Content Types:

 View all ECTs for a BDC Service app.

 View all ECTs for a Metadata Model fi le.

➤

➤

➤

➤

➤

www.it-ebooks.info

http://www.it-ebooks.info

36 ❘ CHAPTER 2 USING BCS SOLUTIONS IN SHAREPOINT 2010

 View details of a given ECT.

 Delete an ECT.

 Add an action to an ECT.

 Defi ne a location for storing profi le pages.

 Create or update the profi le page for an ECT.

 Set permissions.

 Manage External Systems and External System instances.

 Permissions

 In order to manage any aspect of the BDC Service, a user must have rights to access the BDC
Service and Metadata Store. For farm installations, these rights are not automatically granted
to the account that was used to run SharePoint setup — you must confi gure permissions for the
service. Farm administrators or existing administrators of this instance of the BDC Service can
grant BDC Service permissions to other users. To assign one or more administrators to the BDC
Service, navigate to an instance of a BDC Service Application within the Central Administration
site and click the Edit tab of the ribbon. Click the Assign Administrators action within the
Permissions group. Figure 2 - 3 shows the Set Metadata Store Permissions page used to grant access
to an instance of a BDC Service Application.

➤

➤

➤

➤

➤

➤

➤

 FIGURE 2 - 3

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

38 ❘ CHAPTER 2 USING BCS SOLUTIONS IN SHAREPOINT 2010

 Model Import

 Importing a BDC Metadata Model is the easiest way to add it, and its related External Content
Types, to a Metadata Store. To import a BDC Metadata Model or Resource fi le you must have
either farm administrator rights or Edit rights for an instance of the BDC Service Application.
Figure 2 - 4 shows the Import BDC Metadata Model page, which can be accessed from a BDC
Service Application page: in the “ BDC Metadata Models ” group of the Edit tab, click Import.

 FIGURE 2 - 4

 Use the Browse button to locate the BDC Metadata Model or Resource fi le, or enter the path in the
corresponding text box. Next, specify its fi le type: Model or Resource.

 If you are importing a Resource fi le you must select one or more types of resource to import:

 Localized names: Import localized names for the External Content Types in a particular
location. Imported localized names are merged with existing localized names.

 Properties: Import properties for External Content Types. Imported properties are merged
with existing property descriptions.

 Permissions: Import permissions for External Content Types. If permissions for an External
Content Type already exist in the access control list stored by the BDC Service, their values
are overwritten with those supplied in the imported fi le. For example, User 1 has access to
the External Content Type called Products. If you import permissions that specify that only
User 2 has access to Products, the previous permissions for Products will be deleted and
new permissions will be stored that specify only User 2 has access.

➤

➤

➤

www.it-ebooks.info

http://www.it-ebooks.info

Understanding Business Data Connectivity ❘ 39

 You can optionally save the group of imported resource settings for future export to a fi le. To do
this, type a unique name for this group of settings in the Use Custom Environment Settings fi eld.

 Model Export

 Exporting a BDC Metadata Model or Resource fi le is useful for common tasks like moving an
application from a development environment to a production environment. To export a BDC
Metadata Model or Resource fi le you must have either farm administrator rights or Edit rights for
an instance of the BDC Service Application. To access the Model Export page click the Edit tab
in an instance of a BDC Service application. In the View group click “ BDC Metadata Models. ” On
the subsequent BDC Metadata Models page, select the model or resource fi le to export and click
Export. Figure 2 - 5 shows the Model Export page.

 FIGURE 2 - 5

 The File Type section is used to select the type of fi le you are exporting, either a BDC Metadata
Model or a Resource fi le.

 If you are exporting a Resource fi le, in the Advanced Settings area select one or more types of
resource to export:

 Localized names for the External Content Type(s)

 Properties for the External Content Type(s)

 Permissions for the External Content Type(s)

 Proxies for the selected External Content Type(s) that enable BDC to connect to the
external system

 If you previously saved a set of resources for later use by specifying a value in the Use Custom
Environment Settings fi eld, you can type the unique name of the fi le that contains these environment -
 specifi c settings in the Use Custom Environment Settings fi eld and it will be exported.

 Clicking Export will prompt you for a location in which to save the BDC Metadata Model or
Resource fi le.

➤

➤

➤

➤

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

Understanding Business Data Connectivity ❘ 41

 Managing Actions

 External Data actions open a web page that can interpret information about an external
item and provide useful information about that item. Actions are an outstanding means
of integrating with existing web - based systems that rely on query string parameters. Each
action is associated with a particular ECT; it has a name and a target URL. An action can also
provide one or more dynamic parameters that are passed to the target web page in the query
string; this enables the target page to provide contextually relevant information based on the
external item that the user is working with.

 For example, the following XML fragment is from a BDC Metadata Model fi le that contains an
action with two parameters:

 < Actions >
 < Action
 Name=”Map This Customer”
 Position=”1”
 IsOpenedInNewWindow=”true”
Url=”http://www.bing.com/maps/default.aspx?where1={0},{1}”
 ImageUrl=”” >
 < ActionParameters >
 < ActionParameter Name=”AddressLine1” Index=”0” / >
 < ActionParameter Name=”AddressLine2” Index=”1” / >
 < /ActionParameters >
 < /Action >
 < /Actions >

 Now when a user navigates to the Customers External List created in Chapter 1, he or she sees an
additional action available for each row in the list: Map This Customer. Clicking that action for a
particular row in the list will result in BCS displaying the selected customer ’ s address using Bing
maps. The URL is constructed at runtime by a concatenation of the base URL for Bing with each
 ActionParameter element and its value. If the value is a string that contains spaces, each space is
replaced with a �.

 Thus at runtime the format is
 URL?ActionParameter0=ActionParameter0Value & ActionParameter1=ActionParameter1Value

 The actual URL for the customer shown in the screenshot is http://www.bing.com/maps/default
.aspx?where1=3761+N+14th+St,Tacoma,WA .

 Figure 2 - 7 shows the target Bing Maps page and the fully constructed URL, including values for
the address of the selected customer.

 You can create and modify External Data actions through the BDC Service administration
pages, such as by defi ning permissions for the action, setting input parameters, and marking
one action per ECT as the default. Actions can also be added directly to a Metadata Model fi le
and imported to the BDC Service. Figure 2 - 8 shows the administration page used to add an
action to an ECT.

www.it-ebooks.info

http://www.it-ebooks.info

42 ❘ CHAPTER 2 USING BCS SOLUTIONS IN SHAREPOINT 2010

 FIGURE 2 - 8

 FIGURE 2 - 7

www.it-ebooks.info

http://www.it-ebooks.info

Understanding Business Data Connectivity ❘ 43

 The structure and basic capabilities of actions
haven ’ t changed since Microsoft Offi ce
SharePoint Server 2007, but actions can be
leveraged in more places with BCS. When an
External List is created, all the actions for
the list ’ s corresponding ECT are copied and
created as User Custom Actions on the list
itself. These actions are surfaced in the menu
for each item in the list, but not in the ribbon.
Figure 2 - 9 shows standard actions (View
Item, Edit Item, Delete Item) as well as an
External Data action (View Profi le) surfaced
in an External List ’ s item - level menu.

 SharePoint Designer can be used to manage External List actions; this is discussed in Chapter 4. The BDC
Administration OM can also be used to manage actions; this is discussed in Chapter 5.

 Permissions defi ned on an External Data action are not automatically carried over to the
corresponding user custom action, as there is no direct mapping for an ACL from the Metadata
Model to list - level permissions. Here ’ s one way to think about this: the External Data action is used
as a template for the user custom action — the latter is created based on the settings of the former,
but from that point forward it is its own object, and has its own permissions settings. If you wish
to conditionally hide and show user custom actions at runtime, you can do this through standard
SharePoint event receivers. (This approach works for both regular and External Lists.)

 User custom actions, the component that all SharePoint lists (including External Lists) use to
render and execute actions, understand a limited set of runtime parameters (such as list ID, site
URL, and item ID). To enable the rich set of user - defi ned runtime parameters that External Data
actions support, an action redirector page was built to act as an intermediary translation tier. Each
action on an External List points to the action redirector page. (You can access this page via the
 _layouts path from any site.) This page takes a set of input parameters that are used to identify
the corresponding External Data action (in the BDC Metadata Store) that should be executed. The
structure of that action, including its runtime parameters, is then retrieved and populated based on
the current context in the External List. The user is then redirected to the target URL with all input
parameters fi lled in.

 As a result of the action parameters ’ being retrieved at runtime, you can add and remove parameters
as needed through the BDC Service administration pages. Those changes will automatically be
picked up by External Lists that refer to the actions in question. If new External Data actions are
added or removed, or properties of existing actions are modifi ed in the BDC Service, however,
existing External Lists will not be updated to refl ect these changes. You can use the SharePoint list
OM to programmatically update External Lists.

 Adding a new action to an External List that points to an External Data action is a straightforward
process with SharePoint Designer and is described in Chapter 4. The same task can be performed
with the administration object model, which is covered in Chapter 5.

 FIGURE 2 - 9

www.it-ebooks.info

http://www.it-ebooks.info

44 ❘ CHAPTER 2 USING BCS SOLUTIONS IN SHAREPOINT 2010

 You can leverage the action redirector page from a custom web part or other component by
constructing a URL that contains the correct set of input parameters. These vary slightly based on
the scenario; the possible combinations are listed below.

 When you are executing an action on the current item (as opposed to a related item that needs to be
retrieved separately) the following parameters are required:

 EntityNamespace

 EntityName

 LobSystemInstanceName

 ItemID

 ActionName (if not specifi ed, the default action for this ECT is executed)

 The Action Redirector page retrieves the appropriate action and its parameters, retrieves the
External Data item based on the supplied ItemID , constructs the URL with values fi lled in for each
parameter, and redirects the user to the target URL.

 Here is an example of a URL pointing to the ActionRedirector: http://server/site/
_layouts/ActionRedirect.aspx?EntityNamespace=AdventureWorks & EntityName=

Product & LOBSystemInstanceName=AdventureWorks & ItemID=__bg801237742218323547 &

ActionName=Map%20This%20Customer .

 When you are executing an action on an item associated with the current item, the following
parameters are required:

 ParentEntityNamespace

 ParentEntityName

 ParentLobSystemInstanceName

 ParentSpecificFinderName

 ParentAssociationName

 EntityNamespace

 EntityName

 LobSystemInstanceName

 ItemID

 ActionName (if not specifi ed, the default action for this ECT is executed)

 The Action Redirector page retrieves the appropriate action and its parameters, retrieves the related
External Data item, constructs the URL with values fi lled in for each parameter, and redirects the
user to the target URL.

 Managing Profi le Pages

 A profi le page is a SharePoint web part page that displays information about an external item.
Profi le pages are what users will see when clicking through on a search result for an external item,
and are designed to show a 360 - degree view of the item and items associated with it. One profi le

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

www.it-ebooks.info

http://www.it-ebooks.info

Understanding Business Data Connectivity ❘ 45

page can be created per ECT; parameters are passed to the page at runtime to determine which
specifi c item to retrieve information for. When you create a profi le page a View Profi le action is
automatically added to the corresponding ECT to make it easy for users to navigate to the page
from a web part, External List, or other component that displays data for the ECT.

 Profi le pages automatically add the following web parts when a page is created. These parts can be
customized or removed, as with any SharePoint web part page.

 Business Data Item Builder: This part retrieves information about the external item to be
displayed from the URL and passes it to other parts on the page. It is not shown to end
users at runtime.

 Business Data Item: This part shows details for the external item.

 Business Data Related List: One instance of this part is added for each association with
the selected item. For example, if you are viewing details about a particular customer
and the Customer ECT defi nes a relationship with the Orders ECT and the Sales Team ECT,
two Related List parts are added to the page: one to show orders for that customer and one
to show the members of the sales team who work with that customer.

 These web parts are also connected to pass information within the page — the Item web part passes
the ID of the item it ’ s displaying to each of the Related List web parts, which then make calls to the
External System to retrieve a list of related items. Figure 2 - 10 shows a Product Category profi le page
containing the Item Builder (hidden), Item, and Related List web parts.

➤

➤

➤

 FIGURE 2 - 10

www.it-ebooks.info

http://www.it-ebooks.info

46 ❘ CHAPTER 2 USING BCS SOLUTIONS IN SHAREPOINT 2010

 BCS allows profi le pages to be stored in any SharePoint site. Before you can create a profi le
page you must fi rst set the ECT Profi le Page Host site. You can do this from the BDC Service
administration pages by selecting Confi gure in the Profi le Pages ribbon group and entering a URL
such as http://server/site . (In Figure 2 - 10 the URL is http://www.contoso.com/Profi leHost .)
This URL can be changed at any time, but profi le pages hosted at the old location will remain
there. A document library named _bdc is created at the specifi ed site. As profi le pages are created, a
sub - folder will be created for each ECT namespace and the profi le page for that ECT will be added
to the sub - folder. Ensure that permissions on your Profi le Page Host site are set to allow Design
rights to users who need to create profi le pages.

 To create a profi le page, select the External Content Type that you wish to create the page for
and click Create/Upgrade in the Profi le Pages ribbon group. The page is created and stored
in the appropriate location, and a View Profi le action is added to the ECT. If the ECT does
not have any other actions, View Profi le is marked as the default. This behavior is different
from that of SharePoint 2007, in which a
View Profi le action and profi le page were
 automatically created for each application
defi nition fi le (i.e., Metadata Model) that
was imported.

 Figure 2 - 11 shows the View External Content
Types administration page and highlights the
relevant profi le page actions.

 You can disable profi le page creation by unchecking the Enable Profi le Page Creation box on
the ECT Profi le Page Host dialog.

 The BDC Admin OM also enables you to set the Profi le Page Host URL and create individual
profi le pages.

 Throttling

 When you are creating applications that interact with External Systems, you must ensure optimal
performance by setting limits on how many users can retrieve data at the same time, and on how
many items can be retrieved in a single query. BCS allows administrators to defi ne throttling limits
per instance of a BDC Service Application.

 Throttles can be created at several levels. First, you can limit the total number of concurrent
connections made to External Systems. Additionally, for each connection type (also referred to
as proxy), you can adjust fi ve different throttle settings to limit the number of connections made
and the amount of data returned from External Systems. Table 2 - 1 lists each throttle and its
default settings.

 FIGURE 2 - 11

www.it-ebooks.info

http://www.it-ebooks.info

Understanding Business Data Connectivity ❘ 47

 If a throttle limit is exceeded by a request to the BDC runtime, end users will see a generic error
message. (External Lists will display an “ Unable to display this web part ” error, followed by a
Correlation ID. Search the server log fi les for the Correlation ID to see the detailed throttling error,
which will look like this:

Error while executing web part:
Microsoft.BusinessData.Runtime.ExceededLimitException:
Database Connector has throttled the response. The response
from database contains more than ‘2000’ rows. The maximum number
of rows that can be read through Database Connector is ‘2000’.
The limit can be changed via the
‘Set-SPBusinessDataCatalogThrottleConfig’ cmdlet.

 You manage throttles using PowerShell scripts. The following code displays the current throttle
settings:

Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction SilentlyContinue
$bdc = Get-SPServiceApplicationProxy |
 Where {$_ -match “Business Data Connectivity”}

Get-SPBusinessDataCatalogThrottleConfig -ThrottleType Connections -Scope Global
-ServiceApplicationProxy $bdc
Get-SPBusinessDataCatalogThrottleConfig -ThrottleType Items -Scope Database
-ServiceApplicationProxy $bdc
Get-SPBusinessDataCatalogThrottleConfig -ThrottleType Timeout -Scope Database
-ServiceApplicationProxy $bdc
Get-SPBusinessDataCatalogThrottleConfig -ThrottleType Size -Scope Wcf
-ServiceApplicationProxy $bdc
Get-SPBusinessDataCatalogThrottleConfig -ThrottleType Timeout -Scope Wcf
-ServiceApplicationProxy $bdc

 TABLE 2 - 1: BDC Service Application Throttle Settings

 TYPE DESCRIPTION SCOPE DEFAULT MAXIMUM

 Connections Total number of connections allowed to

External Systems

 Global 100 500

 Items Number of rows returned from a

database query

 Database 2,000 25,000

 Timeout Database connection timeout Database 60 sec. 600 sec.

 Size Size of returned data WCF 3 MB 150 MB

 Timeout Web service connection timeout WCF 60 sec. 600 sec.

www.it-ebooks.info

http://www.it-ebooks.info

48 ❘ CHAPTER 2 USING BCS SOLUTIONS IN SHAREPOINT 2010

 Each of the throttle settings may be modifi ed using PowerShell. The following code shows how to
change the number of items that can be returned from a database:

Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction SilentlyContinue
$bdc = Get-SPServiceApplicationProxy |
 Where {$_ -match “Business Data Connectivity”}

$throttle = Get-SPBusinessDataCatalogThrottleConfig
 -ThrottleType Items -Scope Database
-ServiceApplicationProxy $bdc
Set-SPBusinessDataCatalogThrottleConfig -Maximum 3000
 -Default 1000 -Identity $throttle

 Alternatively, you can disable any throttle. The following code shows how to disable the
connections throttle:

Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction SilentlyContinue
$bdc = Get-SPServiceApplicationProxy |
 Where {$_ -match “Business Data Connectivity”}

$throttle = Get-SPBusinessDataCatalogThrottleConfig -ThrottleType Connections
-Scope Global -ServiceApplicationProxy $bdc
Set-SPBusinessDataCatalogThrottleConfig -Enforced $false -Identity $throttle

 BDC Server OM

 The BDC Server Runtime consists of the runtime object model, the administration object model,
and the security infrastructure. The runtime object model provides access to External Data, while the
administration object model provides objects that enable you to manage ECTs in the Metadata Store.

 The runtime object model ’ s primary role is to provide an object - oriented interface that abstracts the
underlying data sources. This allows client applications to access all External Systems through a
single uniform interface while avoiding logic specifi c to each external system. For example, the
runtime object model allows you to call a method on a Siebel application in the same way that you
would execute a query on a Microsoft SQL Server database. BDC delegates the call to the appropriate
ADO.NET provider for databases, Web services proxy for Web services, WCF proxy for WCF
services, and .NET Framework assembly for .NET Assembly Connectors. The runtime object model
allows applications to read and write External Data.

 A secondary role for the runtime OM is that of reading metadata objects from the Metadata Store
database and executing the business logic described there. Clients that just need to query the
metadata database for metadata information should use the runtime object model.

 The administration object model is used to create, read, update, and delete metadata objects in the
BDC Metadata Store. Metadata Models are validated during import and changes are then pushed
to an in - memory metadata cache to optimize performance. This can result in relatively high latency
for metadata changes and a delay of up to one minute before BDC updates this cache, which exists
on all front - end web servers and application servers in the SharePoint farm. The administration OM
exists both on server deployments of BCS and on Offi ce clients.

 Programming against the BDC object model is covered in detail in Chapter 5.

www.it-ebooks.info

http://www.it-ebooks.info

 INTEGRATING BCS DATA WITH SHAREPOINT

 Now that you understand the different BDC components on the server and how to manage them,
let ’ s take a look at the SharePoint features that allow users to interact with External Data.

 Using External Lists

 External Lists are the easiest and most powerful means of displaying External Data to SharePoint
users. Similar in look, feel, and functionality to regular SharePoint lists, External Lists do not
store their data in a SharePoint content database, nor do they cache it; they use the Business Data
Connectivity layer to fetch real - time data from the external system when a user browses to a list or
interacts with an item.

 You create an External List the same way you create a document library or other SharePoint list:
click the Site Actions menu ➪ More Options ➪ External List from the available list templates. Two
properties must be specifi ed for the External List: a title and a data source. The latter is simply the
name of an External Content Type — it can be typed in or selected from a list of ECTs available in
the BDC Service Application that the current SharePoint site is associated with.

 The ECT must meet basic criteria in order to be used to provide data for an External List. At a
minimum it must include a SpecificFinder method and at least one Finder method. The set of fi elds
returned by the Finder must be the same as or a subset of those returned by the SpecificFinder . If
the ECT provides Create , Update , or Delete methods, the corresponding create, update, or delete
actions will be enabled on the list. If any of those methods are missing, the equivalent actions will not
be available on the list.

 When an External List is created, a column is generated for each fi eld defi ned in the ECT, with the
display name of the fi eld used as the name of the column. If multiple localized display names are
available, SharePoint will use the location of the site to fi nd a match and fall back to the default if
the location is not available.

 Where possible, data types are mapped directly — a string in the ECT is mapped to a String
column in the list. One common exception to this rule is DateTime fi elds — a String column will
be created in the list. Although the data from the external system will be presented to the user in the
same format, sorting for these columns will not be the same as for DateTime fi elds on regular lists.
(For example, 10/2/2011 will appear before 2/2/2011.)

 External Lists support all the standard SharePoint data types, plus they add support for Decimal
columns. These are similar to Double columns on regular lists, but allow for greater precision: 28
decimal places instead of 15.

 The BDC runtime supports a wider range of data types than SharePoint, and thus direct mapping is
not possible for INT64 or any custom type not supported by the .NET Framework.

 In addition, any complex fi elds (nested structures such as Address , which contains Number , Street ,
 City , and State sub - fi elds) will not be mapped to columns at list creation time. You can fl atten
complex fi elds by using complex formatting in your BDC Metadata Model, but this has the downside
of preventing write - back to the external system.

 To overcome these limitations, you can defi ne custom fi eld types in the ECT and in custom
code deployed to SharePoint. Chapter 5 discusses custom fi eld types in detail and provides an

Integrating BCS Data with SharePoint ❘ 49

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

 Paging works differently on External Lists than it does on other SharePoint lists. Standard lists store
content in the SharePoint content database, which supports the ability to retrieve a fi xed number
of records (commonly referred to as a page) at a time. This is useful, as it minimizes load on the
database — the only items retrieved are those displayed to the user. BDC supports connecting to
any external system, which may or may not support this ability to retrieve a page. Thus External
Lists will call the Finder method for the current view, passing along the appropriate data source
fi lters, and then extract a subset of rows to display in the list. To illustrate how data source fi lters,
standard fi lters, and paging settings defi ned on an External List view work together, let ’ s look at
the following example.

 Building on the AdventureWorks scenario introduced in Chapter 1, imagine we have enhanced the
Customers ECT by adding two fi lter parameters for the default Finder method. These are a limit
fi lter with a default value of 50 that we ’ ve named MaxCustomers , and a wildcard fi lter defi ned for
the SalesRegion fi eld that we ’ ve named SalesRegion . We ’ ve also created a new External List
whose data source is the recently enhanced Customers ECT. This list contains a single view (which
corresponds to the ECT ’ s only Finder method) that has two data source fi lters: MaxCustomers
(default 50) and SalesRegion (default NULL). When a user browses to our new External List, 50
customers will be retrieved from the database and the fi rst 30 will be displayed in the default list
view. The full 50 customers aren ’ t displayed because we didn ’ t change the item limit for the view —
 by default SharePoint displays 30 items at a time. If we reduce MaxCustomers from 50 to 20 in the
view settings page, the External List will retrieve 20 customers from the database and show all 20 in
the view. To see the full 50 customers in a single page we would set the MaxCustomers data source
fi lter and the item limit to 50 . To be even more effi cient in retrieving data we could specify North as
the value for our SalesRegion fi lter. It ’ s a wildcard fi lter, so it will be interpreted by our external
system (SQL Server database) as a LIKE operator. Thus our data set will return only items whose
 SalesRegion fi eld contains the string North . If we wanted to exclude regions such as Northeast
and Northwest and show data only from our North region, we could open SharePoint Designer and
change the fi lter type from Wildcard to Comparison , and set the operator for the new comparison
fi lter to Equals .

 DateTime Fields

 As noted previously, DateTime fi elds in an ECT are mapped to String columns in External Lists. As
SharePoint does not support date - only fi elds, both a date and time must be specifi ed, or a custom
fi eld type supplied. (The latter allows you to control how the fi eld should be formatted and presented
to the user in both list views and auto - generated SharePoint list forms, avoiding the need to rewrite
the entire view/form.)

 External Systems commonly use Coordinated Universal Time (UTC) as the time zone in which to
store data. While this works well for data storage, end users prefer to work with their local time
zones. External Lists and the External Data web parts tackle this problem by converting time zones
before presenting DateTime fi elds to end users, as well as before submitting DateTime values to the
external system.

 After retrieving a DateTime fi eld from an external system, the BDC runtime examines the
 DateTime.Kind property to determine its time zone. If it is UTC or Unspecified , no action is taken.
If it is marked as Local , BDC converts it to UTC by applying an offset based on the SharePoint
front - end web server ’ s time zone, as specifi ed by its Windows settings.

Integrating BCS Data with SharePoint ❘ 51

www.it-ebooks.info

http://www.it-ebooks.info

52 ❘ CHAPTER 2 USING BCS SOLUTIONS IN SHAREPOINT 2010

 Now that the time zone has been standardized to UTC, the External List examines the user profi le
settings for the current user; if a time zone has been specifi ed, the time is converted from UTC to
the user ’ s time zone. If a time zone has not been specifi ed (which is the default state), the time zone
of the site on which the External List is hosted is used to convert the External Data. The converted
times are then presented to the user in the UI (in some format such as dd/mm/yyyy hh:mm:ss)
according to the site locale.

 Forms

 Two forms technologies can be used with External Lists: autogenerated SharePoint forms and
InfoPath forms. Autogenerated SharePoint forms are the default option, available in both SharePoint
Foundation and SharePoint Server. They provide a simple, clean user experience and can be
extended with custom fi eld types. They can also be connected to the XSLT ListView web part
(which is used to render list views for both regular and External Lists) or other ASP.Net parts to
enable master - detail scenarios. If the External List contains complex fi elds or fi elds not supported
by SharePoint, update and create forms will not be generated unless custom fi eld types have been
defi ned for each fi eld. These forms also cannot be customized with different colors, layout, or
business logic.

 InfoPath forms are available only in SharePoint Server with Enterprise CAL, but offer rich
customization as well as consistent client - server functionality. Users can interact with the same
customized External List form in the browser and in SharePoint Workspace. InfoPath forms are
hosted inside the Browser Form web part, which does not support part - to - part connections. Custom
fi eld types that have been registered with BDC and SharePoint will not work with InfoPath forms,
but InfoPath does offer broader support for data types as well as support for complex fi elds. Chapter
4 provides more detail about InfoPath form creation and customization.

 The following table compares the two out - of - the - box form technologies for External Lists.

 TABLE 2 - 2: External List Forms Comparison

 CAPABILITY SHAREPOINT FORMS INFOPATH FORMS

 One - click form creation Yes Yes

 Custom fi eld support Custom fi eld type Custom control

(client - only)

 Complex fi eld support Custom fi eld type Yes

 Part - to - part communication Yes No

 Basic customization (layout, colors, declarative

business logic)

 No Yes

 Advanced customization (code - based business logic) No Yes

 Server form also works in Offi ce client No Yes

www.it-ebooks.info

http://www.it-ebooks.info

 Diff erences from Regular Lists

 As noted earlier, one of the goals in creating External Lists is to achieve the same look, feel, and
functionality as regular lists. Broadly speaking this has been achieved, but there are differences
that you need to be aware of. Consider fi ring programmatic events that are useful for triggering
workfl ows and custom code to act on data that has just changed. Without a server - side cache of
External Data (which itself introduces new technical challenges) or a channel with which External
Systems can push changes to SharePoint lists, with External Lists there ’ s no straightforward way to
fi re an event when data changes.

 Another difference relates to modifying External List schema — for example, adding to the
Customers External List a column that is useful to a particular sales rep but not the entire sales
department. Because the structure of the list is hard - coded to be that of its backing External
Content Type, it is not possible to add, delete, or edit columns through the UI or OM. It is possible,
however, to enable the reverse scenario — to start with a regular SharePoint list and add External
Data columns that map to fi elds of an ECT. This is discussed later in this chapter.

 The following SharePoint capabilities — some out - of - the - box capabilities and some extensibility
points — are not available with External Lists:

 Data access with REST

 RSS feeds

 Datasheet view

 Eventing

 Triggering workfl ow directly

 Custom event receivers

 Adding, editing, or deleting columns

 Adding content types (one hardcoded Item content type is created per list)

 Versioning of items

 Check - in and checkout of items

 Folders

 Search (not available at the list scope, but available at broader scopes where ECTs rather
than lists are crawled — see Chapter 9)

 Attachments (Byte[] fi elds in an ECT can be combined with a custom fi eld type to render
content, but StreamAccessor methods are not supported for External List views or forms.
Consider using External Data web parts, which do support this scenario.)

 Other list features are available with External Lists but act differently or gain additional
capabilities. As discussed earlier in the “ Managing Actions ” section, External Data actions are
converted automatically to user custom actions when an External List is created. These actions
enable a wider set of runtime variables to be passed to the target URL, and can be customized

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Integrating BCS Data with SharePoint ❘ 53

www.it-ebooks.info

http://www.it-ebooks.info

54 ❘ CHAPTER 2 USING BCS SOLUTIONS IN SHAREPOINT 2010

with SharePoint Designer or the SharePoint OM. It is still possible to defi ne additional user
custom actions to navigate to a form, start a workfl ow, or open a URL. External Lists can
also be connected to Offi ce client applications — Outlook and SharePoint Workspace. This
functionality is similar to what regular lists offer for SharePoint Workspace, but External Lists
offer much broader customization options in the case of Outlook. Chapter 6 discusses this in
more detail.

 The last signifi cant difference involves lookup fi elds , or associations between the current list and
another data source. Users can leverage lookup fi elds to add a column to a current list that points
to a different SharePoint list. External content types support a similar concept, associations .
When an External List is created, an extra column will be provided for each association that exists
between its backing ECT and other ECTs. For example, if we create a Product Subcategories list and
there is a foreign key – based relationship between the Product Category and Product Subcategories
ECTs, a Product Category column would be created on our Product Subcategories list. Each row
in the Product Subcategories list would show a hyperlink that users can click to execute the default
action of the Product Category ECT. Typically this will be the View Profi le action and will take
the user to the profi le page of the selected Product Category. Users can also expand the item
menu to view all the actions associated with the Product Category.

 Alternatively, users can select a particular subcategory and open it to view or edit details. An
External Item Picker control will be shown on the subcategory form, allowing the user to see the
display name of the related parent category (if one exists) in view mode. The user can also edit an
existing subcategory or create a new one and pick a category to associate it with. The External Item
Picker control is similar to the people picker control: users click a button to launch a dialog in which
they can sort the list by clicking a column, or fi lter by entering search terms.

 Figure 2 - 13 shows how associations are rendered in a list view; Figure 2 - 14 shows how associations
can be viewed, created, and edited at the item level with the External Item Picker.

 FIGURE 2 - 13

www.it-ebooks.info

http://www.it-ebooks.info

 Finally, when programming against External Lists, there are several things to keep in mind:

 Don ’ t assume that every item has an unsigned int32 ID that is unique. Instead of a simple ID
fi eld, a BDCIdentity fi eld is used to uniquely identify each item.

 Create, update, and delete operations may not be supported by the backing ECT.

 The fi ve fi elds that exist for every regular list — Title, Created, Created By, Modifi ed,
Modifi ed By — are not added to ELs.

 Life Cycle and Portability

 When an External List is created, the structure of the ECT is used to create list columns, forms, and
views, and to confi gure those elements as needed — for example, by marking fi elds as required
and setting default data source fi lter values. What happens if the ECT is modifi ed after External
Lists have been created — how do the lists respond to these changes? The answer depends on the
type of change that has occurred.

 Changes to fi lters (adding/editing/removing a fi lter): These changes will automatically be
refl ected on the list. If a default fi lter value has changed, it will be applied only if an explicit
value has not been specifi ed for the corresponding data source fi lter on the External List.

➤

➤

➤

➤

 FIGURE 2 - 14

Integrating BCS Data with SharePoint ❘ 55

www.it-ebooks.info

http://www.it-ebooks.info

56 ❘ CHAPTER 2 USING BCS SOLUTIONS IN SHAREPOINT 2010

For example, I have a fi eld on my ECT named Position with a default value of 5 . I create
an External List and change the value to 6 . If I go back to my ECT and modify the default
value to 0 , my External List ’ s value for that fi eld is still 6 . If I had not modifi ed that fi eld on
my list (i.e., if I had left the value at 5), the value would automatically be changed to 0 after
my ECT was modifi ed and saved.

 Adding a new fi eld: This will not automatically be refl ected on the list. The new fi eld will
show up on the Edit View page, where you can manually add it. Auto - generated SharePoint
forms cannot be customized to include the additional fi eld; in these cases you will want to
switch to InfoPath forms or re - create the list. If the new fi eld is marked as required, users
will not be able to create or edit items until forms for the list have been updated.

 Editing properties of a fi eld: Changes to the display name and to required and read - only
properties will automatically be refl ected in the view and in auto - generated SharePoint
forms. InfoPath forms will need to be manually updated. Changing the data type of a fi eld
will cause the list to stop working and require a new one to be created.

 Removing a fi eld: This change will automatically be refl ected on the list. The fi eld will no
longer be displayed in views, and will be removed from auto - generated SharePoint forms.
InfoPath forms will need to be manually updated.

 Adding an association method: This change will not automatically be refl ected on the list.
The new fi eld will show up on the Edit View page, where you can manually add it. Auto -
 generated SharePoint forms cannot be customized to include the additional fi eld; in these
cases you will want to switch to InfoPath forms or re - create the list. On a form, the fi eld
will be represented by an External Item Picker control.

 Removing an association: This change will automatically be refl ected on the list. The fi eld
will no longer be displayed in views, and will be removed from auto - generated SharePoint
forms. InfoPath forms will need to be manually updated.

 External Lists and their forms are designed to be portable across SharePoint 2010 site collections
and farms. The ECT that the list was originally confi gured to use must be available on the
destination farm. If you are moving External Lists and the old location will no longer be available,
you will want to identify users who connected the old External List to Outlook or SharePoint
Workspace. These users will continue to be able to work with their data, but will no longer be able
to check for updates to the External List. These users should uninstall their existing solutions and
connect the new External List to Outlook or SharePoint Workspace.

 Saving an External List as a template for reuse by other users is not supported; this option is hidden
from the list settings page.

 Using External Data Web Parts

 BCS provides fi ve web parts in SharePoint Server 2010 that can be connected to an External
Content Type to surface data to end users. Largely unchanged from Microsoft Offi ce SharePoint
Server 2007, the parts still fi ll a valuable gap in the overall presentation story for External Data.

➤

➤

➤

➤

➤

www.it-ebooks.info

http://www.it-ebooks.info

These web parts are used to display External Data on the profi le page for an ECT, rendering
read - only data from the corresponding external system. These web parts may also be used to
build line - of - business applications. Most of the parts are capable of displaying External Data
actions, which can be used to enable users to navigate to a different page or website, passing in
the context of the item that the user was acting on. Table 2 - 3 lists the different web parts and
their primary purposes.

 TABLE 2 - 3: External Data Web Part Capabilities

 NAME PURPOSE

 SUPPORTS

ACTIONS?

 Business Data Item Shows details for a single external item Yes

 Business Data List Shows a list of external items Yes

 Business Data Related List Shows a list of external items related to an item passed

as input (typically selected in the Item or List web part)

 Yes

 Business Data Actions Shows a list of actions for the selected external item Yes

 Business Data Item

Builder

 Retrieves input parameters from the URL/query string

and passes them to parts on the page. Hidden when the

page renders at runtime.

 No

 To add an External Data web part to a SharePoint page, ensure you have Design permissions for
the site and in the Site Actions menu ➪ edit Page. On the Insert tab of the ribbon ➪ web part.
From the gallery of available web parts select the Business Data category, and click Add to insert
the selected part on the page. You can confi gure the web part by clicking the “ Open the tool pane ”
link in the body of the part, or by clicking the part ’ s drop - down menu and selecting Edit web part.
Confi guration options vary slightly based on the part, but typically involve selecting a data source
(ECT) and a view (Finder or SpecificFinder method). The Item web part can be hard - coded to
display a specifi c external item or, as is more commonly the case, you can leverage the Item Builder
web part to dynamically retrieve the item from the parameters specifi ed in the URL of the page. The
List web part is typically confi gured to show data for a particular ECT, while Related List web parts
always require an input item to fetch and render their data.

 Many aspects of how the web parts render data can be customized from within the browser.
When editing a page that hosts a List or Related List web part, click the Edit View link to
specify basic view properties — which columns to show, sort/fi lter/paging settings, and user
profi le data fi lters. You can open the web part tool pane to adjust basic settings such as the
title of the part, height and width, fi elds to display, and the behavior of the part while the page
is loading. Figure 2 - 15 shows the web part tool pane and the default settings for the Item web
part hosted on a profi le page.

Integrating BCS Data with SharePoint ❘ 57

www.it-ebooks.info

http://www.it-ebooks.info

58 ❘ CHAPTER 2 USING BCS SOLUTIONS IN SHAREPOINT 2010

 SharePoint Designer can also be useful for customizing how the data is presented to your users. You
can apply conditional formatting to the data — such as specifying that the font is to be displayed
in red if a particular product has low inventory — or use aggregate functions to display the average
value for a list of orders.

 The web parts apply an XSL Transform (XSLT) to convert the raw External Data into a form that
can be presented in the web part. The default XSLT is generated at runtime, but you can customize
or completely override it with your own XML. To do this, open the web part tool pane menu and
click the XSL Editor button. This will open a dialog in which you can paste in your XSL content.
Alternatively, you can specify the URL of your XSL fi le in the XSL Link property under the
Miscellaneous header. For more details on XSLT customizations, see Chapter 5.

 External Data web parts can be connected to each other to pass information about a selected item.
You can defi ne and modify part - to - part connections when editing the web part page in the browser
or SharePoint Designer. Note that the protocol used to pass data between External Data web parts
is different from the standard ASP.Net part - to - part connection model used by other SharePoint web
parts. This means it is not possible to connect a Business Data Item web part to an XSLT List View
web part, which is used to render an External List.

 Connecting two External Data web parts is a simple process, as shown in Figure 2 - 16. On
the part that will provide data, expand the web part menu and select Edit web part. This
shows the web part tool pane, and also exposes the Connections entry in the web part menu.
Expand the Connections entry and select the appropriate External Data part(s) to send the item
to. This confi gures the part to send the item that the user has selected to each recipient part when
the page is loaded at runtime. If the user selects a new item, the page is refreshed and the new
value is sent to the recipient parts.

 FIGURE 2 - 15

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

60 ❘ CHAPTER 2 USING BCS SOLUTIONS IN SHAREPOINT 2010

 Using the Chart Web Part

 SharePoint Foundation 2010 provides a powerful new web part for visualizing data from SharePoint
or External Data sources. The Chart web part can be confi gured to connect to data that is passed
to it from another web part at runtime, from a SharePoint list, from an external system (using
BCS), or from an Excel Services spreadsheet. While the part - to - part connection option will work
with standard SharePoint web parts, it
does not use the same protocol as the
External Data web parts and thus cannot
consume data from them.

 To confi gure a Chart web part, fi rst add
it to your page (it ’ s under the Business Data
category in the web part Gallery) and then
click the Data and Appearance link in the
body of the part to begin. On the next screen
choose Connect Chart to Data to see the four
data source types shown in Figure 2 - 17.

 This begins a four - step process to confi gure
your chart. To present External Data in the Chart web part choose either Connect to a List (and
select an External List) or Connect to Business Data Catalog (and select an ECT). Regardless of the
option you choose, BDC will retrieve the data from the external
system using the default Finder method — it is not possible to
choose a different External List view or Finder method on the
ECT. To work around this limitation, consider publishing an
additional ECT with the appropriate Finder method marked as
the default.

 After selecting a specifi c data source you will see a preview
of the fi rst 100 rows of the data in tabular format, which is
similar to what you would see in an External List. The fi nal step
involves binding the chart to the data by selecting your x - and
y - axes, groupings, labels, and other details. There are numerous
advanced settings, and a completely separate wizard walks you
through the process of customizing your chart. Even a basic
chart that hasn ’ t been customized looks pretty polished, as
shown in Figure 2 - 18.

 Creating External Data Columns

 An External Data column is a custom SharePoint list column that can be added to any document
library or standard list. This feature is powerful as it enables you to bring External Data into
SharePoint and store it there. This means that events can be fi red off of changes in the data,
and that features such as workfl ow, versioning, custom event handlers, and check - in/checkout
are available.

 FIGURE 2 - 17

 FIGURE 2 - 18

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

62 ❘ CHAPTER 2 USING BCS SOLUTIONS IN SHAREPOINT 2010

 External Data actions are also available on External Data columns. Users can drill down into a
customer ’ s details and perform actions associated with the customer without leaving the document
library or list. The primary fi eld of an External Data column is rendered as a hyperlink and executes
the default action for that ECT. Other actions are surfaced in a drop - down menu that is shown
when you hover over the primary fi eld.

 If data changes in the external system, SharePoint is not automatically updated. Creating a new list
item or document and picking a value for an External Data column will show the new value, but
existing items will continue to show the old value. Editing any fi eld of an existing item and trying to
save it will result in your being prompted to pick a new value for the External Data column since the
old value no longer exists in the external system.

 To refresh values in an External Data column for all rows in the list or document library,
users click the Refresh Data button on the header of the primary column. This redirects to
the BusinessDataSynchronizer.aspx page, passing in the following parameters: the ID
of the list, the name of the column, and the URL to navigate to when fi nished. This page
makes a SpecificFinder call for each row in the list; if it determines that the values in the
external system and the SharePoint list are different, the SharePoint item is updated and its
version number is incremented by one. If the item no longer exists in the external system, an
 ObjectNotFoundException is returned and the entire operation is canceled.

 While this process works well for most use cases, when you ’ re dealing with large volumes of changed
items, or if items are commonly removed from the external system, a custom solution may be
useful. Custom code, typically a SharePoint Timer job, can also be used to update External Data
columns according to a schedule. There are several community - sourced guides to implementing this
functionality; one such example is at http://tinyurl.com/ExternalDataColumnRefresh .

 External Data columns are limited in two notable ways; the fi rst is site column support. A site
column is a reusable column defi nition that can be consumed by multiple lists across multiple
SharePoint sites. Site columns are typically used to establish consistent settings across lists and
libraries. When you are defi ning a site column you cannot select an External Data column as one
of the column types. One way to work around this limitation is to add the columns to a list - level
(rather than site - level) content type. When you are adding an External Data column to a content
type on a particular list, it is important to select the “ Add to all content types ” checkbox. Selecting
this box will enable both the primary and secondary fi elds to be saved; not selecting this box will
prevent you from adding secondary fi elds after the External Data column has been created.

 The second limitation involves DateTime fi elds that are selected for use as either primary or
secondary fi elds of an External Data column. Unlike External Lists, these fi elds always show
 DateTime values converted to Universal Coordinated Time (UTC), not local time. This can be
slightly confusing for users if they use an External List and External Data column showing the
same information.

 Like External Data web parts, External Data columns are a feature carried over from MOSS 2007
and remain largely unchanged. The major enhancement is their ability to be connected to a Word
document in a much richer fashion than in Offi ce 2007. Previously these columns only appeared in
the document information panel, and were read - only — users could not pick values for the column

www.it-ebooks.info

http://www.it-ebooks.info

in Word. With Word 2010 you can customize a document template by adding Quick Parts bound to
External Data columns in a SharePoint document library. For example, a sales rep creating a quote
for a customer can now select the customer and the product(s), and have additional information
about those items fi lled in automatically on the document. These capabilities are discussed in more
detail in Chapter 3.

 Mobile Device Support

 The Business Data Item and Item Builder web parts are mobile - enabled and can be used to render
an external item on a SharePoint page viewed on a mobile device. Web part connections are also
supported for SharePoint pages rendered in mobile mode, enabling the two parts to communicate.

 Any web parts that are not mobile - enabled are ignored at runtime when the page is rendered. You
can mobile - enable web parts by implementing and deploying a mobile adapter class for each part;
this process is beyond the scope of this book but a detailed step - by - step guide is available in the
SharePoint Foundation developer documentation at http://msdn.microsoft.com/en-us/library/
ee539079.aspx .

 External Data columns can be rendered in a mobile view of a list or document library, but the data
is read - only, as the External Item Picker is not available to select a new item.

 Time Zone Support

 As noted earlier in the External Lists section, after retrieving a DateTime fi eld from an external
system, the BDC runtime examines the DateTime.Kind property to determine its time zone. If it is
marked as UTC or Unspecified , no action is taken. If it is Local , BDC converts the time to UTC
by applying an offset based on the SharePoint front - end web server ’ s time zone, as specifi ed by the
server ’ s Windows settings. If an Offi ce client application is presenting External Data, the Windows
regional settings on that client computer are used to convert from local time to UTC.

 This logic ensures that all clients of the BDC runtime receive DateTime fi elds in a single time zone:
UTC. Not all clients present that raw value to users, however; most convert it to a form that will
be easier for users to understand: their local time zone. The behavior is straightforward when the
user, site, and SharePoint server are all located in the same time zone. Complexity increases as
these variables change — for example, when users travel frequently (and change their Windows or
SharePoint settings) or when a single farm hosts sites that serve users spread across time zones.

 For example, let ’ s look at the following scenario:

 DateTime value in external system: 07/31/2011, 12:00 a.m.

 User ’ s location: English (US)

 User ’ s time zone: PST (UTC minus eight hours)

 Table 2 - 4 shows the logic applied to external DateTime values by out - of - the - box BCS
components.

➤

➤

➤

Integrating BCS Data with SharePoint ❘ 63

www.it-ebooks.info

http://www.it-ebooks.info

64 ❘ CHAPTER 2 USING BCS SOLUTIONS IN SHAREPOINT 2010

 TABLE 2 - 4: How Time Zones are Handled

 COMPONENT

 TIME ZONE

VALUE

 TIME ZONE

FORMAT

 ACTUAL TIME

DISPLAYED

 External Data Column

 DateTime fi eld (shown in list views or on forms);

External Item Picker (shown on forms and

dialogs to choose an item)

 UTC UTC 2011 - 07 - 31

00:00:00z

 External Data List

 DateTime fi eld (List view or on forms) User locale User locale 30.07. 2011 17:00

 External Item Picker (on forms and dialogs to

choose an item)

 UTC UTC 2011 - 07 - 31

00:00:00z

 External Data Web Parts

 Item, List, Related List web parts UTC User locale 31.07.2011 0:00

 Word

 Content control, External Item Picker (shown on

dialogs to choose an item)

 UTC UTC 2011 - 07 - 31

00:00:00z

 SharePoint Workspace or Outlook

 DateTime fi eld (List view or on forms) User locale User locale 5:00 PM

7/30/2011

 External Item Picker (shown on forms and

dialogs to choose an item)

 UTC UTC 2011 - 07 - 31

00:00:00z

 Several components can be customized to override the default handling of DateTime values. These
include External Data lists (customize them by creating a custom fi eld renderer that defi nes behavior
for both columns in a view and fi elds on a standard SharePoint form), External Data web parts
(customize them by customizing their XSLs), and InfoPath forms that show data in both SharePoint
and SharePoint Workspace (customize them by adding declarative logic or code behind). Chapter 5
describes these customizations in more detail.

 User Profi le Enhancements Using ECTs

 Much as you can add an External Data column to a list, you can also create Business Data
properties in the SharePoint Server user profi le database. This means that the user profi le can now
be a mixture of SharePoint, Active Directory, and External Data.

 A common scenario that exercises this functionality is appending human resources information
stored in SAP to core employee information stored in Active Directory and skills/expertise

www.it-ebooks.info

http://www.it-ebooks.info

information stored in SharePoint. This information is all integrated and displayed as part of the
standard user profi le. From the user ’ s perspective, it all comes from the same place. This solves a
common problem among large organizations: where to store personnel data. By using BCS to add
External Data to user profi les, you can store the data anywhere and update it regularly.

 When a business data property is added to a user profi le, a copy of the data is stored in the
user profi le database. This information is refreshed periodically, and the refresh interval can be
confi gured through the User Profi le Service administration pages. Each time a refresh occurs, a
 SpecificFinder call is made to the external system for each user in the user profi le store.

 BCS also enables you to take user profi le properties and use them as fi lter values when retrieving
data from External Systems. These values are called UserProfile fi lters. Filters are described in
more detail in Chapter 5.

 Searching External Systems

 This book devotes all of Chapter 9 to discussing Search and how it can be leveraged to interact with
External Data. What follows is a very brief overview of that content.

 SharePoint Server 2010 can crawl, index, and do full - text searches on External Content Types. For
example, Search can consume the Customer ECT created in Chapter 1 in order to crawl the data
and return customer information in search results. To enable this functionality, create a new content
source from the Search Service Application administration page. Select Line of Business Data as the
type of content to crawl, select the ECT(s) to crawl, initiate the crawl, and wait for the initial crawl
to complete.

 After the External Data has been crawled once and added to the search index, incremental crawls
can be used to capture changes from the external system and maximize effi ciency.

 The last step of the process is optional — you can defi ne a search scope to allow users to explicitly
select that content source in the search UI. By default two search scopes exist: All Sites and
People. The former includes data from the new content source; the latter does not. To set the
scope, go to the Manage Search service page, ➪ Scopes ➪ New Scope, and enter Customers for
the name. Once the scope exists, add a rule to it and select your new content source to be included.
Finally, update the search scopes to push the new scope defi nition across your farm.

 If your sites are confi gured to show the search scope ’ s drop - down menu, users can select your new
Customers entry, enter a search term, and see External Data returned in the search results page.
Clicking a particular customer will navigate to that customer ’ s profi le page (assuming View Profi le
is the default action for the ECT) and show details about the customer and any related items, such
as orders.

 Search across External Data is available only through content sources and search scopes targeting
one or more ECTs; it is not available at the list level. For example, a user navigating to a SharePoint
site that contains a regular list and an External List will see results for items in the regular list but
not the External List.

 These search capabilities are provided by the enterprise search service, which is available in
SharePoint Server 2010. SharePoint Foundation offers limited site - specifi c search functionality that
does not provide a way to expose External Data to users.

Integrating BCS Data with SharePoint ❘ 65

www.it-ebooks.info

http://www.it-ebooks.info

66 ❘ CHAPTER 2 USING BCS SOLUTIONS IN SHAREPOINT 2010

 Using Workfl ow to Access External Data

 SharePoint 2010 offers a powerful workfl ow engine that is capable of executing Workfl ow
Foundation (WF) workfl ows, typically defi ned in either SPD or Visual Studio. These workfl ows
can be simple approval scenarios that exclusively use out - of - the - box workfl ow activities to read
from and write to any SharePoint list. Alternatively, they can be slightly more complex, leveraging
partially trusted code that runs in a Sandboxed Workfl ow Action. They can also be even more
advanced and require that fully trusted assemblies be deployed to the SharePoint farm.

 Before we dive into the details of these three classes of workfl ow, it is important that you understand
two key factors that apply to workfl ows when they interact with an External List.

 First, as noted in the Using External Lists section, workfl ows cannot be associated directly with
External Lists. This limitation stems from the data ’ s being stored outside SharePoint; the workfl ow
cannot be notifi ed when items change, as there is no eventing model on External Lists. This leaves
you two options: either create a site workfl ow that is explicitly triggered, or have a list workfl ow
bound to a regular list or document library, and have it read or update from an External List.
Chapter 4 shows these alternative approaches in action.

 Second, workfl ow activities accessing BCS will always run as service accounts, even when they
are confi gured to run under an impersonation step. (Impersonation steps enable you to specify
certain activities that should run in the context of the workfl ow author rather than the initiator.)
The service account is typically the IIS Application Pool account, which has elevated permissions
to certain SharePoint resources. To prevent against malicious users, BCS requires that the
ECT backing the External List that your workfl ow is interacting with use Secure Store Service
(SSS) or RevertToSelf (which is turned off by default because of its security implications) as the
authentication mode.

 This means that your external system(s) will always be accessed by workfl ow as a single account
rather than as individual users, and you cannot track which user is making a change. Although you
can confi gure your workfl ow to pass the SPUser name of the initiator to a column on the External
List or to a custom activity that calls the BDC runtime OM, this measure should be taken only for
informational purposes and shouldn ’ t be relied upon as a foolproof security mechanism.

 This section describes the capabilities and tradeoffs associated with each level of workfl ow
complexity.

 Simple Workfl ows

 Any workfl ow created in SharePoint Designer interacts with lists using the List Item activities:
create, update, and delete. The main difference when using one of these activities to interact with an
External List (as opposed to a regular list) is that you will fi nd the item to act on by its identifying
column (primary key) rather than the SharePoint ID column.

 To interact with an External List from your site workfl ow or a workfl ow bound to a regular list or
document library, simply add the create, update, or delete activity, select the External List to act
on, and, in the case of update or delete, choose the fi eld that will be used to look at the item. For
example, in a Products list you will select the ProductID fi eld. You will then pick the specifi c value
you are looking for when the workfl ow is being executed. This will typically be a fi eld from the
current item; in the Data Source fi eld, select Current Item .

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

external system to a SharePoint workfl ow. When Pluggable Service is combined with out - of - the -
 box or custom workfl ow activities that can interact with SharePoint and write back to the external
system via External Lists, you can achieve bidirectional communication.

 An example of a scenario that could be implemented using this functionality is interaction between
SharePoint and a CRM system to manage a portion of the sales life cycle — review and approval of
request for proposal (RFP) documents. For each opportunity in the CRM system, a workfl ow helps
the salesperson track progress toward a confi rmed sale. At a particular stage in the workfl ow an
RFP document is created. The CRM system, which “ owns ” the workfl ow, can easily create a site for
the opportunity and a document for the RFP by calling SharePoint web services. With a SharePoint
workfl ow bound to the RFP document, CRM can communicate with the SharePoint workfl ow via a
Pluggable Service. Based on the status of the opportunity, the CRM system can move the workfl ow
forward to an approval step. When all the tasks have been completed in the SharePoint workfl ow, it
calls a CRM web service to report its fi nal status.

 Creating code - based custom activities and Pluggable Services is discussed in more detail in Chapter 5.

 UPGRADING FROM MOSS 2007

 Using Microsoft Offi ce SharePoint Server 2007 with Enterprise CAL, you can defi ne and use read -
 only entities, actions, and business data columns in lists. You can build web part pages (including
profi le pages) that leverage the Business Data web parts, confi gure search, and add business data
properties to user profi les.

 There are two ways to upgrade a MOSS 2007 farm to SharePoint 2010. These are:

 In - place upgrade: This involves running an SP 2010 setup on each machine in the farm.
This installs new binaries and upgrades the confi guration database, content databases, and
shared service databases in one monolithic operation. It can result in extended downtime
for farms with a lot of sites or content.

 Database attach: This involves running SP 2010 setup on new machines to install binaries,
then attaching SQL databases backed up from your MOSS 2007 farm. The act of attaching
a SharePoint content or shared service database from 2007 immediately triggers an upgrade.

 Upgrade of BDC content from 2007 to 2010 is supported only for in - place upgrade. If you attach
a BDC shared service database to a 2010 farm, upgrade actions will not be run and you will not
be able to access any of the Metadata Models, profi le pages, etc. If other factors prevent you from
doing a full in - place upgrade of your MOSS 2007 farm, consider backing up your BDC content,
creating a new MOSS 2007 farm (this could even be a single server farm hosted on a virtual
machine), and restoring BDC to that farm. Perform an in - place upgrade on the new farm, then
back up the upgraded database(s) and attach them to your permanent SharePoint 2010 farm.

 Version - to - version upgrade often occurs over the course of many months for larger organizations,
and it may not be desirable or even possible to switch all applications that interact with External
Data over to SharePoint 2010 immediately. Because of this, when an in - place upgrade is triggered,
a new SharePoint 2010 Application Service is created that enables backward compatibility for BDC

➤

➤

Upgrading from MOSS 2007 ❘ 69

www.it-ebooks.info

http://www.it-ebooks.info

70 ❘ CHAPTER 2 USING BCS SOLUTIONS IN SHAREPOINT 2010

Metadata Models created with MOSS 2007. These models can continue to function, unmodifi ed,
in a SharePoint 2010 farm. This service appears as the Application Registry Service in Central
Administration.

 When you ’ re upgrading to 2010, there are several things to keep in mind. The fi rst is the SKU
that you are upgrading to. As discussed in Chapter 1, basic BCS functionality is available in
SharePoint Foundation 2010, but features such as profi le pages and External Data web parts
require SharePoint Server 2010 with Enterprise CAL. Ensure that the SharePoint SKU you are
upgrading to supports all the functionality currently deployed in your MOSS 2007 farm.

 After upgrade is complete, here is a list of items to check or attend to:

 BDC Service state: Ensure the BDC service application instance is started by navigating to
the Central Administration site.

 Upgrade logs: Check your upgrade logs for errors. In certain cases some complex
associations between entities cannot be upgraded automatically; these will be clearly called
out as errors in the upgrade logs.

 Permissions: Consider granting Edit BDC permissions to users who need to work with ECTs
in SPD. You can do this through the Central Administration site.

 Add CRUD capabilities: When a BDC 2007 Metadata Model is upgraded, its schema is
converted to the new BCS 2010 format. Each entity in the model is converted to an ECT
and can now be opened for editing in SharePoint Designer. Where appropriate, consider
adding create, update, and delete operations.

 SharePoint Workspace 2010: By default upgraded ECTs cannot be connected to SharePoint
Workspace. MOSS 2007 was server - only and the reasoning was that it would be safer
to require administrators to opt into making data available in rich client environments.
(Note that the default for new ECTs in 2010 is still server - only, although this can easily be
changed through SPD.) It is very easy to enable these upgraded ECTs to be “ offl ined ” to
Offi ce client applications: remove the ExcludeFromOfflineClient property that was added
to each ECT and set to True during upgrade.

 Outlook 2010 : Not only must you remove the ExcludeFromOfflineClient property,
connecting External Data to Outlook also requires that you map certain fi elds in the ECT
to Outlook fi elds so data can be displayed in default Outlook views and forms. The easiest
way to do this is by opening the ECT in SharePoint Designer and using the wizards shown
in Chapter 4 to map the appropriate required fi elds.

 Create External Lists : These lists are the easiest entry points at which to allow users to view
and manipulate data in SharePoint and connect to SharePoint Workspace and Outlook.
Before creating one of these lists, consider the security of the list (will the right users have
access to the parent site? to the External Content Type? to the external system itself?) and
its structure (number and structure of views, including data source fi lters; out - of - the - box
versus InfoPath forms).

 Profi le page host: Profi le pages were hosted in a fi xed location within the Shared Service
administration site in MOSS 2007; that site is deprecated in 2010 (as Application Services
are administered from with the Central Administration site) and thus you will need to

➤

➤

➤

➤

➤

➤

➤

➤

www.it-ebooks.info

http://www.it-ebooks.info

defi ne a new profi le host site. If you have customized your profi le pages you may want to
manually move them to the new host site. If not, you can easily “ upgrade ” your profi le
pages to create new pages for upgraded ECTs that display both the Item and Related List
web parts. These new pages are automatically created in the new profi le host site.

 Pages with Business Data web parts: Any web part pages that contain Business Data web
parts are not immediately upgraded, as this process would require iteration through every
page on every web on every site to build the list of affected parts. Instead, the fi rst time an
instance of a Business Data web part is rendered after upgrade it executes an on - demand
process to update its confi guration. This process takes only a few seconds. The web part
then sets an internal fl ag to indicate that the process was successful. Future attempts to load
the web part will check the fl ag and skip the upgrade process.

 Search: Upgraded BDC Metadata Models will continue to work with SharePoint 2010 Search,
as will incremental crawl functionality for the upgraded ECTs in those models. If you create
a new SharePoint 2010 content source from an upgraded SharePoint 2007 BDC Metadata
Model, you will have to export the model and modify the XML to add a LastModified
TimeStampField property to the method instance, as shown in the following code. (In the
meantime, incremental crawls will be treated as full crawls for new content sources based
on upgraded models.) The value for this new property should be the name of the fi eld
in your ECT that stores information about when the item was last changed. Import the
updated model through the Central Administration site.

<MethodInstances>
 <MethodInstance Type=”Specifi cFinder”
 ReturnParameterName=”GetCustomerById”
 Default=”true” Name=”GetCustomerById”
 DefaultDisplayName=”Read Customer”
 LastModifiedTimeStampField=”LastChanged”>
 <Properties>
 <Property Name=”LastDesignedOffi ceItemType”
 Type=”System.String”>Contact</Property>
 </Properties>
 </MethodInstance>
</MethodInstances>

 After upgrade is complete and access to SharePoint 2007 entities/models is no longer required,
the Application Registry Service can be stopped in the Central Administration site ’ s service
management page.

 SUMMARY

 In this chapter we reviewed core BCS concepts such as Metadata Models, External Content Types,
and the BDC Service Application. You learned how to set BDC permissions to grant end users and
solution designers access to ECTs, how to import and export Metadata Models, and how to manage
actions and profi le pages. We also discussed throttling — the default settings, as well as viewing and
changing the current settings.

➤

➤

Summary ❘ 71

www.it-ebooks.info

http://www.it-ebooks.info

72 ❘ CHAPTER 2 USING BCS SOLUTIONS IN SHAREPOINT 2010

 We then looked at the SharePoint UI components that allow you to present External Data to end
users. From External Lists to web parts, External Data columns to user profi les and search, you
saw what each component is capable of doing, and were introduced to the extensibility points and
some scenarios.

 Upgrading from SharePoint 2007 can be a sizable and complex undertaking; we reviewed how BDC
Metadata Models, web parts, and profi le pages are upgraded to 2010 as well as the BCS - specifi c
activities that you ’ ll want to consider after the upgrade is complete.

 Now that you understand the various BCS components on the server, Chapter 3 explores the
world of the rich client, describing BCS capabilities within Offi ce 2010. Chapter 3 provides an
overview of External Data in Outlook and SharePoint Workspace 2010, describes how you can
surface SharePoint External Data columns in Word 2010, and describes how scenarios involving
External Data can work offl ine through the BCS client cache. An in - depth review of the BDC client
runtime, the packaging and deployment infrastructure, and the synchronization pipeline are also
covered.

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

74 ❘ CHAPTER 3 USING BCS SOLUTIONS IN OFFICE 2010

components are installed by default with the Professional Plus version of Offi ce 2010 so no separate
client installation is required.

 Understanding the BDC Client Runtime

 The BDC Client runtime contains the main operational functions for BCS on the client. The
BDC Client runtime has three main purposes. First, it provides the functionality necessary to
load and execute BCS solutions on the client. Second, the BDC runtime maps the elements of the
BDC Metadata Model to user interface elements in various Offi ce applications. Third, the BDC
runtime ensures that information from External Content Types is displayed in context as users
work within Offi ce applications. The BDC Client runtime is made up of several subcomponents,
which can be found in the Office 14 installation folder. Table 3 - 1 lists these subcomponents
and their functions.

 TABLE 3 - 1: BDC Client Runtime Subcomponents

 SUBCOMPONENT DESCRIPTION

 BCSAutogen.dll Generates the InfoPath and Outlook forms required for the solution

based on the entity defi nition

 BCSClient.Msg.dll Provides performance counters and ULS logging

 BCSClientManifest.man WMI Instrumentation fi le

 BCSEvents.man WMI Instrumentation fi le

 BCSLaunch.dll Checks BCS prerequisites, ensures BDC Client runtime is installed,

launches VSTO installer

 BCSProxy.dll Provides COM marshaling between the LOB Synchronization

service and the Offi ce applications

 BCSRuntime.dll BDC Client runtime component

 BCSRuntimeUI.dll Provides UI elements like the Synchronization Status dialog for

Offi ce clients

 BDCMetadata.xsd BDC Metadata Model schema

 BDCMetadataResource.xsd BDC Metadata Model resource schema

 When the BDC Client runtime is fi rst invoked on the client, a set of services is also started,
to support communication and deployment. If you look in the Event Viewer you will see the
messages informing you that the services have started. Table 3 - 2 lists the services and their
purposes.

www.it-ebooks.info

http://www.it-ebooks.info

Understanding Business Data Connectivity ❘ 75

 Along with the services, you will also notice that two additional related processes start on the
client. These processes can be seen in the Windows Task Manager and support synchronization
of data and documents with SharePoint and External Systems. Table 3 - 3 lists these processes and
describes them.

 TABLE 3 - 2: BDC Client Services

 SERVICE DESCRIPTION

 LOB Synchronization service Provides synchronization between the External System and the

client - side metadata cache

 Remoter service Provides an entry point for other services into the LOB

Synchronization service

 Solution Activation service Installs the BCS solution and notifi es user to close Offi ce

applications when required

 Solution Verifi cation service Checks for dependent solutions that require updating as a result

of the installation of an updated solution

 Throttling service Implements throttling for returned results

 TABLE 3 - 3: BDC Client Processes

 SERVICE DESCRIPTION

 BCSSync.exe Synchronizes client BCS data with External Systems

 MSOSync.exe Synchronizes the Offi ce Document Cache with SharePoint

 The BCS Client runtime loads every time an Offi ce host application is started. Once loaded, the BCS
Client runtime can raise and receive events in the Offi ce application, which supports the presentation
of the External Data within the hosting Offi ce application. In order to present the data, the BCS
Client runtime relies on artifacts contained within the solution package that is installed from the
SharePoint server. The solution package itself is covered in detail in the Understanding Solution
Deployment section later in the chapter.

 Understanding the Metadata Cache

 The metadata cache (also called the client cache) is a client - side, per - user, in - memory Microsoft SQL
Server Compact database that maintains the metadata associated with External Systems and BDC
Metadata Models. The purpose of the metadata cache is to provide faster data access on the client

www.it-ebooks.info

http://www.it-ebooks.info

76 ❘ CHAPTER 3 USING BCS SOLUTIONS IN OFFICE 2010

and allow the data to be taken offl ine. The metadata cache supports these functions by storing the
BDC Metadata Model, storing subscription information, storing local copies of the External Data,
and maintaining an operations queue. The metadata cache for a given user is located in the
 \Users\{UserName}\AppData\Local\Microsoft\BCS folder and is named BusinessDataCache.sdf .
While the metadata cache is not encrypted, accessing the database directly is unsupported and can
destroy the BCS installation.

 The BDC Metadata Model stored by the cache is the same model used on the server by SharePoint
with the exception that the LobSystemInstance refl ects the connection information to be used
by the client as specifi ed in SPD. This connection information is almost always different from
the server ’ s information because the client has no access to the accounts running the SharePoint
application pool or stored in the Secure Store Service (SSS). As a result the client will almost always
connect to the External System using his own credentials.

 Understanding Subscriptions in the Metadata Cache

 Subscriptions determine what data is stored in the metadata cache. Subscriptions are created
automatically by the BCS deployment components during the solution deployment process, but
may also be created manually for a custom solution. Subscriptions are simple XML fi les that
are read and used to populate the metadata cache with the information required to retrieve the
desired entities. The following code shows the schema for a subscription fi le:

 <Subscription
 DefaultDisplayName=”String”
 IsCached=”Boolean”
 Enabled=”Boolean”
 EntityName=”String”
 EntityNamespace=”String”
 LobSystemInstanceName=”String”
 Name=”String”
 RefreshIntervalInMinutes=”Long”
 View=”String”>
 <Associations>
 <Association
 DefaultDisplayName=”String”
 Enabled=”Boolean”
 IsCached=”Boolean”
LobSystemInstanceName=”String”
 MethodInstanceName=”String”
 Name=”String”
 RefreshIntervalInMinutes=”Long”
 TargetSubscriptionName=”String”
 TargetView=”String”>
 <FilterValues>
 <FilterValue
 FilterDescriptorName=”String”
 FilterIndex=”Integer”
 Type=”String”>
 </FilterValue>
 </FilterValues>

www.it-ebooks.info

http://www.it-ebooks.info

Understanding Business Data Connectivity ❘ 77

 <LocalizedDisplayNames>
 </LocalizedDisplayNames>
 <Properties>
 </Properties>
 </Association>
 </Associations>
 <Identities>
 <Identity>
 </Identity>
 </Identities>
 <LocalizedDisplayNames>
 <LocalizedDisplayName
 LCID=”Integer”>
 </LocalizedDisplayName>
 </LocalizedDisplayNames>
 <Properties>
 <Property
 Name=”String”
 Type=”String”>
 </Property>
 </Properties>
 <Queries>
 <Query
 DefaultDisplayName=”String”
 Enabled=”Boolean”
 IsCached=”Boolean”
 MethodInstanceName=”String”
 Name=”String”
 RefreshIntervalInMinutes=”Long”>
 <FilterValues>
 <FilterValue
 FilterIndex=”Integer”
 FilterDescriptorName=”String”
 Type=”String”>
 </FilterValue>
 </FilterValues>
 <LocalizedDisplayNames>
 </LocalizedDisplayNames>
 <Properties>
 </Properties>
 </Query>
 </Queries>
</Subscription>

 Most of the elements in the subscription fi le schema are optional. A functional subscription requires
only a Subscription element and a Query element. The following code shows an example of a
subscription fi le:

 <?xml version=”1.0” encoding=”utf-16” standalone=”yes”?>
<Subscription Name=”Product Subscription”
 LobSystemInstanceName=”ExternalProductSystem”
 EntityNamespace=”ExternalProducts”
 EntityName=”Product” View=”ReadProduct”

www.it-ebooks.info

http://www.it-ebooks.info

78 ❘ CHAPTER 3 USING BCS SOLUTIONS IN OFFICE 2010

 RefreshIntervalInMinutes=”10”
 xmlns=”http://schemas.microsoft.com/office/2006/03/BusinessDataCatalog”
>
 <Queries>
 <Query Name=”ProductsQuery” IsCached=”true”
 RefreshIntervalInMinutes=”10”
 MethodInstanceName=”ReadAllProducts” Enabled=”true”>
 </Query>
 </Queries>
</Subscription>

 A subscription begins with a Subscription element. The attributes of the Subscription element
specify the information about the External Content Type to be retrieved. The Name attribute is the
name of the subscription. The LobSystemInstanceName is the value of the LobSystemInstance in
the BDC Metadata Model. The EntityNamespace and EntityName specify the ECT to be retrieved
and are the values that were used when the ECT was created. The RefreshInterval specifi es the
time period after which the cached data should be refreshed from the External System.

 The Queries element is a child of the Subscription element and contains one or more Query
elements. The attributes of the Query element specify the Finder method to execute when refreshing
the cache. The name of the Finder method is specifi ed in the MethodInstanceName attribute. In
addition to specifying queries, a subscription may also specify specifi c entity identities to return.
This allows you to supplement the subscription with specifi c entities that are not part of the query.

 For the entities returned, the query may also specify associations to return. This allows you to
say, for example, that all related orders should be returned with each customer. Although they
are supported, you should be careful about using associations because they can have a signifi cant
impact on synchronization. This is because every entity will have multiple items returned through
an association. This will bloat the number of items that must be synchronized.

 Most subscription fi les are automatically created by BCS. Subscriptions can be subsequently accessed
and modifi ed using the metadata cache object model. However, subscriptions can ’ t be created or
deleted using the API. Manually creating subscription fi les is most often done during the creation of a
declarative or data - only solution. These solutions are used when you are targeting Microsoft Outlook
or are creating a fully customized solution. Additional coverage of subscriptions, the metadata cache
object model, declarative solutions, and custom solutions can be found in Chapter 6.

 Understanding Cache Population

 The metadata cache stores the identifi ers for entity instances and the synchronized data in
separate locations within the metadata cache. For each query defi ned within a subscription,
BCS will create a new table in the metadata cache to hold the entity instances. These tables are
named using the name of the SpecificFinder method, prefi xed with Table1 , Table2 , Table3 ,
and so on to ensure uniqueness.

 Synchronization is performed by the BCSSync.exe process, which makes calls directly to the External
System defi ned by the LobSystemInstanceName specifi ed in the subscription. The synchronization
process starts by making a Finder call to the method specifi ed in the MethodInstanceName of the
query. If the Finder method returns all the fi elds defi ned for the External Content Type, then no
additional calls are made. If, however, the Finder method does not return all the needed fi elds, a

www.it-ebooks.info

http://www.it-ebooks.info

Understanding Business Data Connectivity ❘ 79

separate call is made to the SpecificFinder method specifi ed by the View attribute until the cache
is populated. After the cache is populated from the Finder and SpecificFinder methods, calls are
made to return the additional specifi c identities specifi ed.

 The last phase of cache population operates on any associations specifi ed in the subscription. The
 Associate() method returns the Id of any associated entity instances. Then a SpecificFinder
call is made for each returned Id to populate the cache. This process shows why associations can be
very expensive when populating the cache; it simply takes a lot of time to execute all of the required
operations to populate the cache.

 Each Subscription , Query , Identity , and Association has a RefreshInterval attribute
(called the ExpireAfter property in the metadata cache object model) that specifi es when the
cache should be refreshed from the External System. When the subscription expires, a refresh is
scheduled; however, there is no way to know the exact time when the refresh will run. Refresh
operations on the External System can be affected by the availability of the External System and
the state of pending operations. Pending operations always receive the highest priority, so the
synchronization process will delay refresh operations in order to complete updates to the External
System. When the synchronization process has time to perform refresh operations, it always
executes the refresh for the oldest expired subscription fi rst.

 Because end users cannot delete subscriptions or data from the cache, it will grow over time.
However, invalid data is automatically garbage - collected by BCS so that the cache does not
become unnecessarily large. Because the process is automatic, end users are freed from worrying
about cache management.

 The garbage collection process begins after the successful execution of all queries within a
subscription. At this point any data in the cache that was not included in the refresh is marked
as a candidate for deletion. The next time the same subscription runs, any data marked as a
candidate for deletion is tombstoned . This means that the data still exists in the cache, but
will not be used by BCS. Finally, the garbage collector runs and permanently deletes any
tombstoned data.

 Understanding Cache Operations

 When performing operations on the client, solutions may specify whether they want to read the
data directly from the External System or use the metadata cache. If data is read from the External
System the cache will typically be updated as part of the operation. If the cache is read directly
the solution may optionally provide a freshness interval — using an OperationMode object — that
specifi es the maximum acceptable age of the cached data. Before providing any data from the cache,
the BDC Client runtime checks the status of the entity instance to determine the data quality. The
status of the instance may be Fresh , Invalid , Obsolete , or Stale .

 An entity instance status of Fresh means that the RefreshInterval has not passed. In this case the
data is assumed to be valid. The BDC Client runtime will simply return the data.

 An entity instance status of Invalid means that the BDC Client runtime cannot determine if the
data in the cache is valid. This can happen when BCS cannot determine if the data in the External
System has changed since the last refresh. In this case the data can ’ t be used. The BDC Client
runtime calls the SpecificFinder method for the entity instance, refreshes the cache data, and
returns the new value.

www.it-ebooks.info

http://www.it-ebooks.info

80 ❘ CHAPTER 3 USING BCS SOLUTIONS IN OFFICE 2010

 An entity instance status of Obsolete means that the BDC Client runtime knows that the data in
the External System has changed since the last refresh. In this case the data can ’ t be used. The BDC
Client runtime will refresh the data and return the new value.

 An entity instance status of Stale means that
the RefreshInterval has passed, but the
synchronization process does not think the data
in the External System has changed since the last
refresh. An entity instance may become stale
because the refresh has been delayed while the
synchronization service performs higher - priority
tasks or because the solution specifi ed a freshness
interval smaller than the refresh interval. In this case
the BDC Client runtime will return the stale data
only if it meets the freshness criteria specifi ed by the
solution. Otherwise the BDC Client runtime retrieves
the data from the External System, updates the cache,
and returns the new value. Figure 3 - 1 shows the
process for reading entity instances.

 When the solution executes a create, update, or
delete operation on data in the metadata cache,
the operations are queued in the OperationQueue
table in the metadata cache. The queued operations
are executed on the External System during the
synchronization process, but the exact timing of the
operations cannot be predicted.

 When a new entity instance is created, a new Create
operation is queued and a new entity instance is
created in the metadata cache. The Identity of the
new entity instance is assigned a temporary value in the form of a GUID until the External System
can be updated. After the synchronization process completes, the metadata cache is updated with
the Identity assigned by the External System. At this point the entity instance is scheduled for
refresh to ensure that any calculated fi elds are properly updated. If the operation fails, the entity
instance ’ s synchronization status is marked as InError . Figure 3 - 2 shows the process for creating
new entity instances.

 When an existing entity instance is updated, the cache data is updated and an update operation
is queued. When the update operation is performed, the synchronization process fi rst calls the
 SpecificFinder method for the entity instance and retrieves the latest values from the External
System. The current values in the External System are then compared to the original values of
the entity instance. If no confl icts are detected, the update operation is performed and the entity
instance is scheduled for refresh. If a confl ict is detected, the entity instance synchronization
status is marked as InError and a ConflictDetectedException is thrown. If the fi rst call to the
 SpecificFinder method results in an ObjectNotFoundException or an ObjectDeletedException ,
the synchronization process knows that the item has been deleted from the External System. In this
case the update operation fails. Figure 3 - 3 shows the process for updating entity instances.

Read Entity
Instance

Meet
Freshness?

Refresh Cached
Data

Stale?

Invalid?

Obsolete?

Return Entity
Instance Data

No

No No

No

Yes

Yes

Yes Yes

 FIGURE 3 - 1

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

 Understanding ClickOnce Deployment

 ClickOnce deployment is an alternative to the Windows Installer for deploying client applications.
The advantages of ClickOnce deployment include a signifi cantly easier experience for end users and
a web - based deployment capability. These features fi t in perfectly with the BCS experience when
end users need a simple way to install customizations directly from a SharePoint 2010 web page.
While a BCS ClickOnce deployment package can consist of several different fi les, the primary fi les
are the deployment manifest and the application manifest .

 The deployment manifest is an XML fi le that describes the deployment confi guration and can be
found in the ClientSolution folder as the fi le with a VSTO extension. For simple solutions BCS
uses a GUID for the name of the deployment manifest.

 The application manifest is an XML fi le that describes the application being deployed. The
application manifest includes information about assemblies, dependencies fi les, permissions, and
update locations. For simple solutions BCS names the application manifest with the same GUID as
the deployment manifest, but uses a MANIFEST extension at the end.

 Along with the deployment manifest and application manifest, the BCS deployment component also
copies the application fi les into the ClientSolution folder. For a simple solution, the application
fi les consist of the BDC Metadata Model, the External List manifest, and a fi le with information
about the view and a query necessary to create a subscription.

 The BDC Metadata Model can be found under the ClientSolution folder in a fi le named
 metadata.xml.deploy . This is the same metadata model used on the server, with the exception that
the connection information for the LobSystemInstance refl ects the options for the client instead of
for the server. During ClickOnce installation, the metadata model is stored in the metadata cache.

 The External List manifest can be found under the ClientSolution folder in a fi le named
 ExternalListManifest.mxl.deploy . This fi le contains information about the list and the view
to be rendered on the client. The following code shows a typical External List manifest:

 <?xml version=”1.0” encoding=”utf-8”?>
<List
 Title=”Customers”
 SiteId=”579d3abe-acd6-4937-a9b7-caac2d3c4e33”
 SiteTitle=”BCS”
xmlns=”http://schemas.microsoft.com/office/2006/03/OfficeBusinessApplication”>
 <Entity
 LobSystemInstance=”MiniCRM”
 EntityNamespace=”http://wingtipserver/bcs”
 EntityName=”Customer”
 SpecificFinder=”Read Item”
 DefaultViewId=”88daa82c-6981-4f30-a2bc-d16094af12f1” />
 <Views>
 <View
 Id=”88daa82c-6981-4f30-a2bc-d16094af12f1”
 DisplayName=”Customer Read List” />
 </Views>
 <Form CreateView=”” DisplayView=”” EditView=”” />
</List>

Understanding Solution Deployment ❘ 83

www.it-ebooks.info

http://www.it-ebooks.info

84 ❘ CHAPTER 3 USING BCS SOLUTIONS IN OFFICE 2010

 The view and query information can be found under the ClientSolution folder in a fi le named
with a GUID and having a XML.DEPLOY extension. This fi le contains information about the list view
and the Collaborative Application Markup Language (CAML) query necessary to create it. The
following code shows a typical fi le:

 <View Name=”{88DAA82C-6981-4F30-A2BC-D16094AF12F1}”
 DefaultView=”TRUE”
 MobileView=”TRUE” MobileDefaultView=”TRUE”
 Type=”HTML”
 DisplayName=”Customer Read List”
 Url=”/bcs/Lists/Customers/Read List.aspx” Level=”1” BaseViewID=”1”
 ContentTypeID=”0x”
 ImageUrl=”/_layouts/images/generic.png”>
 <Method Name=”Read List”/>
 <Query>
 <OrderBy><FieldRef Name=”ID”/></OrderBy>
 </Query>
 <ViewFields>
 <FieldRef Name=”ID” ListItemMenu=”TRUE” LinkToItem=”TRUE”/>
 <FieldRef Name=”Title”/>
 <FieldRef Name=”FirstName”/>
 <FieldRef Name=”MiddleName”/>
 <FieldRef Name=”LastName”/>
 <FieldRef Name=”Suffix”/>
 <FieldRef Name=”EmailAddress”/>
 <FieldRef Name=”Phone”/>
 </ViewFields>
 <RowLimit Paged=”TRUE”>30</RowLimit>
 <Aggregations Value=”Off”/>
</View>

 The fi les associated with a simple BCS solution contain enough information to support full CRUD
operations on the External List. Additionally, the information in the solution can be used after
deployment to create subscriptions, InfoPath forms, and required Outlook UI elements. As you
begin to create more advanced solutions, you will have to create your own ClickOnce packages.
The good news, however, is that the SDK and Visual Studio 2010 provide tools to help.

 Understanding ClickOnce Security

 ClickOnce security centers on a trusted
publisher model, in which the deployment
manifests are signed with a certifi cate. If a
ClickOnce deployment manifest is signed
by a trusted publisher, the application
automatically installs without prompting
the user. If, however, the application is not
signed by a trusted publisher, the user is
prompted to decide whether or not to install
the application. Figure 3 - 5 shows a typical
security dialog for BCS. FIGURE 3 - 5

www.it-ebooks.info

http://www.it-ebooks.info

 In the out - of - the - box confi guration, BCS does not have a certifi cate that can be used to sign the
ClickOnce packages. Instead, SharePoint generates a self - signed certifi cate and signs the package.
These self - signed certifi cates are not trusted by the client because they are not issued by a trusted
publisher known to the client. This means that a user will generally be prompted to confi rm the
ClickOnce deployment, but this may not always be the case. Whether or not a user is prompted is
determined by the zone in which the package is located.

 If the ClickOnce package is deployed from the My Computer, Local Intranet, or Trusted Sites zone,
users will be prompted to allow installation. If the ClickOnce package is installed from the Internet
or Untrusted Sites zone, installation will not be allowed. In this case, the only way to get the
package installed is to have it signed by a trusted publisher.

 In order to seamlessly install the ClickOnce application you must provide a trusted certifi cate
to SharePoint that can be used for package signing. Ideally, this certifi cate should be a Verisign
Authenticode certifi cate suitable for signing code. However, it could also be a certifi cate issued by
Certifi cate Server, as long as the clients trust your certifi cates.

 Once you have an appropriate certifi cate you need to create a certifi cate store named
BusinessConnectivityServices on each web front - end server in the SharePoint farm. This is the store
in which SharePoint will look for a certifi cate to sign the ClickOnce packages. You create the
certifi cate store by adding the key BusinessConnectivityServices under HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\SystemCertificates . Figure 3 - 6 shows the key.

 FIGURE 3 - 6

 After the new certifi cate store is added, the certifi cate can be imported. The easiest way to do
this is to use the Certifi cates snap - in for the local computer. From the command line type MMC
to open a new console. Next select File ➪ Add/Remove Snap - In from the menu. In the Add or

Understanding Solution Deployment ❘ 85

www.it-ebooks.info

http://www.it-ebooks.info

86 ❘ CHAPTER 3 USING BCS SOLUTIONS IN OFFICE 2010

Remove Snap - Ins dialog select the Certifi cates snap - in. When prompted, select the local computer
as the account. You should now see a BusinessConnectivityServices certifi cate store into which you
can import your certifi cate. Note that SharePoint expects to fi nd only one certifi cate in this store;
otherwise the package - signing process will fail. Figure 3 - 7 shows an imported certifi cate.

 FIGURE 3 - 7

 Finally, you will need to make sure that the account running the SharePoint Application Pool has
rights to access the certifi cate. If this account does not have access, the ClickOnce package will
not be signed. The simplest way to ensure the proper rights is to use the Windows HTTP Services
Certifi cate Confi guration Tool. This tool is available for download at http://www.microsoft.com/
downloads/details.aspx?familyid=c42e27ac-3409-40e9-8667-c748e422833f & displaylang=en .
Once you have downloaded the tool you can run the following command to determine whether the
Application Pool account has access to the certifi cate:

WinHttpCertCfg.exe -l -c
 LOCAL_MACHINE\BusinessConnectivityServices
 – s {Certificate Name}

 If the account does not have access you can run the following command to grant it access:

winhttpcertcfg.exe -g -c
 LOCAL_MACHINE\BusinessConnectivityServices
 – s {Certificate Name}
 – a {Account Name}

www.it-ebooks.info

http://www.it-ebooks.info

 CONNECTING EXTERNAL LISTS TO OUTLOOK

 When a user clicks the Connect to Outlook button in the SharePoint ribbon and installs the
required customization, Outlook uses a managed folder named BCSStorage . PST to facilitate display
of the data in a folder. The customization and PST folder can be found in the \Users\{UserName}\
AppData\Local\Microsoft\BCS folder, along with the metadata cache database. Once the data and
customization are downloaded, end users may interact with the data through an Outlook folder.

 Understanding BCS Folder Limitations

 Just as External List functionality is a subset of standard SharePoint list functionality, BCS folders
in Outlook also have some limitations that are important to consider. These limitations involve the
display of data in Outlook along with the availability of the data for use within Outlook.

 Understanding Form Limitations

 When defi ning an ECT you can specify that the data should be displayed in Outlook as a Contact
item, Task item, Appointment, or Post, depending on the mapping selections made during the
creation of the External Content Type. Each of the different Outlook types requires at least one fi eld
to be mapped to the ECT. Contact types require a LastName or FullName fi eld; Task types require
a Subject fi eld; Appointment types require Start , End , and Subject fi elds; Post types require a
 Subject fi eld.

 In addition to the required fi elds, ECTs are likely to have many that do not map to particular
Outlook fi elds. These additional fi elds are displayed in Outlook using a form region in the Outlook
inspector. If the additional fi elds number fi ve or fewer they are displayed in an adjoining Outlook
form region, which means they are simply appended to the existing form. If the additional fi elds
number more than fi ve they are placed in a separate Outlook form region. You can access the
additional fi elds in a separate Outlook form region by clicking the appropriate details button
in the Outlook ribbon. Figure 3 - 8 shows additional Reseller details available through the Show
Reseller Details button.

 FIGURE 3 - 8

Connecting External Lists to Outlook ❘ 87

www.it-ebooks.info

http://www.it-ebooks.info

88 ❘ CHAPTER 3 USING BCS SOLUTIONS IN OFFICE 2010

 Unlike standard form regions, the form regions installed with the out - of - the - box customization
are not editable. Opening a BCS item will display the item in the appropriate inspector, along
with any additional form regions. Clicking the Show button associated with an adjoining region
will display the adjoining region containing any additional fi elds. Subsequently clicking the
Developer tab will allow you to click the button entitled Design This Form. Normally this action
will expose the Outlook form region for customization. In the case of the out - of - the - box BCS
solution, however, the form region is not available. (Note that the Developer tab is normally not
visible and that you must activate it from the Options dialog by clicking Customize Ribbon.)
Because the adjoining form region is not available you may fi nd that the information display is
less than desirable. The additional BCS fi elds are simply stacked vertically and the label for each
fi eld shows the name as defi ned in the ECT. There is no way after the fact to modify the Outlook
region or to hide BCS columns. Therefore, you should plan the defi nition of your ECT to support
the fi elds you really want to display in Outlook, or create custom form regions as described in
Chapter 6.

 When the inspector is open for a BCS item, you will also notice that the standard Outlook fi elds
are visible as well. If, for example, an ECT is mapped to a Contact item, that item will have
e - mail, phone number, and address fi elds visible even if there are no ECT fi elds mapped to them.
This means that end users can enter additional data into these fi elds, but that data will never be
synchronized back to the External List. This additional data will survive synchronization — as it is
stored in the PST fi le — but it will be visible only to the end user who entered it. This behavior may
be confusing to end users.

 Beyond confusion about the data fi elds themselves, this behavior can lead to confusion regarding
the functionality of the items. For example, imagine that you have created an External List that
maps to the Task type. As required, you map a fi eld to the task subject fi eld. An end user can
then synchronize the list with Outlook and see the items as tasks. However, marking the task as
complete has no meaning outside the list in Outlook because no fi elds in the External List are
mapped to the completion fi eld. Such situations are easy to create unless you design your External
Lists carefully.

 The normal approach to these challenges is to create a custom form and publish it for use in the
Outlook folder. Although it is possible to place the BCS form in design mode using the Developer
tab, you cannot publish a modifi ed form for use with other items in the folder. Attempting to
publish a modifi ed version of a BCS form in Outlook results in an error. All of this means that
you are largely stuck with the presentation of the BCS fi elds and the presence of the additional
Outlook fi elds.

 Although the default BCS form region cannot be edited, it is possible to create a view that includes
both the mapped and the unmapped fi elds. On the Home tab of the ribbon, clicking More in the
Current View group will reveal a Manage Views link. Clicking the Manage Views link will open
the Manage All Views dialog. In this dialog you may create a new view by clicking the New button.
If a new table view is created, the fi elds for the External List can all be added and displayed in the
same view. The fi elds associated with the External List are available under User - Defi ned Fields in
the Folder group.

www.it-ebooks.info

http://www.it-ebooks.info

 Understanding Functional Limitations

 In addition to the limitations placed on the display of data, there are also several limitations placed
on its use. While much of the Outlook functionality is preserved, end users should be aware of
limitations and the available workarounds. The following sections discuss the limitations for each
of the Outlook types.

 External Content Types designed as Outlook contact types generally cannot participate in
operations that would require the form to be used. For example, items in a BCS folder designated
as a contact type cannot be attached to an e - mail directly. Instead, they must be inserted into the
body of an e - mail as text. Additionally, contact types cannot be forwarded or participate in mail
merges. Finally, the BCS folder itself does not support the creation of new contact groups.

 External Content Types designed as Outlook appointment types do not support inviting attendees,
recurrence, or forwarding. Additionally, appointment items cannot be attached to an e - mail
directly; instead they must be added to the body of an e - mail as text. Appointments also do not
support attachments.

 External Content Types designed as Outlook task types do not support recurrence or being
forwarded to others. You also cannot assign a task to another user from within Outlook.
Additionally, task items may not be attached to e - mails directly. They may, however, be inserted
into the body of the e - mail as text.

 External Content Types designed as Outlook post types may not be forwarded or attached to
e - mails directly. They may be inserted into e - mails as text. Users can reply to posts and those replies
will be added to the External System. However, the External List in SharePoint is not capable of
showing a threaded discussion, so the items appear simply as a fl at list.

 Understanding SharePoint Security Limitations

 When accessing External Lists through the browser, SharePoint permissions are respected.
This means that you can restrict the ability of end users to see lists or edit items based on their
SharePoint rights. For example, a user with View permissions will not be able to edit items in an
External List through the browser, but will be able to view the list and items.

 If end users have at least View permissions for an External List, they can click the Connect to Outlook
button and install the solution. Once the solution is installed in Outlook, the list permissions in
SharePoint cease to have meaning. The ability to perform operations on the items in an Outlook
folder is determined solely by the permissions in the BDC Metadata Model. Therefore, you should
give consideration to security within the BDC Metadata Model fi rst, and not rely on SharePoint
permissions to secure data in the External System.

 Synchronizing Outlook Data

 When an External List is connected to Outlook, a default subscription is downloaded that will
refresh the cached data every six hours. Although the subscription will automatically refresh the
data, you can force synchronization by right - clicking the External List folder in Outlook and
selecting Sync Now from the context menu. You can check the synchronization status by
right - clicking the folder for the External List and selecting Synchronization Status. A dialog

Connecting External Lists to Outlook ❘ 89

www.it-ebooks.info

http://www.it-ebooks.info

90 ❘ CHAPTER 3 USING BCS SOLUTIONS IN OFFICE 2010

will open, displaying the current synchronization
status and available views for the External List.
Additionally, a checkbox is available to disable
synchronization for the list. Figure 3 - 9 shows a
typical synchronization status dialog.

 If errors occur during synchronization, the affected
items will appear in the Sync Issues folder.
Errors occur when the data in the External System
has changed since the last synchronization, as
described earlier in the chapter. In order to resolve
the synchronization errors the end user must
open the item and click the File tab. Clicking the
File tab opens the backstage view for the item. Here
the end user will see a notifi cation that confl icts
have occurred. Clicking the button in the Backstage
View will open a dialog that allows for resolution.
The user may then select to either keep the value
in the External System or force the value in Outlook
to be saved.

 Selecting to force the value in Outlook into the External
System will overwrite the changes made previously by
other users. However, keeping the value in the External
System loses the changes made by the current user. If
the current user has made many changes, the data loss
may be signifi cant. Users can often avoid data confl icts
by simply performing a manual synchronization prior
to making any large - scale changes in data. Figure 3 - 10
shows the backstage view with the Resolve Confl ict
dialog open.

 Managing Client Credentials

 While Chapter 8 covers authentication and authorization scenarios in detail, this chapter presents
credential management from the end - user perspective. When folders in Outlook are synchronized
with External Systems they use the authentication method that was defi ned for the ECT model.
Often the client will simply be accessing the External System using his or her own credentials,
but that will not always be the case. When the External System does not use Windows or claims
credentials, it may be necessary to use a separate account. In these cases the credentials will be
stored in the Credential Manager.

 Credential Manager is not part of the BCS infrastructure. It is a utility that is part of the operating
system. BCS simply takes advantage of this utility to manage credentials for the end user. If
credentials other than the user ’ s are required, BCS will prompt the end user to enter credentials
and then store them in Credential Manager.

 FIGURE 3 - 9

 FIGURE 3 - 10

www.it-ebooks.info

http://www.it-ebooks.info

 End users can see and manage their credentials by opening the Credential Manager. They can access
it by clicking Control Panel ➪ User Accounts ➪ Manage Your Credentials. BCS credentials will be
listed under the Generic Credentials section. Figure 3 - 11 shows the Credential Manager with BCS
credentials stored.

 FIGURE 3 - 11

 End users are free to delete the credentials stored in the Credential Manager. In this case they will
simply be prompted to enter them again during the next synchronization. If the credentials for the
External System change, BCS will prompt the user to enter new credentials and simply overwrite
the existing credentials.

 Updating Outlook Solutions

 Even after an External List is synchronized with Outlook, changes may be made to the schema,
views, and operations. In these cases end users can get the latest version of the solution in
two ways: through either SharePoint or Outlook. Clicking the Connect to Outlook button
in SharePoint will always download the latest solution. Alternately, the end user may right - click
the folder in Outlook and select Check for Updates from the context menu. If the solution has
not changed, the end user will see a message indicating that no update was installed. Otherwise
the latest solution will be installed. Microsoft Outlook itself has no automatic means to update
BCS solutions.

Connecting External Lists to Outlook ❘ 91

www.it-ebooks.info

http://www.it-ebooks.info

92 ❘ CHAPTER 3 USING BCS SOLUTIONS IN OFFICE 2010

 When an updated solution is installed, the end user might not immediately see the new data and
functionality. This is because Offi ce clients must often be closed in order for the installation to
complete. If closing the Offi ce clients is required, the end user will receive a notifi cation that the
solution installation is pending.

 In addition to updating solutions, end users may also remove them. Right - clicking a folder in
Outlook and selecting Delete will remove the solution. Deleting the folder has no impact on the
External Data; the solution is simply removed. In order to reinstall the solution the user must return
to SharePoint and click the Connect to Outlook button.

 Generally, changes that are made to the External List in SharePoint have no effect on the solution
once it is deployed to Outlook. For example, if an External List is deleted from SharePoint, the
Outlook solution will continue to synchronize the data based on the subscription. This is because
the Outlook solution always synchronizes with the External System directly.

 If an External List has multiple views, those views are available to the solution in Outlook. The
Synchronization Status dialog shows all the available views and allows the end user to select
the views that will be synchronized. Changing the selected views and performing synchronization
will immediately affect the data in Outlook. Items in any new selected views will appear in the
folder, while items in unselected views will be removed from the folder.

 If an External List has a view that uses a fi lter, Outlook will make that view available using the fi lter
value that was in place when the list was fi rst synchronized. Subsequent changes to the fi lter value
in the External List will have no effect on the items appearing in the Outlook folder. Attempting
to update the solution either directly in Outlook or by clicking the Connect to Outlook button
in SharePoint will also have no effect on the fi lter value used. This fact means that you should be
careful in your use of fi lter settings with External Lists because you obviously cannot predict when
a user will connect an External List to Outlook.

 CONNECTING LISTS TO THE SHAREPOINT WORKSPACE

 The SharePoint Workspace (SPW) is a new client application that allows end users to create local
copies of SharePoint sites for working offl ine. The SharePoint Workspace, like Microsoft Outlook,
provides support for standard lists and libraries as well as External Lists. You can take lists,
libraries, and External Lists offl ine by clicking the Sync to SharePoint Workspace button located on
the List tab of the ribbon in SharePoint 2010.

 Understanding SPW Architecture

 The role of SPW is to create client - side copies of SharePoint data and provide for the two - way
synchronization of that data. SPW makes use of three repositories on the client to store offl ine data:
the SharePoint Workspace itself, the Offi ce Document Cache (ODC), and the BCS metadata cache.
Standard lists, InfoPath forms, non - Offi ce documents, list schemas, and list views are stored in
the SharePoint Workspace. Offi ce documents from libraries are stored in the ODC. External Lists
are stored in the BCS metadata cache.

www.it-ebooks.info

http://www.it-ebooks.info

 When the client is online, any changes made to standard lists are immediately synchronized
with SharePoint. If the client is offl ine, those changes are kept in the repository until they can be
synchronized. SPW also engages in periodic synchronization operations to refresh any data that
may have changed in SharePoint.

 Understanding the Offi ce Document Cache

 The ODC is used by all Offi ce products to manage documents and synchronize changes with
SharePoint. The ODC is located at \Users\{UserName}\AppData\Local\Microsoft\Office\14\
OfficeFileCache . Although ODC is not part of BCS, documents are often a signifi cant part of a
SharePoint solution, so understanding how they are handled is important. You can access the ODC
through an icon in the system tray, which opens the Upload Center. In the Upload Center you can
view items in the cache and manage settings. Figure 3 - 12 shows the Upload Center with several
documents cached pending reconnection to the server.

 FIGURE 3 - 12

 Synchronization of documents with SharePoint is done through a web service. This web service uses
a special document synchronization protocol known as File Sync via SOAP over HTTP (FSSHTTP).
After the initial synchronization process, only changes are transferred between SharePoint and
SPW. This keeps sync time as short as possible.

 In much the same way that External Lists can create confl icts when two or more users edit the same
items in a disconnected environment, other users can edit documents that you have taken offl ine in
SPW. Whenever possible, ODC and SharePoint will attempt to merge the changes made by multiple

Connecting Lists to the SharePoint Workspace ❘ 93

www.it-ebooks.info

http://www.it-ebooks.info

94 ❘ CHAPTER 3 USING BCS SOLUTIONS IN OFFICE 2010

users into the same document. When you open the document again, any differences will appear
highlighted in green.

 SPW also supports working collaboratively with multiple people on the same document. You
are notifi ed by SPW anytime you open a document that is being edited by another user. This
notifi cation provides contact information for the other user. As the other user works, portions of
the document are locked. When they have fi nished, you will receive notifi cation and can sync the
changes into your copy of the document.

 Synchronizing External Lists

 When an External List is synchronized to SPW, a VSTO ClickOnce package is created and
installed. SPW makes use of the BCS metadata cache to manage data from External Lists, so it
needs the customization installed. However, SPW is fundamentally different from BCS because
it wants to synchronize with the SharePoint Server, whereas BCS communicates directly with
the External System. What this means is that SPW will not synchronize External List data if
it cannot communicate with the SharePoint Server. This is true even though BCS only requires
communication with the External System to complete synchronization.

 In most cases, if SPW cannot communicate with SharePoint, BCS probably cannot communicate
with the External System, because the client is disconnected from the network. However, if the
SharePoint Server goes down, but the External System is still online, BCS solutions in Outlook will
still continue to function correctly, but SPW solutions will exhibit some odd behavior.

 When a change is made to an External List in SPW, that change is written to the BCS metadata
cache and a queued update operation is created. If SharePoint is offl ine and the External System is
online, the queued operation will execute during the next BCS synchronization. However, if changes
are made to the External System from some other source, those changes will not be refl ected in SPW
because SPW is relying solely on the metadata cache when SharePoint is offl ine. The same External
List in Outlook will refl ect the data change because the BCS synchronization will be directly against
the External System. SPW will refl ect the change only when SharePoint is back online and the next
synchronization occurs.

 Writing Scripts and Macros

 The SharePoint Workspace has extremely limited programmability. Unlike other Offi ce applications,
it does not have a Visual Basic for Applications (VBA) environment. You also cannot create custom
add - ins for SPW using Visual Studio 2010. The only available option for programming SPW
involves creating JavaScript fi les that manipulate the client - side COM components.

 The most useful COM component for use with scripts is the Groove.SiteClientActiveX object.
This component will allow you to programmatically take sites and lists offl ine. Invoking this
object performs the same function as clicking the Sync to SharePoint Workspace button. The
following code shows a sample script for taking a site offl ine:

 < script type=’text/javascript’ >
 function syncSiteSPW(siteUrl)
 {
 var OfflineClientScope_Site = 1;

www.it-ebooks.info

http://www.it-ebooks.info

 var OfflineClientScope_ListOrLibrary = 2;
 var OfflineClientScope_Folder = 3;
 var a = new ActiveXObject(‘Groove.SiteClientActiveX’);
 if(a.IsOfflineAllowed(
 OfflineClientScope_Site,
 100,
 100,
 100))
 a.TakeOffline(
 OfflineClientScope_Site,
 1,
 siteUrl,
 1,
 1,
 ‘’,
 ‘’);
 else
 alert(‘Site cannot be taken offline.’);
 }
 < /script >

 The two methods available with the Groove.SiteClientActiveX object are the IsOfflineAllowed()
and TakeOffline() methods. The IsOfflineAllowed() method takes a scope argument that
specifi es whether to take a site, list, or folder offl ine. The remaining values specify the site template,
 SPBaseType , and SPListTemplate type. The method returns a Boolean indicating whether or not
the target can be taken offl ine. If the target can be taken offl ine, the TakeOffline() method can be
used to start the synchronization process. The TakeOffline() method requires a scope argument,
site template, site URL, list ID, and folder ID. The list ID and folder ID are GUIDs that are required
only for taking a list offl ine. If the folder ID is not supplied, the root folder is taken offl ine. The
following code shows how to write a script to take a list offl ine:

 < script type=’text/javascript’ >
 function syncListSPW(siteUrl, listId)
 {
 var OfflineClientScope_Site = 1;
 var OfflineClientScope_ListOrLibrary = 2;
 var OfflineClientScope_Folder = 3;
 var a = new ActiveXObject(‘Groove.SiteClientActiveX’);
 if(a.IsOfflineAllowed(
 OfflineClientScope_ListOrLibrary,
 100,
 100,
 100))
 a.TakeOffline(
 OfflineClientScope_ListOrLibrary,
 1,
 siteUrl,
 1,
 1,
 listId,

Connecting Lists to the SharePoint Workspace ❘ 95

www.it-ebooks.info

http://www.it-ebooks.info

96 ❘ CHAPTER 3 USING BCS SOLUTIONS IN OFFICE 2010

 ‘’);
 else
 alert(List cannot be taken offline.’);
 }
 < /script >

 While SPW has limited programmability, the ODC has no programming interface at all. This is
unfortunate because BCS does not store stream data in the metadata cache; accessing stream data
always requires a direct connection to the External System. Although using the ODC to manage
documents as part of a custom BCS solution would be ideal, it is not possible. As a result, the only
way to make use of the ODC programmatically is to invoke fi le operations through the object
models of Offi ce clients in a macro or custom add - in. The following code shows a simple macro that
saves a fi le to SharePoint, thus invoking the ODC.

Sub SaveToSharePoint()

 Dim FileName As String
 FileName = “http://adventureworksserver/Documents/ODCTest.docx”

 Application.ActiveDocument.SaveAs2
 FileName:=FileName,
 FileFormat:=docOpenXmlDocument

End Sub

 USING EXTERNAL DATA IN WORD

 Chapter 2 discussed External Data columns,
which allow data from External Systems
to appear as columns in a list. Along with
External Data Columns, you can also create
a Lookup column based on the data from an
External List. Both of these approaches provide
simple ways to make External Data available
in SharePoint. Both External Data Columns
and Lookup columns based on External Lists
get special treatment in Microsoft Word 2010.
When creating a document template you may
embed a content control inside the document
that acts as an entity picker for the External
Data. This allows users to insert External Data
into a Word document while they are writing
it. Figure 3 - 13 shows an invoice being created
in Word, where the company name is selected
from an External Data Column.

 FIGURE 3 - 13

www.it-ebooks.info

http://www.it-ebooks.info

 Using External Data Columns

 Adding External Data columns directly to any list or library in SharePoint is a fully supported
scenario. When you add an External Data column to a document library, it will appear in the
Document Information Panel (DIP) when new documents are created or existing documents
are edited. You can go further by embedding the External Data in the Word document through
the use of Quick Parts.

 Quick Parts are available inside Microsoft Word on the Insert tab in the Text group. You can create
an enhanced document template by editing the existing template, inserting quick parts, and saving
the result as the new template. While editing the template you can select the place in the document
where the External Data should be inserted. Once you have selected the appropriate place in the
document you can select Insert ➪ Quick Parts ➪ Document Property and pick the desired fi eld.
Once the fi eld is inserted in the document, the picker becomes active and you may select a value
from the External System as in Figure 3 - 13.

 When you are creating an ECT specifi cally for use in Word documents, there are a few things to
keep in mind. The fi rst is that the picker will use cached data fi rst. This means that the available
data may not always be complete, depending upon the subscription in place and the frequency with
which the data changes. The picker has a button labeled More Results that will force the cache to
be refreshed with the latest data.

 The second area of concern is the ECT design. The picker executes the default Finder method to
display the initial set of items. This means that you should give consideration to what items you
want returned and to the associated fi elds. Also be sure to use the Show in Picker setting for any
fi elds that you want to see in the picker control. If no fi elds are selected for the picker, then all fi elds
are shown by default. Finally, make sure that you set one fi eld as the Title fi eld in SPD. This is the
fi eld that will actually be inserted into the Word document.

 The third issue concerns list size. As with any ECT, you should defi ne fi lters for the operations to
prevent large amounts of data from returning. If no fi lters are defi ned, the picker will limit itself to
200 items and warn you. If fi lters are available beyond that, you ’ ll have the opportunity to narrow
your query.

 The picker is a read - only solution so you cannot use it to write back to the External System. If you
need to write back to the External System you can create a custom add - in or use a workfl ow that
will run when the document is uploaded.

 Creating Reusable Site Content Types

 The preferred approach for exposing metadata in a Word document is to create site columns
and site content types in SharePoint that will then be used as the basis for a document template
in a library. Site columns and site content types are the best choice because they allow you to
reuse the defi nitions you create across many libraries while managing them in a single location.
Unfortunately, the External Data column can only be created in a list content type. The workaround
is to create a Lookup column; however, this is not an offi cially supported use of ECTs — if you run
into trouble with this approach, you can ’ t call Microsoft for help.

Using External Data in Word ❘ 97

www.it-ebooks.info

http://www.it-ebooks.info

98 ❘ CHAPTER 3 USING BCS SOLUTIONS IN OFFICE 2010

 FIGURE 3 - 14

 When you ’ re creating a SharePoint farm the taxonomy is a critical part of the overall design.
 Taxonomy refers to the controlled vocabularies that are used as items in Lookup lists.
Controlled vocabularies are sets of terms that are centrally defi ned and managed. For example,
a controlled vocabulary may be built around a set of terms for geography that includes the words
 country, region, province, state, town, and so on. The advantage of a controlled vocabulary
is that end users pick terms from a predefi ned set; they cannot misspell terms or make up their
own. Controlled vocabularies support a strong document classifi cation system that signifi cantly
improves search results.

 When External Data is in an External Data column or Lookup list, it can be thought of as a
controlled vocabulary. The values in the fi eld are set in the External System and not easily changed.
Therefore, we would ideally like to be able to create and manage these fi elds centrally.

 Because the External Data column can be created only in a list content type, it is not a good
candidate for implementing a controlled vocabulary. Instead you can create an External List at the
site collection level and use it as the basis for a site column Lookup fi eld. The site column Lookup
fi eld can be added to any number of site content types, which in turn can be used as the basis for a
document library.

 As an example walkthrough, consider an organization that needs to create both invoices and
purchase orders. The invoices and purchase orders are created in Microsoft Word using a template
and require the contact information for the customer or vendor to be entered. The organization has
CRM and ERP systems that contain customer and vendor information, respectively.

 As a starting point, ECTs need to be created for vendors and customers. This process can be as
simple as opening SPD and defi ning Customer and Vendor ECTs based on the data in the CRM
and ERP systems. Once these are defi ned, two External Lists named Customers and Vendors
can be created.

 Once the External Lists are created, site columns
based on them can be created. This process involves
going to the site column gallery and creating two
new site columns: Customer and Vendor . The key is
to create columns of type Lookup and base them on
the previously created External Lists. After that, any
additional required metadata columns can be created.
Figure 3 - 14 shows several columns created to support
the invoice and purchase orders, with the Customer
and Vendor columns being based on External Data.

 Once the site columns are created they may be used to build a content type hierarchy. In this
example a hierarchy based on the Document content type was created. This makes sense because
invoices and purchase orders will be Word documents. Using the Document content type as a
starting point, a Financial Document content type was created that inherits from Document . Then
an Invoice content type and a Purchase Order content type that both inherit from the Financial
Document content type were created. The content types contain the various fi elds, including the
Lookup fi elds that are based on the ECTs created earlier. Table 3 - 4 shows the complete content type
hierarchy for the scenario.

www.it-ebooks.info

http://www.it-ebooks.info

 After defi ning the metadata for all three content types, Word templates were added for the
 Invoice and Purchase Order content types. These templates were simply based on ones
downloaded from the Offi ce Template Gallery, but any templates will work. A template was not
created for the Financial Document content type because it exists solely to defi ne the common
 Amount fi eld; it will never be used directly to create a document. Once the content types were
created, a document library named Financial Documents was created. Finally, the Invoice and
 Purchase Order content types were added to the library.

 At this point in the walkthrough a new invoice or purchase order can be created from the document
library. When a new document is created the metadata fi elds are visible in the Document Information
Panel (DIP) at the top of the document. However, the fi elds are not yet available in the body of the
document. The document template used for the Invoice and Purchase Order content types must be
edited so that the picker for the External Data is embedded into the document.

 TABLE 3 - 4: Sample Content Type Hierarchy

 CONTENT TYPE COLUMN TYPE SOURCE

 Document Title Text Item

 Name File

 Financial Document Title Text Item

 Name File Document

 Amount Currency

 Invoice Title Text Item

 Name File Document

 Amount Currency Financial Document

 Invoice Number Text

 Customer External Data

 Purchase Order Title Text Item

 Name File Document

 Amount Currency Financial Document

 P. O. Number Text

 Purchasing

Department

 Choice

 Vendor External Data

Using External Data in Word ❘ 99

www.it-ebooks.info

http://www.it-ebooks.info

100 ❘ CHAPTER 3 USING BCS SOLUTIONS IN OFFICE 2010

 You can create an enhanced invoice and purchase order template by creating a new document,
inserting Quick Parts, and saving the result as the new template. Selecting Insert ➪ Quick Parts ➪
Document Property and the Vendor fi eld, for example, will insert the picker into the template for
that fi eld. Figure 3 - 15 shows the list of available Quick Parts for the scenario.

 FIGURE 3 - 15

 It ’ s important to note that Quick Parts work for all fi elds, not just External Data. When a template
is completed it can be saved to a temporary location pending uploading as the new template.
The only thing left to complete the solution is to substitute the enhanced template for the existing
one. This can be done in the Site Content Type Gallery, where you can upload new templates for
the Invoice and Purchase Order content types. Now when new invoices and purchase orders are
created, they will automatically have the External Data available and integrated with the document
creation process. Of course, the entire solution can be packaged as a feature and deployed using
a WSP fi le.

 Understanding External Data Limitations in Word

 There are several limitations associated with External Data fi elds used in Word documents. First,
you must have NET Framework 3.5 installed to use the picker in Word documents. If .NET
Framework 3.5 is not installed, the end user will see an error message when he or she tries to
activate the content control. Second, taking documents out of the document library can have

www.it-ebooks.info

http://www.it-ebooks.info

strange effects on the picker control. Generally, documents should not be e - mailed directly to a user.
Instead, e - mail a link that refers back to the document library. Third, when you use an External List
as the basis for a site column, editing the Document Information Panel containing the column may
cause the picker to fail. Finally, if the end user has a version of Offi ce other than 2010, his or her
experience will be different. In Word 2007 the picker will not be shown, but the data can be edited.
In previous versions of Word, the External Data is read - only.

 WORKING WITH EXTERNAL DATA IN MICROSOFT ACCESS

 Microsoft Access has some limited capability to use BCS models for data access. In short, you can
use BCS models to import data into an Access table. However, this data will be read - only and will
not be supported in SharePoint 2010 through Access Services.

 In order to use Access with BCS data you must export the BCS model from the SharePoint Designer and
save it with an XML extension. By default SPD wants to use a BDCM extension, but you should change
it to XML. Once the model is exported you can start Microsoft Access and create a new database.

 With a new database created, you can select the External Data tab and choose More ➪ Data
Services from the Import & Link group. The Create Link to Data Services dialog opens, enabling
you to install a new connection. The new connection refers to a BCS model. Browsing to the
exported XML fi le and opening it will display the available ECTs. You can then select an ECT and
create a read - only linked table. Figure 3 - 16 shows the Create Link to Data Services dialog.

 FIGURE 3 - 16

Working with External Data in Microsoft Access ❘ 101

www.it-ebooks.info

http://www.it-ebooks.info

102 ❘ CHAPTER 3 USING BCS SOLUTIONS IN OFFICE 2010

 SUMMARY

 One of the signifi cant values of BCS is its support for client - side and disconnected access to data.
The BCS client architecture complements the server architecture, which makes it easy to use
your knowledge of the server to create client - side solutions. The metadata cache supports offl ine
scenarios that weren ’ t possible with previous versions of SharePoint, which creates additional
value for end users. In this chapter you examined these capabilities from the client perspective.
As you move ahead you ’ ll create increasingly more complex solutions that will grow naturally
from the foundation laid here.

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

104 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

 Although it is possible to create BCS solutions without ever looking at the XML contained in the
BDC Metadata Model, professional solutions require a strong understanding of the elements in
the model. When you are creating more advanced solutions in BCS, the BDC Metadata Model is
often exported from SPD, modifi ed, and imported when a desired feature is not directly supported
by the SPD tooling. Furthermore, it is educational to export the BDC Metadata Model and examine
it as changes are made.

 You can export a BDC Metadata Model from the list of External Content Types in SharePoint
Designer. After selecting an ECT you can click the Export BDC Model button, which will bring
up the Export BDC Model dialog. In this dialog you can export the Default model or the Client
model. The Default model is the one used on the server and the Client model is the one stored in the
client cache following the list synchronization. The two models will refl ect any differences you made
in the connection properties, but will have the same ECT defi nitions. The models are exported with
a BDCM extension, which is the fi le extension for all BDC Metadata Models. Figure 4 - 1 shows the
Export BDC Model dialog.

 FIGURE 4 - 1

 Once it is exported, the simplest way to work with the BDC Metadata Model is to change the fi le
extension from BDCM to XML and open it in Visual Studio 2010 or a text editor. Although Visual
Studio can open fi les with a BDCM extension, doing so will result in Visual Studio ’ s using its BCS
designers instead of showing the XML directly. While the BCS designers are certainly useful tools,
they are best suited for working with the .NET Assembly Connectors discussed in Chapter 7.

 The schema fi le for the BDC Metadata Model is named BDCMetadata.xsd and can be found
in the /Program Files/Common Files/Microsoft Shared/web server extensions/14/
Template/XML directory. When working with exported models you should copy the schema fi le
into the directory into which you exported the model. If you do this you will get Intellisense
support in Visual Studio when you open the fi le for editing.

www.it-ebooks.info

http://www.it-ebooks.info

 You can import a BDC Metadata Model through the BDC Service Application in Central
Administration, which was covered in Chapter 2. When importing an edited model back into
the BDC Service Application, you should be sure to update the ECT Versio n attribute. As an
alternative you can simply delete the existing model before importing the edited model.

 Examining the BDC Metadata Model XML directly is an excellent way to learn the intricacies of
the schema. Throughout the chapter, both the SPD tooling and the resulting XML will be presented,
so that you can see exactly how the tools affect the model. As a starting point, the following code
shows some of the basic elements used in the model:

 <Model xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://schemas.microsoft.com/.../BDCMetadata.xsd”
 xmlns=”http://schemas.microsoft.com/windows/2007/BusinessDataCatalog”
 Name=”My Model”>
 <LobSystems>
 <LobSystem>
 <LobSystemInstances>
 <LobSystemInstance/>
 </LobSystemInstances>
 <Entities>
 <Entity Name=”MyEntity”
 DefaultDisplayName=”My Entity”
 Namespace=”http://mynamespace”
 Version=”1.0.0.0”
 EstimatedInstanceCount=”10000” >
 <Methods>
 </Methods>
 </Entity>
 </Entities>
 </LobSystem>
 </LobSystems>
</Model>

 The Model element is the root of the XML and contains the schema reference. This element also
contains the Name attribute, which is displayed in the BDC Service Application. The LobSystem
element is a container for the model associated with a particular External System. Notice that it is
possible to have multiple External Systems defi ned in the same model. The LobSystemInstance
element provides connection information for a particular External System.

 The Entity element begins the defi nition of an ECT for a particular External System. The Name
attribute is the programmatic name of the ECT and the DefaultDisplayName attribute is the display
name that will appear in the SharePoint UI. The Namespace attribute is used for disambiguation
between ECTs that have the same programmatic name. The Version attribute is used to indicate the
latest version of the ECT. You enter all these attributes in SPD when creating a new ECT.

 The EstimatedInstanceCount attribute is used as a hint to BCS solutions as to how many entity
instances can be expected from the External System. The EstimatedInstanceCount attribute
cannot be edited through SPD, and its use is solely determined by the application consuming
the model. You could use this attribute, for example, when creating a custom web part to
determine whether to load all the data immediately or on demand. This is a good, albeit simple,
example of why you might need to export a model, modify it by hand, and import it.

Working with the BDC Metadata Model ❘ 105

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

 Connecting with the SQL Server Connector

 The SQL Server Connector provides connections to Microsoft SQL Server, Oracle, OLE DB,
and ODBC databases. Because databases represent the bulk of available External Data, the SQL
Server Connector is used frequently in BCS solutions. SharePoint Designer provides tooling
to support connections with Microsoft SQL Server, but connections to Oracle, OLE DB, and
ODBC sources require hand-editing of the BDC Metadata Model.

 Connecting to Microsoft SQL Server Databases

 When adding a new SQL Server Connection in the Operation Designer, you must fi ll out the SQL
Server Connection properties dialog with the required information to connect to the External
System. For Microsoft SQL Server databases, this process is straightforward and was presented in
Chapter 1. The following code shows the LobSystemInstance element for a typical connection to
Microsoft SQL Server:

 <LobSystems>
 <LobSystem Type=”Database” Name=”MySystem”>
 <Properties>
 <Property Name=”WildcardCharacter” Type=”System.String”>%</Property>
 </Properties>
 <LobSystemInstances>
 <LobSystemInstance Name=”MySystemInstance”>
 <Properties>
 <Property Name=”AuthenticationMode” Type=”System.String”>
 PassThrough
 </Property>
 <Property Name=”DatabaseAccessProvider” Type=”System.String”>
 SqlServer
 </Property>
 <Property Name=”RdbConnection Data Source” Type=”System.String”>
 AWSERVER
 </Property>
 <Property Name=”RdbConnection Initial Catalog” Type=”System.String”>
 Adventureworks
 </Property>
 <Property Name=”RdbConnection Integrated Security” Type=”System.String”>
 SSPI
 </Property>
 <Property Name=”RdbConnection Pooling” Type=”System.String”>
 True
 </Property>
 </Properties>
 </LobSystemInstance>
 </LobSystem>
</LobSystems>

 For the SQL Server Connector, a series of Property elements are used to specify the values that
will defi ne the connection to the database. The AuthenticationMode property determines how

Working with External Data Sources ❘ 107

www.it-ebooks.info

http://www.it-ebooks.info

108 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

authentication is performed to the External System. The possible values for AuthenticationMode
are listed in Table 4 - 1.

 TABLE 4 - 1: Authentication Modes

 VALUE APPLICATION DESCRIPTION

 PassThrough Databases and

 Web Services

 Connects to the External System using

credentials of the current user

 RevertToSelf Databases and

 Web Services

 Connects to the External System using

credentials of the IIS application pool

 WindowsCredentials Databases and

 Web Services

 Connects to the External System using

Windows Credentials returned from the

Secure Store Service

 RdbCredentials Databases Connects to the database using non -

 Windows credentials returned from the

Secure Store Service

 Credentials Web Services Connects to the web service using non -

 Windows credentials returned from the

Secure Store Service

 The DatabaseAccessProvider property specifi es what type of database is targeted. This value may
be set to SqlServer , Oracle , OleDb , or Odbc . Depending upon the value selected for this property,
other properties may be required as children of the LobSystemInstance element. In the case of
the SqlServer example, the RdbConnection Data Source , RdbConnection Initial Catalog ,
 RdbConnection Integrated Security , and RdbConnection Pooling properties are required.
You ’ ll recognize each of these properties as a component of a standard connection string.

 Connecting to Oracle Databases

 Because there is no tooling support in SPD for connecting to Oracle data sources, creating models
for Oracle databases can be diffi cult. One approach is simply to start from scratch with a blank
XML fi le, create the required model by hand, and then import the model into the BDC Service
Application. Another approach is to model the ECT against a SQL Server database, export the
model, edit the model connection properties, and import the changed model. Neither approach is
ideal. If you start from scratch you are much more likely to commit typographical errors. On the
other hand, modifying a SQL Server model is also an error - prone process because the query syntax
differs between SQL Server and Oracle. In any case, you must eventually end up with something
that looks like the following code:

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

110 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

is providing the credentials. (Chapter 8 covers setting up the Secure Store Service in detail.) The
 SsoProviderImplementation property refers to the implementation of the Secure Store Service.
In the sample code, the property references the server - side Secure Store Service. If the model is
used on the client, the following code should be substituted:

 < Property Name=”SsoProviderImplementation” Type=”System.String” >
 Microsoft.Office.BusinessData.Infrastructure.
 SecureStore.LocalSecureStoreProvider,
 Microsoft.Office.BusinessData, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c
 < /Property >

 Connecting to ODBC Data Sources

 Creating models for ODBC Data Sources is also not supported directly in SPD. Just like connections
to Oracle databases, you must create the model from scratch or modify an existing model. The
following code shows what an ODBC connection looks like in the model XML:

 <LobSystems>
 <LobSystem Name=”ODBC” Type=”Database”>
 <LobSystemInstances>
 <LobSystemInstance Name=”ODBCInstance”>
 <Properties>
 <Property Name=”AuthenticationMode” Type=”System.String”>
 PassThrough
 </Property>
 <Property Name=”DatabaseAccessProvider” Type=”System.String”>
 Odbc
 </Property>
 <Property Name=”RdbConnection Dsn” Type=”System.String”>
 MY_DSN_NAME
 </Property>
 <Property Name=”RdbConnection uid” Type=”System.String”>
 MY_USERNAME
 </Property>
 <Property Name=”RdbConnection pwd” Type=”System.String”>
 MY_PASSWORD
 </Property>
 <Property Name=”RdbConnection Trusted_Connection” Type=”System.String”>
 yes
 </Property>
 <Property Name=”RdbConnection integrated security” Type=”System.String”>
 true
 </Property>
 </Properties>
 </LobSystemInstance>
 </LobSystemInstances>
 </LobSystem>
</LobSystems>

www.it-ebooks.info

http://www.it-ebooks.info

 The AuthenticationMode property is set to Passthrough , but note that the credentials used to
access the data source are provided in the RdbConnection uid and RdbConnection pwd properties.
You can see how these properties build an ODBC connection string. This is the same approach used
to build connection strings for Microsoft SQL Server using the SPD tooling.

 Connecting to OLE DB Data Sources

 Creating models for OLE DB Data Sources, just like creating models for Oracle and ODBC, is not
supported by the SPD tooling. The BDC Metadata Model must be created from scratch or saved as
a modifi cation of an existing model. The following code shows what an OLE DB connection looks
like for a Microsoft Access database:

 <LobSystems>
 <LobSystem Type=”Database” Name=”MySystem”>
 <LobSystemInstances>
 <LobSystemInstance Name=”MySystemInstance”>
 <Properties>
 <Property Name=”AuthenticationMode” Type=”System.String”>
 PassThrough
 </Property>
 <Property Name=”DatabaseAccessProvider” Type=”System.String”>
 OleDb
 </Property>
 <Property Name=”RdbConnection Data Source” Type=”System.String”>
 C:\Mydatabase.mdb
 </Property>
 <Property Name=”RdbConnection Persist Security Info”
 Type=”System.String”>
 false
 </Property>
 <Property Name=”RdbConnection Connection Provider” Type=”System.String”>
 Microsoft.ACE.OLEDB.12.0
 </Property>
 </Properties>
 </LobSystemInstance>
 </LobSystem>
</LobSystems>

 The AuthenticationMode property is set to Passthrough . RdbConnection Data Source refers
to the location of the MS Access fi le. RdbConnection Connection Provider specifi es the OLE
DB provider to use for the connection. Once again, the properties essentially build up a connection
string to the database.

 Connecting with the WCF Service Connector

 The WCF Connector provides connections to web services including Windows Communication
Foundation (WCF) and ASP.NET web services. The SharePoint Designer provides tooling for
connecting with web services and their associated metadata so that operations may be defi ned

Working with External Data Sources ❘ 111

www.it-ebooks.info

http://www.it-ebooks.info

112 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

against the services. The key to using a web
service as an External Data Source is for SPD
to be able to access the metadata of the web
service that describes the available operations.
SPD supports accessing service metadata through
both Web Service Description Language (WSDL)
and metadata exchange (MEX).

 Connecting to ASP.NET Web Services

 ASP.NET web services typically expose WSDL
documents to describe the available operations.
You access WSDL documents using the endpoint
of the service appended with the query string
 ?WSDL . Figure 4 - 4 shows the Connection
Properties dialog with settings for an ASP.NET
web service. Table 4 - 2 describes the settings in
the dialog.

 FIGURE 4 - 4

 TABLE 4 - 2: Web Service Connection Settings

 SETTING DESCRIPTION

 Service Endpoint URL The base address of the web service

 Authentication Mode Used to select a value from Table 4 - 1

 Use Claims Based

Authentication

 Selected if the web service supports claims authentication

 Impersonation Level Sets the Windows impersonation level as follows:

 None: No impersonation

 Anonymous: The server cannot impersonate or identify the client

 Identifi cation: The server can identify the client, but cannot impersonate

the client

 Impersonation: The server can impersonate the client on the server only

 Delegation: The server can impersonate the client locally and during

requests to remote resources

 WCF Proxy Namespace The programmatic namespace used for the generated proxy class

 Use Proxy Server for

WCF Service Calls

 Specifi es a proxy server to use for calling the web service

www.it-ebooks.info

http://www.it-ebooks.info

 The settings in the Connection Properties dialog are used to generate the properties for the
 LobSystem and LobSystemInstance elements of the model. The exact properties presented in the
model will vary according to the selections made in the dialog. The following code shows how the
settings in Figure 4 - 4 are translated into the BDC Metadata Model:

 <LobSystems>
 <LobSystem Type=”Wcf” Name=”ASP.Net Web Service”>
 <Properties>
 <Property Name=”ReferenceKnownTypes” Type=”System.Boolean”>
 True
 </Property>
 <Property Name=”WcfMexDiscoMode” Type=”System.String”>
 Disco
 </Property>
 <Property Name=”WcfMexDocumentUrl” Type=”System.String”>
 http://webserver.aw.com:5000/aspnet/Service.asmx?WSDL
 </Property>
 <Property Name=”WcfProxyNamespace” Type=”System.String”>
 BCSServiceProxy
 </Property>
 <Property Name=”WildcardCharacter” Type=”System.String”>*</Property>
 <Property Name=”WsdlFetchAuthenticationMode” Type=”System.String”>
 PassThrough
 </Property>
 </Properties>
 <Proxy>EABvmrlbJFsHTQdvYZp1cdN6TVqQAAMA...AAAAAA</Proxy>
 <LobSystemInstances>
 <LobSystemInstance Name=”Item Service”>
 <Properties>

 SETTING DESCRIPTION

 Secure Store

Application ID

 The name of the Secure Store Service application that will provide

credentials for accessing the web service. See Chapter 8 for more details.

 Specify Secondary

Secure Store

Application ID

 A secondary Secure Store Service application that will supply additional

credentials. These credentials are used when a web service expects

credentials to be passed as parameters in the method call. See

Chapter 8 for more details.

 Service Metadata URL The address of the metadata document

 Metadata Connection

Mode

 Specifi es whether to obtain metadata as WSDL or through a metadata

exchange (MEX) endpoint

 Metadata

Authentication Mode

 Used to select an Authentication Mode from the values in Table 4 - 1 that

will be used for accessing service metadata

 Use Proxy Server for

Metadata Retrieval

 Specifi es a proxy server to use for returning service metadata

Working with External Data Sources ❘ 113

www.it-ebooks.info

http://www.it-ebooks.info

114 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

 <Property Name=”UseStsIdentityFederation” Type=”System.Boolean”>
 False
 </Property>
 <Property Name=”WcfAuthenticationMode” Type=”System.String”>
 PassThrough
 </Property>
 <Property Name=”WcfEndpointAddress” Type=”System.String”>
 http://webserver.aw.com:5000/aspnet/Service.asmx
 </Property>
 <Property Name=”WcfImpersonationLevel” Type=”System.String”>
 Identification
 </Property>
 </Properties>
 </LobSystemInstance>
 </LobSystemInstances>
 </LobSystem>
</LobSystems>

 Along with the properties set in the model, you will also notice a Proxy element. This element has
been signifi cantly truncated in the code listing, but will normally contain a large text string. This
large text string is the serialized proxy class that is generated by the SPD tooling when you connect
to the web service. This proxy class is used by BCS to communicate with the web service when
you call methods. Serializing the class in the BDC Metadata Model makes the class portable and
simplifi es deployment to client applications.

 Connecting to WCF Web Services

 WCF web services expose WSDL just like ASP
.NET web services, but can also expose a metadata
exchange (MEX) endpoint to describe the available
operations. MEX endpoints can be used by SPD to
support generating a proxy class against the service.
Figure 4 - 5 shows the Connection Properties dialog
with settings for a WCF web service exposing a
MEX endpoint.

 Just as for ASP.NET web services, the values set
in the Connection Properties dialog are used to
create the LobSystem and LobSystemInstance
elements in the BDC Metadata Model. The
properties in the model are the same as for
ASP.NET web services, but the values are set
up to use a MEX endpoint instead of a WSDL
endpoint. The following code shows a sample
model connecting to a WCF web service:

 <LobSystems>
 <LobSystem Type=”Wcf” Name=”Web Customers”>
 <Properties>
 <Property Name=”ReferenceKnownTypes” Type=”System.Boolean”>

 FIGURE 4 - 5

www.it-ebooks.info

http://www.it-ebooks.info

 true
 </Property>
 <Property Name=”WcfMexDiscoMode” Type=”System.String”>
 WsMetadataExchange
 </Property>
 <Property Name=”WcfMexDocumentUrl” Type=”System.String”>
 http://webserver.aw.com:5000/customers/Service.svc/mex
 </Property>
 <Property Name=”WcfProxyNamespace” Type=”System.String”>
 BCSServiceProxy
 </Property>
 <Property Name=”WildcardCharacter” Type=”System.String”>*</Property>
 <Property Name=”WsdlFetchAuthenticationMode” Type=”System.String”>
 PassThrough
 </Property>
 </Properties>
 <Proxy>EABpFAAA...AAAAAAAAAAAA==</Proxy>
 <LobSystemInstances>
 <LobSystemInstance Name=”Web Customers”>
 <Properties>
 <Property Name=”UseStsIdentityFederation” Type=”System.Boolean”>
 False
 </Property>
 <Property Name=”WcfAuthenticationMode” Type=”System.String”>
 PassThrough
 </Property>
 <Property Name=”WcfEndpointAddress” Type=”System.String”>
 http://webserver.aw.com:5000/customers/Service.svc
 </Property>
 <Property Name=”WcfImpersonationLevel” Type=”System.String”>
 Identification
 </Property>
 </Properties>
 </LobSystemInstance>
 </LobSystemInstances>
 </LobSystem>
</LobSystems>

 CREATING METHODS

 BCS method stereotypes defi ne the operations that can be performed against an External System.
Chapter 2 introduced the fi ve most common method stereotypes, which are Finder , SpecificFinder ,
 Creator , Updater , and Deleter . These fi ve method stereotypes are used, respectively, to generate a
view of many items, show details for a single item, create a new item, update an existing item, and
delete an item. These common method stereotypes, however, are just a few of the method stereotypes
supported by BCS.

 Table 4 - 3 shows a complete list of the method stereotypes available for use in BDC Metadata
Models. Note that with the exception of the Finder , SpecificFinder , Creator , Updater ,
 Deleter , and AssociationNavigator , the tooling in the SharePoint Designer does not directly
support the method stereotypes. In these unsupported cases the model must be exported and edited
by hand or a connector project must be created, as described in Chapter 7.

Creating Methods ❘ 115

www.it-ebooks.info

http://www.it-ebooks.info

116 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

 TABLE 4 - 3: BCS Method Stereotypes

 NAME

 SPD

SUPPORT DESCRIPTION

 AccessChecker No Returns a value indicating whether or not

the current user has rights to a given item

 AssociationNavigator Yes Navigates from one entity to a related

entity where a foreign key relationship

exists

 Associator No Associates an entity with another entity

where no foreign key relationship exists

 BinarySecurityDescriptorAccessor No Returns a security descriptor specifying

which users have rights to a given item

 BulkAssociatedIdEnumerator No Returns a set of identifi ers representing

items associated with an entity

 BulkAssociationNavigator No Supports navigation from one entity to

many related entities

 BulkIdEnumerator No Returns all identifi ers in a batch to support

search indexing

 BulkSpecificFinder No Returns a set of items based on a set of

identifi ers

 ChangedIdEnumerator No Returns identifi ers for items that have

changed to support incremental search

indexing

 Creator Yes Creates a new item

 DeletedIdEnumerator No Returns identifi ers for items that have

been deleted to support incremental

search indexing

 Deleter Yes Deletes an item

 Disassociator No Disassociates one entity from another

 Finder Yes Returns multiple items based on a

wildcard

 GenericInvoker No Performs operations not supported by any

of the defi ned operations

 IdEnumerator No Returns all identifi ers to support search

indexing

 Scalar No Returns a scalar value

www.it-ebooks.info

http://www.it-ebooks.info

 Implementing Method Stereotypes

 When implementing a method stereotype in the BDC Metadata Model, you will use both a
 Method and a MethodInstance element. The Method element defi nes the input parameters, output
parameters, and fi lters that will be used with the method stereotype. The MethodInstance element
defi nes the type of method stereotype to be implemented. Essentially, the Method element is a
prototype of the operation while the MethodInstance element is a specifi c implementation of the
operation prototype.

 BDC Metadata Models will typically consist of many Method elements defi ning operations against
the External System. Each Method element can consist of one or more MethodInstance elements;
however, it is typical to have a one - to - one relationship between Method and MethodInstance
elements. This approach simplifi es the model and makes developing the solution easier. The
following code shows the basic XML schema to implement a method stereotype.

 <Method Name=[Method Name]>
 <Properties>
 <Property>[Property Value]</Property>
 </Properties>
 <FilterDescriptors>
 <FilterDescriptor Type=[“Limit”, “PageNumber”, “Wildcard”, etc]
 </FilterDescriptor>
 <Parameters>
 <Parameter
 Direction=[“In”, “Out”, “InOut”, or “Return”]
 Name=[Parameter Name]
 AssociatedFilter=[Name of a FilterDescriptor]>
 <TypeDescriptor
 TypeName=[.NET Framework Type e.g, “System.Int32”] />
 </Parameter>
 </Parameters>
 <MethodInstances>
 <MethodInstance
 Type=[“Finder”, “SpecificFinder”, “Creator”, etc]
 Name=”MyMethodInstance”>
 </MethodInstance>
 </MethodInstances>
</Method>

 NAME

 SPD

SUPPORT DESCRIPTION

 SpecificFinder Yes Returns a single item based on an

identifi er

 StreamAccessor No Returns a document or image based on an

identifi er

 Updater Yes Updates an existing item

Creating Methods ❘ 117

www.it-ebooks.info

http://www.it-ebooks.info

118 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

 Defi ning Properties

 A Method element may contain one or more Property elements. These properties are specifi c to
the method defi nition and will vary depending upon the connector type used to access the External
System. Specifi c values are discussed in detail later in the chapter.

 Defi ning Parameters

 A Method element may contain one or more Parameter elements. Parameters are used as inputs and
outputs to methods. Parameters may be defi ned as In , Out , InOut , or Return types. The exact set
of parameters required depends on the method stereotype. For example, a Finder method generally
does not have any In or InOut parameters and only a single Return parameter. A SpecificFinder
method, on the other hand, may have a single In parameter representing the primary key of a record
and a single Return parameter containing the record.

 Parameter elements always contain one or more TypeDescriptor elements. TypeDescriptor
elements are used to map data types in the External System to well - known .NET Framework
types that can be used by BCS. The types may be single - value types such as a System.String or
collections of types. Collections of types are required, for example, when the return value from an
External System is a data set.

 Defi ning Filters

 A Method element may contain zero or more FilterDescriptor elements. Filters are used by BCS
to provide system or user input to methods. For example, a fi lter may be set in a view defi nition
for an External List as a way to specify which entity instances to return from an External System.
Filters can also be set by the system, such as when a fi lter is used to limit return data based on the
identity of the current user. Filters are always associated with an input parameter. This association
is how the fi lter value is transmitted to or received from the method implementation. Table 4 - 4 lists
the fi lters supported by BCS.

 Understanding Stereotype Requirements

 The value of the SPD tooling is that it knows how to create the correct set of properties,
parameters, and fi lters for the supported method stereotypes. In cases where you are
implementing method stereotypes by hand, however, you must be aware of the requirements
implicit in each method stereotype. It is not enough to simply designate the Type attribute of
a MethodInstance element; the parameters and fi lters must be defi ned so that an acceptable
method signature results. Table 4 - 5 lists the parameters required for each method stereotype.
Note that fi lters are generally not required, but may be applied as an option to further refi ne an
operation.

www.it-ebooks.info

http://www.it-ebooks.info

 TABLE 4 - 4: BCS Filters

 NAME SPD SUPPORT DESCRIPTION

 ActivityId SpecificFinder

 Creator

 Updater

 Deleter

 AssociationNavigator

 Used to pass the CorrelationId

into an operation

 Batching No Used to keep a persistent bookmark

that can be passed into an operation

that is returning data in batches

 BatchingTermination No Used to receive a value from an

operation indicating whether

additional batch operations are

required to return all the data

 Comparison Finder Used to specify a value that must

exactly match a fi eld to return items

from a Finder operation (e.g.,

 LastName=’Hillier’)

 Input No Used to pass additional fi lter data to

an operation

 InputOutput No Used to pass additional fi lter data

to an operation and receive a

return value

 LastId SpecificFinder

 Creator

 Updater

 Deleter

 AssociationNavigator

 Used to pass the identifi er of the

last item read to an operation that

is returning the data for the item in

chunks

 Limit Finder Used to specify a maximum limit on

the number of items returned from

an operation

 Output No Used to receive a return value from

an operation

 PageNumber Finder Used to specify the zero - based

page number that should be

returned from a multipage operation

Creating Methods ❘ 119

continues

www.it-ebooks.info

http://www.it-ebooks.info

120 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

 NAME SPD SUPPORT DESCRIPTION

 Password SpecificFinder

 Creator

 Updater

 Deleter

 AssociationNavigator

 Used to pass the password that

was provided by the Secure

Store Service to the operation for

security checks

 SsoTicket SpecificFinder

 Creator

 Updater

 Deleter

 AssociationNavigator

 Used to pass the SSO ticket that

was provided by the Secure Store

Service to the operation for security

checks

 Timestamp Finder Used to specify the last time a

 Finder operation was called, so

that only changed data is returned

 UserContext SpecificFinder

 Creator

 Updater

 Deleter

 AssociationNavigator

 Used to pass the identity of the

caller to an operation

 UserCulture No Used to pass the current culture of

the caller to the operation

 Username SpecificFinder

 Creator

 Updater

 Deleter

 AssociationNavigator

 Used to pass the username that

was provided by the Secure Store

Service to the operation for fi ltering

and security checks

 UserProfile SpecificFinder

 Creator

 Updater

 Deleter

 AssociationNavigator

 Used to pass the profi le of the

current user to an operation

 Wildcard Finder Used to specify a search pattern

that can be used to return items

from an operation (e.g., LastName

LIKE ‘ Steve%’)

TABLE 4-4 (continued)

www.it-ebooks.info

http://www.it-ebooks.info

 TABLE 4 - 5: Required Parameters and Filters

 NAME INPUT RETURN

 AccessChecker Entity Instance ID Long Integer

 (0 : Denied, 1 :Permitted)

 AssociationNavigator Entity Instance ID Collection of Entity Instances

 Associator Entity Instance ID Collection of Entity Instances

 BinarySecurityDescriptorAccessor Entity Instance ID

 Current User ID

 Byte Array

 (Access Control List)

 BulkAssociatedIdEnumerator Collection of Entity

Instance IDs

 Collection of Entity Instances

 BulkAssociationNavigator Collection of Entity

Instance IDs

 Collection of Entity Instances

 BulkIdEnumerator Collection of Entity

Instance IDs

 Collection of Entity Instance IDs

 BulkSpecificFinder Collection of Entity

Instance IDs

 Collection of Entity Instances

 ChangedIdEnumerator Collection of Entity

Instance IDs

 Collection of Entity Instances

 Creator Collection of Fields None

 DeletedIdEnumerator None Collection of Entity Instance IDs

 Deleter Entity Instance ID None

 Disassociator Entity Instance ID None

 Finder None Collection of Entity Instances

 GenericInvoker Anything None

 IdEnumerator None Collection of Entity Instances

 Scalar Entity Instance ID Single Field

 SpecificFinder Entity Instance ID Single Entity Instance

 StreamAccessor Entity Instance ID Stream

 Updater Entity Instance ID

 Collection of Fields

 None

Creating Methods ❘ 121

www.it-ebooks.info

http://www.it-ebooks.info

122 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

 Creating Methods for Databases

 Databases are the easiest External Data Source to work
with in SPD. Because databases have tables, views, stored
procedures, primary keys, and foreign keys, it is easier for
the SPD tooling to create valid BDC Metadata Models
with little human input. Once an ECT is created and
associated with a database as an External System, the
Operation Designer will show the available tables, views,
and stored procedures with which to work. Any of these
objects may be used as the starting point for a method.
Figure 4 - 6 shows a simple database table containing
names, and its available tables, views, and procedures.

 Creating Finder Methods

 Finder methods return data views of the External System. These data views can be used as a
source for External Lists, External Data web parts, or search. Because of this an ECT can support
multiple Finder methods. In order to start creating a Finder method you can right - click one of
the available tables, views, or stored procedures and select New Read List from the context menu.
When you create a new Finder method, SPD will start the Read List wizard.

 The fi rst step of the wizard asks for the name and display name of the Finder method. When naming
methods you should adopt a standard and use it consistently. The names that you select will appear in
several places throughout SharePoint, so it ’ s a good idea to use a naming standard that is readable by end
users. Table 4 - 6 shows a recommended naming standard for the operations supported by SPD tooling.

 FIGURE 4 - 6

 TABLE 4 - 6: Recommended Method Naming Standard

 METHOD STEREOTYPE NAME DISPLAY NAME

 Default Finder AllItems

 (AllCustomers)

 All Items

 (All Customers)

 Finder ItemsByFilter

 (CustomersByRegion)

 Items By Filter

 (Customers by Region)

 SpecificFinder GetItem

 (GetCustomer)

 Get Item

 (Get Customer)

 Creator CreateItem

 (CreateCustomer)

 Create Item

 (Create Customer)

 Updater UpdateItem

 (UpdateCustomer)

 Update Item

 (Update Customers)

 Deleter DeleteItem

 (DeleteCustomer)

 Delete Item

 (Delete Customer)

 AssociationNavigator ChildrenForParent

 (OrdersForCustomer)

 Children for Parent

 (Orders for Customer)

www.it-ebooks.info

http://www.it-ebooks.info

 The next step in the wizard allows you to set up fi lters for the Finder method. Note that when you
create the fi rst Finder method SPD will automatically mark it as the default Finder method. The
default Finder method is the default view used for External Lists and is the default method called
by the crawler during search indexing. This is important because we do not want to fi lter the default
Finder method in any way, so this step in the wizard would be skipped. Because the default Finder
method is called during search indexing, it is generally not fi ltered, but this can also cause an error
to be thrown in the External List if more than 2,000 items are returned. This problem and its
solution are discussed in detail later in the section entitled Understanding the Default Finder.

 When you create subsequent Finder methods you will want to apply fi lters. Filters are important
because they limit the amount of data that can be returned from the External System, making the
solution more effi cient. Just as you create views in a standard SharePoint list, you will want to create
fi ltered Finder methods in SPD for generating views in the External List.

 In the wizard you can add a new fi lter to a Finder method by clicking the Add Filter Parameter
button. Clicking this button, however, will result only in the creation of an undefi ned fi lter that
will generate a warning in the wizard. In order to confi gure the fi lter you must click the link
entitled Click to Add, which will open the Filter Confi guration dialog. Figure 4 - 7 shows the
sequence in the wizard.

Creating Methods ❘ 123

 FIGURE 4 - 7

www.it-ebooks.info

http://www.it-ebooks.info

124 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

 In the Filter Confi guration dialog you can select the type of fi lter you want and set properties (such
as values) to ignore. After you complete the settings in the Filter Confi guration dialog you can close
it, but the fi lter defi nition is still not complete. In the Properties section of the wizard you must
select the fi eld to be associated with the fi lter and provide a default value for the fi lter. Figure 4 - 8
shows a complete wildcard fi lter defi nition against the LastName fi eld of a database table.

 FIGURE 4 - 8

 The next step in the wizard asks you to confi gure the values returned from the External System.
Here you will be asked to specify the Identifier for the ECT. The Identifier fi eld is the fi eld that
has the value that uniquely identifi es an entity instance in the External System. For databases this is
most often simply the primary key. Simply select this fi eld and check the Map to Identifi er Checkbox.

 In this step you will also be prompted to specify fi elds to be displayed in the External Item Picker
dialog. This dialog is the picker control that displays entities for selection. The choice of fi elds is
important because the user will see only the fi elds that you mark, so they should be the fi elds by
which the end user will search. Select each of the fi elds and click the Show in Picker checkbox.

 In this step it ’ s also a good idea to take a close look at the display name for each fi eld. Make sure
that these values are readable because they will appear as column headers in External Lists. You can
also uncheck any fi elds that you do not want to display in the view. Finally, if you have a DateTime
fi eld in the data source that represents the last time the record was edited, mark that fi eld as the
 Timestamp Field. This will allow search to use the fi eld in support of incremental crawls.

 Modeling Finder Methods

 Using tables, views, or stored procedures as External Data sources will result in the creation
of different models. This makes sense, since the syntax to query these sources is different. The

www.it-ebooks.info

http://www.it-ebooks.info

following code shows an implementation of the same Finder method using each of the three
different sources:

 <!-- Table -->
<Method IsStatic=”false” Name=”AllNamesTable”>
 <Properties>
 <Property Name=”BackEndObject” Type=”System.String”>
 Names
 </Property>
 <Property Name=”BackEndObjectType” Type=”System.String”>
 SqlServerTable
 </Property>
 <Property Name=”RdbCommandText” Type=”System.String”>
 SELECT [ID] , [Title] , [FirstName] , [MiddleName] , [LastName] ,
 [EmailAddress] , [Phone] FROM [MiniCRM].[Names]
 </Property>
 <Property Name=”RdbCommandType”
 Type=”System.Data.CommandType, System.Data, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089”>
 Text
 </Property>
 <Property Name=”Schema” Type=”System.String”>
 MiniCRM
 </Property>
 </Properties>
 <Parameters>
 <Parameter Direction=”Return” Name=”AllNamesTable”>
 ...
 </Parameter>
 </Parameters>
 <MethodInstances>
 <MethodInstance Type=”Finder” ReturnParameterName=”AllNamesTable”
 Name=”AllNamesTable” DefaultDisplayName=”All Names Table”>
 </MethodInstance>
 </MethodInstances>
</Method>

<!-- View -->
<Method IsStatic=”false” Name=”AllNamesView”>
 <Properties>
 <Property Name=”BackEndObject” Type=”System.String”>
 vw_GetNames
 </Property>
 <Property Name=”BackEndObjectType” Type=”System.String”>
 SqlServerView
 </Property>
 <Property Name=”RdbCommandText” Type=”System.String”>
 SELECT [ID] , [Title] , [FirstName] , [MiddleName] , [LastName] ,
 [EmailAddress] , [Phone] FROM [dbo].[vw_GetNames]
 </Property>
 <Property Name=”RdbCommandType”
 Type=”System.Data.CommandType, System.Data, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089”>
 Text
 </Property>

Creating Methods ❘ 125

www.it-ebooks.info

http://www.it-ebooks.info

126 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

 <Property Name=”Schema” Type=”System.String”>
 dbo
 </Property>
 </Properties>
 <Parameters>
 <Parameter Direction=”Return” Name=”AllNamesView”>
 ...
 </Parameter>
 </Parameters>
 <MethodInstances>
 <MethodInstance Type=”Finder” ReturnParameterName=”AllNamesView”
 Name=”AllNamesView” DefaultDisplayName=”All Names View”>
 </MethodInstance>
 </MethodInstances>
</Method>

<!-- Stored Procedure -->
<Method IsStatic=”false” Name=”AllNamesProcedure”>
 <Properties>
 <Property Name=”BackEndObject” Type=”System.String”>
 sp_GetNames
 </Property>
 <Property Name=”BackEndObjectType” Type=”System.String”>
 SqlServerRoutine
 </Property>
 <Property Name=”RdbCommandText” Type=”System.String”>
 [dbo].[sp_GetNames]
 </Property>
 <Property Name=”RdbCommandType”
 Type=”System.Data.CommandType, System.Data, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089”>
 StoredProcedure
 </Property>
 <Property Name=”Schema” Type=”System.String”>
 dbo
 </Property>
 </Properties>
 <Parameters>
 <Parameter Direction=”Return” Name=”AllNamesProcedure”>
 ...
 </Parameter>
 </Parameters>
 <MethodInstances>
 <MethodInstance Type=”Finder” ReturnParameterName=”AllNamesProcedure”
 Name=”AllNamesProcedure” DefaultDisplayName=”All Names Procedure”>
 </MethodInstance>
 </MethodInstances>
</Method>

 Notice that the primary difference among the three implementations is the set of Property elements
used in each. Tables and views, for example, use dynamic SQL statements, while the stored
procedure uses a direct call to the procedure. Notice also that none of the methods has any input
parameters or fi lters defi ned. If parameters were defi ned, however, a new stored procedure would

www.it-ebooks.info

http://www.it-ebooks.info

have to be defi ned in the database. This is because any input parameters must be refl ected in the
stored procedure defi nition, whereas the dynamic SQL statements written against tables and views
can simply be changed in the model.

 When a stored procedure with input parameters is used, the wizard will present a screen that will
allow you to assign fi lters to the parameters. These fi lter values can then be set in the view defi nition
of the External List by an end user, or as an input parameter in the External Data web parts. The
following code shows a stored procedure that supports a wildcard as an input parameter:

 <Method IsStatic=”false” Name=”NamesByWildcardProcedure”>
 <Properties>
 <Property Name=”BackEndObject” Type=”System.String”>
 sp_GetNamesWildcard
 </Property>
 <Property Name=”BackEndObjectType” Type=”System.String”>
 SqlServerRoutine
 </Property>
 <Property Name=”RdbCommandText” Type=”System.String”>
 [dbo].[sp_GetNamesWildcard]
 </Property>
 <Property Name=”RdbCommandType”
 Type=”System.Data.CommandType, System.Data, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089”>
 StoredProcedure
 </Property>
 <Property Name=”Schema” Type=”System.String”>
 dbo
 </Property>
 </Properties>
 <FilterDescriptors>
 <FilterDescriptor Type=”Wildcard” FilterField=”LastName” Name=”Wildcard”>
 <Properties>
 <Property Name=”CaseSensitive” Type=”System.Boolean”>
 false
 </Property>
 <Property Name=”IsDefault” Type=”System.Boolean”>
 false
 </Property>
 <Property Name=”UsedForDisambiguation” Type=”System.Boolean”>
 false
 </Property>
 </Properties>
 </FilterDescriptor>
 </FilterDescriptors>
 <Parameters>
 <Parameter Direction=”In” Name=”@wildcard”>
 <TypeDescriptor TypeName=”System.String”
 AssociatedFilter=”Wildcard” Name=”@wildcard”>
 <Properties>
 <Property Name=”Order” Type=”System.Int32”>0</Property>
 </Properties>
 <DefaultValues>
 <DefaultValue

Creating Methods ❘ 127

www.it-ebooks.info

http://www.it-ebooks.info

128 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

 MethodInstanceName=”NamesByWildcardProcedure” Type=”System.String”>
 A
 </DefaultValue>
 </DefaultValues>
 </TypeDescriptor>
 </Parameter>
 <Parameter Direction=”Return” Name=”NamesByWildcardProcedure”>
 ...
 </Parameter>
 </Parameters>
 <MethodInstances>
 <MethodInstance Type=”Finder”
 ReturnParameterName=”NamesByWildcardProcedure”
 Name=”NamesByWildcardProcedure”
 DefaultDisplayName=”Names by Wildcard Procedure”>
 </MethodInstance>
 </MethodInstances>
</Method>

 In the code, notice that a FilterDescriptor of type Wildcard has been added to the model. This
fi lter is associated with the LastName fi eld and the @wildcard input parameter. This passes the
value of the fi lter into the @wildcard input parameter. This means that the stored procedure must
have a parameter of that exact name available, as shown in the following code:

CREATE PROCEDURE [dbo].[sp_GetNamesWildcard]
@wildcard nvarchar(10)
AS
SELECT ID,Title,FirstName,MiddleName,LastName,Suffix,EMailAddress,Phone
FROM MiniCRM.Names
WHERE LastName LIKE @wildcard + ‘%’

 When a stored procedure is used as a Creator, you must return the new ID of the new entity
instance from the procedure. In The SPD wizard, the ID must be set on the Return parameter (not
the In parameter) for the model to work. The following stored procedure uses an identity column,
and returns that from the procedure.

CREATE PROCEDURE NewEmployee
@Username nvarchar (255),
@FirstName nvarchar (255),
@LastName nvarchar (255),
@SecondLanguage nvarchar (255)
AS
INSERT INTO [dbo].[Employees]([Username] , [FirstName] , [LastName] ,
[SecondLanguage])
VALUES(@Username , @FirstName , @LastName , @SecondLanguage)
SELECT [EmployeeID] FROM [dbo].[Employees] WHERE [EmployeeID] = SCOPE_IDENTITY()

 Remember that the purpose of fi lters is to retrieve input from either the end user or the system. In
the case of the Wildcard fi lter, the idea is to let the end user set up a view based on a partial string
search of the last name. In the SharePoint interface, this search appears as a value that can be set in
the view defi nition of the External List, as shown in Figure 4 - 9.

www.it-ebooks.info

http://www.it-ebooks.info

 FIGURE 4 - 9

 Understanding the Default Finder

 The default Finder method deserves special consideration in the design of any BCS solution. As
stated previously, the fi rst Finder method created in SPD will be the default. When you create
subsequent Finder methods, the wizard will present a checkbox that you can use to change the
default Finder . If you do nothing, however, it will always be the fi rst one created.

 The default Finder method serves two important purposes. First, this is the method that will
generate the default view for an External List. Second, this method will be used by the search
indexer to retrieve records during the crawl process. The method is identifi ed as the default
 Finder through the Default attribute of the MethodInstance element, and as the target of the
crawl through the RootFinder property, as shown in the following code:

 <MethodInstance
 Type=”Finder”
 ReturnParameterName=”AllNames”
 Default=”true”
 Name=”AllNames”
 DefaultDisplayName=”All Names”>
 <Properties>
 <Property Name=”RootFinder” Type=”System.String”></Property>
 </Properties>
</MethodInstance>

 When SPD defi nes a Finder as both the default Finder and the root Finder , this can cause
signifi cant problems in your solutions because the default Finder should be fi ltered, but the root
 Finder should not. Finder methods should generally have fi lters on them to limit the number
of rows returned. If they do not have fi lters, BCS will throw an error if they return more than
2,000 rows to an External List. However, root Finders should never be fi ltered because the
fi ltering will exclude items from the search index so that they will never appear in search results.
Therefore you must manually edit the BDC Metadata Model to assign the default Finder and root
 Finder to different Finder methods, unless you know that your data source will never exceed
2,000 rows. Refer to Chapter 9 for complete coverage of search.

 Creating Other Methods

 Creating SpecificFinder , Creator , Updater , and Deleter methods is generally similar to creating
 Finder methods. The wizard will walk you through the steps necessary to defi ne appropriate
parameters and fi lters. In the case of stored procedures, remember that any required input parameters
or fi lters must be explicitly available as parameters in the stored procedure.

Creating Methods ❘ 129

www.it-ebooks.info

http://www.it-ebooks.info

130 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

 Creating Methods for Web Services

 Web services are generally more diffi cult to work with than databases. This is because the form
of the exposed methods in a web service can vary widely. There is no standard table or view
structure available in a web service, and there are no primary/foreign keys available for inferring
relationships. Therefore, the design of a BCS solution that uses web services must be carefully
considered.

 While it is possible to use an existing web service as an External Data Source, the requirements of
the method stereotypes will more often lead to the creation of a custom service for a BCS solution.
Custom services should expose methods that correlate closely to BCS method stereotypes. The
following code shows the programmatic interface for a simple WCF service.

[ServiceContract]
public interface IService
{

 [OperationContract]
 List < Customer > CrawlCustomers();

 [OperationContract]
 List < Customer > GetCustomers(int Limit);

 [OperationContract]
 List < Customer > GetCustomersByRegion(string Region);

 [OperationContract]
 Customer GetCustomer(string Id);

 [OperationContract]
 void CreateCustomer(string FirstName, string LastName);

 [OperationContract]
 void UpdateCustomer(string Id, string FirstName, string LastName);

 [OperationContract]
 void DeleteCustomer(string Id);

}

[DataContract]
public class Customer
{
 [DataMember]
 public string Id { get; set; }
 [DataMember]
 public string FirstName { get; set; }
 [DataMember]
 public string LastName { get; set; }
}

 Notice how the exposed methods of the web service are designed in accordance with the
requirements of Table 4 - 5. The Finder methods return collections of Customer entity instances,

www.it-ebooks.info

http://www.it-ebooks.info

whereas SpecificFinder returns only a single entity instance. The Creator , Updater , and
 Deleter methods return void .

 Note also that there are three Finder methods exposed. The CrawlCustomers method has no fi lter
and is intended for use by the indexer. The GetCustomers method accepts a Limit fi lter to prevent
errors being caused in the External List if too many results are returned. GetCustomerByRegion
accepts a fi lter to limit the return results to customers in a given region. These parameters will all
appear in the SPD wizard so that they can be mapped to the appropriate fi lter types.

 Defi ning Associations

 Associations are relationships between ECTs. BCS supports one - to - many, many - to - many,
self - referential, and reverse associations. One - to - many associations return many related
entity instances from a single parent entity instance. Many - to - many associations return many
related entity instances from many different parent entity instances. Self - referential associations
return entity instances of the same type as the parent entity instance. Reverse associations return
a parent entity instance from a single child entity instance.

 Within the SharePoint Designer only one - to - many, self - referential, and reverse associations are
supported by the tooling. Like all operations, associations are simply method stereotypes created
in the BDC Metadata Model. Associations created in SPD are of type AssociationNavigator .
The primary reason to create associations is to enable certain user interface elements such as picker
controls that allow end users to work with data relationships directly in SharePoint or Outlook.

 Creating One - to - Many Associations

 The most common type of association in BCS solutions is the one - to - many association, whereby a
parent entity instance is related to many child entity instances. This type of association supports
such scenarios as a single Customer having many Orders or a single Client having many
 Contacts . Database tables with primary key/foreign key relationships are most often the basis for a
one - to - many association.

 In order to create a one - to - many association you must fi rst defi ne both External Content Types.
The child ECT should be defi ned so that it contains a foreign key related to the parent ECT. This
means that the Order ECT contains a CustomerID fi eld or the Contact ECT contains a ClientID
fi eld. If the relationship is based on a database table or view, nothing else needs to be done. If the
relationship is based on a stored procedure or web service method, you must also create a stored
procedure or web method that accepts the parent entity instance identifi er and returns the child
entity instances.

 Once you have the ECTs defi ned, the new association can be created from the Operation Designer.
If the relationship will use tables or views, select the child table or view. If the relationship will use
stored procedures or web services, select the procedure or method that will accept the parent entity
instance identifi er and return the child entity instances. Right - click and select New Association in
the context menu, which will start the Association wizard.

 In the Association wizard you must map the child ECT to the parent ECT. You do this by clicking
the Browse button and selecting the parent ECT from a list. Once the parent ECT is selected you
must map the identifi er of the parent ECT to the foreign key in the child ECT. Figure 4 - 10 shows
the wizard with a child ECT mapped to a parent ECT through the ClientID fi eld.

Creating Methods ❘ 131

www.it-ebooks.info

http://www.it-ebooks.info

132 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

 FIGURE 4 - 10

 FIGURE 4 - 11

 In the next screen of the wizard you must map the input parameter of the child to the foreign key.
Most of the time this fi eld will contain the same name as that of the identifi er that was selected in
the fi rst screen, but the names may be different. Figure 4 - 11 shows the wizard and the following
code shows the resulting model defi nition.

www.it-ebooks.info

http://www.it-ebooks.info

 <Method IsStatic=”false” Name=”ContactsForClient”>
 <Properties>
 <Property Name=”BackEndObject” Type=”System.String”>
 ClientContacts
 </Property>
 <Property Name=”BackEndObjectType” Type=”System.String”>
 SqlServerTable
 </Property>
 <Property Name=”RdbCommandText” Type=”System.String”>
 sp_GetAllClientContacts
 </Property>
 <Property Name=”RdbCommandType” Type=”System.Data.CommandType,
 System.Data, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089”>
 StoredProcedure
 </Property>
 <Property Name=”Schema” Type=”System.String”>dbo</Property>
 </Properties>
 <Parameters>
 <Parameter Direction=”In” Name=”@ClientID”>
 <TypeDescriptor TypeName=”System.Int32” IdentifierName=”ClientID”
 IdentifierEntityName=”Client”
 IdentifierEntityNamespace=”http://clients_web”
 ForeignIdentifierAssociationName=”ContactsForClient”
 Name=”ClientID” />
 </Parameter>
 <Parameter Direction=”Return” Name=”ContactsForClient”>
 ...
 </Parameter>
 </Parameters>
 <MethodInstances>
 <Association Name=”ContactsForClient” Type=”AssociationNavigator”
 ReturnParameterName=”ContactsForClient”
 DefaultDisplayName=”Contacts For Client”>
 <Properties>
 <Property Name=”ForeignFieldMappings” Type=”System.String”>
 <?xml version=”1.0” encoding=”utf-16”?>
 <ForeignFieldMappings
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
 <ForeignFieldMappingsList>
 <ForeignFieldMapping ForeignIdentifierName=”ClientID”
 ForeignIdentifierEntityName=”Client”
 ForeignIdentifierEntityNamespace=”http://clients_web”
 FieldName=”ClientID” />
 </ForeignFieldMappingsList>
 </ForeignFieldMappings>
 </Property>
 </Properties>
 <SourceEntity Namespace=”http://clients_web” Name=”Client” />
 <DestinationEntity Namespace=”http://clients_web” Name=”Contact” />
 </Association>
 </MethodInstances>
</Method>

Creating Methods ❘ 133

www.it-ebooks.info

http://www.it-ebooks.info

134 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

 One - to - many relationships are used in the SharePoint interface to display entity instances. In an
External List of child entity instances, the foreign key for the parent entity instance can be set
with the picker, as shown in Figure 4 - 12. If a profi le page is defi ned for the parent ECT, it will
automatically be created to contain a list of related child ECTs.

 FIGURE 4 - 12

 Creating Self - Referential Associations

 Self - referential associations are created just like one - to - many relationships. The difference is that
a self - referential relationship uses the same ECT as both the parent and the child. Therefore the
ECT must have a separate fi eld defi ned that acts like the foreign key in a one - to - many relationship,
but instead refers to an entity instance of the same type.

 As an example, consider creating an organizational chart from a single table of employees. The table
contains an ID fi eld as the primary key and a ManagerID fi eld to relate the current record to another
record in the table. Using this information, an association can be created between the Employee
ECT ID and ManagerID fi elds, as shown in the following code:

 <Method IsStatic=”false” Name=”EmployeesForManager”>
 <Properties>
 <Property Name=”BackEndObject” Type=”System.String”>
 Employees
 </Property>
 <Property Name=”BackEndObjectType” Type=”System.String”>
 SqlServerTable
 </Property>
 <Property Name=”RdbCommandText” Type=”System.String”>

www.it-ebooks.info

http://www.it-ebooks.info

 SELECT [ID] , [ManagerID] , [Title] , [FirstName] , [MiddleName] ,
 [LastName] , [EmailAddress] , [Phone] FROM [dbo].[Employees]
 WHERE [ManagerID] = @ID
 </Property>
 <Property Name=”RdbCommandType”
 Type=”System.Data.CommandType, System.Data, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089”>
 Text
 </Property>
 <Property Name=”Schema” Type=”System.String”>
 dbo
 </Property>
 </Properties>
 <Parameters>
 <Parameter Direction=”In” Name=”@ID”>
 <TypeDescriptor TypeName=”System.Int32” IdentifierName=”ID”
 ForeignIdentifierAssociationName=”EmployeesForManager”
 Name=”ManagerID” />
 </Parameter>
 <Parameter Direction=”Return” Name=”EmployeesForManager”>
 ...
 </Parameter>
 </Parameters>
 <MethodInstances>
 <Association Name=”EmployeesForManager” Type=”AssociationNavigator”
 ReturnParameterName=”EmployeesForManager”
 DefaultDisplayName=”Employees for Manager”>
 <Properties>
 <Property Name=”ForeignFieldMappings” Type=”System.String”>
 <?xml version=”1.0” encoding=”utf-16”?>
 <ForeignFieldMappings
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
 <ForeignFieldMappingsList>
 <ForeignFieldMapping ForeignIdentifierName=”ID”
 ForeignIdentifierEntityName=”Employee”
 ForeignIdentifierEntityNamespace=”http://bcs/orgchart”
 FieldName=”ManagerID” />
 </ForeignFieldMappingsList>
 </ForeignFieldMappings></Property>
 </Properties>
 <SourceEntity Namespace=”http://bcs/orgchart” Name=”Employee” />
 <DestinationEntity Namespace=”http://bcs/orgchart” Name=”Employee” />
 </Association>
 </MethodInstances>
</Method>

 The key to creating the self - referential relationship is the SQL query that returns entity instances
where ManagerID=ID . Note that SPD does not always create this SQL query correctly when you
are creating a new self - referential association in the tooling. Therefore you should be sure to export
and examine the query after the method is created. Once it is created correctly you can use the
relationships like any others. Figure 4 - 13 shows a relationship being used in the External Data web
parts to display the employees who work for a given manager.

Creating Methods ❘ 135

www.it-ebooks.info

http://www.it-ebooks.info

136 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

 Creating Reverse Associations

 Reverse associations return a single parent entity instance for a child entity instance. Reverse
associations are not supported for tables and views, but are supported for stored procedures and
web services. This is because the reverse association is not inherent in the database schema. It must
be explicitly programmed through a stored procedure or web service. For example, you could create
a stored procedure that takes the identifi er for a Contact and returns the parent Client entity
instance, as shown in the following code:

CREATE PROCEDURE sp_GetClientByContactID
@ClientContactID int
AS
Select Clients.ClientID, Clients.Name, Clients.Address1, Clients.Address2,
Clients.City, Clients.Province, Clients.PostalCode, Clients.Country,
Clients.Phone, Clients.Fax, Clients.Web
From Clients
Inner Join ClientContacts
On Clients.ClientID = ClientContacts.ClientID
Where ClientContactID = @ClientContactID

 Once the stored procedure is written, open the Operation Designer for the child ECT. Select the
stored procedure, then right - click and select New Reverse Association from the context menu. As
with the other associations, you can then browse and select the parent ECT.

 Working with Many - to - Many Relationships

 As mentioned previously, the SPD tooling does not support creating many - to - many relationships.
Remember that the primary reason for defi ning associations is to enable user interface elements such
as the picker control and the External Data web parts. BCS has no special user interface elements to
render many - to - many relationships, so creating them in SPD makes no sense. This does not mean,
however, that you cannot use these relationships in your BCS solutions.

 The simplest way to work with many - to - many relationships is to create a web method or stored
procedure that returns one side of the relationship. Then you can create a Finder method to display
that information. If, for example, you have a many - to - many relationship between a Resource ECT
and a Project ECT, then you can create a Finder method that accepts a Resource identifi er and

 FIGURE 4 - 13

www.it-ebooks.info

http://www.it-ebooks.info

returns a collection of Projects . Similarly, you can create a Finder method that accepts a Project
identifi er and returns a collection of Resources . If you need more sophisticated support for these
relationships, then you will need to create a connector as described in Chapter 7.

 WORKING WITH EXTERNAL LISTS

 External Lists support many of the same capabilities as standard SharePoint lists, such as custom
list actions and custom forms. They do not, however, support all the capabilities of standard lists,
such as event handlers and workfl ows. This section introduces the capabilities of External Lists
and how to work around basic limitations. Additional advanced techniques are also presented in
Chapter 5.

 Creating Custom List Actions

 Custom list actions allows you to add a new button to the list item menu, view ribbon, new form
ribbon, display form ribbon, or edit form ribbon. The target of the button can be either an existing
form or navigation to a URL. For standard lists you can also initiate a workfl ow from the button,
but External Lists do not support this function.

 You create new custom list actions from SPD by selecting the list and clicking the Custom Action
button in the ribbon. This button will then open the Create Custom Action dialog. Figure 4 - 14
shows the dialog in the SharePoint Designer.

Working with External Lists ❘ 137

 FIGURE 4 - 14

www.it-ebooks.info

http://www.it-ebooks.info

138 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

 Creating Custom Forms

 For every standard and External List, a set of forms is created to display, edit, and add items.
Using SharePoint Designer you can create and customize these forms, either as ASPX pages or
as InfoPath forms. This capability helps you enhance data presentation and perform fi eld - level
validation on items.

 Creating ASPX Forms

 When you create an External List, new, edit, and
display forms are automatically created as appropriate,
based on the operations defi ned for the associated ECT.
Using SPD, you can see these forms by clicking the Lists
and Libraries object followed by the list of interest.
The existing forms are listed on the summary page, as
shown in Figure 4 - 15.

 The default forms created for the External List use the
List Form Web Part (LFWP). The LFWP executes Collaborative Application Markup Language
(CAML) queries against the External List to display items. Unfortunately, the LFWP does not
support modifying its presentation; therefore a new form must be created instead.

 Clicking the New button above the form list in the summary page opens the Create New List Form
dialog. This dialog is used to create, edit, and display forms that are based on the Data Form Web
Part (DFWP). The DFWP uses XSLT to transform list data into a display. Modifying this XSLT can
easily change the presentation of list data.

 As an example, consider an External List that returns information about SharePoint images. The
BCS solution has a column called Path that returns the path to the image. In a simple BCS solution,
 Path will appear as a column and the user will simply see the text of the URL. A better experience,
however, would be to show the image itself. You can do this by adding a new display form and
modifying the XSLT for the fi eld, as shown in the following code:

 <xsl:attribute name=”src”>
 <xsl:value-of select=”@Path”/>
 </xsl:attribute>

 Transforming URLs to images or hyperlinks is a common reason for creating a new list form. In
addition, you can also make style changes to the form by changing fonts, colors, and images. You
can also use JavaScript with the form. Figure 4 - 16 shows a form displaying an image, hyperlink,
and new style.

 In addition to using SPD, you can also modify the list forms inside the SharePoint 2010 interface.
While viewing the External List, click the List tab in the ribbon. The Modify Form Web Parts
button will allow you to select a form to modify. You then use the properties pane to modify the
web part rendering the list.

 FIGURE 4 - 15

www.it-ebooks.info

http://www.it-ebooks.info

 FIGURE 4 - 16

 Creating InfoPath Forms

 Instead of ASPX pages, you can choose to create custom InfoPath forms for the External List. InfoPath
form creation can be initiated directly from SPD by clicking the Design Forms in InfoPath button from
the list summary page. This action will open InfoPath with a default form that you can edit.

 InfoPath forms are easier to create, offer simpler styling, and advanced controls. Using InfoPath,
you can take advantage of lists and drop-downs as well as styles and themes. When the form is
complete, you must save it and then execute a Quick Publish. Quick publishing is available by
clicking the File tab in InfoPath. Once published, the form is available for the new, edit, and display
forms. Figure 4 - 17 shows a sample form with a custom style and a drop - down list.

Working with External Lists ❘ 139

 FIGURE 4 - 17

www.it-ebooks.info

http://www.it-ebooks.info

140 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

 Accessing External Lists in Code

 External Lists may be accessed through code in ways that are familiar to SharePoint developers.
Both the server - side and client - side object models can be used. A detailed BCS API is also available
to access External Systems, which is discussed in Chapter 5. The code in this section requires that
you have an External List created in SharePoint, not just an External System defi ned in the BDC
Service Application.

 Using the SPList Object

 The standard SPList object may be used in code running against the Microsoft.SharePoint
namespace to access the items in External Lists, but there are a few special requirements. When
code accesses the items in an External List, the unique identifi er for an item is found in the
 BdcIdentity fi eld and not the standard ID of the item. Additionally, in order to access the list
items you must enumerate the SPListItem collection. Other than those restrictions, accessing
the items in the list is straightforward. The following code shows a web part that displays the
contents of an External List whose name is provided in a property fi eld:

public class ExternalListWebPart : WebPart
{
 private string listName = string.Empty;
 private Label messages;

 [Personalizable(PersonalizationScope.Shared),
 WebBrowsable(true),
 WebDisplayName(“Target List”),
 WebDescription(“The name of the External List”),
 Category(“Configuration”)]
 public string ListName
 {
 get { return listName; }
 set { listName = value; }
 }

 protected override void CreateChildControls()
 {
 messages = new Label();
 this.Controls.Add(messages);
 }

 protected override void RenderContents(HtmlTextWriter writer)
 {
 try
 {
 if (listName.Length > 0)
 {
 SPWeb site = SPContext.Current.Web;
 SPList externalList = site.Lists[ListName];

 writer.Write(“ < table border=\”0\” > ”);
 writer.Write(“ < tr > ”);

www.it-ebooks.info

http://www.it-ebooks.info

 foreach(SPField field in externalList.Fields)
 {
 if (field.Title != null)
 {
 writer.Write(“ < td align=\”center\” > ”);
 writer.Write(field.Title);
 writer.Write(“ < /td > ”);
 }
 }
 writer.Write(“ < /tr > ”);

 foreach (SPListItem item in externalList.Items)
 {
 writer.Write(“ < tr > ”);
 foreach (SPField field in item.Fields)
 {
 if (field.Title != null)
 {
 writer.Write(“ < td > ”);
 writer.Write(item[field.Title].ToString());
 writer.Write(“ < /td > ”);
 }
 }
 writer.Write(“ < /tr > ”);
 }

 writer.Write(“ < /table > ”);

 }
 }
 catch (Exception x)
 {
 messages.Text = x.Message;
 }

 writer.Write(“ < br/ > ”);
 messages.RenderControl(writer);

 }
}

 Using the Client Object Model

 SharePoint 2010 introduces three new client - side object models: Managed, Silverlight, and
JavaScript. Each of the three object models provides an object interface to SharePoint functionality
that is based on the objects available in the Microsoft.SharePoint namespace, but that uses web
service calls behind the scenes. This approach provides a development experience that is easier to
program with than the web service model used in previous versions. While none of the models is
fully equivalent to the server - side model, they are equivalent to each other, so you can leverage your
knowledge of one model into another.

Working with External Lists ❘ 141

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

 A detailed discussion of all three models is beyond the scope of the chapter. What is important to
know is that the client object model allows access to an External List as if it were a standard list
following the programming conventions for each of the client object models.

 The client object models require a starting point in the form of a context object, which is much
like the standard code you write against the server - side object model. The context object provides
an entry point into the associated API that can be used to gain access to other objects. The Load()
method of the context object, and its LINQ variant LoadQuery() , are used to batch operations to
be sent to the server. The ExecuteQuery() and ExecuteQueryAsync() methods are used to send
the batched operations to the server for execution. The synchronous method is supported by the
managed object model, while Silverlight and JavaScript require asynchronous execution.

 When you are working with External Lists, there are two special considerations. The fi rst is that
CAML queries written using the client object models must explicitly include the names of fi elds
to return in the ViewFields element. The second is that the Load() method is not supported for
External Lists; LoadQuery() must be used instead. These principles are shown in the following
code, which executes a query against an External List:

ClientContext ctx = new ClientContext(“http://awserver/sitecollection”);

//Load site and list
Web site = ctx.Web;
ctx.Load(site);
List list = site.Lists.GetByTitle(“My External List”);
ctx.Load(list);

//Create query
//External Lists require the ViewFields explicitly stated in the query
StringBuilder caml = new StringBuilder();
caml.Append(“ < View > < ViewFields > < FieldRef Name=’”);
caml.Append(“BdcIdentity”);
caml.Append(“’/ > < FieldRef Name=’”);
caml.Append(“Name”);
caml.Append(“’/ > < /ViewFields > < Query > < OrderBy > < FieldRef Name=’”);
caml.Append(“BdcIdentity”);
caml.Append(“’/ > < /OrderBy > < /Query > < /View > ”);
CamlQuery query = new CamlQuery();
query.ViewXml = caml.ToString();

listItems = list.GetItems(query);

//LoadQuery is required for External Lists because Load is not supported
returnedItems = ctx.LoadQuery(
 listItems.Include(i = > i[“BdcIdentity”], i = > i[“Name”]));

//Execute
ctx.ExecuteQueryAsync(succeedListener, failListener);

 Initiating Workfl ows

 While you cannot directly associate a workfl ow with an External List, there are two workarounds
that can be used to initiate workfl ows as part of a BCS solution. The fi rst involves simply writing

Working with External Lists ❘ 143

www.it-ebooks.info

http://www.it-ebooks.info

144 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

a site workfl ow that interacts with an External List. The second involves the use of a standard list
to act as the starting point for the workfl ow. This section covers these techniques. More advanced
workfl ow techniques, such as Sandbox Workfl ow Actions and Pluggable Services, are covered in
Chapter 5.

 Site workfl ows are new to SharePoint 2010. A site workfl ow is not associated with a SharePoint list.
Instead, the site workfl ow is associated with the site itself. You manage site workfl ows by navigating
to Site Actions ➪ View All Site Content ➪ Site Workfl ows. On the site workfl ows page you can add,
remove, start, and stop site workfl ows. Figure 4 - 19 shows the page.

 FIGURE 4 - 19

 You can create site workfl ows directly in SPD by selecting the Workflows object and then clicking
the New Site Workfl ow button. As was pointed out in Chapter 2, any SPD workfl ow can interact
with an External List much as it would with a standard list. The question is simply how to start
the workfl ow, because it cannot be directly associated with the External List. In the case of the site
workfl ow you can use an Initiation Form parameter to allow the user to enter some identifying piece
of information about the item in the External List upon which the workfl ow should run.

 Figure 4 - 20 shows a site workfl ow with an Initiation Form parameter that accepts the Product
Number as an input. The Product Number is a column in the External List that uniquely identifi es
an item. Once the user supplies the number, the rest of the workfl ow can run as if it had been
initiated directly from the item in the External List. In this case, the workfl ow simply assigns a
review task to a manager.

 In addition to site workfl ows, External Lists can be used with list workfl ows when the data is
present as an External Column in the list. In this case the approach is to use the projected fi elds
in the workfl ow directly or to perform a lookup against the External List based on data in the
projected fi elds. Figure 4 - 21 shows a document library containing sales quotes that are associated
with a customer through an External List.

www.it-ebooks.info

http://www.it-ebooks.info

 While the customer data in the library was originally intended for associating customers with
documents, it can also be used for workfl ows. In this example it will be used for an additional
workfl ow on the library that initiates a customer satisfaction survey. The strategy is to have
the workfl ow look up the customer in the External List using the e - mail address. Once the
customer is located, all the other fi elds may be used to build a new task assignment.

 When you are working with workfl ows against External Lists, there are a few things to keep in
mind. First, lookups against External Lists that are associated with databases will fail unless the
authentication mode is set to RevertToSelf . Furthermore, RevertToSelf is disabled by default
and must be explicitly enabled with the following PowerShell command. See Chapter 8 for a deeper
discussion of authentication modes.

$bdc = Get-SPServiceApplication
 | where {$_ -match “Business Data Connectivity Service”}
$bdc.RevertToSelfAllowed = $true
$bdc.Update();

 Second, reading columns from External Lists in a workfl ow requires separate calls to the Finder
and SpecificFinder methods for each column. This means that reading many columns can easily
result in poor performance. Therefore, the number of columns read in a workfl ow step should be
kept as small as possible.

 FIGURE 4 - 20

Working with External Lists ❘ 145

 FIGURE 4 - 21

www.it-ebooks.info

http://www.it-ebooks.info

146 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

 Finally, The BdcIdentity fi eld is the only guaranteed unique fi eld in an External List. If you look
up items by other fi elds, only the fi rst matching item is returned. Often this is not an issue, because
you can use fi elds like e - mail address, which are generally unique to one item. If you require a
 BdcIdentity , however, you can only obtain it from the creation of a new item because no other
operation will return it.

 DEVELOPING SOLUTIONS

 When developing professional solutions, you must be concerned with more than simply getting
the BCS solution to work. Chief among the additional concerns is that you must be able to move
a solution from development to testing to production. You may also need to port an existing
application into BCS or to migrate an old BDC solution from SharePoint 2007.

 Making Solutions Portable

 In previous versions of SharePoint, artifacts created in SPD were bound to the content database
and were diffi cult to reuse. Furthermore, there was no simple way to export artifacts from SPD and
move them to another environment. This meant that SPD artifacts could not easily be moved from
a development environment to a testing or production environment. Fortunately, the situation has
changed signifi cantly. You may now create BCS solutions entirely in SPD and easily move them to
other environments.

 The most obvious artifacts that should be moved through a development life cycle are the BDC
Metadata Models. As previously discussed, these models can be exported from SPD edited and
imported through the BDC Service Application. This simple technique makes it possible to build
BDC Metadata Models in SPD, export them, modify the connection information as required, and
use them in a new environment.

 While exporting and importing is straightforward, the ideal approach is to use a feature to install
BDC Metadata Models into new environments. The goal of this process is to create a WSP fi le that
contains all the necessary elements for your BCS solution to be installed in another environment.
Therefore, you must identify what artifacts you want to move. These can include not only the BDC
Metadata Model, but also list instances and customized forms.

 If your solution will include list instances, the easiest way to get started is to save the entire site as
a template. You can save the site containing your BCS solution as a template from the Site Settings
page. Saving the site as a template will result in the creating of a solution package (WSP fi le) that
will be saved into the Solutions Gallery at the root of the site collection. The Solutions Gallery is
the location where Sandboxed Solutions are normally deployed and can be accessed from the Site
Settings page of the root site in the collection under the Galleries heading.

 Once you have saved the site as a template you can open the root site in SPD and examine the
Solutions Gallery. In SPD the Solutions Gallery is located at All Files_catalogs\solutions .
From here you can select the WSP fi le that was created when the site was saved as a template and
export it to the fi le system. The purpose of exporting it to the fi le system is to allow it to be opened
in Visual Studio 2010.

www.it-ebooks.info

http://www.it-ebooks.info

 Visual Studio 2010 supports a new project type named Import SharePoint Solution Package. The
purpose of this project type is to allow you to create a project from a WSP package. In this case the
package created by saving the site as a template can be opened. When the new project is created
Visual Studio will allow you to select only the artifacts that you want in the project. In this case you
would select all the External Lists. After you select the artifacts, Visual Studio will create a feature
for deploying the artifacts. These will include the selected list instances and any customized forms.
Figure 4 - 22 shows the dialog for selecting artifacts with three External Lists selected.

Developing Solutions ❘ 147

 FIGURE 4 - 22

 The fi nal step is to add the BDC Metadata Model to the project. BDC Metadata Models are
exported from SPD with a BDCM extension. Visual Studio 2010 understands this extension so
that you can simply select to add an existing item to the project and navigate to the BDCM fi le.
When you add the fi le to the project, a new feature is created for deploying the model. You now
have everything you need to create a feature that will deploy the entire BCS solution.

 Converting ASP.NET Solutions

 When BCS is discussed, the context most often involves the idea of accessing line - of - business
systems such as CRM and ERP. There is a strong case to be made, however, that BCS should be the
primary technology used for creating web - based applications in SharePoint. Because of this some
developers may choose to convert existing ASP.NET applications into BCS applications. In order to
understand why this is advantageous, let ’ s take a look at how web - based applications are normally
integrated into SharePoint.

 The majority of SharePoint developers have an ASP.NET background, which is useful when they ’ re
fi rst learning SharePoint. However, a strong ASP.NET development background can also affect the

www.it-ebooks.info

http://www.it-ebooks.info

148 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

way developers think about designing a SharePoint solution. As an example, consider Figure 4 - 23,
which shows an actual ASP.NET application used to manage contact information.

 FIGURE 4 - 23

 FIGURE 4 - 24

 Many ASP.NET developers have existing applications such as this, and they are told that they
must be integrated with SharePoint. Perhaps the most common approach for integrating these
applications is to simply deploy them to the LAYOUTS directory. Because the LAYOUTS directory is a
mapped directory in IIS, any web application copied there will run. Furthermore, the application
appears to be integrated into SharePoint when viewed in the browser, as shown in Figure 4 - 24.

www.it-ebooks.info

http://www.it-ebooks.info

 Initially the idea of copying ASP.NET web applications into the LAYOUTS directory is tempting
because it is simple and requires little rework. However, the application is not truly integrated into
SharePoint. It does not take advantage of the SharePoint security infrastructure and it cannot get
access to a SharePoint context. From a BCS perspective, the application data cannot be used as a
source for columns, and perhaps most signifi cantly, it cannot be indexed and searched.

 The better approach for creating applications that integrate with SharePoint is to use BCS. ECTs can
be created against the database and integrated, as discussed throughout the chapter. Much of this
work can even be done using only SPD. Figure 4 - 25 shows the same application created as a BCS
solution using no code. The interface is generated through the out - of - the - box External Data web
parts. If you wanted a more sophisticated interface, however, you could create your own web parts,
as described in Chapter 6.

Developing Solutions ❘ 149

 FIGURE 4 - 25

 Upgrading BDC 2007 Solutions

 If you have worked with the Business Data Catalog in SharePoint 2007, then you may have existing
BDC models that you want to upgrade to BCS under SharePoint 2010. SharePoint 2010 supports a
service application called the Application Registry Service . This service is a backward - compatible
service designed to host BDC solutions from MOSS 2007.

 Only in - place upgrading is supported for MOSS 2007 BDC solutions. When you perform an
upgrade of a MOSS 2007 environment to SharePoint 2010, the upgrade process creates an
Application Registry Service and a BDC Service Application. Each model contained in the MOSS
2007 environment is copied into the Application Registry Service. An upgraded version of the model
is then copied into the BDC Service Application.

www.it-ebooks.info

http://www.it-ebooks.info

150 ❘ CHAPTER 4 CREATING BCS SOLUTIONS WITH THE SHAREPOINT DESIGNER

 Models in the Application Registry Service have limited value. They cannot be used to create
External Lists and the External Data web parts in SharePoint 2010 will not work with them. You
can still use the models as content sources for search, and any references to the Single Sign - On
Service will be upgraded to refer to the Secure Store Service.

 If you want to upgrade your MOSS 2007 solutions without performing an in - place upgrade of the
farm, you must upgrade the BDC models by hand. Each model must be exported from the MOSS
2007 BDC repository and edited to meet the requirements of the BDC Service Application.

 SUMMARY

 When creating BCS solutions for SharePoint 2010, SharePoint Designer should be considered
the primary tool. The tooling support in SPD is easier to use than the equivalent tooling in
Visual Studio. Additionally, you can export the model and edit it by hand to include capabilities
not supported in the SPD tooling. In short, you should be able to use SPD for the majority of
your solutions that are based on databases and web services.

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

152 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

 The BDC Server Runtime object model is contained in the Microsoft.SharePoint.dll and
 Microsoft.BusinessData.dll assemblies. Both of these assemblies are located in the ISAPI
directory. Any solution you create will need a reference to both of these assemblies, which contain
many different namespaces. The following code shows typical using statements, and Table 5 - 1 lists
the key namespaces used for working with the BDC Server Runtime object model.

//Reference to Microsoft.SharePoint.dll
using Microsoft.SharePoint;
using Microsoft.SharePoint.Administration;
using Microsoft.SharePoint.BusinessData;
using Microsoft.SharePoint.BusinessData.Runtime;
using Microsoft.SharePoint.BusinessData.SharedService;
using Microsoft.SharePoint.BusinessData.MetadataModel;

//Reference to Microsoft.BusinessData.dll
using Microsoft.BusinessData;
using Microsoft.BusinessData.MetadataModel;
using Microsoft.BusinessData.Runtime;
using Microsoft.BusinessData.MetadataModel.Collections;

 TABLE 5 - 1: Key Namespaces

 NAMESPACE ASSEMBLY DESCRIPTION

 Microsoft.SharePoint

.Administration

 Microsoft.SharePoint.dll Provides access to the

BDC Service application

 Microsoft.SharePoint

.BusinessData.MetadataModel

 Microsoft.SharePoint.dll Provides access to the

Metadata Catalog

 Microsoft.SharePoint

.BusinessData.Runtime

 Microsoft.SharePoint.dll Provides access to fi lter

types

 Microsoft.SharePoint

.BusinessData.SharedService

 Microsoft.SharePoint.dll Provides access to

the BDC Service

Application proxy

 Microsoft.BusinessData

.MetadataModel

 Microsoft.BusinessData.dll Provides access to key

Metadata elements

 Microsoft.BusinessData

.MetadataModel.Collections

 Microsoft.BusinessData.dll Provides access to key

Metadata collections

 Microsoft.BusinessData

.Runtime

 Microsoft.BusinessData.dll Provides access to key

entity instance objects

and collections

www.it-ebooks.info

http://www.it-ebooks.info

 Connecting to the Metadata Catalog

 In order to execute code against BCS solutions using the BDC Server Runtime, you must establish a
connection to the Metadata Catalog in which the ECTs are stored. The fi rst step in this process is to
make a connection to the BDC Service Application. Establishing this connection is done differently
depending upon whether your code is running within a SharePoint context or simply on the
SharePoint server. In either case, however, you ’ ll make use of the Microsoft.SharePoint
.SPServiceContext class.

 The SPServiceContext class allows your code to communicate with SharePoint service
applications. When your code is running inside a SharePoint context (such as a custom web part),
you can use the Current property to retrieve the current service context. The GetDefaultProxy()
method may then subsequently be used to get the service proxy for any service. If your code
is running outside a SharePoint context (such as in a console application), the context must be
explicitly set with a SPSite object. In either case you will then make use of the Microsoft
.SharePoint.BusinessData.SharedService.BdcServiceApplicationProxy class to get
a reference to the BDC Service Application proxy. The GetDefaultProxy() method of the
 SPServiceContext class will return the default service application proxy for the type specifi ed.
The GetProxies() method will return all available service application proxies for the type
specifi ed. The following code shows how to get the default BdcServiceApplicationProxy object,
fi rst from within a SharePoint context and then from without:

//Within SharePoint Context
BdcServiceApplicationProxy proxy =
 (BdcServiceApplicationProxy)SPServiceContext.Current.
 GetDefaultProxy(typeof(BdcServiceApplicationProxy));

//Outside SharePoint Context
using (SPSite site = new SPSite(siteCollectionUrl))
{
 BdcServiceApplicationProxy proxy =
 (BdcServiceApplicationProxy)SPServiceContext.GetContext(site).
 GetDefaultProxy(typeof(BdcServiceApplicationProxy));
}

 In addition to using the BdcServiceApplicationProxy object to establish context, you may also use
the Microsoft.SharePoint.BusinessData.SharedService.BdcService class. The BdcService
class is an abstraction of the BDC Service Application, which is useful for determining whether or
not a BDC Service Application is available in the farm. The following code shows how to check the
availability of the BDC Service Application in a farm:

BdcService service = SPFarm.Local.Services.GetValue < BdcService > ();

 if (service == null)
 throw new Exception(“No BDC Service Application found.”);

 Once you have established a context you can connect to the Metadata Catalog in
the BDC Service Application. The Metadata Catalog on the server is represented by the

Working with the BDC Server Runtime Object Model ❘ 153

www.it-ebooks.info

http://www.it-ebooks.info

154 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

 Microsoft.SharePoint.BusinessData.MetadataModel.DatabaseBackedMetadataCatalog
class. Both the BdcServiceApplicationProxy object and the BdcService object are capable
of returning a DatabaseBackedMetadataCatalog object. The following code shows both
approaches:

//Using BdcServiceApplicationProxy
DatabaseBackedMetadataCatalog catalog =
 proxy.GetDatabaseBackedMetadataCatalog();

//Using BdcService
DatabaseBackedMetadataCatalog catalog =
 service.GetDatabaseBackedMetadataCatalog(
 SPServiceContext.GetContext(site));

 Retrieving Model Elements

 Once a connection to the Metadata Catalog is established, elements of the BDC Metadata
Models may be retrieved. These include ECTs, systems, and operations. The purpose of retrieving
these items is to execute the defi ned method instances against the defi ned External System.
The DatabaseBackedMetadataCatalog class has fi ve methods for retrieving model elements:
 GetEntity() , GetEntities() , GetLobSystem() , GetLobSystems() , and GetById() .

 Typically your solution will start by retrieving a reference to the ECTs that represent the data you
want to use. The simplest way to retrieve an ECT is to use the GetEntity() method, passing in
the name and namespace for the desired entity. The method returns a Microsoft.BusinessData
.MetadataModel.IEntity interface representing the ECT, as shown in the following code:

IEntity ect = catalog.GetEntity(“MyNamespace”, “MyEntity”);

 While the code for retrieving an ECT is simple, it is not the most effi cient. While the BDC Server
Runtime object model generally interacts with cached BDC Metadata Models, the GetEntity() ,
 GetEntities() , GetLobSystem() , and GetLobSystems() methods do not. Instead, they call
directly to the Metadata Catalog database, which is less effi cient. The solution to this problem is to
use the GetById() method to retrieve the ECTs and LobSystems. The GetById() method takes the
 Id and Type of the element to return and executes against the cached model. The challenge in using
the GetById() method is determining the Id of the desired element. The best approach is to use the
 GetEntity() method on the fi rst call and save the Id of the element for future use. The following
code shows the relationship between the GetEntity() method and the GetById() method.

//Get Entity the easy way on first call
IEntity ect = catalog.GetEntity(entityNamespace, entityName);

//Save Entity data
uint ectId = Convert.ToUInt32(ect.Id);
Type ectType = ect.GetType();

//Get Entity the fast way on subsequent calls
ect = (IEntity)catalog.GetById(ectId, ectType);

www.it-ebooks.info

http://www.it-ebooks.info

 Along with retrieving ECTs and LobSystems from the DatabaseBackedMetadataCatalog object,
many objects have methods for retrieving related objects. For example, the GetLobSystem() method
of the IEntity interface returns the related LobSystem for the ECT. In this way you can retrieve
whatever model elements are required for your application.

 Executing Operations

 The whole point of connecting to the Metadata Catalog and retrieving the ECT is to allow for the
execution of the operations defi ned as method instances within the BDC Metadata Model. With
full access to the operations you can create complete custom applications. These applications can
use any of the available method stereotypes, thus overcoming any of the limitations found in the
SharePoint Designer and the External Data Web Parts.

 The approach used to execute an operation varies slightly from stereotype to stereotype. In the case
of Finder methods, for example, you must retrieve the method instance before executing. This
is because a BDC Metadata Model may defi ne multiple Finder methods. In the case of Creator ,
 Updater , and Deleter methods the object model provides a more direct approach, because only a
single method instance of these stereotypes may exist in the model for any entity.

 Along with specifi c support for various stereotypes, discussed later in the chapter, the object model
also provides generic support to execute any method instance. The following code shows a console
application that uses the Execute() method of the IEntity to execute a Finder method and
display the results. This code works for any model and any Finder method based on the arguments
passed to it.

static void Main(string[] args)
{
 try
 {

 if (args.Count() != 5)
 throw new Exception(“Useage: ExecuteFinder.exe
 SiteCollectionUrl,
 LobSystemInstance,
 EntityName,
 EntityNamespace,
 FinderMethodInstance”);

 string siteCollectionUrl = args[0];
 string lobSystemInstance = args[1];
 string entityName = args[2];
 string entityNamespace = args[3];
 string finderMethodInstance = args[4];

 using (SPSite site = new SPSite(siteCollectionUrl))
 {
 //Connect to the BDC Service Application proxy
 BdcService service =
 SPFarm.Local.Services.GetValue < BdcService > ();

Working with the BDC Server Runtime Object Model ❘ 155

www.it-ebooks.info

http://www.it-ebooks.info

156 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

 if (service == null)
 throw new Exception(“No BDC Service Application found.”);

 //Connect to metadata catalog
 DatabaseBackedMetadataCatalog catalog =
 service.GetDatabaseBackedMetadataCatalog(
 SPServiceContext.GetContext(site));

 //Get Entity
 IEntity ect = catalog.GetEntity(entityNamespace, entityName);

 //Get LobSystem
 ILobSystem lob = ect.GetLobSystem();

 //Get LobSystemInstance
 ILobSystemInstance lobi =
 lob.GetLobSystemInstances()[lobSystemInstance];

 //Get Method Instance
 IMethodInstance mi =
 ect.GetMethodInstance(finderMethodInstance,
 MethodInstanceType.Finder);

 //Execute
 IEnumerable items = (IEnumerable)ect.Execute(mi, lobi);

 //Display
 foreach (Object item in items)
 {
 PropertyInfo[] props = item.GetType().GetProperties();

 foreach (PropertyInfo prop in props)
 {
 Console.WriteLine(prop.GetValue(item, null));
 }
 }

 }
 }
 catch (Exception x)
 {
 Console.WriteLine(x.Message);
 }
}

 When executing methods using the generic approach provided by the Execute() method, you will
often have to pass in parameters, such as when you execute a SpecificFinder method. In these
cases you must retrieve the required parameters from the method and set them. The following code
snippet shows how to do this for a SpecificFinder method associated with a BDC Metadata
Model that uses the SQL connector.

www.it-ebooks.info

http://www.it-ebooks.info

//Get Method Instance
IMethodInstance mi = ect.GetMethodInstance(specificFinderMethodInstance,
 MethodInstanceType.SpecificFinder);

//Get Parameters
IParameterCollection parameters = mi.GetMethod().GetParameters();

//Set Parameters
object[] arguments = new object[parameters.Count];
arguments[0] = entityInstanceIdentifier;

//Execute
ect.Execute(mi, lobi, ref arguments);

//Display
PropertyInfo[] props = arguments[1].GetType().GetProperties();
PropertyInfo prop = props[0];
SqlDataReader reader = (SqlDataReader)(prop.GetValue(arguments[1], null));

if (reader.HasRows)
{
 while (reader.Read())
 {
 Console.WriteLine(reader.GetString(3) + “ “ + reader.GetString(5));
 }
}

 Note how the arguments are passed by reference to the Execute() method. This is required
because the return parameter is placed in the array during execution. You can then read out the
return parameter and cast it to an appropriate type for display. In the code sample the return
parameter is cast to a SqlDataReader , which is the type returned from methods that use the
SQL connector.

 While CRUD operations are certainly the most common in BCS solutions, accessing
documents through streams is often a critical part of any SharePoint solution. Therefore, the
 StreamAccessor stereotype stands out as important. The Execute() method can be used to
invoke a StreamAccessor method and return a stream for downloading. The following code
shows a typical StreamAccessor method defi ned in a BDC Metadata Model:

 <Method Name=”ReadContents” DefaultDisplayName=”Read Contents”>
 <Parameters>
 <Parameter Name=”id” Direction=”In”>
 <TypeDescriptor Name=”ID” IdentifierName=”ID”
 TypeName=”System.Int32” IsCollection=”false” />
 </Parameter>
 <Parameter Name=”contents” Direction=”Return”>
 <TypeDescriptor Name=”Contents” TypeName=”System.IO.Stream” />
 </Parameter>
 </Parameters>
 <MethodInstances>
 <MethodInstance Name=”ReadContents” Type=”StreamAccessor”

Working with the BDC Server Runtime Object Model ❘ 157

www.it-ebooks.info

http://www.it-ebooks.info

158 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

 ReturnParameterName=”contents” ReturnTypeDescriptorPath=”Contents”
 DefaultDisplayName=”ReadContents”>
 </MethodInstance>
 </MethodInstances>
</Method>

 The method instance returns a System.IO.Stream object based on a System.Int32 value. The
 Execute() method can be used to invoke the StreamAccessor if the two values are known.
The following code shows how the method instance can be invoked and the stream downloaded
to the client based on QueryString parameters passed into an ASPX page:

//Connect to server-side BCS
BdcServiceApplicationProxy proxy =
 (BdcServiceApplicationProxy)SPServiceContext.
 Current.GetDefaultProxy(typeof(BdcServiceApplicationProxy));

DatabaseBackedMetadataCatalog catalog =
 proxy.GetDatabaseBackedMetadataCatalog();

IEntity ect = catalog.GetEntity(“MyNamespace”, “DocumentECT”);
ILobSystem lob = ect.GetLobSystem();
ILobSystemInstance lobi = lob.GetLobSystemInstances()[“MyDMSInstance”];
IMethodInstance mi =
 ect.GetMethodInstance(“ReadContents”,
 MethodInstanceType.StreamAccessor);

//Call BCS to get stream
object[] args = { int.Parse(Request.QueryString[“DocumentId”]), null };
ect.Execute(mi, lobi, ref args);
byte[] buffer = ((MemoryStream)args[1]).ToArray();

//Download
this.Page.Response.Clear();
this.Page.Response.ClearHeaders();
this.Page.Response.AddHeader(“Content-Disposition”,
 “attachment; filename=\”” + Request.QueryString[“fileName”] + “\””);
this.Page.Response.AddHeader(“Content-Length”, buffer.Length.ToString());
this.Page.Response.BinaryWrite(buffer);
this.Page.Response.Flush();
this.Page.Response.End();

 While the Execute() method provides good functionality for executing any method instance,
most often the application code is tailored for the specifi c stereotype being invoked. The following
sections detail the support provided by the BDC Server Runtime object model for invoking specifi c
method stereotypes.

 Executing Finder Methods

 Finder methods are the backbone of any custom BCS application. To invoke a Finder method
instance you use the FindFiltered() method of the IEntity . The FindFiltered() method
returns entity instances from a Finder method using fi lter criteria. Table 5 - 2 shows the overloads
available for the FindFiltered() method.

www.it-ebooks.info

http://www.it-ebooks.info

 If the method is the default Finder method, its name does not need to be provided. If the
 Finder method to execute is not the default, its name is provided as a String value to
the FindFiltered() method. Be careful to use the name of the method instance as defi ned
in the BDC Metadata Model and not the name of the method.

 If the Finder method defi nes fi lters (such as a limit, wildcard, or page fi lters), these values must be
provided in the call to the FindFiltered() method. You can return an IFilterCollection by
calling the GetFilters() method of IMethodInstance . The values for the fi lters may then be set.
The following code shows how to get the fi lter collection and set values:

IMethodInstance mi = ect.GetMethodInstance(FinderMethodInstanceName,
 MethodInstanceType.Finder);
IFilterCollection filters = mi.GetFilters();
(filters[0] as LimitFilter).Value = 10;
(filters[1] as PageNumberFilter).Value = 2;
(filters[3] as WildcardFilter).Value = “Bike”;
(filters[4] as ComparisonFilter).Value = “CN123720”;

 In most applications you will already know what fi lters the method instance is expecting. In these
cases you may set the fi lters directly, as shown in the preceding code. If, however, you do not know
what fi lters are expected, you can determine this dynamically by iterating through the collection of
fi lters, as shown in the following code:

foreach (IFilter filter in filters)
{
 Console.WriteLine(“Filter Type: “ +
 filter.FilterDescriptor.FilterType.ToString());
 Console.WriteLine(“Filter Field: “ +
 filter.FilterDescriptor.FilterField);
}

 When executing the FindFiltered() method you may optionally specify an OperationMode for
the call, which allows data to be read from a cache. However, the OperationMode has no effect on
server - side operations. The purpose of the OperationMode is solely to maintain complementary
signatures between the BDC Client and BDC Server APIs. Remember that the server never caches

 TABLE 5 - 2: The FindFiltered() Method

 SIGNATURE DESCRIPTION

 FindFiltered (IFilterCollection ,

 ILobSystemInstance)

 Executes the default Finder method using the

given fi lters

 FindFiltered (IFilterCollection , String ,

 ILobSystemInstance)

 Executes a named Finder method using the

given fi lters

 FindFiltered (IFilterCollection , String ,

 ILobSystemInstance , OperationMode)

 Executes a named Finder method using the

given fi lters and Operation Mode

Working with the BDC Server Runtime Object Model ❘ 159

www.it-ebooks.info

http://www.it-ebooks.info

160 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

data — only model elements. The OperationMode has meaning only on the client. If you want
to cache data on the server, then you can utilize standard ASP.NET approaches such as the
 HttpRuntime.Cache within a custom web part.

 The FindFiltered() method returns a Microsoft.BusinessData.Runtime
.IEntityInstanceEnumerator . The IEntityInstanceEnumerator object provides a
forward - only collection of entity instances that you can read. After reading the entity instances
from the collection, the Close() method must be called to release the resources used to access
the External System. The following code shows the basic approach:

//Connect to BDC Service Application
BdcService service = SPFarm.Local.Services.GetValue < BdcService > ();

if (service != null)
{
//Get Metadata elements
 DatabaseBackedMetadataCatalog catalog =
 service.GetDatabaseBackedMetadataCatalog(SPServiceContext.Current);
 IEntity ect = catalog.GetEntity(EntityNamespace, EntityName);
 ILobSystem lob = ect.GetLobSystem();
 ILobSystemInstance lobi =
 lob.GetLobSystemInstances()[LobSystemInstanceName];
}

IMethodInstance mi = ect.GetMethodInstance(FinderMethodInstanceName,
 MethodInstanceType.Finder);
IFilterCollection filters = mi.GetFilters();

IEntityInstanceEnumerator items =
 ect.FindFiltered(filters, FinderMethodInstanceName);

while (items.MoveNext())
{
 Console.WriteLine(items.Current[FieldName].ToString());
}

items.Close();

 In addition to enumerating entity instances, you can also return entity instances in a
 System.Data.DataTable . You do this by calling the CreateDataTable() method of the
 Microsoft.BusinessData.Runtime.IRuntimeHelper interface. You can obtain this
interface through the Helper property of the DatabaseBackedMetadataCatalog object.
The CreateDataTable() method takes an IEntityInstanceEnumerator object and builds
a DataTable from it. The CreateDataTable() method can make it easier to work with
entity instances because the DataTable is a familiar and fl exible object. Additionally, the
 CreateDataTable() method supports options that allow for paging through entity instances.
The following code shows an example of the CreateDataTable() method:

//Connect to BDC Service Application
BdcService service = SPFarm.Local.Services.GetValue < BdcService > ();

if (service != null)

www.it-ebooks.info

http://www.it-ebooks.info

{
//Get Metadata elements
 DatabaseBackedMetadataCatalog catalog =
 service.GetDatabaseBackedMetadataCatalog(SPServiceContext.Current);
 IEntity ect = catalog.GetEntity(EntityNamespace, EntityName);
 ILobSystem lob = ect.GetLobSystem();
 ILobSystemInstance lobi =
 lob.GetLobSystemInstances()[LobSystemInstanceName];
}

IMethodInstance mi = ect.GetMethodInstance(FinderMethodInstanceName,
 MethodInstanceType.Finder);
IFilterCollection filters = mi.GetFilters();

IEntityInstanceEnumerator items =
 ect.FindFiltered(filters, FinderMethodInstanceName);

DataTable dt = ect.Catalog.Helper.CreateDataTable(items);

 Executing Specifi cFinder Methods

 To invoke a SpecificFinder method you use the FindSpecific() method of the IEntity
interface. The FindSpecific() method returns an IEntityInstance entity from a
 SpecificFinder method given an Identifier . Table 5 - 3 shows the overloads available for
the FindSpecific() method.

 TABLE 5 - 3: The FindSpecifi c() Method

 SIGNATURE DESCRIPTION

 FindSpecific (Identity ,

 ILobSystemInstance)

 Executes the default Specifi cFinder method with an

entity instance Identity

 FindSpecific (Identity ,

 ILobSystemInstance , Boolean)

 Executes the default Specifi cFinder method with

an entity instance Identity with option to execute

immediately

 FindSpecific (Identity , String ,

 ILobSystemInstance)

 Executes the named Specifi cFinder method with an

entity instance Identity

 FindSpecific (Identity , String ,

 ILobSystemInstance , OperationMode)

 Executes the named Specifi cFinder method with an

entity instance Identity in the specifi ed OperationMode

 FindSpecific (Identity , String ,

 ILobSystemInstance , Boolean)

 Executes the named Specifi cFinder method with

an entity instance Identity with option to execute

immediately

 FindSpecific (Identity , String ,

 ILobSystemInstance , OperationMode ,

 Boolean)

 Executes the named Specifi cFinder method with an

entity instance Identity in the specifi ed OperationMode

with option to execute immediately

Working with the BDC Server Runtime Object Model ❘ 161

www.it-ebooks.info

http://www.it-ebooks.info

162 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

 If the method is the default SpecificFinder method, its name does not need to be provided. If the
 SpecificFinder method to execute is not the default, its name is provided as a String value to
the FindSpecific() method. Be careful to use the name of the method instance as defi ned in the
BDC Metadata Model, and not the name of the method.

 When calling the FindSpecific() method you will always provide an Identity object, which
represents the Identifier for the desired entity instance. Simply create a new Identity object
using the appropriate value and pass the object as an argument. Identity objects can be created
with any data type, but be aware that String values are case - sensitive when used as Identifiers .
The following code shows how to call the FindSpecific() method:

//Connect to BDC Service Application
BdcService service = SPFarm.Local.Services.GetValue < BdcService > ();

if (service != null)
{
//Get Metadata elements
 DatabaseBackedMetadataCatalog catalog =
 service.GetDatabaseBackedMetadataCatalog(SPServiceContext.Current);
 IEntity ect = catalog.GetEntity(EntityNamespace, EntityName);
 ILobSystem lob = ect.GetLobSystem();
 ILobSystemInstance lobi =
 lob.GetLobSystemInstances()[LobSystemInstanceName];
}

//Execute SpecificFinder
int id = 5;
IMethodInstance mi =
 ect.GetMethodInstance(SpecificFinderMethodInstanceName,
 MethodInstanceType.SpecificFinder);
IEntityInstance item =
 ect.FindSpecific(new Identity(id),
 SpecificFinderMethodInstanceName,
 lobi, true);

 Executing Updater Methods

 To invoke an Updater method you fi rst use the FindSpecific() method to return the entity to
update. The fi eld values of the return entity may then be modifi ed and those modifi cations will
be committed through the Update() method of the IEntityInstance interface. In this scenario
two distinct operations are performed against the External System: the initial query to return
the item, and the operation that commits the changes. The following code shows how to use the
 Update() method:

//Connect to BDC Service Application
BdcService service = SPFarm.Local.Services.GetValue < BdcService > ();

if (service != null)
{

www.it-ebooks.info

http://www.it-ebooks.info

//Get Metadata elements
 DatabaseBackedMetadataCatalog catalog =
 service.GetDatabaseBackedMetadataCatalog(SPServiceContext.Current);
 IEntity ect = catalog.GetEntity(EntityNamespace, EntityName);
 ILobSystem lob = ect.GetLobSystem();
 ILobSystemInstance lobi =
 lob.GetLobSystemInstances()[LobSystemInstanceName];
}

//Execute SpecificFinder
int id = 5;
IMethodInstance mi =
 ect.GetMethodInstance(SpecificFinderMethodInstanceName,
 MethodInstanceType.SpecificFinder);
IEntityInstance item =
 ect.FindSpecific(new Identity(id),
 SpecificFinderMethodInstanceName,
 lobi, true);

//Update entity instance
item[“Title”] = “My Item”;
item[“Description”] = “An updated item”;

item.Update();

 Executing Creator Methods

 To invoke a Creator method you use the Create() method of the IEntity interface. The Create()
method returns an Identity representing the new entity instance. Table 5 - 4 shows the overloads
available for the Create() method.

 TABLE 5 - 4: The Create() Method

 SIGNATURE DESCRIPTION

 Create (IFieldValueDictionary ,

 ILobSystemInstance)

 Creates an entity instance

 Create (IFieldValueDictionary ,

 AssociationEntityInstancesDictionary ,

 ILobSystemInstance)

 Creates an entity instance and associates it

with other entity instances

 Create (IFieldValueDictionary , Identity ,

 ILobSystemInstance)

 Creates an entity instance with the given

Identifi er

 Create (IFieldValueDictionary , Identity ,

 AssociationEntityInstancesDictionary ,

 ILobSystemInstance)

 Creates an entity instance with the given

Identifi er and associates it with other entity

instances

Working with the BDC Server Runtime Object Model ❘ 163

www.it-ebooks.info

http://www.it-ebooks.info

164 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

 When calling the Create() method you will pass the values for the new entity instance in a
 Microsoft.BusinessData.Runtime.IFieldValueDictionary . The IFieldValueDictionary
can be created from a Microsoft.BusinessData.MetadataModel.IView interface. This
interface represents all the fi elds that are associated with a given method instance. After
obtaining the IFieldValueDictionary object you may either set values for the new entity
instance or use the default values, as shown in the following code:

//Connect to BDC Service Application
BdcService service = SPFarm.Local.Services.GetValue < BdcService > ();

if (service != null)
{
//Get Metadata elements
 DatabaseBackedMetadataCatalog catalog =
 service.GetDatabaseBackedMetadataCatalog(SPServiceContext.Current);
 IEntity ect = catalog.GetEntity(EntityNamespace, EntityName);
 ILobSystem lob = ect.GetLobSystem();
 ILobSystemInstance lobi =
 lob.GetLobSystemInstances()[LobSystemInstanceName];
}

//Create new entity instance with default values
IView createView = ect.GetCreatorView(CreatorMethodInstanceName);
IFieldValueDictionary fieldValueDictionary = createView.GetDefaultValues();
ect.Create(fieldValueDictionary, lobi);

 Executing Deleter Methods

 To invoke a Deleter method you fi rst use the FindSpecific() method to return the entity
instance to delete. The entity instance may then be deleted with the Delete() method of the
 IEntityInstance interface. The following code shows how to use the Delete() method:

//Connect to BDC Service Application
BdcService service = SPFarm.Local.Services.GetValue < BdcService > ();

if (service != null)
{
//Get Metadata elements
 DatabaseBackedMetadataCatalog catalog =
 service.GetDatabaseBackedMetadataCatalog(SPServiceContext.Current);
 IEntity ect = catalog.GetEntity(EntityNamespace, EntityName);
 ILobSystem lob = ect.GetLobSystem();
 ILobSystemInstance lobi =
 lob.GetLobSystemInstances()[LobSystemInstanceName];
}

//Execute SpecificFinder
int id = 5;
IMethodInstance mi =
 ect.GetMethodInstance(SpecificFinderMethodInstanceName,
 MethodInstanceType.SpecificFinder);

www.it-ebooks.info

http://www.it-ebooks.info

IEntityInstance item =
 ect.FindSpecific(new Identity(id),
 SpecificFinderMethodInstanceName,
 lobi, true);

//Delete entity instance
item.Delete();

 Executing AssociationNavigator Methods

 To invoke an AssociationNavigator method you fi rst use the FindSpecific() method to return the
source entity in the association. In order to return the entity instances associated with the source entity
you call the FindAssociated() method of the IEntity interface. The FindAssociatedMethod()
returns the associated entity instances in an IEntityInstanceEnumerator , just like a Finder
method. You may then use any of the techniques discussed previously to access the data contained in
the associated entity instances. The following code shows a complete console application that returns
associated entity instances:

static void Main(string[] args)
{
 try
 {

 if (args.Count() != 8)
 throw new Exception(“Useage: ExecuteAssociationNavigators
 SiteCollectionUrl,
 LobSystemInstance,
 SourceEntityName,
 DestinationEntityName, EntityNamespace,
 SpecificFinderMethodInstance,
 AssociationNavigatorMethodInstance,
 EntityInstanceIdentifier”);

 string siteCollectionUrl = args[0];
 string lobSystemInstance = args[1];
 string sourceEntityName = args[2];
 string destinationEntityName = args[3];
 string entityNamespace = args[4];
 string specificFinderMethodInstance = args[5];
 string associationNavigatorMethodInstance = args[6];
 string entityInstanceIdentifier = args[7];

 using (SPSite site = new SPSite(siteCollectionUrl))
 {
 //Connect to the BDC Service Application proxy
 BdcService service =
 SPFarm.Local.Services.GetValue < BdcService > ();

 if (service == null)
 throw new Exception(“No BDC Service Application found.”);

 //Connect to metadata catalog
 DatabaseBackedMetadataCatalog catalog =

Working with the BDC Server Runtime Object Model ❘ 165

www.it-ebooks.info

http://www.it-ebooks.info

166 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

 service.GetDatabaseBackedMetadataCatalog(
 SPServiceContext.GetContext(site));

 //Get Source ECT and Destination ECT
 IEntity sourceEct = catalog.GetEntity(
 entityNamespace, sourceEntityName);
 IEntity destinationEct = catalog.GetEntity(
 entityNamespace, destinationEntityName);

 //Get LobSystem
 ILobSystem lob = sourceEct.GetLobSystem();

 //Get LobSystemInstance
 ILobSystemInstance lobi =
 lob.GetLobSystemInstances()[lobSystemInstance];

 //Get SpecificFinder Method Instance
 IMethodInstance mi =
 sourceEct.GetMethodInstance(specificFinderMethodInstance,
 MethodInstanceType.SpecificFinder);

 //Get AssociationNavigator method instance
 IAssociation association =
 (IAssociation)destinationEct.GetMethodInstance(
 associationNavigatorMethodInstance,
 MethodInstanceType.AssociationNavigator);

 //Get Source Entity Instance
 IEntityInstance sourceItem = sourceEct.FindSpecific(
 new Identity(int.Parse(entityInstanceIdentifier)), lobi, true);
 EntityInstanceCollection sourceInstances =
 new EntityInstanceCollection(1);
 sourceInstances.Add(sourceItem);

 //Get Associated Entity Instances
 IEntityInstanceEnumerator destinationItems =
 destinationEct.FindAssociated(sourceInstances,
 association, lobi, OperationMode.Online);

 //Display
 IView destinationView =
 destinationEct.GetDefaultSpecificFinderView();
 DataTable dt =
 destinationEct.Catalog.Helper.CreateDataTable(
 destinationItems);

 foreach (DataRow row in dt.Rows)
 {
 for (int i = 0; i < row.ItemArray.Length; i++)
 {
 Console.WriteLine(row.ItemArray[i]);
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info

 }
 }
 catch (Exception x)
 {
 Console.WriteLine(x.Message);
 }
}

 WORKING WITH COMPLEX AND UNSUPPORTED TYPES

 While BCS often makes it easy to create External Lists for different data sources, some External
Systems may expose complex or unsupported types that cannot be rendered by default in
External Lists or the External Data Web Parts. Complex types are defi ned as types that contain
subtypes as fi elds. Unsupported types are types that cannot be displayed in External Lists. In
these cases you may choose to create custom InfoPath forms, defi ne formatting in the BDC
Metadata Model, or develop a custom fi eld type to display the data.

 The classic example of a complex type is a Customer ECT that has an Address fi eld that is
composed of Street , City , State , and Zip . These data types are most often found in web
services, where it is easy to defi ne custom classes that encapsulate data. The following code
shows the service contract for a simple web service that defi nes a complex type:

[ServiceContract]
public interface IService
{

 [OperationContract]
 List < Customer > GetCustomers();

 [OperationContract]
 Customer GetCustomer(string Id);

 [OperationContract]
 void CreateCustomer(string FirstName, string LastName);

 [OperationContract]
 void UpdateCustomer(string Id, string FirstName, string LastName);

 [OperationContract]
 void DeleteCustomer(string Id);

}

[DataContract]
public class Customer
{
 [DataMember]
 public string CustomerNumber { get; set; }
 [DataMember]

Working with Complex and Unsupported Types ❘ 167

www.it-ebooks.info

http://www.it-ebooks.info

168 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

 public string FirstName { get; set; }
 [DataMember]
 public string LastName { get; set; }
 [DataMember]
 public Address BusinessAddress { get; set; }
}

[DataContract]
public class Address
{
 [DataMember]
 public string Street { get; set; }
 [DataMember]
 public string City { get; set; }
 [DataMember]
 public string State { get; set; }
 [DataMember]
 public string Zip { get; set; }
}

 Notice that the GetCustomers() and GetCustomer() operations both return Customer objects.
The Customer class defi nes a BusinessAddress fi eld that is itself a class. The Customer is therefore
said to be a complex type from the BCS perspective. Furthermore, an External List created against
this web service will not display the BusinessAddress fi eld in either the list or the associated forms.
Figure 5 - 1 shows the associated form with the complex type missing.

 FIGURE 5 - 1

 Unsupported data types are not rendered in External Lists. The unsupported data types are System
.GUID , System.Object , System.URI , System.UInt64 , and System.Int64 . If you attempt to create
a model based on an External System that uses unsupported data types, the SharePoint Designer
will issue a warning. Figure 5 - 2 shows a warning in the SharePoint designer for an External System
that contains an Int64 fi eld.

www.it-ebooks.info

http://www.it-ebooks.info

 Using InfoPathForms for Display

 The simplest way to handle complex and unsupported types is to use a custom InfoPath form to
render them. After creating the External List, click the Design Forms in InfoPath button in the
SharePoint Designer, as described in Chapter 4. For complex types InfoPath will open with a blank
form, because it does not attempt to create a layout by default for complex types. However, the
schema for the complex type will be available, as shown in Figure 5 - 3.

 FIGURE 5 - 2

 FIGURE 5 - 3

Working with Complex and Unsupported Types ❘ 169

www.it-ebooks.info

http://www.it-ebooks.info

170 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

 Using the fi elds, you can lay out the new form as required. When you are fi nished, click the Quick
Publish button to publish the form. Now the complex type will render as shown in Figure 5 - 4.

 FIGURE 5 - 4

 In the case of unsupported data types, InfoPath will open with a form layout defi ned and the
unsupported data type will be visible in a control. In this case all you have to do is Quick Publish
the form and the unsupported type will appear. Figure 5 - 5 shows an InfoPath form displaying an
 Int64 fi eld in an External List.

 FIGURE 5 - 5

www.it-ebooks.info

http://www.it-ebooks.info

 Using Complex Formatting for Display

 Complex formatting is used with complex types to convert them into a form that can be more easily
displayed in custom web parts. Complex formatting is defi ned directly in the BDC Metadata Model
and uses either a formatting string directive or a custom rendering method call. Which you use
depends on how much control you need over the formatting. The following code shows a Finder
method defi nition that uses a formatting string directive against the web service described earlier:

 <Method Name=”ReadList”>
 <Parameters>
 <Parameter Name=”complexCustomerList” Direction=”Return”>
 <TypeDescriptor Name=”ComplexCustomerList”
 TypeName=”System.Collections.Generic.IEnumerable`1[[
 ComplexTypeConnector.ComplexCustomer, ComplexCustomerModel]]”
 IsCollection=”true”>
 <TypeDescriptors>
 <TypeDescriptor Name=”ComplexCustomer”
 TypeName=”ComplexTypeConnector.ComplexCustomer, ComplexCustomerModel”
 IsCollection=”false”>
 <Properties>
 <Property Name=”ComplexFormatting” Type=”System.String”></Property>
 </Properties>
 <TypeDescriptors>
 <TypeDescriptor Name=”CustomerNumber” TypeName=”System.String”
 IdentifierName=”CustomerNumber” />
 <TypeDescriptor Name=”FirstName” TypeName=”System.String” />
 <TypeDescriptor Name=”LastName” TypeName=”System.String” />
 <TypeDescriptor Name=”BusinessAddress”
 TypeName=”ComplexTypeConnector.Address, ComplexCustomerModel”
 IsCollection=”false”>
 <Properties>
 <Property Name=”FormatString” Type=”System.String”>
 {0}, {1}, {2} {3}
 </Property>
 </Properties>
 <TypeDescriptors>
 <TypeDescriptor Name=”Street” TypeName=”System.String” />
 <TypeDescriptor Name=”City” TypeName=”System.String” />
 <TypeDescriptor Name=”State” TypeName=”System.String” />
 <TypeDescriptor Name=”Zip” TypeName=”System.String” />
 </TypeDescriptors>
 </TypeDescriptor>
 </TypeDescriptors>
 </TypeDescriptor>
 </TypeDescriptors>
 </TypeDescriptor>
 </Parameter>
 </Parameters>

 The ComplexFormatting property of the TypeDescriptor signals BCS that the TypeDescriptor
will use complex formatting to format the parameter. The FormatString property defi nes a string
that will be constructed of the values of the TypeDescriptors in the BusinessAddress fi eld.

Working with Complex and Unsupported Types ❘ 171

www.it-ebooks.info

http://www.it-ebooks.info

172 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

In this case the Street , City , State , and Zip are formatted as a simple comma - delimited line
of text. This formatted value may then be retrieved through the GetFormatted() method of the
 IEntityInstance interface, as shown in the following code:

//Use BCS to call the external system
BdcServiceApplicationProxy proxy =
 (BdcServiceApplicationProxy)SPServiceContext.
 Current.GetDefaultProxy(typeof(BdcServiceApplicationProxy));

DatabaseBackedMetadataCatalog catalog =
 proxy.GetDatabaseBackedMetadataCatalog();

IEntity ect = catalog.GetEntity(
 “ComplexTypeConnector.ComplexCustomerModel”, “ComplexCustomer”);

ILobSystem lob = ect.GetLobSystem();
ILobSystemInstance lobi =
 lob.GetLobSystemInstances()[“ComplexCustomerModel”];

//Retrieve items
IMethodInstance mi = ect.GetMethodInstance(“ReadList”,
 MethodInstanceType.Finder);
IFilterCollection filters = mi.GetFilters();
IEntityInstanceEnumerator items = ect.FindFiltered(filters,
 “ReadList”, lobi, OperationMode.Online);

List < ComplexCustomer > customers = new List < ComplexCustomer > ();

while (items.MoveNext())
{
 ComplexCustomer customer = new ComplexCustomer();
 customer.CustomerNumber = items.Current[“CustomerNumber”].ToString();
 customer.FirstName = items.Current[“FirstName”].ToString();
 customer.LastName = items.Current[“LastName”].ToString();
 customer.Address =
 items.Current.GetFormatted(“BusinessAddress”).ToString();
 customers.Add(customer);
}

 If the formatting string directive does not provide the capability you need, you may take complete
control of how the complex type is formatted by using a custom rendering method. A custom
rendering method is a public static method that takes an array of Object and returns a String .
The array contains the values for all the sub - fi elds, which you can format and return as text. The
following code shows a simple custom rendering method for the BusinessAddress fi eld:

public static string Render(Object[] values)
{
 string formattedAddress = values[0].ToString() + “, “ +
 values[1].ToString() + “, “ + values[2].ToString() + “ “ +
 values[3].ToString();
 return formattedAddress;
}

www.it-ebooks.info

http://www.it-ebooks.info

 Invoking the custom rendering method is done in the BDC Metadata Model. Just like the formatting
string directive, the ComplexFormatting property tells BCS that the TypeDescriptor has complex
formatting. In this case, however, the RendererDefinition property is used to reference the
custom rendering method. The following code shows a SpecificFinder method that uses a custom
rendering method:

 <Method Name=”ReadItem”>
 <Parameters>
 <Parameter Name=”complexCustomer” Direction=”Return”>
 <TypeDescriptor Name=”ComplexCustomer”
 TypeName=”ComplexTypeConnector.ComplexCustomer, ComplexCustomerModel”
 IsCollection=”false”>
 <Properties>
 <Property Name=”ComplexFormatting” Type=”System.String”></Property>
 </Properties>
 <TypeDescriptors>
 <TypeDescriptor Name=”BusinessAddress”
 TypeName=”ComplexTypeConnector.Address, ComplexCustomerModel”
 IsCollection=”false”>
 <Properties>
 <Property Name=”RendererDefinition” Type=”System.String”>
Render!ComplexTypeConnector.ComplexCustomerModel.ComplexCustomerService,
ComplexTypeConnector, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=54683373a69d23a2</Property>
 </Properties>
 <TypeDescriptors>
 <TypeDescriptor Name=”Street” TypeName=”System.String” />
 <TypeDescriptor Name=”City” TypeName=”System.String” />
 <TypeDescriptor Name=”State” TypeName=”System.String” />
 <TypeDescriptor Name=”Zip” TypeName=”System.String” />
 </TypeDescriptors>
 </TypeDescriptor>
 <TypeDescriptor Name=”CustomerNumber” TypeName=”System.String”
 IdentifierName=”CustomerNumber” />
 <TypeDescriptor Name=”FirstName” TypeName=”System.String” />
 <TypeDescriptor Name=”LastName” TypeName=”System.String” />
 </TypeDescriptors>
 </TypeDescriptor>
 </Parameter>
 <Parameter Name=”customerNumber” Direction=”In”>
 <TypeDescriptor Name=”CustomerNumber” TypeName=”System.String”
 IdentifierEntityName=”ComplexCustomer”
 IdentifierEntityNamespace=”ComplexTypeConnector.ComplexCustomerModel”
 IdentifierName=”CustomerNumber” />
 </Parameter>
 </Parameters>
 <MethodInstances>
 <MethodInstance Name=”ReadItem” Type=”SpecificFinder”
 ReturnParameterName=”complexCustomer”
 ReturnTypeDescriptorPath=”ComplexCustomer” />
 </MethodInstances>
</Method>

Working with Complex and Unsupported Types ❘ 173

www.it-ebooks.info

http://www.it-ebooks.info

174 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

 Notice that the value of the RendererDefinition property starts with the name of the static
method followed by a bang (!) operator. This operator is followed by the fully qualifi ed type name
of the class that contains the method. Finally, the fully qualifi ed name of the assembly containing
the class follows. Invocation of the formatting is done through the GetFormatted() method,
as described earlier. Figure 5 - 6 shows the formatted fi eld in the custom web part based on the
 SPGridView control.

 FIGURE 5 - 6

 Using Custom Field Types for Display

 Another option for displaying complex or unsupported types is to create a custom fi eld type. A
custom fi eld type enables you to specify a new kind of fi eld that can handle unsupported or complex
types. Once this fi eld is registered it can be used by BCS to render the types. The following code
shows the defi nition of a SpecificFinder method that uses a custom fi eld type to render the
normally unsupported Int64 fi eld named LegacyMainframeID . The SPCustomFieldType property
contains the name of the custom fi eld type to use in the External List.

 <Method Name=”Read Item” DefaultDisplayName=”LegacyCompany Read Item”>
 <Properties>
 <Property Name=”BackEndObject”
 Type=”System.String”>LegacyCompanyData</Property>
 <Property Name=”BackEndObjectType”
 Type=”System.String”>SqlServerTable</Property>
 <Property Name=”RdbCommandText” Type=”System.String”>
 SELECT [CompanyIdentifier] , [LegacyMainframeID] , [CompanyName]
 FROM [dbo].[LegacyCompanyData] WHERE [CompanyIdentifier] =
 @CompanyIdentifier</Property>
 <Property Name=”RdbCommandType” Type=”System.Data.CommandType,
 System.Data, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089”>Text</Property>
 <Property Name=”Schema” Type=”System.String”>dbo</Property>
 </Properties>
 <Parameters>
 <Parameter Direction=”In” Name=”@CompanyIdentifier”>
 <TypeDescriptor TypeName=”System.Int32”
 IdentifierName=”CompanyIdentifier” Name=”CompanyIdentifier” />
 </Parameter>

www.it-ebooks.info

http://www.it-ebooks.info

 <Parameter Direction=”Return” Name=”Read Item”>
 <TypeDescriptor TypeName=”System.Data.IDataReader, System.Data,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”
 IsCollection=”true” Name=”Read Item”>
 <TypeDescriptors>
 <TypeDescriptor TypeName=”System.Data.IDataRecord, System.Data,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089”
 Name=”Read ItemElement”>
 <TypeDescriptors>
 <TypeDescriptor TypeName=”System.Int32” ReadOnly=”true”
 IdentifierName=”CompanyIdentifier” Name=”CompanyIdentifier” />
 <TypeDescriptor TypeName=”System.Int64” Name=”LegacyMainframeID”>
 <Properties>
 <Property Name=”SPCustomFieldType” Type=”System.String”>
 BCSInt64Field
 </Property>
 </Properties>
 </TypeDescriptor>
 <TypeDescriptor TypeName=”System.String” Name=”CompanyName” />
 </TypeDescriptors>
 </TypeDescriptor>
 </TypeDescriptors>
 </TypeDescriptor>
 </Parameter>
 </Parameters>
 <MethodInstances>
 <MethodInstance Type=”SpecificFinder” ReturnParameterName=”Read Item”
 ReturnTypeDescriptorPath=”Read Item[0]” Default=”true” Name=”Read Item”
 DefaultDisplayName=”LegacyCompany Read Item”>
 </MethodInstance>
 </MethodInstances>
</Method>

 Custom fi eld types are not unique to BCS, but are a standard SharePoint feature. Custom fi eld types
are used throughout SharePoint to present specialized data such as HTML or rich text. While an
entire chapter could easily be written on custom fi eld-type development, this section will detail
the basic artifacts that must be created for a custom fi eld type. Custom fi eld types are created as
SharePoint features and each is implemented as a class that inherits from one of the several existing
fi eld types. In the case of the BCSInt64Field defi ned in the sample, a class was defi ned that inherits
from Microsoft.SharePoint.SPFieldText , which represents a text fi eld. The following code
shows the defi nition for the custom fi eld type:

public class BCSInt64Field : SPFieldText
{
 public BCSInt64Field(SPFieldCollection fields, string fieldName)
 : base(fields, fieldName)
 { }

 public BCSInt64Field(SPFieldCollection fields,
 string typeName, string displayName)

Working with Complex and Unsupported Types ❘ 175

www.it-ebooks.info

http://www.it-ebooks.info

176 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

 : base(fields, typeName, displayName)
 { }

 public override object GetFieldValue(string value)
 {
 return Convert.ToInt64(value);
 }

 public override string TypeDisplayName
 {
 get
 {
 return “BCSInt64Field”;
 }
 }

 public override BaseFieldControl FieldRenderingControl
 {
 get
 {
 BaseFieldControl fc = new BCSInt64FieldControl();
 fc.FieldName = InternalName;
 fc.DisplayTemplateName = “BCSInt64FieldControl”;
 return fc;
 }
 }
}

 The key part of the code is the GetFieldValue() method, which returns the underlying Int64
value as text. This allows the value to be displayed in the fi eld. Also take note of the override for
 FieldRenderingControl . This method returns a custom fi eld control that supports rendering
the fi eld data. The custom fi eld control inherits from Microsoft.SharePoint.WebControls
.BaseFieldControl . This class is largely responsible for moving data between SharePoint and
a user control that displays the data. The following code shows the fi eld control class for the
 BCSInt64Field fi eld:

public class BCSInt64FieldControl : BaseFieldControl
{
 protected TextBox number = new TextBox();
 protected override string DefaultTemplateName
 {
 get
 {
 return “BCSInt64FieldControl”;
 }
 }

 protected override void CreateChildControls()
 {
 if (this.Field != null & & this.ControlMode != SPControlMode.Display)

www.it-ebooks.info

http://www.it-ebooks.info

 {
 base.CreateChildControls();
 this.number = (TextBox)TemplateContainer.FindControl(“number”);
 }
 }

 public override object Value
 {
 get
 {
 EnsureChildControls();
 String val = number.Text.Trim();
 if (String.IsNullOrEmpty(val))
 {
 val = “0”;
 }
 return Convert.ToInt64(val);
 }
 set
 {
 EnsureChildControls();
 number.Text = Convert.ToString((Int64)this.ItemFieldValue);
 }
 }
}

 The custom fi eld control typically displays data through a template defi ned in a user
control. The template is defi ned inside an ASCX fi le that is deployed to the CONTROLTEMPLATES
directory. The following code shows the user control for the BCSInt64Field fi eld. Note that the
 ID for the control matches the template name referenced by the fi eld control.

 <SharePoint:RenderingTemplate ID=”Int64FieldControl” runat=”server”>
 <Template>
 <asp:TextBox ID=”number” runat=”server” />
 </Template>
</SharePoint:RenderingTemplate>

 When a new fi eld - type - and - fi eld - control pairing is deployed, an XML fi le detailing the new fi eld
must be deployed to the 14\TEMPLATE\XML folder. The name of this fi le must start with fldtypes_ .
When IIS is reset, SharePoint reads all the fi les that begin with this string and makes them available
as fi elds. The following code shows the fi eld type detail for the BCSInt64Field fi eld:

 <?xml version=”1.0” encoding=”utf-8” ?>
<FieldTypes>
 <FieldType>
 <Field Name=”TypeName”>BCSInt64Field</Field>
 <Field Name=”ParentType”>Text</Field>
 <Field Name=”TypeDisplayName”>BCS Int64 Field</Field>
 <Field Name=”TypeShortDescription”>64-bit integer</Field>
 <Field Name=”UserCreatable”>TRUE</Field>

Working with Complex and Unsupported Types ❘ 177

www.it-ebooks.info

http://www.it-ebooks.info

178 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

 <Field Name=”ShowInListCreate”>TRUE</Field>
 <Field Name=”ShowInSurveyCreate”>TRUE</Field>
 <Field Name=”ShowInDocumentLibraryCreate”>TRUE</Field>
 <Field Name=”ShowInColumnTemplateCreate”>TRUE</Field>
 <Field Name=”Filterable”>FALSE</Field>
 <Field Name=”Sortable”>FALSE</Field>
 <Field Name=”FieldTypeClass”>Int64FieldType.BCSInt64Field,
 Int64FieldType, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=920426781bd0a3b7</Field>
 </FieldType>
</FieldTypes>

 ADVANCED WORKFLOW SOLUTIONS

 Chapter 4 presented techniques for accessing External Lists using SharePoint Designer workfl ows.
Specifi cally, techniques were presented that used site workfl ows and External Columns. While
these techniques are useful, they suffer from some limitations. This section will examine advanced
techniques for accessing External Lists through custom workfl ows, including custom Visual Studio
workfl ows, pluggable workfl ow services, and Sandbox workfl ow actions.

 Before beginning a detailed discussion of workfl ow solutions, it is important that we revisit some
security issues that directly affect workfl ow development. In particular, all workfl ow solutions
suffer from the limitation that the user security token is unavailable. This means that access to
External Lists through workfl ow solutions must be done with a Trusted Subsystem model whereby
a single account is used. This is true both in custom Visual Studio workfl ow solutions and in
Sandboxed solutions.

 Custom Visual Studio workfl ow solutions present the biggest challenge because the workfl ow can
execute in a number of different contexts, including the w3wp.exe process and the owstimer.exe
process. A simple solution to this problem is to access the External Lists using RevertToSelf as
the authentication mode. However, this allows highly privileged accounts to perform operations
for end users, so there is some security risk. As an alternative you can map the managed accounts
associated with the w3wp.exe and owstimer.exe processes to an account defi ned in the Secure
Store Service.

 Sandboxed Solutions, such as Sandbox workfl ow actions, run in the SPUCWorkerProcessProxy.exe
process. In this case you must map the managed account running the SPUCWorkerProcessProxy
.exe process to an account defi ned in the Secure Store Service. There is no option to run Sandboxed
Solutions as RevertToSelf . This is explicitly blocked by BCS because of the security risks involved
with untrusted code running under such a privileged account. In fact, BCS blocks access to External
Lists for several combinations of connectors and security options in workfl ow and Sandboxed
solutions, as shown in Table 5 - 5. It ’ s also important to note that hosted environments, such as
SharePoint Online, block all combinations except that of the Secure Store Service used with the
SQL and WCF connectors.

www.it-ebooks.info

http://www.it-ebooks.info

 Developing Visual Studio Workfl ows

 Development of classic Visual Studio workfl ows needs only a brief discussion. As long as your
solution observes the security restrictions outlined previously, you are free to use the BDC
Server Runtime object model within a workfl ow, either in a code activity or in a custom activity.
Additionally, you can use all the other available activities in support.

 Developing Pluggable Services

 You can use Pluggable Services to send messages out of a workfl ow and receive a response. Pluggable
Services are interesting in BCS solutions because they offer the possibility of two - way communication
between SharePoint and External Systems. Chapter 2 hinted at this capability by describing a
scenario in which a workfl ow is running in SharePoint and then sends a message to MSCRM to
generate a proposal document. When the proposal document is complete, MSCRM notifi es the
workfl ow, which continues. This approach allows BCS solutions not only to access the data available
in External Systems, but also to access any functionality offered by an External System.

 In order to create a pluggable service you must create a class that inherits from Microsoft
.SharePoint.Workflow.SPWorkflowExternalDataExchangeService . Additionally, several classes
and interfaces must be created to support the service. Finally, you must create a workfl ow that uses
the Call External Method and Handle External Event activities to manage the communication.

 When you ’ re building the service, the fi rst step is to create both an interface that defi nes the method
that will send data out of the workfl ow, and the event that will fi re when the External System is
fi nished working. The event will contain custom arguments that must also be defi ned. The following
code shows the interface and event arguments for a Pluggable Service that will generate proposals:

[ExternalDataExchange]
public interface IProposalService
{
 event EventHandler < CompletedEventArgs > MessageFromExternalSystem;
 void MessageToExternalSystem(string CustomerName);
}

[Serializable]
public class CompletedEventArgs : ExternalDataEventArgs

 TABLE 5 - 5: Blocked Workfl ow and Sandbox Combinations

 AUTHENTICATION

MODE SQL WCF

 .NET ASSEMBLY

CONNECTOR

 CUSTOM

CONNECTOR

 Passthrough Blocked Blocked Allowed Allowed

 RevertToSelf Blocked for Sandbox only Allowed Allowed Allowed

 Secure Store Allowed Allowed Allowed Allowed

 Claims Blocked Blocked Blocked Blocked

Advanced Workfl ow Solutions ❘ 179

www.it-ebooks.info

http://www.it-ebooks.info

180 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

{
 public CompletedEventArgs(Guid id) : base(id) { }
 public string Message { get; set; }
}

 Because the operations performed by the External System may be long - running, the Pluggable
Service should maintain state information that it can return to the workfl ow. This will allow
the workfl ow to have context when it resumes. State information is maintained in a simple class
like the one shown in the following code:

class StateInformation
{
 public SPWeb Web { get; set; }
 public Guid InstanceId { get; set; }

 public StateInformation(Guid instanceId, SPWeb web)
 {
 this.InstanceId = instanceId;
 this.Web = web;
 }
}

 The service itself is created as a separate class that implements the interface defi ned previously and
inherits from SPWorkflowExternalDataExchangeService . In the example, the OpenXML API is
used to create a new Word document that simulates the proposal generation. All the work is done
through an anonymous method delegate on a separate thread. When the work is complete the event
is raised, notifying the workfl ow that the proposal has been created. The following code shows how
the service is implemented:

public class ProposalService : SPWorkflowExternalDataExchangeService,
 IProposalService
{
 public event EventHandler < CompletedEventArgs > MessageFromExternalSystem;

 //Perform long-running work
 public void MessageToExternalSystem(string CustomerName)
 {
 ThreadPool.QueueUserWorkItem(delegate(object state)
 {
 StateInformation stateInfo = state as StateInformation;

 using (WordprocessingDocument package =
 WordprocessingDocument.Create(
 “C:\\” + CustomerName + “ Proposal.docx”,
 WordprocessingDocumentType.Document))
 {
 //Create content
 Body body = new Body(
 new Paragraph(
 new Run(
 new Text(“Proposal for “ + CustomerName))));

 //Create package
 package.AddMainDocumentPart();

www.it-ebooks.info

http://www.it-ebooks.info

 package.MainDocumentPart.Document = new Document(body);
 package.MainDocumentPart.Document.Save();
 package.Close();
 }

 //Notify workflow that long -running work is complete
 RaiseEvent(stateInfo.Web,
 stateInfo.InstanceId,
 typeof(IProposalService),
 “MessageFromExternalSystem”,
 new object[] { “Completed Proposal for “ + CustomerName });

 }, new StateInformation(WorkflowEnvironment.WorkflowInstanceId,
 this.CurrentWorkflow.ParentWeb));

 }

 public override void CallEventHandler(Type eventType, string eventName,
 object[] eventData, SPWorkflow workflow, string identity, IPendingWork
 workHandler, object workItem)
 {
 var e = new CompletedEventArgs(workflow.InstanceId);
 e.Message = eventData[0].ToString();
 e.WorkHandler = workHandler;
 e.WorkItem = workItem;
 e.Identity = identity;
 this.MessageFromExternalSystem(null, e);
 }
}

 Once the service is created you may create a workfl ow that communicates with it. The Call External
Method activity is used to send a message out to the Pluggable Service. Figure 5 - 7 shows the activity
confi gured in the workfl ow.

 FIGURE 5 - 7

Advanced Workfl ow Solutions ❘ 181

www.it-ebooks.info

http://www.it-ebooks.info

182 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

 When the proposal is generated, the External System makes a call back into the workfl ow. The
Handle External Event activity is used to receive the message. Figure 5 - 8 shows the activity
confi gured in the workfl ow.

 FIGURE 5 - 8

 Once the workfl ow is developed it may be deployed to SharePoint. However, Pluggable Services
must be explicitly listed in the web.config fi le for the Web Application before they can be used.
Therefore you must add an entry like the following. Once web.config is updated the workfl ow can
be executed and the Pluggable Service invoked.

 <WorkflowServices>
 <WorkflowService Assembly=”PluggableService, Version=1.0.0.0,
 Culture=neutral, PublicKeyToken=722b0ac68bda4fa1”
 Class=”PluggableService.ProposalService” />
</WorkflowServices>

 Working with Sandbox Workfl ow Actions

 Standard workfl ows and Pluggable Services all require that full - trust code be deployed onto the
SharePoint server. In many cases you will not be able to deploy full - trust code and will want to
use declarative workfl ows. Chapter 4 presented some basic declarative workfl ow approaches for
interacting with External Lists, but the actions available in the SharePoint Designer were limited in
functionality. As an alternative you can create your own actions for use in SPD. These actions are
known as Sandbox workfl ow actions .

 The SharePoint SDK ships with two sample Sandbox workfl ow actions that can be used for reading
items from External Lists and reading fi elds from the items. These samples are a great place to start
and provide the basic functionality that would drive you to create a Sandbox workfl ow action in the

www.it-ebooks.info

http://www.it-ebooks.info

fi rst place. In order to understand Sandbox workfl ow actions better, consider the following code,
which retrieves an item from an External List based on the value of a fi eld. You saw something
similar in Chapter 4.

public class BCSReadActivities
{
 public static Hashtable GetExternalListItemByField(
 SPUserCodeWorkflowContext context,
 String externalListId,
 string fieldName,
 string fieldValue)
 {
 Hashtable returnValues = new Hashtable();
 returnValues[“ItemString”] = “”;

 using (SPSite site = new SPSite(context.SiteUrl))
 {
 using (SPWeb web = site.OpenWeb(context.WebUrl))
 {
 SPList externalList = web.Lists[new Guid(externalListId)];
 SPField keyField = externalList.Fields[fieldName];
 SPQuery query = new SPQuery();
 query.Query = string.Format(
 “<Where><Eq><FieldRef Name=’{0}’/>
 <Value Type=’{1}’>{2}</Value></Eq></Where>”,
 fieldName, keyField.TypeAsString, fieldValue);

 SPListItemCollection foundItems =
 externalList.GetItems(query);

 if (foundItems.Count > 0)
 {
 returnValues[“ItemString”] =
 SerializeItemData(foundItems[0]);
 }
 }
 }
 return returnValues;
 }
}

 Because SPD workfl ows do not implement any kind of looping constructs, the preceding activity is
designed to return an entire list item, as an XML string, to a variable in the workfl ow. The other
sample Sandbox workfl ow action in the SDK is designed to read fi elds from this returned value.
Between the two actions you can create SPD workfl ows that read values from External Lists.

 What ’ s important about this code is that it is running against the SPList object that represents the
External List. The SPList is available to the declarative solutions created in SPD when they run as
Sandboxed Solutions. Furthermore, the code is more effi cient than the out - of - the - box actions for
reading list items in SPD. Remember that the out - of - the - box actions must execute both the Finder
and the SpecificFinder on every read. The preceding custom Sandbox workfl ow action uses a
CAML query to return items more effi ciently.

Advanced Workfl ow Solutions ❘ 183

www.it-ebooks.info

http://www.it-ebooks.info

184 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

 In order for you to use the actions in SPD, an Elements fi le must be created with declarative
instructions that describe the action and how to represent it in SPD. These instructions dictate how
the sentences and hyperlinks appear when you are designing workfl ows in SPD. The following code
shows the portion of the Elements fi le that describes the action required to read a list item:

 <Elements xmlns=”http://schemas.microsoft.com/sharepoint/”>
 <WorkflowActions>
 <Action Name=”Get External List Item by Field (Sandboxed Function)”
 SandboxedFunction=”true”
 Assembly=”BCSSandboxedActivities, Version=1.0.0.0,
 Culture=neutral, PublicKeyToken=6c20fc6fd829ac73”
 ClassName=”Microsoft.SharePoint.Samples.BCSReadActivities”
 FunctionName=”GetExternalListItemByField”
 AppliesTo=”all” UsesCurrentItem=”true”
 Category=”User Code Actions”>
 <RuleDesigner Sentence=”Get List Item from list %1 by using %3
 for field %2.(Output: %4)”>
 <FieldBind Field=”externalListId” Text=”this list”
 Id=”1” DesignerType=”ListNames” />
 <FieldBind Field=”fieldName” Text=”this field”
 Id=”2” DesignerType=”TextBox” />
 <FieldBind Field=”fieldValue” Text=”this value”
 Id=”3” DesignerType=”TextBox” />
 <FieldBind Field=”ItemString” Text=”ItemString”
 Id=”4” DesignerType=”ParameterNames” />
 </RuleDesigner>
 <Parameters>
 <Parameter Name=”__Context”
 Type=”Microsoft.SharePoint.WorkflowActions.WorkflowContext,
 Microsoft.SharePoint.WorkflowActions” Direction=”In”
 DesignerType=”Hide” />
 <Parameter Name=”externalListId” Type=”System.String, mscorlib”
 Direction=”In” DesignerType=”ListNames”
 Description=”List to read external list entries from.” />
 <Parameter Name=”fieldName” Type=”System.String, mscorlib”
 Direction=”In” DesignerType=”TextBox”
 Description=”Field name to find the external list item by.” />
 <Parameter Name=”fieldValue” Type=”System.String, mscorlib”
 Direction=”In” DesignerType=”TextBox”
 Description=”Value to find the external list item by.” />
 <Parameter Name=”ItemString” Type=”System.String, mscorlib”
 Direction=”Out”
 Description=”String the represents the external list item.” />
 </Parameters>
 </Action>

 The Action element defi nes the assembly that contains the action. The Parameters element
contains a Parameter for each of the properties defi ned for the action. The Parameter defi nes the
data type and whether the property is an input or output value. The RuleDesigner element contains
multiple FieldBind elements that map property values in the action to parameters. The FieldBind
elements also defi ne the DesignerType attribute, which specifi es the control type that will appear
to the user working with the action. The Sentence attribute defi nes the sentence that will appear in
the workfl ow designer and maps the fi elds using tokens that begin with a percent (%) sign.

www.it-ebooks.info

http://www.it-ebooks.info

 Once the coding is completed and the Elements fi le created, the feature may be deployed to
SharePoint. The assembly is deployed to the Global Assembly Cache (GAC) while the Elements fi le
is deployed to the feature directory. At this point the action can be used in the SharePoint Designer,
as shown in Figure 5 - 9.

 FIGURE 5 - 9

 When you fi rst create custom actions you may be confused by the fact that the action is deployed
to the GAC. After all, the point of creating a Sandbox workfl ow action is to run the workfl ow
as a Sandboxed Solution. Well, the reality of declarative workfl ows is that they always run with
full trust, even when deployed as Sandboxed Solutions. This is safe, however, because the person
using the custom action can create only declarative solutions with it; no one can write custom code
that will run fully trusted. So a Sandbox workfl ow action will require the deployment of code to
the GAC and will run as fully trusted, but the declarative workfl ow itself can be deployed as a
Sandboxed Solution.

 WORKING WITH THE BDC ADMINISTRATION OBJECT MODEL

 Along with the BDC Server Runtime object model, BCS has a BDC Administration object model.
The BDC Administration object model enables you to manipulate the metadata for a BDC Metadata
Model. In order to work with the Administration object model you must set a reference to the
 Microsoft.BusinessData.dll and Microsoft.SharePoint.dll assemblies.

 Connecting to the Catalog

 As with the BDC Server Runtime object model, you must connect to the appropriate catalog before
you can manipulate the data. In the case of the BDC Administration object model you must connect to
the Microsoft.SharePoint.BusinessData.Administration.AdministrationMetadataCatalog
object. You do this through the GetAdministrationMetadataCatalog() method, using the same
approach as with the BDC Server Runtime object model. The following code shows how to connect
with the catalog if your code is running outside a SharePoint context. Inside the context you can use
the SPServiceContext object, as shown earlier.

//Connect to the BDC Service Application proxy
BdcService service = SPFarm.Local.Services.GetValue < BdcService > ();

if (service == null)
 throw new Exception(“No BDC Service Application found.”);

Working with the BDC Administration Object Model ❘ 185

www.it-ebooks.info

http://www.it-ebooks.info

186 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

//Connect to metadata catalog
AdministrationMetadataCatalog catalog =
 service.GetAdministrationMetadataCatalog(
 SPServiceContext.GetContext(siteCollection));

 Creating BDC Metadata Models in Code

 The BDC Administration object model provides a set of objects that allows you to manipulate
the Application Model XML. The names of the objects correspond closely to the names of the
elements in the Application Model. The following code shows how to create a Model , LobSystem ,
and LoBSystemInstance that connects to a SQL database using the Create() method of the
 Model class:

Model model = Model.Create(“MiniCRM”, true, catalog);
LobSystem lob = model.OwnedReferencedLobSystems.Create(
 “Customer”, true, SystemType.Database);
LobSystemInstance lobi = lob.LobSystemInstances.Create(“MiniCRM”, true);
lobi.Properties.Add(“AuthenticationMode”, “PassThrough”);
lobi.Properties.Add(“DatabaseAccessProvider”, “SqlServer”);
lobi.Properties.Add(“RdbConnection Data Source”, “AWSERVER”);
lobi.Properties.Add(“RdbConnection Initial Catalog”, “MiniCRM.Names”);
lobi.Properties.Add(“RdbConnection Integrated Security”, “SSPI”);
lobi.Properties.Add(“RdbConnection Pooling”, “true”);

 You create the ECT defi nition through the Create() method of the Entity class. You can defi ne
the basic information, such as name and namespace. Additionally you can add Identifiers for the
ECT. The following code shows how to create the ECT:

Entity ect = Entity.Create(“Customer”, “MiniCRM”, true,
 new Version(“1.0.0.0”), 10000,
 CacheUsage.Default, lob, model, catalog);

ect.Identifiers.Create(“CustomerId”, true, “System.Int32”);

 Once the ECT is created you can add method defi nitions. The methods can be any of the supported
stereotypes. Each method must have parameters, fi lters, and method instances defi ned. The
following code shows how to defi ne a SpecificFinder and Finder method:

Method specificFinder = ect.Methods.Create(
 “GetCustomer”, true, false, “GetCustomer”);

specificFinder.Properties.Add(“RdbCommandText”,
 “SELECT [CustomerId] ,[FullName] FROM MiniCRM.Names
 WHERE [CustomerId] = @CustomerId”);
specificFinder.Properties.Add(“RdbCommandType”, “Text”);

Parameter idParam = specificFinder.Parameters.Create(“@CustomerId”,
 true, DirectionType.In);

www.it-ebooks.info

http://www.it-ebooks.info

idParam.CreateRootTypeDescriptor(
 “CustomerId”, true, “System.Int32”, “CustomerId”,
 new IdentifierReference(“CustomerId”,
 new EntityReference(“MiniCRM”, “Customer”, catalog), catalog),
 null, TypeDescriptorFlags.None, null, catalog);

Parameter custParam = specificFinder.Parameters.Create(“Customer”,
 true, DirectionType.Return);

TypeDescriptor returnRootCollectionTypeDescriptor =
 custParam.CreateRootTypeDescriptor(
 “Customers”, true,
 “System.Data.IDataReader, System.Data, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089”,
 “Customers”, null, null, TypeDescriptorFlags.IsCollection,
 null, catalog);

TypeDescriptor returnRootElementTypeDescriptor =
 returnRootCollectionTypeDescriptor.ChildTypeDescriptors.Create(
 “Customer”, true,
 “System.Data.IDataRecord, System.Data,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089”,
 “Customer”, null, null, TypeDescriptorFlags.None, null);

returnRootElementTypeDescriptor.ChildTypeDescriptors.Create(
 “CustomerId”, true, “System.Int32”, “CustomerId”,
 new IdentifierReference(“CustomerId”,
 new EntityReference(“MiniCRM”, “Customer”, catalog), catalog),
 null, TypeDescriptorFlags.None, null);

returnRootElementTypeDescriptor.ChildTypeDescriptors.Create(
 “FirstName”, true, “System.String”, “FullName”,
 null, null, TypeDescriptorFlags.None, null);

specificFinder.MethodInstances.Create(“GetCustomer”,
 true, returnRootElementTypeDescriptor,
 MethodInstanceType.SpecificFinder, true);

Method finder = ect.Methods.Create(“GetCustomers”, true,
 false, “GetCustomers”);

finder.Properties.Add(“RdbCommandText”,
 “SELECT [CustomerId] , [FullName]FROM MiniCRM.Names”);
finder.Properties.Add(“RdbCommandType”, “Text”);

Parameter custsParam = finder.Parameters.Create(“Customer”,
 true, DirectionType.Return);

TypeDescriptor returnRootCollectionTypeDescriptor2 =
 custsParam.CreateRootTypeDescriptor(

Working with the BDC Administration Object Model ❘ 187

www.it-ebooks.info

http://www.it-ebooks.info

188 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

 “Customers”, true,
 “System.Data.IDataReader, System.Data,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089”,
 “Customers”, null, null, TypeDescriptorFlags.IsCollection,
 null, catalog);

TypeDescriptor returnRootElementTypeDescriptor2 =
 returnRootCollectionTypeDescriptor2.ChildTypeDescriptors.Create(
 “Customer”, true,
 “System.Data.IDataRecord, System.Data,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089”,
 “Customer”, null, null, TypeDescriptorFlags.None, null);

returnRootElementTypeDescriptor2.ChildTypeDescriptors.Create(
 “CustomerId”, true, “System.Int32”, “CustomerId”,
 new IdentifierReference(“CustomerId”,
 new EntityReference(“MiniCRM”, “Customer”, catalog), catalog),
 null, TypeDescriptorFlags.None, null);

returnRootElementTypeDescriptor2.ChildTypeDescriptors.Create(
 “FirstName”, true, “System.String”, “FullName”,
 null, null, TypeDescriptorFlags.None, null);

finder.MethodInstances.Create(“GetCustomers”, true,
 returnRootCollectionTypeDescriptor2,
 MethodInstanceType.Finder, true);

 Once the model is created it may be activated in the BDC Service Application. Activating the ECT
makes it available for use. The following code shows how to activate the ECT:

ect.Activate();

 Importing and Exporting Models

 In addition to creating models, you can also use the BDC Administration API to perform imports
and exports of models. This type of functionality can be useful if you want to create custom tools
to use with BCS. Importing and exporting is accomplished with the Import() and Export()
methods, respectively, of the AdministrationMetadataCatalog class. The following code shows
how to export the permissions from a BDC Metadata Model into a separate resource fi le using a
console application:

static void Main(string[] args)
{
 if (args.Count() != 2)
 throw new Exception(
 “Useage: ExportModelResources SiteCollectionUrl, ModelName”);

 using (SPSite site = new SPSite(args[0]))

www.it-ebooks.info

http://www.it-ebooks.info

 {
 //Connect to the BDC Service Application proxy
 BdcService service = SPFarm.Local.Services.GetValue < BdcService > ();

 if (service == null)
 throw new Exception(“No BDC Service Application found.”);

 //Connect to metadata catalog
 AdministrationMetadataCatalog catalog =
 service.GetAdministrationMetadataCatalog(
 SPServiceContext.GetContext(site));

 //Get model
 Model model = catalog.GetModel(args[1]);

 //Export permissions
 FileStream fs = new FileStream(“C:\\” + model.Name + “.xml”,
 FileMode.CreateNew, FileAccess.ReadWrite);
 catalog.ExportPackage(model.Name, fs, Encoding.Unicode,
 PackageContents.Permissions);
 fs.Close();
 }
}

 BCS LIMITS

 Chapter 2 presented key throttling limits associated with BCS. Throttling limits are critical because
they help prevent poor performance in BCS solutions. However, there are a number of additional
limits that can affect them. These limitations are important to consider as you create custom BCS
solutions. Table 5 - 6 details all the BCS limits.

 TABLE 5 - 6: BCS Limits

 ITEM LIMIT CONTEXT DESCRIPTION

 Database Item Default max:

2,000

 Absolute max:

1,000,000

 Database

request

 Number of items per request the

database connector can return.

 The default max is used by the

database connector to restrict

the number of results that can

be returned per page. The

application can specify a larger

limit via execution context;

the absolute max enforces the

allowed maximum even for

applications that do not respect

the default such as indexing.

continues

BCS Limits ❘ 189

www.it-ebooks.info

http://www.it-ebooks.info

190 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

 ITEM LIMIT CONTEXT DESCRIPTION

 External System

Connection

 Default max:

200

 Absolute max:

500

 WFE Number of active/open external

system connections at a given

time. This limit is enforced at the

Web Front End scope, regardless

of the type of external system

(such as database, WFC, .Net

assembly, etc.). The default max

is used to restrict the number of

connections. An application can

specify a larger limit via execution

context; the absolute max

enforces the allowed maximum

even for applications that do not

respect the default.

 Database Response

Latency

 Default max:

180 seconds

 Absolute max:

600 seconds

 Database

request

 Timeout used by the database

connector per request. Default

value to be used by the database

connector. Applications are

allowed to specify a larger value

programmatically up to the

absolute max.

 WCF Service Response

Latency

 Default max:

180 seconds

 Absolute max:

600 seconds

 WCF request Timeout used by the WCF

connector per request. Default

max value to be used by the

WCF connector. Applications

are allowed to specify a larger

value programmatically up to the

absolute max.

 WCF Service Response

Size

 Default max:

3,000,000

bytes

 Absolute max:

150,000,000

bytes

 WCF response The upper limit of how much

data per request the web service

connector can return. Default

max value to be used by the

WCF connector. Applications

are allowed to specify a larger

value programmatically up to the

absolute max.

 ECT Action

(in - memory)

 5,000 WFE (per tenant) Total number of actions (across

all ECTs) loaded in memory at a

given time on a given WFE.

TABLE 5-6 (continued)

www.it-ebooks.info

http://www.it-ebooks.info

 ITEM LIMIT CONTEXT DESCRIPTION

 ECT Action Parameter

(in - memory)

 20,000 WFE (per tenant) Total number of action parameters

loaded in memory at a given time

on a given WFE.

 ECT Association

(in - memory)

 30,000 WFE (per tenant) Total number of ECT associations

loaded in memory at a given time

on a given WFE.

 ECT Association Group

(in - memory)

 15,000 WFE (per tenant) Total number of ECT association

groups loaded in memory at a

given time on a given WFE.

 ECT (in - memory) 5,000 WFE (per tenant) Total number of ECT defi nitions

loaded in memory at a given time

on a given WFE.

 ECT Filter Descriptor

(in - memory)

 25,000 WFE (per tenant) Total number of ECT fi lter

descriptors loaded in memory at a

given time on a given WFE.

 ECT Identifi er

(in - memory)

 5,000 WFE (per tenant) Total number of ECT Identifi ers

loaded in memory at a given point

in time on a WFE.

 External System

(in - memory)

 1,000 WFE (per tenant) Total number of External System

(LOBSystem) defi nitions loaded

in memory at a given time on a

given WFE.

 External System

Instance (in - memory)

 1,000 WFE (per tenant) Total number of External System

Instance (LOBSystemInstance)

defi nitions loaded in memory at a

given time on a given WFE.

 ECT Method

(in - memory)

 25,000 WFE (per tenant) Total number of ECT methods

loaded in memory at a given time

on a given WFE.

 ECT Method Instance

(in - memory)

 25,000 WFE (per tenant) Total number of ECT method

instances loaded in memory at a

given time on a given WFE.

 ECT Method Parameter

(in - memory)

 100,000 WFE (per tenant) Total number of ECT method

parameters loaded in memory at a

given time on a given WFE.

continues

BCS Limits ❘ 191

www.it-ebooks.info

http://www.it-ebooks.info

192 ❘ CHAPTER 5 PROGRAMMING BCS SOLUTIONS IN SHAREPOINT 2010

 ITEM LIMIT CONTEXT DESCRIPTION

 ECT Type Descriptor 500,000 WFE (per tenant) Total number of ECT type

descriptors loaded in memory at a

given time on a given WFE.

 ECT Picker Item 200 ECT Picker

dialog

 Total number of ECTs that can be

displayed by the ECT Picker in the

UI. Hard non - confi gurable limit.

 ECT Instance Picker

Item

 200 ECT Instance

Picker dialog

 Total number of ECT instances

that can be displayed by the

ECT Picker in the UI. Hard non -

 confi gurable limit.

 ECT Action (in - store) 50 ECT Total number of actions per ECT.

 ECT Action Parameter

(in - store)

 20 ECT action Total number of parameters per

ECT action.

 ECT Association Group

(in - store)

 100 ECT Total number of association

groups per ECT.

 ECT Association

Reference (in - store)

 20 ECT association

group

 Total number of association

references per association group.

 ECT (in - store) 500 External System

(LOBSystem)

 Total number of ECTs per External

System (LOBSystem).

 Source Association ECT

(in - store)

 10 ECT association Number of source ECTs per

association.

 Filter Descriptor

(in - store)

 200 ECT method Number of Filter Descriptors per

ECT method.

 ECT Identifi er (in - store) 20 ECT Number of identifi ers per ECT.

 External System

Instance

(LOBSystemInstance;

(in - store)

 300 External System

(LOBSystem)

 Number of External System

instances (LOBSystemInstances)

per External System defi nition.

 Localized Name

(in - store)

 100 Metadata object Number of localized names per

metadata object.

 Custom Property

(in - store)

 50 Metadata object Number of custom properties per

metadata object.

 ECT Method (in - store) 50 ECT Number of methods per ECT.

TABLE 5-6 (continued)

www.it-ebooks.info

http://www.it-ebooks.info

 SUMMARY

 While many BCS solutions can be created with no code, much data presentation and functionality
requires custom coding. When creating BCS solutions you ’ ll initially be driven to custom code
primarily to overcome the UI limitations imposed by External Lists and the Business Data
Web Parts. As your solutions become more complex, however, custom code will help to create
professional and effi cient solutions that can scale along with your SharePoint farm.

 ITEM LIMIT CONTEXT DESCRIPTION

 Parameter (in - store) 255 ECT method Number of parameters per ECT

method.

 TypeDescriptor Nesting

Level (in - store)

 20 TypeDescriptor Number of nesting levels per

TypeDescriptor.

 Default Value (in - store) 15 TypeDescriptor Number of allowed default values

per TypeDescriptor. One default

value per method instance.

 TypeDescriptor

(in - store)

 300 TypeDescriptor Number of child Type Descriptors

per root level Type Descriptor.

 TypeDescriptor

(in - store)

 20 Filter descriptor Number of Type Descriptors per

Filter Descriptor.

Summary ❘ 193

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

196 ❘ CHAPTER 6 PROGRAMMING BCS SOLUTIONS IN OFFICE 2010

and actions, show custom task panes, defi ne custom views, and present custom form regions. All
these enhancements are created declaratively and packaged for click - once deployment.

 While it is possible to create all the declarative artifacts and package them by hand, the process is
tedious and error - prone. Fortunately, the BCS team at Microsoft has created two tools specifi cally
designed for creating and packaging Outlook declarative solutions. These tools are the BCS Artifact
Generator Tool and the BCS Solution Packaging Tool. The BCS Artifact Generator Tool is available
at http://code.msdn.microsoft.com/odcsps14bcsgnrtrtool , and the BCS Solution Packaging
Tool can be found at http://code.msdn.microsoft.com/odcsps14bcspkgtool .

 Generating Artifacts

 Creating an Outlook declarative solution begins with the BCS Artifact Generator Tool. In order to
get started with the BCS Artifact Generator Tool, you simply need a model exported from the BDC
Service Application. When you run the BCS Artifact Generator Tool, you will be able to import the
model into the tool. The tool will validate the model and display the result, as shown in Figure 6 - 1.

 FIGURE 6 - 1

 Once the model is imported you can simply generate the artifacts necessary for a solution.
However, taking this approach means that your solution will be little different from the standard
no - code solution created in SPD. The point is to customize the solution fi rst. You can customize
any of the ECTs present in the model by clicking the Customize button shown next to them in
the tool. Clicking the Customize button starts a mini - wizard that walks you through the various
customizations. The fi rst customization is to change the display name of the ECT and the icon used
in Microsoft Outlook. Figure 6 - 2 shows the modifi cations in the tool.

www.it-ebooks.info

http://www.it-ebooks.info

 The next screen in the wizard enables you to use a custom form region. Custom form regions are
covered in the section Creating Form Regions later in the chapter and enable you to customize
how the ECT is displayed. The next step in the wizard enables you to identify any associated ECTs
that should be displayed. Associations are also covered later in the chapter in the section entitled
Including Associations in Declarative Solutions. Finally, the last screen enables you to add custom
actions to the Outlook ribbon. These custom actions are just like actions on the SharePoint server:
they use parameterized URLs to perform an operation. Figure 6 - 3 shows an action to perform a
Bing search using the name of the contact.

 FIGURE 6 - 2 FIGURE 6 - 3

 Once the customizations are completed, the solution is ready. Clicking the Generate Artifacts
button will create the required artifacts and open Windows Explorer to the folder where they are
located. The artifacts that get created vary according to the options selected. At a minimum, the
artifacts include a copy of the BDC Metadata Model, a subscription fi le, and the solution manifest.
Optionally, they may also include a ribbon fi le for actions, a layouts fi le for associated ECTs, and
image fi les.

 Chapter 1 listed all the required and optional fi les for Outlook declarative solutions, and Chapter 3
provided more detail on subscription fi les. The solution manifest (oir.config) was mentioned in
Chapter 1, but not examined in detail. Understanding the solution manifest structure is important,
because some of the solutions covered later in the chapter (such as custom form regions) will require
you to edit this fi le. The following code shows the basic structure of a solution manifest:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < SolutionDefinition
 xmlns:mx=”http://schemas.microsoft.com/.../DeclarativeExtensions”
 xmlns=”http://schemas.microsoft.com/.../Manifest” >
 < SolutionSettings SolutionId=”...”

Creating Outlook Declarative Solutions ❘ 197

www.it-ebooks.info

http://www.it-ebooks.info

198 ❘ CHAPTER 6 PROGRAMMING BCS SOLUTIONS IN OFFICE 2010

 SolutionDisplayName=”MySolution” SolutionVersion=”1.1.1.1” / >
 < ContextDefinitionGroups >
 < ContextDefinitionGroup ItemType=”OutlookContact” >
 < ContextDefinition p5:type=”mx:DeclarativeContextDefinition”
 ContentType=”f9f67f16-e43c-4312-97e0-d9ca6f9e5f7a”
 xmlns:p5=”http://www.w3.org/2001/XMLSchema-instance” >
 < Entities >
 < Entity Name=”MyEntity” EntityTypeName=”MyEntity”
 EntityTypeNamespace=”http://namespace”
 Description=”MyEntity” >
 < View Name=”PrimaryEntityNameInContext” ViewName=”Read Item”
 Description=”Read Item” IsPrimary=”true” >
 < PromotedProperty Name=”ID::5” ViewInstancePath=”ID”
 OfficeItemPropertyName=”ID::5” ReadOnly=”true” / >
 < PromotedProperty Name=”Title” ViewInstancePath=”Title”
 OfficeItemPropertyName=”Title” ReadOnly=”false” / >
 < /View >
 < /Entity >
 < /Entities >
 < OfficeItemCustomizations p5:type=”OutlookItemCustomizations”
 ItemTypeDisplayName=”MyEntity”
 MessageClass=”IPM.Contact.91b53a48-d453-4fb0-bd13-296a9e9471b3” >
 < OfficeItemProperties >
 < OfficeItemProperty Name=”ID::5” PropertyName=”ID::5”
 PropertyType=”OutlookInteger” / >
 < OfficeItemProperty Name=”Title” PropertyName=”Title”
 PropertyType=”OutlookText” / >
 < /OfficeItemProperties >
 < FormRegions p5:type=”mx:DeclarativeFormRegions”
 AutoGenerate=”true” / >
 < OutlookFolder Description=”” Name=”Read Item”
 FolderDisplayName=”MyEntity” NativeType=”FolderContacts”
 SubscriptionName=”MyEntity2147483660Subscription”
 FolderName=”c23031ef-a1e4-4af6-9a01-e081389b06a9”
 CanCreate=”true” CanUpdate=”true” CanDelete=”true” >
 < Picture IconFilePath=”personresult.gif” / >
 < /OutlookFolder >
 < /OfficeItemCustomizations >
 < mx:Layouts >
 < mx:Layout LayoutFileName=”ShowRelatedItems”
 Name=”ShowRelatedItems” / >
 < /mx:Layouts >
 < mx:Actions >
 < mx:UrlAction Name=”Bing”
 Description=”” Url=”http://www.bing.com?q={0}” >
 < mx:Parameters >
 < mx:ExpressionParameter Name=”...”
 EntityViewInstanceReference=”PrimaryEntityNameInContext”
 Expression=”Name” / >
 < /mx:Parameters >
 < /mx:UrlAction >
 < mx:CodeMethodAction Name=”Show Related list” Description=””
 MethodType=”ShowTaskpaneLayout” >
 < mx:Parameters >
 < mx:ConstantParameter Name=”LayoutFile”
 Value=”ShowRelatedItems” ValueType=”System.String” / >

www.it-ebooks.info

http://www.it-ebooks.info

 < /mx:Parameters >
 < /mx:CodeMethodAction >
 < /mx:Actions >
 < mx:ContextEventHandlers >
 < mx:ContextActivated ActionName=” Show Related list” / >
 < /mx:ContextEventHandlers >
 < /ContextDefinition >
 < /ContextDefinitionGroup >

 The SolutionDefinition element is the root of the solution manifest. It has the namespace
declaration http://schemas.microsoft.com/offi ce/2009/05/BusinessApplications/Manifest .
This namespace identifi es the solution as a BCS solution. The SolutionSettings element beneath
it defi nes the basic information about the solution.

 The ContextDefinitionGroup element contains the defi nitions for content types associated
with the Contact, Task, Post, and Calendar item types in Outlook. This is how the ECT gets
mapped to an Outlook type for display. ContextDefinition contains the information about
the ECT that will be mapped.

 The OfficeItemCustomizations element defi nes the user interface to be used for the ECT. The
Outlook message type is mapped to the ECT and the fi elds of the ECT are mapped to data types
such as OutlookInteger and OutlookText . Information about the form region used for the
unmapped fi elds and the Outlook folder is also defi ned.

 The Outlook folder used for the solution can have a custom icon defi ned. Images can also be defi ned
for Outlook ’ s item and action buttons on the ribbon. The BCS Artifact Generator Tool will enable
you to browse for images. Table 6 - 1 lists the requirements for these images.

 TABLE 6 - 1: Image Requirements

 ELEMENT SIZE FORMAT

 Folder 16x16 px .jpg, .bmp, .ico, .png

 Item Any size .ico

 Action Any size .jpg, .bmp, .ico, .png

Creating Outlook Declarative Solutions ❘ 199

 The Layouts element is used to defi ne a custom layout of controls. Typically layouts are used to
display associated entity instances in a separate task pane. Layouts are covered later in the chapter.

 The Actions element defi nes buttons that will appear on the ribbon in Microsoft Outlook. Actions
can be based on a parameterized URL or on code that runs when the button is clicked. The BCS
Artifact Generator Tool supports only parameterized URL actions, but custom code actions can
be created and are discussed later in the chapter in the section entitled Creating Custom Actions,
Ribbons, and Parts.

 The ContextEventHandlers element maps actions to events. An action can be automatically fi red
via either the ContextActivated or ContextDeactivated element. This allows an action to fi re

www.it-ebooks.info

http://www.it-ebooks.info

200 ❘ CHAPTER 6 PROGRAMMING BCS SOLUTIONS IN OFFICE 2010

either when it becomes the active item or when it loses the focus. This is often used to display
associated entity instances in a task pane, as shown.

 Packaging and Deploying Solutions

 Once the artifacts are created, they must be packaged for ClickOnce deployment. The BCS
Solution Packaging Tool is used to package the artifacts. This is a straightforward operation in
which you point the tool to the folder containing the artifacts. The only wrinkle in the process
is that the tool requires that the BDC Metadata Model be named metadata.xml . Therefore, you
must manually rename the BDC Metadata Model created by the BCS Artifact Generator Tool
before packaging the solution.

 The BCS Solution Packaging Tool can be used to package different types of solutions that are
covered throughout the chapter, but for Outlook declarative solutions the Solution Type should be
set to Outlook Intermediate Declarative Solution. When packaging the solution, you can also have
it signed with a certifi cate, which will keep the warning dialog from displaying during deployment.
When the options are all set, simply click the Package button to create the package fi les. The BCS
Solution Packaging Tool will generate all the required fi les for an Outlook add - in, as described in
Chapter 1. Figure 6 - 4 shows the BCS Solution Packaging Tool.

 FIGURE 6 - 4

www.it-ebooks.info

http://www.it-ebooks.info

 Once the solution is packaged, you can install it directly from the BCS Solution Packaging Tool
by clicking the Deploy button. While this may be useful for testing, for production you will want
to put the solution in a document library. This is accomplished by creating a document library
in SharePoint with a folder structure that duplicates the structure created by the BCS Solution
Packaging Tool.

 Create a document library in the site from which you want to deploy the solution. Within the
document library, create a folder with the same name as the folder created by the BCS Solution
Packaging Tool. Then upload all the fi les created by the BCS Solution Packaging Tool to the
folder. Next, upload the VSTO fi le to the root of the library, recreating the same package structure
as the tool output. Finally, create a link to the VSTO fi le, which when clicked will install the
customization. Users can subsequently uninstall the solution through the Programs and Features
applet in the same way that any standard Windows application is uninstalled. Figure 6 - 5 shows a
declarative solution with a ribbon modifi cation to support a Bing search.

 FIGURE 6 - 5

 Creating Custom Form Regions

 As shown in Chapter 3, ECT fi elds that are not mapped to Outlook fi elds are displayed in a separate
form region. An adjoining form region is used if the number of unmapped fi elds is less than or
equal to fi ve. If there are more unmapped fi elds, a separate form region is used. Using an Outlook
declarative solution, you can design a custom form region for displaying the unmapped fi elds, which
will give you the opportunity to improve the user interface.

 Form regions are created directly in Microsoft Outlook. In order to create them, you must have
the Developer tab available (it is normally hidden). In order to expose it click File ➪ Options ➪
Customize Ribbon and check the Developer checkbox. Figure 6 - 6 shows the Outlook Options
dialog with the Developer tab enabled.

Creating Outlook Declarative Solutions ❘ 201

www.it-ebooks.info

http://www.it-ebooks.info

202 ❘ CHAPTER 6 PROGRAMMING BCS SOLUTIONS IN OFFICE 2010

 Once the Developer tab is visible, you may
click the Design a Form button and choose to
design a form that matches the Outlook type
you are using for the ECT. When the new
form opens, clicking New Form Region will
bring up a blank form region in which you
can begin work. Figure 6 - 7 shows a new form
region as part of the Contact form.

 For each unmapped fi eld you wish to display,
drop an appropriate control from the toolbox
onto the new form region (for example a
TextBox). In the properties of the controls,
click the Value tab. Click the New button to
defi ne a new fi eld. Name the fi eld using the
same name as the fi eld in the ECT that you
wish to display. You can also add existing

 FIGURE 6 - 6

 FIGURE 6 - 7

www.it-ebooks.info

http://www.it-ebooks.info

fi elds, which you do if the goal is to replace the entire default page. Once the design is complete,
click the Save Region button and save the fi le with an .ofs extension.

 Once the custom form region is created, you can run the BCS Artifact Generator Tool, as described
earlier. This time, however, you can elect to use a custom form region and browse to the OFS fi le
you created. When using a custom form region, you may specify that the region should be adjoining,
separate, replacement, or replace all. An adjoining region is displayed at the bottom of the standard
Outlook inspector window. A separate region is displayed on a separate page. A replacement region
replaces the default page of the Outlook inspector window. A replace all form region replaces all the
pages so that yours is the only visible page.

 After the artifacts are generated, you need to make a few edits by hand. The fi rst thing is to
change the name of the BDC Metadata Model to metadata.xml , as you did before. Next you
have to edit the oir.config fi le to change the Name attribute of both the PromotedProperty and
 OfficeItemProperty elements to exactly match the names of the new fi elds you ’ ve created. Once
these changes are made, you can use the BCS Solution Packaging Tool to package and deploy the
customization, as described earlier. Figure 6 - 8 shows a resulting adjoining form region displaying
the URL for the client ’ s SharePoint site.

 FIGURE 6 - 8

 Creating Custom View Defi nitions

 Along with custom form regions, you can also create custom views for ECTs. In order to create a
custom view, fi rst deploy your basic solution using the steps described earlier. Once the solution is
deployed, open the folder in Outlook and create a new view. Use the built - in Outlook tools to design
the view. Be sure to create a new view for customization, because customizing the default view will
affect all folders in Outlook.

Creating Outlook Declarative Solutions ❘ 203

www.it-ebooks.info

http://www.it-ebooks.info

204 ❘ CHAPTER 6 PROGRAMMING BCS SOLUTIONS IN OFFICE 2010

 Once you have created a new view, right - click the folder and select Export View Defi nition from the
context menu. Save this new view with an .ovd extension into the folder containing the generated
artifacts for the solution. Next edit the oir.config fi le to add the new view defi nition to the
solution inside the Views element, which appears under the OutlookFolder element. The following
code shows the required edits:

 < OutlookFolder Description=”” Name=”Read Item” FolderDisplayName=”Client”
 NativeType=”FolderContacts” SubscriptionName=”Client2147483660Subscription”
 FolderName=”182799b1-6355-4ac9-9d31-fca666a004a9” CanCreate=”true”
 CanUpdate=”true” CanDelete=”true” >
 < Views >
 < FolderViewDefinition Name=”CustomerView” ViewName=”CustomerView”
 ViewType=”TableView” IsDefault=”true” ViewFileName=”ustomerView.ovd” / >
 < /Views >
 < /OutlookFolder >

 Once the oir.config fi le is edited, delete the custom view from Outlook and uninstall
the customization from the machine. Use the BCS Solution Packaging Tool to repackage the
customization. Install the new customization and confi rm that the view is available.

 Including Associations in Declarative Solutions

 If you have multiple ECTs in your solution that are related, you can create an Outlook declarative
solution that shows the associated ECTs in a task pane. Additionally, you can use an InfoPath form
to show the details of each related item. Figure 6 - 9 shows a solution that displays a contact form for
a manager and includes a task pane that lists the manager ’ s direct reports.

 FIGURE 6 - 9

 In order to create a solution with relationships, you must fi rst merge all the related ECTs into a single
model fi le if they are not merged already. The BCS Artifact Generator Tool needs to have all the ECTs
defi ned in a single fi le in order to work with the associations. Once you have the model ready, import

www.it-ebooks.info

http://www.it-ebooks.info

it into the BCS Artifact Generator Tool. The
BCS Artifact Generator Tool will display all
the ECTs available in the model and enable
you to customize them, as previously shown.
Where an association exists, the BCS Artifact
Generator Tool will enable you to specify that
you want to show the related items in a task
pane. Figure 6 - 10 shows the BCS Artifact
Generator Tool when it detects an association
between the ECTs.

 The BCS Artifact Generator Tool can generate
a default user interface for the related entity
instances, but you can also make an InfoPath
form part of the solution. If you want to use an
InfoPath form to show details, you can create
an InfoPath form on an External List that uses
the associated ECT. Then simply export the
XSN fi le from SPD and reference it in the BCS
Artifact Generator Tool. After you have the
related item interface defi ned, you can generate
the artifacts for the solution.

 Along with the normal artifacts, you ’ ll see that a special layouts fi le is also created for any
associations that will display in a task pane. The layouts fi le specifi es the External Data Parts that
will be used in the task pane. The Rich List Part is used to display a grid of related entity instances,
and the InfoPath Part is used to display details in the InfoPath form. Additionally, you can modify
the layouts fi le manually to specify exactly what columns should appear in the Rich List Part. The
following code shows a typical layouts fi le. Once the artifacts are all generated and modifi ed,
they need to be packaged. The process for packaging is identical to the process for the solutions
discussed earlier:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < Container ContainerType=”Stack”
 xmlns=”http://schemas.microsoft.com/office/2009/05/
 BusinessApplications/Layout” >
 < Children >
 < OBPart PartType=”List” DataSourceName=”PrimaryEntityNameInContext”
 Text=”Direct Report” Description=”” >
 < CustomProperties >
 < CustomProperty Name=”DataSourceMode” Value=”AssociationList” / >
 < CustomProperty Name=”DataMemberName” Value=”ReportsForManager” / >
 < CustomProperty Name=”LobSystemInstanceName” Value=”Managers” / >
 < CustomProperty Name=”MaximumVisibleRowCount” Value=”12” / >
 < CustomProperty Name=”ConsumerPartName” Value=”IPOBP” / >
 < CustomProperty Name=”ColumnsXml” Value=” & lt;Columns & gt; & lt;Column
 DisplayName= & quot;First Name & quot; Name= & quot;FirstName & quot;
 / & gt; & lt;Column DisplayName= & quot;Last Name & quot;

 FIGURE 6 - 10

Creating Outlook Declarative Solutions ❘ 205

www.it-ebooks.info

http://www.it-ebooks.info

206 ❘ CHAPTER 6 PROGRAMMING BCS SOLUTIONS IN OFFICE 2010

 Name= & quot;LastName & quot;/ & gt; & lt;/Columns & gt;” / >
 < /CustomProperties >
 < /OBPart >
 < OBPart PartType=”InfoPath” Text=”Item Details” Description=”” >
 < CustomProperties >
 < CustomProperty Name=”Name” Value=”IPOBP” / >
 < CustomProperty Name=”IsReadOnly” Value=”true” / >
 < CustomProperty Name=”Height” Value=”600” / >
 < CustomProperty Name=”FormLocation” Value=”template.xsn” / >
 < /CustomProperties >
 < /OBPart >
 < /Children >
 < /Container >

 Creating Custom Actions, Ribbons, and Parts

 While the BCS Artifact Generator Tool makes it easy to create basic Outlook declarative
solutions, you can go further by creating custom ribbon managers, actions, and External Parts.
These elements give you more fl exibility when it comes to the appearance and functionality of
the solution. A custom ribbon manager enables you to take more control over the ribbon and
easily access the underlying Outlook object model. Custom actions enable you to write code that
responds to button clicks on the ribbon. Custom External Parts enable you to display custom user
interface elements in a task pane.

 Extending the basic Outlook declarative solution involves a combination of code and declarative
elements. While the coding is reasonably straightforward, the declarative elements require
signifi cant hand editing; the BCS Artifact Generator Tool does not support automatically generating
the complete artifacts. You can use the BCS Artifact Generator Tool as a starting point, but hand
editing is required. All this means that creating this type of solution is error - prone and requires
attention to detail. As a simple example, Figure 6 - 11 shows a Hello, World solution that has a
custom ribbon manager, action, and External Part.

 FIGURE 6 - 11

www.it-ebooks.info

http://www.it-ebooks.info

 The custom ribbon manager is the host for the buttons on the ribbon. The custom action simply
displays a MessageBox with the name of the current entity instance. The custom External
Part displays the fi rst name and last name of the current entity instance. This sample exercises
the basic functionality of the various extensions.

 Coding the Custom Elements

 The custom elements are created as part of a class library project that interacts with Microsoft
Outlook. Therefore, the project needs to have references to the Offi ce primary interop assemblies
(PIA) and the BDC Client Runtime object model. The various assemblies are listed in Table 6 - 2 and
you can add them by browsing to the specifi ed location.

 TABLE 6 - 2: Required References

 ASSEMBLY LOCATION

 Microsoft.Office.Interop

.Outlook.dll

 C:\Program Files (x86) \Microsoft Visual Studio

10.0\Visual Studio Tools for Office\PIA\Office14\

 Microsoft.Office.

BusinessApplications

.Runtime.dll

 C:\Windows\assembly\GAC_MSIL\Microsoft

.Office.BusinessApplications.Runtime\

14.0.0.0_7le9bcellle9429c\

 Microsoft.Office

.BusinessApplications

.RuntimeUI.dll

 C:\Windows\assembly\GAC_MSIL\Microsoft

.Office.BusinessApplications.RuntimeUi\

14.0.0.0_7le9bcellle9429c\

 office.dll C:\Program Files (x86) \Microsoft Visual Studio

10.0\Visual Studio Tools for Office\PIA\Office14\

 Microsoft.BusinessData.dll C:\Program Files (x86) \Microsoft Office\Office14\

 When creating custom extensions, start by creating the custom ribbon manager, because the other
components may make use of it. A custom ribbon manager is a class that inherits from Microsoft
.Office.BusinessApplications.Runtime.RibbonManager . Its main function is to act as an
interface to the underlying Outlook object model, which it does in the GetEnabled() method.
The following code shows how to create a custom ribbon manager:

using System;
using System.Runtime.InteropServices;
using System.Windows.Forms;
using Microsoft.Office.Core;
using Microsoft.Office.BusinessApplications.Runtime;
using Outlook = Microsoft.Office.Interop.Outlook;
using Microsoft.BusinessData.Runtime;

Creating Outlook Declarative Solutions ❘ 207

www.it-ebooks.info

http://www.it-ebooks.info

208 ❘ CHAPTER 6 PROGRAMMING BCS SOLUTIONS IN OFFICE 2010

using Microsoft.Office.BusinessData.Offlining;
using Microsoft.BusinessData.MetadataModel;

namespace MyCustomComponents
{
 [ComVisible(true)]
 public class MyRibbonManager :
 Microsoft.Office.BusinessApplications.Runtime.RibbonManager
 {
 public static Outlook.Application currentOutlookApplication;

 public override bool GetEnabled(IRibbonControl control)
 {
 if (currentOutlookApplication == null)
 {
 Outlook.Inspector CurrentInspector =
 control.Context as Outlook.Inspector;
 currentOutlookApplication =
 CurrentInspector.Application as Outlook.Application;
 }
 return base.GetEnabled(control);
 }

 public override void OnAction(IRibbonControl control)
 {
 base.OnAction(control);
 }

 public override string GetCustomUI(string ribbonID)
 {
 return base.GetCustomUI(ribbonID);
 }

 public override bool GetVisible(IRibbonControl control)
 {
 return base.GetVisible(control);
 }

 public override void OnLoad(IRibbonUI ribbon)
 {
 base.OnLoad(ribbon);
 }
 }
}

 Custom actions represent the code to run when a button is clicked on the ribbon. The custom action
is a simple class with a single method that accepts an array of arguments. The fi rst argument passed
in always represents the current entity instance. The following code shows the custom action for the
sample, which just displays the name of the current entity instance:

using System;
using Microsoft.BusinessData.Runtime;
using System.Windows.Forms;
using Outlook = Microsoft.Office.Interop.Outlook;

namespace MyCustomComponents

www.it-ebooks.info

http://www.it-ebooks.info

{
 public class MyAction
 {
 public void MyMethod(params object[] parameters)
 {

 IEntityInstance entityInstance =
 parameters[0] as IEntityInstance;

 try
 {
 string fName = entityInstance[“FirstName”].ToString();
 string lName = entityInstance[“LastName”].ToString();

 MessageBox.Show(“You are “ + fName + “ “ + lName);
 }
 catch (Exception)
 {
 MessageBox.Show(“Cannot find Entity Instance”);
 }
 }
 }
}

 In production solutions you will often want to use the ribbon manager and a custom action
together. Specifi cally, you will want to use the ribbon manager to gain access to the underlying
Outlook object model for the purpose of creating new items in Outlook or doing something similar.
The following code shows how you can create a new task item in Outlook from a custom action
with the support of the ribbon manager:

IEntityInstance entityInstance = parameters[0] as IEntityInstance;
Outlook.TaskItem newTaskItem =
 (Outlook.TaskItem)MyRibbonManager.currentOutlookApplication.CreateItem(
 Outlook.OlItemType.olTaskItem);
newTaskItem.Subject = “My New Task”;
newTaskItem.StartDate = DateTime.Now;
newTaskItem.DueDate = DateTime.Now.AddDays(7);
newTaskItem.Display(false);

 Custom External Parts are user controls that inherit from Microsoft.Office.BusinessApplications
.Runtime.UI.WinFormsOBPartBase . In the user control you create the user interface that you want
displayed in a task pane. Typically this is data related to the current entity instance, but it can be
anything. The implementation should override the OnDataSourceChanged() method, which allows
access to the current entity instance. The SaveCore() method is called when the current entity instance
is saved. Using these two methods, your External Part can react to the opening and saving of entity
instances in the application. The following code shows a simple example of displaying information
from the current entity instance in TextBox controls:

using System;
using System.ComponentModel;
using System.Windows.Forms;
using Microsoft.Office.BusinessApplications.Runtime.UI;

Creating Outlook Declarative Solutions ❘ 209

www.it-ebooks.info

http://www.it-ebooks.info

210 ❘ CHAPTER 6 PROGRAMMING BCS SOLUTIONS IN OFFICE 2010

using Microsoft.BusinessData.Runtime;
using Microsoft.Office.BusinessData.Offlining;
using Microsoft.BusinessData.Offlining;
using Outlook = Microsoft.Office.Interop.Outlook;
using Microsoft.BusinessData.MetadataModel;

namespace MyCustomComponents
{
 public partial class MyExternalPart : WinFormsOBPartBase
 {
 private IEntityInstance entityInstance;
 bool isDirty = false;

 public MyExternalPart()
 {
 InitializeComponent();
 }

 protected override void OnDataSourceChanged(
 Microsoft.Office.BusinessApplications.Model.DataSourceChangedEventArgs args)
 {
 base.OnDataSourceChanged(args);
 entityInstance = this.DataSource as IEntityInstance;
 fname.Text = entityInstance[“FirstName”].ToString();
 lname.Text = entityInstance[“LastName”].ToString();
 }

 protected override void SaveCore()
 {
 if (isDirty)
 {
 //Take action, if necessary
 }
 base.SaveCore();
 }

 protected override bool IsDirtyCore
 { get { return isDirty; } }

 private void fname_TextChanged(object sender, EventArgs e)
 { isDirty = true; }

 private void lname_TextChanged(object sender, EventArgs e)
 { isDirty = true; }
 }
}

 Packaging the Custom Elements

 Once the assembly is created, it can be packaged as part of an Outlook declarative solution. The
easiest way to do this is to start with the BCS Artifact Generator Tool and create artifacts based
on the BDC Metadata Model for the solution. Once these artifacts are created, you can copy

www.it-ebooks.info

http://www.it-ebooks.info

the compiled assembly into the same folder. After you modify the artifacts by hand, they will be
packaged along with the assembly.

 Start by editing the oir.config fi le. In the ContextDefinition element, take note of the ContentType
attribute because it will be used in the ribbon defi nition later. If you used the BCS Artifact Generator
Tool, this will be a GUID . Note that the ContentType attribute has no relationship to the name of the
ECT used in the solution.

 The fi rst modifi cation to make is to the SolutionDefinition element, where you need to reference
an additional namespace. The additional namespace will allow for the declaration of the custom
ribbon manager. The following code shows the complete SolutionDefinition element:

 < SolutionDefinition
xmlsn:mx=”http://schemas.microsoft.com/office/2009/05/
 BusinessApplications/Manifest/DeclarativeExtensions”
 xmlns=”http://schemas.microsoft.com/office/2009/05/
 BusinessApplications/Manifest”
 xmlns:xsl=”http://www.w3.org/2001/XMLSchema-instance” >

 The next modifi cation is to the SolutionSettings element. In this element, the custom ribbon
manager is declared by means of the fully qualifi ed name of the class and assembly created earlier.
The following code shows the complete SolutionSettings element:

 < SolutionSettings SolutionId=”MyECT_2824546f-241e-4e35-8d23-a2b99226119e”
 SolutionDisplayName=”MyECT” SolutionVersion=”1.1.1.3”
 xsl:type=”mx:DeclarativeSolutionSettings”
 CustomRibbonManager=”MyCustomComponents.MyRibbonManager,
 MyCustomComponents, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=85f26924cfa9ee60”/ >

 Depending upon the choices you made in the BCS Artifact Generator Tool, you may or may not
already have a separate fi le for the ribbon defi nition. In any case, oir.config must reference
this fi le in the ContextDefinitionGroup element. The following code shows a complete
 ContextDefinitionGroup element with the ribbon fi le referenced:

 < ContextDefinitionGroup xsl:type=”mx:DeclarativeContextDefinitionGroup”
 ItemType=”OutlookContact” RibbonFileName=”MyRibbon.xml” >

 When buttons are clicked on the ribbon, they can invoke a parameterized URL, show a task pane,
or invoke custom code. The defi nitions for these behaviors are part of the Actions element in the
 oir.config fi le. The following code shows how to defi ne each of the different types of actions:

 < mx:Actions >
 < mx:UrlAction Name=”Bing” Description=”” Url=”http://www.bing.com?q={0}” >
 < mx:Parameters >
 < mx:ExpressionParameter Name=”LastNameParam”
 EntityViewInstanceReference=”PrimaryEntityNameInContext”
 Expression=”LastName” / >
 < /mx:Parameters >
 < /mx:UrlAction >

Creating Outlook Declarative Solutions ❘ 211

www.it-ebooks.info

http://www.it-ebooks.info

212 ❘ CHAPTER 6 PROGRAMMING BCS SOLUTIONS IN OFFICE 2010

 < mx:CodeMethodAction Name=”MyMethod” Description=”MyMethod”
 MethodType=”Custom” MethodName=”MyMethod”
 QualifiedTypeName=”MyCustomComponents.MyAction, MyCustomComponents,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=85f26924cfa9ee60” >
 < /mx:CodeMethodAction >
 < mx:CodeMethodAction Name=”ShowMyExternalPart” Description=”Show Pane”
 MethodType=”ShowTaskpaneLayout” >
 < mx:Parameters >
 < mx:ConstantParameter Name=”LayoutFile” Value=”MyLayout”
 ValueType=”System.String” / >
 < /mx:Parameters >
 < /mx:CodeMethodAction >
 < /mx:Actions >

 The UrlAction element defi nes a parameterized action and is created by the BCS Artifact
Generator Tool. The CodeMethodAction element can defi ne either a Custom action or a
 ShowTaskpaneLayout action. A Custom action is mapped to the fully qualifi ed name of the
class that contains the action and references the name of the method within the class to call.
A ShowTaskpaneLayout action is used to display a custom External Part, but the reference to
the user control assembly is kept in a separate layout fi le. The name of the Layout element is
referenced in the ShowTaskpaneLayout action. In turn, the Layout element references the name
of the layout fi le, as shown in the following code:

 < mx:Layouts >
 < mx:Layout Name=”MyLayout” LayoutFileName=”MyLayout” > < /mx:Layout >
 < /mx:Layouts >

 The fi nal modifi cation to the oir.config fi le is the inclusion of a ContextEventHandler to
execute the ShowTaskpaneLayout action when a new item is opened. This way, the task pane
will display automatically, just as in the solutions created earlier. The following code shows how
to create the ContextEventHander for the sample. After this modifi cation the oir.config fi le
can be saved.

 < mx:ContextEventHandlers >
 < mx:ContextActivated ActionName=”ShowMyExternalPart” / >
 < /mx:ContextEventHandlers >

 The next fi le to create or modify is the ribbon fi le. This is an XML fi le that has the name referenced
in the oir.config fi le. The key to the ribbon fi le is to get the format correct. You will need the
name of the content type noted earlier and the name of the actions. The following code shows
the ribbon fi le for the sample:

 < customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”
 onLoad=”OnLoad” loadImage=”GetImage” >
 < ribbon >
 < tabs >
 < tab id=”mytabid” getVisible=”GetVisible”
 label=”My Tab” tag=”Solution” >
 < group id=”mygroupid” label=”My Group”
 tag=”Context[MyContentType.groupid]” getVisible=”GetVisible” >

www.it-ebooks.info

http://www.it-ebooks.info

 < button id=”mybuttonid1” label=”Bing” getEnabled=”GetEnabled”
 onAction=”OnAction” size=”large” image=”search32x32.png”
 tag=”Action[MyContentType.Bing]” / >
 < button id=”mybuttonid2” label=”My Action” getEnabled=”GetEnabled”
 onAction=”OnAction” size=”large” image=”placeholder32x32.png”
 tag=”Action[MyContentType.MyMethod]” / >
 < button id=”mybuttonid3” label=”Show Pane” getEnabled=”GetEnabled”
 onAction=”OnAction” size=”large” image=”parts32x32.png”
 tag=”Action[MyContentType.ShowMyExternalPart]” / >
 < /group >
 < /tab >
 < /tabs >
 < /ribbon >
 < /customUI >

 The fi nal fi le to create or modify is the layout fi le. This is an XML fi le that has the name referenced
earlier. The key part of this fi le is the fully - qualifi ed reference to the custom External Part. The
following code shows the layout fi le for the sample:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Container ContainerType=”Stack”
 xmlns=”http://schemas.microsoft.com/office/2009/05/
 BusinessApplications/Layout”
 xmlns:loc=”http://schemas.microsoft.com/office/2009/05/
 BusinessApplications/Localization” >
 < CustomProperties / >
 < Children >
 < OBPart DataSourceName=”PrimaryEntityNameInContext”
 PartType=”Custom” Text=”Details” FillParent=”true”
 QualifiedTypeName=”MyCustomComponents.MyExternalPart,
 MyCustomComponents, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=85f26924cfa9ee60” >
 < CustomProperties / >
 < /OBPart >
 < /Children >
 < /Container >

 After you complete the custom modifi cations, all the artifacts can be packaged with the BCS
Solution Packaging Tool. There are no special considerations for the packaging. The tool will
package all the artifacts, including fi les, images, and assemblies. Once these are all packaged,
you can deploy the solution to a document library, as discussed previously.

 WORKING WITH THE BDC CLIENT RUNTIME OBJECT MODEL

 The BDC Client Runtime object model is the API used to write custom solutions that run in
Offi ce clients and use BCS artifacts. The BDC Client Runtime object model is designed to
complement the BDC Server Runtime object model and contains many of the same classes,
methods, and properties. Therefore, you can leverage your knowledge of the BDC Server
Runtime object model to get started quickly.

Working with the BDC Client Runtime Object Model ❘ 213

www.it-ebooks.info

http://www.it-ebooks.info

214 ❘ CHAPTER 6 PROGRAMMING BCS SOLUTIONS IN OFFICE 2010

 The BDC Client Runtime object model is contained in the Microsoft.BusinessData.dll and
 Microsoft.Office.BusinessData.dll assemblies. Both of these assemblies are located in
the Office 14 directory, which is the installation directory for Offi ce 2010. The Microsoft
.BusinessData.dll assembly provides classes that parallel the server - side objects contained in
the BDC Server Runtime object model. The Microsoft.Office.BusinessData.dll assembly
contains classes that specifi cally support Offi ce clients.

 Any solution you create will need a reference to both BDC Client Runtime assemblies as well
as Microsoft.Office.BusinessApplications.Runtime.dll and Microsoft.Office
.BusinessApplications.RuntimeUi.dll , which were mentioned earlier in the chapter.
Furthermore, if you are using the 32 - bit version of Offi ce 2010, you must explicitly set the build
target for your solution to x86 in the Visual Studio project properties. Table 6 - 3 lists the key
namespaces you use when working with the BDC Client Runtime object model, and the following
code shows typical using statements:

//Reference to Microsoft.BusinessData.dll
using Microsoft.BusinessData;
using Microsoft.BusinessData.Runtime;
using Microsoft.BusinessData.Offlining;
using Microsoft.BusinessData.MetadataModel;
using Microsoft.BusinessData.MetadataModel.Collections;

//Reference to Microsoft.Office.BusinessData.dll
using Microsoft.Office.BusinessData;
using Microsoft.Office.BusinessData.Runtime;
using Microsoft.Office.BusinessData.Offlining;
using Microsoft.Office.BusinessData.MetadataModel;

 TABLE 6 - 3: Key Namespaces

 NAMESPACE DESCRIPTION

 Microsoft.BusinessData.MetadataModel

 Microsoft.Office.BusinessData.MetadataModel

 Provides access to key

Metadata elements

 Microsoft.BusinessData.MetadataModel.Collections

 Microsoft.Office.BusinessData.MetadataModel.Collections

 Provides access to key

Metadata collections

 Microsoft.BusinessData.Offlining

 Microsoft.Office.BusinessData.Offlining

 Provides access to the

client - side cache

 Microsoft.BusinessData.Runtime

 Microsoft.Office.BusinessData.Runtime

 Provides access to key

entity instance objects

and collections

www.it-ebooks.info

http://www.it-ebooks.info

 Connecting to the Metadata Catalog

 Just like server - side solutions, client - side solutions require a connection to the BDC Metadata
catalog. The difference between client and server solutions is that the client will never access the
BDC Service Application. Instead, the client must access either the BCS client cache or a special
fi le - based catalog. Most production solutions will use the BCS client cache, which is updated with
BDC Metadata Models and data as specifi ed by an associated subscription fi le. However, solutions
do have the option to use a fi le - based catalog into which BDC Metadata Models are loaded when
the application starts.

 A connection to the BCS client cache is made through the Microsoft.Office.BusinessData
.RemoteSharedFileBackedMetadataCatalog class and may only be established from within an
Offi ce client. This means you cannot use the RemoteSharedFileBackedMetadataCatalog class to
access the BCS client cache from projects such as console or Windows applications. The BCS client
cache is intended for use only with Offi ce clients, so the BDC Client Runtime object model protects
it from access by other types of applications. For the most part, this means that you will use the
following code as part of an Offi ce add - in to connect with the BCS client cache:

RemoteSharedFileBackedMetadataCatalog catalog =
 new RemoteSharedFileBackedMetadataCatalog();

 If you want to create BCS solutions using projects other than Offi ce add - ins, you can create
a catalog for them through the Microsoft.Office.BusinessData.MetadataModel
.FileBackedMetadataCatalog class. The FileBackedMetadataCatalog class enables you to create
complete client - side solutions that do not require Offi ce clients, but does not allow access to the
BCS client cache. Instead, this class creates a catalog in memory must have models imported into it
for use. The catalog is specifi c to the application and is destroyed when the application closes. The
following code shows how to create a FileBackedMetadataCatalog and load it with a model from
an XML fi le:

FileBackedMetadataCatalog catalog = new FileBackedMetadataCatalog();
FileStream fs = new FileStream(“MyModel.xml”,
 FileMode.Open, FileAccess.Read);
catalog.ImportPackage(fs, new ParseContext(), PackageContents.All);
fs.Close();

 Once a connection to one of the two catalogs is established, elements of the BDC Metadata Models
may be retrieved. Because the client - side catalogs function differently from the server - side catalog,
not all of the same operations are supported. Both the RemoteSharedFileBackedMetadataCatalog
class and the FileBackedMetadataCatalog class support the GetEntity() , GetEntities() ,
 GetLobSystem() , and GetLobSystems() methods. Because these catalogs do not cache models
like the BDC Service Application, the GetById() method is not available. Just like server solutions,
client solutions will generally start by retrieving a reference to the needed ECTs using the
 GetEntity() method and passing in the name and namespace for the desired entity.

 When creating client - side solutions, you may elect to receive events for two important scenarios.
First, you can receive a notifi cation whenever your application gains or loses a connection to

Working with the BDC Client Runtime Object Model ❘ 215

www.it-ebooks.info

http://www.it-ebooks.info

216 ❘ CHAPTER 6 PROGRAMMING BCS SOLUTIONS IN OFFICE 2010

the hosting BCS process. Second, you can receive a notifi cation when your client application needs
to create a web service proxy.

 Offi ce solutions can perform operations only when they have a valid connection to the underlying
BCS host process. Your application can receive notifi cation of changes in the connection status
through the ConnectionAcquired , ConnectionLost , and PreConnectionLost events. These events
are supported on the RemoteSharedFileBackedMetadataCatalog class.

 When using the FileBackedMetadataCatalog class against a web service source, you can either
have BCS generate a client proxy for you, or you can create your own. You can receive notifi cation
when the solution needs a proxy through the SubscribeOnPostGenerateProxyAssemblyBytes()
and the SubscribeOnPreGenerateProxyAssemblyBytes() methods. Using these methods, you can
set up event handlers that will return a custom proxy that you generate yourself. The following code
shows how to structure the events:

FileBackedMetadataCatalog catalog = new FileBackedMetadataCatalog();
catalog.SubscribeOnPostGenerateProxyAssemblyBytes(ProxyGeneratedHandler);
catalog.SubscribeOnPreGenerateProxyAssemblyBytes(ProxyGeneratingHandler);

public void ProxyGeneratedHandler(byte[] proxyAssemblyBytesGenerated,
 ILobSystemStruct lobSystemStruct)
{

}

public byte[] ProxyGeneratingHandler(ILobSystemStruct lobSystemStruct)
{

}

 Understanding the Execution Context

 Whenever operations are performed on an External System, you have the option to create
an execution context that can track the operations performed and pass information
between the consuming application and a custom connector. All three of the catalog classes
(DatabaseBackedMetadataCatalog , RemoteSharedFileBackedMetadataCatalog , and
 FileBackedMetadataCatalog) support the creation of a context, but it can be particularly
useful with client - side solutions to track additional information.

 You create an execution context with the CreateExecutionContext() method of the catalog. This
method returns an IExecutionContext interface. The IExecutionContext interface enables you
to handle the MethodExecuting and MethodExecuted events. These events notify your application
that a method is about to be executed on an External System or that it has just completed.

 The IExecutionContext interface contains a collection of ExecutedMethods that provide
information about the methods executed on the External System. This information includes errors
that occurred in the connector. Using this approach, you can elegantly handle connector - level
errors in your solutions.

www.it-ebooks.info

http://www.it-ebooks.info

 In addition to tracking method execution, the IExecutionContext interface also supports a
property bag that allows direct communication between the client solution and the connector.
Using the property bag, the client and connector can exchange data directly, which allows them
an additional line of communication. Note that the property bag is meaningful only when used
with a .NET Assembly or custom connector. The standard connectors do not look for these
properties, and their behaviors cannot be altered through them. The following code shows
snippets from a data class that shows how to use the execution context:

//Members
FileBackedMetadataCatalog catalog;
IExecutionContext ctx;

//Properties
public bool HasError { get; set; }
public string ConnectorErrorMessage { get; set; }

//This code would be in constructor
catalog = new FileBackedMetadataCatalog();
ctx = catalog.CreateExecutionContext();
ctx.MethodExecuted += new ExecutionEventHandler(ctx_MethodExecuted);
ctx[“CatalogType”] = catalog.GetType().ToString();
ctx.ManageProperty(“CatalogType”);

//Event handler
void ctx_MethodExecuted(IExecutionContext context,
 IExecutionInfo executingMethod)
{
 foreach (IExecutionInfo info in ctx.ExecutedMethods)
 {
 if (info.Exception != null)
 {
 HasError = true;
 ConnectorErrorMessage = info.Exception.Message;
 }
 }
}

//Dispose
public void Dispose()
{
 ctx.Dispose();
}

 The IExecutionContext is created by the catalog and associated with the thread running the
application. Therefore, using the execution context costs additional processing overhead. For this
reason, the execution context should be used only when necessary. Additionally, the execution
context should be disposed of when the catalog is destroyed to avoid holding on to resources when
they are no longer needed.

 You create the properties in the property bag simply by setting a value to a newly named property.
The properties may be designated as either managed or unmanaged. Managed properties are

Working with the BDC Client Runtime Object Model ❘ 217

www.it-ebooks.info

http://www.it-ebooks.info

218 ❘ CHAPTER 6 PROGRAMMING BCS SOLUTIONS IN OFFICE 2010

disposed of when the execution context is disposed of, but unmanaged properties are not disposed
of. On the connector side, properties may be accessed directly from the property bag, because the
execution context is exposed to the connector. Chapter 7 covers connectors in detail.

 Executing Cache Operations

 Executing operations against a client - side catalog is very similar to executing them against
a server - side catalog. The biggest difference between the server and client is the fact that the
 RemoteSharedFileBackedMetadataCatalog can interact with the client cache. This allows for
offl ine scenarios that are not supported by the other catalogs. Where cache operations are not a
factor, however, the code is nearly identical, and you can use the samples in Chapter 5 as a guide.
Consider the following console application code, which executes a Finder method on the client
against any BDC Metadata Model that uses the SQL connector. Note the similarities between this
listing and the related one in Chapter 5.

static void Main(string[] args)
{
 string modelFile = args[0];
 string lobSystemInstance = args[1];
 string entityName = args[2];
 string entityNamespace = args[3];
 string finderMethodInstance = args[4];

 FileBackedMetadataCatalog catalog = new FileBackedMetadataCatalog();
 FileStream fs = new FileStream(modelFile, FileMode.Open,
 FileAccess.Read);
 catalog.ImportPackage(fs, new ParseContext(), PackageContents.All);
 fs.Close();

 //Get entity
 IEntity ect = catalog.GetEntity(entityNamespace, entityName);

 //Get LobSystem
 ILobSystem lob = ect.GetLobSystem();

 //Get LobSystemInstance
 ILobSystemInstance lobi = lob.GetLobSystemInstances()[lobSystemInstance];

 //Get Method Instance
 IMethodInstance mi = ect.GetMethodInstance(finderMethodInstance,
 MethodInstanceType.Finder);

 //Get Parameters
 IParameterCollection parameters = mi.GetMethod().GetParameters();

 //Execute
 object[] arguments = new object[parameters.Count];
 ect.Execute(mi, lobi, ref arguments);

 //Display
 PropertyInfo[] props = arguments[0].GetType().GetProperties();

www.it-ebooks.info

http://www.it-ebooks.info

 PropertyInfo prop = props[0];
 SqlDataReader reader = (SqlDataReader)(prop.GetValue(arguments[0],
 null));

 if (reader.HasRows)
 {
 while (reader.Read())
 {
 for (int i = 0; i < reader.VisibleFieldCount; i++)
 {
 switch (reader.GetDataTypeName(i))
 {
 case “nvarchar”:
 Console.Write(reader[i].ToString());
 Console.Write(“ “);
 break;

 case “int”:
 Console.Write(reader.GetInt32(i));
 Console.Write(“ “);
 break;

 default:
 Console.Write(“ “);
 break;
 }
 }

 Console.WriteLine();
 }
 }
}

 Cache operations become meaningful when you are executing operations against a
 RemoteSharedFileBackedMetadataCatalog object. In this case, an OperationMode object may
be passed in either the FindFiltered() or FindSpecificMultiple() methods of the IEntity
interface. The OperationMode object specifi es behaviors for the operation based on the set of
properties shown in Table 6 - 4. For more detailed information on the cache population and
synchronization process, see Chapter 3.

 TABLE 6 - 4: OperationMode Properties

 PROPERTY DESCRIPTION

 AllowPartialData Allows partial data to be returned from the operation

 CacheUsage Specifi es how to use cached data during the operation

 DoNotDetectConflicts Allows confl icts to be ignored during the operation

 Freshness Specifi es the required data freshness for the operation

Working with the BDC Client Runtime Object Model ❘ 219

www.it-ebooks.info

http://www.it-ebooks.info

220 ❘ CHAPTER 6 PROGRAMMING BCS SOLUTIONS IN OFFICE 2010

 The AllowPartialData property may be set to True or False . When it is set to True , partial
data may be returned from the cache for an entity instance. This situation can occur when the
 Finder method does not return all the available fi elds for an entity instance. In this case, the cache
is partially populated. In a subsequent call to a SpecificFinder method, BCS would normally
fi nish populating the cache with the missing fi elds. If AllowPartialData is set to True , the data
is returned directly from the cache that has the missing data.

 The CacheUsage property provides more control over how the data in the client cache is used.
This property may be set to Default , Online , Offline , or Cached . When it is set to Default ,
the operation behaves normally based on the BDC Metadata Model. When it is set to Online , all
operations are performed against the External System directly, and the data in the cache will never
be updated. When it is set to Offline , all read operations will be performed against the cache;
data will never be read from the External System. When it is set to Cached , SpecificFinder
operations will read data from the cache unless the data is stale or missing, in which case
these operations will read data from the External System. Finder operations will return only
data from the cache, even if the data is stale or missing.

 The DoNotDetectConflicts property may be set to True or False . When it is set to True , confl icts
in the cache are ignored. When it is set to False , the original values from SpecificFinder calls are
used to detect confl icts with the cache.

 The Freshness property is a System.TimeSpan type that specifi es the freshness requirement
for the retrieved data. If the data in the cache is determined to be stale, it will be refreshed from the
External System. The following code shows a sample with a FindSpecificMultiple() method
that will read data from the cache if it is less than 10 minutes old:

//Connect to client cache
RemoteSharedFileBackedMetadataCatalog catalog =
 new RemoteSharedFileBackedMetadataCatalog();
IEntity ect = catalog.GetEntity(“ExternalDMSConnector”, “Document”);
ILobSystem lob = ect.GetLobSystem();
ILobSystemInstance lobi = lob.GetLobSystemInstances()[“ExternalDMSSystem”];
IMethodInstance mi = ect.GetMethodInstances()[“ReadAllItems”];
IFilterCollection filters = mi.GetFilters();

List < Identity > identities = new List < Identity > ();
identities.Add(new Identity(103));

OperationMode om = new OperationMode();
om.CacheUsage = CacheUsage.Cached;
om.Freshness = new TimeSpan(0, 10, 0);

IEntityInstance ei = ect.FindSpecificMultiple(identities,
 bulkSpecificFinderName, lobi, om);

 Exploring the Client Cache

 Because the client cache is such a signifi cant part of BCS solutions, it won ’ t be long before you feel
the need to explore the cache and understand the data it contains. The starting point for working

www.it-ebooks.info

http://www.it-ebooks.info

with the client cache is the Microsoft.Office.BusinessData.Offlining.RemoteOfflineRuntime
class. Using this class, you can gain access to the synchronization manager, subscription manager,
and Metadata catalog. An instance of the RemoteOfflineRuntime class can be created from within
the context of an Offi ce add - in; it cannot be created from non - Offi ce applications, because it
provides methods for accessing the client cache.

 The GetSynchronizationManager() method returns an ISynchronization object. The
 ISynchronizationManager interface provides methods that allow for synchronization
management. Table 6 - 5 lists the available methods.

 TABLE 6 - 5: ISynchronizationManager Methods

 METHOD DESCRIPTION

 GetAllInstancesInError Returns all entity instances in the cache that are in an

error state

 GetAllOperationsInError Returns all failed operations from the operation queue

 GetOperation Gets an operation from the operation queue

 GetOperationExecutionSummary Gets the current number of completed, failed, and pending

operations from the operation queue

 GetOperations Gets all pending operations from the operation queue

 PopulateCache Populates the cache with data based on information such as

identifi ers, fi lters, and associations.

 ResolveIdentity Returns an identity from the cache

 Note that while the ISynchronizationManager has methods for reading and populating the
cache, there is no method for clearing the cache. Data in the cache will be removed only by
the garbage collection process discussed in Chapter 3. The following code shows how to use the
 ISynchronizationManager to return a summary of operations:

RemoteOfflineRuntime rt = new RemoteOfflineRuntime();
ISynchronizationManager syncMan = rt.GetSynchronizationManager();
IProgressSummary opSummary = syncMan.GetOperationExecutionSummary();
Text1.Text = “Total Operations: “ + opSummary.Total.ToString();
Text2.Text = “Failed Operations: “ + opSummary.Failed.ToString();
Text3.Text = “Pending Operations: “ + opSummary.Pending.ToString();

 The GetSubscriptionManager() method returns an ISubscriptionManager object. The
 ISubscriptionManager interface provides the GetSubscription() and GetSubscriptions()
methods for retrieving the subscriptions in the cache. The ISubscriptionManager is used to gain

Working with the BDC Client Runtime Object Model ❘ 221

www.it-ebooks.info

http://www.it-ebooks.info

222 ❘ CHAPTER 6 PROGRAMMING BCS SOLUTIONS IN OFFICE 2010

access to an ISubscription interface that represents a subscription. The ISubscription interface
can be used to alter a subscription and can be used to cause a subscription to execute through the
 RequestRefresh() method. Just as with the ISynchronizationManager interface, there are no
methods to remove data or subscriptions from the cache. The following code shows how to gather
information about subscriptions:

RemoteOfflineRuntime rt = new RemoteOfflineRuntime();
ISubscriptionManager subscriptionManager = rt.GetSubscriptionManager();
ISubscriptionCollection subscriptions =
 subscriptionManager.GetSubscriptions();

foreach (ISubscription subscription in
 subscriptionManager.GetSubscriptions())
{
 NameField.Text = subscription.Name;

 EnabledField.Text = subscription.Enabled.ToString();
 StatusField.Text = subscription.GetStatus().RefreshStatus;
 LastRefresh.text = subscription.LastRefreshed.ToString();
 ExpiresField.text = subscription.ExpireAfter.ToString();

 StringBuilder sb = new StringBuilder();
 foreach (IField f in subscription.View.Fields)
 {
 Sb.Append(f.Name);
 }
}

 The GetMetadataCatalog() method is used to return an IMetadataCatalog object. This object
may be cast into a RemoteSharedFileBackedMetadataCatalog object and used to get information
about the BDC Metadata Model and the values of entity instances. The following code shows how
to return data from the cache using the catalog:

//Systems Information
INamedLobSystemDictionary systems = cache.GetLobSystems(“*”);

foreach (string k1 in systems.Keys)
{
 ILobSystem lob = systems[k1];
 INamedLobSystemInstanceDictionary lobis = lob.GetLobSystemInstances();

 List < string > s = new List < string > ();

 foreach (string k2 in lobis.Keys)
 {
 ILobSystemInstance lobi = lobis[k2];
 s.Add(lobi.Name);
 }
}

//ECT Information

www.it-ebooks.info

http://www.it-ebooks.info

INamespacedEntityDictionaryDictionary entities = cache.GetEntities(“*”);

List < string > e = new List < string > ();

foreach (IEntity entity in cache.GetEntities(“*”))
{

 e.Add(entity.Name);
 List < string > f = new List < string > ();
 List < string > m = new List < string > ();

 //Property Information
 foreach (IField fld in entity.GetDefaultSpecificFinderView().Fields)
 {
 f.Add(fld.name);
 }

 // Method Information
 foreach (string key in entity.GetMethodInstances().Keys)
 {
 IMethodInstance mi = entity.GetMethodInstances()[key];
 m.Add(mi.Name);
 }

 //Cached Data
 IEntityInstanceEnumerator instanceEnumerator = entity.FindFiltered(
 entity.GetDefaultFinderFilters(),
 entity.GetMethodInstances(MethodInstanceType.Finder)[0].Value.Name,
 entity.GetLobSystem().GetLobSystemInstances()[0].Value,
 OperationMode.CachedWithoutRefresh);

 int c = 0;
 while (instanceEnumerator.MoveNext())
 {
 c++;
 if (c < 11)
 {
 StringBuilder data = new StringBuilder();
 IEntityInstance entityInstance = instanceEnumerator.Current;
 foreach (IField f in
 entity.GetDefaultSpecificFinderView().Fields)
 {
 try
 {
 data.Append(entityInstance[f.Name].ToString());
 data.Append(“|”);
 }
 catch { }
 }
 }
 }
}

 Using the RemoteOfflineRuntime class, you can easily create a cache explorer solution that displays
information about the data in the cache. Just remember that it must be created as an Offi ce add - in

Working with the BDC Client Runtime Object Model ❘ 223

www.it-ebooks.info

http://www.it-ebooks.info

224 ❘ CHAPTER 6 PROGRAMMING BCS SOLUTIONS IN OFFICE 2010

to gain access. The code for this chapter has just such a sample
add - in, and Figure 6 - 12 shows a screen shot of it in use.

 CREATING OFFICE ADD - INS

 Microsoft Offi ce 2010 add - ins are the ultimate client - side BCS
solutions. Creating an add - in gives you complete control over the
user interface and allows you complete access to the BDC Client
Runtime object model. For these reasons, many BCS solutions
feature custom add - ins. You can start an add - in project in
Visual Studio 2010 from the Visual C# ➪ Offi ce ➪ 2010 project
group. Here you can choose to create an add - in for Word, Excel,
Outlook, Visio, InfoPath, Project, or PowerPoint.

 Adding Ribbon Support

 Once a new project is started, you can defi ne custom buttons for
the ribbon using the Ribbon Support component. The Ribbon
Support component is available from the Add New Item dialog.
When you add this component, Visual Studio adds a new class to
your project along with an XML fi le that holds button defi nitions. The Ribbon Support component
has both a visual designer and a straight XML fi le variant. Both types can achieve the same result,
but if you need more control, use the XML version.

 When the Ribbon Support component is added, it comes with some code to automatically add
the new elements to the target application ’ s ribbon, but this code is commented out. In order to load
your new elements, you must uncomment this code and copy it into the ThisAddin , ThisWorkbook , or
 ThisDocument class, as appropriate. This code overrides the CreateRibbonExtensibilityObject()
method. This is the method that is called when the Offi ce application loads the Ribbon Support
component. The following code shows the uncommented lines along with the startup and shutdown
event handlers for a basic Word add - in:

namespace WordAddIn1
{
 public partial class ThisAddIn
 {
 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 }

 private void ThisAddIn_Shutdown(object sender, System.EventArgs e)
 {
 }

 protected override Microsoft.Office.Core.IRibbonExtensibility
 CreateRibbonExtensibilityObject()
 {
 return new Ribbon1();
 }

 FIGURE 6 - 12

www.it-ebooks.info

http://www.it-ebooks.info

 #region VSTO generated code

 /// < summary >
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// < /summary >
 private void InternalStartup()
 {
 this.Startup += new System.EventHandler(ThisAddIn_Startup);
 this.Shutdown += new System.EventHandler(ThisAddIn_Shutdown);
 }

 #endregion
 }
}

 Along with the code fi le, the Ribbon Support component also provides an XML fi le that defi nes
what buttons appear in the ribbon. By default, this comes with a tab and group already defi ned,
but no controls. The ribbon supports a variety of controls that you can see by simply using the
IntelliSense that appears when you edit the fi le. Figure 6 - 13 shows the XML fi le being edited and
the following code shows the XML used for the sample:

 < ?xml version=”1.0” encoding=”UTF-8”? >
 < customUI xmlns=”http://schemas.microsoft.com/office/2009/07/customui”
 onLoad=”Ribbon_Load” >
 < ribbon >
 < tabs >
 < tab idMso=”TabInsert” >
 < group id=”BCSGroup” label=”BCS” >
 < button id=”BCSButton”
 label=”Insert BCS Data”
 onAction=”BCSButton_OnClick”/ >
 < /group >
 < /tab >
 < /tabs >
 < /ribbon >
 < /customUI >

 FIGURE 6 - 13

Creating Offi ce Add-Ins ❘ 225

www.it-ebooks.info

http://www.it-ebooks.info

226 ❘ CHAPTER 6 PROGRAMMING BCS SOLUTIONS IN OFFICE 2010

 The customUI element contains the entire defi nition for the tabs, groups, and controls that will
be added to the ribbon. The onLoad attribute references a callback method in the associated code
fi le that runs when the controls are loaded. The ribbon element contains a tabs element with
multiple tab elements for adding new tabs or customizing existing tabs. If you are targeting an
existing tab, the idMso attribute will contain the identifi er for the existing tab. New tabs are
identifi ed with an id attribute. The isMso value of an existing tab is always the word Tab followed
by the name of the tab as it appears in the application ribbon. The group element is used to create
a new group within a tab.

 When you defi ne controls within a group, there are various action attributes that enable you
to map actions to code. The preceding sample code has a single button with an action of
 BCSButton_OnClick . This callback method must exist inside the Ribbon Support component.
In the Ribbon Support component is a region named Ribbon Callbacks in which you should defi ne
the callback methods. The region already contains a callback for the onLoad event. Here you can
add your own callback and use the BDC Client Runtime object model as required. Additionally,
you can make use of the object model for the application itself. As an example, the following code
shows a callback coded to insert data from the client cache into a Word document:

public void BCSButton_OnClick(Office.IRibbonControl control)
{
 try
 {
 string lobSystemInstance = “MiniCRM”;
 string entityName = “Contact”;
 string entityNamespace = “http:///bcs”;
 string finderMethodInstance = “Read List”;

 RemoteSharedFileBackedMetadataCatalog catalog =
 new RemoteSharedFileBackedMetadataCatalog();

 //Get entity
 IEntity ect = catalog.GetEntity(entityNamespace, entityName);

 //Get LobSystem
 ILobSystem lob = ect.GetLobSystem();

 //Get LobSystemInstance
 ILobSystemInstance lobi =
 lob.GetLobSystemInstances()[lobSystemInstance];

 //Get Method Instance
 IMethodInstance mi = ect.GetMethodInstance(
 finderMethodInstance, MethodInstanceType.Finder);
 IEntityInstanceEnumerator items = ect.FindFiltered(
 mi.GetFilters(), finderMethodInstance, lobi,
 new OperationMode(CacheUsage.Cached, false));

 //Print them out
 while (items.MoveNext())
 {
 Microsoft.Office.Interop.Word.Range currentRange =

www.it-ebooks.info

http://www.it-ebooks.info

 Globals.ThisAddIn.Application.Selection.Range;
 currentRange.Text = items.Current[“FirstName”].ToString()
 + “ “ + items.Current[“LastName”].ToString() + “, “;
 }

 items.Close();
 }
 catch (Exception x)
 {
 MessageBox.Show(x.Message);
 }
}

 Creating a Custom Task Pane

 In addition to customizing the ribbon, you can also add custom task panes to the Offi ce
application. Custom task panes enable you to create an interface with whatever controls you
need and are an excellent means of integrating External System data with Offi ce 2010 applications.
Once again, you ’ ll be able to use the BDC Client Runtime object model to perform operations.

 Custom task panes are designed and built through user controls. You simply add a user control
to your project and design whatever interface you need using available controls from the toolbox.
As an example, Figure 6 - 14 shows a simple user control with a ListBox and a Button . Using
these controls, the sample will display a list of entity instances and allow them to be inserted
into a Word document.

 FIGURE 6 - 14

Creating Offi ce Add-Ins ❘ 227

 Writing the code for the add - in is straightforward. When the user control loads, the entity instances
from the External System are loaded into the ListBox . The user can select an item from the list and

www.it-ebooks.info

http://www.it-ebooks.info

228 ❘ CHAPTER 6 PROGRAMMING BCS SOLUTIONS IN OFFICE 2010

insert it into the document by clicking the Button . In the click event, the code uses the Word object
model to insert the selected text. The following is the code for the custom task pane:

private void MyTaskPane_Load(object sender, EventArgs e)
{

 try
 {
 string lobSystemInstance = “MiniCRM”;
 string entityName = “Contact”;
 string entityNamespace = “http:///bcs”;
 string finderMethodInstance = “Read List”;

 RemoteSharedFileBackedMetadataCatalog catalog =
 new RemoteSharedFileBackedMetadataCatalog();

 //Get entity
 IEntity ect = catalog.GetEntity(entityNamespace, entityName);

 //Get LobSystem
 ILobSystem lob = ect.GetLobSystem();

 //Get LobSystemInstance
 ILobSystemInstance lobi =
 lob.GetLobSystemInstances()[lobSystemInstance];

 //Get Method Instance
 IMethodInstance mi = ect.GetMethodInstance(
 finderMethodInstance, MethodInstanceType.Finder);
 IEntityInstanceEnumerator items = ect.FindFiltered(
 mi.GetFilters(), finderMethodInstance, lobi,
 new OperationMode(CacheUsage.Cached, false));

 //Add to list
 while (items.MoveNext())
 {
 listBox1.Items.Add(items.Current[“FirstName”].ToString()
 + “ “ + items.Current[“LastName”].ToString());
 }

 items.Close();
 }
 catch (Exception x)
 {
 MessageBox.Show(x.Message);
 }
}

private void insertButton_Click(object sender, EventArgs e)
{
 if (listBox1.SelectedIndex > -1)
 {
 Microsoft.Office.Interop.Word.Range currentRange =
 Globals.ThisAddIn.Application.Selection.Range;

www.it-ebooks.info

http://www.it-ebooks.info

 currentRange.Text = listBox1.SelectedItem.ToString();
 }
}

 Once the user control is designed and coded, you must write the code to display the custom task
pane at runtime. You do this in the startup event of the add - in. In the ThisAddIn_Startup event,
you create a CustomTaskPane object and add the user control. The following shows the code for
loading the task pane at startup:

private MyTaskPane myTaskPane;

private void ThisAddIn_Startup(object sender, System.EventArgs e)
{
 myTaskPane = new MyTaskPane();
 Microsoft.Office.Tools.CustomTaskPane newTaskPane =
 this.CustomTaskPanes.Add(myTaskPane, “BCS”);
 newTaskPane.Visible = true;
}

 Packaging Data - Only Solutions

 Because your BCS add - ins will be accessing the client cache, they will need to ensure that data
gets synchronized between the External System and the cache. When you are working with simple
no - code solutions, a subscription fi le is created and downloaded when the user clicks the Connect
to Outlook button on the ribbon in SharePoint. When you create your own add - in, however, you
need to create a subscription fi le to include with the solution. This type of package that includes
a subscription fi le and an add - in is referred to as a data - only solution because no BCS add - in
components are used.

 Once the add - in is complete, create a subscription fi le as an XML fi le. There are two ways to create a
subscription fi le. First, you can simply make it by hand, as discussed in Chapter 3. Second, you can use
the BCS Artifact Generator Tool to generate a solution for the External System and simply copy the
subscription fi le out of the artifact set. The following shows a sample subscription fi le for the solution:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < Subscription LobSystemInstanceName=”MiniCRM”
 EntityNamespace=”http://wingtipserver/bcs” EntityName=”Contact”
 Name=”ContactSubscription” View=”Read Item” IsCached=”true”
 RefreshIntervalInMinutes=”360”
 xmlns=”http://schemas.microsoft.com/office/2006/03/BusinessDataCatalog” >
 < Queries >
 < Query Name=”Read List” MethodInstanceName=”Read List”
 DefaultDisplayName=”Read List” RefreshIntervalInMinutes=”180”
 IsCached=”true” Enabled=”true” / >
 < /Queries >
 < /Subscription >

 You package the add - in solution with the BCS Solution Packaging Tool. You will need three fi les
copied into a folder together. First export the BDC Metadata Model and rename it metadata.xml ,

Creating Offi ce Add-Ins ❘ 229

www.it-ebooks.info

http://www.it-ebooks.info

230 ❘ CHAPTER 6 PROGRAMMING BCS SOLUTIONS IN OFFICE 2010

as discussed earlier in the chapter. Second, copy the subscription fi le into the folder. Third, copy the
compiled assembly for the add - in into the folder. Now start the BCS Solution Packaging Tool and
select the option to make a “ Data Solution for Offi ce Add - in ” from the Solution Type drop - down.
All the artifacts will be packaged together in a ClickOnce package, which you can deploy to a
document library, as discussed previously.

 When you are deploying data - only solutions to Offi ce clients, you will want to make sure that
the related External Data is available in the cache before your add - in starts operating. You can
check the status of the dependent data - only solution with the Microsoft.Office
.BusinessApplications.Runtime.Deployment.SolutionRegistry class. This class has a
 GetCurrentSolutionVersion() method for retrieving information about the solution and
a GetPendingSolutionDeploymentStatus() method for determining status. Both methods
take the name of the solution as the argument.

 In your add - in, you should create a function for checking the status of the data - only solution. This
way, your add - in will know if the External Data is available. You may then choose how to respond
based on the status. The following code shows a simple function that displays a MessageBox if the
data - only solution is not yet deployed when the add - in starts:

public bool ValidateDataOnlySolution()
{

 //Validate the the correct version of the solution is installed
 string currentVersion =
 SolutionRegistry.GetCurrentSolutionVersion(“MySolution”);

 bool retVal = true;

 if (currentVersion != “2.5.0.0”)
 {

 SolutionDeploymentStatus status =
 SolutionRegistry.GetPendingSolutionDeploymentStatus(“MySolution”);

 switch (status)
 {
 case SolutionDeploymentStatus.None:
 MessageBox.Show(“Dependent BCS Data missing.”);
 retVal = false;
 break;

 case SolutionDeploymentStatus.InstallationStarted:
 MessageBox.Show(“Dependent BCS Data installing.”);
 break;

 case SolutionDeploymentStatus.PendingActivation:
 SolutionRegistry.StartSolutionActivation(“ExternalDMS”);
 MessageBox.Show(“Dependent BCS Data pending.”);
 retVal = false;
 break;

 case SolutionDeploymentStatus.PendingDeactivation:
 MessageBox.Show(“Dependent BCS Data missing.”);

www.it-ebooks.info

http://www.it-ebooks.info

 retVal = false;
 break;

 case SolutionDeploymentStatus.InError:
 MessageBox.Show(“Dependent BCS Data failed.”);
 retVal = false;
 break;
 }

 }

 return retVal;
}

 SUMMARY

 While server - side solutions such as External Lists are powerful means of incorporating data into
SharePoint, client - side solutions in BCS can signifi cantly ease the work burden for information
workers. Because information workers spend so much time copying data from External Systems and
pasting it into documents, Outlook declarative solutions and custom add - ins can really save them
time by incorporating data directly into documents and task panes.

 In this chapter, you saw that Outlook declarative solutions enable you to create more sophisticated
solutions for Microsoft Outlook. You also saw that custom Offi ce add - ins can give you the complete
power of the .NET Framework and the BDC Client Runtime object model. Both of these solutions
are excellent means of helping end users get more from their business data.

Summary ❘ 231

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

234 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

 Because a .NET Assembly Connector is bound to an ECT, you should create them only when the
External System schema is fi xed. If the schema is subsequently changed, the ECT and associated
.NET Assembly Connector have to be modifi ed, recompiled, and deployed to support the new
schema. Because custom connectors are not tied to an ECT, they can handle schema changes in the
External System without recompiling. The ECTs that use the custom connector obviously still need
to be updated, but this can happen in SharePoint Designer with no recompilation.

 While both the custom connector and the .NET Assembly Connector are well integrated into
BCS, the .NET Assembly Connector generally has more support than the custom connector. .NET
Assembly Connectors have their own project type in Visual Studio 2010, along with design tools
and a complete deployment/debugging experience. Synchronization of External Lists based on
.NET Assembly Connectors is fully supported in the same way as for any other External List. For
these reasons, developers are likely to make many more .NET Assembly Connectors than custom
connectors. Custom connectors are much more likely to be developed by third - party vendors that
want to support BCS access to their systems.

 CREATING .NET ASSEMBLY CONNECTORS

 A .NET Assembly Connector associates a custom assembly with an ECT so that you can precisely
control how information is accessed, processed, and returned from External Systems. You create
a .NET Assembly Connector in Visual Studio 2010 using the Business Data Connectivity Model
project type. Figure 7 - 1 shows the New Project dialog in Visual Studio 2010.

 FIGURE 7 - 1

www.it-ebooks.info

http://www.it-ebooks.info

 The Visual Studio Business Data Connectivity Model project template is a complete working sample
project. Immediately after it is created you may hit F5 and make External Lists in SharePoint. This
is a good start because the tooling can be somewhat confusing when you fi rst use it; a complete
working sample helps guide you to success. The detailed examination of the project template in the
next section will help you understand.

 Understanding the Project Tooling

 When you ’ re working with the Business Data Connectivity Model project template there are three
explorers and designers available: the BDC Model Explorer, the Entity Design Surface, and the
Method Details pane. The BDC Model Explorer is used to navigate the nodes of the BDC Metadata
Model. The Entity Design Surface is used to design the ECT that will be associated with the .NET
Assembly Connector. The Method Details pane is used to create the function signatures for ECT
operations. Along with these three new elements, the Business Data Connectivity Model project
template also gives you the standard windows such as the Solution Explorer and the Properties
pane. Figure 7 - 2 shows the new tooling in Visual Studio 2010.

 FIGURE 7 - 2

 While the Visual Studio tooling is helpful, there are times when you must access the underlying
BDC Metadata Model as XML, either for direct editing or simply to verify the work you have done
using the tools. The BDC Metadata Model can be found in the Solution Explorer as the fi le with the
 .bdcm extension. You can open this fi le as XML by right - clicking it and selecting Open With from
the context menu. In the Open With dialog you may then choose to open the fi le with the XML
(Text) Editor.

Creating .NET Assembly Connectors ❘ 235

www.it-ebooks.info

http://www.it-ebooks.info

236 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

 In order to be successful with the tooling, you must understand how the various explorers and
designers relate to the underlying model XML. Furthermore, you must understand what elements
of the project are affected as you make changes. In particular, the BDC Model Explorer and the
Method Details pane can be confusing if their relationships to the underlying XML are not well
understood. Figure 7 - 3 shows the BDC Model Explorer labeled with the related XML elements.

 FIGURE 7 - 3

 FIGURE 7 - 4

 Figure 7 - 3 shows that not all of the underlying BDC Metadata Model can be represented in the BDC
Model Explorer. In particular, the BDC Model Explorer shows methods but not method instances.
The Method Details pane provides the interface necessary to defi ne the method instances. Figure 7 - 4
shows the relationship between the items in the Method Details pane and the underlying XML.

www.it-ebooks.info

http://www.it-ebooks.info

 The Entity Design Surface is also used to edit the
underlying BDC Metadata Model. However, it is
focused on the creation of entities. Using this tool,
you can create new entities, assign the Identifier ,
and create new methods. Figure 7 - 5 shows how the
Entity Design Surface maps to the underlying model.

 Regardless of which tool you are using, the
Properties pane can be used to edit the selected
node. The Properties pane lists the type of the node and its attributes. Although the nodes have
many attributes, most of them are not required. It is not always clear, however, which attributes are
required to implement any given node. The better you understand the model, the more likely you
are to successfully create the one you need.

 For the most part, the tooling is designed to edit the underlying BDC Metadata Model, with one
exception. A class module is used to implement the method instances that you defi ne in the model.
This class module is created automatically and is always given the name of the entity followed by the
word Service . This class is known as the service class . If you change the name of the entity in your
model, the service class name will be updated automatically. If you delete the service class from the
project, it will be recreated the next time you make any changes to the method defi nitions.

 The methods implemented in the service class have types defi ned by the input and return parameters
in the BDC Metadata Model. These types can be simple types or classes. Typically, however, the
 Finder and SpecificFinder methods will return classes that represent the ECT associated with
the .NET Assembly Connector. In the Business Connectivity Model project template, a class named
 Entity1.cs is created by default and is returned from the Finder and SpecificFinder methods.
These methods are also created by default when you create a project with the Business Connectivity
Model project template.

 Even though the project template includes a class that has the same name as the entity, there is
actually no connection between the entity defi nition and the entity class. Changing the name of
the entity in the model does not change the name of the class, and the class is never automatically
generated. The class is really just a payload returned from the .NET Assembly Connector. Its name
is meaningless, but it is a best practice to keep the name of the class synchronized with the name
of the entity it represents. The methods in the service class return instances of the entity class,
which are passed on to External Lists for display. In more advanced scenarios, you may choose to
implement the entity classes in a separate project so that they can be easily referenced by custom
web parts that will display the data.

 The tooling is largely focused on defi ning and implementing methods as opposed to defi ning
the data returned by the entity class. In the default project template, the entity has a data fi eld
named Message , which is defi ned as a TypeDescriptor with a TypeName of System.String . The
entity class has a corresponding property whose value is set during the execution of the Finder
or SpecificFinder methods. In order to add or modify data fi elds for the ECT, you must make
changes to the model in the BDC Model Explorer and add new properties to the entity class. This is
a manual process — the tooling will never automatically generate members for the entity class.

 FIGURE 7 - 5

Creating .NET Assembly Connectors ❘ 237

www.it-ebooks.info

http://www.it-ebooks.info

238 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

 Walking through the Development Process

 The easiest way to become familiar with the Visual Studio Business Data Connectivity Model
project is to create a solution. This example will present and walk you through the complete
development process for building a .NET Assembly Connector. It will make use of a subset of
product and category data from the AdventureWorks database to create a connector that will allow
full CRUD operations. As a starting point, an object relational model (ORM) was created over
the database using the Entity Framework so that the .NET Assembly Connector can simply access the
database through LINQ. Readers interested in learning more about the Entity Framework can fi nd
complete coverage on MSDN at http://msdn.microsoft.com/en-us/library/bb399572.aspx .

 Creating a New Project

 The fi rst step in developing the connector is to create a new Business Data Connectivity Model
project. While the default model created by the project template is valuable for learning about the
tooling, it provides little help in developing a connector. For this reason, it is best to simply delete
the default Entity1 entity from the Entity Design Surface. Along with the entity, you should also
delete the entity service class and the entity class from the Solution Explorer. This will leave you
with a simple BDC Metadata Model that looks like the following XML, which you can view as text
directly in Visual Studio:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < Model xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns=”http://schemas.microsoft.com/windows/2007/BusinessDataCatalog”
 Name=”ProductModel” >
 < LobSystems >
 < LobSystem Name=”ProductSystem” Type=”DotNetAssembly” >
 < LobSystemInstances >
 < LobSystemInstance Name=”ProductSystemInstance” / >
 < /LobSystemInstances >
 < /LobSystem >
 < /LobSystems >
 < /Model >

 The LobSystem element is a critical part of the model. Note how the element indicates that the
system will be implemented through an assembly. This syntax differs signifi cantly from that of the
examples in previous chapters, which used databases and web services. This element is also used
by both SPD and Visual Studio 2010 to determine whether or not to provide tooling support for a
model. SPD does not provide tooling support for .NET Assembly Connectors, and Visual Studio
provides tooling support only for .NET Assembly Connectors.

 Also notice in the preceding XML that careful attention has been paid to naming the elements.
The Model , LobSystem , and LobSystemInstance nodes have all been named appropriately. When
you are creating connectors, naming is critical for maintaining clarity as the BDC Metadata
Model becomes more complex. Remember to name elements correctly early in the development
process. Renaming elements later can cause problems as described in the section entitled Packaging
Considerations later in the chapter.

www.it-ebooks.info

http://www.it-ebooks.info

 Creating a New Entity

 Because the default entity was deleted, the next step is to add a new entity to the project. Entities
can be added to the project from the toolbox, which has an Entity object that can be dragged
onto the Entity Design Surface. When you add a new entity, you ’ ll notice that a new service class
is automatically created. Additionally, the Properties pane will present several properties that
can be set. Here you will at least set the Name property for the entity. In this case, the entity is
named Product .

 The next step is to add the Identifier for the entity. The Identifier is the primary key by which a
unique entity instance can be identifi ed. You can create a new Identifier by right - clicking the entity
and selecting Add ➪ Identifi er. Using the Properties pane, you can set the name and data type for the
 Identifier . For the walkthrough, an Identifier named ProductID was created, with a data type
of System.Int32 . The following code shows the BDC Metadata Model for the entity:

 < Entities >
 < Entity Name=”Product” Namespace=”AdventureworksConnector.ProductModel”
 Version=”1.0.0.133” DefaultDisplayName=”Adventureworks Product”
 DefaultOperationMode=”Online” EstimatedInstanceCount=”1000”
 IsCached=”false” >
 < Properties >
 < Property Name=”Class” Type=”System.String” >
 AdventureworksConnector.ProductModel.ProductService,
 ProductSystem < /Property >
 < /Properties >
 < Identifiers >
 < Identifier Name=”ProductID” TypeName=”System.Int32” / >
 < /Identifiers >
 < /Entity >
 < /Entities >

 The next step is to create the entity class that will contain the data from the External System.
Remember that Visual Studio does not automatically create an entity class, so you must add a new
class manually. Within the class, you must add properties for each of the data fi elds you want to
return. The following code shows the entity class created for the walkthrough:

namespace AdventureworksConnector
{
 public class Product
 {
 public int ProductID { get; set; }
 public string Name { get; set; }
 public string Number { get; set; }
 public string Color { get; set; }
 public decimal Price { get; set; }
 public string Description { get; set; }
 }
}

 While the preceding entity class is fairly simple, there are a couple of things to point out. First, each
of the properties in the class will correspond to a column in an External List. Second, the data is
strongly typed; the types defi ned in the class are what are returned from the connector.

Creating .NET Assembly Connectors ❘ 239

www.it-ebooks.info

http://www.it-ebooks.info

240 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

 Creating a Finder Method

 The next step is to create the methods for the entity. Returning to the Entity Design Surface, you
may create new methods by right - clicking the entity and selecting Add ➪ Method. You may also
create a new method in the Method Details pane, which is a better idea because Visual Studio
defi nes the model for the stereotype when you start here. Remember that a method is just a
stereotype and that you must create a method instance in order to implement the method. You can
create a new method instance by clicking the Add Method Instance link in the Method Details
pane. Once you have created the method instance you can specify the Type of the method instance
in the Properties pane. Typically, your fi rst method will be a Finder method. For the walkthrough,
a Finder method named ReadProducts was created.

 Once the method instance is defi ned, you must defi ne its parameters. In the case of the default
 Finder method you will typically defi ne a return parameter only. Other method instances may
require input parameters as well as fi lters. You can create a new parameter by clicking the Add a
Parameter message in the Method Details pane. Using the Properties pane, you can then change
the parameter name and direction. For the walkthrough, a Return parameter named ProductList
was created.

 When a parameter is defi ned, Visual Studio automatically creates a TypeDescriptor for the
parameter. The TypeDescriptor acts as a mapping between the data types found in the External
System and the data types returned by the .NET Assembly Connector. Clicking the TypeDescriptor
in the Method Details pane will enable you to defi ne the TypeName for the TypeDescriptor . In
the case of a Finder method, the TypeDescriptor is typically a collection of entity instances.
Therefore, the IsCollection property should be set to True before you select the TypeName . Once
the TypeDescriptor is designated as a collection, you can open the TypeName picker, click the
Current Project tab, and select the Product class. Visual Studio automatically sets the return type
to be a collection. Figure 7 - 6 shows the Type Name picker in Visual Studio.

 FIGURE 7 - 6

www.it-ebooks.info

http://www.it-ebooks.info

 At this point you can open the code for the service class and see that Visual Studio has created
a method whose signature is based on the method, parameter, and TypeDescriptor settings.
However, our work is not yet done because the return TypeDescriptor was designated as a
collection. Therefore a new TypeDescriptor must be added to represent the member of
the collection. Additionally, each fi eld in the collection member must be defi ned.

 In order to create the additional TypeDescriptors , you will
work in the BDC Model Explorer. In the Explorer, you can
see the TypeDescriptor defi ning the collection. You may
defi ne a collection member by right - clicking the collection
 TypeDescriptor and selecting Add Type Descriptor from the
context menu. This TypeDescriptor will have a TypeName of
 Product , but will not be a collection. Finally, you must add
a TypeDescriptor for every property of the entity you want
to return. Take care to set the Identifier property for the
 TypeDescriptor that represents the Identifier of the entity
in order to designate this property as the one containing the
 Identifier value. Figure 7 - 7 shows the complete Finder
method in the BDC Model Explorer.

 Finally, return to the Method Details pane and select the method instance for the Finder . In the
Properties pane, set Return Parameter Name and Return TypeDescriptor to reference the
items already created. This completes the defi nition of the Finder . The following code shows the
completed Finder method defi nition in the BDC Metadata Model:

 < Method Name=”ReadProducts” >
 < Parameters >
 < Parameter Name=”ProductList” Direction=”Return” >
 < TypeDescriptor Name=”ProductListTypeDescriptor”
 TypeName=”System.Collections.Generic.IEnumerable`1[
 [AdventureworksConnector.ProductModel.Product, ProductSystem]]”
 IsCollection=”true” >
 < TypeDescriptors >
 < TypeDescriptor Name=”ProductTypeDescriptor”
 TypeName=”AdventureworksConnector.ProductModel.Product, ProductSystem”
 IsCollection=”false” >
 < TypeDescriptors >
 < TypeDescriptor Name=”Name” TypeName=”System.String” / >
 < TypeDescriptor Name=”Number” TypeName=”System.String” / >
 < TypeDescriptor Name=”Color” TypeName=”System.String” / >
 < TypeDescriptor Name=”Price” TypeName=”System.Decimal”
 IsCollection=”false” / >
 < TypeDescriptor Name=”Description” TypeName=”System.String” / >
 < TypeDescriptor Name=”ProductID” TypeName=”System.Int32”
 IsCollection=”false” IdentifierName=”ProductID” ReadOnly=”true” / >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /TypeDescriptors >
 < /TypeDescriptor >

 FIGURE 7 - 7

Creating .NET Assembly Connectors ❘ 241

www.it-ebooks.info

http://www.it-ebooks.info

242 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Name=”ReadProductsInstance” Type=”Finder”
 ReturnParameterName=”ProductList”
 ReturnTypeDescriptorPath=”ProductListTypeDescriptor” / >
 < /MethodInstances >
 < /Method >

 Creating a Specifi cFinder Method

 Because the minimum requirements for an External List include a Finder and SpecificFinder
method, the next step is to create the SpecificFinder method. You use the same procedure as for
the Finder method, with two exceptions. First, the return type is a single entity instance as opposed
to a collection. Second, SpecificFinder requires an input parameter that contains the Identifier
of the entity instance to return. You must explicitly designate this input parameter as accepting an
 Identifier by setting the Identifier property.

 As with the Finder method, you must also add a TypeDescriptor
for every property of the entity you want to return and set the
 Identifier property for the TypeDescriptor that contains
the Identifier value. In this case, however, you can simply
copy the TypeDescriptors from the Finder method in the BDC
Model Explorer and paste them under the SpecificFinder
method. Figure 7 - 8 shows the complete SpecificFinder method
in the BDC Model Explorer.

 One last thing you must do is set the Read - Only property to True
for the TypeDescriptor that represents the Identifier . You must
do this because the ProductID is handled as an identity column
in the database. The user cannot update the value for this fi eld.
Setting the Read - Only property ensures that the auto - generated forms in SharePoint will refl ect the
fact that the fi eld cannot be changed. The following code shows the completed SpecificFinder
method defi nition in the model:

 < Method Name=”ReadProduct” >
 < Parameters >
 < Parameter Name=”ProductID” Direction=”In” >
 < TypeDescriptor Name=”ProductID” TypeName=”System.Int32”
 IsCollection=”false” IdentifierName=”ProductID” / >
 < /Parameter >
 < Parameter Name=”Product” Direction=”Return” >
 < TypeDescriptor Name=”ProductTypeDescriptor”
 TypeName=”AdventureworksConnector.Product, ProductSystem”
 IsCollection=”false” >
 < TypeDescriptors >
 < TypeDescriptor Name=”Color” TypeName=”System.String” / >
 < TypeDescriptor Name=”Description” TypeName=”System.String” / >

 FIGURE 7 - 8

www.it-ebooks.info

http://www.it-ebooks.info

 < TypeDescriptor Name=”Name” TypeName=”System.String” / >
 < TypeDescriptor Name=”Number” TypeName=”System.String” / >
 < TypeDescriptor Name=”Price” TypeName=”System.Decimal”
 IsCollection=”false” / >
 < TypeDescriptor Name=”ProductID” TypeName=”System.Int32”
 IsCollection=”false” IdentifierName=”ProductID”
 ReadOnly=”true” / >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Name=”ReadProductInstance” Type=”SpecificFinder”
 ReturnParameterName=”Product”
 ReturnTypeDescriptorPath=”ProductTypeDescriptor” / >
 < /MethodInstances >
 < /Method >

 Handling Connection Information

 At this point, the minimum required methods are defi ned, and you can turn your attention
to implementing them in code. As a fi rst order of business, you must consider how to handle
connection information for the External System. The simplest way to store connection
information is as a property in the BDC Metadata Model. You may add custom properties to
any node in the BDC Metadata Model, and connection information is typically attached to the
 LobSystemInstance node.

 In the BDC Explorer, you can select the LobSystemInstance node and then click the Custom
Properties ellipsis in the Properties pane. This will open the Property editor dialog, where you can
add a new custom property to hold the connection string. Figure 7 - 9 shows the custom property for
the walkthrough and the BDC Metadata Model follows.

 FIGURE 7 - 9

Creating .NET Assembly Connectors ❘ 243

www.it-ebooks.info

http://www.it-ebooks.info

244 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

 < LobSystemInstance Name=”ProductSystemInstance” >
 < Properties >
 < Property Name=”AdventureworksCatalog” Type=”System.String” >
 Connection string goes here
 < /Property >
 < /Properties >
 < /LobSystemInstance >

 Once the custom property is created, the service class can be modifi ed to support reading
the connection information. You start this process by setting a reference to the
 Microsoft.BusinessData.dll assembly located in the ISAPI folder beneath the SharePoint
system directory. Once the reference is made, the service class must be updated to implement
the Microsoft.BusinessData.SystemSpecific.IContextProperty interface.

 You don ’ t need to write any code in order to implement the interface, because the BDC Server
Runtime takes care of managing the properties that must be set. You can, however, now use the
interface to retrieve the property previously stored in the model. The following is the interface and
connection information retrieval code:

internal string GetConnectionInfo()
{
 INamedPropertyDictionary props =
 this.LobSystemInstance.GetProperties();

 if (props.ContainsKey(“AdventureworksCatalog”))
 return props[“AdventureworksCatalog”].ToString();
 else
 return string.Empty;
}

public Microsoft.BusinessData.Runtime.IExecutionContext
 ExecutionContext
{
 get;
 set;
}

public Microsoft.BusinessData.MetadataModel.ILobSystemInstance
 LobSystemInstance
{
 get;
 set;
}

public Microsoft.BusinessData.MetadataModel.IMethodInstance
 MethodInstance
{
 get;
 set;
}

www.it-ebooks.info

http://www.it-ebooks.info

 Implementing the Methods

 Now that the connection information can be stored and retrieved, you can turn your attention to
implementing the methods. This is a matter of writing the necessary code to return the data from
the External System, but there are two changes that must be made to the service class fi rst.

 If you examine the code that Visual Studio generates in the project, you will notice that all the
methods are static . This is because the .NET Assembly Connector will perform slightly better
with static methods. However, once the IContextProperty interface is implemented, the class
can no longer use the static methods. Therefore, the static keyword must be removed. The code
generated by Visual Studio also uses IEnumerable < T > as the return type for the Finder method. If
you want to be able to open the ECT in the SharePoint Designer, however, this must be changed to
 IList < T > .

 Once the changes are made, the code for the methods can fi nally be added to the connector. After
you fi nish and compile the code, the .NET Assembly Connector may be deployed. At this point, a
new External List can be created. The following code shows the complete implementation for the
methods, which uses LINQ queries against the Entity Framework layer discussed previously:

namespace AdventureworksConnector.ProductModel
{
 public partial class ProductService : IContextProperty
 {
 public IList < Product > ReadProducts()
 {
 AdventureworksCatalog catalog =
 new AdventureworksCatalog(GetConnectionInfo());

 var q = from p in catalog.Products
 orderby p.ProductName
 select p;

 List < Product > products = new List < Product > ();

 foreach (var i in q)
 {
 products.Add(
 new Product()
 {
 ProductID = i.ProductID,
 Name = i.ProductName,
 Number = i.ProductNumber,
 Description = i.ProductDescription,
 Color = i.ProductColor,
 Price = i.ProductPrice
 });
 }

 return products;
 }

 public Product ReadProduct(int ProductID)
 {

Creating .NET Assembly Connectors ❘ 245

www.it-ebooks.info

http://www.it-ebooks.info

246 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

 AdventureworksCatalog catalog =
 new AdventureworksCatalog(GetConnectionInfo());

 var q = from p in catalog.Products
 where p.ProductID == ProductID
 select p;

 if (q.Count() == 1)
 {
 return new Product()
 {
 ProductID = q.First().ProductID,
 Name = q.First().ProductName,
 Number = q.First().ProductNumber,
 Description = q.First().ProductDescription,
 Color = q.First().ProductColor,
 Price = q.First().ProductPrice
 };
 }
 else
 return null;
 }
 }
}

 Adding Creator, Updater, and Deleter Methods

 In order for the .NET Assembly Connector to be fully functional, it must have methods to create,
update, and delete items. You can create new methods by clicking the Add a Method link in the
Method Details pane. As stated previously, when you start from the Method Details pane, Visual
Studio generates model elements appropriate for the method.

 The Creator method takes an entity instance as an input and returns a new entity instance. The
input entity instance is simply a container for the new values, with the exception of the Identifier ,
because that value is created in the External System. Each fi eld that contains information necessary
for the creation of the new item has a CreatorField property set to True . The following code
shows the Creator method model defi nition:

 < Method Name=”CreateProduct” >
 < Parameters >
 < Parameter Name=”ProductOut” Direction=”Return” >
 < TypeDescriptor Name=”ProductOutTypeDescriptor”
 IsCollection=”false”
 TypeName=”AdventureworksConnector.ProductModel.Product, ProductSystem” >
 < TypeDescriptors >
 < TypeDescriptor Name=”Color” TypeName=”System.String” / >
 < TypeDescriptor Name=”Description” TypeName=”System.String” / >
 < TypeDescriptor Name=”Name” TypeName=”System.String” / >
 < TypeDescriptor Name=”Number” TypeName=”System.String” / >
 < TypeDescriptor Name=”Price”
 IsCollection=”false” TypeName=”System.Decimal” / >

www.it-ebooks.info

http://www.it-ebooks.info

 < TypeDescriptor Name=”ProductID” IdentifierName=”ProductID”
 IsCollection=”false” TypeName=”System.Int32” / >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /Parameter >
 < Parameter Name=”ProductIn” Direction=”In” >
 < TypeDescriptor Name=”ProductTypeDescriptor”
 IsCollection=”false”
 TypeName=”AdventureworksConnector.Product, ProductSystem” >
 < TypeDescriptors >
 < TypeDescriptor Name=”Color” TypeName=”System.String”
 CreatorField=”true” / >
 < TypeDescriptor Name=”Description” TypeName=”System.String”
 CreatorField=”true” / >
 < TypeDescriptor Name=”Name” TypeName=”System.String”
 CreatorField=”true” / >
 < TypeDescriptor Name=”Number” TypeName=”System.String”
 CreatorField=”true” / >
 < TypeDescriptor Name=”Price” IsCollection=”false”
 TypeName=”System.Decimal” CreatorField=”true” / >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Name=”CreateProductInstance” Type=”Creator”
 ReturnParameterName=”ProductOut”
 ReturnTypeDescriptorPath=”ProductOutTypeDescriptor” / >
 < /MethodInstances >
 < /Method >

 The Updater method takes an entity instance as an input. The input entity instance is the entity to
update. Each fi eld that contains information necessary to update the item in the External System
has an UpdaterField property set to True . The following code shows the Updater method model
defi nition:

 < Method Name=”UpdateProduct” >
 < Parameters >
 < Parameter Name=”ProductIn” Direction=”In” >
 < TypeDescriptor Name=”ProductTypeDescriptor” IsCollection=”false”
 TypeName=”AdventureworksConnector.ProductModel.Product, ProductSystem” >
 < TypeDescriptors >
 < TypeDescriptor Name=”Color” TypeName=”System.String”
 UpdaterField=”true” / >
 < TypeDescriptor Name=”Description” TypeName=”System.String”
 UpdaterField=”true” / >
 < TypeDescriptor Name=”Name” TypeName=”System.String”
 UpdaterField=”true” / >
 < TypeDescriptor Name=”Number” TypeName=”System.String”
 UpdaterField=”true” / >
 < TypeDescriptor Name=”Price” IsCollection=”false”
 TypeName=”System.Decimal” UpdaterField=”true” / >
 < TypeDescriptor Name=”ProductID” TypeName=”System.Int32”

Creating .NET Assembly Connectors ❘ 247

www.it-ebooks.info

http://www.it-ebooks.info

248 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

 IsCollection=”false” ReadOnly=”false” UpdaterField=”true” / >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Name=”UpdateProductInstance” Type=”Updater” / >
 < /MethodInstances >
 < /Method >

 Although it is less likely that you will want to allow end users to edit the Identifier of an entity
instance, you can do this in the Updater method. In order for the Identifier to be updated, the
 Updater method must accept a separate parameter containing the new value for the Identifier .
This parameter must have the PreUpdaterField property set to True . The following code shows
the BDC Metadata Model for the parameter and the resulting function signature:

 < Parameter Name=”NewProductID” Direction=”In” >
 < TypeDescriptor Name=”ProductID” TypeName=”System.Int32”
 IsCollection=”false” PreUpdaterField=”true”
 IdentifierName=”ProductID” / >
 < /Parameter >

public void UpdateProduct(Product ProductIn, int NewProductID){}

 The Deleter method takes an Identifier as an input. The Identifier is the entity to delete. The
following code shows the Deleter method model defi nition:

 < Method Name=”DeleteProduct” >
 < Parameters >
 < Parameter Name=”ProductID” Direction=”In” >
 < TypeDescriptor Name=”ProductID” TypeName=”System.Int32”
 IdentifierEntityName=”Product”
 IdentifierEntityNamespace=”AdventureworksConnector.ProductModel”
 IdentifierName=”ProductID” / >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Name=”DeleteProduct” Type=”Deleter” / >
 < /MethodInstances >
 < /Method >

 Visual Studio offers you a list of several methods to create and will even build out the correct
function signature for you. The only modifi cation you must make is to remove the static keyword
from the signatures. Then the methods can be implemented with the following code:

public Product CreateProduct(Product ProductIn)
{
 AdventureworksCatalog catalog =
 new AdventureworksCatalog(GetConnectionInfo());
 AdventureworksData.Product newProduct = new AdventureworksData.Product()

www.it-ebooks.info

http://www.it-ebooks.info

 {
 ProductName = ProductIn.Name,
 ProductNumber = ProductIn.Number,
 ProductColor = ProductIn.Color,
 ProductPrice = ProductIn.Price,
 ProductDescription = ProductIn.Description
 };

 catalog.AddToProducts(newProduct);
 catalog.SaveChanges();

 ProductIn.ProductID = newProduct.ProductID;
 return ProductIn;
}

public void UpdateProduct(Product ProductIn)
{
 AdventureworksCatalog catalog =
 new AdventureworksCatalog(GetConnectionInfo());

 AdventureworksData.Product product =
 catalog.Products.First(p = > p.ProductID == ProductIn.ProductID);

 product.ProductName = ProductIn.Name;
 product.ProductNumber = ProductIn.Number;
 product.ProductColor = ProductIn.Color;
 product.ProductDescription = ProductIn.Description;
 product.ProductPrice = ProductIn.Price;

 catalog.SaveChanges();
}

public void DeleteProduct(int ProductID)
{
 AdventureworksCatalog catalog =
 new AdventureworksCatalog(GetConnectionInfo());
 AdventureworksData.Product product =
 catalog.Products.First(p = > p.ProductID == ProductID);
 catalog.DeleteObject(product);
 catalog.SaveChanges();
}

 Adding a StreamAccessor Method

 The .NET Assembly Connector supports any of the available method stereotypes listed in
Chapter 4, in addition to the basic CRUD methods. Because of this support, .NET Assembly
Connectors are often written solely to implement stereotypes not available in SPD. A good
example of one of these additional methods is the StreamAccessor . The StreamAccessor
method is used to return a Stream from the .NET Assembly Connector typically associated
with a fi le. In the walkthrough, the External System contained a photo for each product.
A StreamAccessor can be used to return the photo. The input parameter is the Identifier ,

Creating .NET Assembly Connectors ❘ 249

www.it-ebooks.info

http://www.it-ebooks.info

250 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

and the output parameter is the Stream . The following code shows the BDC Metadata Model for
the StreamAccessor method defi nition:

 < Method Name=”ReadPhoto” >
 < Parameters >
 < Parameter Name=”ProductID” Direction=”In” >
 < TypeDescriptor Name=”ProductID” TypeName=”System.Int32”
 IdentifierName=”ProductID” IsCollection=”false” / >
 < /Parameter >
 < Parameter Name=”Photo” Direction=”Return” >
 < TypeDescriptor Name=”PhotoTypeDescriptor” TypeName=”System.Stream” / >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Name=”ReadPhotoInstance” Type=”StreamAccessor”
 ReturnParameterName=”Photo”
 ReturnTypeDescriptorPath=”PhotoTypeDescriptor” / >
 < /MethodInstances >
 < /Method >

 Implementing a StreamAccessor is a matter of reading the fi le contents and returning them as a
 Stream . In this case, the fi le is kept as a BLOB in the database. The following code shows how the
method was implemented in the walkthrough:

public Stream ReadPhoto(int ProductID)
{
 AdventureworksCatalog catalog =
 new AdventureworksCatalog(GetConnectionInfo());

 var q = from p in catalog.Products
 where p.ProductID == ProductID
 select p;

 if (q.Count() == 1)
 {
 byte[] buffer = q.First().ProductPhoto;
 return new MemoryStream(buffer);
 }
 else
 return null;
}

 As discussed in Chapter 2, StreamAccessor methods are not supported in External Lists, but they
are supported in the External Data web parts. Of course, you can also use the BDC Runtime API to
call the method in your own custom code as well. Entities that expose a StreamAccessor will show
a hyperlink in the External Data web part that will allow a download of the fi le. This hyperlink
opens the DownloadExternalData.aspx page, sending in a set of query string parameters to invoke
the StreamAccessor method for the correct entity instance. The MIMETypeField and MIMEType
properties of the MethodInstance element can be used to specify the MIME type of the ECT, which
determines the application that will be used to open the document.

www.it-ebooks.info

http://www.it-ebooks.info

 Creating Associations between Entities

 In production systems, you will undoubtedly defi ne multiple ECTs, and these ECTs will have
relationships among themselves. In the walkthrough, each product was assigned to a category, so it
makes sense that there should be a new ECT to represent the category and that it should be related
to the Product . To get started, a new entity named Category was created, along with the Finder
and SpecificFinder methods. The process of creating the new ECT is identical to the process of
creating the Product entity.

 In addition to the new Category entity ’ s being created, the Product entity must be updated to
contain the CategoryID of the associated category. The model, entity class, and service class will all
require changes to support the new CategoryID fi eld. The changes, however, are straightforward
and similar to those required by the other fi elds defi ned in the entity.

 Once the entities are defi ned, you can defi ne an association using the Association item in the
toolbox. This item works a little differently from most toolbox items. Instead of dragging and
dropping the shape, you must click the shape in the toolbox. Then you can click the one (parent)
entity and drag an association to the many (child) entity.

 When you create the association, Visual Studio
will present the Association Editor dialog. In
this dialog, you must map each TypeDescriptor
that represents the foreign key from the many
(child) entity to the one (parent) entity. In the
walkthrough, each of the TypeDescriptors
representing the CategoryID in the Product
entity was mapped to the CategoryID
Identifier in the Category entity.

 The Association Editor creates a one - to - many and
a reverse association by default. The one - to - many
association returns all child entity instances for a
given parent, and the reverse association returns
the parent entity instance for a given child. In the
case of the walkthrough, only the one - to - many
association was retained; the reverse association
was deleted. Figure 7 - 10 shows the Association
Editor dialog for this example.

 When the Association Editor dialog is closed,
the underlying model will be updated with AssociationNavigator methods. These methods pass
in an Identifier and return associated entities. In the walkthrough, a Category Identifier
was passed in and multiple Product entity instances were returned. The following code shows the
resulting model XML:

 < Method Name=”CategoryToProduct” >
 < Parameters >
 < Parameter Name=”categoryID” Direction=”In” >
 < TypeDescriptor Name=”CategoryID” TypeName=”System.Int32”
 IdentifierEntityName=”Category”

 FIGURE 7 - 10

Creating .NET Assembly Connectors ❘ 251

www.it-ebooks.info

http://www.it-ebooks.info

252 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

 IdentifierEntityNamespace=”AdventureworksConnector.ProductModel”
 IdentifierName=”CategoryID”
 ForeignIdentifierAssociationEntityName=”Category”
 ForeignIdentifierAssociationEntityNamespace=
 “AdventureworksConnector.ProductModel”
 ForeignIdentifierAssociationName=
 “CategoryToProductAssociationNavigator” / >
 < /Parameter >
 < Parameter Name=”productList” Direction=”Return” >
 < TypeDescriptor Name=”ProductList”
 TypeName=”System.Collections.Generic.IEnumerable`1[
 [AdventureworksConnector.ProductModel.Product, ProductSystem]]”
 IsCollection=”true” >
 < TypeDescriptors >
 < TypeDescriptor Name=”Product” IsCollection=”false”
 TypeName=”AdventureworksConnector.ProductModel.Product, ProductSystem” >
 < TypeDescriptors >
 < TypeDescriptor Name=”Color” TypeName=”System.String” / >
 < TypeDescriptor Name=”Description” TypeName=”System.String” / >
 < TypeDescriptor Name=”Name” TypeName=”System.String” / >
 < TypeDescriptor Name=”Number” TypeName=”System.String” / >
 < TypeDescriptor Name=”Price” IsCollection=”false”
 TypeName=”System.Decimal” / >
 < TypeDescriptor Name=”ProductID” IsCollection=”false”
 ReadOnly=”true” TypeName=”System.Int32”
 IdentifierEntityName=”Product”
 IdentifierEntityNamespace=”AdventureworksConnector.ProductModel”
 IdentifierName=”ProductID” / >
 < TypeDescriptor Name=”CategoryID”
 IdentifierEntityNamespace=”AdventureworksConnector.ProductModel”
 IdentifierEntityName=”Category” IdentifierName=”CategoryID”
 ForeignIdentifierAssociationEntityNamespace=
 “AdventureworksConnector.ProductModel”
 ForeignIdentifierAssociationEntityName=”Category”
 ForeignIdentifierAssociationName=
 “CategoryToProductAssociationNavigator”
 IsCollection=”false” TypeName=”System.Int32” / >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < Association Name=”CategoryToProductAssociationNavigator”
 Type=”AssociationNavigator” ReturnParameterName=”productList”
 ReturnTypeDescriptorPath=”ProductList” >
 < SourceEntity Name=”Category”
 Namespace=”AdventureworksConnector.ProductModel” / >
 < DestinationEntity Name=”Product”
 Namespace=”AdventureworksConnector.ProductModel” / >
 < /Association >
 < /MethodInstances >
 < /Method >

www.it-ebooks.info

http://www.it-ebooks.info

 Function stubs are created in the service class for each of the AssociationNavigator methods.
Implementing these methods requires executing the necessary code to return the required entities.
The following code shows the implementation for the walkthrough:

public IList < Product > CategoryToProduct(int categoryID)
{
 AdventureworksCatalog catalog =
 new AdventureworksCatalog(GetConnectionInfo());

 var q = from p in catalog.Products
 where p.CategoryID == categoryID
 orderby p.ProductName
 select p;

 List < Product > products = new List < Product > ();

 foreach (var i in q)
 {
 products.Add(
 new Product()
 {
 ProductID = i.ProductID,
 Name = i.ProductName,
 Number = i.ProductNumber,
 Description = i.ProductDescription,
 Color = i.ProductColor,
 Price = i.ProductPrice,
 CategoryID = i.CategoryID
 });
 }

 return products;
}

 Understanding Non – Foreign Key Relationships

 While it is common to have associations between entities through foreign keys, that is not always
the case. The situation in which you ’ re most likely to fi nd a non – foreign key relationship is that of a
many - to - many relationship. A database may be designed, for example, to keep the relationships in
a separate table so that they are not directly available through a foreign key.

 In addition to the AssociationNavigator methods, you may need to include Associator and
 Disassociator methods. These are intended to modify the data in the External System that
manages the relationship. The methods, for example, can be used to modify the table that contains
a many - to - many relationship in the database.

 As a quick sidebar example, consider an External System that relates people to action items. A table
named Resources maintains information about the people, while a table named ActionItems
maintains tasks. In the system design, many tasks can be assigned to a single resource and many
resources can be assigned to a single task. Your application will want to show the tasks assigned
to a given resource and show the resources assigned to a given task. In this case, you will use the

Creating .NET Assembly Connectors ❘ 253

www.it-ebooks.info

http://www.it-ebooks.info

254 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

Association Editor but uncheck the Is Foreign Key Association checkbox. Additionally, you will add
 Associator and Disassociator methods.

 The Associator and Disassociator methods have two input parameters. These are the
 Identifiers of the entity instances to associate or disassociate. In code, you can use these values
to modify the table defi ning the many - to - many relationship. The following code shows the BDC
Metadata Model for the Associator method:

 < Method Name=”AssociateResourceToTask” >
 < Parameters >
 < Parameter Name=”resourceID” Direction=”In” >
 < TypeDescriptor Name=”ResourceID” TypeName=”System.Int32”
 IdentifierEntityName=”Resource”
 IdentifierEntityNamespace=”ActionItems.ActionItemsModel”
 IdentifierName=”ResourceID”
 ForeignIdentifierAssociationEntityName=”Resource”
 ForeignIdentifierAssociationEntityNamespace=”ActionItemsModel”
 ForeignIdentifierAssociationName=”AssociateResourceToTaskAssociator” / >
 < /Parameter >
 < Parameter Name=”taskID” Direction=”In” >
 < TypeDescriptor Name=”TaskID” TypeName=”System.Int32”
 IdentifierEntityName=”Task”
 IdentifierEntityNamespace=”ActionItemsModel”
 IdentifierName=”TaskID” / >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < Association Name=”AssociateResourceToTaskAssociator” Type=”Associator” >
 < SourceEntity Name=”Resource” Namespace=”ActionItemsModel” / >
 < DestinationEntity Name=”Task” Namespace=”ActionItemsModel” / >
 < /Association >
 < /MethodInstances >
 < /Method >

 Testing the Connector

 Once the .NET Assembly Connector is complete, it may be deployed and tested. Using the connector
developed in the walkthrough, you should be able to create External Lists and use the External Data
Web Parts. The associations between the entities should result in appropriate pickers appearing
when entity instances are created or edited. As with all features created in Visual Studio 2010, you
can easily debug the .NET Assembly Connector by setting breakpoints in the code and pressing F5.

 CREATING CUSTOM CONNECTORS

 A custom connector is a single assembly that works with multiple ECTs. The purpose of the custom
connector is to enable you to simply change the BDC Metadata Model when the schema of the
External System changes. Unlike with the .NET Assembly Connector, no code changes are required
to the custom connector assembly when schema changes occur. Custom connectors are useful when

www.it-ebooks.info

http://www.it-ebooks.info

you want to create a connector for a generic system type and allow others to create the specifi c BDC
Metadata Model.

 Understanding Project Elements

 Custom connectors are created in Visual Studio 2010, but there are no integrated tools for creating
them. However, it is possible to start with a Business Data Connectivity Model project and modify
it to become a custom connector. While most of the project tooling will not work with custom
connectors, you can gain the benefi ts of packaging, deployment, and debugging using the Visual
Studio Tools for SharePoint.

 The process for starting a new custom connector involves fi rst creating a Business Data
Connectivity Model project. After the new project is created, you can delete the entity from the
Entity Design Surface. You can then open the project XML as text and change the Type attribute
in the LobSystem element to Custom . The following code shows a sample of the resulting BDC
Metadata Model. In particular, note the Type attribute in the LobSystem element:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < Model xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns=”http://schemas.microsoft.com/windows/2007/BusinessDataCatalog”
 Name=”MyModel” >
 < LobSystems >
 < LobSystem Name=”MySystem” Type=”Custom” >
 < LobSystemInstances >
 < LobSystemInstance Name=”MySystemInstance” / >
 < /LobSystemInstances >
 < /LobSystem >
 < /LobSystems >
 < /Model >

 Along with the model, you will also create an assembly to implement the connector and execute
methods. The starter code that is created for a .NET Assembly Connector has no use in a
custom connector. Therefore, both the entity class and the service class can simply be deleted
from the project.

 At this point you will have a feature that can be used to deploy the model and associated assembly
to SharePoint. Changing the Type attribute of the model prevents the Entity Design Surface and
Method Details panes from functioning. You will, however, be able to use the BDC Model Explorer.
Additionally, you will get model validation when you compile the project. For the most part you
will fi nd that you must create the model by hand, so strong knowledge of the BDC Metadata Model
schema is critical for success.

 Walking through the Development Process

 As with the .NET Assembly Connector, the best way to learn to create a custom connector is by
walking through a sample project. This sample will create a custom connector that can be used
to read elements and attributes from an XML fi le. The concept is to create a connector that can

Creating Custom Connectors ❘ 255

www.it-ebooks.info

http://www.it-ebooks.info

256 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

read a collection of elements from any XML fi le, regardless of its structure or location. When the
custom connector is completed, you will be able to read different fi les by simply creating a new BDC
Metadata Model. For this walkthrough a simple XML fi le containing product data is used to start.
The following code shows the structure of the XML:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Products >
 < Product ProductID=”1” ProductName=”Mountain Bike”/ >
 < Product ProductID=”2” ProductName=”Skateboard” / >
 < /Products >

 Starting the Project

 In order to get started you perform the steps outlined earlier for creating a new .NET Assembly
Connector project. This gives you the starting point for the BDC Metadata Model. Next you can add
a class to the project that will implement the custom connector functionality. For the walkthrough, a
new class named Connector is added. Finally, the underlying BDC Metadata Model needs to be
updated to associate the connector class with the model using the SystemUtilityTypeName property
of the LobSystem element and the SystemUtilityInstallDate . The following XML shows the
model with the assembly referenced, although no code has yet been added to the assembly:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < Model xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns=”http://schemas.microsoft.com/windows/2007/BusinessDataCatalog”
 Name=”XMLProductModel” >
 < LobSystems >
 < LobSystem Name=”XMLProduct” Type=”Custom” >
 < Properties >
 < Property Name=”SystemUtilityTypeName”
 Type=”System.String” >
 XMLConnector.Connector,
 XMLConnector,Version=1.0.0.0,Culture=neutral,
 PublicKeyToken=0d0e9d91635dcb0c
 < /Property >
 < Property Name=”SystemUtilityInstallDate” Type=”System.DateTime” >
 2010-05-25 00:00:00Z
 < /Property >
 < /Properties >
 < /LobSystem >
 < /LobSystems >
 < /Model >

 Handling Connection Information

 Just like the .NET Assembly Connector, the custom connector should store its connection
information within the BDC Metadata Model. For this example, the connection information
is the path to the XML fi le that you want to read. This value is added as a custom property
of the LobSystemInstance element. The following code shows the XML defi nition for the
 LobSystemInstance element:

www.it-ebooks.info

http://www.it-ebooks.info

 < LobSystemInstances >
 < LobSystemInstance Name=”XMLProductInstance” >
 < Properties >
 < Property Name=”XMLDataSource” Type=”System.String” >
 C:\Products.xml
 < /Property >
 < /Properties >
 < /LobSystemInstance >
 < /LobSystemInstances >

 The connector will read the XMLDataSource property at runtime. You can see already that if you
create additional models, they can reference the same custom assembly but different data sources.
This shows the fl exibility of the custom connector.

 Defi ning the Entity

 The next step is to defi ne the entity in the model. The most important part of the entity defi nition is
the Identifier . As in any BCS model, the Identifier is the primary key to each entity instance.
In this example, the connector assumes that the name of the Identifier is also the name of an
available attribute inside the XML data fi le. This design restriction makes the development of new
Metadata Models slightly easier. For the walkthrough, the Identifier is ProductID . The following
code shows the model defi nition for the entity:

 < Entities >
 < Entity Namespace=”http://www.aw.com/training” Version=”1.0.0.0”
 EstimatedInstanceCount=”100” Name=”Product”
 DefaultDisplayName=”Adventureworks Product” >
 < Identifiers >
 < Identifier TypeName=”System.String” Name=”ProductID” / >
 < /Identifiers >
 < /Entity >
 < /Entities >

 Defi ning the Finder Method

 Once the entity is defi ned, the fi rst method to create is the Finder method. Like all methods,
the Finder method must defi ne a set of parameters and TypeDescriptors for the signature.
Additionally, a method instance must be defi ned. The following code shows the Finder method
defi nition for the walkthrough:

 < Method Name=”Read Products” DefaultDisplayName=”Read Products” >
 < Properties >
 < Property Name=”EntityElement” Type=”System.String” > Product < /Property >
 < /Properties >
 < Parameters >
 < Parameter Direction=”Return” Name=”Product List” >
 < TypeDescriptor
 TypeName=”Microsoft.BusinessData.Runtime.DynamicType[]”
 Name=”Nodes” IsCollection =”true” >
 < TypeDescriptors >
 < TypeDescriptor

Creating Custom Connectors ❘ 257

www.it-ebooks.info

http://www.it-ebooks.info

258 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

 TypeName=”Microsoft.BusinessData.Runtime.DynamicType” Name=”Node” >
 < TypeDescriptors >
 < TypeDescriptor Name=”ProductID” DefaultDisplayName=”Product ID”
 TypeName=”System.String” IdentifierName=”ProductID”
 ReadOnly=”true” / >
 < TypeDescriptor Name=”ProductName”
 DefaultDisplayName=”Product Name” TypeName=”System.String” / >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Type=”Finder” ReturnParameterName=”Product List”
 Default=”true” Name=”Read List” DefaultDisplayName=”Read Products” / >
 < /MethodInstances >
 < /Method >

 The defi nition of the Finder method has several interesting elements that are new. The fi rst is the
 EntityElement property. This property is used to specify the entity within the XML fi le that will
be returned. The custom connector is designed to return a collection of XML elements from the
source fi le, and this property tells the connector which one to get. You could use a different design
in your custom connector, but all connectors will use properties such as this to handle confi guration
information. The connector will read the EntityElement property value at runtime.

 The next interesting element in the model is the Return parameter. The design of the Finder
method is to have no input parameters and a single return parameter that is the collection of
XML elements. Notice, however, that the Return parameter has a TypeName of Microsoft
.BusinessData.Runtime.DynamicType[] . The DynamicType class has a structure that can be
created at runtime. This is critical because the whole point of the custom connector is to handle
data sources with different schemas.

 Using the DynamicType class, you can defi ne the return schema on the fl y and support all manner
of different data sources. The actual schema will be constructed based on the TypeDescriptors
defi ned in the method. The design of the custom connector is such that it expects the names of the
 TypeDescriptors to be the same as the names of the attributes that must be returned from the
XML fi le. Note that the model has ProductID and ProductName TypeDescriptors , which have
the same names as the attributes in the source XML fi le. Again, your design could be different,
but all custom connectors will need to make some assumptions about the relationship of the model
to the data source or provide detailed mapping capabilities through custom properties in the
Metadata Model.

 Implementing the Finder Method

 Now that the Finder method is modeled, it can be implemented in the connector class. Coding the
connector begins with setting a reference to the Microsoft.BusinessData.dll assembly. This
assembly contains the interfaces that the custom connector will implement.

www.it-ebooks.info

http://www.it-ebooks.info

 The only interface that a custom connector must implement is the Microsoft.BusinessData
.Runtime.ISystemUtility interface. This interface has two members: ExecuteStatic()
and CreateEntityInstanceDataEnumerator() . The ExecuteStatic() method takes an
 IMethodInstance object, an ILobSystemInstance object, an Object array of arguments, and an
 IExecutionContext object. This is the method that the custom connector implements to execute
the methods defi ned in the model. The CreateEntityInstanceDataEnumerator() method
converts a data stream from the External System into an enumerator.

 Implementing the ExecuteStatic() method is reasonably straightforward. The custom connector
receives information about the system elements defi ned in the model, along with arguments being
passed to the method instance. The implementation code uses these arguments to operate on the
data source. The following code shows the implementation of the ExecuteStatic() method with
only the Finder method defi ned:

public void ExecuteStatic(
 IMethodInstance methodInstance,
 ILobSystemInstance lobSystemInstance,
 object[] methodSignatureArgs,
 IExecutionContext context)
 {
 if (methodInstance == null)
 throw (new ArgumentNullException(“methodInstance”));
 if (lobSystemInstance == null)
 throw (new ArgumentNullException(“lobSystemInstance”));
 if (methodSignatureArgs == null)
 throw (new ArgumentNullException(“args”));

 //Get properties
 string xmlDataSource =
 lobSystemInstance.GetProperties()[“XMLDataSource”] as string;
 string entityElement =
 methodInstance.GetMethod().GetProperties()[“EntityElement”] as string;

 //Implement Methods
 switch (methodInstance.MethodInstanceType)
 {
 case MethodInstanceType.Finder:
 ExecuteFinder(methodInstance,
 xmlDataSource,
 entityElement,
 methodSignatureArgs);
 break;

 default:
 throw new Exception(“Method Instance Type not implemented.”);
 }
 }

 Notice that after validating the input arguments, the connector reads the XMLDataSource and
 EntityElement properties from the model XML. These are the confi guration elements that
allow the connector to work with XML fi les having different schemas and locations. Next the

Creating Custom Connectors ❘ 259

www.it-ebooks.info

http://www.it-ebooks.info

260 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

code determines what type of method stereotype was invoked. In this case, all Finder methods
are handled through a call to ExecuteFinder() . Your design could certainly be more complex
and have different implementations for different Finder methods. The following code shows the
 ExecuteFinder() method:

private void ExecuteFinder(IMethodInstance methodInstance,
 string XMLDataSource,
 string EntityElement,
 object[] args)
{
 List < DynamicType > returnValues = new List < DynamicType > ();
 XDocument dataSource = XDocument.Load(XMLDataSource);

 var q = from e in dataSource.Descendants(EntityElement)
 select e;

 foreach (var i in q)
 {
 DynamicType dt = new DynamicType();

 foreach (XAttribute a in i.Attributes())
 {
 dt.Add(a.Name.ToString(), a.Value);
 }

 returnValues.Add(dt);
 }

 args[0] = returnValues;
}

 Note that the ExecuteFinder() method does not have a return value. Instead, the return value
is saved into the fi rst element in the Object array. This is because the Object array has a member
for each of the parameters defi ned in the method. The order of the members is the same as the
order in which they are defi ned in the model. In this case there is only one parameter, which is
the Return parameter.

 Next, note that the return parameter is a collection of DynamicType objects. Remember that
 DynamicType objects can have their structures defi ned at runtime. You do this in the code by
adding a key/value pair for each attribute in the XML data fi le. The end result is that a collection
is returned based on the targeted entity element and containing all the attributes found in the
XML fi le.

 Defi ning the Specifi cFinder Method

 Creating the SpecificFinder method in the BDC Metadata Model is similar to creating the
 Finder method, except that an Identifier parameter must be defi ned so that exactly one entity
instance is returned. Because a single entity instance is returned, only a single DynamicType is used
as the Return parameter, as opposed to an array.

www.it-ebooks.info

http://www.it-ebooks.info

 Additionally, this custom connector is going to support editing the Identifier value, so we
must plan ahead by ensuring that none of the return values are marked as ReadOnly . Marking
return fi elds as ReadOnly in the SpecificFinder method will prevent them from being edited
in SharePoint - generated forms. The following code shows the BDC Metadata Model for the
 SpecificFinder method. If you compare it to the SpecificFinder created for the .NET
Assembly Connector project, you ’ ll see the varying uses of the ReadOnly property:

 < Method Name=”Read Product” DefaultDisplayName=”Read Product” >
 < Properties >
 < Property Name=”EntityElement” Type=”System.String” > Product < /Property >
 < /Properties >
 < Parameters >
 < Parameter Direction=”In” Name=”ProductID” >
 < TypeDescriptor TypeName=”System.String”
 IdentifierName=”ProductID” Name=”ProductID” / >
 < /Parameter >
 < Parameter Direction=”Return” Name=”Product” >
 < TypeDescriptor
 TypeName=”Microsoft.BusinessData.Runtime.DynamicType”
 Name=”Node” >
 < TypeDescriptors >
 < TypeDescriptor Name=”ProductID” DefaultDisplayName=”Product ID”
 TypeName=”System.String” IdentifierName=”ProductID” ReadOnly=”true” / >
 < TypeDescriptor Name=”ProductName” DefaultDisplayName=”Product Name”
 TypeName=”System.String” / >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Type=”SpecificFinder” ReturnParameterName=”Product”
 Default=”true” Name=”Read Product” DefaultDisplayName=”Read Product” / >
 < /MethodInstances >
 < /Method >

 Implementing the Specifi cFinder Method

 Implementing the SpecificFinder method is similar to implementing the Finder method with the
exception that the connector must use the Identifier value passed in to retrieve exactly one entity
instance. The biggest challenge in implementing SpecificFinder is to determine which attribute in
the source XML represents the Identifier .

 Again, the design of the connector is such that it assumes that the name of the parameter is the same
as the name of an attribute. Therefore, the connector must fi nd the parameter in the model that is
tagged as the Identifier and use that to create a query on the data source. The following code
shows how to loop through the TypeDescriptors and fi nd the one that is the Identifier :

private string GetIdentifier(IMethodInstance methodInstance)
{
 string identifier = string.Empty;

 foreach (IParameter param in methodInstance.GetMethod().GetParameters())

Creating Custom Connectors ❘ 261

www.it-ebooks.info

http://www.it-ebooks.info

262 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

 {
 if (param.GetRootTypeDescriptor().ContainsIdentifier)
 {
 if (param.GetRootTypeDescriptor().IsIdentifierSet)
 {
 identifier = param.GetRootTypeDescriptor().GetIdentifier().Name;
 break;
 }
 else
 {
 foreach (ITypeDescriptor td in
 param.GetRootTypeDescriptor().GetChildTypeDescriptors())
 {
 if (td.IsIdentifierSet)
 identifier = td.GetIdentifier().Name;
 }
 }
 }
 }
 return identifier;
}

 Once the name of the attribute that corresponds to the identifi er is returned, it can be used to execute
the SpecficFinder method. The ExecuteStatic method is also updated to call the GetIdentifier()
method on startup and to call the ExecuteSpecificFinder() method if the type of the method
instance is SpecificFinder . The following code shows the implementation of the SpecificFinder
method. Note how args[0] contains the Identifier and args[1] contains the return value; this
corresponds to the order in which they were defi ned in the BDC Metadata Model:

private void ExecuteSpecificFinder(IMethodInstance methodInstance,
 string XMLDataSource,
 string EntityElement,
 string identifier,
 object[] args)
{
 XDocument dataSource = XDocument.Load(XMLDataSource);

 var q = from e in dataSource.Descendants(EntityElement)
 where e.Attribute(identifier).Value == args[0].ToString()
 select e;

 DynamicType dt = new DynamicType();

 foreach (XAttribute a in q.First().Attributes())
 {
 dt.Add(a.Name.ToString(), a.Value);
 }

 args[1] = dt;
}

www.it-ebooks.info

http://www.it-ebooks.info

 Defi ning the Creator Method

 The Creator method defi nes a set of input parameters for each of the fi elds in the data source.
Each TypeDescriptor associated with an input parameter is tagged by means of the CreatorField
attribute. After the new item is created, it is returned from the Creator method. The following code
shows the model XML for the Creator method. Note that ProductID is not tagged as ReadOnly
because our solution allows it to be edited:

 < Method Name=”Create Product” DefaultDisplayName=”Create Product” >
 < Properties >
 < Property Name=”EntityElement” Type=”System.String” > Product < /Property >
 < /Properties >
 < Parameters >
 < Parameter Direction=”In” Name=”InProductID” >
 < TypeDescriptor Name=”ProductID” DefaultDisplayName=”Product ID”
 TypeName=”System.String” CreatorField=”true”
 IdentifierName=”ProductID” / >
 < /Parameter >
 < Parameter Direction=”In” Name=”InProductName” >
 < TypeDescriptor Name=”ProductName”
 DefaultDisplayName=”Product Name”
 TypeName=”System.String” CreatorField=”true” / >
 < /Parameter >
 < Parameter Direction=”Return” Name=”OutProduct” >
 < TypeDescriptor
 TypeName=”Microsoft.BusinessData.Runtime.DynamicType” Name=”Node” >
 < TypeDescriptors >
 < TypeDescriptor Name=”ProductID” DefaultDisplayName=”Product ID”
 TypeName=”System.String” IdentifierName=”ProductID” / >
 < TypeDescriptor Name=”ProductName” DefaultDisplayName=”Title”
 TypeName=”System.String” / >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Type=”Creator” ReturnParameterName=”OutProduct”
 Name=”Create Product” Default=”true”
 DefaultDisplayName=”Create Product” / >
 < /MethodInstances >
 < /Method >

 Implementing the Creator Method

 Implementing the Creator method is moderately complex because the TypeDescriptors in the
BDC Metadata Model must determine the schema for the data source. This involves looping
through the TypeDescriptors for the input parameters and setting values in the data source.
The following code shows the implementation. Note how the code checks to see if the proposed ID
is already in use:

Creating Custom Connectors ❘ 263

www.it-ebooks.info

http://www.it-ebooks.info

264 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

private void ExecuteCreator(IMethodInstance methodInstance,
 string XMLDataSource,
 string EntityElement,
 string identifier,
 object[] args)
{
 //Connect to data source
 XDocument dataSource = XDocument.Load(XMLDataSource);

 //Check to see if new ID is in use
 var q1 = from e in dataSource.Descendants(EntityElement)
 where e.Attribute(identifier).Value == args[0].ToString()
 select e;

 if (q1.Count() > 0)
 throw new Exception(“ID already in use.”);

 //Get all of the In TypeDescriptors by name
 var tds = from p in methodInstance.GetMethod().GetParameters()
 where p.Direction == DirectionType.In
 select new { p.GetRootTypeDescriptor().Name };

 //Create a new element
 XElement newElement = new XElement(EntityElement);

 //Set the attribute values for the new element
 int i = -1;
 foreach (var td in tds)
 {
 i++;
 newElement.Add(new XAttribute(td.Name, args[i].ToString()));
 }

 //Save new element
 dataSource.Descendants(EntityElement).Ancestors()
 .First().Add(newElement);
 dataSource.Save(XMLDataSource);

 //Get the newly-created element and return it
 var q = from e in dataSource.Descendants(EntityElement)
 where e.Attribute(identifier).Value == args[0].ToString()
 select e;

 if (q.First() != null)
 {
 DynamicType dt = new DynamicType();

 foreach (XAttribute a in q.First().Attributes())
 {
 dt.Add(a.Name.ToString(), a.Value);
 }

 args[args.Count() - 1] = dt;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info

 As with previous method implementations, the custom connector assumes that the names of the
 TypeDescriptors are the same as the names of the attributes in the data source. Once a query is
written to return the name of the TypeDescriptors associated with the input parameters, you can
create the new element by assigning attributes the values of the input parameters. Once the new
element is created in the data source, a query can be written to return it from the method call.

 Defi ning the Updater Method

 The Updater method defi nes a set of input parameters for each of the fi elds in the data source.
There is no Return parameter for the method because the Finder method will be called after the
item is updated. The following code shows the BDC Metadata Model for the Updater method:

 < Method Name=”Update Product” DefaultDisplayName=”Update Product” >
 < Properties >
 < Property Name=”EntityElement” Type=”System.String” > Product < /Property >
 < /Properties >
 < Parameters >
 < Parameter Direction=”In” Name=”NewProduct” >
 < TypeDescriptor
 TypeName=”Microsoft.BusinessData.Runtime.DynamicType” Name=”Node” >
 < TypeDescriptors >
 < TypeDescriptor Name=”ProductID” DefaultDisplayName=”Product ID”
 TypeName=”System.String” IdentifierName=”ProductID”
 UpdaterField=”true” / >
 < TypeDescriptor Name=”ProductName” DefaultDisplayName=”Title”
 TypeName=”System.String” UpdaterField=”true” / >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /Parameter >
 < Parameter Direction=”In” Name=”InProductID” >
 < TypeDescriptor Name=”ProductID” DefaultDisplayName=”Product ID”
 TypeName=”System.String” PreUpdaterField=”true” / >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Type=”Updater” Name=”Update Product” Default=”true”
 DefaultDisplayName=”Update Product” / >
 < /MethodInstances >
 < /Method >

 The Updater method is particularly interesting in this walkthrough because the custom connector
allows the Identifier for the entity to be updated. In most External Systems, the Identifier is
managed by the system. In the .NET Assembly Connector example, for instance, the Identifier
was created as an identity fi eld in the database. Therefore the Identifier was tagged in the
 SpecificFinder method as ReadOnly , which prevented it from being edited in the Updater
method. There are times, however, when you may need to allow the Identifier to be updated.

 In order to support updating of the Identifier , you must fi rst ensure that neither the Finder
nor SpecificFinder methods has tagged the Identifier as ReadOnly . This was done earlier
in the walkthrough when these methods were defi ned. The next step is to defi ne an input

Creating Custom Connectors ❘ 265

www.it-ebooks.info

http://www.it-ebooks.info

266 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

parameter that supports all the fi elds for the item, including the Identifier . The associated
 TypeDescriptors must be tagged with the UpdaterField property set to True . At this point,
the Identifier can be edited.

 The challenge with editing the Identifier is that you need both its old value and its new value. The
old value is used to fi nd the Identifier in the data source, and the new value is used to update it. In
order to support this function, you must add an additional input parameter to the Updater method
that is tagged with the PreUpdaterField property. This parameter will always contain the current
value of the Identifier . Note how this is accomplished in the Metadata Model.

 Implementing the Updater Method

 The key to implementing the Updater method is to retrieve both the current and future values of the
 Identifier . The current value is used to retrieve the item from the data source, and the future value
is then set. Along the way, you also need to make sure that the future value of the Identifier is
not in use already and throw an error if it is. The following code shows the implementation for the
 Updater method:

private void ExecuteUpdater(IMethodInstance methodInstance,
 string XMLDataSource,
 string EntityElement,
 string identifier,
 object[] args)
{
 //Get TypeDescriptors for In Parameter
 ITypeDescriptor rootTd =
 (from p in methodInstance.GetMethod().GetParameters()
 where p.Direction == DirectionType.In & &
 p.GetRootTypeDescriptor().GetChildTypeDescriptors().Count > 0
 select p).First().GetRootTypeDescriptor();

 //Retrieve In Parameter values
 DynamicType dt = args[0] as DynamicType;
 string newID = dt[rootTd.GetChildTypeDescriptors().
 Where(td = > td.ContainsIdentifier).First().Name].ToString();
 string oldID = args[1] as string;

 //Check to see if new ID is in use
 XDocument dataSource = XDocument.Load(XMLDataSource);

 var q1 = from e in dataSource.Descendants(EntityElement)
 where e.Attribute(identifier).Value == newID
 select e;

 if (q1.Count() > 0)
 throw new Exception(“ID already in use.”);

 //Get item to update
 var q2 = from e in dataSource.Descendants(EntityElement)
 where e.Attribute(identifier).Value == oldID
 select e;

www.it-ebooks.info

http://www.it-ebooks.info

 //Update the item
 foreach (var td in rootTd.GetChildTypeDescriptors())
 {
 if (!td.ContainsIdentifier)
 q2.First().Attribute(td.Name).Value = dt[td.Name].ToString();
 else
 {
 q2.First().Attribute(td.Name).Value = newID;
 oldID = newID;
 }
 }

 //Save changes
 dataSource.Save(XMLDataSource);

}

 Defi ning the Deleter Method

 The Deleter method is straightforward. It uses the Identifier to select the item to delete. The
following code shows the BDC Metadata Model:

 < Method Name=”Delete Product” DefaultDisplayName=”Delete Module” >
 < Properties >
 < Property Name=”EntityElement” Type=”System.String” > Product < /Property >
 < /Properties >
 < Parameters >
 < Parameter Direction=”In” Name=”ProductID” >
 < TypeDescriptor TypeName=”System.String”
 IdentifierName=”ProductID” Name=”ProductID” / >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Type=”Deleter” Default=”true”
 Name=”Delete Product” DefaultDisplayName=”Delete Product” / >
 < /MethodInstances >
 < /Method >

 Implementing the Deleter Method

 The code implementation of the Deleter method is straightforward. The value of the Identifier
is used to delete the item from the data source. The following code shows the implementation of
the Deleter method:

private void ExecuteDeleter(IMethodInstance methodInstance,
 string XMLDataSource,
 string EntityElement,
 string identifier,
 object[] args)
{
 //Delete the element

Creating Custom Connectors ❘ 267

www.it-ebooks.info

http://www.it-ebooks.info

268 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

 //Assumes one In parameter, which is identifier to delete

 XDocument dataSource = XDocument.Load(XMLDataSource);

 var q = from e in dataSource.Descendants(EntityElement)
 where e.Attribute(identifier).Value == args[0].ToString()
 select e;

 q.First().Remove();
 dataSource.Save(XMLDataSource);
}

 Creating Confi gurable Connection Properties

 Custom connectors can expose confi gurable properties that show in the Central Administration site
so that they can be edited by administrators. In the walkthrough, two confi gurable properties have
been defi ned: SystemUtilityTypeName and SystemUtilityInstallDate . SystemUtilityTypeName
refers to the type that implements the connector, and SystemUtilityInstallDate refers to the date
that the model was put online. The custom connector exposes confi gurable connection properties by
implementing the Microsoft.BusinessData.Runtime.IAdministrableSystem interface.

 Using this interface, you can build a collection
of properties to display. Figure 7 - 11 shows
how the properties appear in Central
Administration and the implementation
code follows.

public IList < AdministrableProperty > AdministrableLobSystemProperties
{
 get
 {
 return new List < AdministrableProperty > ()
 {
 new AdministrableProperty(
 “SystemUtilityTypeName”,
 “Name of assembly”,
 typeof(string),”SystemUtilityTypeName”,
 typeof(string),true),
 new AdministrableProperty(
 “SystemUtilityInstallDate”,
 “Date assembly was installed”,
 typeof(DateTime),
 “SystemUtilityInstallDate”, typeof(DateTime),false)
 };
 }
}

 Specifying a Connection Manager

 The BDC service normally provides a connection manager for every External System instance. The
connection manager is used for getting connections to External Systems and maintaining a pool

 FIGURE 7 - 11

www.it-ebooks.info

http://www.it-ebooks.info

for effi ciency. If you want, you can provide your own connection manager by implementing the
 Microsoft.BusinessData.Infrastructure.IConnectionManager interface.

 In the walkthrough, the custom connector implements IConnectionManager but always returns
 NULL when a connection is requested. This is because the connection to the individual fi le is
accomplished within the method execution code. The connector does not maintain a pool of
connections. Your design may be different.

 Using the Custom Connector

 Once the custom connector is complete, it may be deployed to SharePoint. The custom connector
assembly must be installed in the GAC, and the BCS model must be loaded into the BDC service.
If you followed the steps to create the custom connector from a Business Data Connectivity Model
project, you can deploy directly from Visual Studio 2010. The assembly and model will be deployed
correctly. Once the assembly and model are deployed, you may immediately create External Lists
based on the ECTs defi ned in the model. Debugging the connector is a simple matter of connecting
to the w3wp.exe process and setting breakpoints.

 One thing you will notice if you deploy the custom connector in the walkthrough is that the default
edit form in SharePoint does not support modifying the Identifier . This is certainly strange
because the model was carefully designed to support this scenario. Unfortunately the default edit
form does not respect the defi nition of the Updater method that allows the Identifier to be
modifi ed. The workaround is to upgrade the forms to use InfoPath. When you create InfoPath forms
for the External Lists, the Identifier fi eld will be editable.

 The great advantage of the custom connector, of course, is that once it is deployed, you may create
new models that use the same custom connector. As an example, consider building an External List
based on Reseller data in a new XML fi le, such as the one in the following code:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Resellers >
 < Reseller ResellerID=”1” ResellerName=”A Bike Store”/ >
 < Reseller ResellerID=”2” ResellerName=”Progessive Sports” / >
 < /Resellers >

 In order to build a model that will work with this new fi le, you have to defi ne a new entity whose
parameters have the names of attributes in the XML. You also need to make changes to the
 XMLDataSource property and the EntityElement property. However, you do not need to make
any changes to the code in the custom connector. The structure of the DynamicType will be created
at runtime to match the structure of the source XML fi le. This idea can now be extended to any
element in any XML fi le. The following code shows the Metadata Model for the new ECT:

 < Entities >
 < Entity Namespace=”http://www.aw.com/training” Version=”1.0.0.0”
 EstimatedInstanceCount=”100” Name=”Reseller”
 DefaultDisplayName=”Adventureworks Reseller” >
 < Identifiers >
 < Identifier TypeName=”System.String” Name=”ResellerID” / >
 < /Identifiers >
 < Methods >

Creating Custom Connectors ❘ 269

www.it-ebooks.info

http://www.it-ebooks.info

270 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

 < Method Name=”Read Resellers” DefaultDisplayName=”Read Resellers” >
 < Properties >
 < Property Name=”EntityElement” Type=”System.String” > Reseller < /Property >
 < /Properties >
 < Parameters >
 < Parameter Direction=”Return” Name=”Reseller List” >
 < TypeDescriptor TypeName=”Microsoft.BusinessData.Runtime.DynamicType[]”
 Name=”Nodes” IsCollection =”true” >
 < TypeDescriptors >
 < TypeDescriptor TypeName=”Microsoft.BusinessData.Runtime.DynamicType”
 Name=”Node” >
 < TypeDescriptors >
 < TypeDescriptor Name=”ResellerID” DefaultDisplayName=”Reseller ID”
 TypeName=”System.String” IdentifierName=”ResellerID”/ >
 < TypeDescriptor Name=”ResellerName”
 DefaultDisplayName=”Reseller Name” TypeName=”System.String” / >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Type=”Finder” ReturnParameterName=”Reseller List”
 Default=”true” Name=”Read List” DefaultDisplayName=”Read Resellers” / >
 < /MethodInstances >
 < /Method >
 < Method Name=”Read Reseller” DefaultDisplayName=”Read Reseller” >
 < Properties >
 < Property Name=”EntityElement” Type=”System.String” > Reseller < /Property >
 < /Properties >
 < Parameters >
 < Parameter Direction=”In” Name=”ResellerID” >
 < TypeDescriptor TypeName=”System.String” IdentifierName=”ResellerID”
 Name=”ResellerID” / >
 < /Parameter >
 < Parameter Direction=”Return” Name=”Reseller” >
 < TypeDescriptor TypeName=”Microsoft.BusinessData.Runtime.DynamicType”
 Name=”Node” >
 < TypeDescriptors >
 < TypeDescriptor Name=”ResellerID” DefaultDisplayName=”Reseller ID”
 TypeName=”System.String” IdentifierName=”ResellerID”/ >
 < TypeDescriptor Name=”ResellerName”
 DefaultDisplayName=”Reseller Name”
 TypeName=”System.String” / >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Type=”SpecificFinder” ReturnParameterName=”Reseller”
 Default=”true” Name=”Read Reseller”
 DefaultDisplayName=”Read Reseller” / >
 < /MethodInstances >
 < /Method >

www.it-ebooks.info

http://www.it-ebooks.info

 < Method Name=”Create Reseller” DefaultDisplayName=”Create Reseller” >
 < Properties >
 < Property Name=”EntityElement” Type=”System.String” > Reseller < /Property >
 < /Properties >
 < Parameters >
 < Parameter Direction=”In” Name=”InResellerID” >
 < TypeDescriptor Name=”ResellerID” DefaultDisplayName=”Reseller ID”
 TypeName=”System.String” CreatorField=”true”
 IdentifierName=”ResellerID” / >
 < /Parameter >
 < Parameter Direction=”In” Name=”InResellerName” >
 < TypeDescriptor Name=”ResellerName” DefaultDisplayName=”Reseller Name”
 TypeName=”System.String” CreatorField=”true” / >
 < /Parameter >
 < Parameter Direction=”Return” Name=”OutReseller” >
 < TypeDescriptor TypeName=”Microsoft.BusinessData.Runtime.DynamicType”
 Name=”Node” >
 < TypeDescriptors >
 < TypeDescriptor Name=”ResellerID” DefaultDisplayName=”Reseller ID”
 TypeName=”System.String” IdentifierName=”ResellerID” / >
 < TypeDescriptor Name=”ResellerName” DefaultDisplayName=”Title”
 TypeName=”System.String” / >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Type=”Creator” ReturnParameterName=”OutReseller”
 Name=”Create Reseller” Default=”true”
 DefaultDisplayName=”Create Reseller” / >
 < /MethodInstances >
 < /Method >
 < Method Name=”Update Reseller” DefaultDisplayName=”Update Reseller” >
 < Properties >
 < Property Name=”EntityElement” Type=”System.String” > Reseller < /Property >
 < /Properties >
 < Parameters >
 < Parameter Direction=”In” Name=”NewReseller” >
 < TypeDescriptor TypeName=”Microsoft.BusinessData.Runtime.DynamicType”
 Name=”Node” >
 < TypeDescriptors >
 < TypeDescriptor Name=”ResellerID” DefaultDisplayName=”Reseller ID”
 TypeName=”System.String” IdentifierName=”ResellerID”
 UpdaterField=”true” / >
 < TypeDescriptor Name=”ResellerName” DefaultDisplayName=”Title”
 TypeName=”System.String” UpdaterField=”true” / >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /Parameter >
 < Parameter Direction=”In” Name=”InResellerID” >
 < TypeDescriptor Name=”ResellerID” DefaultDisplayName=”Reseller ID”
 TypeName=”System.String” PreUpdaterField=”true” / >
 < /Parameter >
 < /Parameters >

Creating Custom Connectors ❘ 271

www.it-ebooks.info

http://www.it-ebooks.info

272 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

 < MethodInstances >
 < MethodInstance Type=”Updater” Name=”Update Reseller” Default=”true”
 DefaultDisplayName=”Update Reseller” / >
 < /MethodInstances >
 < /Method >
 < Method Name=”Delete Reseller” DefaultDisplayName=”Delete Moduele” >
 < Properties >
 < Property Name=”EntityElement” Type=”System.String” > Reseller < /Property >
 < /Properties >
 < Parameters >
 < Parameter Direction=”In” Name=”ResellerID” >
 < TypeDescriptor TypeName=”System.String” IdentifierName=”ResellerID”
 Name=”ResellerID” / >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Type=”Deleter” Default=”true” Name=”Delete Reseller”
 DefaultDisplayName=”Delete Reseller” / >
 < /MethodInstances >
 < /Method >
 < /Methods >
 < /Entity >
 < /Entities >

 HANDLING ERRORS IN CONNECTORS

 Connectors must deal with several categories of errors that can occur during operations.
Specifi cally, a connector may have a runtime error, such as a failure to connect with the External
System. It may also fail data validation in the connector code or External System. Additionally,
the connector may fail because of a concurrency confl ict between multiple users updating the
same entity instance. Fortunately both custom connectors and .NET Assembly Connectors take
the same approach to handling these problems.

 Handling Runtime and Validation Errors

 Handling runtime and validation errors in connectors is straightforward because unhandled errors
are simply bubbled back up to the browser and displayed in the External List. The general approach
is to handle any errors within the connector code when it makes sense to do so, but if the error
needs to be returned to the user, a Microsoft.BusinessData.Runtime.RuntimeException should
be thrown. The RuntimeException class has several derivations that are useful for connectors, but
it is easiest to just throw a LobBusinessErrorException , which is the most generic derivation.

 Handling Concurrency Issues

 Whenever an External System is being updated through BCS, there is the possibility that near -
 simultaneous updates will cause confl icts. You must decide how your connector will respond in such
cases. The simplest way to handle update confl icts is to simply allow the last update to proceed. This
means that your connector will execute an update regardless of the state of the entity instance in the
External System. External Lists in SharePoint are designed to support this type of update.

www.it-ebooks.info

http://www.it-ebooks.info

 Whenever an item in an External List is edited, the item is refreshed from the underlying External
System before the connector submits the changed fi elds. The connector refreshes the item by calling
the SpecificFinder method just before the Updater method is called. This approach signifi cantly
reduces the chance of a confl ict during the update process and also means that you do not have to
implement any special confl ict resolution code in the connector.

 If you want to have more control over confl ict resolution in your connector, you must plan on
implementing a custom user interface, such as a Web Part, to call your connector. When you
implement a custom user interface, you can choose to call the Updater method without a prior call
to the SpecificFinder . This will result in the current entity instance ’ s being passed for update.
You may then evaluate the entity instance to see if an error should be thrown.

 If you take a more detailed approach to confl ict resolution, your ECT will need to provide
additional fi elds to manage the values necessary to assess confl icts. In particular, you should
implement fi elds that contain the original values of the entity instance. These values can then be
used during confl ict assessment. The following code shows a SpecificFinder method modifi ed
from the earlier .NET Assembly Connector walkthrough to include original item values:

 < Method Name=”ReadProduct” >
 < Parameters >
 < Parameter Name=”ProductID” Direction=”In” >
 < TypeDescriptor Name=”ProductID” TypeName=”System.Int32”
 IsCollection=”false” IdentifierName=”ProductID” / >
 < /Parameter >
 < Parameter Name=”Product” Direction=”Return” >
 < TypeDescriptor Name=”ProductTypeDescriptor”
 TypeName=”AdventureworksConnector.ProductModel.Product, ProductSystem”
 IsCollection=”false” >
 < TypeDescriptors >
 < TypeDescriptor Name=”Color” TypeName=”System.String” / >
 < TypeDescriptor Name=”Description” TypeName=”System.String” / >
 < TypeDescriptor Name=”Name” TypeName=”System.String” / >
 < TypeDescriptor Name=”Number” TypeName=”System.String” / >
 < TypeDescriptor Name=”Price” TypeName=”System.Decimal” / >
 < TypeDescriptor Name=”ProductID” TypeName=”System.Int32”
 IsCollection=”false” IdentifierName=”ProductID” ReadOnly=”true” / >
 < TypeDescriptor Name=”CategoryID” TypeName=”System.Int32”
 IsCollection=”false” IdentifierEntityName=”Category”
 IdentifierEntityNamespace=”AdventureworksConnector.ProductModel”
 IdentifierName=”CategoryID”
 ForeignIdentifierAssociationEntityName=”Category”
 ForeignIdentifierAssociationEntityNamespace=
 “AdventureworksConnector.ProductModel”
 ForeignIdentifierAssociationName=
 “CategoryToProductAssociationNavigator” / >
 < TypeDescriptor Name=”OriginalName” TypeName=”System.String”
 ReadOnly=”true” / >
 < TypeDescriptor Name=”OriginalNumber” TypeName=”System.String”
 ReadOnly=”true” / >
 < TypeDescriptor Name=”OriginalColor” TypeName=”System.String”
 ReadOnly=”true” / >

Handling Errors in Connectors ❘ 273

www.it-ebooks.info

http://www.it-ebooks.info

274 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

 < TypeDescriptor Name=”OriginalPrice” TypeName=”System.Decimal”
 ReadOnly=”true” / >
 < TypeDescriptor Name=”OriginalDescription” TypeName=”System.String”
 ReadOnly=”true” / >
 < TypeDescriptor Name=”OriginalCategoryID” TypeName=”System.Int32”
 ReadOnly=”true” / >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Name=”ReadProductInstance” Type=”SpecificFinder”
 ReturnParameterName=”Product”
 ReturnTypeDescriptorPath=”ProductTypeDescriptor” / >
 < /MethodInstances >
 < /Method >

 Note that the TypeDescriptors containing the original values for each fi eld are marked as
 ReadOnly . This is because the original values are simply going to be used for confl ict resolution.
There is no intent to display these values to the user for editing. The original values are simply
set in the SpecificFinder , as shown in the following code:

public Product ReadProduct(int ProductID)
{
 AdventureworksCatalog catalog =
 new AdventureworksCatalog(GetConnectionInfo());

 var q = from p in catalog.Products
 where p.ProductID == ProductID
 select p;

 if (q.Count() == 1)
 {
 return new Product()
 {
 ProductID = q.First().ProductID,
 Name = q.First().ProductName,
 Number = q.First().ProductNumber,
 Description = q.First().ProductDescription,
 Color = q.First().ProductColor,
 Price = q.First().ProductPrice,
 CategoryID = q.First().CategoryID,
 OriginalName = q.First().ProductName,
 OriginalNumber = q.First().ProductNumber,
 OriginalDescription = q.First().ProductDescription,
 OriginalColor = q.First().ProductColor,
 OriginalPrice = q.First().ProductPrice,
 OriginalCategoryID = q.First().CategoryID
 };
 }
 else
 return null;
}

www.it-ebooks.info

http://www.it-ebooks.info

 The Updater method must accept all the changed values along with the original values. Even
though the original values are not changed, they must be explicitly included in the method
or the values will be NULL in code. The following code shows the BDC Metadata Model for the
 Updater method:

 < Method Name=”UpdateProduct” >
 < Parameters >
 < Parameter Name=”ProductIn” Direction=”In” >
 < TypeDescriptor Name=”ProductTypeDescriptor” IsCollection=”false”
 TypeName=”AdventureworksConnector.ProductModel.Product, ProductSystem” >
 < TypeDescriptors >
 < TypeDescriptor Name=”Color” TypeName=”System.String”
 UpdaterField=”true” / >
 < TypeDescriptor Name=”Description” TypeName=”System.String”
 UpdaterField=”true” / >
 < TypeDescriptor Name=”Name” TypeName=”System.String”
 UpdaterField=”true” / >
 < TypeDescriptor Name=”Number” TypeName=”System.String”
 UpdaterField=”true” / >
 < TypeDescriptor Name=”Price” TypeName=”System.Decimal”
 UpdaterField=”true” / >
 < TypeDescriptor Name=”ProductID” TypeName=”System.Int32”
 ReadOnly=”false” UpdaterField=”true” / >
 < TypeDescriptor Name=”CategoryID” TypeName=”System.Int32”
 UpdaterField=”true” IdentifierEntityName=”Category”
 IdentifierEntityNamespace=”AdventureworksConnector.ProductModel”
 IdentifierName=”CategoryID”
 ForeignIdentifierAssociationEntityName=”Category”
 ForeignIdentifierAssociationEntityNamespace=
 “AdventureworksConnector.ProductModel”
 ForeignIdentifierAssociationName=
 “CategoryToProductAssociationNavigator” / >
 < TypeDescriptor Name=”OriginalName” TypeName=”System.String”
 UpdaterField=”true”/ >
 < TypeDescriptor Name=”OriginalNumber” TypeName=”System.String”
 UpdaterField=”true”/ >
 < TypeDescriptor Name=”OriginalColor” TypeName=”System.String”
 UpdaterField=”true”/ >
 < TypeDescriptor Name=”OriginalPrice” TypeName=”System.Decimal”
 UpdaterField=”true”/ >
 < TypeDescriptor Name=”OriginalDescription” TypeName=”System.String”
 UpdaterField=”true”/ >
 < TypeDescriptor Name=”OriginalCategoryID” TypeName=”System.Int32”
 UpdaterField=”true”/ >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Name=”UpdateProductInstance” Type=”Updater” / >
 < /MethodInstances >
 < /Method >

Handling Errors in Connectors ❘ 275

www.it-ebooks.info

http://www.it-ebooks.info

276 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

 Once the original values and current values are passed into the Updater method, confl ict checking
can be done. The basic approach is to compare the original fi eld value with the value currently
in the External System. If the original value is different from the value in the External System, a
confl ict has occurred. At this point the connector can throw an error, which the user interface can
catch. The end user can then be presented with a confl ict resolution screen and, the update can be
retried. The following code shows the implementation of the Updater method:

public void UpdateProduct(Product ProductIn)
{
 Product ProductDb = ReadProduct(ProductIn.ProductID);

 if (
 ProductDb.Name == ProductIn.OriginalName & &
 ProductDb.Number == ProductIn.OriginalNumber & &
 ProductDb.Color == ProductIn.OriginalColor & &
 ProductDb.Description == ProductIn.OriginalDescription & &
 ProductDb.Price == ProductIn.OriginalPrice & &
 ProductDb.CategoryID == ProductIn.OriginalCategoryID
)
 {
 AdventureworksCatalog catalog =
 new AdventureworksCatalog(GetConnectionInfo());
 AdventureworksData.Product product =
 catalog.Products.First(p = > p.ProductID == ProductIn.ProductID);

 product.ProductName = ProductIn.Name;
 product.ProductNumber = ProductIn.Number;
 product.ProductColor = ProductIn.Color;
 product.ProductDescription = ProductIn.Description;
 product.ProductPrice = ProductIn.Price;
 product.CategoryID = ProductIn.CategoryID;
 catalog.SaveChanges();
 }
 else
 throw new ConflictDetectedException(
 “The underlying data in the External System has changed.”);
}

 Because the original values returned with the entity instance are simply used for confl ict detection
and resolution, you will want to ensure that they are hidden from the user interface and search
crawls. You can add several properties to the TypeDescriptor elements for the fi elds to help
hide them.

 The SuppressCrawl property may be set to True to prevent the fi elds from being indexed by
search. The HideInListWebPartByDefault and HideInItemWebPartByDefault properties can
be set to True so that the fi elds are not displayed in the External Data Web Parts. Unfortunately,
there is no property to hide the fi elds in an External List. Instead, they must be excluded from
the list views.

www.it-ebooks.info

http://www.it-ebooks.info

 PACKAGING CONSIDERATIONS

 As with all SharePoint projects, Business Data Connectivity Model projects are packaged for
deployment as cabinet fi les with a WSP extension. When projects containing BDC Metadata
Models are packaged in WSP fi les, special attention must be given to the values set for the Feature
Properties . Feature Properties are set within Visual Studio 2010 and appear as Property elements
within the Feature.xml fi le of the project. Business Data Connectivity Model projects have fi ve
key Feature Properties as shown in the following code:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < Feature xmlns=”http://schemas.microsoft.com/sharepoint/”
 Description=”A .NET Assembly Connector”
 Id=”bc975901-3142-4fbf-9e3c-1f124b6c890d”
 ReceiverAssembly=”...”
 ReceiverClass=”...”
 Scope=”Farm”
 Title=”My Connector” >
 < Properties >
 < Property Key=”GloballyAvailable” Value=”true” / >
 < Property Key=”MyModel”
 Value=”BdcAssemblies\MyConnector.dll” / >
 < Property Key=”IncrementalUpdate” Value=”true” / >
 < Property Key=”ModelFileName” Value=”MyModel\MyModel.bdcm” / >
 < Property Key=”SiteUrl” Value=”http://awserver/bcs/” / >
 < /Properties >
 < ElementManifests >
 < ElementFile Location=”MyModel\MyModel.bdcm” / >
 < ElementFile Location=”BdcAssemblies\MyConnector.dll” / >
 < /ElementManifests >
 < /Feature >

 Most of the properties in the fi le are set by Visual Studio and do not require any editing.
However, these properties should always be verifi ed before packaging. Renaming elements
during development and the particulars of the target SharePoint environment may necessitate
changes to the values.

 The fi rst property is the GloballyAvailable property. All BDC Metadata Models are available
globally in SharePoint. The GloballyAvailable property is set to true as part of the project
template and should not be changed.

 The second property uses the name of the LobSystem as the Key . The Value references the assembly
that implements the operations defi ned in the model. This property is set by Visual Studio and
generally does not need to be changed. In some scenarios, this property may be set incorrectly if you
rename the LobSystem after creating operations in the BDC Metadata Model

 The third property is the IncrementalUpdate property, which supports modifying parts of
the BDC Metadata Model. This property is set by Visual Studio and also does not need to
be changed.

Packaging Considerations ❘ 277

www.it-ebooks.info

http://www.it-ebooks.info

278 ❘ CHAPTER 7 DEVELOPING AND USING CONNECTORS

 The fourth property is the ModelFileName property. This property references the BDCM fi le
that contains the model. This property is set by Visual Studio and generally does not need to be
changed. In some scenarios, this property may be set incorrectly if you rename the model during
development.

 The fi fth property is the SiteUrl property. This property is used to identify the BDC Service
Application where the BDC Metadata Model should be deployed. The SiteUrl property is
not present by default in the Business Data Connectivity Model project. When the property is not
present, the deployment assumes a value for the property of http://localhost:80 . This means
that the BDC Metadata Model will be deployed to the BDC Service Application associated with
the site located at http://localhost:80 . If, however, no site exists at http://localhost:80 ,
then the deployment will fail. In this case, you must explicitly set the SiteUrl value to reference
a site associated with the correct BDC Service Application.

 You can review and modify the Feature Properties directly in Visual Studio 2010. First, select the
BDC Metadata Model project item in the Solution Explorer. Second, select the Feature Properties
item from the Properties window, which will open a dialog. Finally, set the property values in the
dialog. Figure 7 - 12 shows how to set the values.

 FIGURE 7 - 12

www.it-ebooks.info

http://www.it-ebooks.info

 SUMMARY

 The .NET Assembly Connector and custom connector both allow signifi cant control over how
External Systems are accessed by SharePoint. The .NET Assembly Connector has better tooling
support and will likely be used by developers within organizations where specifi c systems are
deployed. The custom connector is a more generic solution but has less tooling support. It will most
likely be used by third parties that want to support access to their product through SharePoint. You
should feel free, however, to use the connector type that best fi ts your needs.

Summary ❘ 279

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

282 ❘ CHAPTER 8 WORKING WITH BCS SECURITY

BDC service application. If appropriate rights are not granted in the BDC service application for a
given model, users will be denied access to the model by the BDC service application even before
they attempt to access the External System. In this situation, users will receive the message “ Access
Denied by Business Connectivity Services. ”

 The BDC service application is managed starting at the same page as all service applications
in the farm. From the Central Administration home page, click the link entitled Manage Service
Applications beneath the Application Management group. This link will open the list of all
service applications on the farm. Selecting the Business Data Connectivity service and clicking
the Administrators button in the ribbon will open a dialog in which administrator rights may be
assigned for the service. Users added to this dialog will have full control over the BDC service
application and any External Content Types defi ned within. Figure 8 - 1 shows the dialog.

 FIGURE 8 - 1

 Clicking the Manage button in the ribbon will open the management page for the service
application. In the service application, you can select to see a list of BDC Metadata Models,
External Content Types, or External Data Sources. The service application defi nes a hierarchy of
these objects where permissions may be granted. The hierarchy starts with the entire Metadata
Catalog, followed by individual BDC Metadata Models, followed by External Content Types and
External Data Sources as shown.

www.it-ebooks.info

http://www.it-ebooks.info

Metadata Catalog
 BDC Metadata Models
 External Content Types
 External Data Sources

 A drop - down menu is associated with each BDC Metadata Model, External Content Type,
and External Data Source. Dropping the menu and clicking Set Permissions will open a dialog
in which you can set permissions for the object. Additionally, you can set permissions at the
catalog level by clicking the Set Catalog Permissions button in the ribbon. In all cases you can
push permissions down the hierarchy by checking the “ Propagate permissions ” box. Figure 8 - 2
shows the dialog.

 FIGURE 8 - 2

 There are four different rights available in the dialog: Edit, Execute, Selectable In Clients, and Set
Permissions. The Edit right grants the ability to edit models, data sources, and External Content
Types. The Execute right grants the ability to perform CRUD operations. The Selectable In
Clients right grants the ability to create new External Lists, use the External Data web parts, and
pick External Content Types from the picker. The Set Permissions right grants the ability to set
permissions in the BDC service.

 If the External System is capable of performing security checks, the BDC service permissions
may be confi gured with little restriction. If, however, the External System cannot perform

Understanding BDC Permissions ❘ 283

www.it-ebooks.info

http://www.it-ebooks.info

284 ❘ CHAPTER 8 WORKING WITH BCS SECURITY

per - user security, the BDC service permissions may be used to control access to the External
System at the model level. In all cases, the assigned permissions are stored in the BDC Metadata
Model at the appropriate level using an AccessControlList element. The following code shows
an example:

 < AccessControlList >
 < AccessControlEntry Principal=”aw\administrator” >
 < Right BdcRight=”Edit” / >
 < Right BdcRight=”Execute” / >
 < Right BdcRight=”SetPermissions” / >
 < Right BdcRight=”SelectableInClients” / >
 < /AccessControlEntry >
 < AccessControlEntry Principal=” aw\brianc” >
 < Right BdcRight=”Edit” / >
 < Right BdcRight=”Execute” / >
 < Right BdcRight=”SelectableInClients” / >
 < /AccessControlEntry >
 < AccessControlEntry Principal=” aw\spworker” >
 < Right BdcRight=”Edit” / >
 < Right BdcRight=”Execute” / >
 < /AccessControlEntry >
 < /AccessControlList >

 UNDERSTANDING WINDOWS AUTHENTICATION

 Despite the fact that other authentication mechanisms — such as claims — are available,
Windows authentication remains the most common security model for SharePoint. When
using Windows authentication, SharePoint users are authenticated by Internet Information
Server (IIS) against accounts in Active Directory. If the user is successfully authenticated,
the user and role information is sent to SharePoint, where additional steps are taken to
create a valid SPUser .

 The most important aspect of Windows authentication for BCS developers is to correctly identify the
account under which a user is accessing a BCS solution. Depending upon the confi guration of IIS
and SharePoint, the identity of the user can be either a specifi c user account, a subsystem account,
or an anonymous account. Each of these situations has unique impact on the implementation of
BCS solutions.

 When using Windows authentication in IIS, three different approaches are available: Basic
authentication , Digest authentication , and Integrated Windows authentication . Basic authentication
transmits user names and passwords as clear text. Digest authentication transmits a secure hash
containing the user name and password. Integrated Windows authentication transmits a token
that was created when the user originally logged on to the network. When a new web application
is created through Central Administration that uses Classic Mode authentication , the resulting IIS
website is confi gured to use Integrated Windows authentication. Figure 8 - 3 shows the authentication
process when Integrated Windows authentication is in use.

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

286 ❘ CHAPTER 8 WORKING WITH BCS SECURITY

 A simple analogy that is often used to describe the difference between NTLM and Kerberos involves
rides at amusement parks. The challenge - response protocol of NTLM requires that the client be
authenticated for access to each individual resource. This is analogous to visiting a carnival where
you must pay for each ride. The ticket - based protocol of Kerberos involves a single authentication
that is good for all resources. This is analogous to visiting a theme park where you pay once at the
gate and then have unlimited access to all the rides.

 While both NTLM and Kerberos are secure protocols, Kerberos is the most secure because it
authenticates both the client and the server. NTLM authenticates only the client. Additionally,
Kerberos is less “ chatty ” than NTLM, which requires more communication to accomplish
authentication. However, Kerberos requires special confi guration steps while NTLM just works
out of the box. For this reason alone, NTLM is still widely used with SharePoint farms.

 Understanding Impersonation

 In addition to using Integrated Windows authentication, IIS websites created by Central
Administration also have ASP.NET Impersonation enabled by way of the < identity
impersonate= “ true “ / > element in the web.config fi le. When ASP.NET Impersonation
is enabled in this way — and anonymous access is disabled — the account of the currently
authenticated user is used to make all resource requests. Impersonation allows SharePoint to use
the rights of the current user to access resources and execute code. Both NTLM and Kerberos
support impersonation.

 While impersonation is valuable for implementing security in ASP.NET, it is limited to the server
on which IIS is running. This means that if the code in a SharePoint page attempts to access a
resource — like a database — on a different server, it will not use the account of the current user.
Instead, it will use the identity of the application pool. This situation is commonly referred to as
the double - hop issue.

 The limitation imposed on impersonation is there by design. If it were possible to impersonate users
across the network with no limitations, a serious security threat would exist. Compromised code
could be hijacked to perform all kinds of operations in the name of the current user. Impersonation
limitations have a signifi cant impact on how connections are made to External Systems, and BCS
solutions must work within these limitations.

 Understanding Delegation

 While impersonation is limited to the IIS server,
 delegation allows the credentials of the currently
authenticated user to be passed along to another
server. This means that External Systems can
be accessed with the credentials of the user and
not the application pool. Because of its superior
security, only Kerberos supports delegation.
Kerberos may be enabled for a web application
through the Authentication Providers dialog
as shown in Figure 8 - 4, but it also requires
additional confi guration. FIGURE 8 - 4

www.it-ebooks.info

http://www.it-ebooks.info

 Because of the security threat mentioned previously, only the domain controller is trusted for
delegation without additional confi guration. In order to access an External System using the
credentials of the current user, the application pool running SharePoint must be confi gured to
support delegation.

 The additional steps required to implement Kerberos are beyond the scope of this chapter and
are certainly not trivial. Moving to Kerberos is an organizational decision that will involve IT
management. Nonetheless, implementing Kerberos is the single easiest way to facilitate proper
authentication and authorization against External Systems. The ability to pass the current user ’ s
credentials all the way through to the External System eliminates the need for common accounts
that must be managed separately.

 Understanding Anonymous Access

 Along with impersonation and delegation, users may also access IIS anonymously. When an IIS
site has enabled anonymous access, all users will initially be authenticated as the anonymous user
account, which is specifi ed in IIS. Anonymous access is enabled for a SharePoint site whenever
anonymous access is specifi cally enabled in Central Administration for the web application, or
the site is confi gured to use forms - based authentication.

 Anonymous access has a signifi cant impact on BCS solutions because all users share the same
identity. As a result there is no way to distinguish among the users accessing External Systems. In
many situations such a limitation may be unacceptable. For example, when NTLM authentication
is in use and anonymous access is enabled, the anonymous user account will be the one used to
access External Systems subject to double hop.

 GETTING STARTED WITH SERVER AUTHENTICATION

 The most common BCS authentication scenario involves a database or web service as the External
System, presented in the browser as an External List. Most often these systems are internal to the
organization and use either Integrated Windows authentication or simple username/password
authentication. In these scenarios BCS supports two authentication models: Impersonation and
Delegation and Trusted Subsystem . In the Impersonation and Delegation model BCS uses Integrated
Windows authentication along with impersonation or delegation, depending upon how the network
is confi gured. In the Trusted Subsystem model, BCS uses a single account to access the External
System regardless of the current user identity.

 The AuthenticationMode element in the Application Model determines how authentication
is performed. Possible values for the AuthenticationMode element are Passthrough ,
 RevertToSelf , WindowsCredentials , RdbCredentials , and Credentials . Passthrough is
used to pass the credentials of the current user to the External System and RevertToSelf is used
to pass the credentials of the application pool. Together these two options represent the simplest
authentication strategies for BCS.

 WindowsCredentials , RdbCredentials , and Credentials are used to pass a separate set of
credentials from the Secure Store Service (SSS). Before the SSS can be use with BCS, it must be
properly confi gured. Confi guration and use of SSS is covered later in the chapter.

Getting Started with Server Authentication ❘ 287

www.it-ebooks.info

http://www.it-ebooks.info

288 ❘ CHAPTER 8 WORKING WITH BCS SECURITY

 Using Passthrough Authentication

 Passthrough authentication implements the Impersonation and Delegation authentication model.
Setting the value of the AuthenticationMode element to Passthrough causes BCS to attempt a
connection to the designated External System based on the current NTLM or Kerberos network
confi guration. If the network is confi gured to use Kerberos and delegation, External Systems will
be accessed with the credentials of the current user. Under NTLM and impersonation, External
Systems will be accessed with the credentials of the application pool or anonymous user. The
following code shows a model with the AuthenticationMode element set to Passthrough .

 < LobSystemInstances >
 < LobSystemInstance Name=”Adventureworks Data Warehouse” >
 < Properties >
 < Property Name=”AuthenticationMode” Type=”System.String” >
 PassThrough
 < /Property >
 < Property Name=”DatabaseAccessProvider” Type=”System.String” >
 SqlServer
 < /Property >
 < Property Name=”RdbConnection Data Source” Type=”System.String” >
 AWSQL
 < /Property >
 < Property Name=”RdbConnection Initial Catalog”
 Type=”System.String” > AdventureworksDW < /Property >
 < Property Name=”RdbConnection Integrated Security” Type=”System.String” >
 SSPI
 < /Property >
 < Property Name=”RdbConnection Pooling” Type=”System.String” > true < /Property >
 < Property Name=”ShowInSearchUI” Type=”System.String” > < /Property >
 < /Properties >
 < /LobSystemInstance >
 < /LobSystemInstances >

 Passthrough is simple to confi gure: select Connect with
User ’ s Identity when setting up the External System
connection in SharePoint Designer. This option is available
both during the initial defi nition of the External System
connection and later through the Connection Properties
dialog accessible from the summary page. Figure 8 - 5 shows
the option in the SharePoint Designer.

 Passthrough authentication is simple to confi gure and use.
However, it requires Kerberos authentication to work across
all situations. Once again, Kerberos is the best confi guration
to use with BCS solutions.

 Using RevertToSelf Authentication

 RevertToSelf falls within the Trusted Subsystem model of authentication because it uses a single
account for all users. Setting the value of the AuthenticationMode element to RevertToSelf causes

 FIGURE 8 - 5

www.it-ebooks.info

http://www.it-ebooks.info

BCS to use the credentials of the application pool to access the External System. The following code
shows a model with the AuthenticationMode element set to RevertToSelf .

 < LobSystemInstances >
 < LobSystemInstance Name=”Adventureworks Data Warehouse” >
 < Properties >
 < Property Name=”AuthenticationMode” Type=”System.String” >
 RevertToSelf
 < /Property >
 < Property Name=”DatabaseAccessProvider” Type=”System.String” >
 SqlServer
 < /Property >
 < Property Name=”RdbConnection Data Source” Type=”System.String” >
 AWSQL
 < /Property >
 < Property Name=”RdbConnection Initial Catalog”
 Type=”System.String” > AdventureworksDW < /Property >
 < Property Name=”RdbConnection Integrated Security” Type=”System.String” >
 SSPI
 < /Property >
 < Property Name=”RdbConnection Pooling” Type=”System.String” > true < /Property >
 < Property Name=”ShowInSearchUI” Type=”System.String” > < /Property >
 < /Properties >
 < /LobSystemInstance >
 < /LobSystemInstances >

 You confi gure RevertToSelf by editing the
connection information to the External System
after it is defi ned; the option is not available
during the initial connection confi guration.
In the SharePoint Designer, on the Summary
View for the External Content Type, you can
edit the connection information by clicking the
hyperlink for the External System. Figure 8 - 6
shows the Connection Properties dialog. Specify
 RevertToSelf by selecting the option BDC Identity
from the Authentication Mode drop - down.

 While using RevertToSelf is a simple way to
provide access to External Systems regardless of
the user ’ s identity, it is important to understand
that the application pool identity is a powerful one
whose credentials must be protected. Along with
being the account under which the web application
runs, the application pool identity is also used
to access the content database, as mentioned
earlier. Furthermore, the application pool identity
is the account under which code runs when the
 SPSecurity.RunWithElevatedPrivileges FIGURE 8 - 6

Getting Started with Server Authentication ❘ 289

www.it-ebooks.info

http://www.it-ebooks.info

290 ❘ CHAPTER 8 WORKING WITH BCS SECURITY

method is called in SharePoint, which essentially allows code to perform any action in a
SharePoint farm.

 Within SharePoint, the application pool identity is mapped to a special SPUser account known as
SHAREPOINT\system. If you log into SharePoint using the application pool identity account, you will
be welcomed as SHAREPOINT\system. Additionally, you will have signifi cant rights while running
under the SHAREPOINT\system account. Because of the special nature of the application pool
identity in SharePoint, it is important to protect the account credentials. For this reason, RevertToSelf
is initially disabled and must be explicitly enabled using the following PowerShell script.

$bdc = Get-SPServiceApplication
 | where {$_ -match “Business Data Connectivity Service”}
$bdc.RevertToSelfAllowed = $true
$bdc.Update();

 UNDERSTANDING THE SECURE STORE SERVICE

 The Secure Store Service (SSS) is a service application that provides for the storage, mapping,
and retrieval of credential information. The credentials stored by SSS are used to access External
Systems when the credentials of the current user cannot be used. This might be the case with, for
example, impersonation beyond the IIS server, trusted subsystem strategies that use a single account
for access, and attempts to access External Systems that use simple username/password schemes.

 Credential sets are stored by SSS in a secure database under an application, which is a plain - text name
used to represent the context or usage of the credential sets. SSS responds to requests for credentials by
providing the credentials associated with a Windows account for a given application name.

 Because SSS contains sensitive credential information it should run in its own application pool
using a unique identity account. SSS should also run on its own dedicated application server.
Finally, the SSS database should reside on a separate database server from the one containing
SharePoint content databases. Note that using the service application setup wizard during the
initial SharePoint installation does not meet the best practices for SSS. Therefore, a new instance
should be created manually and confi gured as described earlier.

 Once the SSS service application is created, it can be managed in the standard way. From Central
Administration click Manage Service Application under the Application Management section. On
the Manage Service Applications page, clicking the Administrators button in the ribbon will open
a dialog for defi ning rights to create and manage applications within SSS.

 Clicking the Manage button in the ribbon will open a page for managing the SSS. If this is your fi rst
time visiting the management page, you will have to defi ne a new encryption key before applications
can be defi ned. The encryption key is used to encrypt the credentials in the SSS database, which
should be backed up after the service is confi gured.

 In order for credential sets for an External System to be stored, a new Target Application must be
created in SSS. The Target Application acts as a container for credential sets mapped to an External

www.it-ebooks.info

http://www.it-ebooks.info

System. The Target Application settings page contains a name for the application and a setting to
specify whether each individual user will have a separate set of mapped credentials, or every user
will map to a single common set of credentials. Figure 8 - 7 shows application settings mapping a
single set of credentials to an Active Directory group.

 FIGURE 8 - 7

 When creating a Target Application you may choose either an individual or a group type.
Furthermore, you can enhance these options to include ticketing or restricted accounts. An
individual account maps a separate account for each user. A group account maps all users to a
single account. So an individual application type implements the Impersonation and Delegation
model, while a group application type implements the Trusted Subsystem model.

 For either individual or group you may elect to include ticketing. Ticketing creates a ticket for
each credential request that is good for the period of time you specify in the Target Application
defi nition. This period should be long enough for the client to use the ticket to access the External
System. Tickets should be associated with a Secure Store Ticket (SsoTicket) fi lter in the BDC
Metadata Model that will limit the results returned from the External System based on the ticket.

 For either individual or group, you may also specify that the account is restricted. Restricted
accounts are sensitive accounts stored separately from other accounts and managed through a
separate API. This further protects the credentials from compromise.

 The Target Application page specifi es the page to which a user will be redirected if his or her
credential mapping has not yet been added to the Target Application. This page is automatically
generated based on the fi elds required for the login. Setting up an individual type application,
for instance, requires that each user have stored credentials. However, there is no way that the
administrator can enter these credentials when the Target Application is created. Therefore, the SSS
must prompt each user to enter credentials the fi rst time he or she uses the Target Application.
These credentials can then be stored for future use. As an alternative, the SSS API could be used to
load credentials in bulk.

Understanding the Secure Store Service ❘ 291

www.it-ebooks.info

http://www.it-ebooks.info

292 ❘ CHAPTER 8 WORKING WITH BCS SECURITY

 In most cases the Target Application will save a user name and password for the credentials, but it is
important to point out that SSS can save any text - based information. For example, a passcode fi eld
could be used in lieu of a password fi eld. Figure 8 - 8 shows typical user name and password fi elds
defi ned for an application.

 FIGURE 8 - 8

 FIGURE 8 - 9

 Once the application and credential fi elds are defi ned you must enter the actual credential information.
For each user or group that will access the External System, a set of credentials must be created with
the fi eld defi nitions for the application. Figure 8 - 9 shows credentials being entered for an application.
Once the credentials are in place the application can be used during the defi nition of an External
Content Type to allow access to the External System using the credentials stored in the SSS. If an end
user should attempt to access the system without proper credentials in SSS, that user will be directed
to a login page so the credentials can be entered and stored.

 Along with the interface provided by Central Administration, SSS can also be maintained through
PowerShell commands. Using these commands you can manage Target Applications and credentials.
The following table lists the PowerShell commands supported by SSS.

www.it-ebooks.info

http://www.it-ebooks.info

 COMMAND DESCRIPTION

 Clear - SPSecureStoreCredentialMapping Deletes a credential mapping for a Target

Application

 Clear - SPSecureStoreDefaultProvider Clears the assembly information for the

default pluggable SSO provider used

in the SsoProviderImplemenation

element

 Get - SPSecureStoreApplication Gets an SSS application

 New - SPSecureStoreApplication Creates a new SSS application

 New - SPSecureStoreApplicationField Creates a new fi eld in a Target Application

 New - SPSecureStoreServiceApplication Creates a new SSS service application

(which is a confi gured instance of SSS

in the farm)

 New - SPSecureStoreServiceApplicationProxy Create a new SSS application proxy

(which is used by the server to

communicate with the SSS service

application)

 New - SPSecureStoreTargetApplication Creates a new Target Application

 Remove - SPSecureStoreApplication Deletes an SSS application

 Set - SPSecureStoreApplication Sets properties for an SSS application

 Set - SPSecureStoreDefaultProvider Sets the assembly information for the

default pluggable SSO provider used

in the SsoProviderImplemenation

element

 Set - SPSecureStoreServiceApplication Sets properties for an SSS service

application

 Update - SPSecureStoreApplicationServerKey Updates the SSS encryption key

 Update - SPSecureStoreCredentialMapping Updates a credential mapping in a Target

Application

 Update - SPSecureStoreGroupCredentialMapping Creates a new group credential mapping

in a Target Application

 Update - SPSecureStoreMasterKey Updates the SSS encryption key

Understanding the Secure Store Service ❘ 293

www.it-ebooks.info

http://www.it-ebooks.info

294 ❘ CHAPTER 8 WORKING WITH BCS SECURITY

 USING THE SECURE STORE SERVICE FOR AUTHENTICATION

 When you ’ re using the SSS as part of an authentication strategy, your fi rst concern is the protocol
used by the External System for authentication. If the External System supports Windows
authentication, the SSS Target Application will have a different confi guration from that of an
External System using a proprietary user name/password scheme. The next concern is whether to
implement the Impersonation and Delegation model or the Trusted Subsystem model. This choice
is largely based on whether users need to authenticate individually to the External System, and you
make it by creating an individual or group type Target Application. Once you know the type of
Target Application you need, you can create it in SSS.

 Using WindowsCredentials Authentication

 WindowsCredentials authentication is used when the External System supports Windows
authentication. Setting the value of the AuthenticationMode element to WindowsCredentials
causes BCS to use the SSS credentials as Windows credentials to access the External System. The
following code shows a model with the AuthenticationModel element set to WindowsCredentials .
The SsoApplicationId element contains the name of the Target Application in SSS where the
credentials are stored.

 < LobSystemInstances >
 < LobSystemInstance Name=”Adventureworks Data Warehouse” >
 < Properties >
 < Property Name=”AuthenticationMode” Type=”System.String” >
 WindowsCredentials
 < /Property >
 < Property Name=”DatabaseAccessProvider” Type=”System.String” >
 SqlServer
 < /Property >
 < Property Name=”RdbConnection Data Source” Type=”System.String” >
 AWSQL
 < /Property >
 < Property Name=”RdbConnection Initial Catalog”
 Type=”System.String” > AdventureworksDW < /Property >
 < Property Name=”RdbConnection Integrated Security” Type=”System.String” >
 SSPI
 < /Property >
 < Property Name=”RdbConnection Pooling” Type=”System.String” > true < /Property >
 < Property Name=”ShowInSearchUI” Type=”System.String” > < /Property >
 < Property Name=”SsoApplicationId” Type=”System.String” >
 AdventureworksDW
 < /Property >
 < Property Name=”SsoProviderImplementation” Type=”System.String” >
 Microsoft.Office.SecureStoreService.Server.SecureStoreProvider,
 Microsoft.Office.SecureStoreService, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c < /Property >
 < /Properties >
 < /LobSystemInstance >
 < /LobSystemInstances >

www.it-ebooks.info

http://www.it-ebooks.info

 You cannot select WindowsCredentials when
initially creating a connection to an External
System in SPD. Instead you must use the
Connection Properties dialog afterward and set
the Authentication Mode to Impersonate Windows
Identity. Figure 8 - 10 shows the option in the
SharePoint Designer.

 Using RdbCredentials

Authentication

 RdbCredentials authentication is used exclusively
for database access when the database supports
user name/password authentication. Setting
the value of the AuthenticationMode element
to RdbCredentials causes BCS to append the
credentials to the database connection string when
accessing the External System. The following code
shows a model with the AuthenticationModel
element set to RdbCredentials . The
 SsoApplicationId element contains the name
of the Target Application in SSS where the
credentials are stored.

 < LobSystemInstances >
 < LobSystemInstance Name=”Adventureworks Data Warehouse” >
 < Properties >
 < Property Name=”AuthenticationMode” Type=”System.String” >
 RdbCredentials
 < /Property >
 < Property Name=”DatabaseAccessProvider” Type=”System.String” >
 SqlServer
 < /Property >
 < Property Name=”RdbConnection Data Source” Type=”System.String” >
 AWSQL
 < /Property >
 < Property Name=”RdbConnection Initial Catalog”
 Type=”System.String” > AdventureworksDW < /Property >
 < Property Name=”RdbConnection Pooling” Type=”System.String” > true < /Property >
 < Property Name=”ShowInSearchUI” Type=”System.String” > < /Property >
 < Property Name=”SsoApplicationId” Type=”System.String” >
 AdventureworksDWGroup
 < /Property >
 < Property Name=”SsoProviderImplementation” Type=”System.String” >
 Microsoft.Office.SecureStoreService.Server.SecureStoreProvider,
 Microsoft.Office.SecureStoreService, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c < /Property >
 < /Properties >
 < /LobSystemInstance >
 < /LobSystemInstances >

 FIGURE 8 - 10

Using the Secure Store Service for Authentication ❘ 295

www.it-ebooks.info

http://www.it-ebooks.info

296 ❘ CHAPTER 8 WORKING WITH BCS SECURITY

 You cannot select RdbCredentials when initially creating a connection to an External System in
SPD. Instead you must use the Connection Properties dialog afterward and set the Authentication
Mode to Impersonate Custom Identity.

 Using Credentials Authentication

 Credentials authentication is used exclusively for access to web services that do not support
Integrated Windows authentication, but are using Basic or Digest authentication instead. Setting the
value of the WcfAuthenticationMode element to Credentials causes BCS to use the credentials to
authenticate with IIS when you ’ re accessing the External System. The following code shows a model
with the WcfAuthenticationModel element set to Credentials . The WcfEndpointAddress element
contains the URI of the web service.

 < LobSystemInstances >
 < LobSystemInstance Name=”Adventureworks Web” >
 < Properties >
 < Property Name=”ShowInSearchUI” Type=”System.String” > < /Property >
 < Property Name=”SsoApplicationId” Type=”System.String” >
 AdventurewoksWCF
 < /Property >
 < Property Name=”SsoProviderImplementation” Type=”System.String” >
 Microsoft.Office.SecureStoreService.Server.SecureStoreProvider,
 Microsoft.Office.SecureStoreService, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c < /Property >
 < Property Name=”WcfAuthenticationMode” Type=”System.String” >
 Credentials
 < /Property >
 < Property Name=”WcfEndpointAddress” Type=”System.String” >
 http://awsharepoint.aw.com:5555/AdventureWorksDWService.svc
 < /Property >
 < /Properties >
 < /LobSystemInstance >
 < /LobSystemInstances >

 You cannot select Credentials when initially creating a connection to an External System in SPD.
Instead you must use the Connection Properties dialog afterward and set the Authentication Mode
to Impersonate Custom Identity. Additionally, because Basic and Digest authentication are not
considered completely secure, Credentials authentication should be used only with web services
that implement Secure Sockets Layer (SSL), Internet Protocol security (IPSec), or both.

 Using Application - Level Authentication

 Business Connectivity Services supports a secondary authentication at the application level that is
used in addition to the primary authentication mechanisms described previously. This secondary
authentication is performed by the External System in the operation itself, and BCS supports the
process by providing to a Finder or SpecificFinder operation a set of secondary credentials from
SSS that are associated with input parameters.

www.it-ebooks.info

http://www.it-ebooks.info

 In order to set up application - level authentication
you must specify a Secondary Secure Store
Application ID in the Connection Properties
dialog in SPD. Then you must create a UserName
fi lter and a Password fi lter on the desired read
operation. The fi lter is created in the wizard for
the read operation. Figure 8 - 11 shows the fi lter
selection dialog.

 The UserName and Password fi lters must each be
associated with a different input parameter for
the operation. When performing the operation
BCS will provide the user name and password to
the designated input parameters. It is up to the
application to use these parameters to perform
the application - level authentication and respond
appropriately. The following code shows pieces of
a model with application - level authentication.

 < LobSystemInstances >
 < LobSystemInstance Name=”Adventureworks Web” >
 < Properties >
 < Property Name=”ShowInSearchUI” Type=”System.String” > < /Property >
 < Property Name=”SsoApplicationId” Type=”System.String” >
 AdventureworksWCF
 < /Property >
 < Property Name=”SecondarySsoApplicationId”
 Type=”System.String” > AdventureworksAppLevel < /Property >
 < Property Name=”SsoProviderImplementation” Type=”System.String” >
 Microsoft.Office.SecureStoreService.Server.SecureStoreProvider,
 Microsoft.Office.SecureStoreService, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c < /Property >
 < Property Name=”WcfAuthenticationMode” Type=”System.String” >
 Credentials
 < /Property >
 < Property Name=”WcfEndpointAddress” Type=”System.String” >
 http://awsharepoint.aw.com:5555/AdventureWorksDWService.svc < /Property >
 < /Properties >
 < /LobSystemInstance >
 < /LobSystemInstances >

 < FilterDescriptors >
 < FilterDescriptor Type=”Username” Name=”ApplicationLevelUsername” >
 < Properties >
 < Property Name=”UsedForDisambiguation” Type=”System.Boolean” >
 False
 < /Property >
 < Property Name=”IsDefault” Type=”System.Boolean” > false < /Property >
 < Property Name=”CaseSensitive” Type=”System.Boolean” > false < /Property >

 FIGURE 8 - 11

Using the Secure Store Service for Authentication ❘ 297

www.it-ebooks.info

http://www.it-ebooks.info

298 ❘ CHAPTER 8 WORKING WITH BCS SECURITY

 < /Properties >
 < /FilterDescriptor >
 < /FilterDescriptors >

 < Parameter Direction=”In” Name=”EmployeeUsername” >
 < TypeDescriptor TypeName=”System.String”
 AssociatedFilter=”ApplicationLevelUsername” Name=”EmployeeUsername” / >
 < /Parameter >

 The SecondarySsoApplicationId element specifi es the SSS Target Application that will
provide the application - level credentials. The FilterDescriptor element of type Username ,
named ApplicationlevelUsername , defi nes the fi lter, but does not actually relate it to the input
parameter. The Parameter element defi nes the input parameter, and the AssociatedFilter
attribute references the Username fi lter to complete the defi nition.

 CONFIGURING CLIENT AUTHENTICATION

 When confi guring authentication for BCS solutions, you must take care to consider authentication
from both the server side and the client side. While identical confi guration options are given for
the server and the client in the drop - down lists in the Connection Properties dialog, accessing an
External System from an Offi ce client can be very different from accessing that system from the
browser. Furthermore, the authentication strategy used by the client may be different from the one
used by the server.

 When External Lists are synchronized to Microsoft Outlook or the SharePoint Designer, BCS
directly accesses the External System from the client machine. The model contained in the BDC
service is cached on the client, along with the AuthenticationMode element, which determines
the authentication strategy used by the client. The Connection Properties dialog has tabs for
both the server and the client, which enables you to confi gure them separately.

 Using Passthrough Authentication

 The Impersonation and Delegation model still has some meaning on the client, but it is not nearly as
signifi cant as on the server. This is largely because the client will always attempt to connect directly
to the External System with a given set of credentials. Because there is no intermediate process like
IIS, the concept of impersonation is limited to using a set of credentials other than those under
which the user is logged in.

 Setting the value of the AuthenticationMode element to Passthrough for the client causes BCS to
attempt a connection to the designated External System using the credentials of the current client.
This represents a straightforward client/server relationship. There is no intermediate system and no
double - hop issue to confuse the scenario. If the current user is authenticated by the External System
and authorized to perform the appropriate operations, then full CRUD operations are possible in
both the Outlook and SharePoint Workspace clients as well as custom VSTO add - ins that call the
BDC Runtime API.

www.it-ebooks.info

http://www.it-ebooks.info

 Using RevertToSelf Authentication

 Technically, RevertToSelf still falls under the Trusted Subsystem model of authentication, but
it is virtually meaningless on the client. Setting the value of the AuthenticationMode element to
 RevertToSelf causes BCS to use the credentials of the current client exactly like Passthrough .

 Using Secure Store Service Authentication

 Clients support the use of credentials defi ned in SSS for connecting to External Systems. However,
the management and storage of the credentials is handled differently from on the server. Because all
access from the client is direct to the External System, the client cannot use the credential store on
the server. Furthermore, passing credentials between the Secure Store Service and the Offi ce client
represents a signifi cant security threat and is prohibited.

 Because SSS cannot pass credentials to clients, a different mechanism must be used to manage
and store credentials. Therefore, BCS makes use of the Credential Manager applet on the client
to handle the credentials. Credential Manager is not part of BCS; it is part of the client operating
system. Credential Manager is used for saving passwords for
endpoints such as websites so users can be remembered when
they are browsing. BCS simply takes advantage of this existing
repository to save its credentials as well.

 If a BCS model uses WindowsCredentials , RdbCredentials ,
or Credentials authentication, then BCS will prompt the
user to enter credentials the fi rst time it accesses the External
System. After the user enters the credentials, they will be saved
in the Credential Manager. Future connections will simply use
the saved credentials. Figure 8 - 12 shows a typical login dialog
presented to a user.

 The challenge with using a separate store on each client is that the end user may not know the
credentials that should be used for accessing the External System. If the BCS model calls for
an individual mapping for each user, it may be reasonable to assume the end user knows what
credentials to enter. However, a group mapping is problematic because a single set of credentials
must be shared with many end users. It is simply unlikely that such a situation would be allowed
under most organizational security policies. Therefore, the client authentication model generally
should not be confi gured to use a group mapping.

 Credentials stored in the Credential Manager may be managed by the end user. Access the
Credential Manager by selecting Control Panel ➪ User Accounts ➪ Credential Manager in
Windows 7. Figure 8 - 13 shows the Credential Manager with BCS credentials stored. If the end user
deletes credentials from the Credential Manager, BCS will prompt for new credentials on the next
connection to the External System.

 FIGURE 8 - 12

Confi guring Client Authentication ❘ 299

www.it-ebooks.info

http://www.it-ebooks.info

300 ❘ CHAPTER 8 WORKING WITH BCS SECURITY

 WORKING WITH THE SSS OBJECT MODEL

 While BCS and SSS work well together out of the box to provide authentication, SSS credentials
can also be used in custom solutions. In particular, there are two cases in which custom code might
be used in credential management. The fi rst involves retrieving credentials for use in a custom
application, and the second involves creating your own custom credential provider.

 Before you can write code against the SSO API, you must set references to
the Microsoft.BusinessData.dll , Microsoft.Office.SecureStoreService.dll , and
 Microsoft.Office.Server.dll . These assemblies are all located in the ISAPI directory.

 Retrieving Server - Side Credentials

 Credentials stored in SSS can be retrieved programmatically for use with custom solutions. A
common case involves the use of SSS credentials in a custom web part to access an External
System. As an example, the following code shows a portion of a web part that builds up a database
connection string based on the credentials from a Target Application in SSS.

protected override void OnPreRender(EventArgs e)
{
 string username = string.Empty;
 string password = string.Empty;

 FIGURE 8 - 13

www.it-ebooks.info

http://www.it-ebooks.info

 try
 {

 ISecureStoreProvider p = SecureStoreProviderFactory.Create();

 using (SecureStoreCredentialCollection creds =
 p.GetCredentials(ApplicationId))
 {
 foreach (SecureStoreCredential c in creds)
 {
 switch (c.CredentialType)
 {
 case SecureStoreCredentialType.UserName:
 username = ConvertToString(c.Credential);
 break;

 case SecureStoreCredentialType.Password:
 password = ConvertToString(c.Credential);
 break;

 case SecureStoreCredentialType.WindowsUserName:
 username = ConvertToString(c.Credential);
 break;

 case SecureStoreCredentialType.WindowsPassword:
 password = ConvertToString(c.Credential);
 break;
 }
 }
 }

 SqlConnectionStringBuilder cBuilder = new SqlConnectionStringBuilder();
 cBuilder.DataSource = ServerName;
 cBuilder.InitialCatalog = DatabaseName;
 cBuilder.UserID = username;
 cBuilder.Password = password;

 messages.Text = cBuilder.ConnectionString;

 }
 catch (Exception x)
 {
 messages.Text = x.Message;
 }
}

private String ConvertToString(SecureString s)
{
 IntPtr b = Marshal.SecureStringToBSTR(s);
 try { return Marshal.PtrToStringBSTR(b); }
 finally { Marshal.FreeBSTR(b); }
}

Working with the SSS Object Model ❘ 301

www.it-ebooks.info

http://www.it-ebooks.info

302 ❘ CHAPTER 8 WORKING WITH BCS SECURITY

 The web part defi nes custom properties for ServerName and DatabaseName that are simply entered
into the confi guration pane. The user name and password, however, are retrieved from SSS. A connection
to SSS is made via the Microsoft.Office.SecureStoreService.SecureStoreFactoryProvider class.
Credentials are then retrieved from SSS by calling the GetCredentials method and passing in the
name of the Target Application.

 The credentials are returned in code as an instance of the SecureString class. The SecureString
is then converted to clear text to build up the connection string, which can then be used to access
the External System. The connection string generated by the web part takes the form shown in the
following code.

Data Source = {server name};Initial Catalog={database name};
User Id={username}; Password={password}.

 Retrieving Client - Side Credentials

 Credentials stored on the client can be retrieved for use in custom solutions as well. Following
the principle that is used throughout BCS architecture, an API exists for retrieving credentials
from the client that parallels the API used on the server. The code for retrieving credentials is
nearly identical to the server except that you must set references to the client - side components
 Microsoft.BusinesData.dll and Microsoft.Office.BusinessData.dll . These assemblies
are both located in the Offi ce directory on the client. Instead of connecting to the store using the
 SecureStoreFactoryProvider class, access to the local store is done through the Microsoft
.Office.BusinessData.LocalSecureStoreProvider class. After that, the code is essentially
identical to the server code.

 Along with the API supplied by the BCS architecture, the Credential Manager is accessible
through an unmanaged API defi ned in Windows\System32\credui.dll . In order to use the API,
you must import it into the current VS2010 project. The following code shows how to import the
 CredUIPromptForCredentials method, which is used to validate credentials and prompt the user
to enter them when required.

[DllImport(“credui”, EntryPoint = “CredUIPromptForCredentialsW”,
 CharSet = CharSet.Unicode, SetLastError = true, ExactSpelling = true)]
private static extern CredUIReturnCodes CredUIPromptForCredentials(
 ref CREDUI_INFO creditUR,
 string targetName,
 IntPtr reserved1,
 int iError,
 StringBuilder userName,
 int maxUserName,
 StringBuilder password,
 int maxPassword,
 ref int iSave,
 CREDUI_FLAGS flags);

 The CredUIPromptForCredentials method takes the user name, password, and target application
and verifi es them against what is stored in the Credential Manager. The user name and password
can either contain values or be left empty to simply retrieve the current values. The following code
shows how to call the CredUIPromptForCredentials method from a Windows application.

www.it-ebooks.info

http://www.it-ebooks.info

StringBuilder username = new StringBuilder();
StringBuilder password = new StringBuilder();
string target = targetApplication.Text;
int saveCreds = 1;
CREDUI_FLAGS flags = CREDUI_FLAGS.GENERIC_CREDENTIALS;
CREDUI_INFO info = new CREDUI_INFO();
info.hwndParent = this.Handle;
info.pszCaptionText = “Credentials”;
info.pszMessageText = “Please enter your credentials”;
info.cbSize = Marshal.SizeOf(info);

CredUIReturnCodes returnCodes = CredUIPromptForCredentials(ref info,
 target,
 IntPtr.Zero,
 0,
 username,
 50,
 password,
 50,
 ref saveCreds,
 flags);

if (returnCodes == CredUIReturnCodes.NO_ERROR)
{
 targetUsername.Text = username.ToString();
 targetPassword.Text = password.ToString();
}

 If the credentials exist they are simply
returned. If the credentials do not exist,
the user is prompted to enter the credentials.
Credential Manager generates the login
dialog automatically, as shown in Figure 8 - 14.

 Creating a Pluggable Provider

 While SSS provides a good core credential
management capability, many organizations
already have an existing single sign - on
solution that is independent of SSS. Because
the organization already has a signifi cant
investment in the existing solution, it may not
want to move to SSS. In this case the answer
is to create a custom provider so that BCS
can use the credentials in the existing single
sign - on solution instead of SSS. This custom
solution is called a pluggable provider .

 Pluggable providers are made possible by the SsoProviderImplementation element in the BCS
application model. The SsoProviderImplementation element takes the value of a type that

 FIGURE 8 - 14

Working with the SSS Object Model ❘ 303

www.it-ebooks.info

http://www.it-ebooks.info

304 ❘ CHAPTER 8 WORKING WITH BCS SECURITY

implements the ISecureStoreProvider interface. This causes BCS to call the custom pluggable
provider for credentials instead of SSS.

 Creating a pluggable provider is reasonably straightforward. You create a class that inherits
from ISecureStoreProvider and install the resulting assembly in the GAC. Once the assembly
is in the GAC, you may register it as the default provider by using the PowerShell commandlet
 Set - SPSecureStoreDefaultProvider . When set as the default provider, SharePoint Designer
will automatically write the appropriate type into the SsoProviderImplementation element
in the application model whenever the Connection Properties dialog specifi es the use of
 WindowsCredentials , RdbCredentials , or Credentials for the AuthenticationMode . The
following code shows a portion of an application model with a pluggable provider specifi ed.

 < LobSystemInstance Name=”AWDW” >
 < Properties >
 < Property Name=”AuthenticationMode” Type=”System.String” >
 WindowsCredentials
 < /Property >
 < Property Name=”DatabaseAccessProvider” Type=”System.String” >
 SqlServer
 < /Property >
 < Property Name=”RdbConnection Data Source” Type=”System.String” >
 CONTOSOSERVER
 < /Property >
 < Property Name=”RdbConnection Initial Catalog” Type=”System.String” >
 AdventureworksDW
 < /Property >
 < Property Name=”RdbConnection Integrated Security” Type=”System.String” >
 SSPI
 < /Property >
 < Property Name=”RdbConnection Pooling” Type=”System.String” > true < /Property >
 < Property Name=”ShowInSearchUI” Type=”System.String” > < /Property >
 < Property Name=”SsoApplicationId” Type=”System.String” > DBCREDS < /Property >
 < Property Name=”SsoProviderImplementation” Type=”System.String” >
 PluggableSSO.CustomSecureStoreProvider, PluggableSSO,
 Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=0b59646182efb774 < /Property >
 < /Properties >
 < /LobSystemInstance >

 The ISecureStoreProvider interface defi nes the methods GetCredentials ,
 GetRestrictedCredentials , GetCredentialsUsingTicket , IssueTicket , and
 DeleteCredentials . It also defi nes a single property, ProviderInformation . The methods for
retrieving credentials allow the implementation of different methods for generic, secure, and
ticketed credential types. The following code shows the implementation of the GetCredentials
method using a custom database to store the application and credential information.

public SecureStoreCredentialCollection GetCredentials(string appId)
{
 CredentialStore store = new CredentialStore();

 var q = from ac in store.ApplicationCredentials
 where ac.ApplicationName.Equals(appId,

www.it-ebooks.info

http://www.it-ebooks.info

 StringComparison.CurrentCultureIgnoreCase)
 select ac;

 SecureUsername userName = new SecureUsername();
 userName.UnsecureString = q.First().Username;

 SecurePassword password = new SecurePassword();
 password.UnsecureString = q.First().Password;

 List < ISecureStoreCredential > evidence = new List < ISecureStoreCredential > ();
 evidence.Add(userName);
 evidence.Add(password);

 SecureStoreCredentialCollection creds =
 new SecureStoreCredentialCollection(evidence);

 return creds;
}

 The GetCredentials method returns a SecureStoreCredentialCollection object, which
contains objects that implement the ISecureStoreCredential interface. In the sample code,
the credentials are retrieved from a database by means of Language Integrated Query (LINQ)
calls through an Entity Framework model. The retrieved credentials are then placed in new
instances of classes that inherit from ISecureStoreCredential and returned to BCS. The
following code shows a class that implements ISecureStoreCredential to hold the returned
user name.

class SecureUsername : ISecureStoreCredential
{
 private string unsecureString;

 public string UnsecureString
 {
 set { unsecureString = value; }
 }

 #region ISecureStoreCredential

 public System.Security.SecureString Credential
 {
 get
 {
 char[] chars = unsecureString.ToCharArray();
 SecureString s = new SecureString();
 foreach (char c in chars)
 s.AppendChar(c);
 return s;
 }
 }

 public SecureStoreCredentialType CredentialType
 {

Working with the SSS Object Model ❘ 305

www.it-ebooks.info

http://www.it-ebooks.info

306 ❘ CHAPTER 8 WORKING WITH BCS SECURITY

 get { return SecureStoreCredentialType.UserName; }
 }

 public void Dispose()
 {
 unsecureString = null;
 }

#endregion

}

 UNDERSTANDING CLAIMS AUTHENTICATION

 Although Windows authentication is still the most widely used mechanism for authenticating users,
it presents several challenges to developers and IT professionals. As users increasingly need to cross
system and network boundaries, new standards are emerging to simplify authentication and identity
management. These standards are embodied in claims authentication.

 Understanding Authentication Challenges

 Each of the classic authentication mechanisms, such as NTLM, Kerberos, and forms, has limitations
that directly affect the design and implementation of BCS solutions. Furthermore, these limitations
have a larger impact on the maintenance and operation of SharePoint sites in general. Specifi cally,
classic authentication mechanisms present the following challenges, which are explained in more
detail in the following sections.

 Multiple user repositories often exist within the enterprise.

 Individual applications must run queries directly against a user repository for
authentication.

 Identity exists only within a given network, and delegation of identity is not widely
supported across systems.

 Within any organization, custom ASP.NET web applications, services, and SharePoint extranets
often use forms - based authentication and have their own SQL database acting as a user repository.
As a result, multiple user repositories can exist throughout an organization, which severely limits
the interoperability of these systems. Furthermore, user maintenance can be extremely challenging,
as users must be added and removed from multiple repositories when staff changes.

 In response to the challenges of multiple user repositories, many organizations have implemented
Active Directory as a single-user repository. Active Directory improves user management, but still
presents several limitations. These limitations involve the effi ciency of querying Active Directory
and the management of identity between systems.

 If Active Directory is set up as the single-user repository in an organization, then every application
must query Active Directory directly to authenticate users. Hopefully, these queries are effi cient,
but it would be easy for developers to write custom code against the Active Directory API that

➤

➤

➤

www.it-ebooks.info

http://www.it-ebooks.info

causes performance problems for other applications. Additionally, signifi cant code rewrites may be
necessary if directories from other organizations come into play, such as through a merger or an
acquisition.

 Beyond simply querying for authentication, it can be diffi cult to manage user identity across systems
and networks. Earlier in the chapter, the limitations of impersonation were presented. This problem
is compounded when the scope of interoperability extends beyond the current network. It is quite
common, for example, to see SharePoint use Windows authentication for users inside the fi rewall,
but forms - based authentication for users outside the fi rewall. This is problematic because each
authentication mechanism results in a separate identity. So if an employee logs in from home, he or
she will not be the same user as when logging in from work.

 Several workarounds exist today to solve various identity problems. Organizations can make use of
a virtual private network (VPN) to allow users at home to access SharePoint using their Windows
credentials. Organizations can also set up an Internet Security and Acceleration (ISA) server that
provides a forms - based login while creating a true Windows identity. Third - party solutions such as
Citrix can also be used to give remote users access to the network. These workarounds, however,
fall short of a comprehensive solution to identity management across systems and networks. The
answer to all of these problems lies in the implementation of claims authentication.

 Understanding Claims Concepts

 Claims authentication is a new form of authentication available in SharePoint 2010. When a new
web application is created through Central Administration that uses Claims Mode authentication ,
the resulting IIS website is confi gured to be claims - aware . Claims - aware websites can still make
use of classic repositories such as Active Directory or SQL Server, but the user is also issued an
additional claims token as part of the authentication process.

 Claims authentication overcomes the current limitations of multiple repositories and centralized
repositories by moving the task of authentication out of the application altogether. Under a claims
authentication model, applications no longer need to worry about querying a user repository.
Instead, the user arrives at the application with authentication already completed. This is the single
biggest advantage of claims authentication; the authentication mechanism is abstracted out of
the application.

 Earlier in the chapter, metaphors were presented for both NTLM and Kerberos authentication. NTLM
was likened to a carnival where a ticket must be presented for each ride, while Kerberos was likened to
a theme park where payment is made once at the gate. A common metaphor for claims authentication
involves the issuing of a license and the purchase of alcohol. In this metaphor a person (the end user)
wants to purchase alcohol from a store (the application). In order to purchase the alcohol, the person
must be 21 years old (the claim). At the point of purchase, the user presents a license (the token) to the
clerk, who verifi es the person ’ s age and sells him or her the alcohol.

 The key to understanding this metaphor is recognizing that the license was issued not by the
store, but by the state. The authentication authority is completely independent of the application
that uses the token to allow access. Of course, the entire transaction hinges upon the fact that the
store trusts the state to issue a valid license with a correct birth date. Furthermore, the license can

Understanding Claims Authentication ❘ 307

www.it-ebooks.info

http://www.it-ebooks.info

308 ❘ CHAPTER 8 WORKING WITH BCS SECURITY

be used for authentication in multiple scenarios like cashing a check, boarding a plane, and of
course driving.

 There are several advantages to this authentication model over the current models. First, a single
authentication authority can be used across multiple applications. Second, applications do not have
to query a repository. Third, the authentication authority can span systems and networks. Fourth,
new authorization scenarios are supported that are simply not possible with current models.

 Consider the following metaphor to understand how new authorization scenarios are enabled by
claims authentication. Instead of purchasing alcohol at a store, imagine that the person wants to
gain access to a club that sells alcohol. In this case the person presents the license to the bouncer,
who trusts the license and its claim that the person is 21. In response the bouncer stamps the
person ’ s hand upon entry. Now the person can simply show the hand stamp to the bartender when
ordering a drink.

 The key to understanding this metaphor is that the hand stamp now represents a new claim added
to the user upon authentication. The point here is that the central authority cannot know all the
claims every application wants to retain about a user. So the claims model allows for new claims to
be added to the user after authentication. In subsequent resource requests the application can simply
look for the presence of the new claim and grant access.

 Understanding Claims Architecture

 Microsoft ’ s claims authentication architecture is based on the Windows Identity Foundation (WIF).
WIF is a set of managed classes available in .NET Framework 3.5 SP1. WIF provides the foundation
for creating Security Token Services (STS). An STS authenticates a user and issues the claims token
that will be used to gain access to resources with which a trust has been established. WIF can also
be used to create claims - aware sites and services.

 At the enterprise level, an organization can implement Active Directory Federation Services 2.0
(AD FS). AD FS 2.0 can issue tokens and establish trust with other organizations and systems.
Organizations that share trusts can share identities across network boundaries. AD FS also
supports existing authentication mechanisms, so a move to claims authentication does not stop
existing applications from functioning.

 The claims - aware capabilities in SharePoint 2010 are built on WIF. SharePoint can use tokens issued
by an STS to grant access to sites. Additionally, SharePoint has its own STS that can add claims
to a token. This is the SharePoint version of the hand stamp discussed earlier. Figure 8 - 15 shows a
complete diagram of the authentication process.

 Authentication begins when the end user makes a request to access a resource inside
SharePoint. SharePoint responds by redirecting the user to authenticate with the appropriate
identity provider. Authentication could be done via a forms - based login screen or a Live ID login,
or Windows authentication could authenticate the user, as described earlier in the chapter. In any
case, successful authentication results in the identity provider ’ s issuing a token to the user with
a given set of claims. Once this token is issued, a service request is made to the SharePoint STS,
which responds by adding claims to the token. The token is then used to access the requested
resource and the response is sent to the user. Future requests for resources can simply use the
issued token.

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

310 ❘ CHAPTER 8 WORKING WITH BCS SECURITY

transform tokens. This is accomplished by adding the accounts to the c2wtshost.exe.config fi le
located in Program Files\Windows Identity Foundation\v3.5 . SharePoint 2010 installs with
the service stopped and includes the WSS_WPG group in the authorization list. The following code
shows the confi guration fi le.

 < ?xml version=”1.0”? >
 < configuration >
 < configSections >
 < section name=”windowsTokenService”
 type=”Microsoft.IdentityModel.WindowsTokenService.Configuration
.WindowsTokenServiceSection, Microsoft.IdentityModel.WindowsTokenService,
 Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35” / >
 < /configSections >
 < startup >
 < supportedRuntime version=”v4.0” / >
 < supportedRuntime version=”v2.0.50727” / >
 < /startup >
 < windowsTokenService >
 < !--
 By default no callers are allowed to use the Windows Identity
 Foundation Claims To NT Token Service.
 Add the identities you wish to allow below.
 -- >
 < allowedCallers >
 < clear / >
 < add value=”WSS_WPG” / >
 < /allowedCallers >
 < /windowsTokenService >
 < /configuration >

 The c2WTS is used by BCS to create Windows security tokens automatically when the SQL
Connector is used, provided that Kerberos is implemented. Additionally, you can use code to create
a Windows security token for use in .NET Assembly and Custom connectors. The process involves
extracting the Windows claim from the current token and calling c2WTS to return the Windows
identity. Once the Windows identity is obtained, it can be used through impersonation to access the
External System. The following code shows a simple web part that displays the Windows identity
for the current user who is logged in to a SharePoint site operating in claims mode.

public class Claims2WindowsTokenPart : WebPart
{

 protected override void RenderContents(HtmlTextWriter writer)
 {
 //Get Windows claim from token
 IClaimsIdentity identity =
 (ClaimsIdentity)Thread.CurrentPrincipal.Identity;
 string upn = null;
 foreach (Claim claim in identity.Claims)
 {
 if (StringComparer.Ordinal.Equals(
 System.IdentityModel.Claims.ClaimTypes.Upn,
 claim.ClaimType))

www.it-ebooks.info

http://www.it-ebooks.info

 {
 upn = claim.Value;
 }
 }

 //Get the Windows Identity
 WindowsIdentity windowsIdentity = null;
 if (!String.IsNullOrEmpty(upn))
 {
 try
 {
 windowsIdentity = S4UClient.UpnLogon(upn);
 }
 catch (SecurityAccessDeniedException)
 {
 writer.Write(“ < p > Access to c2WTS denied. < /p > ”);
 return;
 }
 }
 else
 {
 writer.Write(“ < p > No Windows claim found < /p > ”);
 }

 //Use the Windows Identity
 using (WindowsImpersonationContext ctxt =
 windowsIdentity.Impersonate())
 {
 writer.Write(“ < p > Windows identity is: “ +
 windowsIdentity.Name + “ < /p > ”);
 }
 }
}

 The fi rst step in the code is to obtain the Microsoft.IdentityModel.Claims.IClaimsIdentity
for the current user. The IClaimsIdentity interface gives access to all of the claims in the current
user ’ s token. Using this interface, the set of claims can be examined looking for the Upn claim type,
which represents the Kerberos Unique Principal Name for the current user.

 If the Upn claim is found, then the Microsoft.IdentityModel.WindowsTokenService.S4UClient
class can be used to call the c2WTS. The UpnLogon() method creates a WindowsIdentity from the
Kerberos UPN. This WindowsIdentity may then be used to create a WindowsImpersonationContext
for accessing the External System.

 Creating a Claims - Aware Service

 Another option for handling systems that are not claims - aware is to simply wrap them in a
claims - aware WCF service. This approach is superior to solutions that rely on the c2WTS because
they may easily be moved between environments without worrying about the availability of the
c2WTS. A claims - aware service can be written quite simply with WIF and the WIF SDK. Once
installed, the WIF SDK supplies project templates in Visual Studio for claims - aware websites and
services. Figure 8 - 16 shows the New Web Site dialog in Visual Studio 2010.

Confi guring Claims Authentication ❘ 311

www.it-ebooks.info

http://www.it-ebooks.info

312 ❘ CHAPTER 8 WORKING WITH BCS SECURITY

 When a new claims - aware WCF service is created, it will initially accept tokens from any provider.
In this confi guration the SharePoint token can be passed to the service, which then uses information
from the token to perform authentication and authorization. As a simple sample, the following code
shows a WCF service that implements two methods: GetClaims and GetClaim . These methods are
used to return the current set of claims for display as an External List, which is an excellent way to
see the set of claims in the SharePoint token.

public List < ClaimDatum > GetClaims()
{
 List < ClaimDatum > claimData = new List < ClaimDatum > ();

 try
 {
 IClaimsIdentity identity =
 (IClaimsIdentity)WindowsClaimsIdentity.GetCurrent();

 foreach (Claim claim in identity.Claims)
 {
 ClaimDatum claimDatum = new ClaimDatum();
 claimDatum.Key = claim.ClaimType;
 claimDatum.Value = claim.Value;
 claimData.Add(claimDatum);
 }

 return claimData;
 }

 FIGURE 8 - 16

www.it-ebooks.info

http://www.it-ebooks.info

 catch (Exception x)
 {
 ClaimDatum claimDatum = new ClaimDatum();
 claimDatum.Key = “Error”;
 claimDatum.Value = x.Message;
 claimData.Add(claimDatum);

 return claimData;
 }

}

public ClaimDatum GetClaim(string Key)
{

 IClaimsPrincipal principal = (IClaimsPrincipal)Thread.CurrentPrincipal;
 IClaimsIdentity identity = (IClaimsIdentity)principal.Identity;

 ClaimDatum claimDatum = new ClaimDatum();

 foreach (Claim claim in identity.Claims)
 {
 if (claim.ClaimType.Equals(Key,
 System.StringComparison.CurrentCultureIgnoreCase))
 {
 claimDatum.Key = claim.ClaimType;
 claimDatum.Value = claim.Value;
 }
 }

 return claimDatum;
}

 The methods GetClaims and GetClaim are intended to be used to support a Finder and
 SpecificFinder operation respectively in an External List. The methods return ClaimDatum objects,
which are created by means of a simple custom class not shown in the code. Once created, the External
List will simply display an item for each claim in the token. In a more sophisticated implementation the
claims could be used to support authentication and authorization to the External System.

 Using an STS with a Claims - Aware Service

 Creating a service that accepts all tokens is simple and educational, but a production system will
likely require more stringent controls. In this case you can choose to create a custom STS or install
ADFS 2.0. A custom STS can be easily created using the WIF SDK, and AD FS 2.0 can be installed
in the enterprise and confi gured to be trusted by both SharePoint and the WCF service. While the
complete creation of a custom STS and the setup of AD FS 2.0 is beyond the scope of this book,
the basic approach is to establish trust with the SharePoint 2010 installation and then confi gure the
BCS model to use the STS when accessing the External System.

 In order to confi gure the BCS model to use a given token when accessing an External System, you
must create a binding provider . A binding provider is a class that creates a binding referencing the
desired STS. The assembly information is then entered into the WcfBindingProviderImplementation
element of the BCS model. The following code shows a sample model.

Confi guring Claims Authentication ❘ 313

www.it-ebooks.info

http://www.it-ebooks.info

314 ❘ CHAPTER 8 WORKING WITH BCS SECURITY

 < LobSystem Type=”Wcf” Name=”ShowClaimsService” >
 < Properties >
 < Property Name=”WcfBindingProviderImplementation”
 Type=”System.String” > ClaimsAwareExternalSystemBinding.BindingProvider,
 ClaimsAwareExternalSystemBinding, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=9e5b30f344ec8fef
 < /Property >
 < Property Name=”WcfMexDiscoMode” Type=”System.String” > Disco < /Property >
 < Property Name=”WcfMexDocumentUrl”
 Type=”System.String” > http://contososerver:1234/Service.svc?wsdl
 < /Property >
 < Property Name=”WcfProxyNamespace”
 Type=”System.String” > BCSServiceProxy
 < /Property >
 < Property Name=”WildcardCharacter” Type=”System.String” > * < /Property >
 < Property Name=”WsdlFetchAuthenticationMode” Type=”System.String” >
 PassThrough
 < /Property >
 < /Properties >
...
 < /LobSystem >

 You build the binding provider by creating a class that inherits from IWcfBindingProvider . In
this class the CreateBinding is overridden and a binding is created to the STS. The following code
shows a sample implementation.

public class BindingProvider : IWcfBindingProvider
{
 static readonly string CertificateName = “CN=STSTestCert”;

 public Binding CreateBinding(
 Microsoft.BusinessData.MetadataModel.ILobSystemInstance lobSystemInstance,
 Binding existingBinding)
 {
 //The STST binding
 WS2007FederationHttpBinding stsBind =
 new WS2007FederationHttpBinding(WSFederationHttpSecurityMode.Message);

 stsBind.Security.Message.IssuerAddress =
 new EndpointAddress(“http://awsharepoint:5678/SimpleSTS”);
 stsBind.Security.Message.IssuerMetadataAddress =
 new EndpointAddress(“http://awsharepoint:5678/SimpleSTS/mex”);

 //Don’t use Security Context Token binding
 WS2007HttpBinding noSCT = new WS2007HttpBinding(SecurityMode.Message);
 noSCT.Security.Message.EstablishSecurityContext = false;

 stsBind.Security.Message.IssuerBinding = noSCT;

 return stsBind;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info

 FIGURE 8 - 18

 UNDERSTANDING TOKEN AUTHENTICATION

 Today many web - based applications use a token - based authentication system. These systems
typically have a log - on mechanism that is separate from the applications that they support. For
example, Windows Live has a log - on system that uses a Windows Live ID. This ID is used for
many applications, including HotMail, SkyDrive, and LiveMesh. Regardless of the application,
however, the end user always uses the same log - on screen to authenticate and receive a token
that is trusted by the applications. Figure 8 - 17 shows the Windows Live ID login for access to
MSDN subscriptions.

 FIGURE 8 - 17

 For these types of BCS solutions, the SharePoint SDK
provides some starter code in the form of a Netfl ix sample.
The SDK has good setup instructions for the sample, which
requires the creation of a Netfl ix account. The Netfl ix
sample uses OAuth, which is a protocol that establishes
support for using APIs associated with services. In the
case of the Netfl ix sample, OAuth allows BCS to consume
Netfl ix movie queues and expose them as ECTs. Figure 8 - 18
shows a Netfl ix movie queue displayed in the Business
Data List web part. Custom XSLT is used to transform the
URL for the box art into an image.

 Because BCS does not provide out - of - the - box support
for token - based authentication systems, a custom Secure
Store provider must be created. Additionally, a custom
authorization handler must be created to redirect users

Understanding Token Authentication ❘ 315

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

sophisticated capabilities such as claims and OAuth. Because there are so many combinations
of authentication for SharePoint, External Systems, and BCS solutions, developers can easily
become confused as to which combinations are valid. As a summary, Table 8 - 1 shows the various
authentication combinations and the available BCS authentication modes.

 TABLE 8 - 1: BCS Authentication Matrix

 CONNECTOR

 EXTERNAL SYSTEM

 AUTHENTICATION

 SCHEME

 SHAREPOINT 2010 AUTHENTICATION SCHEME

 MICROSOFT

OUTLOOK

2010

 CLASSIC MODE CLAIMS MODE

 NTLM KERBEROS NTLM OR FBA KERBEROS

 SQL Windows RevertToSelf

 Windows

Credentials

 Passthrough

 RevertToSelf

 Windows

Credentials

 Windows

Credentials

 Passthrough

(c2WTS)

 RevertToSelf

(c2WTS)

 Windows

Credentials

 Passthrough

 Windows

Credentials

 Username/

Password
 RdbCredentials

 WCF Windows RevertToSelf

 Windows

Credentials

 Passthrough

 RevertToSelf

 Windows

Credentials

 Windows

Credentials

 Passthrough

(c2WTS)

 RevertToSelf

(c2WTS)

 Windows

Credentials

 Passthrough

 Windows

Credentials

 Username/

Password
 Credentials

 Claims Custom Pluggable Provider

and Authentication Handler

 Passthrough Custom

VSTO

Application

with code

to create

required

connection

 OAuth Custom Pluggable Provider and Authentication Handler

 Application -

 Level

 Secure Store Service Secondary Application ID

 .NET

Assembly

 or Custom

 Any Custom code to create the required connection

Summary ❘ 317

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

 Understanding the Search Service Application

 In the center of the search architecture is the Search Service Application (SSA). The SSA is one of
the many shared services available in SharePoint Server. This means that you can create and share
instances of the SSA across farms just as with any other service application. From the Central
Administration website you can access the SSA by selecting Manage Service Applications. From the
list of service applications you can then select the SSA, set its properties, designate administrators,
and enter the administration pages. Figure 9 - 2 shows the SSA in the list of service applications.

 FIGURE 9 - 2

 Within the SSA are three databases: the Search Service database, the Managed Properties database,
and the Crawl database. The Search Service database maintains confi guration data for the SSA.
The Managed Properties database contains the defi nitions for Managed Properties that are defi ned
and mapped to crawled properties. The Crawl database contains confi guration information related
to content sources to be crawled. The SSA also maintains the index fi le that is built during the
crawl, and support for Federated Search connectors. Each of these components supports search
administration, which you can perform by clicking the Manage button for the SSA.

 Understanding the Indexing Process

 The indexing process is responsible for building the index fi le. The index fi le contains properties
from content sources along with access control information that ensures that search results display
only content to which the user has rights. The process of building the index fi le involves crawling
the designated content sources.

 A content source is a repository that you want to search. Content sources can be SharePoint
sites, websites, external fi le systems, Exchange public folders, External Systems, or other custom
repositories. The Index Engine gains access to these repositories through .NET Assembly
Connectors and access to the contents of individual items through IFilters.

Understanding Search Architecture ❘ 321

www.it-ebooks.info

http://www.it-ebooks.info

322 ❘ CHAPTER 9 WORKING WITH ENTERPRISE SEARCH

 Chapter 8 presented the fundamentals of .NET Assembly Connectors, which are used by BCS
to connect with External Systems. The indexing process makes use of these same components to
connect with content sources. In previous versions of SharePoint, Protocol Handlers were the
primary means of connecting with content sources, but they were diffi cult to create in managed
code and are deprecated. In SharePoint 2010, Protocol Handlers are still supported, but .NET
Assembly Connectors should be created whenever a custom repository is used as a content source.

 Just as in previous versions of SharePoint, IFilters are used to allow the indexing process to access
the body of an item. For example, IFilters are used to allow the indexing process to access the body
of Offi ce documents so that a full - text search can be performed. While SharePoint 2010 ships with
IFilters for Offi ce documents, you may need to install additional IFilters for other types such as PDF
documents. Generally IFilters are available from the appropriate manufacturer, such as Adobe, and
require a simple installation on the server on which the indexing process runs.

 Understanding the Query Process

 Once the index fi le is created, it may be used to support query execution. Query execution begins
when an end user navigates to the Search Center and enters a query. The query in the Search Center
may take the form of a simple keyword or an advanced search with multiple values against multiple
Managed Properties.

 When the user issues the search, the query is sent to the search engine. Within the search engine the
query processor accepts the query and also retrieves any required information from the Managed
Properties database. Information from the Managed Properties database is required whenever
a query is issued against a specifi c Managed Property, such as Title. The combination of the user
query and Managed Property information is then sent to the query server, which executes the query
and returns the results. The results are returned as XML to the Search Center, where they are
formatted by means of the XSLT contained in the Core Search Results Web Part.

 Along with performing a query on its own index, SharePoint can send the query out to other
 federated search locations . Federated search locations are connections to other search services
that independently run the query and return the results to the Search Center for display separately.
Communication with federated locations is based on the Open Search protocol, so any search
service that supports Open Search can be used as a federated location.

 The primary way in which users interact with the search engine is through a set of search Web Parts
that ships with SharePoint. These search Web Parts may be used independently, but are most often
used as part of an Enterprise Search site created via a site template. The Enterprise Search template
contains Web Parts for issuing queries and returning results.

 USING BASIC BCS SEARCH SUPPORT

 Throughout the book you have seen that BCS solutions can range from simple, no - code solutions to
complex solutions created in Visual Studio 2010. All BCS solutions, regardless of their complexity,
can provide support for indexing and search as long as they defi ne a Finder and SpecificFinder
method to support indexing the External System.

www.it-ebooks.info

http://www.it-ebooks.info

 Enterprise Search uses the Finder and SpecificFinder methods to query the External System and
build up the search index fi le. During the indexing process the crawler calls to the Finder method
designated as the RootFinder in the BDC Metadata Model. This call returns information about the
entity instances in the External System.

 If the information returned from the Finder method is suffi cient to build the index, no further
calls are made. If, however, the call to the Finder method does not return all the required metadata,
additional calls are made to the SpecificFinder method for each entity instance.

 Enabling Search Support

 When creating no - code solutions in SharePoint Designer, you are required to defi ne Finder and
 SpecificFinder methods to support the creation of External Lists. Additionally, these methods
are used to support indexing and search. In order to see how these solutions support indexing and
search, you can export an ECT that was modeled in SPD. Opening the fi le as text will enable you
to locate the RootFinder in the model. The following code shows a Finder MethodInstance
designated as the RootFinder :

 < MethodInstances >
 < MethodInstance Type=”Finder” ReturnParameterName=”Read List”
 Default=”true” Name=”Read List” DefaultDisplayName=”Product Read List” >
 < Properties >
 < Property Name=”RootFinder” Type=”System.String” > < /Property >
 < /Properties >
 < /MethodInstance >
 < /MethodInstances >

 Notice that the RootFinder property has no value. If you include a value for this property it is
simply ignored. Sometimes you may see a value of x in the property, but this is simply a style choice.
The presence of the property is enough to designate the Finder method as the RootFinder .

 Although the RootFinder property is the only one necessary to support indexing the External
System, an additional property is required to allow the ECT to be selected as a content source in the
SSA. The ShowInSearchUI property must be present on the LobSystemInstance for the ECT to be
selectable as a content source. The following code shows the property:

 < LobSystemInstances >
 < LobSystemInstance Name=”AWProducts” >
 < Properties >
 < Property Name=”AuthenticationMode” Type=”System.String” >
 PassThrough
 < /Property >
 < Property Name=”DatabaseAccessProvider” Type=”System.String” >
 SqlServer
 < /Property >
 < Property Name=”RdbConnection Data Source” Type=”System.String” >
 AWSERVER
 < /Property >
 < Property Name=”RdbConnection Initial Catalog” Type=”System.String” >
 AdventureworksProducts
 < /Property >

Using Basic BCS Search Support ❘ 323

www.it-ebooks.info

http://www.it-ebooks.info

324 ❘ CHAPTER 9 WORKING WITH ENTERPRISE SEARCH

 < Property Name=”RdbConnection Integrated Security” Type=”System.String” >
 SSPI
 < /Property >
 < Property Name=”RdbConnection Pooling” Type=”System.String” >
 True
 < /Property >
 < Property Name=”ShowInSearchUI” Type=”System.String” > < /Property >
 < /Properties >
 < /LobSystemInstance >
 < /LobSystemInstances >

 Just like the RootFinder property, the ShowInSearchUI property does not require a value. Its
presence is enough to allow the ECT to appear as a content source in the SSA. Again, as with the
 RootFinder property, you may occasionally see examples in which this property has a value of x .

 Once the RootFinder and ShowInSearchUI properties are added to the model, you may confi gure
the ECT as a content source. Simply create a new content source in the SSA and select Line of
Business Data as the type. All the ECTs with the ShowInSearchUI property will appear next to
checkboxes. Check the ECT and you can immediately begin a full crawl of the External System
provided the account performing the crawl has permission to use the BDC Metadata Model and
access the External System. Figure 9 - 3 shows the Add Content Source page with some ECTs visible.

 FIGURE 9 - 3

 In addition to full crawls, BCS solutions can also support incremental crawls with the
 LastModifiedTimeStampField property. This property has a value that refers to a DateTime fi eld,
which indicates the last time the item was modifi ed. If the item has not been modifi ed since the
last incremental crawl, it will not be included in the current incremental crawl. The following code
shows an example of the property mapping to a fi eld in the ECT named ChangedDateTime . This

www.it-ebooks.info

http://www.it-ebooks.info

mapping specifi es that the ChangedDateTime fi eld in the External System will be used to determine
whether the row of data has changed since the last crawl.

 < MethodInstances >
 < MethodInstance Type=”Finder” ReturnParameterName=”Read List”
 Default=”true” Name=”Read List” DefaultDisplayName=”Product Read List” >
 < Properties >
 < Property Name=”RootFinder” Type=”System.String” > < /Property >
 < Property Name=”LastModifiedTimeStampField” Type=”System.String” >
 ChangedDateTime
 < Property Name=”UseClientCachingForSearch”
 Type=”System.String” > < /Property >
 < /Properties >
 < /Property >
 < /Properties >
 < /MethodInstance >
 < /MethodInstances >

 When defi ning an ECT in the SharePoint Designer, you may designate a fi eld that will support
incremental crawls by checking the Timestamp Field box when defi ning the Finder method in the
wizard. Checking this box will add the LastModifiedTimeStampField property to the model and
set the property value to that of the designated fi eld.

 Along with the LastModifiedTimeStampField property, note the use of the
 UseClientCachingForSearch property in the Metadata Model. The presence of this property
indicates that the RootFinder is capable of returning all content for an entity instance within
an 8K data block. This tells the crawler that it does not need to make a subsequent call to the
 SpecificFinder method because all required data was returned from the RootFinder . Note
that the cache size is fi xed and works on a per - item basis, so only those items that cannot return
all required data will result in an additional call. If the UseClientCachingForSearch property
is not present, the LastModifiedTimeStampField property must also be included under the
 SpecificFinder method instance because it will be called for each item crawled. It is generally
a good idea to use the UseClientCachingForSearch property whenever possible, as this makes
crawling more effi cient.

 Working with Search Results

 As soon as a full crawl of the External System is complete, you may execute searches against the
ECT from an Enterprise Search Center. If you have defi ned a profi le page for the ECT, clicking a
search result will display the profi le page for that entity instance. This approach rounds out the
no - code solution by ensuring all aspects of BCS are supported through SPD. As with all BCS
solutions, however, you ’ ll be able to take more control of the search behavior later by writing
custom code.

 Creating and Using Scopes

 Search Centers typically have tabs that represent different search scopes. The out - of - the - box All
Sites scope encompasses all the BCS content sources that you have defi ned, but usually you will
want to create a separate search scope and tab for the External System. Typically end users will be

Using Basic BCS Search Support ❘ 325

www.it-ebooks.info

http://www.it-ebooks.info

326 ❘ CHAPTER 9 WORKING WITH ENTERPRISE SEARCH

interested in particular results from an External System and will not want these results mixed with
results from SharePoint sites.

 You create a search scope through the Search Service Application. Within the SSA you will fi nd a
Scopes link. Here you may defi ne a new search scope based on web address, property, or content
source. For BCS solutions you use the content source option to reference the content source related
to the ECT.

 Once you have defi ned the scope in the SSA, you can make the scope available to a site collection.
Start by going to Site Settings ➪ Site Collection Administration ➪ Search Settings and enabling
custom scopes, for which you will have to enter the URL of the associated Search Center. After that
you can go to Site Settings ➪ Site Collection Administration ➪ Search Scopes and decide whether
or not to use the new scope in the scopes drop - down list. You may then create a new tab in the
Enterprise Search Center and associate the new scope with the search tab.

 A Search Center is a publishing site that has a Pages library, a Site Pages library, and a Site Assets
library. When creating a new search tab for a scope, you will typically add pages to the site using
one of the following four-page layouts associated with the Pages library:

 Search Box: This is the page layout used for the initial search page. It contains the Search
Box Web Part.

 Search Results: This is the page layout used to show search results and initiate subsequent
searches. This page layout contains several Web Parts for displaying and manipulating
search results.

 Advanced Search: This is the page layout used to display the Advanced Search Web Part,
which enables the selection of multiple search parameters.

 People Search Results: This is the page layout used to show search results for the People
tab in the Search Center. This page layout contains several Web Parts for displaying and
manipulating search results.

 By default the Search Center has an All Sites tab and a People tab, which correspond to the
out - of - the - box search scopes. What ’ s interesting, and potentially confusing, about the Search Center
template is that it actually has two sets of tabs. One set is used to render initial tabs before a search
is executed. The other set is used to render tabs that appear in the search results. However, both
sets of tabs are given the same names in order to make it appear as though only a single set of tabs
exists. The Tabs in Search Pages list contains the fi rst set of tabs and the Tabs in Search Results list
contains the second set of tabs. This means that adding a new tab is a multistep process involving
the creating of page layouts and tabs.

 Once the scope is defi ned and available, you may go to the Search Center to defi ne search and search
results pages. The best way to add the required pages is simply to select View All Site Content from
the Site Actions menu in the Search Center. From the All Site Content page, click the Pages library
link. Within the Pages library, click the Documents tab, and fi nally the New Document button in
the ribbon, which will present the Create page.

 On the Create page you will see the four different page layouts available for the Search Center. For a
typical BCS solution you will create a Search Box page and a Search Results page. The exact names

➤

➤

➤

➤

www.it-ebooks.info

http://www.it-ebooks.info

of the pages don ’ t matter as long as you keep
track of them. Typically, however, these
pages are named Scope Search.aspx and
 Scope Results.aspx . Figure 9 - 4 shows the
Create page.

 Once the pages are created, you can create the
associated tabs. Again, the best way to do this
is through the All Site Content page. In the
Tabs in Search list, create a new tab with
the same name as the scope and associate the
search page. In the Tabs in Search Results list,
create a new tab with the same name as the
scope and associate the results page. At this
point you should be able to see the new tab
in the Search Center. Creating the tabs and
pages is not enough, however, to duplicate the
functionality of the other tabs in the Search Center. In order to fully implement the new scope you
must make changes to several Web Parts.

 First you must make a change to the Search Box Web Part on both the search and results pages. You
can do this by simply putting the appropriate page in edit mode and selecting to edit the Search Box
Web Part. Under the Miscellaneous category, locate the Target Search Results Page URL and change
it to the name of the results page created earlier. Additionally, you must make a change to the Search
Core Results Web Part on the results page. In this Web Part, under the Location Properties category,
you must enter the name of the scope in the Scope property. After these changes are complete, publish
both the search and results pages. The new scope will now be available in the Search Center and will
show results only for the specifi ed External System.

 Displaying BCS Data in Search Results

 Search results are displayed in the results page by the Core Search Results Web Part. The columns
that appear in the search results are specifi ed by the Fetched Properties property located under the
Display Properties category. This property is made up of an XML chunk. The following code shows
the default XML contained in the Fetched Properties property:

 < root xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” >
 < Columns >
 < Column Name=”WorkId”/ >
 < Column Name=”Rank”/ >
 < Column Name=”Title”/ >
 < Column Name=”Author”/ >
 < Column Name=”Size”/ >
 < Column Name=”Path”/ >
 < Column Name=”Description”/ >
 < Column Name=”Write”/ >
 < Column Name=”SiteName”/ >
 < Column Name=”CollapsingStatus”/ >
 < Column Name=”HitHighlightedSummary”/ >

 FIGURE 9 - 4

Using Basic BCS Search Support ❘ 327

www.it-ebooks.info

http://www.it-ebooks.info

328 ❘ CHAPTER 9 WORKING WITH ENTERPRISE SEARCH

 < Column Name=”HitHighlightedProperties”/ >
 < Column Name=”ContentClass”/ >
 < Column Name=”IsDocument”/ >
 < Column Name=”PictureThumbnailURL”/ >
 < Column Name=”ServerRedirectedURL”/ >
 < /Columns >
 < /root >

 While you can customize the list of columns that appear in search results, it is not necessary for
simple BCS solutions. Fields defi ned in the Metadata Model may be mapped to the Title, Author,
and Description fi elds by means of simple properties. In more complex scenarios the hyperlink in
the search results can be directed to something other than the profi le page.

 You can map the Title fi eld in the search results by using the Title property under the Entity
element in the Metadata Model. The value of the Title property refers to the name of the ECT fi eld
that should be used for the Title fi eld. The Title fi eld will then be used as the header for each entity
instance in the search results. The following code maps the ProductName fi eld of the Entity to the
Title fi eld of the search results:

 < Entity Namespace=”http://aw/bcs” Version=”1.0.0.0”
 EstimatedInstanceCount=”10000” Name=”AWProduct”
 DefaultDisplayName=”AWProduct” >
 < Properties >
 < Property Name=”Title” Type=”System.String” > ProductName < /Property >
 < /Properties >
 < /Entity >

 When creating ECTs in SPD you can set the Title property through the ribbon. You can display the
ECT in SPD and then select from the list of available fi eld names. Figure 9 - 5 shows an example.

 FIGURE 9 - 5

www.it-ebooks.info

http://www.it-ebooks.info

 The Author, Description, and Link fi elds in the search results are mapped through the
 AuthorField , DescriptionField , and DisplayUriField properties respectively. The values of
these properties map to fi elds in the ECT. The SharePoint Designer does not support the creation
of these properties through its tooling; they must be manually added to the Metadata Model, as
in the following example:

 < MethodInstances >
 < MethodInstance Name=”ReadAllItems” Type=”Finder”
 ReturnParameterName=”documentList”
 ReturnTypeDescriptorPath=”DocumentList”
 DefaultDisplayName=”Read All Items” Default=”true” >
 < Properties >
 < Property Name=”RootFinder” Type=”System.String” > < /Property >
 < Property Name=”LastModifiedTimeStampField” Type=”System.String” >
 Modified
 < /Property >
 < Property Name=”DisplayUriField” Type=”System.String” >
 Url
 < /Property >
 < Property Name=”DescriptionField” Type=”System.String” >
 Description
 < /Property >
 < Property Name=”AuthorField” Type=”System.String” >
 Author
 < /Property >
 < Property Name=”UseClientCachingForSearch”
 Type=”System.String” > < /Property > < /Properties >
 < /MethodInstance >
 < /MethodInstances >

 As in previous examples, if the UseClientCachingForSearch property is present, the AuthorField ,
 DescriptionField , and DisplayUriField properties need be defi ned only beneath the
 RootFinder . If the UseClientCachingForSearch property is not present, these properties must
also be defi ned under the SpecificFinder method instance.

 Crawling Associations

 If you have created associations between ECTs, search can crawl these associations. The crawling of
associations is supported in two different ways: for child ECTs and for attached ECTs. A child ECT
has its own separate URL displayed in the search results, whereas an attached ECT always uses the
URL of the parent ECT. This means that when a search is executed that returns an associated ECT,
the child ECT will appear as a separate result, but the attached ECT will show the parent ECT as a
result instead.

 In order for the indexing engine to crawl an associated ECT as a child, the DirectoryLink property
should be added to the Association element in the Metadata Model. In order for the indexing
engine to crawl the associated ECT as an attachment, the AttachmentAccessor property should be

Using Basic BCS Search Support ❘ 329

www.it-ebooks.info

http://www.it-ebooks.info

330 ❘ CHAPTER 9 WORKING WITH ENTERPRISE SEARCH

added to the Association element in the Metadata Model. The following code shows an example
of each approach:

 < Association Name=”GeographyAssociation”
 Type=”AssociationNavigator”
 ReturnParameterName=”GeographyAssociation”
 DefaultDisplayName=”Geography Association” >
 < Properties >
 < Property Name=”DirectoryLink” Type=”System.String” > < /Property >
 < /Properties >
 < SourceEntity Namespace=”http://aw/marketing” Name=”Geography” / >
 < DestinationEntity Namespace=”http://w/marketing” Name=”Campaign” / >
 < /Association >

 < Association Name=”GeographyAssociation”
 Type=”AssociationNavigator”
 ReturnParameterName=”GeographyAssociation”
 DefaultDisplayName=”Geography Association” >
 < Properties >
 < Property Name=”ForeignFieldMappings” Type=”System.String” > ... < /Property >
 < Property Name=”AttachmentAccesor” Type=”System.String” > < /Property >
 < /Properties >
 < SourceEntity Namespace=”http://aw/marketing” Name=”Geography” / >
 < DestinationEntity Namespace=”http://w/marketing” Name=”Campaign” / >
 < /Association >

 Ignoring Fields

 Occasionally, you will want to prevent certain fi elds defi ned in the model from being indexed. This
may be because the fi elds have no meaningful value that can be searched or because the data is just
there for validation. Fields that have no meaningful value include things like Identitifers that use
GUIDs. Fields used for validation were shown in Chapter 7, where additional fi elds containing original
values were added to the Metadata Model to support confl ict resolution. In these cases you can cause
the crawler to ignore the fi elds by using the SuppressCrawl property in the TypeDescriptor for the
 Finder and SpecificFinder methods. The following code shows an example:

 < TypeDescriptor Name=”OriginalName” TypeName=”System.String” ReadOnly=”true” >
 < Properties >
 < Property Name=”SuppressCrawl” Type=”System.Boolean” > true < /Property >
 < /Properties >
 < /TypeDescriptor >

 Customizing the Search Results Display

 Search results are returned to the Search Core Results Web Part as XML. XSLT contained
under the Display Properties of the Search Core Results Web Part transforms the returned XML
into the results displayed in the Search Center. While you have complete access to this XSLT and
can customize it signifi cantly, SharePoint provides no graphical environment for understanding how
changes to the XSLT will affect the search results display. Fortunately we can use a combination of
the SharePoint Designer and Visual Studio to create and analyze the XSLT.

www.it-ebooks.info

http://www.it-ebooks.info

 In order to begin modifying the XSLT you must fi rst get a copy of the raw XML sent to the Search
Core Results Web Part before transformation. The simplest way to do this is to replace the XSLT
with a null transformation. Doing so will cause the search results to appear as XML. The following
code shows the null - transformation XSLT to use:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0” >
 < xsl:output method=”xml” version=”1.0” encoding=”utf-8” indent=”yes”/ >
 < xsl:template match=”/” >
 < xmp >
 < xsl:copy-of select=”*”/ >
 < /xmp >
 < /xsl:template >
 < /xsl:stylesheet >

 After you have a copy of the raw XML generated by the search, you can use this as a basis for
creating the desired XSLT. The simplest way to create XSLT is to use the SharePoint Designer. This
is because the Data View Web Part accepts an XML fi le as a data source and will generate XSLT as
you use the SharePoint Designer to customize the display.

 Start by opening the SharePoint Designer to any site. You will not be keeping any of the pages you
create, so the exact location of the pages is irrelevant. Once inside SPD, click the Data Sources
object and then select to add a new XML fi le connection from the New group in the ribbon. Add
the raw XML fi le that you generated from the search results.

 Next, add a Web Part page to the site and place it in edit mode. From the Edit menu, insert a Data
View Web Part based on the raw XML fi le. Once the Data View Web Part is on the page, you can use
the Add/Remove columns dialog to decide what columns to display. Additionally, you can go directly
to the source view to make edits to the generated XSLT, which is contained between XSL tags in the
document. Once you have the search results appearing as you want them, simply copy the XSLT out
of SPD and into the Search Core Results Web Part. You can use this same approach to customize the
XSLT associated with list forms and the External Data Web Parts.

 Creating Ranking Models

 When a user executes a query, he or she expects to have the most relevant items appear near the
top when the results are displayed. The ranking engine is responsible for assigning a ranking score
to each returned item based on a number of factors defi ned in a ranking model. The ranking model
contains the rules that will be applied to the search results and determine ranking. SharePoint Server
2010 ships with several ranking models that are applied when you search different contexts such as
documents or people. You can list all the ranking models with the following PowerShell command:

Get-SPEnterpriseSearchServiceApplication |
 Get-SPEnterpriseSearchRankingModel |Format-List

 When you list the ranking models you will notice that one of them is designated as the default
model. This is the model that is used in SharePoint searches out of the box. You ’ ll also notice that
there are several models to support people search and social networking. BCS solutions use the
default ranking model unless you specify otherwise. For most solutions the default ranking model

Using Basic BCS Search Support ❘ 331

www.it-ebooks.info

http://www.it-ebooks.info

332 ❘ CHAPTER 9 WORKING WITH ENTERPRISE SEARCH

will be appropriate. However, there may be times when you need to create a custom ranking
model for use with your solution. This section outlines the steps necessary to create a custom
ranking model.

 Understanding Ranking Models

 The parameters used by a ranking model can be either query - independent or query - dependent .
Query - independent parameters are computed at crawl time because they are static and will not
change regardless of the query that is run. The creation date of a document is a good example
of a query - independent parameter. Query - dependent parameters are computed when the search
is executed because they are affected by the search that the user runs. A keyword search of a
document body is a good example of a query - dependent parameter. This distinction is important
because a ranking model will not be able to gain access to query - independent information if the
query is formed in such a way so as not to access the static information. This can happen when an
end user forms a query strictly against a Managed Property. In this case the Managed Property
database is accessed and there is no need for a full search of the index. So, for effi ciency, the
static data is skipped. However, this can give strange results if the ranking model is highly
dependent on query - independent factors.

 One of the main query - independent parameters that you can affect is the proximity of an item to
an authoritative page. An authoritative page is a means of specifying which pages in SharePoint are
the most important. Authoritative pages are designated through the search administration interface
in Central Administration. When designating authoritative pages you may specify a page as either
 most authoritative , second - level authoritative , third - level authoritative , or non - authoritative . The
ranking of an item within search results will be based on its click distance from an authoritative
page, with different multipliers being used for the various levels. Non - authoritative pages will be
pushed to the bottom of the search results.

 In previous versions of SharePoint, authoritative pages were the primary means of infl uencing
the relevancy of items in search. A custom ranking model, however, enables you to specify query -
 independent and query - dependent factors to be used in the ranking of search results. This gives
you a powerful way to infl uence the display of results within your BCS solutions.

 Before we move on to the creation of custom ranking models, it is important that you consider
the difference between ranking results and sorting results. As discussed previously, ranking
results should involve both query - independent and query - dependent factors that infl uence the
order in which results are displayed. Sorting, on the other hand, is always completely static. For
example, the ranking of documents by searching the body for keywords is dynamic and depends
on the keyword. The sorting of the same documents by creation date will not change no matter
what keywords are used in the search. The point is that you should never use a custom ranking
model when what you want is a fi xed sort.

 A custom ranking model is best used in situations in which the default ranking model is not
returning results of interest close enough to the top and the introduction of an authoritative page
does not solve the problem. This means that you will likely create few custom ranking models,
but they can be very useful. You can accomplish fi xed sorts, on the other hand, by using the query
object model to perform a search.

www.it-ebooks.info

http://www.it-ebooks.info

 Creating a Custom Ranking Model

 In SharePoint 2010 not all of the internal ranking model capabilities are available to your custom
ranking models, but there is enough power to have a signifi cant impact on the search results.
Custom ranking models are created as XML fi les that specify the query - independent and query -
 dependent factors to use in the ranking of search results. The following code shows a sample custom
ranking model that gives extra weight to the title of an item and to Word documents. Such a model
might be used if an organization ’ s most important documents are typically in Word format and if
document titles contain key information.

 < ?xml version=’1.0’? >
 < rankingModel
 name=’NewRankingModel’
 id=’11111111-65CD-4a1b-9A63-F7ECB4B6BB5E’
 description = ‘Sample ranking model’
 xmlns=’http://schemas.microsoft.com/office/2009/rankingModel’ >
 < queryDependentFeatures >
 < queryDependentFeature
 name=’Body’ pid=’1’ weight=’10.0000000000’
 lengthNormalization=’2.8898552470’/ >
 < queryDependentFeature
 name=’Title’ pid=’2’ weight=’100.0000000000’
 lengthNormalization=’0.9574077587’/ >
 < queryDependentFeature
 name=’Author’ pid=’3’ weight=’0.1000000000’
 lengthNormalization=’1.0131509886’/ >
 < queryDependentFeature
 name=’AnchorText’ pid=’10’ weight=’0.1000000000’
 lengthNormalization=’2.6713762088’ / >
 < queryDependentFeature
 name=’DisplayName’ pid=’56’ weight=’0.1000000000’
 lengthNormalization=’0.9713508040’/ >
 < queryDependentFeature
 name=’ExtractedTitle’ pid=’302’ weight=’0.1000000000’
 lengthNormalization=’1.0095022768’/ >
 < queryDependentFeature
 name=’QueryLogClickedText’ pid=’100’ weight=’0.1000000000’
 lengthNormalization=’1.6000001537’/ >
 < /queryDependentFeatures >
 < queryIndependentFeatures >
 < queryIndependentFeature
 name=’DistanceFromAuthority’ pid=’96’ default=’5’
 weight=’0.1000000000’ >
 < transformInvRational k=’0.1359244473’/ >
 < /queryIndependentFeature >
 < queryIndependentFeature
 name=’URLdepth’ pid=’303’ default=’3’ weight=’0.1000000000’ >
 < transformLinear max=’1000’/ >
 < /queryIndependentFeature >
 < queryIndependentFeature
 name=’DocumentPopularity’ pid=’306’ default=’0’
 weight=’0.1000000000’ >
 < transformRational k=’1.2170868558’/ >

Using Basic BCS Search Support ❘ 333

www.it-ebooks.info

http://www.it-ebooks.info

334 ❘ CHAPTER 9 WORKING WITH ENTERPRISE SEARCH

 < /queryIndependentFeature >
 < queryIndependentFeature
 name=’DocumentUnpopularity’ pid=’307’ default=’0’
 weight=’0.1000000000’ >
 < transformRational k=’0.7333557072’/ >
 < /queryIndependentFeature >
 < categoryFeature name=’FileType’ pid=’98’ default=’0’ >
 < category name=’Html’ value=’0’ weight=’0.1000000000’/ >
 < category name=’Doc’ value=’1’ weight=’100.0000000000’/ >
 < category name=’Ppt’ value=’2’ weight=’0.1000000000’/ >
 < category name=’Xls’ value=’3’ weight=’0.1000000000’/ >
 < category name=’Xml’ value=’4’ weight=’0.1000000000’/ >
 < category name=’Txt’ value=’5’ weight=’0.0000000000’/ >
 < category name=’ListItems’ value=’6’ weight=’0.1000000000’/ >
 < category name=’Message’ value=’7’ weight=’0.1000000000’/ >
 < /categoryFeature >
 < languageFeature name=’Language’ pid=’5’ default=’1’
 weight=’10.0000000000’/ >
 < /queryIndependentFeatures >
 < /rankingModel >

 Custom ranking models begin with the rankingModel element. The only required attribute for
this element is the id attribute, which is a GUID that identifi es the model. The other attributes are
optional and used largely for readability. Additionally, the namespace must be http://schemas
.microsoft.com/offi ce/2009/rankingModel . The child elements of the rankingModel are a set of
 queryDependentFeatures and queryIndependentFeatures , which specify the factors that will be
used for dynamic and static ranking respectively.

 The queryDependentFeature element has name , pid , weight , and lengthNormalization
attributes. The queryIndependentFeature element has name , pid , default , and
 weight attributes. The name attribute is optional, not used, and primarily there for readability.
The pid attribute is the property identifi er for the Managed Property being referenced. The
 weight attribute is a relative attribute that determines the effect the factor will have on the ranking.
The lengthNormalization attribute is a number used to account for differences in the lengths of
various properties. The default attribute is the value to be used when an actual value cannot be
determined.

 The categoryFeature and languageFeature elements are children of
 queryIndependentFeature . The categoryFeature element enables you to specify a set
of possible values for a Managed Property and give different weights to each one. The
 languageFeature element gives extra weight to an item if it is in the default language. Finally,
the transformRational , transformInvRational , and transformLinear elements associate
additional functions with the model that transform the weighting values.

 Managed Property identifi ers are critical to the creation of custom ranking models because both
the queryDependentFeatures and the queryIndependentFeatures can use Managed Properties.
When creating custom ranking models you can choose which Managed Properties you want to
include in the model, whether their effect will be static or dynamic, and the weight of their impact.
In order to do this, however, you must know the identifi er for the Managed Property. You can use
the following PowerShell script to list all the Managed Properties and their identifi ers:

www.it-ebooks.info

http://www.it-ebooks.info

Get-SPEnterpriseSearchServiceApplication |
 Get-SPEnterpriseSearchMetadataManagedProperty

 SharePoint Server comes with many Managed Properties already defi ned, but when you are creating
search - based applications you will quite often need to create your own Managed Properties. Managed
Properties are created through the search administration interface in the Central Administration site.
Essentially, Managed Properties are properties that refer to one or more crawled properties. Managed
Properties enable you to group together several different crawled properties that might refer to the
same thing and to represent them as a single Managed Property. For example, the Managed Property
 Title refers to the crawled properties Mail:5 , People:PreferredName , Basic:displaytitle , and
 ows_Title . This grouping not only simplifi es working with several crawled properties at once, it also
provides a more readable name.

 When creating a custom ranking model you must set the weights that will be used for each of the
Managed Properties. The weights you apply can have any value and they are relative to all the other
weights. You can also set default values for queryIndependentFeatures should an item not have
the specifi ed Managed Property.

 All this means that you can disregard certain properties by setting them to 0 or greatly enhance
them with a large number. It is important to remember, however, that using very large or very small
numbers can overwhelm your model and essentially turn it into a sorting algorithm instead of a
ranking model.

 Of all the pieces in the custom ranking model, perhaps none is as mysterious as the
 lengthNormalization attribute. Length Normalization is the process of accounting for the length
of a string when keywords are found in it. This is necessary because longer strings have a better
chance of containing a keyword, but that does not necessarily mean they are more relevant. While
the lengthNormalization attribute is required, it can be diffi cult to know what value to use. As
a general guide, long strings like Body have a number greater than 1 and shorter strings like Title
have a value of less than 1 .

 Transforms apply functions to queryIndependentFeatures . These functions use an additional
factor as an input to the transformation function. A complete description of the effects of each
transformation is beyond the scope of this chapter. Generally these transforms will not be necessary
for simple ranking models.

 Using a Custom Ranking Model

 Once you have created a custom ranking model you can use it with SharePoint Server. The process
of using the custom ranking model involves several steps. First, you must enable any associated
Managed Properties for use with the model. Second, you must install the ranking model. Third, you
must reference the new model in the Core Search Results Web Part.

 When you create a custom ranking model you will quite often be creating new Managed Properties
for use in the weighting strategy. Previously you saw how to get the identifi er for a Managed
Property so that it could be referenced in the ranking model. However, Managed Properties are
not by default enabled for use as query - independent parameters. You must explicitly allow this.
So if your model uses a Managed Property as a query - independent feature, you must set the

Using Basic BCS Search Support ❘ 335

www.it-ebooks.info

http://www.it-ebooks.info

336 ❘ CHAPTER 9 WORKING WITH ENTERPRISE SEARCH

 EnabledForQueryIndependentRank property to True . You can set the property using the following
PowerShell, substituting the name of the Managed Property in question:

$p = Get-SPEnterpriseSearchServiceApplication |
 Get-SPEnterpriseSearchMetadataManagedProperty -Identity {PropertyName}
$p.EnabledForQueryIndependentRank = $true
$p.Update()

 The next step is to install the custom ranking model. You do this using the PowerShell cmdlet
 New - SPEnterpriseSearchRankingModel . This cmdlet takes as a parameter the complete ranking
model as a string. Therefore you have to “ crunch ” your ranking model into a single piece of text by
removing all the line breaks and white space so it can be passed as a parameter. Once this is done,
the following PowerShell script will install the new ranking model:

Get-SPEnterpriseSearchServiceApplication |
 New-SPEnterpriseSearchRankingModel
 -RankingModelXML {Crunched Ranking Model}

 The fi nal step in the process is to reference the custom ranking model in the Search Core Results
Web Part. The Search Core Results Web Part displays the primary result set from a search and uses
the default ranking model out of the box. However, it has a DefaultRankingModelID property that
may be changed to reference the ID of any custom ranking model.

 In order to change the DefaultRankingModelID property you must navigate to a search results
page and place that page in edit mode. Now the Search Core Results Web Part may be exported
as an XML fi le. After exporting the Web Part you can open it in an editor and search for the
 DefaultRankingModelID property, which will be empty. When the property is empty, the default
ranking model is used. Simply change this value by hand and save it. You may then return to the
search page and import the new fi le as an instance of the Search Core Results Web Part. Deleting
the original Web Part from the page completes the process. Now when you search, the new ranking
model will be used.

 SEARCHING WITH .NET ASSEMBLY CONNECTORS

 As mentioned earlier in the chapter, .NET Assembly Connectors have replaced Protocol Handlers
as the primary means for the crawl engine to access systems. Chapter 7 covered these connectors
in detail, with the exception of search support. In this section you ’ ll learn how to search - enable a
.NET Assembly Connector and add security trimming to search results.

 Enabling Search Basics

 In the same way that no - code solutions support search through properties in the Metadata Model,
.NET Assembly Connectors also support search. Not surprisingly, the primary difference between
search - enabling an ECT in SharePoint Designer and doing the same thing in Visual Studio 2010 lies
in the tooling. While SPD provides a wizard interface to do most of the work, Visual Studio requires
the use of the Entity Design Surface, BDC Explorer, and Method Details pane.

www.it-ebooks.info

http://www.it-ebooks.info

 The .NET Assembly Connector supports all the same properties discussed earlier in the chapter,
and they must be set on the same elements. In Visual Studio 2010 you can set properties on an
element by using the Custom Properties associated with the element. As an example, consider
the RootFinder , LastModifiedTimeStampField , DisplayUriField , DescriptionField ,
 AuthorField , and UseClientCachingForSearch properties. All these properties must be set on a
method instance for a Finder method.

 In Visual Studio 2010 you can display method instances in the Method Details pane by selecting a
method on the Entity Design Surface. When you select a method instance, the properties for that
instance will appear in the Properties pane. Within the Properties pane you can click the Custom
Properties to open the Property Editor dialog. In this dialog you can add custom properties to the
current method instance. Figure 9 - 6 shows how this is done in Visual Studio 2010.

 FIGURE 9 - 6

 When you fi rst begin working with .NET Assembly Connector properties it is easy to become
confused about exactly which node you are working with. Remember that the Entity Design
Surface and the BDC Model Explorer are both showing methods, not method instances. The
search properties must be attached to the method instance for it to work properly. Also remember
that if the UseClientCachingForSearch property is not included, the properties must also be
defi ned under the SpecificFinder method instance. The process for defi ning the properties under
 SpecificFinder is identical. Finally, note that the RootFinder and UseClientCachingForSearch
properties have values of x . As noted previously, the value for these properties is ignored, but using a
value of x gives you something to enter in the dialog.

Searching with .NET Assembly Connectors ❘ 337

www.it-ebooks.info

http://www.it-ebooks.info

338 ❘ CHAPTER 9 WORKING WITH ENTERPRISE SEARCH

 If you fi nd the Visual Studio tooling confusing, remember that you can always open the model directly
as text. Simply right - click the BDCM fi le in the Solution Explorer and select Open With from the
context menu. Then select to open the model with the text editor. You may now make direct edits to
the model. Figure 9 - 7 shows the model text generated from the dialog entries in Figure 9 - 6.

 FIGURE 9 - 7

 When you are mapping fi elds for properties, such as the author, title, description, and hyperlink,
the values for these fi elds are always the name of one of the fi elds defi ned in the entity class for the
ECT. Simply use the exact name of the fi eld, which should also be the name of the TypeDescriptor
used in the method. As always, strong understanding of the Metadata Model schema is critical for
success, and you should always check your work by examining the Metadata Model XML directly.

 Using Custom Hyperlinks in Search Results

 While mapping a fi eld to the hyperlink associated with a search result is a simple matter of including
the DisplayUriField property in the Metadata Model, the impact of this property is worth a closer
look. As noted earlier, the default behavior for search results links is to lead to the profi le page for
the BCS solution. While this works fi ne for simple solutions, more sophisticated ones will want to
open a fi le or record in an External System for viewing. This means that you must construct a URL
that performs the desired action.

 If your search results contain documents, you will want to construct a hyperlink that opens
the document in the appropriate application. The basic strategy is to create a hyperlink that
navigates to a download page. The download page can then use the BDC Server Runtime to call

www.it-ebooks.info

http://www.it-ebooks.info

a StreamAccessor method that can be used to access the document contents. The following code
shows how to create the download page:

//Connect to BCS
BdcServiceApplicationProxy proxy =
 (BdcServiceApplicationProxy)SPServiceContext.Current.GetDefaultProxy(
 typeof(BdcServiceApplicationProxy));

DatabaseBackedMetadataCatalog catalog =
 proxy.GetDatabaseBackedMetadataCatalog();

IEntity ect = catalog.GetEntity(“MyExternalSystem”, “DocumentEntity”);
ILobSystem lob = ect.GetLobSystem();
ILobSystemInstance lobi = lob.GetLobSystemInstances()[“MyExternalSystem”];
IMethodInstance mi = ect.GetMethodInstance(
 “ReadDocumentStream”,
 MethodInstanceType.StreamAccessor);

//Call BCS to get stream
object[] args = { int.Parse(Request.QueryString[“DocumentId”]), null };
ect.Execute(mi, lobi, ref args);
byte[] buffer = ((MemoryStream)args[1]).ToArray();

//Download
this.Page.Response.Clear();
this.Page.Response.ClearHeaders();
this.Page.Response.AddHeader(“Content-Disposition”,
 “attachment; filename=\”” + Request.QueryString[“fileName”] + “\””);
this.Page.Response.AddHeader(“Content-Length”, buffer.Length.ToString());
this.Page.Response.BinaryWrite(buffer);
this.Page.Response.Flush();
this.Page.Response.End();

 In the code, the Identifier for the document is passed as a QueryString parameter to the
download page. The download page connects to the External System through the BDC Server
Runtime and calls the StreamAccessor method. The method parameters are placed into an
 object array and passed to the Execute method. Notice that the fi rst parameter is the document
 Identifier and the second parameter is the return stream. The return stream is then downloaded
using the page response stream.

 While downloading is a common scenario, the hyperlink you create is not limited to document
streams. You may, for example, have the hyperlink open a record in an External System. Many
External Systems, such as Microsoft Customer Relationship Management System (MSCRM) and
Lotus Notes databases, support hyperlink access. You should also note that any hyperlink you
create is subject to the crawl rules defi ned within the Search Service Application, which can affect
your ability to include items in the index.

 Using a Changelog for Incremental Crawls

 Previous examples showed that you can easily enable incremental crawls for External Systems by
using the LastModifiedTimeStampField property to map a fi eld that contains a timestamp. This

Searching with .NET Assembly Connectors ❘ 339

www.it-ebooks.info

http://www.it-ebooks.info

340 ❘ CHAPTER 9 WORKING WITH ENTERPRISE SEARCH

is by far the simplest approach for implementing incremental crawls, but it is not the most effi cient,
because timestamps must be stored for every item.

 The changelog approach is an alternative way to implement incremental crawling, in which the SSA
maintains a single timestamp marking the last time a crawl was performed. This timestamp is then
used as a parameter, which is passed to the .NET Assembly Connector during an incremental crawl.
The .NET Assembly Connector uses the timestamp to identify entity instances that have changed or
have been deleted. It then returns that information to the SSA.

 The changelog approach depends on the defi nition of two new method stereotypes:
 ChangedIdEnumerator and DeletedIdEnumerator . These methods take a timestamp as an input
and return a collection of Identifiers . The timestamp is provided by the crawl engine through a
fi lter marked with the SynchronizationCookie property. This fi lter is then associated with an In
parameter so it can be passed to the method implementation. The following code shows a typical
defi nition of these methods in a Metadata Model:

 < !-- The prototype for the ChangedIdEnumerator method -- >
 < Method Name=”ReadChangedIds” >
 < FilterDescriptors >
 < FilterDescriptor Name=”LastCrawl” Type=”InputOutput” >
 < Properties >
 < !-- Marks this filter as the cookie -- >
 < Property Name=”SynchronizationCookie” Type=”System.String” >
 x
 < /Property >
 < /Properties >
 < /FilterDescriptor >
 < FilterDescriptor Name=”timestamp” Type=”Timestamp” / >
 < /FilterDescriptors >
 < Parameters >
 < Parameter Name=”lastCrawlDate” Direction=”InOut” >
 < TypeDescriptor Name=”LastCrawlDate” TypeName=”System.DateTime”
 IsCollection=”false” AssociatedFilter=”LastCrawl” >
 < Interpretation >
 < NormalizeDateTime LobDateTimeMode=”Local” / >
 < /Interpretation >
 < /TypeDescriptor >
 < /Parameter >
 < Parameter Name=”returnIds” Direction=”Return” >
 < TypeDescriptor Name=”DeletedIds”
 TypeName=”System.Collections.Generic.IEnumerable`1[System.String]”
 IsCollection=”true” >
 < TypeDescriptors >
 < TypeDescriptor Name=”ID” TypeName=”System.String”
 IdentifierName=”ID” / >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Name=”ReadChangedIdsInstance” Type=”ChangedIdEnumerator”
 ReturnParameterName=”returnIds” / >
 < /MethodInstances >

www.it-ebooks.info

http://www.it-ebooks.info

 < /Method >
 < !-- The prototype for the DeletedIdEnumerator method -- >
 < Method Name=”ReadDeletedIds” >
 < FilterDescriptors >
 < FilterDescriptor Name=”LastCrawl” Type=”InputOutput” >
 < Properties >
 < !-- Marks this filter as the cookie -- >
 < Property Name=”SynchronizationCookie” Type=”System.String” >
 X
 < /Property >
 < /Properties >
 < /FilterDescriptor >
 < FilterDescriptor Name=”timestamp” Type=”Timestamp” / >
 < /FilterDescriptors >
 < Parameters >
 < Parameter Name=”lastCrawlDate” Direction=”InOut” >
 < TypeDescriptor Name=”LastCrawlDate” TypeName=”System.DateTime”
 IsCollection=”false” AssociatedFilter=”LastCrawl” >
 < Interpretation >
 < NormalizeDateTime LobDateTimeMode=”Local” / >
 < /Interpretation >
 < /TypeDescriptor >
 < /Parameter >
 < Parameter Name=”returnIds” Direction=”Return” >
 < TypeDescriptor Name=”DeletedIds”
 TypeName=”System.Collections.Generic.IEnumerable`1[System.String]”
 IsCollection=”true” >
 < TypeDescriptors >
 < TypeDescriptor Name=”ID” TypeName=”System.String”
 IdentifierName=”ID” / >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Name=”ReadDeletedIdsInstance” Type=”DeletedIdEnumerator”
 ReturnParameterName=”returnIds” / >
 < /MethodInstances >
 < /Method >

 As with all methods defi ned by means of Visual Studio tooling, a stub is created automatically
for implementing the method. Within the service class two new function signatures are created
that have a DateTime input and a collection return value. The following code shows the function
signatures associated with the Metadata Model. All that is required is the implementation code to
return the Identifiers based on the timestamp.

public static IEnumerable < string > ReadChangedIds(ref DateTime lastCrawlDate)
{
}

public static IEnumerable < string > ReadDeletedIds(ref DateTime lastCrawlDate)
{
}

Searching with .NET Assembly Connectors ❘ 341

www.it-ebooks.info

http://www.it-ebooks.info

342 ❘ CHAPTER 9 WORKING WITH ENTERPRISE SEARCH

 Debugging Search Connectors

 When working with .NET Assembly Connectors to enable search and crawling capabilities, you
will undoubtedly need to debug your code. You can easily debug in Visual Studio 2010 by attaching
to either the w3wp.exe process or the mssdmn.exe process. You will want to attach to the w3wp.exe
process for debugging scenarios in which the search results are displayed and the user clicks a particular
item. You will want to attach to the mssdmn.exe process to debug crawling operations.

 When debugging, you may experience situations in which the latest version of your .NET Assembly
Connector is not loaded into memory. This may happen if you deployed from Visual Studio, but
your changes were not properly merged with the existing Metadata Model. In these situations you
should delete the BDC model from the BDC service application and redeploy your project. You may
also experience this problem if the crawler still has an old version of your assembly in memory. In
these cases you can simply restart the SharePoint Server Search service.

 Trimming Search Results

 As you saw previously, .NET Assembly Connectors give you signifi cant control over how BCS
interacts with External Systems. In the case of Enterprise Search, the .NET Assembly Connector
also provides signifi cant control over how search results are trimmed so that you can guarantee end
users will see only those search results that map to items for which they have permissions.

 When it comes to trimming search results there are two approaches: you can trim during crawl time
or during query time. Trimming search results during crawl time is the preferred approach because
you can build up an access control list (ACL) during the crawl that becomes part of the search
index. During query time, the ACL in the index is used to exclude items that the current user is not
allowed to view. Trimming search results at query time requires that the permissions for the current
user be checked against every item returned from the search query after the query is complete. This
is potentially a very expensive process, but, it may be required because of the design of the External
System or because SharePoint is using something other than Active Directory for security.

 Implementing Crawl - Time Security

 Implementing crawl - time security in your .NET Assembly Connector requires the defi nition of a
 BinarySecurityDescriptorAccessor method. A BinarySecurityDescriptorAccessor method
accepts at least an Identifier and returns a byte array. The Identifier identifi es a particular
entity instance and the byte array represents a set of security principals and their associated
permissions for the entity instance. The security descriptor returned from the method becomes part
of the search index and can be used to trim search results. As an example, consider the following
XML fi le, which defi nes a security policy associated with some External System:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < Policy >
 < Grant >
 < Account Name=”AW\Scoth”/ >
 < /Grant >
 < Deny >
 < Account Name=”AW\Brianc”/ >
 < /Deny >
 < /Policy >

www.it-ebooks.info

http://www.it-ebooks.info

 If you want to use the policy fi le as a source for trimming search results, you fi rst defi ne a new
 BinarySecurityDescriptorAccessor method in the .NET Assembly Connector. At a minimum an
 In parameter must be defi ned as the Identifier and a Return parameter as the byte array. In the
preceding example a fi lter was also defi ned to pass in the user name of the current user. Figure 9 - 8
shows the Method Details pane with the new method instance defi ned.

 FIGURE 9 - 8

 In addition to defi ning the new method, you can also map the security descriptor to a fi eld of
the entity. You map the fi eld using the WindowsSecurityDescriptorField property. If the
 WindowsSecurityDescriptorField property is not present, the BinarySecurityDescriptorAccessor
method will be called whenever the security descriptor for the entity instance is needed. The
following code shows a complete defi nition for a BinarySecurityDescriptorAccessor method
and WindowsSecurityDescriptorField property in the Metadata Model:

 < Method Name=”ReadSecurityDescriptor” >
 < FilterDescriptors >
 < FilterDescriptor Name=”UserFilter” Type=”UserContext” / >
 < /FilterDescriptors >
 < Parameters >
 < Parameter Name=”id” Direction=”In” >
 < TypeDescriptor Name=”Path” TypeName=”System.String”
 IdentifierName=”Path” IsCollection=”false” / >
 < /Parameter >
 < Parameter Name=”user” Direction=”In” >
 < TypeDescriptor Name=”CurrentUser” TypeName=”System.String”

Searching with .NET Assembly Connectors ❘ 343

www.it-ebooks.info

http://www.it-ebooks.info

344 ❘ CHAPTER 9 WORKING WITH ENTERPRISE SEARCH

 AssociatedFilter=”UserFilter” / >
 < /Parameter >
 < Parameter Name=”acl” Direction=”Return” >
 < TypeDescriptor Name=”SecurityDescriptor” TypeName=”System.Byte[]”
 IsCollection=”true” >
 < TypeDescriptors >
 < TypeDescriptor Name=”SecurityDescriptorByte” TypeName=”System.Byte” / >
 < /TypeDescriptors >
 < /TypeDescriptor >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Name=”ReadSecurityDescriptorInstance”
 Type=”BinarySecurityDescriptorAccessor” ReturnParameterName=”acl” >
 < Properties >
 < Property Name=”WindowsSecurityDescriptorField” Type=”System.String” >
 SecurityDescriptor
 < /Property >
 < /Properties >
 < /MethodInstance >
 < /MethodInstances >
 < /Method >

 After the method is defi ned, Visual Studio will automatically stub out the implementation.
As always, your job is to code the implementation. In this case you must create an ACL based
on the information contained in the XML policy fi le. The following code shows the complete
implementation for the method:

public static byte[] ReadSecurityDescriptor(string id, string user)
{

 XDocument policyFile = XDocument.Load(
 GetImagesDirectory() + “\\ImagesProvider\\Policy.xml”);

 NTAccount workerAcc = new NTAccount(
 user.Split(‘\\’)[0],
 user.Split(‘\\’)[1]);

 SecurityIdentifier workerSid =
 (SecurityIdentifier)workerAcc.Translate(typeof(SecurityIdentifier));

 CommonSecurityDescriptor csd =
 new CommonSecurityDescriptor(
 false,
 false,
 ControlFlags.None,
 workerSid,
 null,
 null,
 null);

 //Grant
 var grant = from account in

www.it-ebooks.info

http://www.it-ebooks.info

 policyFile.Descendants(“Grant”).First().Descendants(“Account”)
 select account;

 foreach (var acc in grant)
 {
 NTAccount ntacc = new NTAccount(
 acc.Attribute(“Name”).Value.Split(‘\\’)[0],
 acc.Attribute(“Name”).Value.Split(‘\\’)[1]);

 SecurityIdentifier sid =
 (SecurityIdentifier)ntacc.Translate(typeof(SecurityIdentifier));

 csd.DiscretionaryAcl.AddAccess(
 AccessControlType.Allow,
 sid,
 unchecked((int)0xffffffffL),
 InheritanceFlags.None,
 PropagationFlags.None);
 }

 //Deny
 var deny = from account in
 policyFile.Descendants(“Deny”).First().Descendants(“Account”)
 select account;

 foreach (var acc in deny)
 {
 NTAccount ntacc = new NTAccount(
 acc.Attribute(“Name”).Value.Split(‘\\’)[0],
 acc.Attribute(“Name”).Value.Split(‘\\’)[1]);

 SecurityIdentifier sid =
 (SecurityIdentifier)ntacc.Translate(typeof(SecurityIdentifier));

 csd.DiscretionaryAcl.AddAccess(
 AccessControlType.Deny,
 sid, unchecked((int)0xffffffffL),
 InheritanceFlags.None,
 PropagationFlags.None);
 }

 byte[] secDes = new byte[csd.BinaryLength];
 csd.GetBinaryForm(secDes, 0);
 return secDes;

}

 The fi rst thing that happens in the BinarySecurityDescriptorAccessor method implementation
is that the XML policy fi le is loaded and a new NTAccount object is created based on the identity
of the current user. During crawl time, the identity of the user will be the account used to crawl
the External System. The implementation code will make this account the owner of the security
descriptor for the entity instance. It will do this by creating a SecurityIdentifier and setting that
as the owner for the CommonSecurityDescriptor . The CommonSecurityDescriptor is the object
that will hold the access control list.

Searching with .NET Assembly Connectors ❘ 345

www.it-ebooks.info

http://www.it-ebooks.info

346 ❘ CHAPTER 9 WORKING WITH ENTERPRISE SEARCH

 The next step is to run a LINQ query on the policy fi le and return all the accounts that will be
granted access. For each of these accounts an entry is made in the access control list to grant access.
Similarly, entries are made in the access control list to deny access for designated accounts in the
policy fi le. Finally, the CommonSecurityDescriptor is transformed into a byte array and returned
from the method.

 Once the method implementation is complete, the .NET Assembly Connector may be deployed
to SharePoint. From here it can be used as a content source in search, and a full crawl can be
performed. The ACL will be built during the crawl and used to exclude results from the search.

 Implementing Query - Time Security

 While trimming search results during crawl is the best practice, there are times when it is simply
not possible to create an access control list at this time. This is most often because of SharePoint ’ s
implementing a security model based on something other than Windows authentication. In these
cases you will have to trim the search results at query time.

 Implementing query - time trimming requires the defi nition of an AccessChecker method in the
Metadata Model. This method typically has parameters that pass in the Identifier of the entity
instance requested, along with the identity of the current user. The Return parameter is then either
a 0 or 1 , where 0 is unauthorized and 1 is authorized. The following code shows a typical defi nition
in the Metadata Model:

 < Method Name=”CheckItemAccess” DefaultDisplayName=”Check Item Access” >
 < FilterDescriptors >
 < FilterDescriptor Name=”CurrentUser” Type=”UserContext”
 DefaultDisplayName=”CurrentUser” / >
 < /FilterDescriptors >
 < Parameters >
 < Parameter Name=”id” Direction=”In” >
 < TypeDescriptor Name=”ID” TypeName=”System.Int32”
 IdentifierName=”ID” IsCollection=”false” / >
 < /Parameter >
 < Parameter Name=”result” Direction=”Return” >
 < TypeDescriptor Name=”Access” TypeName=”System.Int64”
 IsCollection=”false” / >
 < /Parameter >
 < Parameter Name=”user” Direction=”In” >
 < TypeDescriptor Name=”User” TypeName=”System.String”
 AssociatedFilter=”CurrentUser” / >
 < /Parameter >
 < /Parameters >
 < MethodInstances >
 < MethodInstance Name=”CheckItemAccess” Type=”AccessChecker”
 ReturnParameterName=”result” / >
 < /MethodInstances >
 < /Method >

 Once the method is defi ned, you have complete freedom to implement it as necessary to support
the External System. This will enable you to take into account any peculiarities associated with the
system, as long as your implementation returns the required 0 or 1 . The following code shows a

www.it-ebooks.info

http://www.it-ebooks.info

simple implementation of the AccessChecker method in which permissions are stored in a database
table accessed through LINQ:

public long CheckItemAccess(int id, string user)
{
 long rVal = 0;

 DMSEntities ctx = new DMSEntities();

 var q = from perms in ctx.Permissions
 where (perms.Document.Id == id) & &
 (perms.User.Username.Equals(user))
 select perms;
 if (q.Count() > 0)
 rVal = 1;

 return rVal;
}

 Implementing the AccessChecker method is not enough to actually make query - time trimming
operational. In addition to the method, you must also create a crawl rule and associate a security
trimmer with it. The security trimmer is an assembly that looks at all items defi ned in a crawl rule
and applies the actual trimming logic.

 You defi ne a crawl rule for the .NET
Assembly Connector within the SSA. From
the Enterprise Search administration home
page click Crawl Rules. On the Manage
Crawl Rules page click New Crawl Rule.
On the Add Crawl Rule page you must
specify the path to the External System and
select to include all items in the path. The
path defi nition takes the form bdc3://
 LobSystemName_LobSystemInstanceName /* .
Figure 9 - 9 shows a new crawl rule defi nition
in Central Administration.

 You associate the security trimmer with the crawl rule using a PowerShell script. While it is possible
to create your own custom security trimmer (covered later), you can also use the default BDC
security trimmer, which works well for most applications. The following code shows how to register
the default BDC security trimmer against a crawl rule:

$ssa = Get-SPEnterpriseSearchServiceApplication
 -Identity “Search Service Application”

New-SPEnterpriseSearchSecurityTrimmer
 -Id 1
 -SearchApplication $ssa
 -TypeName
 “Microsoft.Office.Server.Search.Connector.BDC.SPBDC.SPBdcSecurityTrimmer,

 FIGURE 9 - 9

Searching with .NET Assembly Connectors ❘ 347

www.it-ebooks.info

http://www.it-ebooks.info

348 ❘ CHAPTER 9 WORKING WITH ENTERPRISE SEARCH

 Microsoft.Office.Server.Search.Connector, Version=14.0.0.0,
 Culture=neutral, PublicKeyToken=71e9bce111e9429c”
 -RulePath bdc3://mylobsystem_mylobsysteminstance/*

 The New - SPEnterpriseSearchSecurityTrimmer cmdlet takes several parameters. The Id
parameter is the unique ID for the security trimmer. If the Id used in the PowerShell script already
exists, it overwrites the existing trimmer registration. The SearchApplication parameter is
the SSA in which the trimmer should be registered. The TypeName is the full, strong name of the
class in which the custom security trimmer is implemented. The RulePath parameter is the crawl
rule with which the custom security trimmer is associated. Additionally, the cmdlet supports the
inclusion of custom properties, which are covered later in the chapter.

 Once the security trimmer is registered, query - time trimming is complete. The External System can
now be crawled and searched. Remember that query - time trimming is not very effi cient, so large
result sets can be problematic. In these cases you may want to create a custom security trimmer.

 Creating a Custom Security Trimmer

 Creating a custom security trimmer is appropriate when you want more control over the trimming
process. The procedure is reasonably straightforward. It requires the creation of a class that
implements the Microsoft.Office.Server.Search.Query.ISecurityTrimmer2 interface. The
class must then be registered against a crawl rule.

 The ISecurityTrimmer2 interface consists of the Initialize() method and the CheckAccess()
method. The Initialize() method runs when the custom security trimmer is fi rst loaded and gives
you the opportunity to confi gure aspects of the trimming process. The CheckAccess() method runs
for each result returned from the search query in order to trim out the unauthorized search results.

 The Initialize() method receives two parameters when it runs. The fi rst is a System.Collections
.Specialized.NameValueCollection object containing confi guration properties that were
defi ned when the security trimmer was registered against the crawl rule. The second is a Microsoft
.Office.Server.Search.Administration.SearchServiceApplication object containing a
reference to the SSA.

 One of the main reasons to create a custom security trimmer is to better manage the performance
aspects of query - time trimming. Because of this, it is advisable to always have a limit on the
number of checks the trimmer will perform. If, for example, a user runs a query that returns
hundreds of thousands of documents, the trimmer will have to query each one and the result will be
unacceptable performance. To work around this problem, custom security trimmers should always
defi ne a check limit as a confi guration property. This check limit will be used in the CheckAccess()
method to stop the trimmer from processing results and to cause the method to return a message
telling the end user to narrow the search. The Initialize() method will get the value for this
setting, as shown in the following code:

private int intCheckLimit = 200;

public void Initialize(NameValueCollection staticProperties,
 SearchServiceApplication searchApplication)
{

www.it-ebooks.info

http://www.it-ebooks.info

 //The CheckLimitProperty is added when the trimmer is registered
 if (staticProperties[“CheckLimitProperty”] != null)
 intCheckLimit =
 Convert.ToInt32(staticProperties[“CheckLimitProperty”]);
}

 The number of times that security trimming has been called is tracked by a helper function. This
function uses a property to store the current count of security checks and returns a bool indicating
whether the check limit has been exceeded. The following code shows a typical implementation of
the helper function:

private bool CheckLimit(IDictionary < String, Object > sessionProperties,
 int numChecks)
{
 //Checks to see if the access check limit is exceeded
 Object count;

 //Session properties can hold values between calls to the trimmer
 sessionProperties.TryGetValue(“currentCheckCount”, out count);

 if (count == null)
 {
 sessionProperties[“currentCheckCount”] = numChecks;
 return (true);
 }

 int countInt = Convert.ToInt32(count);
 countInt += numChecks;

 sessionProperties[“currentCheckCount”] = countInt;

 if (countInt < = intCheckLimit)
 return true;
 else
 return false;
}

 The CheckAccess() method takes three parameters. The fi rst is an IList < string > containing a
collection of the crawled URLs to check. The second is an IDictionary collection of the properties
for the current session. The third is a System.Security.Principal.IIdentity object containing
the identity of the user running the search. The return value from the method is a BitArray
containing bool values indicating whether the current user is authorized to see the search results.
The following code shows a sample implementation that uses claims - based security to determine
what results the current user can see:

public BitArray CheckAccess(IList < string > documentCrawlUrls,
 IDictionary < string, object > sessionProperties,
 IIdentity userIdentity)
{
 //Check to see if the access check limit has been exceeded
 if (!this.CheckLimit(sessionProperties, documentCrawlUrls.Count))

Searching with .NET Assembly Connectors ❘ 349

www.it-ebooks.info

http://www.it-ebooks.info

350 ❘ CHAPTER 9 WORKING WITH ENTERPRISE SEARCH

 throw (new PluggableAccessCheckException(
 “Too many results, please narrow your search.”));

 //Get identity of current user
 IClaimsIdentity claimsIdentity = (IClaimsIdentity)userIdentity;

 //Construct a claim for the “Developer” role
 Claim permClaim =
 new Claim(Microsoft.IdentityModel.Claims.ClaimTypes.Role, “Developer”);

 //Grant access to anyone with the “Developer” role claim
 BitArray retArray = new BitArray(documentCrawlUrls.Count);

 for (int x = 0; x < documentCrawlUrls.Count; x++)
 {
 if (claimsIdentity.Claims.Contains(permClaim))
 retArray[x] = true;
 else
 retArray[x] = false;
 }

 return retArray;
}

 Once the custom security trimmer is complete, it needs to be given a strong name and deployed to
the GAC. Once in the GAC it must be registered against a crawl rule. The PowerShell script uses the
 properties parameter to defi ne the custom property used to limit the number of access checks. The
following PowerShell script shows how the custom security trimmer might be registered:

New-SPEnterpriseSearchSecurityTrimmer
 -SearchApplication “Search Service Application”
 -typeName “SecurityTrimmer.Trimmer, SecurityTrimmer, Version=1.0.0.0,
 Culture=neutral, PublicKeyToken=0005979aa8d60a1a”
 -RulePath file://FileServer1/*
 -id 1
 -properties CheckLimitProperty~200

 SEARCHING WITH CUSTOM CONNECTORS

 Chapter 7 covered the fundamentals of creating custom connectors. This section goes further by
showing how custom connectors can support crawling and searching. Creating a custom connector
for searching is a good choice when the schema of the External System is dynamic, has custom
or complex data types, or is large. As detailed in Chapter 7, you will fi nd that tooling support for
custom connectors is minimal. Most of the development effort must be made by hand.

 Implementing Required Interfaces

 In Chapter 7 you learned about the fundamentals of custom connectors by implementing the
 Microsoft.BusinessData.Runtime.ISystemUtility interface. Additional interfaces must be

www.it-ebooks.info

http://www.it-ebooks.info

implemented to add support for search. Specifi cally, you must create additional classes that inherit
from the Microsoft.Office.Server.Search.Connector.BDC.LobUri interface and implement the
 Microsoft.Office.Server.Search.Connector.BDC.INamingContainer interface.

 When content sources are created in search, each must have a protocol associated with them. Most
commonly these are http protocols, but you have also seen that BCS can use bdc3 protocols.
However, the data in an External System may be stored in a repository such as a database that does
not support access through any standard protocol that can be used with a content source. In these
cases a protocol is created for the SSA to use, but the URLs associated with this protocol must be
transformed into something that can access the External System for crawling. This is where the
 LobUri class and INamingContainer come into play.

 The LobUri class is an implementation of the ILobUri interface. This class is used to map the URLs
that are passed from the SSA to URLs in the External System. The INamingContainer interface is
used to map the URLs from the External System to the URLs expected by the SSA.

 The LobUri class consists of an Initialize() method and the properties Entity , Identity ,
 LobSystem , LobSystemInstance , and SourceUri . The Initialize() method is called once for
each item being crawled and is used to set the properties to appropriate values for transforming the
URLs. The following code shows a simple implementation of the LobUri class:

private Uri sourceUri;
private IEntity entity;
private Microsoft.BusinessData.Runtime.Identity identity;
private ILobSystem lobSystem;
private ILobSystemInstance lobSystemInstance;

public override IEntity Entity
{
 get { return this.entity; }
}

public override Identity Identity
{
 get { return this.identity; }
}
public override ILobSystem LobSystem
{
 get { return this.lobSystem; }
}

public override ILobSystemInstance LobSystemInstance
{
 get { return this.lobSystemInstance; }
}

public override Uri SourceUri
{
 get { return this.sourceUri; }
 set { this.sourceUri = value; }
}

Searching with Custom Connectors ❘ 351

www.it-ebooks.info

http://www.it-ebooks.info

352 ❘ CHAPTER 9 WORKING WITH ENTERPRISE SEARCH

public override void Initialize(IConnectionContext context)
{
 Uri sourceUri = context.Path;
 string accessPath = sourceUri.AbsolutePath.Replace(‘/’, ‘\\’);
 this.lobSystemInstance = this.lobSystem.GetLobSystemInstances()[0].Value;
 this.entity = this.Catalog.GetEntity(“MyNamespace”, “MyEntity”);
 this.identity = new Identity(accessPath);
}

 The SourceUri is the URL provided by the SSA. This value is used as an input to the
transformation process to generate an accessPath for the External System. The LobSystem and
 LobSystemInstance properties represent the External System as defi ned in the Metadata Model.
The Entity and the Identity represent the entity instance to be crawled in the External System.

 The INamingContainer interface consists of Initialize() , GetAccessUri() , and
 GetDisplayUri() methods, along with a PropertySet property. The Initialize() method
receives the Uri from the External System. The GetAccessUri() method has several overloads
and maps the Uri from the External System to the Uri used by the SSA. The GetDisplayUri()
method has several overloads and maps the display URL for the SSA. The PropertySet property
is a GUID that sets a unique category for the properties included in the crawled system. The
following code shows a simple implementation of the INamingContainer interface:

private Uri sourceUri;
private Uri accessUri;
private static Guid propertySetGuid =
 new Guid(“{AC0E43DF-52CF-401f-97BD-912CE683FE1C}”);

public void Initialize(Uri uri)
{
 this.sourceUri = uri;
}

public Uri GetAccessUri(IEntityInstance entityInstance,
 IEntityInstance parentEntityInstance)
{
 return this.GetAccessUri(entityInstance);
}

public Uri GetAccessUri(IEntityInstance entityInstance)
{
 object[] ids = entityInstance.GetIdentity().GetIdentifierValues();
 string idString = ids[0].ToString();
 idString = idString.Substring(idString.LastIndexOf(‘\\’) + 1);
 this.accessUri = new Uri(this.sourceUri + “/” + idString);
 return this.accessUri;
}

public Uri GetDisplayUri(IEntityInstance entityInstance,
 IEntityInstance parentEntityInstance)

www.it-ebooks.info

http://www.it-ebooks.info

{
 return this.sourceUri;
}

public Uri GetDisplayUri(IEntityInstance entityInstance,
 string computedDisplayUri)
{
 if (string.IsNullOrEmpty(computedDisplayUri))
 return this.sourceUri;
 return new Uri(computedDisplayUri);
}

public Uri GetDisplayUri(IEntity entity,
 ILobSystemInstance lobSystemInstance)
{
 return this.accessUri;
}

public Uri GetDisplayUri(ILobSystem lobSystem)
{
 return this.sourceUri;
}

public Guid PropertySet
{
 get { return propertySetGuid; }
}

 Once the coding is completed, the BDC Metadata Model must be updated to reference the new
classes. The entries consist of an InputUriProcessor property and an OutputUriProcessor
property associated with the LobSystem element. These properties must refer to the class that
implements the LobUri and the class that implements the INamingContainer respectively.
The following code shows a section from the custom connector created in Chapter 7, with the
properties defi ned:

 < LobSystem Name=”MyFileSystem” Type=”Custom” >
 < Properties >
 < Property Name=”SystemUtilityTypeName”
 Type=”System.String” > MyFileConnector.MyFileConnector, MyFileConnector,
 Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=15865f58b9878bf8 < /Property >
 < Property Name=”InputUriProcessor”
 Type=”System.String” > MyFileConnector.MyFileLobUri, MyFileConnector,
 Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=15865f58b9878bf8 < /Property >
 < Property Name=”OutputUriProcessor”
 Type=”System.String” > MyFileConnector.MyFileNamingContainer,
 MyFileConnector, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=15865f58b9878bf8 < /Property >
 < /Properties >

Searching with Custom Connectors ❘ 353

www.it-ebooks.info

http://www.it-ebooks.info

354 ❘ CHAPTER 9 WORKING WITH ENTERPRISE SEARCH

 Deploying the Connector

 After the required interfaces are implemented and the model updated, the connector assembly needs
to have a strong name and be deployed to the GAC. The BCS Model should be deployed to the BDC
service application so that External Lists can be created, but it must also be copied to a fi le share on
the server so that it can be referenced by PowerShell when the connector is registered. A PowerShell
command is needed to register the custom connector with the SSA and declare the protocol that
will be used by the SSA to access the External System. The following PowerShell code shows how to
register the custom connector with the SSA:

$searchapp = Get-SPEnterpriseSearchServiceApplication
New-SPEnterpriseSearchCrawlCustomConnector
 -SearchApplication $searchapp
 -protocol {protocol}
 -ModelFilePath {path to model}
 -Name {name for connector}

 The protocol can be anything you want as long as you are consistent throughout the creation of the
connector. You can use values such as myfile , abc , or xyz to defi ne the protocol for your system.
The path to the model is the complete path to the model in the fi le share you created to support the
registration process. The name of the connector is what will appear in the SSA when you make a
new content source based on the connector.

 While working with custom connectors you may need to unregister them as well. You can do
this with a simple PowerShell command. The following code shows how to unregister a custom
connector:

$searchapp = Get-SPEnterpriseSearchServiceApplication
$crawler = Get-SPEnterpriseSearchCrawlCustomConnector
 -SearchApplication $searchapp
 -Protocol {protocol}
Remove-SPEnterpriseSearchCrawlCustomConnector
 -SearchApplication $searchapp
 -Identity $crawler

 Along with registering the custom connector, you must also add a new registry key to the server
where the crawling will take place. The key takes the form [HKEY_LOCAL_MACHINE]\SOFTWARE\
Microsoft\Office Server\14.0\Search\Setup\ProtocolHandlers\{protocol} . The value
of this key must be set to OSearch14.ConnectorProtocolHandler.1 , which references the COM
component ConnectorPH.dll .

 Using the Connector

 Once the custom connector is properly deployed you can use it to create new content sources
for searching. From the SSA, select to create a New Content Source. In the Content Source Type
section choose Custom Repository, which will display the name of the available custom connectors.
After selecting the custom connector, specify a start address that uses the protocol defi ned for the
connector and provides a starting path that is meaningful for the custom connector. Figure 9 - 10
shows an example content source creation page for a custom connector that searches fi le shares.

www.it-ebooks.info

http://www.it-ebooks.info

 SUMMARY

 Implementing search capabilities in your BCS solutions makes them more powerful and valuable to
the end user. While many custom applications implement some form of querying, very few can claim
to have a search engine as powerful as the one offered by SharePoint Server 2010. As a result, you
should give strong consideration to making search an integral part of every BCS solution.

 FIGURE 9 - 10

Summary ❘ 355

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

359

INDEX

A

Access, Microsoft
presenting External Data in, 10
working with External Data in, 101

Access control lists (ACLs)
AccessControlList element, 284
for metadata objects, 32

AccessChecker method, 346–347
Action element, 184
Action Redirector page, 44
actions

Actions element, 199, 211
creating custom (Outlook), 206–213
defi ned, 32

Active Directory, 306
Active Directory Federation Services (AD FS),

308
adapters, BizTalk, 5–6
add-ins, Microsoft Offi ce 2010. See Microsoft

Offi ce 2010 add-ins
Add/Remove Snap-In function, 85
Administration Metadata catalog

AdministrationMetadataCatalog class,
188

connecting to, 185–186
advanced code-based solutions (BCS), 19, 21–22
advanced workfl ows, 68–69
AdventureWorks example

AdventureWorksLT SQL Server database, 14
view settings, 51

AllowPartialData property, 220
anonymous access (IIS sites), 287
application manifest, 83

application pools, 285
Application Registry Service, 149–150
application-level authentication, 296–298
applications, custom. See custom applications
appointment types, Outlook, 89
architecture

of BCS, 7–9
of Microsoft SharePoint Server 2010,

320–322
Artifact Generator Tool (BCS), 196–200,

203–206
ASP.NET

Impersonation, 286
services, connecting External Data Sources

to, 112–114
solutions, converting (BCS), 147–149

ASPX forms, creating, 138
Association Editor dialog, 251
AssociationNavigator

methods, executing, 165–167
type, 131

associations
crawling, 329–330
creating between entities (connector project),

251–253
defi ned, 31
including in Outlook declarative solutions,

204–206
many-to-many, 136–137
one-to-many, 131–134
reverse, 136
self-referential, 134–136

AttachmentAccessor property, 329–330

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

361

BCS solutions in Offi ce 2010
Access, working with External Data in, 101
BCS folder limitations (Outlook), 87–89
BDC client runtime basics, 74–75
ClickOnce deployment fundamentals, 83–84
ClickOnce security fundamentals, 84–86
client credentials, managing, 90–91
connecting external lists to Outlook, 87–92
connecting lists to SharePoint Workspace,

92–96
External Data columns in SharePoint, 97
External Data limitations in Word, 100–101
External Data, using in Word, 96–101
metadata cache. See metadata cache
Outlook data, synchronizing, 89–90
Outlook solutions, updating, 91–92
programming, 195
scripts and macros, writing (SPW), 94–96
site content types, creating reusable in

SharePoint, 97–100
solution deployment, 82–86
SPW architecture basics, 92–94

BDC (Business Data Catalog), evolution of, 4–5
BDC (Business Data Connectivity)

Administration object model, 32
BDC 2007 solutions, upgrading, 149–150
BDC Model project, creating (connectors),

238
BDC Server object model, 48
BDC Service Application. See BDC Service

Application
BDCIdentity fi eld, 67, 146
BDCM extensions, 104
BDCMetadata.xsd schema fi le, 104
client runtime basics, 74–75
client services/processes, 75
evolution of, 4–5
Metadata Catalog, connecting to, 215–216
Metadata Store database, 34
Model Explorer, 235–236
Model project template (Visual Studio), 235
Model projects, packaging, 277–278
overview, 29–30
permissions, 281–284
runtime, 7–9, 14, 63–64

Server Runtime, 338–339
Service Application throttle settings, 47
stereotyped Methods supported by, 30

BDC Administration object model
BDC Metadata Models, creating in code,

186–188
connecting to Administration Metadata

catalog, 185–186
importing/exporting models, 188–189

BDC Client Runtime object model
basics, 74–75
cache operations, executing, 218–220
client cache, 220–224
execution context, 216–218
metadata catalog, connecting to, 215–216
overview, 213–214

BDC Metadata Models
creating in code, 186–188
exporting, 39–40
implementing method stereotypes in, 117–121
importing, 38–39
installing into new environments, 146
.NET Assembly Connectors and, 235–237
overview, 8, 30–34
security and, 89
for Updater method, 265
working with, 103–105

BDC Server Runtime object model
executing AssociationNavigator methods,

165–167
executing Creator methods, 163–164
executing Deleter methods, 164–165
executing Finder methods, 158–161
executing operations, 155–158
executing SpecificFinder methods,

161–162
executing Updater methods, 162–163
Metadata Catalog, connecting to, 153–154
overview, 151–152
retrieving model elements, 154–155

BDC Service Application
managing, 35–37
proxy, 153
structure of, 34–35

BCS solutions in Offi ce 2010 – BDC Service Application

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

363

Connection Properties dialog, 113–114
connectivity features (BCS), 11–12
to databases for presenting customer data in

SharePoint (example), 7
debugging search connectors, 342
External Data Sources to ASP.NET services,

112–114
External Data Sources to Microsoft SQL

Server databases, 107–108
External Data Sources to ODBC data sources,

110–111
External Data Sources to OLE DB data

sources, 111
External Data Sources to Oracle databases,

108–110
External Data Sources to WCF web services,

114–115
external lists to Outlook, 87–92
lists to SharePoint Workspace, 92–96
to Metadata Catalog, 153–154, 215–216
to SAP, 6
SQL Server Connector to External Data

Sources, 107–111
WCF Service Connector to External Data

Sources, 111–115
connectors

creating custom. See custom connectors
developing, 233–234
handling errors in, 272–276
.NET Assembly Connectors. See .NET

Assembly Connectors
contact types, Outlook, 89
content controls, 96
content sources (searching), 321–322
content type hierarchy (example), 98–99
ContentType attribute, 211
ContextDefinition element, 207
ContextDefinitionGroup element, 199, 211
ContextEventHandlers element, 199
controlled vocabularies (SharePoint), 98
CONTROLTEMPLATES directory, 177
Coordinated Universal Time (UTC), 51
Core Search Results Web Part, 327
Crawl database (SSA), 321

Crawl Rules, defi ning, 347
crawling associations, 329–330
crawls, changelogs for incremental, 339–341
crawl-time security, 342–346
Create Custom Action dialog, 137
Create Link to Data Services dialog (Access), 101
Create() method (Entity class), 186
Create New List Form dialog, 138
CreateDataTable() method, 160
CreateEntityInstanceDataEnumerator()

method, 259
CreateExecutionContext() method, 216
CreateRibbonExtensibilityObject()

method, 224
Creator method

adding to connector project, 246–249
creating, 129
defi ning in Custom connector project, 263
executing, 163–164
implementing in Custom connector project,

263–265
credentials

Credential Manager, 90–91, 299–300
Credentials authentication, 296
Credentials values

(AuthenticationMode element), 25
CredUIPromptForCredentials method,

302–303
retrieving client-side, 302–303
retrieving server-side, 300–302

CRM systems, 69
Custom action, 212
custom applications, 1–2
custom connectors

assemblies, deploying, 354
confi gurable connection properties, creating,

268
connection information, handling, 256–257
connection manager, specifying, 268–269
Creator method, defi ning, 263
Creator method, implementing, 263–265
defi ning entity, 257
Deleter method, defi ning, 267
Deleter method, implementing, 267–268

connectors – custom connectors

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

365

Duet Enterprise for Microsoft SharePoint and
SAP, 6

DynamicType

class, 258
objects, 260

E

ECTs (External Content Types)
associating External Data Sources with new,

106
basics of, 30
creating, 14–16
designed as Outlook types, 89
vs. Entity, 31
External Content Type gallery, 15
managing, 40
Outlook fi elds and, 87–88
overview of, 4–5
permissions, editing in SharePoint Designer,

37
user profi le enhancements with, 64–65

Edit right (BCS), 26
Electronic Data Interchange (EDI), 5
Enterprise Client Access License (CAL), 20
Enterprise Search

available offerings, 319–320
BCS search support. See BCS search support
defi ned, 10
indexing process, 321–322
Microsoft SharePoint Server 2010

architecture, 320–322
query execution, 322
Search Service Application (SSA), 321
searching with .NET Assembly Connectors.

See searching with .NET Assembly
Connectors

entities
creating associations between (connector

project), 251–253
creating new (connector project), 239
defi ned, 5
defi ning in Custom connector project, 257
Entity Data Model (EDM), 6

Entity Design Surface, 235, 237, 337
Entity element, 105
EntityElement property, 259
EntityNamespace, 78

errors, connector, 272–276
EstimatedInstanceCount attribute, 105
ExcludeFromOfflineClient property, 70
Execute() method (IEntity), 155–158
Execute right (BCS), 26
ExecutedMethods, 216
ExecuteFinder() method, 260
ExecuteQuery() method, 143
ExecuteStatic() method, 258
execution context (External Systems), 216–218
exporting

BDC Metadata Model, 39–40
Export BDC Model dialog, 104
and importing models (BDC Administration),

188–189
External Content Types (ECTs). See ECTs

(External Content Types)
External Data

accessing with workfl ows, 66–69
actions, managing, 41–44
Columns, creating, 60–63
Columns, defi ned, 10
Columns in SharePoint, 97
integrating, 2–3
limitations in Word, 100–101
in User Profi les, defi ned, 10
using in Word, 96–101
working with in Access, 101

External Data Sources
associating with new ECTs, 106
authentication and authorization against

External systems, 106
connecting to ASP.NET services, 112–114
connecting to Microsoft SQL Server

databases, 107–108
connecting to ODBC data sources, 110–111
connecting to OLE DB data sources, 111
connecting to Oracle databases, 108–110
connecting to SQL Server Connector,

107–111

Duet Enterprise for Microsoft SharePoint and SAP – External Data Sources

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

367

G

GetById() method, 154, 215
GetDefaultProxy() method, 153
GetEnabled() method, 207
GetEntity() method, 154, 215
GetFieldValue() method, 176
GetFilters() method, 159
GetFormatted() method, 172–174
GetLobSystem() method, 154–155
GetMetadataCatalog() method, 222
GetSubscriptionManager() method, 221
GetSynchronizationManager() method, 221
Global Assembly Cache (GAC), 185
GloballyAvailable property, 277
Groove.SiteClientActiveX object, 94

H

Handle External Event activity, 179, 182
helper function (security trimming), 349
HttpRuntime.Cache, 160
hyperlinks, using custom in search results,

338–339

I

Identifier fi eld (External Systems), 124
Identifiers, 257, 265–266
Identity

entity, 80
objects, 162

idMso attribute, 226
IEntityInstanceEnumerator object, 160
IExecutionContext interface, 216–217
IFilters, 322
IIS Application Pool account, 66
Impersonation, ASP.NET, 286, 287
Impersonation and Delegation model, 25
importing

BDC Metadata Model, 38–39
and exporting models (BDC Administration),

188–189

Import SharePoint Solution Package (Visual
Studio 2010), 147

INamingContainer interface, 351–352
incremental crawls, changelogs for, 339–341
IncrementalUpdate property, 277
indexing process (Enterprise search), 321–322
InError status, 80
InfoPath Designer, 21, 33–34
InfoPath forms

basics of, 52
creating, 139
creating on External Lists, 205
defi ned, 10
to display complex data types, 169–171
to display unsupported data types, 169–171

Information Technology challenges integrating
external data, 3

Initialize() method (ISecurityTrimmer2
interface), 348

Initiation Form parameters, 144
in-place upgrade of MOSS 2000, 69
InputUriProcessor property (LobSystem

element), 353
Integrated Windows authentication, 284–285
integration services, BCS and, 5–7
IntelliSense (Visual Studio), 21
interfaces

low-fi delity, 1–2
for searching with custom connectors,

350–353
intermediate declarative solutions (BCS), 19,

20–21
intermediate workfl ows, 67–68
Internet Security and Acceleration (ISA), 307
interoperability, custom applications and, 1
Invalid entity instance status, 79
Is Foreign Key Association checkbox, 254
ISecureStoreProvider interface, 304–306
ISecurityTrimmer2 interface, 348
IsOfflineAllowed() method, 95
ISynchronizationManager methods,

221–222

GetById() method – ISynchronizationManager methods

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

369

Microsoft Offi ce 2010 add-ins
custom task pane, creating, 227–229
overview, 224
packaging data-only solutions, 229–231
Ribbon Support component, 224–227

mobile-enabled web parts, 63
Model element, 105, 154–155
ModelFileName property, 278
modeling Finder methods, 124–129
MOSS 2007, upgrading to SharePoint 2010, 69–71
mssdmn.exe process, 342

N

namespaces, key (BDC Server Runtime), 152
.NET assemblies, 10
.NET Assembly Connectors

connection information, handling, 243–244
crawling External Systems with, 12–13
creating Finder method, 240–242
creating new BDC Model project, 238
creating new entity, 239
creating SpecificFinder method,

242–243
Creator/Updater/Deleter methods,

246–249
development process overview, 238
entities, creating associations between,

251–253
methods, implementing, 245–246
non–foreign key relationships, 253–254
overview, 234–235
project tooling (Visual Studio), 235–237
searching with. See searching with .NET

Assembly Connectors
StreamAccessor Method, 249–250
testing, 254

New-SPEnterpriseSearchRankingModel

Powershell cmdlet, 336
New-SPEnterpriseSearchSecurityTrimmer

Powershell cmdlet, 348
non–foreign key relationships, 253–254
NTLM protocol, 285–286, 288, 307
NULL fi elds, 67

O

OAuth and claims (authentication), 25–26
OAuth protocol, 315
ObjectDeletedException, 80, 82
ObjectNotFoundException, 62, 80, 82
Obsolete entity instance status, 80
ODBC data sources, connecting External Data

Sources to, 110–111
ODC (Offi ce Document Cache), 93–94
Offi ce 2010, Microsoft. See Microsoft
OfficeItemCustomizations element, 199
OfficeItemProperty element, 203
oir.config (solution manifest), 21, 197–199,

212
OLE DB data sources, connecting External Data

Sources to, 111
one-to-many associations, 131–134, 251
operations

executing (BDC Metadata Model), 155–158
Operation Designer, 106
OperationMode object, 79, 159–160
OperationMode properties, 219
OperationQueue table (metadata cache), 80

Oracle databases, connecting External Data
Sources to, 108–110

Outlook, Microsoft
BCS folder limitations and, 87–89
connecting external lists to, 87–92
data, synchronizing, 89–90
ECTs designed as Outlook types, 89
external data in, 21
External Lists and, 10
form limitations in, 87–88
Outlook Intermediate Declarative Solution,

200
OutlookFolder element, 204
solutions, updating, 91–92

Outlook declarative solutions
actions/ribbons/parts, creating custom,

206–213
artifacts, generating, 196–200
custom form regions, creating, 201–203
custom view defi nitions, creating, 203–204

Microsoft Offi ce 2010 add-ins – Outlook declarative solutions

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

371

S

Sandboxed Solutions, 178–179
Sandboxed Workfl ow Actions, 67–68, 182–185
SAP, connecting to, 6
SaveCore() method, 207
scripts and macros, writing (SPW), 94–96
searching

BCS search support. See BCS search support
with custom connectors, 350–355
Enterprise Search. See Enterprise Search
External Systems, 65
Search Centers, 325–327
Search Core Results Web Part, 330–331, 336
search scopes, creating/using, 325–327
Search Service Application (SSA), 321
Search Service database (SSA), 321

searching with .NET Assembly Connectors
changelogs for incremental crawls, 339–341
crawl-time security, 342–346
custom hyperlinks, using in search results,

338–339
custom security trimmer, creating, 348–350
debugging search connectors, 342
enabling search basics, 336–342
query-time security, 346–348
trimming search results, 342–350

SecondarySsoApplicationId element, 298
Secure Store Service (SSS)

account, 178
application-level authentication, 296–298
client authentication and, 299–300
Credentials authentication, 296
External Systems and, 9
function of, 25–26
fundamentals of, 290–293
RdbCredentials authentication, 295–296
SSS object model. See SSS object model
using for authentication, 294–298
WindowsCredentials authentication,

294–295
Secure Store Ticket (SsoTicket) fi lters, 291
SecureString class, 302
security, BCS

BDC permissions, 281–284
claims authentication. See claims

authentication
ClickOnce, 84–86
client authentication, confi guring, 298–300
fundamentals of, 24–27
overview, 281
Passthrough authentication, 288
RevertToSelf authentication, 288–290
Secure Store Service (SSS). See Secure Store

Service (SSS)
SecurityIdentifier, 345
server authentication, 287–290
token authentication, 315–316
Windows authentication, 284–287

self-referential associations, creating, 134–136
self-signed certifi cates, 85
Sentence attribute, 184
server authentication, 287–290
Server object model, BDC, 48
server-side credentials, retrieving, 300–302
Service Application, BDC. See BDC Service

Application
service class, 237
Set Permissions right (BCS), 26
SharePoint

Application Pool, 86
auto-generated forms, 52
BCS in, 13–14
connectivity to WCF/Web Services, 11
External Data columns in, 97
Foundation, developer documentation, 63
integrating BCS data with, 49
integration with Offi ce, 3
programming BCS solutions in, 151
Search 2010, 12
Server 2010, 7
SHAREPOINT\system account, 290
Silverlight Web Part, 6
site content types, creating reusable in,

97–100
using BCS solutions in, 29
Workspace (SPW), 10, 17

Sandboxed Solutions – SharePoint

www.it-ebooks.info

http://www.it-ebooks.info

372

SharePoint Designer
BDC Metadata Model and, 8
creating solutions with, 103
editing ECT permissions in, 37
exporting from SPD vs. Central Admin, 40

Show Reseller Details button (Outlook), 87
ShowInSearchUI property, 323–324
ShowTaskpaneLayout action, 212
Silverlight client-side object model, 141–142
simple solutions leveraging out-of-the-box

capabilities, 19–20
simple workfl ows, 66–67
Single Sign-On Service, 150
site content types

creating reusable in SharePoint, 97–100
Site Content Type Gallery, 100

site workfl ows (SharePoint 2010), 144
SiteUrl property, 278
solutions (BCS)

advanced workfl ow. See workfl ow solutions,
advanced

ASP.NET, converting, 147–149
BDC 2007 solutions, upgrading, 149–150
creating simple, 14–18
creating with SharePoint Designer, 103
custom, limits in creating, 189–193
deployment of, 82–86
making portable, 146–147
in Offi ce 2010. See BCS solutions in Offi ce

2010
Outlook solutions, updating, 91–92
packaging, 22–24
packaging and deploying, 200–201
programming in Offi ce 2010, 195
programming in SharePoint 2010, 151
solution manifest (oir.config), 197–199
solution packaging, 22–24
Solution Packaging Tool, 200–201
SolutionDefinition element, 199, 211
Solutions Gallery, 146
SolutionSettings element, 199, 211
types of, 19–22
using in SharePoint 2010, 29

SPCustomFieldType property, 174
SpecificFinder methods

creating, 129
creating for connector project, 242–243
defi ned, 117
defi ning, 186–188
defi ning for Custom connector project,

260–261
in Enterprise Search, 323
executing, 161–162
implementing in Custom connector project,

261–262
modifi ed from .NET Assembly Connector,

273–274
retrieving parameters from, 156

SPGridView control, 174
SPList object, 140–141
SPSecurity.RunWithElevatedPrivileges

method, 289–290
SPServiceContext

class, 153
object, 185–186

SPUCWorkerProcessProxy account, 68
SPUCWorkerProcessProxy.exe process, 178
SPW (SharePoint Workspace)

architecture basics, 92–94
connecting lists to, 92–96
SPWorkflowExternalDataExchange

Service, 180
synchronizing External Lists to, 94

SQL (Structured Query Language)
SQL CE cache, 14
SQL CE database, 9
SQL Server Connector, 107–111
SqlDataReader type, 157

SsoApplicationId element, 294
SsoProviderImplementation element,

303–304
SsoProviderImplementation property, 110
SSS object model

client-side credentials, retrieving, 302–303
pluggable providers, creating, 303–306
server-side credentials, retrieving, 300–302

SharePoint Designer – SSS object model

www.it-ebooks.info

http://www.it-ebooks.info

373

Stale entity instance status, 80
static methods, 245
stored procedures supporting wildcard as input

parameter, 127–128
StreamAccessor method

adding to connector project, 249–250
defi ned in BDC Metadata Model, 157–158
defi ning to display Byte [] fi elds, 59

structured data, 1
STS (Security Token Services), 313–314
subscriptions (metadata cache), 76–78
SuppressCrawl property, 276
synchronizing

External Lists to SPW, 94
Outlook data, 89–90
Sync Issues folder, 89
Sync to SharePoint Workspace button, 94
SynchronizationCookie property, 340

Systems, External. See External Systems

T

tabs element, 226
TakeOffline() method, 95
Target Applications (SSS), 290–294
task panes, creating custom (Offi ce 2010),

227–229
task types, Outlook, 89
taxonomy, defi ned, 98
testing .NET Assembly Connector, 254
throttling limits, 46–48
ticketing (authentication), 291
time zone support, 63–64
token authentication, 315–316
tombstoned data, 79
tooling features (BCS), 12–13
Tools for Offi ce (VSTO)

add-in support, 7
installer, 82

transformation functions, 335
trimming search results, 342–350
Trusted Subsystem model, 25, 287, 288
Type attribute, 118
TypeDescriptor elements, 30, 118, 240, 242, 257

U

unstructured data, 1
unsupported data types

basics, 167–169
custom fi eld types for displaying, 174–178
External Lists and, 168
InfoPath forms to display, 169–171

Updater methods
adding to connector project, 246–249
BDC Metadata Model for, 275
creating, 129
defi ning in Custom connector project,

265–266
executing, 162–163
implementation of, 276
implementing in Custom connector project,

266–267
updates to solutions, processing (BCS), 24
upgrading MOSS 2007 to SharePoint 2010, 69–71
Upload Center (ODC), 93
UrlAction element, 212
UseClientCachingForSearch property, 325,

337
users

challenges integrating external data and, 3
profi le enhancements with ECTs, 64–65
user-defi ned runtime parameters, 43–44

V

validation errors (connectors), 272
versioning

Metadata Model and, 33–34
Version attribute, 105
Version property, 33

views
custom view defi nitions, creating (Outlook),

203–204
settings for External Lists, 50–51

Visual Studio
Business Data Connectivity Model project

template, 235
ClickOnce package, 4, 17–18

Stale entity instance status – Visual Studio

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

